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Abstract

The assessment of landslide hazard has become a topic of major interest not

only for geoscientists and engineers but also for the community and the local

administrations, in Italy and in many parts of the world. The reason for inter-

national interest in landslides is the increasing awareness of the socio-economic

impact of landslides and the increased presence of development and urbanization

on the environment, often in mountainous terrains. Flow-like landslides, for ex-

ample debris flows or rock avalanches, due to high velocity and in some cases

due to not preventable triggering mechanism (e.g. earthquake) are among the

most dangerous events. Modelling such kind of landslides is important for the

creation of accurate maps of hazardous areas, to estimate the entity of the haz-

ard and finally to design appropriate protective measures. Starting from a two

dimensional numerical tool for fluid-structure interaction problems, a three di-

mensional Lagrangian numerical approach, for the simulation of rapid landslides,

has been developed. The simulation approach is based on the so called Particle

Finite Element Method (PFEM), first proposed by Oñate, Idelsohn and coworkes

at the International Center for Numerical Methods in Engineering (CIMNE).

The moving soil mass is assumed to obey a rigid-viscoplastic, non-dilatant

Drucker-Prager constitutive law, which is cast in the form of a regularized,

pressure sensitive Bingham model. Unlike in classical formulations of compu-

tational fluid mechanics, where no-slip boundary conditions are assumed, basal

slip boundary conditions are introduced to account for the specific nature of the

landslide-basal surface interface. The basal slip conditions are formulated in the
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form of modified Navier boundary conditions, with a pressure sensitive thresh-

old. A special mixed Eulerian-Lagrangian formulation is used for the elements

on the basal interface to accommodate the new slip conditions into the PFEM

framework. To avoid inconsistencies in the presence of complex shapes of the

basal surface, the no-flux condition through the basal surface is relaxed using

a penalty approach. The proposed model is validated by simulating both labo-

ratory tests and real large scale problems. In particular, the well studied cases

of the Frank avalanche and the Vajont slide are presented. In the latter, the

mobilized material impinges into the water reservoir, generating a huge wave. In

this case, both the terrain and the water have been modelled and simulated.

A related subject considered in this work is the implementation of a nodal

integration instead of the standard elemental integration. An advantage of the

Lagrangian approach for the fluid flow is that the convective terms in the momen-

tum conservation disappear, and the difficulty is transmitted to the necessity to

frequently retriangulate the mesh. When retriangulation is performed, data have

to be transmitted from the old mesh to the new one. In this approach, to avoid

interpolation from mesh to mesh, only degrees of freedom of particles located at

the vertices of triangles, in 2D, and tetrahedra, in 3D, are used, so that only linear

shape functions can be used for both velocity and pressure. Nevertheless some

quantities like strains, stresses, density and apparent viscosity still have to be

evaluated in the elements to perform the integration. This can lead to problems

if more than one material is considered (e.g. terrain and water) or if nonlinear

material behavior with internal variables is considered. A 2D approach based on

nodal integration has been developed to avoid this obstacle.
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1
Introduction

The term landslide denotes “the movement of a mass of rock, debris or earth

down a slope” as described by Cruden, 1991. This is a complex process not merely

related to the land or to sliding, the term has a much more extensive meaning

which includes different movements (flows, slides, falls, etc.) and velocity ranges

(from 1 mm a day to hundreds of meters per hour). Landslides can occur all

over the Earth’s surface, from the center of a city to desolate environments,

in hillside or in steep mountain slopes but also in a sand dome or underwater

(submarine landslides). Driven by the gravity force and therefore not limited to

the Earth surface, more generally landslides can occur in every telluric planetary

body. Movements on the surface of the Moon have been observed and reported

in Xiao et al., 2013 and in Mars, (e.g. Brunetti et al. 2014), Venus (Malin, 1992),

Mercury (Xiao and Komatsu, 2014), and in some icy satellites in the outer Solar

System, (Schenk, 1998).

Among the various categories in which landslides can be divided, this work
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deals exclusively with landslides for which the overall behavior is comparable to

those of a fluid (flow-like landslides), where high speed and large runout nor-

mally take place. Furthermore landslides can be associated with other events. In

particular, in the civil engineering field, the interaction with fluid reservoirs and

with hydraulic structures like dams is of great interest.

The importance of landslides and their consequences have been often underes-

timated in the past, while in recent years the attention of the scientific community

has grown. The development of a large number of models, very different one from

the other, derives from the complexity of the phenomenon and from the physical

different behaviors due to involved materials, topography, triggering mechanisms

and many other important factors.

Procedures of intervention and mitigation, in situ analyses, laboratory exper-

iments and numerical and physical models are all important tools in the assess-

ment of landslides hazard and risk. In this work a numerical approach for the

simulation of rapid landslides is presented and discussed.

Generally, in a landslide, three different phases are discernible: the initiation

or triggering phase, the propagation phase and the deposition phase. Landslides

are triggered by natural causes and/or human activities. Erosion at the base of

a slope, saturation of soil due to prolonged or intense rainfall or snowmelt and

earthquakes are some examples of natural causes. Excavation, construction or

mining are human factors that can also trigger a landslide.

In the past, landslides were underestimated because their damages were con-

sidered simply as a result of the triggering phenomena. Conversely, they represent

one of the most destructive hazards in nature, constituting a potentially high risk

for human life and the built environment. During the last years, a huge number of

landslides occurred in Italy due to the peculiarity of the geological configuration.

The Veneto region is one of the most critical territory with about ten thousand

active landslides (Tormen, 2015), which vary from slowly vast dimension land-

slides (Tessina landslide (van Westen and Lulie Getahun, 2003)) to rapid debris
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flows.

The assessment of landslide hazard has become a topic of major interest not

only for geoscientists and engineers but also for the community and the local

administrations, in Italy and in many parts of the world. The reason for inter-

national interest in landslides is the increasing awareness of the socio-economic

impact of landslides and the increased presence of development and urbanization

on the environment, often in mountainous terrains. Aleotti and Chowdhury, 1999

suggest that, as urban development increases on sloping urban areas, a higher

incidence of slope instability is to be expected.

Depending of the type of landslide, corrective measures can be achieved to sta-

bilize slopes and prevent fatalities and damages, for example improving drainage

and protecting the base of the slope from excavation or erosion, preventing con-

structions in valleys on volcanoes or steep mountain slopes or the installation

of warning systems. When slope stabilization is almost impracticable the only

manner to prevent fatalities and damage is the definition of areas that could be

affected by the landslide. Flow-like landslides, for example debris flows or rock

avalanches, due to high velocity and in some cases due to not preventable trig-

gering mechanism (e.g. earthquake) are among the most dangerous events.

At the Department of Civil and Environmental Engineering (DICA) of Politec-

nico di Milano there is an active research program concerning the analysis of

fluid-structure interaction problems. This dissertation is part of this research

program. Starting from a numerical tool for fluid-structure problems (Cremonesi

et al., 2010) a three dimensional lagrangian numerical approach for the simula-

tion of rapid landslides has been developed. Modeling such kind of landslides is

important for the creation of accurate maps of hazardous areas, to estimate the

entity of the hazard and finally to design appropriate protective measures.

The simulation approach is based on the so called Particle Finite element

Method (PFEM), a powerful method that has been applied in a wide range

of problems ( e.g. ship hydrodynamics, wave impact on breakwater harbours,
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soil/rock excavation problems, melting and burning of objects in fire, mixing of

substances, industrial forming processes, etc.) (Oñate et al., 2011).

Often, simple fluid dynamics problems can be studied in two dimensions.

In other cases, the geometry of the problem does not allow the reduction to a

two-dimensional approach and obliges a truly three-dimensional framework. An

example is the simulation of landslides within a basin, with the identification of

the propagating wave front and the effect of such a wave on a structure. The

use of a three-dimensional approach, could in this case allow the study of a wave

that propagates across the slope where the landslide took place, as happened for

example, in the Mount Toc landslide that led to the tragedy of Vajont in 1963.

The outline of the thesis can be described as follows:

Chapter 2 constitute an introduction to granular matter and experimental

tests of granular flows which have been used to validate the model. Subsequently

a landslide classification, with a focus on flow-like landslides, is given and a briefly

presentation of some historical cases is reported.

Chapter 3 is dedicated to the definition of the governing equations of the fluid

problem. The Navier-Stokes equations are presented in both the Eulerian and

the Lagrangian frameworks. Constitutive laws are described for Newtonian and

Bingham fluids. A model for the extension to 3D flow-like landslides is presented.

Chapter 4 deals with the Finite Element discretization of the equations pre-

sented in chapter 3. Moreover the so called fractional step method, the adopted

stabilization techniques and the linearisation of the solving system are presented.

Then, a description of the adopted numerical method is introduced.

Chapter 5 describes the slip boundary conditions for granular materials. A

special mixed Eulerian-Lagrangian formulation is introduced for the elements on

the basal interface to accommodate the new slip conditions into the numerical

method.

Chapter 6 presents the validation of the model by simulating laboratory tests

and the critical role of the basal slip is elucidated. In particular the simulations
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of the chute of a granular mass along inclined planes and on an erodible substrate

are presented.

Chapter 7 is dedicated to the numerical simulations of three real events. The

first large scale simulation is one of the Cougar Hill dump fails with is used

to validate the model on irregular topography. Then, the simulations of two

historical cases, the Frank avalanche and the Vajont slide, are presented.

Chapter 8 offers an overall summary of the work, conclusions and indications

of future work.





2
Landslides simulations: a survey

In this chapter, an introduction to granular matter and experimental tests

of granular flows are presented. Then, a landslide classification, with a focus on

flow-like landslides, is given and a briefly presentation of some historical cases

is reported. Some of the described experimental tests and real events will be

discussed in detail and numerically simulated in chapter 6 and 7, respectively.

2.1 Granular matter, granular flows and experi-
mental tests

The term “granular matter” describes a large assemblage of small grains but

with a sufficient mass to neglect Brownian motion and dissipating energy when-

ever they interact. Grains are discrete solid components that are dispersed in one

or more fluids and can exhibit solidlike behavior or fluidlike behaviors. “If we

measure it by tons, the material most manipulated by man is water; the second

most manipulated is granular material” (de Gennes, 1999).

7
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Granular flows are large collections of solid moving particles. The study of gran-

ular flows is interesting due to the large number of industrial processes and appli-

cations but also for their connections to landslides. The transport of seeds, rice,

corn, sugar, coffee, rocks or chemical and pharmaceutical products like pills and

powders are just some examples of industrial applications. Phenomena like the

motion of red blood cells in small vessels, traffic flow or planetary rings are studied

in bio-engineering, transportation engineering and astrophysics, respectively.

In the civil engineering, all type of landslides involve a granular solid phase,

in fact rock avalanches, debris flows, snow avalanches and pyroclastic flows are

mostly composed by granular matter. In the last decades the attention on this

field has grown quickly and some theories have been developed. One of the most

widely used theories for the description of granular flow is the Kinetic theory. In

(Lun et al., 1984) an idealized granular material consisting of identical spherical

particles is studied using statistical methods close to those used in the kinetic

theory of gases. In addition to the shape of particles, other hypothesis are at

the basis of the kinetic theory: the material is dry, the grains are cohesionless,

frictionless and elastic and the collision between them is considered random, bi-

nary, instantaneous and uncorrelated. Over the time, some of these hypothesis

have been removed and the kinetic theory has grown rapidly, just as the interest

in this field and its applications (Yoon et al., 2005; Forterre and Pouliquen, 2008).

To provide direct field observations of landslides is extremely difficult. The

reconstructions of real events have often been made with information from visual

observers and with in situ analysis of the terrain. For this reason the number

of field observations is limited and exhaustive data cannot be recovered from

real cases. On the other hand, laboratory experiments with granular material

can be done to extrapolate information on both material properties and propa-

gation mechanisms. In fact, laboratory experiments with granular material are

increasingly being used to validate theories of landslides propagation. Even if
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a satisfactory agreement of the computational model with laboratory data still

does not confirm that the theory is adequate to describe a large scale process in

nature, experimental tests can help to develop better models.

In (Manzella and Labiouse, 2013) laboratory experiments which consist on

releasing dry rigid non-cohesive grains or small bricks on an inclined plane have

been designed to investigate rock avalanche propagation mechanisms and to iden-

tify parameters influencing their deposit characteristics. In Hutter et al., 1995

laboratory experiments of an initially stationary mass of cohesionsless granular

material down on a rough curved bed are presented. Empirical and analytical

analyses of laboratory granular flows to investigate rock avalanche propagation

are described in Manzella and Labiouse, 2009. In Azanza et al., 1999 a two

dimension channel is used to measure the kinematics and the structure of the

granular flow. Experiments to investigate the rapid downslope motion of de-

forming masses of solid grains and intergranular fluids have been developed to

understand the behavior of rapid mass movements on irregular surfaces (Iverson

et al., 2004). In Barbolini et al., 2005 a low cost system is used to estimate the

concentration and velocity profiles in rapid granular flows, in the front, body

and tail of the moving mass and in Bartelt et al., 2007 the basal shear force and

the basal velocity measurements have been applied to study the basal frictional

behaviour of granular material.

2.2 Landslides classification

The word landslide indicates a vast variety of processes that have in com-

mon downward and outward movements of slope-forming materials such as rock,

soil, artificial fill or a combination of these. Geologists, engineers, and other

professionals often adopt slightly differing definitions of landslides because of the

complex nature of the phenomenon and because of the large number of related

disciplines.

In the literature, the most comprehensive classification is due to Varnes, 1978,
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see Figure 2.3. Landslides are one of the most important geomorphological pro-

cesses shaping the surface of the Earth (Anderson and Anderson, 2010).

Figure 2.1 describes the main parts in which a landslide can be subdivided.

Depending of the magnitude and size of the landslides, the moving material can

be sorted material like gravel, sand, silt and clay or unsorted material like debris,

earth, rock and mud. A review on different classifications can be found in Hungr

et al., 2001.

In the description of a landslide some surfaces are significant, in particular for

the type of movements that are here considered. The original ground surface and

the final ground surface, which determine the geomorphic change, are respectively

the ground surface before and after the event, while often a surface of rupture or

separation is recognizable, often called basal surface. The volume between the

original ground surface and the surface of rupture contains the moving material,

which can grow due to erosion or other phenomena.

Figure 2.2 shows a series of different landslides. They can be classified into

different groups on the basis of the type of movement and the type of material

involved.

Movements, internally describing how the mass is displaced, are fall, topple,

slide, spread or flow. Thus, landslides are described using two terms that refer

respectively to material and movement; rockfall, debris flow, and so forth and

depending on the velocity magnitude, flow or for extremely high velocity the

term avalanche is used.

Landslides may also exhibit a complex failure encompassing more then one

type of movement(that is, rock slide-debris flow) (Highland and Bobrowsky,

2008). This work focuses on landslides with high velocity, that are normally

associated with long runout. In particular, with reference to Figure 2.2, the type

of movements that will be treated are the slides and flows (or avalanche) and a

combination of them.
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Figure 2.1: A simple illustration of a rotational landslide that has evolved into an
earthflow. Imagine illustrates commonly used labels for the parts of a landslide
(Varnes, 1978)
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Slides

“A slide is a downslope movement of a soil or rock mass occurring on surfaces

of rupture or on relatively thin zones of intense shear strain” (Varnes, 1978).

It can be rotational, with a curved surface of rupture, or translational with a

relatively planar surface of rupture and the velocity range of the travel is variable

from very slowl (1 meter every year) to rapid. In general, rapid ones are of

rotational type.

Flows

“A flow is a spatially continuous movement in which surfaces of shear are

short-lived, closely spaced, and usually not preserved. The distribution of ve-

locities in the displacing mass resembles the one in a viscous liquid. The lower

boundary of displaced mass may be a surface along which appreciable differential

movement has taken place or a thick zone of distributed shear” (Cruden and

Varnes, 1996).

Often, there is a gradation of change from slides to flows, depending on the water

content, mobility, and evolution of the movement.

