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1. Introduction

Figure 1.1.: An array of thyristor valves in an ABB HVDC converter station. (image
from [12])

The push for deployment of renewable energy technologies across the EU is
generating transformation pressure on the transmission infrastructure. In par-
ticular, the role High Voltage Direct Current (HVDC) technology in the grid is
growing [10]. Novel Power Semiconductor devices such as the BiGT [15, 1, 7] or im-
provements in well–proven devices such as the thyristor [16, 13, 17] (see figure 1.2)
are a key enabling technology allowing for the feasibility of HVDC grids [15, 1, 7,
6, 8], see figure 1.1.
Technology Computer Aided Design (TCAD) simulations play a key role in

the development and optimization of new devices. As complex geometries [7] are
an important ingredient for optimal performance of high power, large area semi-
conductor devices, full scale 3D simulations are required [11, 18]. Large current
densities and fast switching speeds, lead to non–negligible multi–physics effects
such as interactions of charge transport with substrate heating [18, 4, 2].
The complexity of the physical phenomena that govern the performance of new

and advanced device structures makes it extremely difficult to develop compact
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1. Introduction

models for them. Furthermore, available compact models depend on a very large
number of parameters, that require a lengthy and expensive tuning procedure in
order to be accurate over a wide range of operating conditions [14]. For such
reason in the technology design phase it is often required to perform mixed–mode
simulations, i.e., to simulate the device performance when coupled to controlling
circuit and load [18, 9].
The present thesis was carried out in the framework of a collaboration between

the Modeling and Scientific Computing (MOX) lab of Politecnico di Milano, and
the Power Electronics department in the Corporate Research Center of ABB in
Baden–Dättwil, Switzerland aimed at implementing a parallel 3D TCAD simulator
especially tailored for the needs of the Power Semiconductors industry in general
and for those of ABB in particular.
The resulting C++ code, named CGDD++, was developed from scratch during

the preparation of the present thesis, building on the experience gained during
a preliminary feasibility study and the Fortran 2003 code (CGDD) that was im-
plemented during that preliminary phase and was based on the FEMilaro [20]
library.
CGDD++ relies on the BIM++ [19] library for spatial discretization of differen-

tial operators and uses MUMPS [22] or LIS [21] for the solution of linear systems
of algebraic equations.
The development of CGDD was partially supported by the SuperComputing

Applications and Innovations (SCAI) department of CINECA, Italy through the
Interdisciplinary Laboratory for Advanced Simulation (LISA) projects 3DSPEED
(3D Simulation of PowEr Electronics Devices, 2014) and PDDD (3D Power elec-
tronics Drift Diffusion Device simulation, 2013).
The main feature of CGDD++, which were the objective of this thesis, is the

ability to allow implementation and testing of a wide range numerical algorithms
suited for very large scale parallel mixed–mode simulation of Power Semiconductor
devices, including electro–thermal effects.
Particular emphasis was devoted during the development of this thesis to the

implementation and assessment of various linear and nonlinear iteration strategies.
In the remaining part of this chapter we introduce briefly two important classes

of Power Semiconductor devices, in order to outline their peculiarities that drive
the selection of physical models and numerical algorithms employed in this thesis
work, a full outline of the rest of the thesis is given at the end of the chapter.
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1.1. Power semiconductor devices

Figure 1.2.: An ABB Phase controlled thyristor, with wafer and packaging. (image from
[12])

1.1. Power semiconductor devices

In this section we briefly introduce two very common power semiconductor device
structures and their basic working principles. The purpose of the section is not an
in–depth discussion of the physics of such devices (for which we refer the interested
reader to, e.g., [3]) but rather to outline the specific features of such devices that
are relevant for the development of a numerical simulator.
Section 1.1.1 introduces the basic features of p-i-n rectifying power diodes, while

section 1.1.2 discusses the principles of operation of the thyristor. Finally sec-
tion 1.1.3 collects the features previously highlighted, which a simulation tool
needs to handle when dealing with power devices.

1.1.1. Rectifying p-i-n power diodes

Power diodes are blocking devices based on a doping profile of type p+-n−-n+,
where the large drift region inbetween is almost intrinsic (hence the p-i-n denom-
ination). Such doping profile allows the device to attain much higher breakdown
voltage ratings, since most of the bias is sustained by the low doping region, lim-
iting the maximum electric field in the junction. From an application perspective,
power diodes can be divided in two classes:

• rectifying diodes for grid voltages at 50-60Hz frequencies, with high carrier
lifetimes in the drift region;

• fast recovery diodes, commuting with frequencies up to 20 kHz, where the
carrier lifetime in the drift region need to be reduced.

The parameter governing the diode characteristic is the length of the intrinsic
region wB which determines the maximum blocking voltage, as it matches the
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1. Introduction

depletion region for sufficiently high reverse bias. The breakdown voltage Vbd

follows approximately a power law: Vbd ∝ w
−8/7
B . When the breakdown voltage

is reached, the avalanche multiplication caused by impact ionization (which is
discussed in section 2.2) produces enough carriers to enable conduction.
The transition of the diode from the blocking state to the on–state is accompa-

nied by an overshoot in the anode voltage which increases the power dissipation.
This phenomenon is referred to as the forward recovery. When the diode switches
from the on–state to the reverse–blocking state, the stored charge within the drift
region of the power rectifier must be extracted before it is able to support high
voltages. This produces a large reverse current for a short time duration. This
phenomenon is referred to as the reverse recovery, and produces even greater power
losses.
During reverse recovery, the current does not monotonically reduce to zero. If

the reversal in the voltage is performed with a circuit comprising a voltage source
and a series resistance, a constant reverse current is observed immediately after the
voltage changes from its positive value to a negative value. This current persists
until the stored charge is sufficiently removed to allow the junction to support
the voltage by the formation of a depletion layer. This reverse recovery process
pertains to a resistive load.
In power electronic circuits, it is commonplace to use power rectifiers with an

inductive load. In this case, the current reduces at a constant ramp rate, until
the diode is able to support voltage. Consequently, a large peak reverse recovery
current (IPR) occurs due to the stored charge followed by the reduction of the
current to zero. The power rectifier remains in its forward biased mode with a low
on–state voltage drop during part of the current switching, then rapidly increases
to the supply voltage with the rectifier operating in reverse bias mode. The current
flowing through the rectifier in the reverse direction reaches IPR when the reverse
voltage becomes equal to the reverse bias supply voltage.
The simultaneous presence of a high current and voltage produces large instan-

taneous power dissipation in the power rectifier. The peak reverse recovery current
also flows through the power switch that is controlling the switching event increas-
ing the power losses in the transistor. Large reverse recovery currents can trigger
latch–up failures that can destroy both the transistor and the rectifier. It is there-
fore desirable to reduce the magnitude of the peak reverse recovery current and
the time duration of the recovery transient. This time duration is referred to as
the reverse recovery time.

1.1.2. Thyristors

Thyristors were initially developed to replace vacuum valves in power electronics
and first reached the market in the early 1960’s.
A thyristor basically consists of three series–connected p-n junctions. Such a
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1.1. Power semiconductor devices

simple structure leads to a voltage–current characteristics displaying a bi–stable
behavior which allows operation both in blocking regime with low off–state currents
and in a conduction regime with low on–state voltages. Thyristors have blocking
capability both in forward and reverse bias conditions, which makes them partic-
ularly well suited for AC applications.
The device may be triggered to on–state from forward blocking state by applying

a suitable gate signal. Once conduction has been triggered, the thyristor remains
in a stable on–state condition even with no gate current. Moreover, a thyristor
automatically switches to reverse bias blocking state due to change of sign in the
voltage in an AC circuit.
Applications of thyristors range from home appliances to electrical energy dis-

tribution. For this latter application the current capability of current solid state
thyristors has reached 5000A while the blocking voltage capability is as high
as 8000V [5]. Such high ratings are required for HVDC networks [16]. Figure 1.3

Figure 1.3.: Basic thyristor structure and electric field distribution in forward and reverse
bias conditions.

displays schematically the structure of a thyristor; four regions with different dop-
ing form three p-n junctions labeled J1, J2 e J3, respectively. In forward bias the
junctions J1 and J3 are forward biased, while J2 is reverse biased. As shown in
figure 1.3, in this case, the voltage drop is mainly supported by the charge ac-
cumulating in the depleted region around J2. In reverse biased conditions J2 is
forward biased while J1 and J3 are reverse biased. In this latter case most part
of the voltage drop is across J1. A simple model that can be used to understand
the behavior of a thyristor consists of two bipolar transistors (one p-n-p and one
n-p-n) connected as shown in figure 1.4. Denoting by α1 and α2 the current gain
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Figure 1.4.: Circuital equivalent of a thyristor

coefficients of the two transistors one can easily write an equation for the current
IA at the anode (A). Expressing the currents IC1 and IC2 as

IC1 = α1IA + Ip0 (1.1)

IC2 = α2IK + In0 (1.2)

one gets
IA = IC1 + IC2 = α1IA + α2IK + Ip0 + In0 (1.3)

where Ip0 and In0 are diffusion leakage currents of the n− region and of the p
region, respectively.
By balancing the currents flowing into the device one may write

IK = IA + IG (1.4)

which gives
IA = α1IA + α2IA + α2IG + Ip0 + In0 (1.5)

solving with respect to a IA gives

IA =
α2IG + Ip0 + In0

1− (α1 + α2)
. (1.6)
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1.1. Power semiconductor devices

Equation 1.6 is valid as long as avalange multiplication due to impact ionization
remains negligible. Anode current tends to infinity if the denominator in 1.6 tends
to 0. If α1 + α2 ≥ 1 the thyristor is in conduction and a positive feedback loop is
formed in the device.
In forward bias there are two branches in the I–V characteristics: blocking and

conducting. When in reverse bias the device can only operate in blocking mode.
In both forward bias and reverse bias blocking mode, the maximum attainable
voltage value is given by the maximum allowed leakage current.
In both cases there is a threshold blocking voltage beyond which a current blow–

up occurs: in reverse bias such threshold is the breakdown voltage Vbd, while in
forward bias it is the breakover voltage Vbo. For forward biases larger than Vbo

the device turns on and switches to conduction mode. This latter switching event
is to be avoided in high–power devices as the resulting large currents may cause
severe device damages.
The blocking capability is limited by two phenomena: breakdown and punch–

through. Breakdown has been already discussed in section 1.1.1 while punch–
through occurs when, with increasing applied voltage, the space charge extending
from the n− region reaches the adjacent p region. In such occurrence, holes from
the p region are forced by electric field and the thyristor switches to a conducting
regime.
Assuming piecewise linear electric field in the n− region and neglecting built–in

voltage, the punch–through voltage can be estimated as

Vpt =
qNDw

2
B

ε
(1.7)

where wB is the length of the n− region. As ND increases, a trade–off between
Vbd and Vpt occurs at constant wB: Vpt increases, while Vbd decreases; at constant
doping, on the other hand, increasing wB results in increased Vpt and Vbd.

1.1.3. Numerical simulation for power electronics

From the description of two important classes of power semiconductor devices, we
can evince a list of characteristics that need to be satisfied by a tool aimed at their
numerical simulations. In particular, it is necessary to deal with:

• highly variable doping densities – and consequently highly variable charge
carrier densities with steep boundary or internal layers,

• very high applied voltages, both in conducting and blocking regime,

• high frequencies and fast transients (recoveries), as well as quasi–static (con-
ducting, blocking) regimes,

• very large conducting currents, and large peak switching currents,
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1. Introduction

• wide range of operation temperatures, and therefore temperature effects on
charge transport phenomena,

• effects of semiconductor process technology, like lifetime engineering, used to
enhance device performance,

• complex shapes, doping and contacts distributions, and small details in oth-
erwise large devices, requiring full–scale three–dimensional representation,

• controlling and loading by coupled external circuits, comprising time-dependent
and possibly nonlinear components.

The framework of models and algorithms presented in this thesis has been built
in order to satisfy all of these often much demanding requirements. The relevant
mathematical modeling of power devices is presented in part I. Chapter 2 deals
with the differential modeling of semiconductor devices, the material properties
dependence on doping, temperature, process, and the mathematical properties of
the model. Chapter 3 treats the circuital modeling, and some aspects related to
the coupling of lumped and distributed models.
The algorithmic aspects are discussed in part II: chapter 4 deals with time dis-

cretization, chapter 5 with the solution of nonlinear systems of equations, chap-
ter 6 discusses the discretization of the distributed models, and chapter 7 proposes
a specifically tailored strategy for the solution of the linear systems obtained. Fi-
nally, part III presents a series of test cases where the proposed algorithms were
applied.

References

[1] M. Rahimo, A. Kopta, et al. “The Bi-mode Insulated Gate Transistor (BiGT)
A potential technology for higher power applications”. In: Proc. ISPSD09. 2009,
pp. 283–286.

[2] Giuseppe Alì, Andreas Bartel, et al. “Analysis of a PDE thermal element model
for electrothermal circuit simulation”. In: Scientific Computing in Electrical Engi-
neering SCEE 2008. Springer, 2010, pp. 273–280.

[3] B Jayant Baliga. Fundamentals of power semiconductor devices. Springer Science
& Business Media, 2010.

[4] Massimiliano Culpo, Carlo de Falco, et al. “Automatic thermal network extraction
and multiscale electro-thermal simulation”. In: Scientific Computing in Electrical
Engineering SCEE 2008. Springer, 2010, pp. 281–288.

[5] J. Vobecky. “Future trends in high power devices”. In: Microelectronics proceedings
(MIEL), 2010 27th International Conference on Microelettrionics (2010), pp. 67–
72.

8



References

[6] Christian M. Franck. “HVDC Circuit Breakers: A Review Identifying Future Re-
search Needs”. In: IEEE Transactions on Power Delivery 26.2 (Apr. 2011).

[7] L. Storasta, M. Rahimo, et al. “The radial layout design concept for the bi-mode
insulated gate transistor”. In: Proceedings of ISPSD. 2011, pp. 56–59.

[8] M. Callavik, A. Blomberg, et al. The hybrid HVDC breaker. Tech. Paper. ABB
Grid Systems, 2012.

[9] Andreas Bartel, Markus Brunk, et al. “Dynamic iteration for coupled problems of
electric circuits and distributed devices”. In: SIAM Journal on Scientific Computing
35.2 (2013), B315–B335.

[10] A. D. Andersen. “No transition without transmission: HVDC electricity infras-
tructure as an enabler for renewable energy?” In: Environmental Innovation and
Societal Transitions 13 (2014), pp. 75–95.

[11] Marco Bellini and Jan Vobecky. “Large-scale 3D TCAD study of the impact of
shorts in phase controlled thyristors”. In: Simulation of Semiconductor Processes
and Devices (SISPAD), International Conference on. IEEE. 2014.

[12] Sven Klaka. Thyristors – The heart of HVDC. Nov. 2015. url: https://www.abb-
conversations.com/2015/11/thyristors- the- heart- of- hvdc/ (visited on
12/2015).

[13] Neophytos Lophitis, Marina Antoniou, et al. “Improving Current Controllability in
Bi-mode Gate Commutated Thyristors”. In: Electron Devices, IEEE Transactions
on 62.7 (July 2015), pp. 2263–2269. issn: 0018-9383. doi: 10.1109/TED.2015.
2428994.

[14] Daniele Prada, Marco Bellini, et al. “On the Performance of Multiobjective Evo-
lutionary Algorithms in Automatic Parameter Extraction of Power Diodes”. In:
Power Electronics, IEEE Transactions on 30.9 (2015), pp. 4986–4997.

[15] L. Storasta, M. Rahimo, et al. “Optimized Power Semiconductors for the Power
Electronics Based HVDC Breaker Application”. In: Proceedings of PCIM Europe
2015. 2015, pp. 1–7.

[16] J Vobecky, V Botan, et al. “A novel ultra-low loss four inch thyristor for UHVDC”.
In: Power Semiconductor Devices & IC’s (ISPSD), 2015 IEEE 27th International
Symposium on. IEEE. 2015, pp. 413–416.

[17] J Vobecky, V Botan, et al. “New Low Loss Thyristor for HVDC Transmission”. In:
PCIM Europe 2015; International Exhibition and Conference for Power Electronics,
Intelligent Motion, Renewable Energy and Energy Management; Proceedings of.
VDE. 2015, pp. 1–6.

[18] Davide Cagnoni, Marco Bellini, et al. “An algorithm for mixed-mode 3D TCAD
for power electronics devices, and application to power p-i-n diode”. In: Progress in
Industrial Mathematics at ECMI 2014. Mathematics in Industry. Springer, 2016.

[19] BIM++. url: http://gitserver.mate.polimi.it/redmine/projects/bim
(visited on 02/01/2016).

9

https://www.abb-conversations.com/2015/11/thyristors-the-heart-of-hvdc/
https://www.abb-conversations.com/2015/11/thyristors-the-heart-of-hvdc/
http://dx.doi.org/10.1109/TED.2015.2428994
http://dx.doi.org/10.1109/TED.2015.2428994
http://gitserver.mate.polimi.it/redmine/projects/bim


1. Introduction

[20] FEMilaro. url: http://code.google.com/p/femilaro/ (visited on 02/01/2016).

[21] Lis: Library of Iterative Solvers for Linear Systems. url: http://www.ssisc.org/
lis/ (visited on 02/01/2016).

[22] MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. url: http://
mumps.enseeiht.fr/ (visited on 02/01/2016).

10

http://code.google.com/p/femilaro/
http://www.ssisc.org/lis/
http://www.ssisc.org/lis/
http://mumps.enseeiht.fr/
http://mumps.enseeiht.fr/


Part I.

Mathematical and physical
models
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2. The Drift–Diffusion Model for Charge
Transport

In this chapter, we present the full partial differential equations used in this thesis
to describe the transport of charge carriers in semiconductors. Section 2.1 derives
and describes the system of partial differential equations upon which the drift–
diffusion model is based. Section 2.2 introduces models to account for temperature
and material properties through the equations coefficients. Section 2.3 introduces
the models and assumption we employ when accounting for interaction of the
semiconductor device with the external environment. Finally, in section 2.4, we
review some analytical results which will be useful when defining the strategy for
obtaining a numerical approximation to the problem solution.

2.1. PDE Conservation Laws

In this section, the partial differential model known as drift–diffusion equations is
obtained, starting from the basic laws of electrodynamics. Only the main differ-
ential terms are obtained, while the specific treatment of nonlinear coefficients is
delayed to section 2.2.

2.1.1. Poisson’s equation

Electrodynamics is mathematically described by Maxwell’s equations

∇× ~H = q ~J +
∂ ~D

∂t
, (2.1a)

∇× ~E = −∂
~B

∂t
, (2.1b)

∇· ~D = ρ, (2.1c)

∇· ~B = 0, (2.1d)

coupling electric field ~E, electric displacement ~D, magnetizing field ~H and mag-
netic induction ~B to current density q ~J and space charge density ρ.
Electric displacement and electric field are related, in isotropic, linear materials,

by the constitutive equation
~D = ε ~E, (2.2)

13



2. The Drift–Diffusion Model for Charge Transport

ε being the material dielectric permittivity.
It is in practice useful to express the fields in function of potentials. Let ~A be

the vector potential satisfying
~B = ∇× ~A, (2.3)

∇· ~A = 0. (2.4)

Replacing (2.3) in (2.1b) results in

∇×

(
~E +

∂ ~A

∂t

)
= 0, (2.5)

thanks to which the irrotational field ~E+ ∂ ~A
∂t

can be seen as the gradient of a scalar
potential φ:

~E = −∂
~A

∂t
−∇φ. (2.6)

Employing then (2.2) and (2.6) to transform (2.1c), one can show that

∇·

(
ε
∂ ~A

∂t

)
+∇·(ε∇φ) = −ρ. (2.7)

Supposing the studied domain was much smaller than the wavelength of the
electromagnetic radiation at the typical frequences involved, quasi–static condi-
tions could be assumed and time derivatives in (2.6) and (2.7) could be neglected.
The following equations then rise:

~E = −∇φ (2.8)

∇·(ε∇φ) = −ρ. (2.9)

In semiconductors, as explained in the introductive chapter, the space charge is
given by the built–in dopants and the free charge carriers:

ρ = q(p− n+ND −NA) = q(p− n+Nbi) (2.10)

where n and p represent the number density of free electrons and holes, while Nbi,
the built–in net dopant particles number density, is given by the combination of
donors, ND and acceptors, NA.
Subtracting (2.9) expression from (2.10) the form of Poisson’s equation we will

carry on in the following becomes:

−∇· (ε∇φ) = q(p− n+Nbi) (Poisson)

14



2.1. PDE Conservation Laws

2.1.2. Charge transport equations

The conservation of electric charge can be derived from (2.1a), by applying the
divergence operator, resulting in the conservation law usually referred to as Kir-
choff’s current law (KCL):

∇· (∇× ~H) = ∇·(q ~J) +
∂ρ

∂t
= 0. (2.11)

In semiconductors, ~J is made of two contributions, the electron and hole current
densities:

q ~J = q ~Jp − q ~Jn. (2.12)
If time variations in Nbi are negligible, namely

∂(ND −NA)

∂t
=
∂(Nbi)

∂t
= 0, (2.13)

then (2.11) can be restated as:

∇·( ~Jp − ~Jn) +
∂(p− n)

∂t
= 0 (2.14)

Decomposing the terms in (2.14) with the help of an additional variable R, the
two equations

∂n

∂t
+∇· ~Jn = −R (n-balance)

∂p

∂t
+∇· ~Jp = −R (p-balance)

rise, where the right hand side represents the net generation or recombination rate,
namely

R = Rn −Gn = Rp −Gp. (2.15)

2.1.3. The drift–diffusion currents

Current density in a gas of charged particles can be expressed as the product of the
elementary charge, the particles number density, and the average particle velocity:

q ~Jp = qn~vn,

q ~Jp = qp~vp.
(2.16)

Motion of carriers is defined, over distances much longer than the lattice vec-
tors, by collisions with the lattice itself. As a consequence, the applied force is
proportional to the average speed ~v, rather than the acceleration:

~vn = µn ~Fn = µn∇φn
~vp = µp ~Fp = −µp∇φp

(2.17)
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2. The Drift–Diffusion Model for Charge Transport

the scalar fields φn, φp being the electrochemical or quasi–Fermi potentials for
electrons and holes respectively.
In non–degenerate semiconductors, it is usually safe to assume the Maxwell-

Boltzmann relation between carrier density, electric and electrochemical potentials:

φn = φ− φth ln

(
n

Ni

)
φp = φ+ φth ln

(
p

Ni

) (2.18)

where Ni is the intrinsic density of free carriers while φth is the thermal volt-
age kBTq

−1. Replacing (2.18) and (2.17) in (2.16), the following current density
definitions can be derived:

~Jn = −µnφth

(
∇n− n

φth

∇φ
)

(n-current)

~Jp = −µpφth

(
∇p+

p

φth

∇φ
)

(p-current)

Equations (n-current) and (p-current) work as constitutive relations for (n-balance)
and (p-balance); they comprise carrier diffusion terms ∇n, ∇p, and transport or
drift terms −n∇φ, p∇φ, hence the name of the current model.

2.2. Constitutive Relations for System Coefficients

In this section, we describe thoroughly the models for the various physical coef-
ficients appearing in the drift–diffusion model, presented in section 2.1. We will
describe in particular the models for the band gap energy and effective intrinsic
density in subsection 2.2.1, for the mobility of carriers in subsection 2.2.2, and
finally for the different types of carrier generation and recombination in subsec-
tion 2.2.3.
In power electronics devices, temperature effects are particularly important due

to the high powers being dissipated. The decision hereby taken of limiting the
model to deal with uniform, constant temperature as a parameter is due to the
necessity of taking a first step, and being able to investigate different regimes
in a simpler way, as it happens e.g. in section 9.3. The framework presented
in this thesis, however, provides means of including either lumped or distributed
temperature models, task we can consider as a future research objective.

2.2.1. Band–gap Narrowing

For an isolated atom, the energy of electrons is limited to discrete values. In
a lattice, however, the allowed discrete values cluster to form continuous energy
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2.2. Constitutive Relations for System Coefficients

bands, separated by forbidden regions, or band gaps. In semiconductors, the Fermi
potential lies in one of those gaps, and the nearest energy bands take the name
of conduction band (NC) and valence band (NV). The valence band is the highest
range of electron energies in which electrons are normally present at absolute zero
temperature, while the conduction band is the lowest range of vacant electronic
states.
The difference of energy between conduction and valence band is called qφg.

Dependence of qφg on temperature has been experimentally investigated [12] and
found to fit the equation

qφg = qφg(T0K) +
αT 2

T + β
(2.19)

where the parameters qφg(T0K), α, β are reported in table 2.1.
The effective density of states in valence and conduction band also depend on

temperature, both directly and through the effective carrier masses:

NC = Nref

(
m∗n(T )

m0

) 3
2
(

T

T300K

) 3
2

,

NV = Nref

(
m∗p(T )

m0

) 3
2
(

T

T300K

) 3
2

.

(2.20)

Electrons effective mass varies with temperature according to [30]:

m∗n
m0

= a

(
qφg(T0K)

qφg(T )

) 2
3

, (2.21)

while holes effective mass follow the relation

m∗p
m0

=

(
a+ bT + cT 2 + dT 3 + eT 4

1 + fT + gT 2 + hT 3 + iT 4

) 2
3

. (2.22)

The coefficients for both formulas are reported in table 2.2.
The intrinsic carrier density can be expressed in terms of the densities of states

and the band gap energy as

Ni =
√
NVNC exp

(
−qφg

2kBT

)
. (2.23)

A doped but non degenerate semiconductor is such that the doping atoms num-
ber density is much smaller than the host semiconductor density. In such cases,
doping atoms are sufficiently far away from each other that the respective influence
of the exterior orbitals can be neglected. The energy of the dopant atom orbitals
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2. The Drift–Diffusion Model for Charge Transport

Quantity Value Unit

qφg(T0K) 1.1648 J
α 4.73× 10−4 JK−1

β 636 K
Nref 2.541× 1025 m−3

Table 2.1.: Parameters for temperature dependence of band gap (2.19), and of effective
density of states (2.20)

Quantity Equation Value Unit

a (2.21) 1.0618 1

a (2.22) 0.4435870 1
b (2.22) 0.3609528× 10−2 K−1

c (2.22) 0.1173515× 10−3 K−2

d (2.22) 0.1263218× 10−5 K−3

e (2.22) 0.3025581× 10−8 K−4

f (2.22) 0.4683382× 10−2 K−1

g (2.22) 0.2286895× 10−3 K−2

h (2.22) 0.7469271× 10−6 K−3

i (2.22) 0.1727481× 10−8 K−4

Table 2.2.: Parameters for temperature dependence of the effective mass of carriers (2.21),
(2.22)
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2.2. Constitutive Relations for System Coefficients

Figure 2.1.: Doped semiconductor band diagram.

Figure 2.2.: Band gap narrowing for strongly doped regions.

is then a discrete value (equal to the one for an isolated atom) within the band
gap (see fig. 2.1).
As the doping concentration grows, and dopant atoms interaction becomes non

negligible, the discrete level thickens into a continuous energy band, which may
merge with the conduction band (n-type doping, see fig. 2.2) or the valence band
(p-type doping). This effect can be modeled with the increase of the densities NC

or NV, or with an equivalent narrowing of the band gap qφg.
As per (2.23), a variation qφgn ≤ 0 in the band gap energy reflects in the effective

intrinsic density

Ni,eff =
√
NVNC exp

(
−(qφg − qφgn)

2kBT

)
= Ni exp

(
qφgn

2kBT

)
(2.24)

The model adopted in this thesis is due to Slotboom [16, 18, 33] and relates qφgn

with the total impurities density Nt = NA +ND as
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2. The Drift–Diffusion Model for Charge Transport

Quantity Value Unit

Eref 4, 344× 1016 J
Nref 1, 3× 1023 m−3

Table 2.3.: Parameters for Slotboom’s band gap narrowing model (2.25)

qφgn = Eref

ln

(
Nt

Nref

)
+

√(
ln

(
Nt

Nref

))2

+ 0.5

 . (2.25)

Typical values for the reference energy and density in (2.25) are reported in
table 2.3.

2.2.2. Charge Density and Electric Field Dependent Mobility

Mobility of a carrier u scales with the particle charge, the mean time interval
between collisions τu, and with the inverse of the effective carrier mass m†u:

µu =
qτu

m†u
. (2.26)

For low doping or carrier concentration, electron and hole mobilities are in a ratio
of roughly 3 to 1, as m†n is smaller than m†p. In such state, the interaction be-
tween carriers and lattice phonons are the dominant phenomenon affecting carrier
motion. When doping or carrier concentration grows, collisions due to Coulomb
interaction between carriers and fixed, ionized impurities gain importance, and
mobility is further reduced.
The superimpositions of the two phenomena are accounted for with good ap-

proximation by means of Matthiessen’s rule:
1

µu
=

1

µu,L
+

1

µu,C
(2.27)

µu,L and µu,C indicating respectively effects of lattice interactions and Coulomb
interactions. The former term is influenced by temperature, since thermal agitation
increases the effective radius of particles and therefore the collision probability.
For lower temperatures, mobility is higher, but its dependence on doping grows
stronger.
A second, important contribution to the carrier mobility is given by the electric

field. In fact, the linear ansatz in (2.17) is only good for low electric fields; as the
field increases, velocity saturates to a maximum magnitude |~vu,max|, while mobility
decreases, and can be then considered as a nonlinear function of the electric field.
The following treats in more detail the modeling of the different phenomena

considered in this thesis.
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2.2. Constitutive Relations for System Coefficients

Effects of interaction with lattice and other charged particles In order to model
the mobility dependence from the various kind of interactions to which carrier are
subject, we adopted in this thesis the model proposed by Klaassen, also known
as the Philips Unified Mobility Model [31, 32], built to consider lattice, acceptors,
donors, and free carriers scattering. A detailed description of the model follows,
whereas the typically adopted parameters are reported in tables 2.4, 2.5, 2.6,
and 2.7.
In Klaassen’s framework, lattice interaction assumes the following, temperature

dependent trend:

µu,L = µu,max

(
T

T300K

)−θu
. (mobL)

The Coulomb interaction term comprises all the effects of scattering between
carrier u and NA, ND, n, p. Each contribution is modeled as a separate mobility,
and then all mobilities are recombined in a unique term through Matthiessen’s
rule:

1

µu,C
=

1

µu,A
+

1

µu,D
+

1

µu,n
+

1

µu,p
(2.28)

Expansion of the Matthiessen sum results in the following model

µu,C =

[
µu,N

(
Nu,ref

Nu,sc

)αu
+ µu,c

(
n+ p

Nu,sc

)](
Nu,sc

Nu,sc,eff

)
, (mobC)

with the first addendum in square brackets representing the effect of impurities on
majority carriers, the second addendum the free carriers interaction, and the cor-
recting factor accounts for screening. Temperature effects are considered according
to the following:

µu,N =
µ2
u,max

µu,max − µu,min

(
T

T300K

)3αu−1,5

, (2.29)

µu,c =
µu,maxµu,min
µu,max − µu,min

(
T300K

T

)0,5

. (2.30)

Moreover, the scatterers density Nu,sc is given for electrons and holes respectively
by:

Nn,sc = N∗D +N∗A + p, (2.31)
Np,sc = N∗A +N∗D + n, (2.32)

where donors and acceptors densities are corrected to account for clustering in
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2. The Drift–Diffusion Model for Charge Transport

Symbol Value Unit

ag 0.89233 1
bg 0.41372 1
cg 0.005978 1
αg 0.28227 1
βg 0.19778 1
γg 0.72169 1
δg 1.80618 1

Table 2.4.: Philips unified mobility model: Parameters for (2.37)

ultra–high concentration:

N∗D = ND,0ZD = ND,0

[
1 +

N2
D,0

cDN2
D,0 +N2

D,ref

]
(2.33)

N∗A = NA,0ZA = NA,0

[
1 +

N2
A,0

cAN2
A,0 +N2

A,ref

]
(2.34)

Effective scatterers density in (mobC) is given by:

Nn,sc,eff = N∗D +G(Pn)N∗A + fnF (Pn)p, (2.35)
Np,sc,eff = N∗A +G(Pp)N

∗
D + fpF (Pp)n. (2.36)

Functions G(Pi) e F (Pi) in (2.35) and (2.36) describe the screening effects due to
minority scatterers, and moving scatterers, respectively:

G(Pu) = 1− ag
[
bg +

(
m0

m†u

T

T300K

)αg
Pu

]−βg
+ cg

[(
m†u
m0

T300K

T

)γg
Pu

]−δg
, (2.37)

F (Pu) =

[
P
αf
u + df − ef

(
m†u

m†j

)][
afP

αf
u + bf + cf

(
m†u

m†j

)]−1

, (2.38)

m†u, m
†
j being the effective carrier masses for the two different carriers. The screen-

ing parameter Pu includes all temperature effects in (2.38), and is computed with
a weighted harmonic mean of the Brooks-Herring [3] and Conwell-Weisskopf [1]
models:

Pu =

[
fCW

sCWN
− 2

3
u,sc

+
(n+ p) · fBH

NBH

m0

m†u

]−1(
T

T300K

)2

. (2.39)

Figure 2.3 shows the electron and hole mobility, computed at varying doping
concentrations with the presented model.

22



2.2. Constitutive Relations for System Coefficients

Symbol Value Unit

af 0.7643 1
bf 2.2999 1
cf 6.5502 1
df 2.3670 1
ef −0.8552 1
αf 0.6478 1

Table 2.5.: Philips unified mobility model: Parameters for (2.38)

Symbol Electrons Holes Unit

µmax 1.414× 10−1 4.705× 10−2 m2V−1s−1

µmin 6.85× 10−3 4.49× 10−3 m2V−1s−1

θ 2.285 2.247 1
Nu,ref 9.2× 1022 2.23× 1023 m−3

α 0.711 0.719 1

Table 2.6.: Philips unified mobility model: Parameters for (mobL), (mobC)

Symbol Value Unit

m†n
m0

1 1
m†p
m0

1.258 1
fCW 2.459 1
sCW 3.97× 1017 m−2

fBH 3.828 1
NBH 1.36× 1026 m−3

fn 1 1
fp 1 1

Table 2.7.: Philips unified mobility model: Parameters for (2.39)
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2. The Drift–Diffusion Model for Charge Transport

Figure 2.3.: Mobilities vs. doping. Blue line for electrons, red line for holes.

Effects of high electric fields As stated in (2.17), in low electric fields regime, elec-
trons drift velocity is proportional to the electric field through a constant mobility.
However, when electric field grows stronger then about 3 × 105 Vm−1, velocity
saturates to a maximum: this effect can be modeled as a decrease in mobility for
high electric fields. As for the holes, velocity saturates at smaller values, but with
slightly higher electric fields. All saturation effects are also slightly influenced by
temeperature, according to the model of Canali [13], consisting in the following
formulation:

µu(| ~E|) =
[
(a+ 1)µu,0

]a+

1 +

(
(a+ 1)µu,0| ~E|
|~vu,sat|

)β
 1
β


−1

(mobE)

being µu,o the low–fields mobility given in our case by (2.27), while the exponent
β partially includes temperature dependence:

β = β0

(
T

T300K

)αβ
. (2.40)

Temperature also influences the saturation velocity, according to:

|~vu,sat| = |~vu,max|
(
T300K

T

)αsat

. (2.41)

Model parameters are reported in table 2.8

2.2.3. Charge Carrier Generation and Recombination

Equations (n-balance) and (p-balance) are closed by the definition of the net re-
combination rate R. Three main phenomena are responsible for generation or
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Symbol Electrons Holes Unit

a 0 0 1

β0 1.109 1.213 1
αβ 0.66 0.17 1

|~vu,max| 1, 07× 105 8, 37× 104 ms−1

αsat 0, 87 0, 52 1

Table 2.8.: Parameters for Canali’s model (mobE), (2.40), (2.41)

recombination of charge carriers in silicon:

R = RSRH +RAu +RII (2.42)

where the three contributions stem from trap–assisted recombination, direct re-
combination, and lattice ionizaton respectively. The three components assume the
following form:

RSRH=
pn−N2

i

τp(n+Ni) + τn(p+Ni)
, (2.43)

RAu =(pn−N2
i )(Cnn+ Cpp), (2.44)

RII =− αn| ~Jn| − αp| ~Jp|. (2.45)

The coefficients in (2.43), (2.44), (2.45), with more insight on the involved phe-
nomena, are discussed in the following.

Trap assisted generation and recombination

In indirect band gap materials, such as silicon, trap–assisted recombination pro-
vides the main contribution to the net recombination rate. In the following, the
Shockley-Read-Hall approach is presented (see [4]). Figure 2.4 drafts trap assisted
recombination mechanisms on a band diagram: Ec represents conduction band,
Ev valence band, Et is an intermediate possible energy level called deep-level trap,
due to the lattice defects. For the sake of simplicity, we assume that all Nt traps
lie on the same energy level Et. In this setting, several events could occur:

Event 1 Et is empty, and an electron falls from Ec:

r1 = Nt[1− f(Et)]︸ ︷︷ ︸
number of
free defects

·n|~vth|σn︸ ︷︷ ︸
capture

rate

, (2.46)

where |~vth| represents thermal velocity, σn carriers cross–section, Nt the num-
ber density of traps, and f(E) the energy levels occupation statistic.

25



2. The Drift–Diffusion Model for Charge Transport

Figure 2.4.: Trap assisted recombination and generation

Event 2 Et is occupied, and the occupying electron is released in Ec:

r2 = Ntf(Et)︸ ︷︷ ︸
number of
occupied
defects

· en︸︷︷︸
emission

rate

. (2.47)

The emission rate en can be computed at thermal equilibrium, where r1 = r2;
hence

en = neq|~vth|σn
1− f(Et)

f(Et)
. (2.48)

Event 3 Et is occupied, and the occupying electron is released in Ev (or Et gains
a hole from Ev)

r3 = Ntf(Et)︸ ︷︷ ︸
number of
occupied
defects

· p|~vth|σp︸ ︷︷ ︸
capture

rate

(2.49)

Event 4 Et is empty, and an electron rises from Ev (or Et loses a hole to Ev)

r4 = Nt(1− f(Et))︸ ︷︷ ︸
number of
free defects

· ep︸︷︷︸
emission

rate

(2.50)

Once again, ep is recovered enforcing r3 = r4 at thermal equilibrium, namely:

ep = peq|~vth|σp
f(Et)

1− f(Et)
. (2.51)
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Symbol Value Unit

τn,max 1.0× 10−5 s
τp,max 3.0× 10−6 s

τu,min 0 s
Nu,ref 1× 1022 m−3

γ 1 1

Symbol Value Unit

(Et − Ei) 0 J

C 2.55 1

α 1.5 1

Table 2.9.: Shockley-Read-Hall recombination model: Parameters for (2.57) on the left,
and for (SRH), (2.59), (2.60) on the right.

In the hypothesis of stationary f(E), r1 − r2 = r3 − r4 = RSRH. From the first
equality, f(Et) can be computed. Defining carrier lifetimes τn and τp as

τn =
1

Nt|~vth|σn
and τp =

1

Nt|~vth|σp
, (2.52)

the following relation descends:

f(Et) =
nτ−1

n +Ntep
nτ−1

n +Ntep + pτ−1
p +Ntep

, (2.53)

and then, since multiplying (2.48), (2.51) yelds N2
t epen = peqneqτ

−1
p τ−1

n , the fol-
lowing holds:

RSRH =
np−Ni

2
,eff

τp
[
n+ neq

]
+ τn

[
p+ peq

] . (2.54)

An average trap energy Et can be defined such that

neq = Ni,eff exp

(
Et − Ei

kBT

)
(2.55)

peq = Ni,eff exp

(
Ei − Et

kBT

)
(2.56)

which in turn yields the following relation, depending on only three paramters
(Et − Ei), τn, and τp:

RSRH =
np−Ni

2
,eff

τp

[
n+Ni,eff exp

(
Et−Ei

kBT

)]
+ τn

[
p+Ni,eff exp

(
Ei−Et

kBT

)] . (SRH)

Typical values for the three parameters are reported in table 2.9.
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Carrier lifetime models

In (SRH) the carrier lifetimes τn and τp appear; they represent the characteristic
time of energy relaxation of the free carriers. The lifetimes depend strongly on the
production technology, and techniques exist to engineer them in order to enhance
particular device characteristics. The simulator produced with this thesis allows
user definition of space dependent lifetimes which encapsulate process effects. As
an alternative, an implementation of Scharfetter’s relation between doping and
lifetimes is provided:

τu(NA +ND) = τu,min +
τu,max − τu,min

1 +

(
NA +ND

Nu,ref

)γ (2.57)

This relation derives from both experimental (e.g. [22]) and theoretical consider-
ations (e.g. [15, 21, 23]).
Temperature dependence of lifetimes also needs o be accounted for: the choice

is between two forms of multiplicative correction

τu = τu(NA +ND)g(T ), (2.58)

where g can have a power law form,

g(T ) =

(
T

T300K

)α
, (2.59)

or an exponential form

g(T ) = exp

(
C
T − T300K

T300K

)
. (2.60)

Direct generation and recombination

Auger’s direct generation–recombination model considers three–body interaction:
two carriers are generated or recombined, while a third particle absorbs or releases
the necessary energy. In indirect band gap materials such as silicon, the process
is assisted by phonons, which guarantee the momentum conservation in band to
band transition. As for the trap–assisted process, we can highlight four possible
scenarios:

Event 1 One conduction electron falls to valence band, releasing energy to a sec-
ond electron in conduction band. Recombination rate is then proportional to
the number of conduction band electrons n, to the number of holes p those
electrons could fill, and to the number of free electrons n which could acquire
the necessary energy:

r1 = Cnn
2p. (2.61)
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Event 2 One conduction electron falls to valence band, releasing energy to a hole
in valence band. Recombination rate is then proportional to the number of
conduction band electrons n, to the number of holes p those electrons could
fill, and to the number of holes p which could acquire the necessary energy:

r2 = Cpnp
2. (2.62)

Event 3 One electron rises to conduction band, acquiring energy from an excited
electron in conduction band. Generation rate is then proportional to the
number of valence band electrons NV, to the number of holes in conduction
band NC those electrons could fill, and to the number of excited electrons n∗
in conduction band with sufficient extra energy:

r3 = ĈnNCNVn
∗. (2.63)

As NV, NC are constants, we can rearrange r3 as

r3 = Cnn, (2.64)

with
Cn = ĈnNCNV

n∗

n
, (2.65)

which is a constant if we suppose stationary energy distribution among con-
duction electrons, and will come in handy later.