Debris Flow

”Debris flow is a very rapid to extremely rapid flow of saturated non-plastic

debris in a steep channel” (Hungr et al., 2001). The materials involved are loose

soil, rock and organic matter which combined with water can behave like a slurry

that flows downslope. Sometimes a debris flow can be the evolution of a rotational

or translational slide in which the mass loses cohesion during the motion, due to

the increasing velocity or the change in water content. Occasionally it could be a

dry flow, that can occur in cohesionelss sand (sand flows). The velocity of travel

can be rapid to extremely rapid (> 5 m/s) depending on density and slope angle.

Lahars, volcanic debris flows, are a particular class of debris flows character-
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Figure 2.2: These schematics illustrate the major types of landslide movement
(Highland and Bobrowsky, 2008)
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Figure 2.3: Types of landslides. Abbreviated version of Varnes’ classification of
slope movements (Varnes, 1978)

ized by a mix of water and ash coming from a volcano. The word “lahar” is an

Indonesian term, sometimes the term volcanic mudflow is used. Lahar behavior

is similar to the concrete, like a fluid when in motion and like a solid when at

rest. Some of the largest and most deadly lahars have originated from eruptions,

with a travel distance of hundreds kilometers and can become larger as they gain

speed and accumulate debris (Thouret et al., 1998).

Debris Avalanche

Debris avalanche is an extremely rapid flow of resulting fragmented debris in

steep slope. The debris are formed due to the collapse of an unstable slope and

are transported downslope. Generally, debris avalanches are large and if sufficient

water is present, the avalanche can become a debris flow or a lahar. The travel

distance is large, and the transport material can be up to one or more kilometers

in size. They are rapid to extremely rapid, they can travel close to 100 m/s

depending especially on the inclination of the slope. Debris avalanches can be

also the result of volcanic activity including volcanic earthquakes or the injection

of magma, which causes slope instability, (Highland and Bobrowsky, 2008).
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Rock Avalanche

Rock avalanches are large masses of rock debris that move rapidly down a

mountain slope, smashing everything in their path. Rock avalanche are among

the most dangerous landslides phenomena, in fact they can mobilize more than

one million cubic meters, with a huge area of propagation and deposition.

The term appeared for the first time in the report of the Frank slide in Alberta

(McConnell and Brock, 1904). This event will be discussed in detail later on.

Earthflow

Earthflows can occur in soils made of clay or silt, but also in the presence of

a clay-bearing bedrock. Normally, on gentle to moderate slopes. The movement

of the mass, which is composed by fine to very fine grains, determines that the

earthflow behaves as plastic or/and viscous flow with strong internal deformation.

Slides may also evolve downslope into earthflows. The travel velocity can range

from very slow (creep) to rapid.

Mudflow

A mudflow is a “very rapid to extremely rapid flow of saturated plastic debris

in a channel, involving significantly greater water content relative to the source

material” (Hungr et al., 2001).

2.2.1 Case History

Here are described some historical cases. Some of these cases will be used as

tests for numerical simulations and will be discussed in more detail in chapter 7.

They will be identify on the basis of the classification presented above.

Sarno and Quindici, 1998

On 5th-6th May 1998, more than a hundred individual mass movements oc-

curred along the slope of Pizzo d’Alvano massif, in Campania region, where

landslides hit the towns of Bracigliano, Sarno, Siano and Quindici. This towns,

located approximately 30 km east of Naples, were badly affected with signifi-
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Figure 2.4: Sarno and Quindici landslides

cant destruction. In fact, from the source area located in the upper part of the

basins, the post-failure stages originated rapid and extremely rapid landslides

that traveled down-slope and then propagated in highly urbanized areas. The

total involved soil volume was about 2, 000, 000 m3 of which 40% derived from

the eroded materials along the channels.

The triggering phenomenon was an intense rainfall as measured by the rain

gauges located at the toe of the Pizzo d’Alvano massif. In this tragedy 161 peo-

ple lost their lives. Due to the relevant property damage and loss of human life,

many contributions have been made to analyze the phenomenon. The landslides

are classified as mudflows (Figure 2.4) (Del Prete et al., 1998; Cascini et al., 2008).

Lituya Bay, 1958

Lituya Bay is located on the northeast shore of the Gulf of Alaska. The event,

occurred in 1958, is probably one of the most famous and well-studied event. The

landslide was triggered by an 8.3 magnitude earthquake which mobilized a huge
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part of the rock mountain along the shore of the bay.

The landslide was triggered impulsively by fault movement and intense earth-

quake vibrations. It is highly probable that the entire mass plunged into Gilbert

Inlet as a rigid body at the time of the earthquake. The estimated volume of

30.6 · 106 m3 slid down in the Gilbert Inlet at the head of Lituya Bay, causing a

huge wave.

According to the trimline of forest destruction, including tree uprooting and

overturning, and erosion down to bedrock over a spur located at the opposite

side in the Gilbert Inlet, the wave ran up to an elevation of 524 m, the highest

recorded history (see Figures 2.5 and 2.6).

Two or three fishing boats in the bay were sunk and two people were killed

by a 30 m high water wave travelling seaward at about 150-200 km/h. The

number of causalities remained very low, compared with the scale of the event,

only because of the absence of human villages in the surroundings, whereas the

entire shore suffered extensive destruction (Fritz et al., 2009; Miller, 1960).

This is an example of multi-hazard event where the landslide interacts with

a fluid mass generating a huge wave.

Vajont, 1963

Unfortunately landslides effects elsewhere have been more catastrophic in

terms of lost lives. For instance in the 1963 Vajont reservoir disaster, over 2000

people were killed and it is considered the most disastrous landslide that occurred

in the XX century. It has sadly become a famous engineering disaster caused by

the failure to control the effects of reservoir filling upon the stability of Monte

Toc, on the left bank of the dam reservoir. Subsequently, a huge landslip drained

approximately 270 · 106 m3 of soil into the newly created reservoir (see Figure

2.7).

This did not make the dam collapse, but triggered two destruction mecha-

nisms: a first water wave reached the village of Casso, located 260 m above the

lake level in the opposite shore; afterwards, the dam was over-topped by 245 m.
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Figure 2.5: View of Lituya Bay. The detached mass is indicated.

Then, a water wave of an estimated 30 millions m3 descended down the valley,

initially more than 70 m in height, destroying the villages of Longarone, Pirago,

Villanova, Rivalta and Fae (Ward and Day, 2011; Kilburn and Petley, 2003). The

landslide is classified as rockslide, due to the predominant translation movement.

Also in this case, the catastrophic effects are related to the wave generated.

Frank, 1903

The Frank Slide of 1903 was the deadliest landslide disaster of Canadian

history. It was a very large and rapid slope movement occured near the town of

Frank, Alberta, Canada in 1903 (McConnell and Brock, 1904). It is classified as

rock avalanche. With its 36 106 m3 of moving material the landslides destroyed a

part of the town of Frank, with 73 causalities. The rock detached from the ridge

of Turtle Mountain, crossed talus aprons and glacial drift benches and covered

the floodplain of Crownest River and the opposite hillside.
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Figure 2.6: Lituya Bay. The dark line indicates the run up of the landslide
generated wave.
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Figure 2.7: Vajont reservoir disaster. Map showing topographic and bathymetric
contours and trimline of generated wave runup.

Figure 2.8: View of the Frank avalanche from the Turtle Mountain
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Figure 2.9: Debris flow, The Cougar Hill landslide

Cougar Hill, 1992

On May 11, 1992, the Cougar 7 dump at the Greenhills Mine located near

Elkford, British Columbia, failed. Approximately 200,000 m3 of failure debris slid

off the 100 m high waste dump, traveled across an access roadway, and flowed

downslope for a total runout distance of 700 m. A service truck and driver

traveling along the access road near the dump toe were swept off the road by

the failure material. Figure 2.9 shows a plan of the area affected by the debris

flow. The dump was constructed in the winter of 1991 between February and

May. Heavy rains occurred during the spring of 1991. The failure occurred very

rapidly and the debris attained considerable velocity. The runout debris of the

Cougar 7 dump consisted predominantly of sandy gravel materials (Dawson et al.,

1998; Pastor et al., 2014).
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Figure 2.10: Picture of the Fei Tsui landslide

Fei Tsui, 1995

The Fei Tsui landslide occurred on August 1995 in the Chai Wan area, Honk

Kong, on a 60 degrees slope in weathered volcanic rock, grading from moderately

to completely decomposed tuff. It involved 14 · 103 m3 of material with two

groundwater systems, the regional groundwater table and a perched water table.

The causes are described as a combination of a weak material together with the

groundwater recharge following a prolonged heavy rainfall. The maximum width

of the mobilized mass was 90 m, and the distance travelled 70 m, after which

the landslide piled some 6 m up against a corner of the Baptist Church building.

Figure 2.10 shows a general view of the landslide. The failure suggested that this

was a translational rock slide - debris flow (Knill, 2006; Pastor et al., 2014).
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2.3 Numerical methods for the simulation of 3D
landslides

Traditional research on landslides has focused on the determination of relia-

bility of slopes and on the study of the failure risk. An overview of traditional

approach can be found in Schuster and Highland, 2007.

The prediction of run-out distances and velocity requires a complete math-

ematical model of the phenomenon. This work is focused on the simulation of

the dynamic evolution of a landslide in an unstable slope whit emphasis on the

determination of macroscopic quantities, such as the runout distance and the

shape of the final deposit.

In the literature, approaches for the simulation of a propagating landslide

usually belong to one of two main groups: approaches based on discrete models

and approaches based on continuum models.

The Discrete Element Method (DEM) is a typical example of a discrete model.

The landslide is described by a set of particles of different shapes which interact

between each other through contact forces. The material constitutive behavior

plays a role only in the contact between particles making the definition of the

forces the crucial part of the method. Examples of the use of DEM for the

simulation of landslide can be found e.g. in Calvetti et al., 2000; Taboada and

Estrada, 2009; Lu et al., 2014. In Martelloni et al., 2013, a Molecular Dynamics

approach, an alternative discrete scheme, has been proposed for modeling the

triggering and propagation of landslides caused by rainfall.

Continuum models treat the landslide material as a continuum medium.

Starting from the balance equations (mass, momentum and energy conserva-

tion), models with different levels of complexity can be considered. These equa-

tions can be formulated for all the involved phases (solid particles, fluid and gas)

(Pudasaini, 2012; Pitman and Le, 2005), or for one single homogeneous phase

representing the material overall behavior.

A common simplification in continuum models consists of integrating the
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equations of motion along the vertical axis (Savage and Hutter, 1989). The

2D depth-integrated model is simple and can provide accurate results in terms of

velocity of propagation, time to reach a particular place and depth of the flow.

These models have been widely used to describe flow-like landslides (Hutter and

Koch, 1991; Gray et al., 1999; Quecedo et al., 2004; McDougall and Hungr, 2004).

However, in the case of high velocities and accelerations in the depth direction

or rough or irregular basal surfaces, depth integrated models can hardly be ap-

plicable. Details about depth-average models and a complete bibliography can

be found in the recent overview by Pastor et al., 2015.

From the numerical point of view, starting from the equations of motion of

the continuum problem, different methods have been proposed. In continuum

models, equations of motion can be formulated in different frameworks, leading

to different numerical approaches. Smoothed Particle Hydrodynamics (SPH),

originally conceived for astrophysical problems, has been successfully applied

to model catastrophic landslides (McDougall and Hungr, 2004). In particular,

the group of Pastor has studied different aspects of the use of SPH for landslide

simulations (see for example Pastor et al., 2015, 2009b and the reference therein).

Methods based on structured and unstructured grids have also been proposed.

In Berger et al., 2011; Pitman et al., 2003, depth averaged equations have been

solved using the Finite Volume method on rectangular grids with an adaptive

remeshing. In Pitman et al., 2003 Finite Volume method has been applied to

the simulation of granular avalanches and landslides. In Begueŕıa et al., 2009

the Finite Differences approach is used to describe a debris flow over a complex

topography; the proposed approach is again based on a numerical integration

of the depth-averaged equations using a shallow water approximation. Another

example of the use of Finite Differences in this context can be found in Wang

and Sassa, 2010b.

Also the Finite Element Method has been extensively used. In Chen and

Lee, 2003 a Lagrangian finite element method has been formulated to reproduce

the dynamic runout caused by a landslide. In Crosta et al., 2009 an Arbitrary
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Lagrangian-Eulerian approach is used to model entrainment/deposition phenom-

ena in rock and debris avalanches. Quecedo et al., 2004 propose a finite element

discretization of the depth-averaged equations using a two step Taylor-Galerkin

algorithm. Andersen and Andersen, 2010 present a numerical model, based on

Material Point Method (MPM), for studying the dynamic evolution of landslides.

In this case the combination of the Langrangian and the Eulerian descriptions

allows for the modelling of complex material behavior in the presence of large

displacements.

A constitutive model is required by all continuum approaches. Constitutive

behaviors can be based on elasto-plastic models or on rheological models. The

Bingham model is the simplest model which describes the transition between

solid and fluid phases (see e.g. Lagrée et al., 2011 for a comparison with other

rheological models). When the shear stress is below a certain threshold, the

material behaves like a rigid body, whereas the material flows like a viscous fluid

when the limit is exceeded. In frictional models the threshold stress varies with

the pressure field and the friction angle (Quecedo et al., 2004). A cohesion can

be added to this model (Pastor et al., 2009a). More complex models can also

include effects like erosion (Crosta et al., 2009; Oñate et al., 2006)

This work is devoted to the presentation of a numerical approach for the three-

dimensional simulation of landslide runouts starting from an unstable slope. A

landslide is here intended as a gravity-driven free surface flow (granular flow,

mud flow, debris flow, etc.). The numerical analysis of this type of problems

requires the ability to track free surfaces and interfaces, in the case that more

than one material (e.g. a landslide impinging in a water reservoir (Cremonesi

et al., 2011)) is involved, to account for complex constitutive behaviors and pos-

sibly for multiphysics phenomena. Different approaches have been developed in

order to tracking the free surface, in the Eulerian context. The Height Function

method was described in Hirt et al., 1975, in which the free surface is defined

by its distance from a reference line. Anther technique is the Volume of Fluid
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Method (Hirt and Nichols, 1981) where a function is defined equal to one at any

point occupied by the fluid and equal to zero anywhere else. A similar idea is

used in the Level Set Method (Osher and Sethian, 1988), which allows to track

the free surface starting from the definition of a level set function φ, defined as

positive inside the domain, negative outside and zero on the interfaces. More

recently an edge-based level set finite element method has been proposed, where

besides the standard method to track the free surface by convecting the φ values

with the velocity field u, an extrapolation of the pressure field is used to im-

pose both the pressure boundary condition and the volume conservation (Rossi

et al., 2013). Nevertheless, the need of simulating evolving free surfaces and in-

terfaces makes Eulerian approaches still limited in the range of application, in

particular, in the context of flow-like landslides the Eulerian approach are less

convenient to use. A Lagrangian approach with continuous remeshing, to account

for the extremely large deformations and consequent mesh distortion, based on

the so-called Particle Finite Element Method (PFEM) (Onate et al., 2004) is here

adopted. The PFEM is a finite element method originally developed for the sim-

ulation of fluid dynamics, including free surface flows and breaking waves (Larese

et al., 2008; Idelsohn et al., 2004), and fluid-structure interaction problems (Idel-

sohn et al., 2006, 2008; Cremonesi et al., 2010). The method has been applied

and validated on a large number of different problems, including simulations of

landslides (Zhang et al., 2015) and of landslide generated water waves (Cremonesi

et al., 2011; Salazar et al., 2015, 2012). Coupled poromechanics problems have

been studied with PFEM (Larese et al., 2012), where the a Lagrangian model

is used for the structure behavior while the Eulerian approach, with a level set

technique for the tracking of the free surface, is used for the fluid. This method

has been applied in the study of overtopping and failure of rockfill dams (Larese

et al., 2013).
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Mathematical description of the fluid

dynamics problem and its extension to
flow-like landslides

This chapter is dedicated to the definition of the governing equations of the

fluid problem. The Navier-Stokes equations are presented in both the Eulerian

and the Lagrangian frameworks. A regularization is adopted to describe the

Bingham behaviour and the apparent viscosity is introduced. Then a model for

the extension to 3D flow-like landslides, described as elastic-viscoplatic materials,

is presented and, following the idea used for the Bingham fluids, the apparent

viscosity is defined.

3.1 The fluid dynamics problem

Fluid dynamics is the branch of mechanics that studies the behavior of fluids

(liquids and gases) in motion. A fluid is a material substance and can be described

27
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in terms of its elemental components, atoms and molecules. In the intent to apply

classical mechanics laws to this type of description, the model must consider the

molecules as rigid bodies that move in the space and interact each other through

both actions depending on the distance (attraction/repulsion) and collisions.

Willing to compute the molecular number Nm in 1 cm3 of gas (for example

air), the state equation PV = nRT in the standard condition (P = 101325 Pa,

T = 288 K and with R = 8.314 J
mol K ), gives Nm = 2.5×1018. A so huge number

can explain why this approach does not have the possibility to be adopted in

these conditions. Even if the motion of all the particles would be determined, the

enormous quantity of information could not be used with benefit. Furthermore,

spatial scales corresponding to the investigating phenomenon are enormously

greater than the spatial scales at the molecular level.

This argument can easily be extended to the case of granular flows and fast

landslides. In the first case the number of the small size grains, of the order of 1-10

mm, is very high compared to the released volume (in the laboratory experiments

that will be presented in Chapter 6 cases from 3 to 20 l are considered). As regards

fast landslides, the size of the moving material components (granular matter, rock

blocks etc..) are very variable but the size of the domain can be enormous (order

of millions m3) making again a discrete approach not feasible.

Hence, in the adopted macroscopic approach, the material is described as a

continuous medium where each spatial point in a specific instant owns physical

and mechanical proprieties, like velocity, pressure, density and so on. To the

continuum hypothesis it is immediately associated the concept of field, intended

as the spatial distribution of a certain macroscopic physical quantity, which can

be a scalar quantity (e.g. pressure), or a vector one (e.g. velocity). The physical-

mathematical model which describes the behavior of a fluid, then, refers to a

macroscopic representation. Nevertheless, later on, the concept of fluid particle,

understood as a macroscopic fluid with homogeneous properties will be used.

A fluid can be defined as a substance that deforms continuously under the

action of shear stress (Vigevano, 2003). The fluid, which is then regarded as a
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continuous medium, can be modeled using equations of conservation. The resolu-

tion of the fluid problem treated in this work involves the solution of differential

equations to calculate velocities and pressures, and other quantities, in each point

of the domain. Such equations, formulated by Claude-Louis Navier and George

Gabriel Stokes, can be expressed in different ways.

In particular, in the Eulerian or spatial formulation fluid proprieties are a

function of the current configuration x and time t within a defined domain, called

control volume, and in the Lagrangian or material formulation, where proprieties

are observed following the evolution of a single particle, they are function of the

reference configuration X and time t. Many fluid dynamics problems are solved

in the Eulerian framework, such as for example, the motion of a fluid inside

a pipe. Other problems are instead characterized by highly variable domains

and not defined a priori, for example the advancement front of a landslide or any

problem characterized by a more or less quickly evolving free surface. Writing the

equations in a framework or in another one involves some important differences.

3.2 The Navier-Stokes equations

In a moving domain Ω ⊂ Rn with n = 2, 3 with the boundary ∂Ωt, the

Navier-Stokes equations for a compressible fluid are given by the following partial

differential system of equation:

ρ
∂u

∂t

∣∣∣
X

= ∇x · σ+ ρb in Ωt × (0, T )

∂ρ

∂t

∣∣∣
X

+∇x · u = 0 in Ωt × (0, T )

(3.1)

where u = u(x, t) is the velocity field, σ = σ(x, t) is the Cauchy stress tensor,

ρ(x) the material density and b(x, t) is the external forces per unit mass. The

symbol ∇x represents the gradient operator with respect to the current configu-

ration x and the derivative ∂
∂t

∣∣
X

is the total (or material) derivative. The system

of equations (3.1) describes the motion of a homogeneous fluid in the domain Ωt.
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The problem has to be supplemented with an appropriate initial condition:

u = u0 in Ωt=0 (3.2)

while standard Dirichlet and Neumann boundary conditions are imposed on the

boundary ∂Ωt. On ΓDt Dirichlet boundary conditions are imposed on velocities

and on ΓNt Neumann boundary conditions are imposed on surface tractions:

u(x, t) = ū(x, t) on ΓDt × (0, T )

σ(x, t) · n = h(x, t) on ΓNt × (0, T )
(3.3)

where ū(x, t) and h(x, t) are assigned functions and n is the outward normal to

the boundary and ΓDt + ΓNt = ∂Ωt.

The scalar equation in Ωt × (0, T )

∂ρ

∂t

∣∣∣
X

+ ρ∇x · u = 0 (3.4)

represents the mass conservation. For incompressible fluids density is constant

and the equation reduces to:

∇x · u = 0 in Ωt × (0, T ) (3.5)

According to the definition of the derivative ∂
∂t

∣∣∣
X

and the reference configura-

tion the Eulerian or Lagrangian formulation is obtained. The Eulerian approach

is based on the mathematical concept of field, and the fluid properties (speed,

pressure, density etc.) are defined in terms of space and time. The observer is

attached to the fixed or inertial reference system and takes photos of the velocity

and pressure field in each moment without any information on the movement of

each individual particle. In this work the Lagrangian approach has been privi-

leged. The following paragraph contains a detailed description of this approach.

3.3 The Lagrangian framework

In the material formulation, the Navier-Stokes equations describe the mo-

tion of a single particle and the physical properties are directly attributed to
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the particle according to its movement and time. The difference between the

two approaches is mathematically evident in the terms containing the temporal

derivative: given a quantity M of the same particle, the total derivative in the

Eulerian framework is expressed as:

∂M

∂t

∣∣∣
X

=
∂M

∂t

∣∣∣
x

+
∂M

∂x
ux +

∂M

∂y
uy +

∂M

∂z
uz (3.6)

The total time derivative considers the variation of M of the same particle

over time, where the values of M are related to different spatial positions while

the partial derivative considers the variation of M of a same geometric point

in the interval dt and is therefore referred to different particles. The total and

partial derivative differ for the convective term that contains the spatial deriva-

tives of the quantity M multiplied by the corresponding components of velocity.

The fact that in the Lagrangian description, the domain (the mesh) varies with

particles motion determines an important advantage compared to the Eulerian

formulation: the nonlinear convective term disappears.

Consider a mass with initial configuration B0 occupying the volume Ω0 with

boundary ∂Ω0. The body undergoes a motion described by a deformation map-

ping χ(X, t), where X denotes the position of a material particle in the reference

configuration, while the corresponding position in the current configuration Bt at

time t occupying the volume Ωt with boundary ∂Ωt, is defined by

x = χ(X, t) (3.7)

The motion of a material point relates the material coordinates X with the spatial

ones x. This is described by the transformation χ as follow:

χ : Ω0 × (0, T ) −→ Ωt × (0, T ) (3.8)

(X, t) 7−→ χ(X, t) = (x, t) (3.9)

where Ωt represents the spatial domain and Ω0 the material reference domain

and the physical time t is measured for the same variable in both descriptions

(Donea and Huerta, 2003).
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Figure 3.1: Configuration and motion of a continuum body (Holzapfel, 2000)

The differential of the previous relation takes the form

dxi =
∂xi
∂Xα

dXα dx = FdX (3.10)

where the second order tensor F is the deformation gradient.

F(X, t) =
∂χ(X, t)

∂X
= ∇Xx (3.11)

Supposing that the inverse transformation exists, (X, t) = χ−1(x, t) then

F−1(x, t) =
∂χ−1(x, t)

∂x
(3.12)

The volume variation at time t can be calculated as :

dx = J(X, t)dX (3.13)

where J is the determinant of F. Consider the three non-complanar line elements

dX1, dX2, dX3 at the point X in B0 so that

dxi = FdXi i = 1, 2, 3 (3.14)
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in accordance with (3.10), therefore

dV = dX1 · (dX2 ∧ dX3) = det(dX1,dX2,dX3) (3.15)

The corresponding volume dv in the deformed configuration is

dv = det(x1,x2,x3) = det(F dX1,F dX2,F dX3) = (det F)dV ≡ JdV (3.16)

The determinant of F is called J, the volume ratio or Jacobian determinant,

the ratio of the current volume of a small element with respect to its reference

volume. The condition of impenetrability of matter requires that

J = det F > 0 (3.17)

For incompressible fluids dV = dv and therefore J = 1.

Considering a small surface dS = NdS in B0, a cylinder of volume dV =

dX · dS > 0, with a suitable choice of dX.

dv = JdV ⇒ dx · ds = JdX · dS (3.18)

where dx and ds represent the deformation of dX and dS respectively. The

previous relation using equation (3.10) becomes

F dX · ds = dX · FTds = JdX · dS (3.19)

The last relation can be expressed in the following form, known as Nanson’s

formula (Holzapfel, 2000; Ogden, 1997)

nds = JF−TNdS (3.20)

which represents the transformation of an oriented element from the surface area

dS of normal N in the initial configuration to the surface area nds in the current

configuration.

Returning to the deformation expressed in the form

x = χ(X, t) (3.21)
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for an arbitrary choice of reference configuration, the velocity of the material

particle which is assigned the place X in the reference configuration is denoted

by

U(X, t) =
∂χ

∂t
(X, t) (3.22)

In the Eulerian specification the notation u(x, t) has been used for the velocity

of the material particle which occupies the place x at time t. The velocity is the

same even if expressed in the two different configuration, that means

U(X, t) = u(x, t) (3.23)

Now it is possible to compute the relation between the gradient of the velocity

in both configuration:

U(X, t) = u(x, t) = u(χ(X, t)) ⇒ ∇XU = ∇xu F (3.24)

Starting from Nanson’s formula (3.20), a relation similar to equation (3.24) can

be obtained also for the divergence of a second order tensor: is possible to obtain

the relation for the divergence of the Cauchy stress in the current and reference

configuration:

∇x · σ =
1

J
∇X · (JσF−T ) (3.25)

Relation (3.25) is known as Piola transformation (Holzapfel, 2000; Marsden and

Hughes, 1994). To introduce the equations of motion in the Lagrangian frame-

work, an important identity may be introduced:

∇X · (JF−T ) = 0 (3.26)

which can be proved integrating equation (3.26) over the domain Ω0, applying

the divergence theorem twice and using the Nanson’s formula (3.20):∫
Ω0

∇X · (JF−T )dΩ0 =

∫
∂Ω0

JF−TNdΓ0 =

∫
∂Ωt

ndΓ =

∫
Ωt

∇x · IdΩt = 0

(3.27)
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3.3.1 The Navier-Stokes equations in the Lagrangian frame-
work

applying Piola’s transformation to equation 3.1, the momentum equation be-

comes:

ρ
DU

Dt
=

1

J
∇X ·Π + ρb in Ω0 × (0, T ) (3.28)

where Π = JσF−T is the first Piola-Kichhoff tensor. For a incompressible fluid

the mass conservation implies the volume conservation.

D(ρdΩ)

Dt
=
DJ

Dt
= JF−T : ∇XU = 0 (3.29)

JF−T : ∇XU = ∇X · (JF−1U)−∇X · (JF−T )U (3.30)

Using the identity (3.26) the mass conservation equation in the Lagrangian for-

mulation becomes:

∇X · (JF−1U) = 0 in Ω0 × (0, T ) (3.31)

Equations (3.28) and (3.31) represent the Lagrangian form of Navier-stokes

equations. In the Lagrangian approach, the nonlinearity is due to the fact that

the current configuration differs by large displacements from the original one;

this nonlinearity appears in the equations through the deformation gradient F.

The boundary Γ0 = ∂Ω0 is partitioned in two non-overlapping subsets ΓD0 and

ΓN0 , such that ΓD0 ∪Γ0
N = Γ0 and ΓD0 ∩Γ0

N = ∅. Typical boundary conditions for

the problem in the Lagrangian framework are:

U(X, t) = Ū(X, t) on ΓD0 × (0, T )

Π(X, t) ·N = H(X, t) on ΓN0 × (0, T )
(3.32)

where Ū(X, t) and H(X, t) are assigned functions and N is the outward normal

to the boundary ΓN0

3.4 Newtonian and Bingham fluids

In the previous sections the equations of motion for a homogeneous incom-

pressible fluid have been introduced. For a Newtonian isotropic incompressible
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fluid the Cauchy stress tensor σ = σ(x, t) is related to the velocity u = u(x, t)

and the pressure p = p(x, t) as follow

σ = −pI + σD (3.33)

where I is the identity tensor and σD is defined as:

σD = 2µε̇(u) = µ(∇xu +∇xuT ) (3.34)

where ε̇(u) represents the symmetric part of the velocity gradient. From the

incompressibility constraint (∇x · u = 0) it follows that σD is the deviatoric

stress tensor. The tensors σD and ε̇ are linearly related through the viscosity µ

which is a material property. Typical examples of Newtonian fluids are water and

common oils. Using (3.33) and (3.34) the momentum balance equation (3.1)1 can

be rewritten as

ρ
Du

Dt

∣∣∣∣
X

= −∇xp+ µ M u + ρb in Ωt × (0, T ) (3.35)

Using the constitutive relation (3.34), the momentum conservation equation

(3.28) in the Lagrangian context takes the form :

ρ
Du

Dt
= − 1

J
∇X ·(JpF−T )+

1

J
µ∇X ·[J(∇XU)F−1F−T ]+ρb in Ω0×(0, T ) (3.36)

The hypothesis of linearity between σD and ε̇ through the dynamic viscosity

µ is valid for Newtonian fluids. For a non-Newtonian fluid the relation can be

written in more general terms as:

σD = σD(ε̇(u), t) (3.37)

Among the non-Newtonian fluids, the Bingham fluid plays a particular role. A

Bingham fluid is a material that behaves as a rigid body at low shear stresses but

starts flowing as a Newtonian viscous fluid once a certain shear stress σD0 (yield

stress) is reached. Once the yield stress is achieved, a linear relation between
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shear strain rate and shear stress is considered. The Bingham behaviour, in the

one dimensional framework, can be described as

γ̇ = 0 σD < σD0

σD = σD0 + µγ̇ σD > σD0

(3.38)

where γ̇ is the shear strain rate. This behaviour introduces a nonlinear effect

in the constitutive law. The Bingham law, accounting for different behaviours

before and after the yield stress, has a piecewise form, which can be difficult to

be dealt with numerically. Thus, an approximation based on a regularization of

equations (3.38) will be introduced.

Here, following the idea of Papanastasiou, 1987, and later implemented by

Cremonesi et al., 2011; Larese, 2012, an approximation based on an exponential

evolution of the viscosity is introduced

σD =

[
µ+

σD0

|γ̇|
(1− e−N |γ̇|)

]
γ̇ for |γ̇| 6= 0 (3.39)

which holds both on the yielded (σD < σD0) and unyelded (σD > σD0) regions.

In the approximation (3.39) the definition of the parameter N is required. In

Figure 3.2 the Newtonian and Bingham fluid is compared with the exponential

approximation for two different values of the parameter N . Figure 3.2 also shows

that a quick stress growth can be achieved at very low strain rate with a relatively

large exponent N , which is consistent with the behaviour of the Bingham material

before the yield stress. In the limit of N −→ ∞, the Bingham behaviour in the

yielded regions is recovered. The real advantage of eq. (3.39) is that it leads to a

system of equations of motion solvable by algorithms very similar to those used

for a Newtonian fluid.

Approximation (3.39) can also be expressed through an apparent viscosity µ̄,

leading to
σD = µ̃γ̇

µ̃ = µ+
σD0

|γ̇|

(
1− e−N |γ̇|

) (3.40)

Figure 3.3 shows the apparent viscosity of the exponential approximation for two

different values of the parameter N and for a Newtonian and Bingham fluid.
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Figure 3.2: Newtonian and Bingham fluids compared with the exponential ap-
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Figure 3.3: Apparent viscosity of the Newtonian and Bingham fluid compared
with the exponential approximation for two different values of the parameter N
(µ = 50 Pa s; σD0 = 50 Pa).