Event 4 One electron rises to conduction band, acquiring energy from an excited
hole in valence band. Generation rate is then proportional to the number of
valence band electrons NV, to the number of holes in conduction band NC

those electrons could fill, and to the number of excited holes p∗ in valence
band with sufficient extra energy:

r4 = ĈpNCNVp
∗. (2.66)

As for r3, we can rearrange r4 as

r4 = Cpp, (2.67)

with
Cp = ĈpNCNV

p∗

p
. (2.68)

Assuming thermal equilibrium, the following holds:

r1 = r3, and r2 = r4, (2.69)
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Symbol Electrons Holes Unit

au 6.7× 10−44 7.2× 10−44 m6s−1

bu 2.45× 10−43 4.5× 10−45 m6s−1

cu −2.2× 10−44 2.63× 10−44 m6s−1

Hu 3.46667 8.25688 1
Nref 1.0× 1024 1.0× 1024 m−3

Table 2.10.: Auger generation and recombination: Parameters for (2.72)

or upon substitution

Cnn
2
eqpeq = ĈnNCNVn

∗ = Cnneq;

Cpneqp
2
eq = ĈpNCNVp

∗ = Cppeq.
(2.70)

Recalling the mass action law neqpeq = Ni
2
,eff , the relations between Cu and Cu

reads:

Cn = CnNi
2
,eff ;

Cp = CpNi
2
,eff .

(2.71)

The net rate of generation or recombination will then be expressed as

RAu = r1 + r2 − r3 − r4 = (Cnn+ Cpp)(np−Ni
2
,eff). (Auger)

The proportionality previously stated holds only roughly, and the coefficients Cu
are experimentally fitted in their dependence from carrier density and temperature
[19, 17, 20, 35]:

Cu =

[
1, 0 +Huexp

(
−u
Nref

)][
au + bu

(
T

T300K

)
+ cu

(
T

T300K

)2
]
. (2.72)

Parameters for electrons and holes are shown in table 2.10

Impact Ionization

Impact ionization is a non–equilibrium phenomenon, which occurs at high electric
fields. Ionization happens whenever a carrier gains enough kinetic energy, between
two collisions, to promote a valence electron to conduction band (and generating
the corresponding hole) upon collision.
For ionization to occur, a threshold electric field strength needs to be reached,

and the space charge region needs to be long enough to allow carriers to reach
the necessary kinetic energy. Whenever the space charge region is much longer
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Symbol Electrons Holes Electric field Unit

au 7.03× 107 1.582× 108 up to 4× 107 m−1

7.03× 107 6.71× 107 since 4 up to 6× 107 m−1

bu 1.231× 108 2.036× 108 up to 4× 107 Vm−1

1.231× 108 1.693× 108 since 4 up to 6× 107 Vm−1

~ωop 3.932× 1017 3.932× 1017 - J

Table 2.11.: Parameters for impact ionization model (2.73), (2.74)

than the mean path between ionizing impacts, an avalanche occurs, leading to a
breakdown that can be destructive for the device. The ionization coefficients αu
represents the reciprocal of the mean free path between ionizing impacts, and the
overall generation rate due to ionization can be expressed as:

RII = αnn|~vn|+ αpp|~vp| = αn| ~Jn|+ αp| ~Jp| (Imp.)

Ionization coefficients depend on the carrier’s driving force, and can be modeled
(according to [10] and based on Chynoweth’s relation [5]) as:

αu(Fu,av) = γ(T )auexp

(
−γ(T )bu

Fu,av

)
, (2.73)

where

γ(T ) =
tanh

(
~ωop

2kBT300K

)
tanh

(
~ωop
2kBT

) , (2.74)

while Fu,av is the driving force, which is usually computed as the gradient of the
quasi–Fermi potential of the related carrier. Parameters for the model are reported
in table 2.11.

2.3. Boundary Conditions

Equations (Poisson), (n-balance)-(p-balance), along with constitutive relations
(n-current)-(p-current), (mobL)-(mobC)-(mobE), (SRH)-(Auger)-(Imp.), provide
what is usually denoted as drift–diffusion model [2, 25, 37], most commonly used in
modeling transport of electrical charge in low–frequency, low–field semiconductor
devices:

−∇· (ε∇φ) + q (n− p−ND +NA) = 0 in Ω× [0, T ]
∂n
∂t
−∇·

(
µn (φth∇n− n∇φ)

)
+R = 0 in Ω× [0, T ]

∂p
∂t
−∇·

(
µp (φth∇p+ p∇φ)

)
+R = 0 in Ω× [0, T ]

(Drift–Diffusion)
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2. The Drift–Diffusion Model for Charge Transport

Two of the partial differential equations in (Drift–Diffusion) are diffusion–advection–
reaction parabolic equation, while the third is an elliptic PDE. Boundary condi-
tions are necessary to close the system, and they will be treated in the following
sections.
The domain Ω ⊂ Rn represents the device geometry. In some simple situations, it

can be sufficient to take n = 1, 2, however for most devices of interest in this thesis
this is not possible, and setting n = 3 cannot be avoided, even if some symmetry
can be exploited to reduce the domain to only part of the whole device. Some
physical effects or numerical behaviors, however, can still be studied in simplified
settings, and then considered in the full–scale, 3D case.

ΓN

Γ1 Γ2

Γ3

Ω

Figure 2.5.: Physical and artificial boundaries in a typical domain geometry

In fig. 2.5 the typical setup of a domain is shown, where the boundary of Ω, ∂Ω,
is decomposed in two subsets:

∂Ω = ΓD ∪ ΓN (2.75)

where ΓN represents insulated boundaries or symmetry planes, while ΓD repre-
sents the physical interface with the controlling circuit, and is itself decomposed
in disjoint subsets Γk called contacts.
If the boundary conditions on ΓN are usually of homogeneous Neumann type,

indicating absence of normal flux for symmetry or insulation reasons, the choice
of boundary conditions on ΓD is subject to modeling, as normally only one inte-
gral quantity for each contact is known and controlled (e.g. voltage, or current).
The model used reflects material properties, and some assumptions made in the
interface modeling.

2.3.1. Ohmic contacts

The most common ways to model heterojunctions between metals and semicon-
ductors are the ohmic contact model and the Schottky contact model. The for-
mer, which we will use throughout this thesis, is better suited to model strongly
doped semiconductors joint with metal contacts, while the latter models intrinsic
semiconductor–metal heterojunctions.
The ohmic contact model consists in enforcement of the following conditions:
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2.3. Boundary Conditions

• the surface of the metallic contact - and therefore of the junction - has uniform
Fermi potential,

• silicon near the contact is at thermal equilibrium - excess carriers are absorbed
by the metal,

• net space charge vanishes.

Two approaches are possible for enforcing those conditions. The first, assuming
Maxwell-Boltzmann relations to hold, is to enforce equilibrium by replacing both
φn and φp with imposed Fermi potential, indicated by F . The resulting nonlinear
Dirichlet conditions for electron and hole densities:

n = Ni exp

(
F − φ
φth

)
, (2.76)

p = Ni exp

(
φ− F
φth

)
, (2.77)

and then in imposing charge neutrality through a (nonlinear and implicit) Dirichlet
condition for Poisson’s equation:

Ni

[
exp

(
F − φ
φth

)
− exp

(
φ− F
φth

)]
= Nbi. (2.78)

A second way to enforce thermal equilibrium is through mass action law:

np−N2
i = 0, (2.79)

which can be coupled with the explicit imposition of charge neutrality:

n− p = Nbi, (2.80)

and upon some manipulation become

n =
Nbi ±

√
N2

bi + 4N2
i

2
, (2.81)

p =
−Nbi ±

√
N2

bi + 4N2
i

2
, (2.82)

the choice on the sign at the denominator being the obvious one that make the
result positive, the sign of Nbi given. The condition for Poisson’s equation can in
this case be recovered by enforcing either (2.76) or (2.77), which taken in explicit
form, read:

φ = F + φth ln

(
Ni

n

)
︸ ︷︷ ︸,

φ = F +

φbi︷ ︸︸ ︷
φth ln

(
p

Ni

)
,

(2.83)
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2. The Drift–Diffusion Model for Charge Transport

where the built–in voltage φbi, with value independent from the definition and
constant over time, actually depends only on the ratio Nbi

Ni
.

The former approach is more general and could be easily adapted whenever the
Maxwell-Boltzmann statistic should not be valid, simply substituting the correct
statistic f(φ, φu = F ) in its place in (2.76), (2.77), (2.78). The latter approach
sensibly simplifies the form of boundary conditions, and it is our method of choice.
Unfortunately, it is particularly prone to numerical round–off errors for the com-
puting of minority carrier density at the boundary, as the relative difference in
magnitude of the two addenda in (2.81), (2.82) is very small. It is however pos-
sible to recover the minority carrier concentration without incurring in roundoff
errors by exploiting the mass action law:

n =


Nbi+
√
N2

bi+4N2
i

2
, Nbi ≥ 0

2N2
i

−Nbi+
√
N2

bi+4N2
i

, Nbi < 0,
(n-bcs)

p =


−Nbi+

√
N2

bi+4N2
i

2
, Nbi ≤ 0

2N2
i

Nbi+
√
N2

bi+4N2
i

, Nbi > 0
(p-bcs)

φ = F + φbi. (φ-bcs)

2.3.2. Contact currents

When analyzing semiconductor devices through the drift–diffusion model, integral
quantities of interest are the currents flowing through the device contacts, espe-
cially since when coupling to an external circuit, it takes part in the global charge
balance introduced later in section 3.1.
Customarily, we will always considered positive currents to be entering the de-

vice. With such convention, we can define the total current through contact Γk
as:

Ik = −q
∫

Γk

(
~Jp − ~Jn

)
· ~ν dγ +

∫
Γk

(
ε
∂(∇φ)

∂t

)
· ~ν dγ (k-current)

~ν being the outward normal vector on the boundary δΩ. The first addendum
in (k-current) amounts to the conduction current, while the second indicates dis-
placement current.
As far as computing currents trough Neumann boundaries, one should notice how

the definition of (k-current) is a linear combination of current densities - which
are imposed to vanish on ΓN - and the time derivative of the electric displacement
- which is constantly null.
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2.4. Conditioning of the Drift–Diffusion System

In this section, we review some results on the drift diffusion system, which will be
used later on to justify the choice of the algorithms. The results on conditioning
are proved in [29].

2.4.1. Non–dimensional Form and Scaling

The physical quantities in system (Drift–Diffusion) have different physical dimen-
sions and, in order to compare their orders of magnitude, these quantities have to
be made dimensionless first by appropriate scalings. Following [48], we introduce
for the DD system two closely related scalings, and we shall refer to these scalings
as the De Mari and the Unit scalings.

1. De Mari scaling (see [6, 7, 8]):
• Potentials scaled by φth;
• Concentrations scaled by the intrinsic concentration Ni;

• Length scaled by a characteristic Debye length LD =
√

εφth
qNi

,

2. Unit scaling (see [24, 25]):
• Potentials scaled by φth;
• Concentrations scaled by N∗bi = supx∈Ω |Nbi(x)|;
• Length scaled by a characteristic device dimension l.

After any of the above scalings, the scaled dimensionless DD system reads
−∇· (λ2∇φ) + (n− p−Nbi) = 0 in Ω× [0, T ]
∂n
∂t
−∇·

(
µn (∇n− n∇φ)

)
+R = 0 in Ω× [0, T ]

∂p
∂t
−∇·

(
µp (∇p+ p∇φ)

)
+R = 0 in Ω× [0, T ]

(2.84)

where for simplicity we used the same unscaled symbols for the variables, the
mobility and doping coefficients and the reaction term. For either scaling we have

λ2 =
εφth

qL2C
, L = LD or l, C = Ni or N∗bi, (2.85)

while the thermal voltage disappears in the drift–diffusion term scales to unity.
Table 2.12 reports the values used; as unit scaling actually depends on the sin-
gle problem instance, some ranges for the typical power electronics problem are
provided.
In the case of the De Mari scaling λ2 = 1, whereas in the case of the Unit scaling,

λ2 � 1, while all the concentrations are expected to be maximally of order 1. The
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2. The Drift–Diffusion Model for Charge Transport

scaled Debye length λ acts thus as a singular perturbation parameter; the behavior
of the solution of (Drift–Diffusion) as λ→ 0+ is called quasi neutral limit, and has
been studied for the transient case e.g. in [28, 27, 44, 43, 42].
Scaling can be represented as the chaining of two operators: the row scaling R,

applied externally, and the column scaling C, applied directly on the unknowns:

RF (Cr) (2.86)

with:

• r representing the abstract vector of nondimensional unknowns
[
φ n p

]T
• F representing the drift–diffusion operator (Drift–Diffusion)

• the row and column scaling operators reading for the Unit scaling:

R =

qN∗bil
−2 0 0

0 φthµ0l
−2 0

0 0 φthµ0l
−2

−1

C =

φth 0 0
0 N∗bi 0
0 0 N∗bi

 . (2.87)

Table 2.12.: De Mari and Unit scaling factors

Quantity De Mari Unit
factor value (T = 300K) factor value (T = 300K)

φ φth 2.585× 10−2 V φth 2.585× 10−2 V
n, p Ni 1.482× 1016 m−3 N∗bi 1025±1 m−3

x LD 3.357× 10−6 m l 10−3±1 m
µn, µp D0φ

−1
th 3.868× 10−3 m2V−1s−1 µ0 1× 10−1 m2V−1s−1

Dn, Dp D0 1× 10−4 m2s−1 µ0φth 2.585× 10−3 m2s−1

~Jn, ~Jp D0NiL
−1
D 4.415× 1017 m−2s−1 φthµ0N

∗
bil
−1 2.585× 1025±2 m−2s−1

R D0NiL
−2
D 1.314× 1023 m−3s−1 φthµ0N

∗
bil
−2 2.585× 1030±3 m−3s−1

t L2
DD
−1
0 1.127× 10−7s l2φ−1

th µ
−1 3.868× 10−4±2 s

2.4.2. Conditioning Analysis

Following [29], we will outline in this subsection a conditioning analysis for the
linearized version of (2.84), which is the one actually solved when employing New-
ton’s or Newton–like methods.
The operator Jacobian, in non–dimensional version, reads:

J =

 −∇·(λ2∇•) • −•
∇·(µnn∇•) ∂t• − ∇·(µn(∇ • − • ∇φ)) +Rn• Rp•
−∇·(µpp∇•) Rn• ∂t• − ∇·(µp(∇ •+ • ∇φ)) +Rp•


(2.88)
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2.4. Conditioning of the Drift–Diffusion System

where the bullet is a placeholder, ∂t denotes the time derivative, and Rn, Rp are
the Fréchet derivatives of R with respect to n, p. The leading, second order terms
have a non–diagonal stencil, −λ2∆ 0 0

µnn∆ −µn∆ 0
−µpp∆ 0 −µp∆

 (2.89)

which can be avoided in different ways. One of them is the switch to quasi–Fermi
potential formulation, but also the linear transformation

J̃ = J T = J

 1 0 0
n 1 0
−p 0 1

 (2.90)

can change the first column of J in −∇·(λ2∇•)− (n+ p)•
∂t•+∇·(µnn∇φ•) + (Rnn+Rpp)•
∂t•+∇·(µpp∇φ•) + (Rnn+Rpp)•

 (2.91)

thus diagonalizing the second order part:−λ2∆ 0 0
0 −µn∆ 0
0 0 −µp∆

 . (2.92)

The operator T is well conditioned, as ‖T ‖L∞ = ‖T −1‖L∞ = max(1+‖n‖L∞ , 1+
‖p‖L∞) which amounts to roughly 2 in the case of unit scaling.
A regularization of Poisson’s equation takes place in J̃ , in that −λ2∆ is replaced

by (−λ2∆ + n + p), making the transformed operator nonsingular when λ = 0.
Moreover, the diagonalization of leading term allows for decoupled conditioning
analysis, unless the lower order terms become extremely large.
We will summarize hereafter the results of [29], to which we refer for demon-

stration, regarding the decoupled conditioning analysis. These result are valid for
the steady–state equations and obtained neglecting the reaction terms. However,
they provide useful insights also for more general regimes.
The first, linearized equation reads{

−λ2∆u+ (n+ p)u = f,

u|ΓD
= 0, ∂u

∂~ν
|ΓN

= 0,
(2.93)

and by means of the maximum principle, for its solution u holds the following
bound:

‖u‖L∞ ≤
∥∥∥∥ f

n+ p

∥∥∥∥
L∞

(2.94)
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2. The Drift–Diffusion Model for Charge Transport

which results in (2.93) being well–conditioned.
The second linearized equation (and the same can be applied to the third) can

be cast in self–adjoint form:{
−∇· δ2µeφ∇w = g

w|ΓD
= 0, ∂w

∂~ν
|ΓN

= 0,
(2.95)

through the transformation from the original variable u to w given by:

u = δ2e±φw, (2.96)

where δ2 is the ratio between Ni and N∗bi.
For (2.95), it holds for the maximum principle

‖w‖L∞ ≤ K(Ω, µ)δ−2e−φmin‖g‖L∞ , (2.97)

which turning back to u leads to:

‖u‖L∞ ≤ K(Ω, µ)eφmax−φmin‖g‖L∞ , (2.98)

meaning the conditioning in equilibrium condition scales with δ−4, as can be seen
by replacing φmax − φmin ' 2φbi according to the definition in section 2.3.1. The
bound is not sharp for devices where all regions defined by junctions are con-
nected to a contact; should this occur, it can be shown that the conditioning is
independent of δ2 instead.
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3. Lumped–Element Electrical Circuits

Power device testing and simulation is aimed at the investigation of the device
response and behavior during usage. Therefore, it is performed in settings suited to
reproduce realistic usage conditions, which are emulated by means of a controlling
electric circuit, comprising static and dynamic, linear and nonlinear components,
and which provide the dynamic boundary conditions needed to our system.
This chapter aims to describe the framework we use to model the behavior of

electric circuits (section 3.1) and to investigate the general form of the lumped
model, in order to find analogies which allow for a similar treatment of distributed
models, and their coupling with circuital elements (section 3.2). After that, (sec-
tion 3.3) some analytical results with respect to the coupling of distributed and
lumped circuital elements are reported.

3.1. Modified Nodal Analysis

The choice for circuit modeling method in this thesis fell on Modified Nodal Anal-
ysis (MNA), a technique based on network–level charge conservation laws, which
maintains the possibility of an element–by–element assembly of the overall system.
Such characteristic seems not crucial at first stance, given the not excessive com-
plexity of the circuits involved. However, the elemental approach - along with the
possibility to reduce the continuous model - will be exploited in full when special
algorithms to treat big simulation will be required.
In the following, the MNA technique is outlined on lumped–elements circuital

models, the differential–algebraic equations stemming from MNA are classified,
and finally proper coupling of distributed device and circuit is presented in a
framework apt to exploit the structural similarities with standard, lumped–element
MNA.

3.1.1. Network–level conservation laws

As stated in section 2.1.2 from a purely electrical point of view, the circuit behavior
is governed by Kirchhoff’s current law, that stands at the base of all the most
important modeling paradigms is the balance of electrical currents.
At the continuous level, KCL states that the rate of loss of charge ρ within a

given volume Ω is equal to the current ~J flowing out of the surface enclosing it,
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3. Lumped–Element Electrical Circuits

which in integral formulation reads:

−
∫

Ω

∂ρ

∂t
dx =

∫
∂Ω

~Jn dγ =

∫
Ω

div( ~J)dx. (2.11, integral)

Equation 2.11 is a general principle, but its multidimensional character exceeds
in details the requirements for the formulation of KCL in network–level circuit
analysis. In this case, the common approach is to neglect the spatial extension of
physical devices and of their interconnections, providing the possibility to repre-
sent a physical circuit with a network (called schematic) of discrete components
(elements) connected at certain points (nodes). Since each element is possibly
connected to k ≥ 2 nodes (k–pins element), the network can be viewed as an hy-
pergraph, elements being the hyperedges connecting the nodes of the hypergraph.
With each element, a k-dimensional current vector i can be associated.
In the following a conventional direction is fixed for the components of i in such

a way that they leave the external pins and enter the element (as shown in 3.1).
Notice that due to 2.11 these components are not independent, as their algebraic

Figure 3.1.: Generic k–pins element. The components of the associated current vector
are oriented so that they leave the external pins and enter the element.

sum must be zero to ensure charge conservation, that is to say:

1T i = 0 , (3.1)

where 1 ∈ Rk is a vector with only unit entries. A more thorough treatment of
these assumptions and its implications can be found in [26]. For the purpose of
this thesis, this conceptual simplifications lead to the usual nodal formulation of
KCL, which constitutes the core of most circuit simulation algorithms:

The algebraic sum of currents flowing away from any given node is zero.

If a circuit schematic composed of M elements and N + 1 nodes is being consid-
ered, it can be noticed that The KCL statement determines a set of N+1 relations.
Anyhow, only N of these relations result to be linearly independent, and therefore
a node is usually taken as reference (ground node) and omitted when deriving the
set of balance equations to be used as a base for a mathematical model.
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Numbering the nodes from 0 (the ground node) to N and assuming the m–th
element of a circuit schematic to be a k–pins element, a N × k local incidence
matrix Am can be defined as:

[Am]ij = aij =

1,
if the j–th component of im
leaves node i ∈ [1, .., N ],

0, otherwise.
(3.2)

each matrix being associated with the m–th element itself. The ground node
is left out of this computation, as the relative current balance is automatically
satisfied, but is generally reported when describing the schematics. Incidence
matrix are most practical in mathematically formalizing the network–level KCL,
which become:

M∑
m=1

Amim = 0. (3.3)

The definition of incidence matrices as presented in (3.2) differ from the one
usually employed in network theory, whose definition is dictated by the assump-
tion for each k–pins element to be properly represented by an equivalent circuit
(companion model) built upon 2–pins ideal devices. If this is the case, after the
substitution of each circuit element with the corresponding companion model, a
unique graph is derived from the initial schematic permitting the description of
KCL in terms of branch currents. Nevertheless, this graph–based formalism has
its main drawback in the fact that it does not allow for simple extensions when
elements may not be properly described by lumped networks, which is exactly the
case in 3D mixed–mode simulation.
Furthermore, considering branches as basic entities, this formalism results to

be inherently based on a flattened netlist (i.e. on the equivalent circuit obtained
after the substitution of physical devices with their companion models) and loses
therefore the assembly–by–element structure typical of actual realization of MNA.
The system in (3.3) needs to be integrated with constitutive relations, in order
to complete the derivation of a closed system of equations describing the purely
electrical behavior of a given circuit, as it will be shown later in 3.1.2.
The modular form that 3.3 takes thanks to the use of incidence matrices is

of high importance in practice, as it allows for the assembly system of balance
equations through element–by–element inspection. At the implementation level
this consideration grants the possibility to keep the elemental constitutive rela-
tions separated from system assembly; particular practical advantages arise when
adding new device models to an existing set, existing no need to affect the overall
algorithm.
Attempts to run mixed–mode simulations, where both lumped and continuous

element models are present, can take much advantage from this structural property,
which also allows to extend with ease to the treatment of non–electrical phenomena
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(e.g., thermal [51, 52] or magnetic effects[53, 49]). Any attempt to extend a purely
circuital description to other physical effects should therefore take this simple but
essential structure into account, if it aims to be effectively usable in an industrial
environment.