The apparent viscosity concept, illustrated in a one dimensional case, can be

extended to tridimensional cases to express the deviatoric tensor σD in terms of

the symmetric part of the velocity gradient.

σD = 2µ̃ε̇(u) (3.41)

where the definition of the apparent viscosity now is:

µ̃ = µ+
σD0

||ε̇||
(1− e−N ||ε̇||) (3.42)

In equation (3.42) ||ε̇|| is the Euclidean norm of the symmetric part of the gradient

of the strain rate tensor ε̇(u)
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3.5 Extension to 3D flow-like landslides

Landslide runouts involve extremely large deformations of the moving soil

mass. For this reason, in the literature they have been modeled mainly by con-

sidering the soil as a viscous fluid. This assumption implies that the initial, stat-

ically equilibrated state cannot be included in the model and the transition from

stable slope configuration to an unstable moving landslide cannot be described.

In this work, the moving mass is modeled as a rigid-viscoplastic solid under-

going large deformations. This implies that also in this case only the landslide

motion can be described. The assumed rigid-viscoplastic behavior is obtained

by simply neglecting the elastic part of the behavior of an elastic-viscoplastic

material model. In contrast, the modeling of the soil evolution from its initially

stable equilibrium configuration to the final unstable state of running landslide

will require consideration of the complete elasto-viscoplastic material behavior.

3.5.1 Kinematics

Considering the deformation gradient, its polar decomposition in terms of the

left stretch tensor V̄ and of the rotation tensor R is given by:

F = V̄ R (3.43)

The left Cauchy-Green tensor is defined by

B̄ = F FT = V̄ V̄T (3.44)

where B̄ and V̄ are used to differentiates the tensors from the nodal velocities and

external forces, that will be used later. In the literature the left Cauchy-Green

tensor B̄ is sometimes referred as Finger deformation tensor. Any objective

deformation measure can be used to define the strain energy function, but also

functions of objective deformation measures can be used for this purpose. An

often used function is the logarithm of the left stretch tensor V̄:

ε = ln V̄ (3.45)
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which is coaxial with the left stretch tensor since taking the logarithm is an

isotropic tensor function, and the principal values of ε are obtained as lnλi with

λi the principal stretches. The so-called eulerian logarithmic strain tensor can

be also be expressed as (De Borst et al., 2012):

ε =
1

2
ln B̄ (3.46)

The strain tensor ε is decomposed into volumetric and deviatoric parts according

to the following standard additive split.

ε = εD + εV I (3.47)

εV =
1

3
trε =

1

3
ln J (3.48)

εD = ε− εV I = ln V̄D (3.49)

where I is the identity tensor and V̄D is the deviatoric part of the left stretch

tensor V̄

V̄D = J−1/3 V̄⇒ det V̄D = 1 (3.50)

The usual multiplicative decomposition of the deformation gradient F into its

elastic Fe and plastic Fp parts is assumed (Lubarda, 2004; Simo and Hughes,

2006):

F = Fe Fp Fe = V̄e Re, Fp = V̄p Rp (3.51)

with obvious meaning of symbols.

Making use of equation (3.11) the time derivative is

Ḟ =
∂

∂t
(∇Xx) = ∇XU (3.52)

The superposed dot will be used henceforth to denote the time derivative ∂/∂t.

Indeed, using equation (3.24)2, the spatial velocity gradient ∇xu can be easily

expressed as

l = ∇xu = Ḟ F−1 (3.53)



42

According to the decomposition of equation (3.51), the spatial velocity gradi-

ent is expressed as:

l = le + Fe Lp Fe−1 = le + lp (3.54)

where

le = Ḟe Fe−1, Lp = Ḟp Fp−1 (3.55)

define the spatial elastic and plastic velocity gradients, respectively. Note that

while lp is defined in the current configuration, Lp is defined in the intermediate

configuration. The plastic velocity gradient in the current configuration is given

by lp = FeLpFe−1.

The elastic and plastic velocity gradients le and lp can be split in the sum of

their symmetric and antisymmetric components:

le =
1

2
(le + leT ) +

1

2
(le − leT ) = de + we (3.56)

lp =
1

2
(lp + lpT ) +

1

2
(lp − lpT ) = dp + wp (3.57)

where de, dp define the elastic and plastic rate of deformation tensors, and we,

wp the corresponding spin tensors. As it is customary in plastically isotropic

solids, wp = 0 is assumed, and therefore:

l = de + dp + we = ∇xu (3.58)

3.5.2 Material model

Let τ = Jσ be the Kirchhoff stress tensor. The deviatoric components of the

Kirchhoff stress is given by

τD = JσD (3.59)

Elastic strains in soils are usually small, so that a Hencky type linear relation

is assumed between Kirchhoff stresses and logarithmic strains

τD = ρ0
∂Ψ

∂εe
= 2GεeD +KεeV I (3.60)
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where εe = ln Ve, ρ0 is the density in the reference configuration, G is the shear

modulus, K the bulk modulus and

Ψ(εe) =
1

2
εe : E : εe (3.61)

is the free energy potential per unit mass, E being the constant isotropic fourth

order elasticity tensor.

The elastic domain is assumed to be bounded by a Drucker-Prager like con-

dition with zero cohesion

q − αJp tanϕ ≤ 0 (3.62)

where q =
√

3
2τ : τ is the Kirchhoff effective stress, α is a material constant and

ϕ is the material internal friction angle, which is assumed here to be constant.

A non-associative, non-dilatant viscoplastic flow rule is assumed, whereby the

purely deviatoric plastic strain rate is expressed as the gradient of a viscoplastic

potential g(τ) = q(τ)

dp =
f

µ

∂g

∂τ
=

3

2µ

f

q
τD (3.63)

where µ is the material viscosity and f is a measure of the overstress

f =< q − αJp tanϕ > (3.64)

with < � >= � for � > 0, < � >= 0 for � ≤ 0. With these definitions, the

plastic work density is obtained as

τ : dp = τD : dp =
3

2µ

f

q
τD : τD = q γ̇, γ̇ =

f

µ
(3.65)

where γ̇ is the effective plastic strain rate, conjugate to q in the plastic work.

After the conditions for the slope unstable motion have been met, the landslide

runout starts, with negligible elastic strains if compared to the extremely large

viscoplastic deformations. In this case, it is customary to assume de = 0 in

(3.58). Since plastic strain rates are purely deviatoric, the granular flow behaves
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as an incompressible non-Newtonian fluid with J = 1 and τD = σD. Under

these conditions, from (3.63) one can express the deviatoric Kirchhoff stress τD

in terms of the plastic strain rate dp

τD =
2

3

q

γ̇
dp, f > 0 (3.66)

But further noting that for f > 0 and J = 1, from the expression (3.65)2 of γ̇

and making use of (3.64), q can be expressed as

q = µγ̇ + αp tanϕ, f > 0 (3.67)

one finally obtains

σD = τD =
2

3

(
µ+

αp tanϕ

γ̇

)
dp, f > 0 (3.68)

The expression in (3.68) defines a Bingham-like frictional rigid viscoplastic

behavior and is substantially identical to the one considered e.g. in Quecedo

et al. (2004). This can be regularized (Papanastasiou, 1987; Cremonesi et al.,

2011; Larese, 2012) defining an effective viscosity µ̃ accounting for the frictional

contributions.

µ̃ =
2

3

[
µ+

αp tanϕ

γ̇

(
1− e−Nγ̇

)]
(3.69)

where N , as before, is a regularization parameter, usually taken equal to 103,

and setting

σD = τD = µ̃d (3.70)

for every arbitrary f , where it has been set de = 0, d = dp and J = 1. With the

additional assumption of α = 1, this expression will be used in what follows.



4
Finite Element discretization

In this chapter the Finite Element discretization of the equations discussed

in chapter 3 is presented. Moreover the so called fractional step method, the

adopted stabilization techniques and the linearisation of the solving system are

presented. Then, a description of the adopted numerical method is introduced.

4.1 Weak form and spatial discretization

The system of partial differential equations which governs the motion, has

been described in the previous chapter in the Eulerian framework (3.1) and in

the Lagrangian framework (3.28) and (3.29). For an incompressible homogeneous

material the balance equations can be writtes a:

ρ
∂u

∂t

∣∣∣∣
X

= −∇xp+ µ̃ M u + ρb in Ωt × (0, T )

∇x · u = 0 in Ωt × (0, T )

(4.1)

45
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In the following, the standard Dirichlet and Neumann boundary condition, eq.

(3.3), are considered:

u(x, t) = ū(x, t) on ΓDt × (0, T )

σ(x, t) · n = h(x, t) on ΓNt × (0, T )
(4.2)

In equation (4.1)1 instead of the material viscosity µ (Newtonian fluids), the

apparent viscosity for a Bingham like fluid is used, as defined in equation (3.40)

(see section 3.4) and in equation (3.40), for a rigid-viscoplastic solid (see section

3.5.2). The Galerkin weak form of the governing equations is written as usual,

using trial and test functions, whose existence spaces, for any given t ∈ [0, T ], are

defined as

S̄(t) = {u ∈ H1(Ωt)|u = ū} on ΓDt (4.3)

S̄0(t) = {w ∈ H1(Ωt)|w = 0} on ΓDt (4.4)

Q̄(t) = {p, q ∈ L2(Ωt)} (4.5)

The integral form of the momentum equation can be obtained with a scalar

product of the terms in equation (4.1)1 with the test function w ∈ S̄0 while in

the mass conservation equation (4.1)2 with the q ∈ Q̄ test function.

The variational form reads: find u ∈ S̄ × [0, T ] and p ∈ Q̄× [0, T ] such that∫
Ωt

w ·
(
ρ
∂u

∂t

∣∣∣∣
X

+∇xp− µ̃ M u− ρb
)
dΩt = 0 ∀w ∈ S̄0∫

Ωt

q(∇x · u) = 0 ∀q ∈ Q
(4.6)

Applying the Green formula, the following equations are obtained:∫
Ωt

w · ρ∂u

∂t

∣∣∣∣
X

dΩt −
∫

Ωt

p(∇x ·w)dΩt −
∫

ΓN
t

w · hdΓt

+

∫
Ωt

µ̃∇xw · ∇xudΩt −
∫

Ωt

w · ρbdΩt = 0 ∀w ∈ S̄0∫
Ωt

q(∇x · u) = 0 ∀q ∈ Q

(4.7)
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Similarly, to introduce the variational form of the Lagrangian version of the

Navier-Stokes equations, the following space have to be considered:

S = {U ∈ H1(Ω0)|U = U0} su ΓD0 (4.8)

S0 = {W ∈ H1(Ω0)|W = 0} su ΓD0 (4.9)

Q = {p, q ∈ L2(Ω0)} (4.10)

The integral form of the momentum equation can be obtained with a scalar

product of the terms in equation (3.36) with the test function W ∈ S0 while in

the mass conservation equation (3.31) with the test function q ∈ Q. Hence the

equations are integrated in the domain Ω0, and the Green formula is applied:∫
Ω0

ρ0
∂U

∂t

∣∣∣∣
X

·WdΩ0 = −
∫

Ω0

µJ(∇XU) F−1F−T : ∇XWdΩ0

+

∫
Ω0

JpF−T : ∇XWdΩ0 +

∫
Ω0

ρ0b ·WdΩ0 +

∫
ΓN
0

W ·HdΓN0 ∀W ∈ S0

(4.11)∫
Ω0

∇X · (JF−1U)qdΩ0 = 0 ∀q ∈ Q (4.12)

To simplify the mathematical description, homogeneous boundary conditions are

considered H(X, t) = 0, Ū(X, t) = 0 on ΓN0 and ΓD0 respectively. The discrete

problem relate to equations (4.11)-(4.12) is obtained searching for the solution in

the sub spaces Sh ⊂ S, Sh,0 ⊂ S0 and Qh ⊂ Q, which are discrete approximations
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of the spaces in which they are included:

Wi(X, t) =

Nnode∑
a=1

Na(X)Θai(t) (4.13)

Ui(X, t) =

Nnode∑
a=1

Na(X)Vai(t) (4.14)

[∇XU(X, t)]ij =

Nnode∑
a=1

Vai(t)∇Xj
(Na(X)) (4.15)

p(X, t) =

Nnode∑
a=1

Na(X)Pa(t) (4.16)

q(X, t) =

Nnode∑
a=1

Na(X)Qa(t) (4.17)

where i, j = 1, 2, 3, a runs over all the nodes, Vai(t) and Pa are the nodal values

of the velocity and pressure, respectively, and Θai and Qa have unit value. The

resulting semi-discretized system is therefore

M(x)
DV

Dt
+ K(x)V + DT (x)P = B (4.18)

D(x)V = 0 (4.19)

where V is the nodal velocity vector and P the nodal pressure vector.

The matrices M and K, represent the mass and viscosity matrix of the fluid

and D is the matrix of the discretized divergence operator. Finally B is the

nodal equivalent external forces vector. These matrices can be viewed as the

combination of 3× 3 nodal matrices, defined as follows

Mab =

∫
Ω0

ρ0NaNbIdΩ0 (4.20)

Dab =

∫
Ω0

JNa(∇XNb)F−1dΩ0 (4.21)

Kab =

∫
Ω0

µJ((∇XNa)F−1)⊗ ((∇XNb)F−1)dΩ0 (4.22)

Ba =

∫
Ω0

ρ0bNadΩ0 (4.23)
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where indeces a and b run over the mesh nodes.

In general, the spaces Sh and Qh cannot be chosen independently, because

the pair (Sh, Qh) is required to satisfy the discrete LBB inf-sup condition (Brezzi

and Fortin, 1991):

inf
q∈Qh

sup
u∈Sh

∫
Ωt
q∇x · udΩt

||u||Sh
||q||Qh

≥ δ > 0 (4.24)

There are different pairs of approximation spaces that satisfy the condition

(4.24), for example the Taylor Hood elements P2 /P1, where P2 denotes the

set of polynomials of degree less than or equal to 2 while P1 denotes the set

of polynomials of degree less than or equal to 1. In the present work, an equal

order interpolation P1/P1 has been used for practical reasons, in fact the solution

strategy, which will be described in the second part of this chapter, requires a

continuous retriangulation and hence the necessity to store all the information

in the nodes. For this reason, linear shape functions have to be used for both

velocity and pressure. This implies that the stability condition cannot be satisfied

and a stabilization technique must be introduced (see section 4.4).

4.2 Time discretization

To solve the incompressible Navier-Stokes system, a time discretization is still

necessary. A θ method is here applied to discretize the time interval [0, T ], which

is considered partitioned into N time steps of same length ∆t. For a generic

function f , fn denotes the approximation of f(tn) , tn = n ·∆t and θ ∈ [0, 1]:

fn+θ = θfn+1 + (1− θ)fn (4.25)

The backward-Euler integration scheme is here adopted (θ = 1). Hence, in the

time interval tn → tn+1, the acceleration and the current position are expressed

as follow:
DV

Dt
=

Vn+1 −Vn

∆t

xn+1 = xn + Vn+1∆t

(4.26)
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Choosing as a reference the configuration at time tn the completely discretized

system results:

1

∆t
M(xn+1)(Vn+1 −Vn) + K(xn+1)Vn+1 + DT (xn+1)Pn+1 = Bn+1 (4.27)

D(xn+1)Vn+1 = 0 (4.28)

The obtained system can then be expressed as:

AYn+1 = Fn+1 (4.29)

where

A =

[
C DT

D 0

]
(4.30)

Yn+1 =

[
Vn+1

Pn+1

]
(4.31)

Fn+1 =

[
Bn+1 + 1

∆tMVn

0

]
(4.32)

C =
1

∆t
M + K (4.33)

It should be noted that the matrices in (4.27) and (4.28) are configurational, i.e.

their entries are not constant, but depend on the current configuration. As a

consequence, the system (4.27)-(4.28) is nonlinear. In this work, this system of

equations has been solved using two different approaches, a monolithic scheme or

a fractional step scheme. The monolithic approach consists of the direct solution

of the linear system (4.29), while the Fractional Step Method is described in what

follows.

4.3 Fractional step schemes

The fractional step method (Codina, 2001), is here applied to equations (4.27)

and (4.28) to uncouple the pressure and velocity fields, solving a more stable

problem of reduced size, introducing an approximation. The three steps of the
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algebraic version of the Chorin-Teman projecton method (Chorin, 1967; Temam,

1968) can be summarized as follow:

1

∆t
M[Ṽn+1 −Vn] + K(xn+1)Vn+1 + γDTPn = Bn+1 (4.34)

1

∆t
M[Vn+1 − Ṽn+1] + DT (Pn+1 − γPn) = 0 (4.35)

DVn+1 = 0 (4.36)

where Ṽn+1 is an auxiliary intermediate velocity, and γ is a scalar parameter.

The system of equations (4.34)-(4.35)-(4.36) defines the fractional step method

with algebraic decomposition; with γ = 0 the first order scheme is obtained, while

γ = 1 gives the second order one. Substituting Ṽ from eq. (4.35) into eq. (4.34)

the original system of equations is recovered.

An approximation is now introduced in the Fractional Step Method to allow

to compute the intermediate velocity in the first step:

K(xn+1)Vn+1 ≈ K(x̃n+1)Ṽn+1 (4.37)

Vn+1 is expressed as a function of Ṽn+1 through eq.(4.35) and then it is sub-

stituted in equation (4.36). The fractional step method is finally formulated in

terms of the following system of equations:

1

∆t
M[Ṽn+1 −Vn] + KṼn+1 = Bn+1 (4.38)

∆tDM−1DTPn+1 = DṼn+1 (4.39)

1

∆t
M[Vn+1 − Ṽn+1] + DTPn+1 = 0 (4.40)

In the first equation the intermediate velocity is estimated, while at the second

and third equations pressures and velocities unknowns are computed, respectively.

The scheme allows to uncouple the variables Pn+1 and Vn+1, introducing the

intermediate velocity Ṽn+1 and the approximation given by (4.37).

Other fractional-step methods can be based on the Helmholtz decomposition.

Between the algebraic decompositions (see e.g. Guermond et al., 2006 for a re-

view), the same result of the Chorin-Teman projecton method of the first order
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can be achieved with an incomplete factorization block LU (Perot, 1993; Quar-

teroni et al., 2000). The advantage of the Fractional step Method is certainly

the reduced computational cost in the solution of the linear system. A further

advantage of the approach is merely numeric. In fact, in the monolithic scheme

a single linear system in the unknowns of velocity and pressure is solved, at each

iteration. Because of the different nature of the unknowns, the coefficients of

the matrix A (equation 4.30) have values that may differ by several orders of

magnitude leading to a ill-conditioned matrix.

4.4 Stabilization of the solution

An important advantage of the Lagrangian approach, compared to the Eu-

lerian one, is the absence of convective term, which is a source of numerical

instability. On the other hand, the problem of excessive distortion of the ele-

ments, due to large deformations undergone by the moving fluid, is solved by a

continuous redefinition of the finite element connectivities. However, this pro-

cedure makes it necessary to condense all the information on the current state

of the model in the nodes, and consequently to use linear shape functions. The

choice of equal shape functions for both pressure and velocity does not respect the

so-called (Ladyzhenskaya-Babuska-Brezzi) LBB inf-sup compatibility condition

(4.24) (Brezzi and Fortin, 1991). This causes spurious oscillations in the pres-

sures field and, therefore, the necessity to add stabilization terms in the weak

form of the balance equations.

Various stabilization schemes exist for the monolithic approach. For exam-

ple, in the Eulerian formulation a pressure-stabilizing Petrov-Galerkin method

has been proposed by Tezduyar et al., 1992, for finite Reynold numbers, that has

been derived from the well known streamline-upwind/Petrov-Galerkin (SUPG)

method (Brooks and Hughes, 1982; Balestra et al., 1986). In the Lagrangian

approach followed in this work, the stabilization of the convective term is not

required. For this reason, the pressure-stabilizing/Petrov-Galerkin (PSPG) sta-
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bilization technique (Tezduyar et al., 1992) has been chosen. A modification for

the Lagrangian approach can be found in (Cremonesi et al., 2010) and it is here

adopted.

In equation (4.12) the additional stabilization term is added, which consists of

the integral of the product of a stabilization parameter and of the residual of the

momentum conservation equation. As already mentioned, in the Lagrangian for-

mulation the convective term disappears and the stabilization of equation (4.11)

is not necessary. The weak form of the mass conservation equation with the

PSPG stabilization writes:∫
Ω0

q∇X · (JF−1U)dΩ0 +

Nel∑
e=1

∫
Ωe

0

τepspg
1

ρ0
∇Xq ·

(
ρ0
∂U

∂t

∣∣∣∣
X

+
1

J
∇X · (JpF−T )

− 1

J
µ∇X · (J∇XUF−1F−T )− ρ0b

)
dΩ0 = 0 ∀q ∈ Q

(4.41)

where the stabilization parameter is defined as:

τepspg =
ze

2||u||
(4.42)

and ze is the diameter of the circle with area equivalent to element e. It is

possible to introduce a dimensionless parameter α, to improve the stabilization

effect:

τepspg = α
ze

2||u||
(4.43)

Introducing the finite element space discretization, equations (4.11) and (4.41),

take the following semi-discretized form:

M(x)
DV

Dt
+ K(x)V + DT (x)P = B (4.44)

C(x)
DV

Dt
+ D(x)V + Lτ (x)P = Q(x) (4.45)

where the matrices C , Lτ , H are defined as:

Cab =

Nel∑
e=1

∫
Ωe

0

τepspg(∇XNa)NbdΩ0 (4.46)
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Lτab
=

Nel∑
e=1

∫
Ωe

0

τepspg
ρ0

(∇XNa) · (∇XNb)F−1dΩ0 (4.47)

Qa =

Nel∑
e=1

∫
Ωe

0

τepspg
ρ0

(∇XNa) · bdΩ0 (4.48)

The second order term ∇X · (J∇XUF−1F−T ) in equation (4.41) vanishes for

linear (triangular and tetrahedral) elements. The time integrated form of the

monolithic system (4.27) and (4.41) can be obtained following the same steps

done for write the equation (4.29).

In the Fractional Step Method, introducing the Laplace operator L in the

equation (4.39), (Codina, 2001) gives a stabilization effect. Indeed the matrix

product DM−1DT represents an approximation of the Laplace operator.

DM−1DT ≈ L (4.49)

The system of equations, with the Laplace term, is already stabilized.

1

∆t
M[Ṽn+1 −Vn] + KṼn+1 = Bn+1 (4.50)

∆tLPn+1 = DṼn+1 (4.51)

1

∆t
M[Vn+1 − Ṽn+1] + DTPn+1 = 0 (4.52)

In the previous equations, the pressure field results stabilized, without impos-

ing any further approximation to velocity or pressure. The system of equations

(4.50)-(4.52) can be written in a monolithic scheme substituting the term Vn

with

Vn = Ṽn −∆tM−1DTPn (4.53)

equations (4.50)-(4.52) then leads to

1

∆t
M[Ṽn+1 − Ṽn] + KṼn+1 + DTPn = Bn+1 (4.54)
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DṼn+1 −∆tLPn+1 = 0 (4.55)

This formulation can be view as a stabilized scheme, where the effect of the

product between the Laplace operator and the pressure is comparable to the

Galerkin/Least-Squares method (Balestra et al., 1986). A different approach has

been proposed by Zienkiewicz and Codina, 1995 where the idea was to rewrite the

problem in terms of Ṽn+1 = Vn+1 + ∆tM−1DTPn+1. Equations (4.50)-(4.52),

can hence be written as follows:

1

∆t
M[Vn+1 −Vn] + KVn+1 + E(Vn+1) + DTPn+1 = Bn+1 (4.56)

DVn+1 −∆t(DM−1DT − L)Pn+1 = 0 (4.57)

where E(Vn+1) can be thought of as the splitting error, which results to be of

order O(∆t) (Codina, 2001). The stabilization effects, in this case, is due to the

term ∆tQPn+1, where Q := DM−1DT − L. In (Zienkiewicz et al., 1998) it is

demonstrated that this matrix is semi positive definite.

The introduction of the Laplacian pressure matrix, in the case of free surface

problems, requires the imposition of a Dirichlet condition for the pressure at the

free surface. So that, in some situations, it can happen that all the nodes of an

element belong to the free surface (see for example the element e in figure 4.1).

In this case, in all the nodes of the element the pressure is enforced to be zero

from the boundary condition and in the third step of the fractional step method

(4.52), velocity in not enforced by the pressure to respect the incompressibility

constraint. Consequently, mass conservation is not respected leading to possible

mass loss. Possible solutions to this problem can be found in Aubry et al., 2006.

In this work, both the stabilized monolithic and fractional step method have

been used. In particular, the laboratory tests and the large scale simulations of

chapter 6 and 7 have been solved using a fractional step approach.
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e

Figure 4.1: Example of element with three nodes on the free surface

4.5 Iterative resolution method

The discritized equations (4.44) and (4.45) in the monolithic approach, and

(4.50)-(4.51)-(4.52) in the fractional step approach, are non linear for the presence

of the deformation gradient F, hence, have to be solved iteratively at each time

step. Following Idelsohn et al. 2006, the Picard method is used here, instead of

a full Newton-Raphson scheme (Radovitzky and Ortiz, 1998).

Given the problem:

A(x)x = b(x)

at each iteration the following system has to be solved:

A(xn+1
k−1) · xn+1

k = b(xn+1
k−1) (4.58)

The matrix in the equations (4.41) and (4.18), in the monolithic case, or in the

equations (4.38), (4.51) and (4.40) in the Fractional Step Method, at iteration

k, are evaluated on the configuration of iteration k − 1. These means that the

reference configuration is choose as Ω0 = Ωt(t = tnk ). In this case the deformation

gradient F coincides with the identity matrix and J = 1, but a re-triangulation

has in principle to be performed at every nonlinear iteration (Idelsohn et al.,

2004, 2003). The Picard algorithm is preferred to the Newton-Raphson one in

order to have less extra storage (Aubry et al., 2005). Iterations are repeated until
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the correct geometry at the time step tn+1 is found; in particular the following

convergence criterion has been used:

||Un+1
k −Un+1

k−1 ||
||Un+1

k−1 ||
≤ ε (4.59)

ε being a small number, in this work ε = 10−2.

4.6 Descriprion of the numerical method

The numerical method, used in this work, is called Particle Finite Element

Method (PFEM), as, in view of the Lagrangian formulation of the problem, the

mesh nodes can be interpreted as material particles. The PFEM is a Lagrangian

method used to solve efficiently fluid dynamics problems including free-surface

flow and breaking waves, but also fluid-structure interactions or fluid-object inter-

actions (Becker et al., 2015; Idelsohn et al., 2006). This method has been applied

to different engineering problems and also validated against several experiments

(see Idelsohn and Oñate, 2006; Onate et al., 2004; Idelsohn et al., 2006; Larese

et al., 2008). It is important to note that there is not a priori specified solution

domain, but it must be found from the position of the set of particles: once the

domain is identified, it is possible to solve the integral form of the governing dif-

ferential equations. Indeed, the method is based on a continuous re-meshing of

the moving domain, driven by the alpha-shape method and achieved by means

of Delaunay triangulation.

4.6.1 The Delaunay Triangulation

An efficient technique to generate a mesh starting from a set of points is the

so called Delaunay triangulation, which defines univocally the convex hull that

contains the whole set of points. Let us consider a set of N nodes Pi; at each

node let us associate a region Vi, as the locus of points Xi such that:

d(Xi, Pi) < d(Xi, Pj) ∀i 6= j (4.60)
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where d(x,xi) = ‖x − xi‖ is the Eucledian distance. Each region Vi is called

Figure 4.2: Voronoi cells (dashed line) and Delaunay triangulation (solid line).

Voronoi Cell and it is closed and convex if it is internal, whilst open if it is at the

boundary. Moreover, the union of all the sides of Voronoi Cells is called Voronoi

Diagram. It is worth noting that each side of a Voronoi Cell belongs to two

regions Ti and Tj , consequently it is the locus of points equidistant to Pi and Pj .

In other words, it lays on the axis of the segment PiPj . Furthermore, each vertex

of the Voronoi Diagram belongs to three region Vi, Vj , Vk and for this region it is

equidistant to the three points Pi, Pj , Pk; in other words, it is the center of the

circumference (Voronoi Sphere) passing through the three points.

The Delaunay triangulation is the dual of the Voronoi Diagram; it can be

constructed joining the points Pi, Pj , Pk whose Voronoi Cells have a common

boundary. The duality between Delaunay triangulation and Voronoi Diagram,

depicted in figure 4.2 can be summarized as follows:

• point of Delaunay triangulation ←→ Voronoi region;

• Side of Delaunay triangulation ←→ side of Voronoi region;

• Delaunay triangle ←→ Voronoi vertex.
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The main features of Delaunay triangulation in 2D are listed below:

1. the circle circumscribed to any triangle, does not contain any other node

of the triangulation;

2. given a set of nodes in a plane (R2), Delaunay triangulation is unique unless

four or more points lay on the same circumference;

3. Delaunay triangulation maximizes the minimum angle of any triangles of

the mesh, i.e. it creates a regular mesh, that is obviously fundamental in

FE context;

4. the set given by the union of the generated triangles is the convex hull of

the points, in other words it is the convex figure of minimum area that

encloses all the points of the set.

In the 3D case, the Voronoi regions are polyhedra and the Delaunay triangles are

tetrahedra. In this cases the main features become:

1. the circumsphere of every tetrahedra does not contain any other node of

the triangulation;

2. given a set of nodes in a space (R3), Delaunay triangulation is unique unless

five or more points lay on the same sphere;

3. Delaunay triangulation minimizes the maximum radius of a tetrahedra en-

closing sphere (the enclosing sphere is the smallest sphere containing a

tetrahedra).

4.6.2 Alpha-shape method

In the Lagrangian formulation, the reference volume Ω and its boundary ∂Ω

are defined from the position of the set of nodes (or particles). The Delaunay

triangulation determines the minimum convex domain of the set of points but in

most cases, in the presence of complex geometry, e. g. with re-entrant corners,
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the generated domain does not correspond to the real domain of the problem.

An algorithm which eliminates all the exceeding elements is indeed necessary. In

figure 4.3(a) a set of points is shown, while in figure 4.3(b) the Delaunay triangu-

lation using tetrahedral elements is performed. The alpha-shape method is used

(a) (b) (c)

Figure 4.3: Boundary identification by means of alpha shape method: sphere and
horizontal plane.

to eliminate the distorted elements in figure 4.3(c). The idea is to compute a

distortion parameter for each elements of the meshed convex domain and elim-

inate all the elements which do not respect the geometric condition. Here the

alpha-shape method (Edelsbrunner and Mücke, 1994) is based on the smallest

element he and on the radius of the circumsphere Re of each element. Computed

the average smallest edge of all the elements, h, the distortion factor is defined

as:

αe =
Re
h

(4.61)

For a fixed value of α, all the elements with αe > α (α greater then 1) are

eliminated. Figure 4.3(c) shows the real domain after the application of the α-

shape correction, which allows the identification of the boundary. Figure 4.4 is

another example of application of the described procedure.

This method is also used to identify particles separating from the rest of the

domain. When a node belongs only to a distorted tetrahedron or tetrahedra (or

triangle in 2D), the element is removed and the particle is separated from the

rest of the domain (see figure 4.5(a)). The motion of the isolated particle is then

governed exclusively by gravity acceleration and initial velocity. Similarly, the
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method allows to add an isolated particle to the fluid domain when it approaches

the free surface edge and the new generated tetrahedron (or triangle in 2D)

verifies the condition αe < α (see figure 4.5(b)).