3.1.2. Standard device models and MNA

A constitutive relation for an electrical device is by definition the relation between
currents through an element and voltage drops across it. When companion models
are used in place of more complex devices [36, 34], the component typologies
appearing in a circuit can be reduced to:

1. resistors,

2. capacitors,

3. current sources,

4. inductors,

5. voltage sources,

so that only the constitutive relations of this restricted set of elements are needed
to properly describe the electrical behavior of most circuits. Resistors, capacitors
and current sources are voltage controlled elements, i.e. their current vectors can
be expressed as a function of their voltage drops:

iC =
dq

dt
, (3.4a)

with q = q(vC, t), (3.4b)
iR = r(vR, t), (3.4c)
iI = i(vI, q̇, iL, iV, t), (3.4d)

while inductors and voltage sources are current controlled elements, i.e. their
voltage drops can be expressed as a function of their currents:

vL =
dψ

dt
, (3.5a)

with ψ = ψ(iL, t), (3.5b)
vV = v(e, q̇, iL, iV, t). (3.5c)

In both 3.4 and 3.5, arguments of the voltage and current source constitutive
relations comprise quantities which possibly refer to other elements (controlled
sources). For more details about these basic components, the interested reader is
referred to [14, 26].
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Notice that the voltage drops can be easily computed for 2–pins devices by means
of the defined incidence matrices. Given the vector of node potentials e ∈ RN ,
by left multiplication with the incidence matrices ATm, gives the vectors of pin
voltages:

vm = ATme, ∀m ∈ [1, ..,M ]. (3.6)

from which the voltage drop is recovered by further multiplication by
[
−1 1

]
.1

When a device is connected to ground, (3.2) assures the respective component of
vm is set to zero. Classical directed incidence matrices for 2–pins elements can
then be defined as

A∗m = Am

[
−1
1

]
, (3.7)

and express the direct relation between node voltages and voltage drops:

vm =
[
−1 1

]
vm = A∗Tm e, ∀m ∈ [1, ..,M ]. (3.8)

The concept of voltage drops can also be generalized to companion models as a
block by assembling the respective directed incidence matrix looping through the
internal nodes. This amounts to extending (3.7) as

A∗cm = Acm


−1 · · · −1
1 · · · 0
... . . . ...
0 · · · 1

 (3.9)

for the companion model, and considering all branch currents to enter the model
according to (3.2).
Additional equations to close the problem are provided from voltage drops by

Kirchhoff’s voltage law (KVL):

The algebraic sum of voltage drops around any loop in the circuit is
zero.

Although many modeling paradigms, like State Variable [9], Sparse Tableau [11] or
Nodal Analysis [14], can be derived combining KCL, KVL and elemental constitu-
tive relations, our choice for this thesis falls on Modified Nodal Analysis (MNA) [54]
as it is best suitable for implementation in a modular framework.
Original formulation of MNA keeps the node potential vector e, the inductor cur-

rent vector iL and the voltage source current vector iV as model variables. As it can
be shown that original MNA formulation does not preserve charge and magnetic
flux conservation when solved numerically, we chose instead the charge–oriented
formulation of [38, 39], where electric charges of capacitances q and magnetic

1Notice that choosing
[
−1 1

]
fixes the direction of voltage drops. This is fundamental for compact

models of nonlinear circuit components.
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fluxes of inductances ψ are added as explicit unknowns to the system, classifiable
together with iL, iV as internal variables.
Charge–oriented MNA formulation then derives a closed system of equations by:

1. enforcing KCL at every node of the circuit graph,

2. expressing the current of each voltage controllable element in terms of node
potentials, internal variables, and time derivatives of the internal variables,

3. complementing the system with constitutive relations (3.4b), (3.5).

A set of differential algebraic equations (DAEs) stems from charge–oriented
MNA formulations: this will ask for some care in the choice of the time dis-
cretization method when designing a numerical solution procedure [50]. The DAE
system can be written in a notation that clearly underlines each elemental type
contribution. In the most general case a charge–oriented MNA formulation reads:

AC
dq

dt
+ ARr(A

∗T
R e) + ALiL + AViV + AIi(A

∗Te,
dq

dt
, iL, iV; t) = 0,

dψ

dt
− A∗TL e = 0

A∗TV e− v(A∗Te,
dq

dt
, iL, iV; t) = 0,

q− qC(A∗TC e) = 0,

ψ −ψL(iL) = 0.

(3.10)

It should be noticed, for the sake of completeness, that controlled sources cannot be
prescribed arbitrarily in 3.10 but are instead subject to some constraints (see [41]
for a deeper treatment of the subject) in order to limit the index of the overall
system to be minor than or equal to 2.

3.2. Coupling Lumped-Element Circuit and Distributed
Devices

As we aim to produce a complete set of equations describing distributed device and
circuit behavior, we will need a framework into which all elements are coupled. In
section 3.1, we introduced KCL current balance (3.3), defined some constitutive
relations (3.4),(3.5), and finally built a generic form (3.10) of the DAE system
regulating circuit behavior.
Here we formalize the element–wise description implied in the previous section.

Each element can be thought of as described by a (possibly empty, as for resistors)
set of internal variables rm ∈ RIm plus the voltage drops A∗Tm e across its pins.
Equations defining the current vector related to each element, depend on the
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internal variables and on the voltage drops, and only linearly on time derivatives
of internal variables:

im = Dmrm + J(A∗Tm e, rm; t), (3.11)

where Dm ∈ Rk×Im and J(·; t) : Rk−1×RIm → Rk for k–pins elements. For
example, the equations for a capacitor would read:

iC =

[
−qC

qC

]
=

[
−1
1

]
rC, (3.12)

with DC =
[
−1 1

]T and JC =
[
0 0

]T , and the only internal variable being the
capacitor charge qC.
Constitutive equations share the same form, and we will indicate them as

Bmrm + Q(A∗Tm e, rm; t) = 0, (3.13)

with Bm ∈ RIm×Im and Q(·; t) : Rk−1×RIm → RIm . Carrying on with the capaci-
tor example, BC =

[
0
]
, while according to (3.10) and assuming a linear relation,

QC(x, rC; t) = rC − Cx = qC − Cx, (3.14)

which becomes the familiar qC = CvC relation when the voltage drop vC = A∗TC e
is plugged in.
This reformulation leads to the following compact expression:

M∑
m=1

[AmDmrm + AmJm(A∗Tm e, rm; t)] = 0 (3.15a)

Bmrm + Qm(A∗Tm e, rm; t) = 0 ∀m = [1, ..,M ] (3.15b)

which allows to approach the assembly of (3.10) in an element–wise fashion:

For every circuit element m in [1, ..,M ],
1. sum the contribution Am

(
bmrm + J(A∗Tm e, rm; t)

)
to the current

balance (3.15a),
2. add the constitutive relation Bmrm + Qm(A∗Tm e, rm; t) = 0 to the

system.

Notice that the assumption that only time derivatives of internal variables ap-
pear, and that terms involving such derivatives are linear, does not impose re-
strictions on the applicability of the model, as both assumptions could be easily
fulfilled by addition of new internal variables.
In order to couple the continuous, distributed device with the circuit, we need to

recast the drift–diffusion equations in a form analogue to (3.11),(3.13), to obtain an
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abstract differential algebraic system (see [46]), whose form reads for S distributed
Ks–pins devices M + 1,M + 2...,M + S:

DM+srM+s = 0, (3.16a)

JM+s(rM+s) =


I1(rM+s)
I2(rM+s)

...
IKs(rM+s)

 , (3.16b)

BM+srM+s =


0
0
n
0
p
0

 , (3.16c)

QM+s(A
∗T
m e, rM+s) =



q(n− p−Nbi)−∇· (ε∇φ)
Ψφ(A∗TM+se, φ, n, p)

∇· ~Jn(∇φ, n, p) +R
Ψn(A∗TM+se, φ, n, p)

∇· ~Jp(∇φ, n, p) +R
Ψp(A

∗T
M+se, φ, n, p)

 , (3.16d)

where:

• DM+s is defined on an appropriate function space H, and to RKs ,

• each Ik is defined as in (k-current) as a functional on H,

• BM+s andQM+s are defined onH andH×RKs respectively, to an appropriate
space Ĥ

• Ψφ, Ψn, Ψp enforce the proper boundary conditions (φ-bcs), (n-bcs),(p-bcs).

The final, mixed–mode system reads then:

M+S∑
l=1

[AlDlrl + AlJl(A
∗T
l e, rl; t)] = 0 (mixed.a)

Bmrm + Qm(A∗Tm e, rm; t) = 0 ∀m = [1, ..,M ] (mixed.b)
Bsrs + Qs(A

∗T
s e, rs; t) = 0 ∀s = M + [1, .., S] (mixed.c)

Going into further detail is out of the scope of this work, as in our case the
abstract system is only an intermediate step, and we will show later on that after
space discretization the exact form of (3.13) will be recovered.
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3.3. Analytical Results for the Coupled System

The first analytical results on the well posedness of systems of the form (mixed)
is presented in [45] for the coupling of generic circuits and the steady–state drift–
diffusion system. Successive works extended the treatment to the parabolic prob-
lem (e.g. [47, 46]); we summarize here the results from [47] which, albeit being
restricted to 1D semiconductor devices, highlight the functional setting in which
the solution of our problem can be searched for.
We denote with L2

Ω and H2
Ω the spaces of square integrable functions on Ω and

the respective first order Sobolev space. The symbol L2
+ denotes the subset of L2

of all almost everywhere positive functions. Given a time interval IT = [0, T ], and
a Banach space V , then we define with C(IT ;V ) the space of continuous functions
on IT with values in V , and with L2(IT ;V ) the space of square integrable functions,
and with H2(IT ;V ) the related Sobolev space. Then:

X = {u ∈ H2
Ω : u|ΓD

= 0} (3.18)
Y = C(IT ;L2

Ω) ∩ L2(IT ;X) ∩H2(IT ;X∗) (3.19)
CD = C(IT ,RnD) (3.20)
CA = C(IT ,RnA) (3.21)

where X∗ is the dual space of X, and nD, nA are the dimensions of the differential
part y and the algebraic part z of the circuit state vector [e, r1, . . . rM ]T (see [40]).
Finally, the tuple [y, z, φ, n, p]T is defined to be a solution of the problem if

• z(t) ∈ CA satisfies the algebraic constraints in the circuital equations,

• y(t) ∈ CD satisfies properly defined initial conditions, and the differential
circuital equations,

• n and p belong to C(IT ;L2
+), and if relieved of the equilibrium components

neq, peq, belong to Y ,

• n and p satisfy the continuity equation in the sense of H2(IT ;X∗),

• φ, relieved of boundary conditions depending on y, satisfies Poisson’s equa-
tion in the sense of X∗.

Theorem 5.5 of [47], then, states that

• letting the power sources be continuous in time,

• letting the network matrices related to passive components be symmetric,
positive definite,

• letting some proper topological conditions enforcing physical consistency be
fulfilled,
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• assuming constant diffusivity and mobility,

the coupled problem admits a unique solution on the time interval IT for any
T ∈ (0,∞).
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Numerical algorithms

53





4. Time Discretization

In order to obtain a numerical approximation to the solution of (mixed), it is
customary to discretize the system of equation in both time and space. With
parabolic PDEs, when the time variable is discretized first, leading to a stationary
elliptic equation at each time step that is then solved using appropriate techniques,
then Rothe’s method is being employed. In our case, where also the ordinary
and algebraic equations are present, Rothe’s method amounts to work the time
discretization on the abstract system (mixed).
This chapter is structured as follows: first, section 4.1 addresses the choice of

the time discretization scheme; following, section 4.2 discusses the time adaptation
strategy employed in the final algorithm.

4.1. Implicit Schemes for DAE

For the choice of the numerical scheme to be adopted, the peculiar properties of
DAE systems must be taken into account. The backward differentiation formulae
are a family of linear, implicit, multi–step discretization schemes for differential
equations, which are usually applied on stiff problems. When applied to a DAE
system of the form

Bu + F (u; t) = 0, (4.1)

which can in some sense be considered an infinitely stiff problem, the general BDF-
K scheme takes the following form:

B

K∑
j=0

αn,ju
(n−j) + F (u(n); tn) = 0. (4.2)

In (4.1) and (4.2):

• tn ∈ [t0, tmax] indicates the n–th discrete time instant; the time step tn− tn−1

will be called δtn hereon,

• u(n) ∈ RD indicates the numerical approximation of the solution u(tn)

• B ∈ RD×D is a singular matrix; the dimension of kerB corresponds to the
number of algebraic constraints,

• F : RD+1 → RD is the forcing term, requiring some regularity,
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• αn,j are the scheme coefficients, depending on δtn, δtn−1, . . . δtn−K+1, and
built so to maximize the truncation error order.

With few constraints (namely, passive circuital components and regular con-
stitutive relations), it is possible to show that the DAE systems stemming from
MNA are of index 1, or index 2 [14, 15] and this results in BDF schemes to be
stable in the former case, or weakly unstable in the latter (see [16], section 1.2.4),
with the source for instabilities coming from the errors of the nonlinear solver on
determining some unknowns in the system. In the cited reference, estimates for
such errors are also provided, further suggesting the choice of BDF methods.
In this thesis, the phenomena of interest show steep variations in time, and there-

fore adaptivity of time step is required to follow the solution’s behavior without
too much effort when it is smoother, but with the required accuracy when a fast
transient is triggered. To simplify the definition of αn, j with non uniform δtn, the
choice falls on the simplest method in the family, the BDF-1 or backward Euler
method, where αn,0 = δt−1

n = −αn,1. Applying this scheme to the abstract system
in (mixed) results in the semi-discrete problem:

M+S∑
l=1

[AlDlδt
−1
n (r

(n)
l − r

(n−1)
l ) + AlJl(A

∗T
l e(n), r

(n)
l ; tn)] = 0 (4.3a)

Bmδt
−1
n (r(n)

m − r(n−1)
m ) + Qm(ATme

(n), r(n)
m ; tn) = 0 ∀m (4.3b)

Bsδt−1
n (r(n)

s − r(n−1)
s ) + Qs(A

T
s e

(n), r(n)
s ; tn) = 0 ∀s (4.3c)

or reformulating:

M+S∑
l=1

AlJ̃l(A
∗T
l e(n), r

(n)
l ; tn, δtn, r

(n−1)
l ) = 0 (4.4a)

Q̃m(ATme
(n), r(n)

m ; tn, δtn, r
(n−1)
l ) = 0 ∀m (4.4b)

Q̃s(A
T
s e

(n), r(n)
s ; tn, δtn, r

(n−1)
l ) = 0 ∀s (4.4c)

which, given the approximate solution r(n−1) at time step tn−1, provides r(n) by
solving a nonlinear, coupled PDE-algebraic problem. In section 4.2 we will discuss
how to choose the time step, while in chapter 5 we will present the method adopted
to solve the nonlinear problem.

4.2. Time–step Adaptivity

In this subsection, we present the strategy adopted for time adaptivity in our
algorithm, which is based on the extrapolation of the numerical solution from older
time steps. Such extrapolation is also used in order to provide an initial guess for
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the nonlinear algorithm: especially when Newton’s or Newton–like methods are
employed, a good starting guess is vital to achieve convergence.
Suppose u(t) is the solution of the generic DAE (4.1). If u is regular, then once

defined
γn+1 =

δtn+1

δtn
, (4.5)

the first order approximation

u(tn+1) = (1 + γn+1)u(tn)− γn+1u(tn−1) +O(δt2n+1), (4.6)

is valid for δtn, δtn+1 small enough, and such that γn+1 is positive and bounded.
Translated in the discretized setting of (4.2), we can regard the extrapolation

u
(n+1)
0 = (1 + γn+1)u(n) − γn+1u

(n−1) (4.7)

as a first guess for u(n+1).
Suppose now we employ an iterative nonlinear solver to get to the next time

step. We could then start from u
(n+1)
0 , and iterate until we obtain the numerical

solution u(n+1) which approximates u(tn+1). We can therefore assume∥∥∥u(n+1) − u
(n+1)
0

∥∥∥ ' Cδt2n+1 (4.8)

for some real constant C, thanks to (4.6). This relation allows to conveniently
impose the next time step δtn+2, since∥∥∥u(n+2) − u

(n+2)
0

∥∥∥ ' Cδt2n+2 '
∥∥∥u(n+1) − u

(n+1)
0

∥∥∥ γ2
n+2. (4.9)

If we want the extrapolation to give a good guess, i.e. limited by a tolerance τ 2:∥∥∥u(n+2) − u
(n+2)
0

∥∥∥ ≤ τ 2 (4.10)

then we can choose the new time step according to

δtn+2 = δtn+1γn+2 (4.11)

where γn+2 is defined as

γn+2 =


γmin if γmin > ατ

∥∥∥u(n+2) − u
(n+2)
0

∥∥∥− 1
2
,

γmax if ατ
∥∥∥u(n+2) − u

(n+2)
0

∥∥∥− 1
2
> γmax,

ατ
∥∥∥u(n+2) − u

(n+2)
0

∥∥∥− 1
2 otherwise,

(4.12)

with γmin < 1 < γmax, and α = 0.616 being a conservative parameter used to avoid
excessive time step increment.
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A remark needs to be made on the use of (4.11) for actual time step calcu-
lation. In general, the nonlinear solver may not guarantee convergence, which
means ‖u(n+1)

k − u
(n+1)
0 ‖ either diverges or does not decrease with k, making (4.9)

uncomputable. When such divergence occurs, time step can be used as a relaxation
parameter of sorts: all computations in the current step are discarded, and the step
is reinitialized with δtnew

n+1 = γminδt
old
n+1. The introduction of α and γmax has thus

the additional function of avoiding, as much as possible, the useless computation
effort which is discarded after a non convergent nonlinear solve.

Reinterpretation as a predictor–corrector method It is possible to reinterpret the
combination of (4.7) and (4.2) as a predictor–corrector method. In particular, if
we fix the number of iterations m of some fixed point algorithm employed in the
solution of (4.2), the described method takes the form of a two–step predictor–
multicorrector, or P (EC)m, scheme [20, 7]:

u
(n+1)
0 = (1 + γn+1)u(n)

m − γn+1u
(n−1)
m (P)

F
(n+1)
k = F (u

(n+1)
k−1 ; tn+1), ∀k = 1, 2, ..,m (E)

u
(n+1)
k = u

(n+1)
k−1 −

(Bαn,0 + F ′k)
−1

(
Bαn,0u

(n+1)
k−1 +B

K∑
j=1

αn,ju
(n−j)
m + F

(n+1)
k

)
,

∀k = 1, 2, ..,m (C)

In such framework, in fact, (4.7) takes the role of the predictor, while the fixed
point iteration (Newton’s method in the case of (C)) used in solving (4.2) is the
corrector. It can be shown that the characteristic polynomial linked to the P (EC)m

method depends mainly on the corrector, as the terms deriving from the predictor
vanish when m grows, and in our case, the convergence properties depend only on
the backward Euler method if m > 1 [see 20, pp. 511-].
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5. Nonlinear Iterations

In this chapter, the two most common approaches for the linearization of the drift–
diffusion equations are presented: Gummel’s map, a functional iteration technique
which beyond being employed in deriving analytical results is also often used in
numerical simulations, and Newton’s method, a variant of which our simulation
tool relies on.

5.1. The Gummel Map

After time discretization as presented in chapter 4, the parabolic PDE system
(Drift–Diffusion) can be rewritten as a sequence of elliptic systems of the form

−∇·
(
ε∇φ(n)

)
+ q

(
n(n) − p(n) −ND +NA

)
= 0 in Ω,

−∇·
(
µn
(
φth∇n(n) − n(n)∇φ(n)

) )
+R(n) + δt−1

n

(
n(n) − n(n−1)

)
= 0 in Ω,

−∇·
(
µp
(
φth∇p(n) + p(n)∇φ(n)

) )
+R(n) + δt−1

n

(
p(n) − p(n−1)

)
= 0 in Ω.