(a) (b) (c)

Figure 4.4: (a) Set of points, (b) Delaunay triangulation, (c) real domain

Figure 4.5: Separation of a particle (element node) from the bulk (a). Incorpo-
ration of a particle when it approaches the bulk (b).
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4.6.3 Remeshing strategy

Ideally, in the solution scheme, the triangulation should be performed at every

time step. However, to reduce the computing time, the mesh can be regenereted

only when it is too distorted in the average. To this purpose, an index of mesh

distortion is necessary. Starting from the shape factor αe, defined in equation

(4.61), a simple measure of the mesh quality can be obtained defining for each

element a distortion factor βe

βe =
√

3αe ≥ 1 in 2D; βe =
4√
6
αe ≥ 1 in 3D (4.62)

where in 2D the equilateral triangle (αe = 1/
√

3) and in 3D the regular tetra-

hedron (αe = 4√
6
) have been considered as the best possible element. Then the

quality of the entire mesh is evaluated by an arithmetic mean over all the Nel

elements:

β =
1

Nel

Nel∑
e=1

βe (4.63)

The mesh is regenerated only if β > β̄, where β̄ > 1 is a fixed parameter.

4.6.4 Adding and removing particles

In the Lagrangian approach, the particles move as a consequence of the ma-

terial flow. So it may happen that some particles concentrate in a region of the

domain and, on the contrary, in another region the number of particles becomes

too low to obtain an accurate solution. To overcome these difficulties in the pro-

posed implementation, the possibility to removing and adding particles has been

introduced. In figure 4.6 the highlighted node is removed because the distance

from the closest node is too small. Similarly, in figure 4.7, the highlighted node is

removed because the node is too close to the boundary. Figure 4.8 shows on the

other hand the adding procedure. A node is added into a large element 4.8(a)

which is eliminated and three new triangles are formed 4.8(b). In figure 4.8(c) a

new Delaunay triangulation is performed. The information on removed particles
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is eliminated and new values of pressure and velocity are stored into the added

particle through a linear interpolation of the closest nodes. The removed parti-

cles compensate the newly added ones, so that the number of the mesh nodes is

constant during the entire simulation.

(a) (b)

Figure 4.6: Example of particle removal

(a) (b)

Figure 4.7: Example of particle removal near the boundary

4.6.5 Summary of the principal steps

The code developed in (Cremonesi et al., 2010) to solve problems with two-

dimensional incompressible Newtonian and non-Netonian fluid-like materials is

here extended to three-dimensional problems.

The operational steps of the method are:
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(a) (b) (c)

Figure 4.8: Example of particle addition

1. Definition of the material domain as a set of points or particles. The ac-

curacy of the solution depends, obviously, on the considered number of

particles (or nodes).

2. Generation of the finite element mesh, triangles for 2D and tetrahedra for

3D (through Delaunay triangulation).

3. Internal and external boundary identification by means of the alpha-shape

method.

4. Iterative solution of the nonlinear system of equations in terms of velocity

and pressure fields.

5. Definition of the new configuration using values of pressure and velocity

obtained in the previous step.

6. Check elements distortion. If the elements are too distorted, then return

to step 2.

7. Incrementation of time. Go to step 4 and repeat for the next time step.

From the computational point of view, the largest amount of time is spent for the

numerical resolution of the nonlinear system of equations, but also the generation

of the mesh and the identification of the boundary can be highly time consuming

if the number of nodes is large. In figure 4.9 a flowchart of the solution scheme

is presented.
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Figure 4.9: Flowchart of the colution scheme
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4.6.6 Structure of the computational code

The general structure of the numerical code is summarized in Table 4.1. The

routine main is used to call the subroutine fluid sol, which reads the input (node

coordinates, boundary conditions, numerical and computational parameters) The

subroutine fluid sol calls the subroutine fluid solution dt which is the core of

the code, with the computational algorithm in the interval ∆t.

The subroutine tessellation is used to perform the Delaunay triangulation

if the distortion check has been activated. The Delaunay triangulation is carried

out using the public domain tool Tetgen (Si, 2006). The generation of the convex

hull domain, the α-method and the boundary identification are also performed

in the subroutine tessellation. In the subroutine matrix, the system matrices

are computed and assembled and the boundary conditions are applied for both

velocities (no-slip boundaries) and pressures (free-surface boundaries). The ma-

trices are stored using the Compressed Sparse Row method. The linear system is

then solved in the solver routine with a monolithic or fractional step approach.

In both cases, the PARDISO solver (Schenk et al., 2005, 2007; Kuzmin et al.,

2013) is used to solve the linear system of equations. The motion of the par-

ticles that may have separated from the domain is computed in the subroutine

alone particle. The position of the mesh nodes is updated using the velocity

of each node in displacement update and the stress tensor of each element is

computed in fluid stress. The subroutine add remove performs the addition

and removal of particles (see section 4.6.4).
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• main

• fluid sol

– read input

– fluid solution dt

a tessellation

b matrix

c solver

d alone particle

e displacement update

f fluid stress

– output

– add remove

Table 4.1: Graphic scheme of the implemented code





5
A Lagrangian method with slip boundary

conditions on Eulerian nodes

In this chapter the slip boundary conditions for granular materials are pre-

sented and discussed, and a special mixed Eulerian-Lagrangian formulation is

introduced for the elements on the basal interface to accommodate the new slip

conditions into the numerical method.

5.1 Slip boundary conditions

No-slip boundary conditions are usually assumed in the solution of Navier-

Stokes equations for fluid dynamics problems. However, wall slip is known to

occur in many industrial processes, such as in polymer extrusion (Denn, 2001),

..., and the definition of appropriate slip boundary condition is still the object of

discussion (Schowalter, 1988).

In the case of granular flows, the slip velocity between the flowing mass and

69
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the basal surface has been observed to increase with the average grain diameter in

Schaefer et al., 2010, where the velocity profiles in granular landslides have been

experimentally studied. As a consequence of the frictional relative slip, a new

basal dissipation mechanism need to be characterized in addition to the viscous

dissipation inside the material bulk. This is usually done introducing a basal

friction coefficient, which however is not easy to identify for real landslides. A

recent and comprehensive study (Lucas et al., 2014) has shown that the effective

friction coefficient is not a constant property of the interface, but decreases with

the slip velocity and with the total mass of the moving landslide. This frictional

weakening can possibly be produced by micro-mechanical processes such as flash-

heating, whereby frictional heating is produced at the micro-contact scale. For

high slip velocities, heat dissipation is prevented and thermal weakening effects

like melting or other phase transformations and phenomena, are activated (Habib,

1976; Voight and Faust, 1982; Vardoulakis, 2002; Cecinato et al., 2011).

The consideration of slip boundary conditions together with Navier-Stokes

equation is not standard. The classical no-slip boundary condition in fluid dy-

namics is microscopically acceptable in most cases and it is based on physical and

mathematical considerations at the microscale (Richardson, 1973), but it is not

physically acceptable in several types of liquid flow at solid surface (Thompson

and Troian, 1997) and, as already mentioned, for increasing diameter granular

flows (Schaefer et al., 2010). The simplest, classical alternative to the no-slip

boundary conditions are the so-called Navier boundary conditions, that estab-

lish a linear dependence, through a material friction-like parameter, of the basal

tangential stress on the slip velocity. In practice, one can imagine a variety of

different conditions, passing from maximum tangential stress and no-slip, to zero

tangential stress and free slip in tangential direction.

A convenient geometrical parameter to describe this variety of condition is

the slip length (Thompson and Robbins, 1990). The meaning of the slip length

is shown in figure 5.1, where a Couette flow between two rigid walls at a distance

h is shown. The upper wall is moving with assigned horizontal velocity U , while
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Figure 5.1: Example of slip boundary condition for a Couette flow. The top plate
(light gray) moves with a prescribed velocity, while the bottom one (dark gray)
has a slip boundary condition imposed. Pictures represent the velocity profiles.

the lower wall is fixed. The case of perfect no-slip condition is shown in figure

5.1a. In figure 5.1b, a certain amount of slip is present, with a non-zero fluid

tangential velocity uslip at the lower plate interface (y = 0). The slip length

hslip is defined as the distance from the lower plate to the point at zero velocity

obtained extrapolating the velocity profile. Figure figure 5.1c shows the limit

case of free slip, where an infinite slip length is obtained. Negative slip lengths

can also occur in some cases (Thompson and Robbins, 1990) when the lower fluid

layers are locked to the plate and the no-slip condition extends to some layers

inside the fluid channel. The slip length can be considered to be a property of

the fluid-wall interface.

In practical cases, the slip often occurs only when a critical value of the tangen-

tial stress is reached, in analogy with the classical Bingham model. In this cases

the Navier boundary condition can be modified by adding a constant threshold

to the linear function of the slip velocity. However, from the mathematical point

of view, this implies a significant complication since the weak form of the balance

equations has to be formulated as a variational inequality (Fortin et al., 1991).

To avoid this difficulties, a regularization similar to the one usually adopted for

the Bingham flows (Papanastasiou, 1987; Pitman et al., 2003) is here adopted.

Defining by n the unit normal to the basal interface and u the velocity at
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a point, the imposition of the slip boundary condition requires that also the

no-flux condition u · n = 0 is enforced. These conditions are known to lead to

the so called Babuska’s paradox (Verfürth, 1987), with non-convergent approx-

imations in the presence of curved boundaries, where polygonal finite element

discretizations are used. A difficulty connected with the type of boundary condi-

tions, especially in combination with the incompressibility constraint, is the non

unique definition of the normal vector a boundary nodes with piecewise linear

discretization, see Engelman et al., 1982, for a technique for the computation

of a unique normal, based on mass conservation and see also Behr, 2004 for a

discussion. Other difficulty is the particular way in which the evolving boundary

conditions are treated in the PFEM with continuous remeshing. To alleviate

these problems, in this work the no-flux condition is enforced through a penaliza-

tion technique, following Dione et al., 2013; Dione and Urquiza, 2015, together

with a reduced integration of the penalty integral term.

5.2 ALE framework

The classical Lagrangian and Eulerian descriptions of motion have been de-

scribed in chapter 3. The Arbitrary Lagrangian-Eulerian description (ALE) has

been developed in order to combine the best features of both the Lagrangian and

the Eulerian approaches. In the ALE description of motion, the reference coor-

dinates Υ not necessary coincides with the material X or spatial coordinates x.

In the reference configuration RΥ the reference coordinates Υ, are introduced to

identify the grid points. In fact, the mapping κ from the reference domain to the

spatial domain can be understood as the motion of the grid points in the spatial

domain (Donea and Huerta, 2003). With this considerations the mesh velocity

is defined as

r(Υ, t) =
∂x

∂t

∣∣∣
Υ

(5.1)

In figure 5.2 the transformation χ(X, t) can be seen has a composition of the
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χ

κ
κo

Ω0

Ωt

RΥ

O

o

OΥ

Υ

X x

Figure 5.2: The body B depicted in the configurations Ω0 and Ωt. RΥ represent
the referential configuration in the ALE description. The motion of the ALE
computational mesh is independent from the material motion

two transformations κ(X, t) and κ−1
0 (X, t) as follow

x = χ(X, t) = κ[κ−1
0 (X, t)] (5.2)

Differentiating the previous relation it is possible to find a relation between the

mesh and the particle velocity (Donea and Huerta, 2003)

u = r +
∂x

∂Υ
· ∂Υ

∂t

∣∣∣
X

(5.3)

The equation may be rewritten as

c = u− r =
∂x

∂Υ
· ∂Υ

∂t

∣∣∣
X

(5.4)

where c is the convective velocity which represents the relative velocity between

the material and the mesh. Consider now two special cases in the ALE formula-

tion, the first one when κ = χ and κ0 = I and the second one when κ = I and

κ0 = χ−1. In the first case Υ = X and the Lagrangian framework is recovered

while in the second one Υ = x, which corresponds to the Eulerian framework. In
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equation (5.4) if Υ = X the term ∂Υ
∂t |X = 0 and so the convective velocity is zero.

Otherwise if Υ = x, the convective velocity c is equal to the particle velocity u,

in fact the term ∂x
∂Υ = 1.

The Navier-Stokes equations in the ALE formulation is written as

ρ

(
∂u

∂t

∣∣∣
Υ

+ (c · ∇x)u

)
= ∇x · σ + ρb in Ωt × (0, T ) (5.5)

∇x · u = 0 in Ωt × (0, T ) (5.6)

In this work, the equations (5.5)-(5.6) are solved in a Lagrangian framework in

all the domain except on the part of boundary where slip conditions are imposed.

Equations (5.5),(5.6) need be supplemented with proper initial and boundary

conditions.

5.3 Navier type boundary conditions

The boundary ∂Ωt is now partitioned into three non-overlapping subsets

∂Ωt = ΓDt ∪ΓNt ∪ΓSt . On ΓDt and ΓNt standard Dirichlet and Neumann boundary

conditions are imposed

u(x, t) = ū(x, t) on ΓDt

σ(x, t) · n = h(x, t) on ΓNt

(5.7)

where ū(x, t) and h(x, t) are assigned functions and n is the outward normal to

the boundary, while on ΓSt slip boundary conditions are considered.

Let uslip be the relative velocity between the moving soil and the basal surface

ΓSt and t the tangential traction acting on the landslide material along the same

surface (Figure 5.3):

uslip = (I− n⊗ n) u, t = (I− n⊗ n) [(σD − pI) n] (5.8)

Navier type boundary conditions are assumed along ΓSt :

uslip = −βt (5.9)
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Figure 5.3: Slip velocity profile and basal tangential traction.

where

β = hslip/µ̃basal (5.10)

is a parameter, having the dimension of a length over a viscosity, characterizing

the basal interface, hslip is the slip length for an ideal Couette flow and µ̃basal is

the apparent viscosity at the interface defined as:

µ̃basal =
2

3

[
µ+

p tanϕbasal
γ̇

(
1− e−Nγ̇

)]
(5.11)

Indeed the interface is characterized by two parameters, hslip (or β) and ϕbasal.

With these definitions, the complete set of boundary conditions consists of

(5.7) on ΓDt and ΓNt , supplemented by the conditions on ΓSt , that include the

no-flux condition through the basal interface:

t = − 1
βuslip

u · n = 0

}
on ΓSt (5.12)
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5.4 Navier type boundary conditions with pres-
sure dependent velocity

Considering now a pressure dependent threshold, the Navier type boundary

conditions along ΓSt become:

uslip = −β t

‖t‖
〈‖t‖ − p tanϕbasal〉 (5.13)

where β is a parameter defined in equation (5.10). Condition (5.13) states that

the slip is resisted by a tangential force proportional to the slip velocity. For

β = 0, the no-slip boundary condition is recovered, while β →∞ represents the

stress free boundary condition. According to (5.13), slippage occurs only when

the pressure dependent threshold value p tanϕbasal is exceeded by the tangential

traction t.

From (5.13) one has

β〈‖t‖ − p tanϕbasal〉 = ‖uslip‖ (5.14)

and solving for ‖t‖

‖t‖ =
1

β
‖uslip‖+ p tanϕbasal for ‖t‖ − p tanϕbasal > 0 (5.15)

Replacing the expression (5.14) in (5.13) and solving for t one has

t = − ‖t‖
‖uslip‖

uslip for ‖t‖ − p tanϕbasal > 0 (5.16)

Finally, replacing the expression (5.15) of ‖t‖ one obtains (see e.g. Fortin et al.

(1991))

t = −
(

1

β
+
p tanϕbasal
‖uslip‖

)
uslip for ‖t‖ − p tanϕbasal > 0 (5.17)

The expression in (5.17) is formally similar to the expression in (3.68) and it can

be regularized using the same technique:

t = − 1

β̃
uslip,

1

β̃
=

1

β
+
p tanϕbasal
‖uslip‖

(
1− e−N‖uslip‖

)
(5.18)
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The simple expression in (5.18)1, which is equivalent to adopting a non-linear

Navier type boundary condition with stress dependent slip length, has been used

to model the relation between the slip velocity and the tangential traction acting

along the basal interface.

With these definitions, the complete set of boundary conditions consists of

(5.7) on ΓDt and ΓNt , supplemented by the conditions on ΓSt , that include the

no-flux condition through the basal interface:

t = − 1
β̃
uslip

u · n = 0

}
on ΓSt (5.19)

5.5 Variational form of the balance equations

Without loss of generality, in the following h(x, t) = 0 and ū(x, t) = 0 will be

assumed on ΓNt and ΓDt , respectively. The weak form of the balance equations

(5.5)-(5.6), with the boundary conditions (5.7) and (5.19) is obtained following a

standard Galerkin approach:∫
Ωt

ρ

[
∂u

∂t

∣∣∣
Υ

+ (c · ∇x)u

]
·w dΩt −

∫
Ωt

(∇x · σ+ ρb) ·w dΩt +

∫
ΓN

(σn) ·wdΓ+

+

∫
ΓS

(
t +

1

β̃
uslip

)
·wdΓ = 0∫

Ωt

(∇x · u) q dΩt = 0

(5.20)

where w and q are respectively vector and scalar test functions, with w = 0 on

ΓD, w · n = 0 on ΓS , q = 0 on ΓN . Integrating by parts the second integral in

(5.20)1, the usual variational form is recovered∫
Ωt

ρ

[
∂u

∂t

∣∣∣
Υ

+ (c · ∇x)u

]
·w dΩt +

∫
Ωt

σD : ∇xw dΩt −
∫

Ωt

p(∇x ·w) dΩt−∫
Ωt

ρb · v dΩt +

∫
ΓS

(
−σn + t +

1

β̃
uslip

)
·wdΓ = 0∫

Ωt

(∇x · u) q dΩt = 0

(5.21)
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Noting that∫
ΓS

(−σn + t) ·wdΓ = −
∫

ΓS

w · (n⊗ n) (σn) dΓ = −
∫

ΓS

(w · n)n · σndΓ = 0

(5.22)

the variational form of the balance equations is finally written as∫
Ωt

ρ

[
∂u

∂t

∣∣∣
Υ

+ (c · ∇x)u

]
·w dΩt +

∫
Ωt

σD : ∇xw dΩt −
∫

Ωt

p(∇x ·w) dΩt−∫
Ωt

ρb ·w dΩt +

∫
ΓS

(
1

β̃
uslip

)
·wdΓ = 0∫

Ωt

(∇x · u) q dΩt = 0

(5.23)

As noted by several authors (see e.g. Verfürth (1987); Engelman et al. (1982);

Behr (2004)), the enforcement of the no-flux condition (5.19)2 in the presence of

curved boundaries may lead to numerical inconsistencies. For this reason, the no-

flux condition is here replaced by a penalized form, in the line of what proposed

in Dione et al. (2013), together with a reduced integration of the penalty integral

term. Let us set

n · σn = −1

ε
u · n (5.24)

on ΓS , ε being a small number. With this definition, the last integral in (5.20)1

becomes ∫
ΓS

[(
t +

1

β̃
uslip

)
+

(
n · σn +

1

ε
u · n

)
n

]
·wdΓ (5.25)

where now w is not required anymore to satisfy w·n = 0 on ΓS . After integration

by parts and taking into account that t + (n · σn)n = σn, the last integral in

(5.21)1 transforms into∫
ΓS

[
−σn +

(
t +

1

β̃
uslip

)
+

(
n · σn +

1

ε
u · n

)
n

]
·wdΓ =

=

∫
ΓS

[
1

β̃
uslip +

1

ε
(u · n) n

]
·wdΓ

(5.26)
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5.6 Space discretization

The weak form (5.21), with the modified conditions (5.26) on the slip bound-

ary ΓS , is discretized for implementation in the Particle Finite Element Method

(PFEM), described in Chapter 4.

A key point in the PFEM is the algorithm for boundary identification and

for contact detection (see section 4.6.2). In the case of landslides runout, the

computational domain consists of the initial volume occupied by the soil mass

plus the whole surface of the slope on which the landslide can possibly slide during

its runout. In the spirit of the method, nodes are placed on the whole sliding

surface, so that finite elements can be generated automatically by the remeshing

procedure whenever the soil mass is approaching that part of the boundary. These

nodes are not active, and therefore are not identified as material particles (i.e.

they do not possess any degree of freedom), until they become the vertex of a finite

element of sufficiently regular shape (i.e. that is not removed by the alpha-shape

method). In figure 5.4, two different instants (t = 30 and 31 s) are considered in

the Frank rock avalanche simulation which will be discussed in detail in chapter

7. Among the slip nodes of figure 5.4(c), blue nodes are not active at t = 30 and

31 s, green nodes are active at both instants, red nodes are active only at t = 30

s and yellow ones only at t = 31 s.

Slip boundary conditions are difficult to enforce in this fully Lagrangian frame-

work, in which nodes on the basal surface have to move according to the soil

velocity, but at the same time have to define the position of the boundary. If slip

nodes are moved following their velocity, the definition of the boundary is lost

and the boundary tracking algorithm cannot work anymore. To overcome this

difficulty, all nodes in the mesh are treated as Lagrangian (i.e. Υ = X in (5.5)-

(5.6)) except those on ΓS (where slip conditions are imposed), which are treated

as Eulerian (i.e. Υ = x) and therefore remain fixed in their initial position. This

special treatment gives rise to a mixed Lagrangian-Eulerian formulation, whereby

some nodes are Lagrangian and some others (more specifically those on ΓS) are
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(a) (b)

(c)

Figure 5.4: Simulation of the Frank Rock avalanche at 30 s (a) and 31 s (b); (c)
slip boundary nodes: in yellow the nodes which belongs to the set of elements
(b) but not to (a) and in red the nodes which belongs to the set of elements (a)
but not to (b).

Eulerian. In particular, elements having a node on the boundary ΓS will have

degrees of freedom of mixed nature (Figure 5.5).

Proceeding now with a standard finite element discretization with linear in-

terpolation functions for both pressure and velocity, the following semidiscretized

form is obtained:

MV̇ + (K + Kslip + Kc)V + DTP = B

DV = 0
(5.27)

where in equations (4.20) to (4.23) a detailed Lagrangian definition of M, K,



81

Figure 5.5: Schematic illustration of the distinction between Lagrangian and
Eulerian nodes.

D and B has been provided. V and P, as usual, contain the nodal values of

velocity and pressure respectively, M is the mass matrix, K is the matrix of

viscoplastic coefficients, having the same structure of the deviatoric part of the

stiffness matrix, D is the discretization of the divergence operator, B is the vector

of body forces and boundary tractions, Kc is the discretization of the convective

term on the slip boundary and Kslip is the discretization of the integral in (5.26).

Their definition is given below.

Let ndim define the problem dimension (ndim = 2 in 2D, ndim = 3 in 3D) and

let nnode be the number of nodes per element (nnode = 3 for triangular elements,

nnode = 4 for tetrahedra). Defining with ΩSt the subdomain of Ωt containing

elements with at least one node on ΓS and setting ce(x) = Ne(x)Ce, Ce being

nodal values of the velocity c(x) on element Ωe, the components of matrix Ke
c

are obtained as:

[Ke
c]ahbm =

∫
Ωe∈ΩS

Ne
a,jC

e
djN

e
dN

e
b δhm dΩe (5.28)

where a, b, d = 1, . . . nnode, i, j, h,m = 1 . . . ndim, δhm is the Kronecker delta, Na

is the shape function of node a, Na,j = ∂Na/∂xj , and summation on repeated

indexes d and j is assumed. In (5.28), [Ke
c]ahbm denotes the hm component of
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the submatrix (of dimensions ndim × ndim) [Ke
c]ab, C

e
dj is the j-th component of

c at node d, with Cedj = 0 if d is an interior node (Lagrangian node in Figure 5.5)

and Cedj = V edj if d is a node on ΓS (Eulerian node in Figure 5.5).

Kslip for element e is defined as:

Ke
slip =

∫
ΓS
e

Qe TNe T


1
ε 0 0
0 1

β̃
0

0 0 1
β̃

NeQedΓ (5.29)

where Ne is the matrix gathering the shape functions of element e and Qe =

diag[Qe
a], a = 1, . . . nnode, is a block diagonal matrix. For a denoting a node on

ΓS , Qe
a is the orthogonal matrix transforming the velocity components ux, uy,

uz with respect to the global reference system into the components un, ut1 , ut2 ,

locally normal and tangent to the basal surface at each element node a on ΓS :unut1
ut2


a

= Qa

uxuy
uz


a

(5.30)

In contrast, for a denoting an interior node, one has Qe
a = 0.

All matrices Ke
c and Ke

slip not pertaining to elements with nodes on ΓS are

zero.

5.7 Time integration and solution scheme

Considering the time interval (0, T ) divided in a fixed number of time step

∆T and assuming that the state of the system is known at t = tn in terms of

the positions xn = x(tn), velocities Vn = V(tn) and pressures Pn = P(tn), the

state at time t = tn+1 is determined enforcing equations (5.27) at t = tn+1 using

a backward Euler integration scheme (see section 4.2). The final fully discretized

nonlinear problem writes:

M
Vn+1 −Vn

∆t
+ (K + Kslip + Kc)V

n+1 + DTPn+1 = B (5.31)

DVn+1 = 0 (5.32)
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It is important to recall that all the matrix and vector operators generally depend

non-linearly on the unknown configuration xn+1. Using linear shape functions

for both velocity and pressure, stabilization terms should be added to equation

(5.31)-(5.32) (see section 4.4).

System (5.31)-(5.32) can be solved directly with a monolithic approach, re-

calling that a stabilization is necessary (see section 4.4). Alternately, a fractional

step-like schemes can be derived from the discretized equation (5.31)-(5.32) (see

section 4.3), leading to the system of equations:

1

∆t
M(Ṽn+1 −Vn) + (K + Kslip + Kc)Ṽ

n+1 = Bn+1 (5.33)

∆tLPn+1 = DṼn+1 (5.34)

1

∆t
M(Vn+1 − Ṽn+1) + DTPn+1 = 0 (5.35)

In equation (5.28) the non linear convective term is linearised considering the

vector velocity Ce at the iteration k, computed considering the nodal velocity at

iteration k − 1:

[Ke
c]
n+1,k
ahbk

=

∫
Ωe∈ΩS

Ne
a,jC

en+1,k−1

dj Ne
dN

e
b δhk dΩe (5.36)

Similarly, the viscous term is linearised as follow:

µ̃n+1,k =
2

3

[
µ+

pn+1,k−1 tanϕ

γ̇n+1,k−1

(
1− e−Nγ̇

n+1,k−1
)]

(5.37)

where

γ̇n+1,k−1 =
f

µ
=
< qn+1,k−1 − pn+1,k−1 tanϕ >

µ
(5.38)

The last necessary linearisation takes into account the non linear slip boundary

condition with pressure dependent threshold. In particular the definition of the

parameter β̃ which appears in equation(5.18)2 is linearised as follow:

1

β̃n+1,k
=

1

βn+1,k
+
pn+1,k−1 tanϕbasal

‖un+1,k−1
slip ‖

(
1− e−N‖u

n+1,k−1
slip ‖

)
(5.39)
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5.8 Couette flow

The analytical solutions for Couette and Poiseuille flows with linear and non-

linear Navier slip laws have been presented in Ferrás et al., 2012. To validate

the implementation of the slip boundary conditions, a simple test is considered,

consisting in a Couette flow of water (ρ = 10−3 kg/m3, µ = 10−3 Pa s, ϕ =

ϕbasal = 0) between two parallel plates at distance h, where the top plate moves

with a fixed velocity U , while at the bottom the Navier slip condition is imposed

(Figure 5.1). The analytical solution consists of a linear velocity profile along the

channel height:

u(y) =
U(y − h)

h+ hslip
+ U (5.40)

0 0.2 0.4 0.6 0.8 1

y/h

0
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=500h
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=5h

h
slip

=0.5h

h
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=0.05h

h
slip
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Figure 5.6: Couette flow. Comparisons between analytical and numerical solu-
tion.
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Figure 5.6 shows a comparison between the analytical and the numerical solu-

tions, the latter obtained using the formulation discussed in this section ,varying

the slip parameter hslip. A perfect match with the expected solutions is obtained.

5.9 PFEM with nodal integration

Another subject considered in this work, is the implementation of a nodally

integrated formulation instead of the standard elementally integrated formula-

tion. An advantage of the Lagrangian approach is that the convective terms

in the momentum conservation disappear, and the difficulty is transmitted to

the necessity to frequently retriangulate the mesh. When retriangulation is per-

formed, data have to be transferred from the old mesh to the new one. In this

approach, to avoid interpolation from mesh to mesh, only degrees of freedom of

particles located at the vertices of triangles, in 2D, and tetrahedra, in 3D, are

used, so that only linear shape functions can be used for both velocity and pres-

sure. Nevertheless, some quantities like strains, stresses and densities have to

be evaluated in the elements to perform the integration. This can lead to some

difficulties if more than one material is considered (e.g. terrain and water) or if a

nonlinear material with internal variables is to be used. To avoid this obstacle a

2D approach based on nodal integration has been developed. Considering a nodal

integration, all the previous quantities can be computed for each node and can

be stored in the node when a new triangulation is performed. Another advantage

can be obtained if more complex plastic laws are adopted, since history variables

can be defined in the nodes. Only few tests have been performed using the nodal

integration described in this section, nevertheless primary results show a good

agreement compared with the standard elemental formulation. A more detailed

study is needed for a rigid visocplastic material.
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In the balance equations (4.7)∫
Ωt

ρ
∂u

∂t

∣∣∣∣
X

·wdΩt = −
∫

Ωt

µ∇xu : ∇xwdΩt

+

∫
Ωt

p(∇x ·w)dΩt +

∫
Ωt

ρb ·wdΩt +

∫
ΓN
t

w · hdΓNt ∀w ∈ S0

(5.41)

∫
Ωt

(∇x · u)qdΩt = 0 ∀q ∈ Q (5.42)

focusing on the term
∫

Ωt
µ∇xu : ∇xwdΩt, in 2D, the two gradients can be written

in matrix form, leading to∫
Ωt

µ∇xu : ∇xwdΩt =

∫
Ωt

µλT ηdΩt (5.43)

where

η = Gu (5.44)

λ = Gw (5.45)

G =

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]T
The finite element discretization is assumed

wi(X, t) =
∑
J

NJ(X)θJi(t) (5.46)

ui(X, t) =
∑
J

NJ(X)uJi(t) (5.47)

where J = 1, . . . , Nnode and Nnode is the total number of the mesh nodes.

Following the idea of Krysl and Zhu, 2008; Castellazzi et al., 2015, inside each

triangle the matrix form of the velocity gradient can be expressed as :

η =
∑
J

GJ |euJ (5.48)

where η within element e is introduced, and uJ is the nodal velocity at node J .

GJ |e is the matrix of the shape function derivatives, which is constant inside each
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triangle. Now the adopted velocity gradient matrix, is defined at each quadrature

point (node) K, and has the form:

η̄|K =
∑
J

GJ |KuJ (5.49)

where GJ |K is the assumed velocity gradient matrix of each node J connected to

node K (K included). In this case η̄|K is defined in the integration point (node)

K while in equation (5.48) it depends on the location. At this point the assumed

velocity gradient is not known. For triangles, the nodal quadrature for a generic

argument (•) is specified as:∫
Ω

(•)(x)dΩ ≈
∑
e

∑
K∈nodes(e)

(•)(xK)(xK)wK (5.50)

where e iterates all the elements in the mesh, and K runs over all the quadra-

ture points in the element. Furthermore xK is the location of the quadrature

point (node), (xK) is the Jacobian of the isoparametric mapping, and wK is the

weight of the quadrature point. Realizing that the velocity gradient vector η is

multivalued at node K, meaning that it is separately evaluated in each element

e|K connected at node K, the summations can be switched and then the nodal

quadrature expressed as∫
Ω

ηdΩ ≈
∑
K

∑
e|K

Ae
3

∑
J

GJ |euJ (5.51)

∫
Ω

η̄dΩ ≈
∑
K

∑
e|K

Ae
3

∑
J

GJ |KuJ =
∑
K

∑
e|K

Ae
3

∑
J

GJ |KuJ (5.52)

where J,K = 1, . . . , Nnode and Nnode is the total number of the mesh nodes.