(5.1)
Gummel’s map is a scheme of functional iterations where the equations in 5.1

are decoupled, and then solved for in a loop, considering the other unknowns as
data, until convergence conditions are not satisfied. The scheme can be seen as a
nonlinear form of the Gauß–Seidel method.
The passages defining the algorithm are the following, where each map iteration

is indicated by subscript k:

1. set the quasi–Fermi potentials according to

φnk−1 = φk−1 − φth ln

(
nk−1

Ni

)
φpk−1 = φk−1 + φth ln

(
pk−1

Ni

) (5.2)

2. solve the arising nonlinear Poisson equation for φk:

−∇·(ε∇φk)+q

(
Ni exp

(
φk − φnk−1

φth

)
−Ni exp

(−φk + φpk−1

φth

)
−Nbi

)
= 0

(5.3)
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3. solve for nk

−∇·
(
µn (φth∇nk − nk∇φk)

)
+

+
nk
δtn

+
nkpk−1

τp(nk−1 +Ni) + τn(pk−1 +Ni)
+

+ (nkpk−1)(Cnnk−1 + Cppk−1) =

n(n−1)

δtn
+

N2
i

τn(pk−1 +Ni) + τp(nk−1 +Ni)
+

+N2
i (Cnnk−1 + Cppk−1) +RII

k−1 (5.4)

4. solve for pk

−∇·
(
µp (φth∇pk + pk∇φk)

)
+

+
pk
δtn

+
nkpk

τp(nk +Ni) + τn(pk−1 +Ni)
+

+ (nkpk)(Cnnk + Cppk−1) =

n(n−1)

δtn
+

N2
i

τn(pk−1 +Ni) + τp(nk +Ni)
+

+N2
i (Cnnk + Cppk−1) +RII

k−1 (5.5)

5. Update boundary conditions and impact ionization term RII
k .

It is also possible to express Gummel’s map with the help of either the quasi-
Fermi potentials or the Slotboom variables. If the quasi-Fermi potential approach
is taken, step 1. in the iteration is skipped, while step 3. of the iteration is trans-
formed in:

3’. solve for φnk

∇·(µnnk−1∇φnk)+

+
nk−1

φthδtn
(φk − φnk) +

pk−1Ni exp
(φk−φnk

φth

)
τp(nk−1 +Ni) + τn(pk−1 +Ni)

+

+
(
pk−1Ni exp

(φk−φnk
φth

))
(Cnnk−1 + Cppk−1) =

nk−1

φthδtn

(
φ(n−1) − φn(n−1)

)
+

N2
i

τn(pk−1 +Ni) + τp(nk−1 +Ni)
+

+N2
i (Cnnk−1 + Cppk−1) +RII

k−1 (5.6)

and then set
nk = Ni exp

(
φk − φnk
φth

)
. (5.7)
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5.2. Newton’s Method

while step 4. can be transformed similarly to compute φpkandpk. This alternative
formulation, while being possibly very useful as long as the analysis goes, becomes
less attractive from a numerical standpoint, transforming the highly asymmetric
but linear equations (5.4),(5.5) in symmetric, quasi-linear equations, with very
sharply varying, almost discontinuous diffusion coefficients µnn, µpp.
The second option relies on introducing the Slotboom variables [8] which are

defined in terms of electron and hole densities as:

n := un exp( φ
φth

), p := up exp(−φ
φth

). (5.8)

Again, step 1. is skipped, and the continuity equation in step 3. transforms ac-
cordingly to
3”. solve for unk

−∇·
(
µn exp(φk−1

φth
)∇unk

)
+

+
nk−1φk + unk exp( φk

φth
)

φthδtn
+

pk−1unk exp( φk
φth

)

τp(nk−1 +Ni) + τn(pk−1 +Ni)
+

+
(
pk−1unk exp( φk

φth
)
)
(Cnnk−1 + Cppk−1) =

+
nk−1φ

(n−1) + un
(n−1) exp( φk

φth
)

φthδtn
+

N2
i

τn(pk−1 +Ni) + τp(nk−1 +Ni)
+

+N2
i (Cnnk−1 + Cppk−1) +RII

k−1 (5.9)

and then set
nk = unk exp

(
φk
φth

)
, (5.10)

and similarly again for step 4. and the computation of pk. Slotboom formula-
tion provides linear and symmetric equations, but holds mainly theoretical interest
(see section 6), as the coefficients and variables themselves are very often not com-
putable, with the exponential functions rapidly exceeding machine representable
quantities.
Experimentally, Gummel’s map in φ-n-p form shows good global convergence

properties in low injection regimes, independently from initial values, even if no
general analytical result on its convergence is known besides for the zero recombi-
nation case. However, in high injection regimes the convergence rate slumps (see
[see 17, pp. 333-]) and even if suitable acceleration techniques [12] could be used,
Gummel’s map is normally avoided in favor of a fully coupled Newton method,
which we will discuss in the following section.

5.2. Newton’s Method

This section has a twofold purpose. First, in subsection 5.2.1, it will introduce
in abstract terms some numerical methods for root approximation stemming from
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5. Nonlinear Iterations

Newton’s method. Those variations have different purposes, varying from the
increase of reliability and robustness, to the reduction of computational cost, which
are both strongly valued for our target application.
In second instance, in subsection 5.2.2, the application of the combined variations

previously discussed will be put into practice on the coupled problem (4.4), and
details on the implementation will be provided.

5.2.1. Newton–like methods

Newton’s or Newton–Raphson’s method is one of the most general algorithm for
the approximation of roots of differentiable nonlinear functions

F (u) = 0 (5.11)

relying only on the local regularity of F which can be represented as

F (u) = F (u + du) + Ju+du du +O(‖ du‖2), (5.12)

Ju+du being the Jacobian of F evaluated in u + du. The conventional Newton
method can then be defined as the iterative procedure

duk = −J−1
uk
F (uk) = −J−1

k zk, (5.13a)
uk+1 = uk + duk, (5.13b)

where zk denotes the residual F (uk) based on the k–th approximation, and an
initial guess u0, needs be provided.
Newton’s method can provide a quadratic convergence rate, in the following

sense:
‖uk+1 − u‖ ' C‖uk − u‖2, (5.14)

for some real value C, but on the flip side, has limitations in that:

• the initial guess needs to be in a neighborhood of the exact solution, otherwise
the algorithm may diverge or converge to a different root, should it exist,

• computing the Jacobians Jk and solving the respective linear systems may
require huge computational cost,

• if Ju is singular or very ill–conditioned, the convergence rate decreases, even
if convergence is not lost.

To remedy those issues, many possible variants of the algorithm can be introduced.
In the following, we only deal with the ones relevant to our implementation.
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5.2. Newton’s Method

Damped Newton method and Clamped Newton method

Especially when the Jacobian matrices are ill–conditioned, the conventional New-
ton method of (5.13) can produce big increments, and therefore move the approx-
imate solution out of the neighborhood where convergence is achieved, or worse
assume physically unacceptable values (e.g. a negative concentration, as we will
see later on).
What is normally done in such cases is to artificially limit the increments at

every step, in order to avoid too big oscillations. In formulas:

duk = −J−1
uk
F (uk) = −J−1

k zk, (5.15a)
uk+1 = uk + θk(uk−1, duk, k) duk, (5.15b)

where the damping or relaxation coefficient θk may:

• be a constant parameter in (0, 1]; in this case, oscillations of the approximate
solution are damped, but the quadratic convergence rate is lost;

• be a sequence such that limk→∞ θk = 1. This is a necessary requirement for
the method to maintain local quadratic convergence. Both those choices lead
to the so called damped Newton method. It is also possible to devise expres-
sions for θk(uk−1, duk, k), such that the damped Newton method converges
globally under certain restrictions on F [3, 2, 1].

• it is also possible to impose that each increment does not produce a variation
of the estimated solution greater than a certain threshold:

‖g(uk)− g(uk−1)‖ ≤ c (5.16)

where g is some continuous transformation of uk, devised in order for the
components of the increment to be comparable, and involving scaling or other
nonlinear transformations; thanks to the continuity of g, moreover, θk → 1
upon convergence. This choice for the definition of θk leads to what is called
clamped Newton method.

Modified Newton method

The main computational effort in one step of either conventional or damped New-
ton method, lies in the solution of the linear systems (5.13a) or (5.15a). However,
it is usually possible to save much of the computations if the same linear system
is solved more than once: think of the direct linear solvers, where factors can be
stored and reused, but also iterative methods where complex preconditioners can
be computed only once.
The modified Newton method allows for this recycling to occur, as it consists in

iterating without updates on the Jacobian for a certain number of steps, with only
the residual zk (and hence, the source term in the linear system) changing.
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5. Nonlinear Iterations

Two basic patterns for updating J can be described, from which many possible
variations could be derived:

• Periodic updates, meaning that every m steps, the Jacobian is recomputed
and factorized:

duk = −J−1
k̄

zk, with k̄ = m

⌊
k

m

⌋
(5.17a)

uk+1 = uk + duk, (5.17b)

• Convergence monitoring, meaning that every l steps, if the residual or incre-
ment is not vanishing, the Jacobian is recomputed and factorized.

Approximate Newton method

Evaluation of Jacobian matrices is often difficult or computationally expensive.
Moreover, linear systems of huge dimension are never solved exactly, even when
direct methods are employed, let alone when iterative solvers need to be used (e.g.
to comply with memory requirements).
All these factors result in every practical implementation of Newton–like meth-

ods to actually be an approximate Newton method, where the exact Jacobian ma-
trix at each algorithmic step is approximated by a linear operator Mk. As long as
the Mk approximate well enough the actual Jacobian matrix Jk (see [3] for a more
precise definition) then the convergence properties of Newton’s method (and its
variants) can be preserved.
The generic approximate Newton method reads:

duk = −M−1
k zk, with Mk ' Jk (5.18a)

uk+1 = uk + duk, (5.18b)

and can be specialized in many forms:

• the modified Newton method can be viewed as an approximate Newton
method, in the sense that Jk̄ ' Jk,

• inexact Newton methods, where iterative solvers are employed to approximate
J−1
k zk up to a certain tolerance, depending on estimates of the linearization

error, is also a form of approximate Newton method,

• methods stemming from discretization of PDEs, and possibly involving non-
linear stabilizations, where linearization is performed at the continuous level
rather than the discretized level, can be viewed as approximate Newton meth-
ods for the discretized equations.

Same as for the previously presented methods, the algorithm implemented for
this thesis features some characteristics of all of the classes discussed, and will be
presented in the following subsection in further detail.
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5.2.2. Implementation of the nonlinear solver

The present section is devoted to a more detailed description of the method im-
plemented in the computational tool developed within the work for this thesis.
First, the assembly strategy on the residual and the approximated Jacobian in our
algorithm, together with a device-oriented decomposition, are defined; then the
stopping and clamping criteria enforced are discussed in more detail.

Assembly of the system Jacobian and residual

As stated in section 3.2, the formulation of (mixed) is inherently modular, and
therefore the system Jacobian and residual can be assembled with element–by–
element evaluation. To this end, we can imagine what is usually called an element
evaluator, namely an entity which for the given element, given the element internal
variables and the pin voltages, can provide without information on the rest of the
circuit the element stamp for the m–th element:[

Jm,e(A∗Tm ek, rmk) Jm,rm(A∗Tm ek, rmk)
Qm,e(A

∗T
m ek, rmk) Qm,rm(A∗Tm ek, rmk)

∣∣∣∣ J̃m(A∗Tm ek, rmk)

Q̃m(A∗Tm ek, rmk)

]
(5.19)

where the time step superscript (n) along with the parameters tn, δtn, r
(n−1)
l from

(4.4) have been neglected for the sake of clarity. In (5.19), the symbols Jm,e,
Jm,rm denote the Jacobian matrices of J̃m with respect to the pin voltages, and the
internal variables respectively; in the same way Qm,e, Qm,rm denote the Jacobian
matrices of Q̃m. Subscript k, in ek and rmk, denotes the current Newton step,
consistently with the notation of section 5.2.1.
The stamps, as defined in (5.19), can be assembled in the global Jacobian and

residual, which are first filled “top to bottom” and “left to right” in block fashion:

J =


∑

lAlJl,eA∗Tl A1J1,r1 A2J2,r2 · · · AmJm,rm
Q1,eA

∗T
1 Q1,r1

Q2,eA
∗T
2 Q2,r2
... . . .

Qm,eA
∗T
m Qm,rm

 , (5.20)

Z =



∑
lAlJ̃l(A

∗T
l ek, rmk)

Q̃1(A∗T1 ek, r1k)

Q̃2(A∗T2 ek, r2k)
...

Q̃m(A∗Tm ek, rmk)

 , (5.21)

and then fed to the Newton–like algorithm of choice. In such framework, the
element evaluator related to the distributed devices would provide the rightmost
columns and bottom rows of J and Z.
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We will now examine in more detail the element evaluators linked to the dis-
tributed devices. Without any loss of generality, we will assume only one dis-
tributed device is present. As its internal variables, we will consider the contact
currents vector iM+1, which we will denote simply by i in the following, and the
distributed variables φ, n, p for which the drift–diffusion system provides consti-
tutive relations. For the sake of brevity, the remaining circuital unknowns will be
collected in the vector w.
Moreover, as after discretization the bulk of the system state will be made of the

variables representing the distributed device, and especially the carrier densities
need to respect particular constraints (i.e. positivity), it makes sense to represent
them in a more specialized fashion. To this regard, we can decompose the global
Jacobian matrix and the residual as:

J =


Jww Jwi Jwφ Jwn Jwp
Jiw Jii Jiφ Jin Jip
Jφw Jφi Jφφ Jφn Jφp
Jnw Jni Jnφ Jnn Jnp
Jpw Jpi Jpφ Jpn Jpp

 , Z =


Zw

Zi

Zφ
Zn
Zp

 . (5.22)

It is worth noting that many of the blocks of J in (5.22) are null, thanks to the
definition of the distributed constitutive relation operator Q̃, namely Jwφ, Jwn,
Jwp, Jiw, Jnw, Jpw, Jφi, Jni, and Jpi. Moreover, upon discretization, if e.g. a basis of
compact support functions is chosen in a Galerkin framework, the extra-diagonal
blocks on the first column and on the second row are very sparse, containing
nonzero entries only in the spots corresponding to the Dirichlet boundary.
The remaining nonzero elements on the second column consist into the device

incidence matrix, as (3.3) is linear in the current, and into the identity matrix, as
the contact currents are defined explicitly in (k-current). The blocks ranging from
Jφφ to Jpp pertain to the differential operators in space, defining (Drift–Diffusion),
and boundary conditions:

• Jφφ is based on the Laplace operator −λ2∆, stemming from (Poisson) upon
scaling; on the subspace related to Dirichlet boundaries, it enforces (φ-bcs)
together with Jφw, which maps each pin to the corresponding contact sub-
space;

• Jφn and Jφp derive from the mass operator, stemming from the right hand
side in (Poisson); coefficients amount to 1 and −1 upon scaling;

• Jnn, stemming from (n-balance), collects both the diffusion–advection term

Kn = −µn(φth∆ +∇φ · ∇),

and reaction terms (δt−1 stemming from the time discretization, and Rn

stemming from the Fréchet derivative of generation–recombination rates –
derivatives of the mobility are neglected in our algorithm);
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• Jnφ, neglecting the derivatives of mobility and impact ionization, reduces to
the operator µnn∆, which is self–adjoint, albeit with an extremely nonuni-
form diffusion coefficient;

• Jnp is a reaction operator stemming from the Fréchet derivative Rp of the
generation–recombination rates;

• Jpp, Jpφ, Jpn in the last row stem from (p-balance), and follow the same
pattern as the blocks described just above.

In the end, we will have a Jacobian matrix similar to the one analyzed in sec-
tion 2.4:

J =


Jww AM+1 0 0 0

0 I Jiφ Jin Jip
Jφw 0 −λ2∆ 1 −1
0 0 µnn∆ Kn Rp

0 0 µpp∆ Rn Kp

 , (5.23)

where we left the boundary conditions hidden for the sake of brevity.
Once defined the quasi-Jacobian J and the residual Z, we can apply the proce-

dure of (5.18), which consists in computing the variation

duk =
[
dwk dik dφk dnk dpk

]T (5.24)

which satisfies:
Jk duk = −Zk (5.25)

and then applying it, with the necessary damping coefficient. The iterations stop
when some criteria on either ‖ duk‖ or ‖Zk‖ is satisfied. Computation of damping
parameters and stopping criteria are the focus of next section.

Increment clamping and convergence checks

Chapters 6 and 7 are devoted to the discretization and solution of (5.25), while
this subsection describes in abstract way the other component of the approximate
Newton algorithm, namely:

uk+1 = uk + θk duk, (5.26)

as well as the conditions upon which the loop is terminated.
The clamping parameter θk has several functions, which will be described by

computing different θ•k, each one targeting a specific function, and then applying
the minimum parameter computed. As we want to avoid over–relaxation in order
to enhance robustness, the first parameter we introduce is θ1

k = 1.
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At every Newton step, we need to enforce both carriers positivity, namely
nk+1, pk+1 > 0. Our algorithm enforces this condition by defining

θn,0k = 0.9 min
χn,0

(
nk
| dnk|

)
, with χn,0 = {x ∈ Ω | nk(x) + dnk(x) < 0} (5.27)

θp,0k = 0.9 min
χp,0

(
pk
| dpk|

)
, with χp,0 = {x ∈ Ω | pk(x) + dpk(x) < 0} (5.28)

where the 0.9 factor is arbitrary. These two clamping factors are particularly
important when fast depletion arises, as densities decrease fast but meet an inferior
bound.
After enforcing positivity, we also deal with the “maximum step” type of con-

straints. The increment in electric potential dφk at each Newton step is supposed
not to exceed a fixed clamping voltage φcl, and thus

θφk = φcl‖ dφk‖−1
∞ , (5.29)

where the clamping voltage is normally in the range of the thermal voltage φth.
A similar approach is taken with the quasi–Fermi potentials φn,φp defined in

(2.18), which in turn need a less straightforward approach. In fact, the change in
φn due to θnk dnk is given by

φn(nk)− φn(nk + θnk dnk) = φth ln
nk + θnk dnk

nk
, (5.30)

and thus the absolute variation is smaller than the clamping parameter φncl if∣∣∣∣ln nk + θnk dnk
nk

∣∣∣∣ ≤ φncl

φth

. (5.31)

This results in different parameters according to the sign of dnk, as the logarithm
in (5.31) takes the same sign as the variation, being nk > 0:

θn+
k dnk
nk

≤ e
φncl
φth − 1, dnk > 0,

−θn−k dnk
nk

≤ 1− e−
φncl
φth , dnk < 0,

(5.32)

and finally, taking the maximum norm on the left hand side of (5.32), we can
guarantee (5.31) by clamping with both.

θn+
k =

(
e
φncl
φth − 1

)∥∥∥∥dn+
k

nk

∥∥∥∥−1

∞
, (5.33)

θn−k =

(
1− e−

φncl
φth

)∥∥∥∥dn−k
nk

∥∥∥∥−1

∞
, (5.34)
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being dn+
k and dn−k the positive and negative part of dnk respectively. An analo-

gous argument yields for dp+
k and dp−k , which are then defined as

θp+k =

(
e
φncl
φth − 1

)∥∥∥∥dp+
k

pk

∥∥∥∥−1

∞
, (5.35)

θp−k =

(
1− e−

φncl
φth

)∥∥∥∥dp−k
pk

∥∥∥∥−1

∞
. (5.36)

Finally for the currents and circuit variables, some clamping constants are pro-
vided, and the clamping factors are defined accordingly as:

θik = icl‖ dik‖−1
∞ , (5.37)

θwk = wcl‖ dwk‖−1
∞ , (5.38)

with the final, global clamping factor being set to:

θk = min
[
θ1
k θn,0k θp,0k θφk θn+

k θn−k θp+k θp−k θik θwk
]
. (clamping)

After defining the clamping, we need to introduce stopping criteria; both residual–
based and increment–based stopping criteria are implemented in our algorithm.
Both of them are built in a hybrid fashion, automatically switching from relative
to absolute criteria. The residual measure, e.g., is built in the following way:

zk = max
α∈{φ,n,p,i,w}

‖Zαk‖∞(sα + ‖Zα0‖∞)−1, (5.39)

where sα can be either 1, if non–dimensional equations are considered, or a suitable
scaling factor, when considering dimensional equations (see section 2.4.1), with the
function of transforming the measure to absolute whenever the initial residual may
be already small.
Measuring the increment is performed with the same hybrid structure, but with

a slightly different approach for carrier densities. Moreover, both a single step and
a cumulative increment are computed, which we will call δk,k+1 and δk,0. The use
for the latter will be clarified later. For electric potential, currents, and circuital
variables, the form of the increment is the following:

δαk,l = ‖αk − αl‖∞(αcl + β‖αk‖∞)−1, α ∈ {φ, i,w} (5.40)

with l = 0 and β = 1 for the cumulative increment, while l = k + 1 and β = θk
for the single step increment. For the carrier concentrations, coherently with the
clamping definition, the increment is based on quasi–Fermi potentials:

δαk,l = φth‖ lnαk − lnαl‖∞(φαcl + β‖φαk‖∞)−1, α ∈ {n, p} (5.41)

with the same conventions for l, β. Finally, the increment measure is given as

δk,l = max
α∈{φ,n,p,i,w}

δαk,l. (5.42)
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Implemented algorithm

All the ingredients of the approximated Newton method now defined, our algorithm
will be now presented.
Given the initial guess u0 =

[
w0 i0 φ0 n0 p0

]T obtained through extrapola-
tion as per (4.7), set k = 0 and enter the Newton method loop:

1. compute the residual

Zk =
[
Zwk Zik Zφk Znk Zpk

]T
and the residual measure zk;

2. compute the Jacobian J(uk);

3. factorize the Jacobian (or build preconditioners);

4. compute the increment

duk =
[
dwk dik dφk dnk dpk

]T
5. compute the clamping parameter θk

6. apply the clamped increment, and compute the next estimate:

uk+1 = uk + θk duk

7. compute the cumulative increment measure δk+1,0;

8. IF (δk+1,0 > δmax), decrease the current time step and restart;

9. compute the current increment measure δk+1,k;

10. IF (k ≥ kc) and (δk+1,k > δk−kc+1,k−kc) and (zk > zk−kc), the loop is diverging:
decrease the current time step and restart;

11. IF (δk+1,k ≤ δth), the algorithm converged: compute the next time step, and
move on;

12. IF (zk ≤ zth), the algorithm converged: compute the next time step, and
move on;

13. set l = 0, uk,0 = uk, and enter the modified Newton method loop:
a) compute the residual

Zk,l =
[
Zwk,l Zik,l Zφk,l Znk,l Zpk,l

]T
and the residual measure zk,l;
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b) compute the increment

duk,l =
[
dwk,l dik,l dφk,l dnk,l dpk,l

]T
c) compute the clamping parameter θk,l
d) apply the clamped increment, and compute the next estimate:

uk,l+1 = uk,l + θk,l duk,l

e) compute the current increment measure δl+1,l;
f) IF (l ≥ kc) and (δl+1,l > δl−kc+1,l−kc) and (zl > zl−kc), the loop is

diverging: discard the modified Newton loop;
g) IF (δl+1,l ≤ δth), the algorithm converged: compute the next time step,

and move on;
h) IF (zl ≤ zth), the algorithm converged: compute the next time step, and

move on;
i) IF (l = lmax), exit the loop, ELSE, set l = l + 1;

14. set uk+1 = uk,l+1;

15. IF (k = kmax), issue a warning, then compute the next time step and move
on, ELSE, set k = k + 1;

In the the algorithm exposition, we introduced the following quantities, which
are algorithm parameters:

• δmax is the maximum allowed increment per time step; if the cumulative
increment outweighs δmax, then either the Newton method is diverging, or
insufficient time accuracy is assumed – either case leading to a reduction of
the time step;

• kc is the minimum number of steps – experience suggests to use 3 to 5 –
before divergence is assumed;

• δth, zth are the convergence thresholds, or tolerances;

• lmax, kmax are the maximum number of modified Newton and Newton steps.
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6. Space Discretization

After decoupling the Drift-Diffusion equations with the Gummel map, or defining
a Newton–like method to approximate the coupled system of equations, we need
to discretize a sequence of Diffusion–Advection–Reaction linear operators with
strongly spatially-dependent variable coefficients such that in some regions inside
the device the drift term is dominant on the diffusion term.
For this kind of problems specific discretization techniques are necessary to avoid

the presence of strong oscillations in numerical solutions. Examples of these tech-
niques are upwind finite volume methods [6], streamline diffusion finite volume
methods [5] or the Streamline–Upwind Pertrov–Galerkin (SUPG) formulation [4].
In simulating semiconductor devices it is possible to exploit the particular form

of the convection term to symmetrize the diffusion and convection differential
operators with an opportune change of variables reducing it to a diffusion operator.
The method considered in this thesis uses this expression of the convection term
to construct multidimensional extension of the classical Exponential Fitting Finite
Difference method in one spacial dimension [9, 10, 13].
In section 6.1 we introduce the scalar Diffusion–Advection–Reaction model prob-

lem and we show that both linearized Poisson equation and continuity equations
can be rewritten in this form with an opportune identification of the coefficients. In
section 6.2 we perform the discretization of the model problem in two dimensions
with the classical Galerkin/Finite Element method with piecewise linear function.
In section 6.3, with Edge Averaged Finite Element (EAFE) method [13] we high-
light the relation between the terms of the local matrix of EAFE discretization and
the geometric properties of the triangulations. Finally in section 6.5 we introduce
two possible extensions of the EAFE method for three-dimensional problems with
tetrahedral meshes.
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6.1. The Diffusion–Reaction Problem

Let us consider the following model problem:

divJ(u) + σ u = f in Ω

J(u) = −a(x)∇u in Ω

J(u) n = 0 in ΓN ⊂ ∂Ω

u = u inΓD ⊂ ∂Ω

(6.1)

where Ω ∈ Rd, d = 2, 3, ∂Ω = ΓD ∪ ΓN , 0 < a ≤ a(x) ≤ a, and σ ≥ 0. The prob-
lem (6.1) is a typical Diffusion–Reaction Problem with a non vanishing source
term, in which a(x) represents the diffusion coefficient, σ(x) is the reaction co-
efficient and f(x) is the source term. Both the Poisson equation and the charge
continuity equations may be cast to the form of (6.1), exploiting the Slotboom
variables which we introduced in section 5.1. Thanks to this change of variables,
we may rewrite the continuity equation for electrons as:

−divJ(un) = U in Ω

J(un) = µn Vthe
φ
Vth∇(un) in Ω

(6.2)

and analogously for holes
−divJ(up) = U in Ω

J(up) = µpVthe
−φ
Vth∇(up) in Ω.

(6.3)

Equation (6.2) corresponds to (6.1) if we let a(x) = µnVthe
φ
Vth , σ = 0 and f = U .

Analogously, the (linearized) Poisson equation, takes the form (6.1) by letting

u = δφ(k),

f = +div(ε∇φ(k)) + q(n(k) − p(k) −Nd +Na),

σ = − q

Vth
(n(k) + p(k)).
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6.2. The Galerkin/Finite Element Method

In order to introduce the discretization by means of the Galerkin/Finite Element
method of the model problem (6.1) in two space dimensions, let us suppose from
now on that u ≡ 0. The latter assumption does not hinder the generality of the
discussion as (6.1) can be easily reduced to an homogeneous problem by introduc-
ing a suitable lifting of the boundary datum. Under the simplifying assumption
just introduced, the weak formulation of (6.1) reads:
Find u ∈ V such that:

(J(u),∇v) + (σu, v) = (f, v), ∀v ∈ V (6.4)

where V ≡ H1
0,ΓD
≡ {v ∈ H1(Ω)| v|ΓD = 0}. The discrete formulation of (6.4) by

the Galerkin method is obtained by introducing a family of subspaces Vh ⊂ V of
finite dimension and rewriting (6.4) as
Find uh ∈ Vh such that:

(J(uh),∇vh) + (σuh, vh) = (f, vh), ∀vh ∈ Vh (6.5)

Introducing a basis {ϕi}Nhi=1 for the space Vh, (6.5) becomes:
Find ui, i = 1, . . . , Nh, ui ∈ R such that:

Na∑
j=1

uj(J(ϕj),∇ϕi) +

Nh∑
j=1

uj(σϕj, ϕi) = (f, ϕi) ∀ϕi, i = 1, . . . , Nh (6.6)

Equation (6.6) is an algebraic linear system with the unknowns ui, i = 1, . . . , Nh,
Nh = dim(Vh) which may be expressed in the form

[A+M ]u = f (6.7)

where the stiffness matrix A is defined as

A = [aij], aij = (J(ϕj),∇ϕi)
and the mass matrix M is defined as

M = [mij], mij = (σϕj, ϕi).

The vectors u and f , are defined as

u = [ui]; (6.8)
f = [fi], fi = (f, ϕi). (6.9)

In order to describe the method of (piece–wise linear, continuous) Finite Elements
we need to introduce a triangulation Th of the domain Ω ∈ R, e.g., a partition of
the domain Ω into triangular subdomains K such that:

Ω =
⋃
K∈Th

K (6.10)

and
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• int(K) 6≡ ∅∀K ∈ Th;

• int(K1) ∩ int(K2) = ∅ ∀K1, K2 ∈ Th;

• If F = K1 ∩ K2 6≡ ∅, K1 6≡ K2 ∈ Th then F is either a common edge or a
common vertex between K1 and K2;

• diam(K) ≤ h ∀K ∈ Th.

Definition A triangulation with n vertices of a domain in R2 is said to be a
Delaunay triangulation if the circumcircle of each triangle does not contain any
vertices of the triangulation in its interior (see figure6.1). A Delaunay triangulation

Figure 6.1.: Delaunay Triangulation (image from [21]).

enjoys the following properties:

• given a set of point, the Delaunay triangulation having those points as vertices
is unique, unless M points (M > 3) lie on the same circumference;

• among all possible triangulations with the same set of vertices, the Delaunay
maximizes the minimum angle of the triangles;

• the union of all triangles in a Delaunay triangulation is the minimal area
convex polygon containing all vertices of the triangulation.

Let us introduce the space piece–wise linear continuous Finite Elements on Th as

X1
h ≡

{
vh ∈ C0(Ω)| vh|K ∈ P1 ∀K ∈ Th

}
(6.11)
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6.2. The Galerkin/Finite Element Method

and let
X1
h,Γ ≡

{
vh ∈ X1

h(Th)| vh|ΓD = 0
}

(6.12)

A basis for the space X1
h,Γ is given by the so called hat functions ϕi defined as

ϕi ∈ X1
h,Γ, ϕi(vj) = δij (6.13)

where vj is the j–th vertex in the triangulation Th and δij is the Kronecker symbol.
The functions ϕi defined in (6.13) are shown graphically in figure 6.2. With this

Figure 6.2.: Base function

definition it is possible to state the Finite Element method applied to problem (6.4)
by choosing as the finite dimensional space Vh the space X1

h,Γ(Th) and using the
functions (6.13) as a basis for Vh. In such a way the stiffness matrix A in (6.7)
becomes:

Aij = (J(ϕj),∇ϕi) =
∑
K∈Th

∫
K

J(ϕj)∇ϕi = (6.14)

=
∑
K

∫
K

a(x)∇ϕj|K∇ϕi|K =

=
∑
K

∫
K

(∇ϕj|K∇ϕi|K)︸ ︷︷ ︸
L(K)
ij

a(K) =
∑
K

A
(K)
ij

where

a(K) =

∫
K
a(x)

|K|
e L(K)

ij =

∫
K

(∇ϕj|K∇ϕi|K) = ∇ϕj|K∇ϕi|K |K|. (6.15)
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In (6.14)–(6.15) the property that the gradients of the affine functions ϕj are
constant on each triangle K has been exploited in the computation of the integrals.
For computing the elements of the mass matrix M and of the right–hand–side
vector f it is customary to resort to the well known technique of mass–lumping
(described, e.g., in [19]).

6.3. The Edge Averaged Finite Element (EAFE) Method

In the computational code which is the topic of this thesis a variant of the method
of piece–wise linear continuous Finite Elements presented in the previous chapter
has been used. Such variant is known as the method of Edge Averaged Finite Ele-
ment (EAFE) [13], and is especially well suited for problems with rapidly varying
(in space) coefficients. In the EAFE method the simple average aK appearing in
formula (6.14) for the coefficient a(x) is replaced by an average along each edge of
the triangulation Th, so that the stiffness matrix is computed via

AEAFE = [Aij,EAFE]; Aij,EAFE =
∑
K∈Th

L(K)
ij a

(K)
ij (6.16)

where a(K)
ij is defined by

a
(K)
ij =

(
1

lij

∫
eij

a−1|K deij

)−1

(6.17)

eij denoting the edge in the triangulation Th connecting the i-th vertex to the j-th
vertex and lij being its length. An interesting geometric interpretation is possible
for the EAFE method, to explain which, we need to introduce some notation for the
geometric entities on the triangleK. Referring to the schematic in figure 6.3 where,
for sake of simplicity, the first three vertices in the triangulation vi, i = 1, 2, 3 are
considered, oriented in counter clockwise order, we define by eij the edge connecting
the i-th vertex to the j-th vertex, we let lij denote the length of eij and tij denote
the unit tangent vector to eij directed as eij. Let, finally, nij be the normal
outwards–directed unit vector to eij, and let sij be the segment connecting the
midpoint of eij to the intersection of the edge axes. Noticing that for each triangle
K the following relations hold [6]:

|K| = 1

2
hij lij (6.18)

l12 t12 + l23 t23 + l31 t31 = 0 (6.19)

∇ϕi = −
n(i+1)(i−1)

h(i+1)(i−1)

(6.20)
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Figure 6.3.: Notation for triangles

l(i+1)(i−1) t(i+1)(i−1)∇ϕi = 0, li(i±1) ti(i±1)∇ϕi = ±1 (6.21)

sij = −|K| lij ∇(ϕi) ∇(ϕj) (6.22)

it is easy to verify the following relation

L(K)
ij =

−sij
|eij||K|

. (6.23)

Let us, furthermore, introduce the difference operator along eij which, for any
continuous function η, is defined as

∂ij(η) := η(vi)− η(vj). (6.24)

Using the relations (6.18)–(6.24) and proceeding as shown in [9], it is possible
to introduce a piece–wise constant representation Jh,EAFE(uh) for the flux J(u)
appearing in (6.1) over the triangulation Th, defined as:

Jh,EAFE(uh)|K = Jh,EAFE(uh)
(K) =

∑
i,j∈vk

j(K)

ij
(uh)

lijsij
|K|

(6.25)

where i, j denote the vertices of the triangle K

j(K)

ij
(uh) := a

(K)
ij

∂ij(uh)

lij
tij. (6.26)

From (6.25)–(6.26) it immediately follows that the representation Jh,EAFE(uh)
given by the EAFE method for the flux J(u) will have a continuous tangential
component along each internal edge of the triangulation Th. Moreover Jh,EAFE(uh)
has a continuous normal component along the Voronoi cell [19] relative to each
interior vertex of the triangulation Th (see figure 6.4). The considerations given
above allow to reinterpret the EAFE method as a Finite Volume method where the
control volumes are the Voronoi cells, i.e., it is equivalent to the method known
as Box Integration Method (BIM) as shown in [9].
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Voronoi
cell

Vi

K

Figure 6.4.: Voronoi cell

Property 1 If the triangulation Th is Delaunay, the stiffness matrix AEAFE is an
M-matrix.

Property 1, whose proof is given in [9], is of fundamental importance because it
allows to guarantee the strict positivity of the Slotboom variables resulting from
the solution of (6.7) which, in turn, is necessary in order to invert the relations
defining the Slotboom variables and compute the carrier densities.

6.4. Exponential Fitting

Although the change of variables (5.8) is useful for the derivation of the EAFE
method, it presents a major disadvantage which make its practical use unfeasible.
Indeed, the computation of the coefficient e

ϕ
Vth appearing in (5.8) may lead to

numerical overflows when the ratio ϕ
Vth

becomes even moderately large. To work
around this disadvantage one may perform an additional change of variable at the
discrete level. Let us, as an example, consider below the case of the continuity
equation for electrons; completely analogous arguments would hold in the case of
holes. Let us consider the product of the stiffness matrix AEAFE by the vector of
unknowns uh whose elements represent, in the present case, the nodal values of
the variable un.

AEAFE u =

( ∑
K∈Th

A
(K)
EAFE

)
u =

( ∑
K∈Th

A
(K)
EAFEu

)
=
∑

K∈Th

 ∑
i,j∈vK

Lija
(K)
ij,EAFEuj

 . (6.27)

If we apply for each vertex the inverse transformation of (5.8), then (6.27) may
be rewritten as∑

K∈Th

∑
i,j∈vK

L(K)
ij a

(K)
ij,EAFEexp

(
−φj
Vth

)
nj =

∑
K∈Th

∑
i,j∈vK

L(K)
ij ã

(K)
ij nj (6.28)
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where φj denotes the nodal values of the electrical potential and nj denotes the
nodal values of the electron density. The coefficients ã(K)

ij introduce in (6.28) are
given by

ã
(K)
ij = Be

(
δij

(
φ

Vth

))
(6.29)

where
Be(x) =

x

ex − 1
. (6.30)

As a consequence, equation (6.27) may be written as

AEAFE u = ÃEAFE n =
∑
K∈Th

∑
i,j∈vK

L(K)
ij ã

(K)
ij nj. (6.31)

The latter reformulation of the discrete problem is referred to as Exponentially Fit-
ted Finite Element (EFFE). The stiffness matrix for the EFFE method is no more
symmetric as for the EAFE method, but it enjoys the very important property
that

Property 2 The stiffness matrix ÃEFFE is an M-matrix whenever the triangula-
tion Th is Delaunay.

6.5. 3D Extension of the EAFE Method

The steps that lead to the derivation of the EFFE discretization method, as shown
in the preceding sections for the 2D case, can be reproduced exactly to obtain a 3D
formulation of the problem, as long as the triangular partition of the 2D domain
is substituted by a partition into tetrahedra. In the 3D case, though, unlike in
the two-dimensional case, the Delaunay condition on the domain partition is not
sufficient to guarantee that L(K)

i,j be an M-matrix. In order to guarantee that L(K)
i,j

be an M-matrix one may adopt the Orthogonal Subdomain Collocation (OSC) [11]
method for the construction of the the discrete Laplace operator. Without delving
into the technical details of the OSC method, it is worth noting that such method
can be interpreted as a correction of the 3D extension of the 2D EAFE method
previously discussed. Such correction, involving the computation of the cross–
sections for the stiffness matrix, results in relaxing the sufficient conditions on the
grid needed to guarantee A(K)

i,j being an M-matrix for the 3D case.
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7. Solution of the Linearized System

After linearization and discretization, approximating the solution of (mixed) ul-
timately results in the successive solution of a number of linear systems. This
chapter discusses the choice of linear solvers suitable for the specific problems at
hand, trying to exploit some peculiarities stemming from the form of the original
problem.

7.1. LU Factorization and Fill–in

In the matrices arising from the discretized and linearized version of (mixed), the
preponderant blocks normally arise from the discretized system of PDEs; system
dimensions depends obviously on the number of mesh nodes, but also conditioning
properties are driven in essence by the drift–diffusion block [22]. As for the con-
tinuous system (as seen in section 2.4), the discretized one happens to be badly
scaled (see figure 7.1) and ill–conditioned. Standard iterative methods with generic
preconditioning techniques are less suitable than sparse direct solver in these cases.
A typical sparse direct solver, in order to approximate the solution of the system

Ax = b, works through four distinct phases, namely:

• Analysis, comprising reordering and symbolic factorization; for matrices stem-
ming from 3D discretization, the computational complexity of the analysis
phase is O(r

4
3 ), r being the number of rows in the system (see [18, p. 757]),

• Numerical Factorization of the sparse coefficient matrix A into triangular
factors L and U using Gaussian elimination with or without partial pivoting;

Table 7.1.: Memory occupation for the assembled Jacobian, its LU factors, and for the
factors involved in Gummel’s map when direct methods are employed.

Mesh S1 S2 S3 H1 H2 U

Growth
rate α

Jacobian 1.02 1.02 1.03 0.97 1.02 1.06
full LU 1.59 1.63 1.63 1.63 1.59 1.61
Gummel 1.50 1.46 1.30 1.44 1.51 1.40

Memory
usage M(106)

Jacobian [MB] 504.9 479.9 507.0 549.7 797.3 1120
full LU [GB] 454.2 271.2 102.4 476.0 555.0 402.2
Gummel [GB] 70.00 40.28 10.28 56.75 101.0 57.77
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Poisson

electrons

holes

circuit
interface

φ n p

circuit
currents

Figure 7.1.: Sparsity pattern of the Jacobian matrix for a p-i-n diode discretized over
roughly 7000 nodes and coupled to a resistive circuit (see section9.2).

this phase is the most computationally demanding, with complexity O(r2)
for 3D problems,

• Forward and Backward Elimination to solve for the unknown using the tri-
angular factors L and U and the right hand side vector b; elimination phase
also takes O(r

4
3 ) time.

• Iterative Refinement of the computed solution, with complexity O(r).

The main issue when targeting with a direct solver problems discretized over
big meshes with order of 106 nodes, however, is not the computational complexity
but rather the memory consumption of the resulting LU factorization, because of
the phenomenon known as fill–in: the number of nonzero entries in the factors
L and U , is normally grater than the number of nonzero entries in A. This is-
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sue is partially taken care of at the reordering phase, but cannot be completely
eliminated.
A sparse matrix, by definition, has a number of nonzero entries which scales

with r. If we define the memory occupation M of the sparse matrix as a function
of the number of mesh nodes e, then

M(e) = O(eα). (7.1)

If one of the many ad hoc formats to store sparse matrices is used, then the
growth exponent α roughly equals one, as r ' 3e for problems with big meshes
and relatively simple circuits. The fill–in, however, results in a memory occupation
for the factors which is not asymptotically linear.
Table 7.1 reports the results of an experiment devised to understand the behavior

of α for the memory occupation of LU factors. Six different 3D meshes were taken:

• three structured meshes of a p-i-n diode, indicated with S1, S2, S3. The
meshes were taken with different ratios of spatial step in the three directions,
and are ordered from the more isotropic to the more anisotropic one;

• one unstructured mesh of the same device, indicated with U;

• two hybrid meshes, indicated with H1 and H2. The former, representing a
bipolar junction transistor, was obtained through the combination of struc-
tured grids in the neighborhood of contacts and junctions, and unstructured
grid in the remaining part of the domain. The latter, H2, representing a
simplified thyristor (see chapter 10.2), was obtained through octree localized
refinement.

For each mesh, starting from a coarse version, several uniform refinements were
taken, the Jacobian matrix related to our problem was computed and factorized.
The trends for all the different instances were found to fit very well the power law
implied by (7.1), with the reported values for α.
The results in table 7.1 indicate that the memory occupation growth rate for

the LU factors is very slightly dependent on the chosen type of mesh, and stays
roughly constant at 1.6 for all six experiments. More concerning, on the other
hand, is the estimation of the required memory for the target mesh dimensions,
which makes performing simulations borderline unfeasible. In the same table,
results for an analogue experiment performed on LU factors arising from a step
of Gummel’s map are reported. Confrontation with those data suggests that if a
decoupled method could be found, such that the limitations of Gummel’s map in
high injection are overcome, not only the memory cost for a fixed mesh would be
improved but also the growth rate α would be nearer to the theoretical 4

3
mark.
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7.2. Block Gauß–Seidel Iterations

In this section we propose a block–iterative approach to solve the linear systems
associated with the Newton method iterations for (mixed). As already stated,
for our target application the preponderant part of the system stems from the
discretization of (Drift–Diffusion), thus we will concentrate on such part of the
system before, and then consider how to couple the system with the controlling
circuit. This approach is equivalent to restricting the external circuit to a set of
ideal voltage sources: the sources constitutive relations could be easily removed,
and the KCL and device currents become a post-processing step.
Then, one step of the Newton method for the restricted case consists essentially

in solving a linear system where the coefficients matrix takes the form of the
bottom-right blocks in (5.23):Jφφ dφ+ Jφn dn+ Jφp dp = −Zφ,

Jnφ dφ+ Jnn dn+ Jpp dp = −Zn,
Jpφ dφ+ Jpn dn+ Jpp dp = −Zp.

(7.2)

The block Gauß–Seidel method consists in iterating over the lines of (7.2) one
at a time, in the following way:Jφφ dφ[s+1] + Jφn dn[s] + Jφp dp[s] = −Zφ

Jnφ dφ[s+1] + Jnn dn[s+1] + Jnp dp[s] = −Zn
Jpφ dφ[s+1] + Jpn dn[s+1] + Jpp dp[s+1] = −Zp

(BGS)

where the indexes in square brackets denote the in–solver iteration.
If this approach is taken, then only the diagonal blocks need to be factorized,

leading to the same memory requirements of Gummel’s map. Alternatively, the
block–diagonals could also be “inverted” by means of iterative methods, with linear
memory requirements, if necessary. Unlike with Gummel’s map, however, the
coupling between the variations dφ, dn, dp are retained through the extra–diagonal
blocks.
Being a stationary iterative method, however, the convergence of (BGS) is guar-

anteed for a generic source term only if its update operator, defined as

U =

Jφφ 0 0
Jnφ Jnn 0
Jpφ Jpn Jpp

−1 0 Jφn Jφp
0 0 Jpp
0 0 0

 (7.3)

has spectral radius ρBGS = max‖x‖2=1 ‖Ux‖2 < 1.
Unfortunately, the plain application of the BGS solver, leads to spectral radii

several orders of magnitude bigger than unity, due to the very bad scaling of the
Jacobian when λ is small. An experiment over a p-i-n diode (see chapter 9.2
for more details) is reported in figure 7.2, which shows how the straightforward
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appclication of the BGS produces spectral radii of over 105 for the range of λ which
we target (spanning around the 10−5 mark).
Looking back at the conditioning analysis of section 2.4.2, and recalling that

the standard Gauß–Seidel algorithm is guaranteed to converge if the matrix of
coefficients is diagonally dominant, we can introduce the discretized counterpart
of (2.90), and propose the change of variables

T =

 I 0 0
n I 0
−p 0 I

 . (7.4)

which enhances the decoupling of the equations. Employing this right precon-
ditioner proves very effective, at least at thermal equilibrium, as can be seen in
figure 7.3. Even when the spectral radius approaches unity, the convergence of the
BGS solver can be enhanced by introducing vector extrapolation techniques.

1e-6 1e-5 1e-4 1e-3 1e-2
1e2

1e3

1e4

1e5

1e6

rho vs lambda

lambda

rho

Figure 7.2.: Spectral radius in equilibrium conditions.

7.2.1. Device–circuit coupling

We will now address the matter of proper coupling between the circuital part in
the framework of a block Gauß-Seidel method for the solution of a linear system.
Three approaches have been analyzed to this end:

• coupling circuit variables and currents with the electric potential,

• device–driven simulation: eliminating the circuit trough static condensation,

• circuit–driven simulation: eliminating the device trough static condensation.
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Figure 7.3.: Spectral radius in equilibrium conditions, after right preconditioning.

All three methods are described in the following.
Looking at the structure of (5.23), we can notice that there is no direct influence

of the circuital variables w and the contact current i on the last two rows:
Jww dw + Jwi di + 0 + 0 + 0 = −Zw

0 + Jii di + Jiφ dφ + Jin dn + Jip dp = −Zi

Jφw dw + 0 + Jφφ dφ + Jφn dn + Jφp dp = −Zφ
0 + 0 + Jnφ dφ + Jnn dn + Jnp dp = −Zn
0 + 0 + Jpφ dφ + Jpn dn + Jpp dp = −Zp

(7.5)

It seems then natural to couple the circuit and current equations with the block cor-
responding to Poisson’s equation, in order to minimize the nonzero extra–diagonal
blocks. We will refer to this strategy of coupling the circuit with Poisson equation
as (CCP-BGS):

Jww dw[s+1] + Jwi di[s+1] + 0 + 0 + 0 = −Zw

0 + Jii di[s+1] + Jiφ dφ[s+1] + Jin dn[s] + Jip dp[s] = −Zi

Jφw dw[s+1] + 0 + Jφφ dφ[s+1] + Jφn dn[s] + Jφp dp[s] = −Zφ
0 + 0 + Jnφ dφ[s+1] + Jnn dn[s+1] + Jnp dp[s] = −Zn
0 + 0 + Jpφ dφ[s+1] + Jpn dn[s+1] + Jpp dp[s+1] = −Zp

(CCP-BGS)
With this approach, instead of the Jφφ block, an enriched block comprising the
circuit equations is solved in first place at every block Gauß–Seidel iteration. As
the external circuit presents normally a much smaller number of degrees of freedom
than the discretized potential, also the size of the LU factors for this enriched block
is similar to the size for standard BGS.
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7.2. Block Gauß–Seidel Iterations

A similar approach, which would maintain the balance between the three blocks,
is inspired to the device–driven simulation approach, hence it will be called (DDS-BGS).
The equations stemming from the external circuit are eliminated, through static
condensation, and the Jacobian in the standard BGS is replaced by its Schur
complement. If we cluster together the blocks related to w and i, we have[

dw
di

]
= −

[
Jww Jwi

0 Jii

]−1 [
Zw

Zi + Jiφ dφ+ Jin dn+ Jip dp

]
(DDS-BGS.a)

which yields, if Jww is nonsingular,

di = −Zi − Jiφ dφ− Jin dn− Jip dp

dw = −J−1
ww(Zw − AM+1Zi)︸ ︷︷ ︸

Z∗w

+ J−1
wwAM+1(Jiφ dφ+ Jin dn+ Jip dp)︸ ︷︷ ︸

J∗wφ,J∗wn,J∗wp

and in turn by plugging everything in the device blocks:J̃φφ dφ[s+1] + J̃φn dn[s] + J̃φp dp[s] = −Z̃φ
Jnφ dφ[s+1] + Jnn dn[s+1] + Jnp dp[s] = −Zn
Jpφ dφ[s+1] + Jpn dn[s+1] + Jpp dp[s+1] = −Zp

(DDS-BGS.b)

where the modified source is Z̃φ = Zφ − JφwZ∗w, and the Schur complements are
given as J̃φα = JφwJ∗wα = JφwJ−1

wwAM+1Jiα for α = φ, n, p. The increments in
current and circuit variables are recovered after the iterations, exploiting (DDS-
BGS.a). Differently from (CCP-BGS), the blocks in (DDS-BGS.b) all maintain
the original dimensions. Thanks to the structure of Jφw, the static condensation
results in transforming the boundary conditions imposed on the electric potential
increment to Robin type.
Finally, the circuit–driven simulation approach (CDS-BGS) consists in the static

condensation of the device block, rather than the circuit block. It grants the
possibility of using the standard BGS algorithm on one hand, but on the other
hand, the bulk of the system needs to be solved for more than once. In fact, in
the circuit-currents block[

Jww Jwi

0 Jii

] [
dw
di

]
= −

[
Zw

Zi + Jiφ dφ(dw) + Jin dn(dw) + Jip dp(dw)

]
(DDS-BGS.a)

the relations dα(dw) need to be made explicit, meaning the system needs to be
complemented with the following:dφ

dn
dp

 = −

Jφφ Jφn Jφp
Jnφ Jnn Jnp
Jpφ Jpn Jpp


︸ ︷︷ ︸

J[φ,n,p][φ,n,p]

−1ZφZn
Zp

+

Jφw0
0

 dw

 (CDS-BGS.b)
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The relations in (CDS-BGS.b) are implicit, but the BGS algorithm can be used
to approximate the estimated incrementd̃φ

d̃n

d̃p

 = −J−1
[φ,n,p][φ,n,p]

ZφZn
Zp

 (7.8)

as well as the response to the boundary conditions

G[φ,n,p]w = −J−1
[φ,n,p][φ,n,p]

Jφw0
0

 . (7.9)

It is worth noting that:

• (7.9) involves a limited BGS applications, as only the columns of Jφw corre-
sponding to a pin potential contain nonzero coefficients;

• as G[φ,n,p]w only depends on the Jacobian blocks, it can be reused when a
modified Newton method is employed;

• also when the Jacobian is recomputed, as the right hand side on (7.9) does
not vary, the latest computation often provides a good initial guess for the
BGS iterations.

Once G[φ,n,p] and the estimated increments are computed, they can be plugged
back in (DDS-BGS.a), to obtain the condensed system:[

Jww Jwi

Ji[φ,n,p]G[φ,n,p]w Jii

] [
dw
di

]
= −

[
Zw

Zi + Ji[φ,n,p]
[
d̃φ, d̃n, d̃p

]T] (7.10)

The linear system in (7.10) is normally small, and can be solved directly. The
resulting circuital increment dw is finally employed in (CDS-BGS.b) in order to
obtain the corrected increment.
The three presented approaches to coupling the block Gauß–Seidel algorithm

with the circuital equations have been tested on a simple benchmark: a (dis-
tributed) power diode controlled by a voltage source through a (lumped) resistor.
Figure 7.4 shows the variations in the spectral radius at equilibrium when the re-
sistance is changed. As can be seen from the graph, the first and second approach
highlight a “resonance” effect in a very similar fashion, and the spectral radius
grows to be greater than unity. On the contrary, the latest presented method,
(CDS-BGS), besides being in principle computationally more demanding, is al-
ways stable with a very low spectral radius. We thus conclude with (CDS-BGS)
as our method of choice, to which we will refer in the following simply as BGS.
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Part III.

Test cases
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8. Validation of the Physical Models

In order to check and calibrate the physical models described in chapter 2, some
simulations on very simple devices were run. As the many necessary experimental
data are difficult to source, our results were compared with simulations performed
with a commercial semiconductor simulator, Sentaurus Device, which is among
the most widespread software tool for simulation of semiconductor devices.

8.1. Band gap narrowing model

In the following, we will calibrate the band gap narrowing model, allowing an
accurate reproduction of the carrier densities inside the device. To calibrate the
model, we examined a silicon resistor with a longitudinal doping profile (uniform
over the device section). The simulated structure is an abstraction and is not
linked to a realistic device, but it allows us to isolate the physical effects we aim
to investigate.
The n type doping profile is built with a Gaussian shape, and shown in figure 8.1.

The device dimensions are (1× 1× 50)µm.

Figure 8.1.: Net doping profile (Nbi = ND −NA) for the investigated resistor.

To calibrate the band gap narrowing model of section 2.2.1, it suffices to analyze
charge density in equilibrium conditions. Estimation of the carriers densities with
values ofNi taken from literature leads to incorrect minority carrier approximation,
as shown in figures 8.2 and 8.3. Figure 8.3 shows how electron density is correctly
reproduced, as its value is driven by the doping profile: n ' ND. Holes density
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8. Validation of the Physical Models

Figure 8.2.: Holes density along z axis, with uniform Ni.

Figure 8.3.: Electron density along z axis, with uniform Ni.

from figure 8.2 is instead unrelated to the reference value. Differences in the
central portion can be ascribed to differences in the base Ni value, while at the
edges, effects of high doping density need to be accounted for.
Enforcing a base value for Ni of 1.29419510402271 × 1016 m−3 and using the

band gap narrowing model of section 2.2.1, provides the correct estimate for the
minority carriers as shown in figures 8.4 and 8.5.
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8.2. Carrier lifetimes model

Figure 8.4.: Holes density along z axis, with band gap narrowing model.

Figure 8.5.: Electron density along z axis, with band gap narrowing model.

8.2. Carrier lifetimes model

Once calibrated the band gap narrowing model, correct carriers densities are avail-
able in the stationary case. Other parameters independent on bias conditions but
only on the total doping concentrations are the carriers lifetime. To calibrate the
lifetimes models of section 2.2.3, we employ once again the Gaussian resistor.
A first model implemented in our code came from [2], and describes lifetimes as:

τn =
τn0

1 +

(
NA

Nref

) τp =
τp0

1 +

(
ND

Nref

) (8.1)

with τn030× 10−6 s, τp010× 10−6 s, and Nref = 1023 m−3. A stationary simulation
with the model from (8.1), resulted in the graphs of figure 8.6 and 8.7.
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Figure 8.6.: Electrons lifetimes along z axis, with the model from (8.1).

Figure 8.7.: Holes lifetimes along z axis, with the model from (8.1).
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8.3. Mobility models

Successively, the model exposed in section 2.2.3 brought to the correct estimation
of lifetimes as per figure 8.8 and 8.9.

Figure 8.8.: Electrons lifetimes along z axis, with the model from section 2.2.3.

Figure 8.9.: Holes lifetimes along z axis, with the model from section 2.2.3.

8.3. Mobility models

In the following section we will compare the results obtained with the Philips
unified mobility model which is implemented in our code, with the results from
Sentaurus Device. We complete the Philips mobility with a velocity saturation
model that relates the mobility to the electric field. To control the correctness of
the model we analyze the carriers mobility inside the Gaussian resistor for a bias
value of 100V. We will also see how calibration was necessary to reach an exact
evaluation of the model parameters.
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8. Validation of the Physical Models

The simulations were obtained by quasi–static ramping of the voltage, from 0V
to 100V in 100s. A first simulation including parameters from scientific literature
with Philips model provided the results of figure 8.10, 8.11.

Figure 8.10.: Electrons mobility along z axis, literature parameters.

Figure 8.11.: Holes mobility along z axis, literature parameters.

It can be noticed how both holes and electrons mobilities do not match the
reference in the central region of the device. Holes mobility is also mismatched near
contacts. Successively, calibrating the model parameters, the results of figure 8.12
and 8.13 were recovered. The mismatch of near–contact regions is solved, and in
general mobilities are reproduced with higher fidelity.
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8.4. Trap assisted generation–recombination

Figure 8.12.: Electrons mobility along z axis, calibrated parameters.

Figure 8.13.: Holes mobility along z axis, calibrated parameters.

8.4. Trap assisted generation–recombination

In this section we analyze the SRH generation–recombination model. The net
recombination rate is compared with Sentaurus data on a simulation of the Gaus-
sian resistor with 100V applied voltage. A correct implementation of the carrier
lifetimes model and of the band gap narrowing model is crucial for a correct esti-
mation of RSRH. Other mechanisms such as the impact ionization can be ignored
given the low bias voltage.
It must be noted that, once the correct carrier lifetimes and equilibrium concen-

trations are correctly estimated, the trap assisted generation–recombination can
vary only upon variation of the carrier densities, according to (SRH), which we
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report here for the sake of convenience:

RSRH =
np−Ni

2
,eff

τp

[
n+Ni,eff exp

(
Et−Ei

kBT

)]
+ τn

[
p+Ni,eff exp

(
Ei−Et

kBT

)] .

Figure 8.14.: Net SRH recombination rate on 100V bias.

The small differences which can be noticed in figure 8.14 between computed and
reference values are effectively negligible, and can be imputed to small differences
in the computed carrier densities, due to the algorithmic differences between our
code and the commercial software.

8.5. Impact ionization model

In order to test the impact ionization model we decided to simulate the reverse I-V
characteristic of a p-i-n diode. The initially implemented model presented a power
series approximation for the ionization coefficients. The simulations evidenced
that this approximation introduced a non negligible error in the evaluation of
the breakdown voltage, thus we decided to implement the model as described in
chapter 2.
To test the model, we used a reverse bias characteristic simulation of the p-i-

n represented in figure 8.15. For applied voltages below the Vbd threshold, the
diode is in blocking regime, with a current near 0A. Over the threshold, impact
ionization is triggered and results in huge production of free carriers, which in turn
generate high currents in the diode.
The simulation was performed in quasi–static conditions, adopting a voltage

ramp growing from 0V up to 700V with variations of 1V per second. At first,
the model from [1] was employed for the coefficients of ionization αn, αp. Such
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8.5. Impact ionization model

Figure 8.15.: Doping and carrier densities on the p-i-n diode along z axis

approximation, useful to derive an analytic estimate of Vbd, consists in expanding
in power series the exponentials involved in the laws of αn, αp, reducing their
expression to:

αn = αp = aα|∇φ|7 (8.2)

with aα = 1, 8× 10−29 m6V−7. Such approximation induces a generation of charge
of

RII = aα|∇φ|7( ~Jn + ~Jp) (8.3)

Figure 8.16 compares reverse bias characteristics obtained with our simulator
and with Sentaurus. We can notice a discrepance in the breakdown voltage thresh-
old, which is around −840V in the produced simulations while at −740V in the
reference simulations. In order to understand this mismatch, we analyzed the
generation rates for electrons and holes at −600V reverse bias.
Figure 8.17 and 8.18 evidence the difference in the ionization rates between sim-

ulations and reference. Such mismatch can be considered depending both on the
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8. Validation of the Physical Models

Figure 8.16.: Reverse bias characteristic of the p-i-n diode.

Figure 8.17.: Impact ionization generation rate for electrons, reduced model.

implemented model and on differences in the approximation of current densities,
reported in figure 8.19 and 8.20. On the other hand, the electric field estimation
in both reference and simulated cases is identical, as shown in figure 8.21.
To verify if the source of the error was imputable only to the approximated im-

pact ionization model, a post–processing of the simulation output was performed,
using the complete model presented in chapter 2. The resulting coefficients are
compared with reference values in figure 8.22 and 8.23.
We could consider the hypothesis verified, as a marked improvement is evidenced

in the post–processed curved. An implementation of the complete model was thus
employed in a new simulation, reported in figure 8.24, figure 8.25 and figure 8.26.
The correct breakdown voltage was obtained in this case.
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Figure 8.18.: Impact ionization generation rate for holes, reduced model.

Figure 8.19.: Electron current density along z axis.
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Figure 8.20.: Hole current density along z axis.

Figure 8.21.: Electric field strength along z axis.
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Figure 8.22.: Impact ionization generation rate for electrons, post–processed complete
model.

Figure 8.23.: Impact ionization generation rate for holes, post–processed complete model.
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Figure 8.24.: Impact ionization generation rate for electrons, complete model.

Figure 8.25.: Impact ionization generation rate for holes, complete model.
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Figure 8.26.: Reverse bias characteristic for the p-i-n diode, complete impact ionization
model
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9. p-i-n Power Diode

9.1. Simulation in Quasi–static Regime

An investigation of quasi–static characteristics of the p-i-n diode of figure 8.15
has been performed. The reverse bias characteristic – which has already been
discussed in chapter 8 – was obtained with a reverse bias ramp up to −830V, and
is reported in figure 9.1. The forward bias characteristic was studied with bias up
to 4V.

Figure 9.1.: Reverse bias characteristic

The high breakdown voltage (roughly 750V) is obtained thanks to the drift
region width wB and its doping density. Such region sustains the most part of the
applied voltage. The following relation:

Va ' |Ed|wB (9.1)

where Va is the applied voltage and |Ed|, holds when the drift region is almost
completely depleted, which happens for applied voltages bigger than the punch–
through voltage, approximated as

Vpt '
qNDw

2
B

2ε
. (9.2)

As can be seen in figure 9.2, the punch–through occurs for our diode around the
38V mark, and the electric field is almost uniform for higher bias, as shown in
figure 9.3
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Figure 9.2.: Carrier densities in reverse bias, up to the punch–through.

Figure 9.3.: Electric field trend in reverse bias.

As the bias approaches 750V, the electric field grows sufficiently high, and the
impact ionization is triggered, as shown in figure 9.4. Increasing wB results in
increased breakdown voltage, but also in higher on–state resistance. In direct bias
regime, in fact, high injection of minority carriers in the drift region drives the
device resistance making it independent of doping.
The forward bias characteristic is shown in figure 9.5: as the applied bias grows

over 15V, the saturation of current occurs around the 25A mark. Mobility mod-
els are critical to this regard, as saturation depends on the limitation on carrier
velocity, as shown in figure 9.6.
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Figure 9.4.: Generation rate from impact ionization.

Figure 9.5.: Forward bias characteristic.

Figure 9.6.: Velocity saturation
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9. p-i-n Power Diode

9.2. Simulation in AC Regime

A power diode biased with a sinusoidal voltage source has been used as a test bench
for the algorithm development, the reason being it presents several of the defining
characteristics of power devices, and ranges over most regimes (conduction, deple-
tion, switching, etc.). The three main static regimes are shown in figures 9.7 9.8,
and 9.9.
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Figure 9.7.: Carrier densities in a p-i-n diode at thermal equilibrium. The device doping
follows a “textbook” gaussian profile.

Figures 9.10, 9.11, and 9.12 show how the parameter λ influences the conver-
gence properties. However, adaptive time stepping provides a way to recover the
convergence for the BGS method.
Figures 9.13 and 9.14 compare the spectral radii and the time stepping directly.

The deterioration of the convergence in reverse bias conditions with vanishing λ
can be appreciated in the former, while the need to dampen the time step to obtain
convergence in forward bias is evident in the latter.
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Figure 9.8.: Carrier densities in a p-i-n diode in forward bias. The device doping follows
a “textbook” gaussian profile.
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Figure 9.9.: Carrier densities in a p-i-n diode in reverse bias. The device doping follows
a “textbook” gaussian profile.
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dt

10−6

10−5

10−4

10−3

10−2

t
0,01 0,02 0,03 0,04 0,05 0,06 0,07

I

10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

V0

  ρBGS

10−1

100

t
0,01 0,02 0,03 0,04 0,05 0,06 0,07

Figure 9.10.: Full simulation for the diode with λ = 10−5. Top: spectral radius for the
Block Gauß–Seidel method (green, red stars point out the values over unity);
center: voltage (black dashed line) and forward current (blue); bottom:
adapted time steps.

116



9.2. Simulation in AC Regime

dt
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Figure 9.11.: Full simulation for the diode with λ = 4 × 10−5. Top: spectral radius
for the Block Gauß–Seidel method (green, red stars point out the values
over unity); center: voltage (black dashed line) and forward current (blue);
bottom: adapted time steps.
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dt
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Figure 9.12.: Full simulation for the diode with λ = 5 × 10−6. Top: spectral radius
for the Block Gauß–Seidel method (green, red stars point out the values
over unity); center: voltage (black dashed line) and forward current (blue);
bottom: adapted time steps.
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9.2. Simulation in AC Regime
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Figure 9.13.: Comparison of the spectral radius of block Gauß–Seidel method over a full
simulation
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Figure 9.14.: Comparison of the adaptive time steps over a full simulation
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9. p-i-n Power Diode

9.3. Reverse Recovery Simulation
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Figure 9.15.: Controlling circuit with protection elements for reverse recovery simulation.
From An algorithm for mixed–mode 3D TCAD for power electronics devices,
and application to power p-i-n diode D. Cagnoni, M. Bellini, J. Vobecký,
M. Restelli, and C. de Falco [5]
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Figure 9.16.: Reverse recovery current for the p-i-n diode with standard lifetimes model.
From An algorithm for mixed–mode 3D TCAD for power electronics devices,
and application to power p-i-n diode D. Cagnoni, M. Bellini, J. Vobecký,
M. Restelli, and C. de Falco [5]

As a benchmark test case, for both high injection regimes and dependence on
temperature as a parameter, we considered the power diode studied in [4]. Such
type of diode is irradiated with 1 − 5MeV electrons at a dose between 5 and
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Figure 9.17.: Reverse recovery current for the p-i-n diode with optimized lifetimes. From
An algorithm for mixed–mode 3D TCAD for power electronics devices, and
application to power p-i-n diode D. Cagnoni, M. Bellini, J. Vobecký, M.
Restelli, and C. de Falco [5]
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Figure 9.18.: IV characteristic for the p-i-n diode with standard lifetimes model. From
An algorithm for mixed–mode 3D TCAD for power electronics devices, and
application to power p-i-n diode D. Cagnoni, M. Bellini, J. Vobecký, M.
Restelli, and C. de Falco [5]

20 kGy and 5 − 12MeV helium atoms at doses ranging between 1014 − 1015 m−2,
and annealed at a temperature below 300 ◦C. In these conditions the dominant deep
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Figure 9.19.: IV characteristic for the p-i-n diode with standard lifetimes model, loga-
rithmic scale. From An algorithm for mixed–mode 3D TCAD for power
electronics devices, and application to power p-i-n diode D. Cagnoni, M.
Bellini, J. Vobecký, M. Restelli, and C. de Falco [5]
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Figure 9.20.: IV characteristic for the p-i-n diode with optimized lifetimes. From An
algorithm for mixed–mode 3D TCAD for power electronics devices, and
application to power p-i-n diode D. Cagnoni, M. Bellini, J. Vobecký, M.
Restelli, and C. de Falco [5]

levels are the vacancy–oxygen pair (V-O), roughly 0.16 eV below the conduction
level, and the divacancy (V-V), roughly 0.42 eV below the conduction level.
As a result, an accurate modeling of the generation–recombination processes via

these deep levels is necessary, in order to precisely reproduce the reverse recovery
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Figure 9.21.: IV characteristic for the p-i-n diode with optimized lifetimes, logarithmic
scale. From An algorithm for mixed–mode 3D TCAD for power electronics
devices, and application to power p-i-n diode D. Cagnoni, M. Bellini, J.
Vobecký, M. Restelli, and C. de Falco [5]

characteristics of the diode. Complete deep levels models are computationally
expensive and degrade convergence; thus, an effective carrier lifetime profile was
obtained via optimization with a commercial simulator and introduced within the
conventional SRH framework.
The schematic of testing circuit used for reverse recovery measurements is shown

in figure 9.15. The inductance is tuned to match the dI
dt of the measurements. The

simulations are performed over a wide temperature range (300 to 413K), and
the switch is modeled as a time varying resistor, with the conductance ramping
smoothly from 10−3 S to 103 S in 10µs (the time derivative of conductance is con-
tinuous). Figures 9.16 and 9.17 show the computed discharge profiles. The effect
of lifetime controlling results in a prolonged and increased discharge of the power
diode, at all temperatures, due to an increased charge buildup. Figures 9.18, 9.19,
9.20 and 9.21 show a detailed view of the computed forward IV characteristic,
both with and without the computed lifetimes. The importance of introducing the
optimized lifetimes is particularly evidenced in high–injection regime, where the
crossing of characteristic curve typical of irradiated devices is correctly reproduced
by the optimized carrier lifetimes. Low injection regime characteristics, visible in
the log–scale graphs, do not present substantial differences.
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10. Thyristor

10.1. Depletion Simulation

This section deals with simulations of a thyristor with analytical doping profiles
(shown in figures 10.1 and 10.2) taken from a power devices textbook [3].

Figure 10.1.: Net doping along z axis, from gate to anode.

The performed simualtions investigate both forward and reverse blocking regimes,
with up to 60V for the former and up to −1400V for the latter case. In both block-
ing regimes, the n− drift region is gradually depleted as bias increases. as shown
in figure 10.3 and 10.4.
In reverse bias, the n+-p and n−-p+ junctions are reverse–biased while the p-n−

junction is forward–biased. Figure 10.3 shows clearlys the growth of the depleted
portion of the drift region starting from the n−-p+ junction and injection of holes
in the drift region from the p region as bias grows.
In forward bias, the p-n− junction is reverse–biased while the n+-p and n−-p+

junctions are forward–biased. In such regime, shown in figure 10.4, the depleted
portion grows in the drift region starting from the p-n− junction, and we can notice
injection of holes from the p+ region in the n− region.
Figure 10.5 and 10.6 show the trend of the electric field strength depending on

the applied voltage. The most part of the applied voltage is sustained by the drift
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10. Thyristor

Figure 10.2.: Net doping along z axis, from cathode to anode.

region.
In both cases, the conduction is negligible, since as described in the introduction,

unless neither the breakdown nor the punch-through conditions are not met, and
without signals from the gate, not enough free carriers are present in the device.
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10.1. Depletion Simulation

Figure 10.3.: Trend of the carriers concentration in reverse bias

Figure 10.4.: Trend of the carrier concentration in forward bias
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10. Thyristor

Figure 10.5.: Electric field trend in reverse bias

Figure 10.6.: Electric field trend in forward bias
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10.2. Phase Controlled Thyristor

10.2. Phase Controlled Thyristor

Figure 10.7.: Value of nondimensional parameter δ2 on PCT surface. Cathode, gate,
amplifying gate are visible.

Figure 10.8.: Effective intrinsic density, comprising bandgap narrowing, and mesh.

Figure 10.7 depicts the domain used for the simulation of a realistic industrial
device: a slice of a phase-controlled thyristor (PCT), its cathode covered by shorts
with the function of increasing the device blocking rating.
The mesh used to represent the PCT is built upon roughly 1.1× 106 nodes. In

this section we employ it, together with meshes built over portions of the original
domain, in order to evaluate the performance of our proposed linear solver. Fig-
ures 10.8 through 10.12 depict such subdomains, meshed with a number of nodes
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10. Thyristor

Figure 10.9.: Local nondimensional parameter δ2on a portion of PCT.

Figure 10.10.: Junction surfaces (Nbi = 0) colored by electric potential at equilibrium
[V].

between 104 and 105. All subdomains contain a portion of gate and a portion of
cathode with a short, with the relative mesh refining.
Figure 10.13 reports the profiling of our solver on a 16 cores parallel run. The

points in the graphics corresponding to a monolithic solution for the realistic mesh
is missing, as the employed machine, with 270 Gb RAM, is not able to store the
full Jacobian factors.
The implementation at the time of the writing is not fully optimized, as the solve
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10.2. Phase Controlled Thyristor

Figure 10.11.: Electron density at equilibrium, colored by logarithmic scale, and mesh.

Figure 10.12.: Hole density at equilibrium, colored by logarithmic scale, and mesh.

stage of the BGS solver is still serial. As expected, the solve stage takes longer
for the BGS solver than for the monolithic one, and in few iterations, the time
employed on the solve stage may become comparable with the time employed in
the factorize stage.
Besides the parallelization of some parts of the BGS algorithms, like the matrix-

vector multiplications, which would reduce the single iteration time, a big ben-
efit may be obtained through vector extrapolation techniques. As shown in fig-
ure 10.13, the additional time needed to perform RRE is almost negligible if com-
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Figure 10.13.: Solver profiling: times for factorize, solve, and extrapolation phases for
both the monolithic solver and the BGS method, versus number of mesh
nodes.

pared to the total time for the solve stage in the BGS algorithm.
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Figure 10.14.: Linear system solution with plain BGS algorithm (green), and with BGS
algorithm accelerated through Reduced Rank Extrapolation (blue). History
of convergence of the relative residual.

Figure 10.14 shows the history of convergence of two different instances of the
BGS solver, in a plain version and in an accelerated version (RRE with rank of 20).
It is easy to see how the extrapolation helps reducing the number of iterations,
with only marginal computational cost.
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Figure 11.1.: Normalized runtime on multi–core machines, compared with theoretical
trends given by Amdahl’s law, for a portion of parallel computation equal
to α. The drop–off for over 32 processors is due to the communications
overhead of the testing architecture, a cluster of 32-core machines.

The present thesis was carried out in the framework of a collaboration between
the Modeling and Scientific Computing (MOX) lab of Politecnico di Milano, and
the Power Electronics department in the Corporate Research Center of ABB in
Baden–Dättwil, Switzerland aimed at implementing a parallel 3D TCAD simulator
especially tailored for the needs of the Power Semiconductors industry in general
and for those of ABB in particular.
The resulting C++ code, named CGDD++, was developed from scratch during

the preparation of the present thesis, building on the experience gained during a
preliminary feasibility study, and the Fortran 2003 code (CGDD) that was imple-
mented during that preliminary phase and was based on the FEMilaro [7] library.
CGDD++ relies on the BIM++ [6] library for spatial discretization of differential

operators and uses MUMPS [9] or LIS [8] for the solution of linear systems of
algebraic equations.
The development of CGDD was partially supported by the SuperComputing
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11. Conclusions

Applications and Innovations (SCAI) department of CINECA, Italy through the
Interdisciplinary Laboratory for Advanced Simulation (LISA) projects 3DSPEED
(3D Simulation of PowEr Electronics Devices, 2014) and PDDD (3D Power elec-
tronics Drift Diffusion Device simulation, 2013).
The main feature of CGDD++, which were the objective of this thesis, is the

ability to allow implementation and testing of a wide range numerical algorithms
suited for very large scale parallel mixed–mode simulation of Power Semiconductor
devices, including electro–thermal effects.
Particular emphasis was devoted during the development of this thesis to the

implementation and assessment of various linear and nonlinear iteration strategies,
in particular a block-iterative solution strategy for solving the very large linear
system stemming from the application of the monolithic Newton method to the
solution of mixed mode MNA/DD equations was developed and studied. Through
extensive numerical testing the developed procedure was shown to enjoy interesting
convergence properties at a cost which is significantly lower with respect to parallel
direct solvers.
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A. Circuital examples

Example: KCL for a CMOS inverter

To contextualize the abstract setting proposed in 3.1.1 a simple example based on
a CMOS inverter circuit is borrowed from [3].
The electrical schematic associated with this circuit is composed of 3 nodes

(except ground) and 4 elements, as shown in fig. A.1. Ground node has been
numbered as 0. In this case the system of balance equations reads:

(node 1) iV 1 + iG2 + iG1 = 0,
(node 2) iU1 + iS1 = 0,
(node 3) iD1 + iD2 = 0.

(A.1)

Notice that the balance of ground node, namely:

(node 0) iV 2 + iS2 + iU2 = 0, (A.2)

can be recovered summing all the equations in A.1 and taking into account that
the algebraic sum of the components of each element current vector must be zero
due to 3.1:

iU1 + iU2 = 0,
iV 1 + iV 2 = 0,

iS1 + iG1 + iD1 = 0,
iS2 + iG2 + iD2 = 0.

Defining the current vectors:

iU =

[
iU1

iU2

]
, iV =

[
iV 1

iV 2

]
, iM1 =

iG1

iS1

iD1

 , iM2 =

iG2

iS2

iD2

 , (A.3)

and the local incidence matrices:

AU =

0 0
1 0
0 0

 , AV =

1 0
0 0
0 0

 , AM1 =

1 0 0
0 1 0
0 0 1

 , AM2 =

1 0 0
0 0 0
0 0 1

 , (A.4)

it is possible to rewrite A.1 in a form that suits 3.3:

AU iU + AV iV + AM1iM1 + AM2iM2 = 0. (A.5)

To derive a full system of equations from A.5 it is at this point necessary to
define an appropriate set of unknowns and constitutive relations for the electrical
elements appearing in A.1, as explained in section 3.1.2.
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A. Circuital examples

Figure A.1.: CMOS inverter circuit electrical schematic, composed of 4 elements (dashed
red frame) and 3 nodes plus ground.

Example: Shichman-Hodges MOS-FET model

Figure A.2.: On the left the symbol usually used in schematics to represent a 4–pins
nMOS-FET, on the right the corresponding Shichman-Hodges model com-
posed of 5 linear capacitors, 5 linear resistors, 2 nonlinear resistors (diodes)
and a voltage controlled current source. Notice the presence of 4 inner nodes.
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Consider the n-channel MOS-FET shown in A.2 on the left. Its four pins are
respectively associated with gate (G), drain (D), source (S) and bulk (B) terminals.
The corresponding Shichman-Hodges model [5] is given by the equivalent circuit
shown in A.2 on the right.
Though being one of the most simple MOS-FET model usually provided with

SPICE-like circuit simulators (see [2, 1] for more sophisticated ones), it already
introduces 4 inner nodes that do not appear in the original schematic. The current
balance at these nodes is regarded in the usual DAE formulation of MNA 3.10
as being part of KCL, while in the proposed element–wise formulation it will be
considered as part of the MOS-FET constitutive relations. It is precisely this latter
feature that gives the element–wise notation the possibility to describe circuits on
a hierarchical base.

Example: CMOS inverter, charge oriented MNA with element–wise formulation

In the following it is shown how to derive the full system of equations stem-
ming from the charge–oriented MNA description of the CMOS inverter depicted
in A.1. Consider then the circuit schematic and assume that the Shichman-Hodges
model [5] is used for both the MOS-FETs. For the sake of simplicity the bulk ter-
minals of the transistors are assumed to be connected to the ground node, so that
the element–wise formulation starts from the system of balance equations (A.1).
The vector of nodal potentials reads:

n =
[
e1 e2 e3

]T
. (A.6)

The set–up for a generic voltage source is depicted in A.3. It can be readily seen

+
-

Figure A.3.: Voltage source set–up in the element–wise notation. Notice that in this
case one internal variable is needed to properly describe the element, and
thus one additional constitutive relation is given to close the set of MNA
equations.

that one internal variable is employed (namely the branch current j), and thus the
additional constitutive relation:

Q([e+, e−]T ; t) = e+ − e− − V (t) = 0 , (A.7)
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A. Circuital examples

is needed to close the system. In (A.7) e+ and e− indicate the generic node poten-
tials of the considered two–pins element while V (t) is the known voltage waveform
of the source. A similar set–up is presented in (A.4) for the n-channel MOS-FET.

RDd

RSs

rd

RBb2

RBb1

CGd

CGs

CGB

CDb1

CSb2

Ib1D

Ib2S

ids

Figure A.4.: Set–up of the extended n-channel MOS-FET using the Shichman Hodges
model in the element–wise notation. In this case 9 internal variables are
present, and thus 9 additional constitutive relations are given to close the set
of MNA equations. Ib1D(eD, eb1), Ib2S(eS , eb2) and ids(eG, ed, es) are given
functions modeling respectively the leakage currents through the diodes,
and the current of the voltage controlled current source appearing in the
equivalent circuit.

In this case 9 internal variables are required to completely describe the element:
these are constituted by the four internal nodes potentials ed, es, eb1 , eb2 and by
the 5 charges associated with each capacitor (qGd,qGs,qGB,qDb1 ,qSb2). The current
balances at the internal nodes are part of the nMOS-FET constitutive relations,
as they stem from the choice to model the transistor with the Shichman Hodges
equivalent circuit. Notice that no other k–pins element is allowed to be con-
nected to these nodes, as they constitute only an internal representation of the
MOS-FET. This latter feature is often employed in practice to enhance simulation
performance exploiting a Schur-complement based technique on these inner equa-
tions, as shown in [4]. Of course a similar representation can be derived for the
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p-channel MOS-FET.
At this point each flux vector appearing in (A.1) is expressed in a form that

suits 3.11, while the additional constitutive relations of the corresponding element
are provided in a form resembling 3.13. It is thus possible to follow the procedure
depicted in chapter 3 and derive a closed system of:

• 3 balance equations at the electrical nodes 1-3:

j[V] + q̇
[M1]
Gd + q̇

[M1]
Gs + q̇

[M1]
GB + q̇

[M2]
Gd + q̇

[M2]
Gs + q̇

[M2]
GB = 0 ,

j[U] + q̇
[M1]
Sb2 +

e2 − e[M1]
s

R
[M1]
Ss

+ I
[M1]
b2S

(e2, θ4, e
[M1]
b2

) = 0 ,

q̇
[M1]
Db1 +

e3 − e[M1]
d

R
[M1]
Dd

+ I
[M1]
b1D

(e3, θ4, e
[M1]
b1

)+

q̇
[M2]
Db1 +

e3 − e[M2]
d

R
[M2]
Dd

− I [M2]
b1D

(e3, θ5, e
[M2]
b1

) = 0 ,

• 1 constitutive relation for the input voltage source V :

e1 − v(t) = 0 ,

where v(t) is a given voltage waveform,

• 1 constitutive relation for the feed voltage source U :

e2 − VDD = 0 ,

where VDD is the given feed voltage,
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A. Circuital examples

• 9 constitutive relations for the p-channel MOS-FET M1:

−q̇[M1]
Gd −

e3 − e[M1]
d

R
[M1]
Dd

+ i
[M1]
ds (e1, θ4, e

[M1]
d , e[M1]

s ) +
e

[M1]
d − e[M1]

s

r
[M1]
d

= 0 ,

−q̇[M1]
Gs −

e2 − e[M1]
s

R
[M1]
Ss

− i[M1]
ds (e1, θ4, e

[M1]
d , e[M1]

s )− e
[M1]
d − e[M1]

s

r
[M1]
d

= 0 ,

−q̇[M1]
Db1 − I

[M1]
b1D

(e3, θ4, e
[M1]
b1

) +
e

[M1]
b1

R
[M1]
Bb1

= 0 ,

−q̇[M1]
Sb2 − I

[M1]
b2S

(e2, θ4, e
[M1]
b2

) +
e

[M1]
b2

R
[M1]
Bb2

= 0 ,

q
[M1]
Gd − C

[M1]
Gd (e1 − e[M1]

d ) = 0 ,

q
[M1]
Gs − C

[M1]
Gs (e1 − e[M1]

s ) = 0 ,

q
[M1]
GB − C

[M1]
GB (e1) = 0 ,

q
[M1]
Db1
− C [M1]

Db1
(e3 − e[M1]

b1
) = 0 ,

q
[M1]
Sb2
− C [M1]

Sb2
(e2 − e[M1]

b2
) = 0 ,
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• 9 constitutive relations for the n-channel MOS-FET M2:

−q̇[M2]
Gd −

e3 − e[M2]
d

R
[M2]
Dd

+ i
[M2]
ds (e1, θ5, e

[M2]
d , e[M2]

s ) +
e

[M2]
d − e[M2]

s

r
[M2]
d

= 0 ,

−q̇[M2]
Gs +

e
[M2]
s

R
[M2]
Ss

− i[M2]
ds (e1, θ5, e

[M2]
d , e[M2]

s )− e
[M2]
d − e[M2]

s

r
[M2]
d

= 0 ,

−q̇[M2]
Db1 + I

[M2]
b1D

(e3, θ5, e
[M2]
b1

) +
e

[M2]
b1

R
[M2]
Bb1

= 0 ,

−q̇[M2]
Sb2 + I

[M2]
b2S

(0, θ5, e
[M2]
b2

) +
e

[M2]
b2

R
[M2]
Bb2

= 0 ,

q
[M2]
Gd − C

[M2]
Gd (e1 − e[M2]

d ) = 0 ,

q
[M2]
Gs − C

[M2]
Gs (e1 − e[M2]

s ) = 0 ,

q
[M2]
GB − C

[M2]
GB (e1) = 0 ,

q
[M2]
Db1
− C [M2]

Db1
(e3 − e[M2]

b1
) = 0 ,

q
[M2]
Sb2

+ C
[M2]
Sb2

(e
[M2]
b2

) = 0 ,

All these equations describe the behavior of the CMOS inverter circuit. The
corresponding system variables are the 3 nodal potentials e, the branch currents
j[U],j[V] and j[E] associated with the voltage sources, the 8 inner node potentials
plus the 10 capacitor charges contributed by the two MOS-FETs.
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