In equation (5.52), the assumed velocity gradient η̄ has the form:

η̄ = Ḡu. (5.53)

The operator Ḡ will be determined below in its discretizated version GJ |K . In
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Figure 5.7: Nodal integration: area associated with node I. Material proprieties,
like density ρI and viscosity µI , are directly defined in the integration point
(node) I.

the previous equation the summation between parenthesis represents the area

pertinent at each node (figure 5.7). Imposing that the elemental integration and

the nodal integration should be equal:∫
Ωt

µ∇xu : ∇xwdΩt −
∫

Ωt

µ∇xu : ∇xwdΩt = (5.54)∫
Ωt

µλTηdΩt −
∫

Ωt

µλT η̄dΩt =

∫
Ω0

µλT (η − η̄)dΩ0 = 0 (5.55)

the discrete version of the previous equation leads to:

∑
K

λTK

∑
e|K

Ae
3

∑
J

GJ |euJ −

∑
e|K

Ae
3

∑
J

GJ |KuJ

 = 0 (5.56)

but considering that the λK is arbitrary:

∑
e|K

Ae
3

∑
J

GJ |euJ −

∑
e|K

Ae
3

∑
J

GJ |KuJ = 0 (5.57)

reversing the order of the summations,

∑
J

∑
e|K

Ae
3

GJ |e

uJ −
∑
J

∑
e|K

Ae
3

GJ |K

uJ = 0 (5.58)
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∑
J

∑
e|K

Ae
3

GJ |e −

∑
e|K

Ae
3

GJ |K

uJ = 0 (5.59)

and considering that it has to be satisfied for each J separately

∑
e

Ae
3

GJ |e −

(∑
e

Ae
3

)
GJ |K = 0 (5.60)

Finally the assumed differential operator is found:

GJ |K = (
∑
e|K

Ae
3

)−1
∑
e|K

Ae
3

GJ |e (5.61)

∇xNJ(xK) =

∑
e|K (xK)wK [∇xNJ(xK)]∑

e|K (xK)wK
(5.62)

where

∇xNJ(xK) =

[
∂NJ(xK)

∂x
,
∂NJ(xK)

∂y

]
(5.63)

The test function Nj expressed in the nodal formulation is the same of the element

formulation:

NJ(xK) =

∑
e|K (xK)wKNJ(xK)∑

e|K (xK)wK
= NJ(xK) = 0 if J 6= K (5.64)

NJ(xK) =

∑
e|K (xK)wKNJ(xK)∑

e|K (xK)wK
= NJ(xK) = 1 if J = K (5.65)

The shape function of each node can be thought of as constant with value 1 inside

the area referred to the node (figure 5.7) and equal to zero outside.

Considering now figure 5.8, the new formulation leads to:

∇xNJi(xI) =

∑
e|I

Ve

3 [∇xNJi(xI)]∑
e|I

Ve

3

(5.66)

NJi(xI) = 0 (5.67)

where i = 1, . . . , NI , where in figure 5.8 NI = 5.
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Figure 5.8: Nodal integration: patch of the node I.

The nodally integrated formulation can now be used to rewrite the discretized

system of equations (5.31) and (5.32), as follow

M
Vn+1 −Vn

∆t
+ (K + Kslip + Kc)V

n+1 + D
T
Pn+1 = B (5.68)

DVn+1 = 0 (5.69)

where all the matrix have been computed using the nodal integration. The same

stabilization technique described in chapter 4, can be formulated using the de-

scribed nodal integration. In the following tests, the fractional step method has

been used with nodal integration. Two 2D tests, using the new formulation are

presented in what follow. Here the focus is on the comparison between the two

different integration formulations. All the other simulations that will be discussed

in chapters 6 and 7, instead, have been performed using the classical elemental

formulation.

5.9.1 Sloshing in a rectangular tank

Figure 5.9 shows the geometry of the problem, which is the sloshing of water

in rectangular tank. Material parameters are listed in table 5.1. In this case, the

Newtonian constitutive law is adopted (section 3.34) and the standard boundary
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conditions of perfect adhesion are considered. The fluid oscillates in the rect-

angular tank from its original position. In figure 5.10 the pressure contours are

plotted for two different instants. The results show a good agreement between

the two integration schemes.

Water

3 m

7 m

10 m

Figure 5.9: 2D geometry: sloshing of water in rectangular tank.

ρ (kg/m3) µ (Pa s) nodes T (s) ∆t (s)

1379 1 1586 10 0.0005

Table 5.1: Water material parameters, number of nodes, physical time and time
step.
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Figure 5.10: 2D sloshing of water in rectangular tank. Comparison between
element and nodal integration: pressure contours at t = 5.7, 7.3 s.
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5.9.2 Granular flow on a rigid obstruction

The second test performed with the nodal integration is the granular flow

on a rigid obstruction. The experimental test has been performed in Moriguchi

et al., 2009 and the geometry is represented in figure 5.11. The same test has

been performed in Cremonesi and Perego, 2013. Material parameters are shown

in table 5.2. The mesh is constructed with 1171 nodes and the analysis with

a the time step of 0.0005 s. In this case, the rigid viscoplastic material model,

described in section 3.5.2, is adopted and slip boundary conditions are applied

on the boundary. Figure 5.12 shows the comparison between the elemental and

nodal formulation while in figure 5.12 the impact force measured on the rigid

obstruction is plotted. The comparison between the pressure fields shows that in

the nodal formulation more oscillations of the pressure field appear. Nevertheless

a fairly good agreement between the two formulations is obtained. The com-

parison in figure 5.12 shows that the nodally integrated formulation underrates

the impact force. Results show that a more detailed investigation on the nodal

integration is necessary.

Figure 5.11: Granular flow on a rigid obstruction: schematic representation of
the problem.
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ρ (kg/m3) µ (Pa s) φ φbasal hslip (m) ∆t (s)

1379 0.001 35◦ 35◦ 0.03 0.0005

Table 5.2: Material parameters

Figure 5.12: Granular flow on a rigid obstruction: comparison between elemen-
tally and nodally integrated formulation: pressure contours at t = 0.5, 1.5 s.
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Figure 5.13: Granular flow on a rigid obstruction: impact force time histories.
Comparison between experimental, numerical results of Moriguchi et al., 2009
and the nodal and elemental integration of the present work (PFEM).





6
Numerical simulation of small scale

experiments

In this chapter the simulations of some laboratory tests are presented and

discussed. Different geometries, materials and released volumes are considered.

These tests are used to validate the model with focus on the importance of slip

boundary conditions. The constitutive model discussed in the previous chapter

for a rigid viscoplastic material (see section 3.5.2) with slip boundary conditions

(see chapter 5.1) is here adopted. In the analyses, the following numerical pa-

rameters have been used: ∆t = 0.0002 s, N = 100, α = 1.6 and 1
ε = 107,

where N is the parameter of the regularized apparent viscosity (section 3.5.2 ),

α is the parameter used in the alpha-shape algorithm (section 4.6.2) and 1
ε is

the penalization term to prevent normal velocity at the slip boundary (section

5.6). Computational time information, that will be provided in this chapter

and in chapter 7, are referred to a machine with the following characteristic:

Intel(R) Xeon(R) CPU ES-2687W 0 @ 3.10GHz.

97
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6.1 Chute of a granular mass along inclined planes

Three experimental tests performed by Manzella at the Ecole Polytechnique

Fédéral de Lausanne are considered (Manzella, 2008). The tests consist of the

free chute of a granular material along inclined planes. Two different geometries,

with one or two inclined planes, are considered (see figure 6.1). The inclination

of the plane for the first test is 45◦ (figure 6.1(a)) while for the second the two

planes are inclined by 37.5◦ and 22.6◦ respectively (figure 6.1(b)). The test on

the first geometry is performed using aquarium gravel while on the second one

both aquarium gravel and Hostun sand are used.

(a)

37.5

22.6

(b)

Figure 6.1: Chute of a granular mass along inclined planes. Tests setup and
granular mass initial positions.

The material parameters for gravel provided in (Manzella, 2008), are: density

ρ = 1430 Kg/m3, friction angle ϕ = 34◦ and basal friction angle ϕbasal = 28◦.

The total volume of gravel is 0.02 m3 for the first test and 0.03 m3 for the second.

Material parameters are listed in table 6.1.

The model needs two additional parameters: the initial viscosity µ and the

amount of slip β (or hslip alternatively). These parameters are identified on the

basis of the first test then used in the second one. An initial mesh of 240902
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material parameters

material geometry φ φbasal ρ (kg/m3)

test 1 aquarium gravel fig. 6.1(a) 34◦ 28◦ 1430

test 2 aquarium gravel fig. 6.1(b) 34◦ 28◦ 1430

test 3 Hostun sand fig. 6.1(b) 34◦ 32◦ 1260

Table 6.1: Summary of the material parameter used in the previous tests

tetrahedra with 95422 nodes has been used for the case with 1 inclined plane,

while the tests with 2 inclined planes have been simulated with a mesh of 301269

tetrahedra with 114710 nodes. The average element size is he = 0.01 m for both

meshes. This information is summarized in table 6.2.

mesh

he (m) nodes tetrahedra

test 1 0.01 95422 240902

test 2 0.01 114710 301269

test 3 0.01 114710 301269

Table 6.2: Mesh information for the presented simulations, where he is the mesh
size. The number of tetrahedra is refereed to the first time step.

Figure 6.2: Chute of a granular mass along inclined planes. One inclined plane.
Final deposit at t = 2.3 s: experimental (left) and numerical (right), with µ = 1
Pa s, hslip = 0.04 m.



100

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

x 
ax

is
 (

m
)

y axis (m)

(a) top view

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5  0.6

z 
ax

is
 (

m
)

x axis (m)

experimental
numerical no slip

numerical hslip=0.01 m
numerical hslip=0.04 m

(b) section

Figure 6.3: Chute of a granular mass along inclined planes. One inclined plane.
Comparison of the final deposit with µ = 1 Pa s, at t = 2.3 s.

Experimental and numerical final deposits for the first test (one inclined plane)

are compared in figure 6.2 and figure 6.3. Figure 6.3(a) shows a view of the final

deposit in the x − y plane (see figure 6.1 for the reference system), while its

vertical section in the x − z plane is shown in figure 6.3(b). The two graphs
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show the effect of the amount of slip at the interface (hslip) on the final results.

The final deposit obtained at t = 2.3 s with no slip condition (hslip = 0) differs

significantly from the experimental data. It can be observed that increasing the

value of the slip, the slip velocity increases and consequently a larger distance is

covered by the slide. A good agreement has been obtained setting µ = 1 Pa s

and hslip = 0.04 m, with a ratio hslip/h
e = 4.

The same parameters are then used to simulate the second test (two inclined

planes, figure 6.1b). In figure 6.4 a sequence of snapshots of numerical simu-

lation for different time instants, with contour plots of the velocity magnitude,

are shown. A sequence of synchronized snapshots of the experimental and nu-

merical runouts is comparatively shown in figure 6.5, a good agreement with the

experiments can be observed.
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Figure 6.4: Chute of a Hostun sand along two inclined planes. Plot of the velocity
field with µ = 1Pas and hslip = 0.04 m, at different time instants.
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Figure 6.5: Chute of a granular mass along inclined planes. Two inclined planes.
Comparison between experimental test (top) and numerical results (bottom) with
µ = 1Pas and hslip = 0.04 m, at synchronized time instants.
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In the work of (Manzella, 2008) the second test (two inclined planes, figure

6.1b) has been also carried out with Hostun sand, which is a finer material than

gravel. The grain size distribution (diameter) of Hostun sand is 0.32 − 0.8 mm

while the gravel one is 0.5− 3 mm. Material parameters provided in (Manzella,

2008) for Hostun sand are: density ρ = 1260 Kg/m3, friction angle ϕ = 34◦

and basal friction angle ϕbasal = 32◦ (table 6.1). In figure 6.6 a sequence of

Figure 6.6: Chute of a Hostun sand along two inclined planes. Plot of the velocity
field with µ = 1Pas and hslip = 0.015 m, at different time instants.

snapshots of numerical simulation for different time instants, with contour plots

of the velocity magnitude, are shown. A sequence of synchronized snapshots of
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the experimental and numerical runouts is comparatively shown in figure 6.7.

In this case with hslip = 0.015 m and hslip/he = 1.5. This value of hslip is

in accordance with (Schaefer et al., 2010) (see section 5.1) where it has been

observed that the slip velocity between the flowing mass and the basal surface

increases with the average grain diameter. This test has also been simulated in

(Pastor et al., 2009a, 2015) using the same constitutive parameters but without

slip velocity at the interface. A good agreement with the experiments can be

observed.

A view of the boundary of the final deposit in the x − y plane at t = 2.5 s

for aquarium gravel with hslip = 0.04 m and for Hostun sand with hslip = 0.015

m is also shown in figures 6.16 and 6.8(b), respectively. Also in this case, a

good agreement with the experimental final deposit can be observed for both

materials. In table 6.3 information on the physical and computational time,

volume and height of release are shown.

time

physical computational volume (m3) ∆H (m)

test 1 2.0 s 23 hours 0.02 1

test 2 2.5 s 31 hours 0.03 1

test 3 2.5 s 31 hours 0.03 1

Table 6.3: Time and geometrical information for the presented simulations. ∆H
indicates the vertical distance between the center of mass of the granular material
initial position and the horizontal plane.
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Figure 6.7: Chute of a Hostun sand along two inclined planes. Comparison
between experimental test (top) and numerical results (bottom) with µ = 1Pas
and hslip = 0.015 m, at synchronized time instants.
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Figure 6.8: Chute of gravel (a) and Hostun sand (b) along two inclined planes.
Comparison of the final deposits at t = 2.5 s, with µ = 1 Pa s and hslip = 0.04
m (a) and with µ = 1 Pa s and hslip = 0.015 m (b).
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6.2 Chute of a granular mass on an erodible sub-
strate

In this example, the tests performed in (Crosta et al., 2014) are simulated

numerically. The chute of a mass of granular material along two planes of different

inclination (40◦ and 60◦ respectively) is considered. A horizontal box is placed

at the bottom of the inclined plane. Two different situations are investigated.

In the first one, the material flows along the inclined plane and then it impacts

against the empty box (see figure 6.9(a)). In the second case, the box is filled

with a small layer (5 mm) of erodible granular material (see figure 6.9(b)).

x
y

z

(a) (b)

Figure 6.9: Chute of a granular mass on an erodible substrate. Initial position of
sand mass: (a) without erodible substrate; (b) with erodible substrate.

The material used in this examples is Hostun sand. Material parameters are

provided in (Crosta et al., 2014): density ρ = 1420 Kg/m3, friction angle ϕ = 32◦

and basal friction angle ϕbasal = 25◦. In accordance with the previous example,

a viscosity of µ = 1 Pa s is used also for these tests. The same material is used

also for the erodible substrate.

Material parameters are listed in table 6.4. For the case without an erodible

substrate, the following initial meshes have been used, with an average mesh size
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material parameters

geometry φ φbasal ρ (kg/m3)

40◦ 6.9(a) 32◦ 25◦ 1420

60◦ 6.9(a) 32◦ 25◦ 1420

40◦ substrate 6.9(b) 32◦ 25◦ 1420

60◦ substrate 6.9(b) 32◦ 25◦ 1420

Table 6.4: Summary of the material parameter of in the previous analyses

he = 0.007 m: 133318 tetrahedra with 49477 nodes for the 40◦ case; 133604

tetrahedra with 49529 nodes for the 60◦ case. For the case with an erodible

substrate, the following initial meshes have been used, still with an average mesh

size he = 0.007 m (the larger number of elements is due to the fact that also

the erodible substrate need be discretized): 379243 tetrahedra with 94031 nodes

for the 40◦ case; 379548 tetrahedra with 95749 nodes for the 60◦ case. This

information are summarized in table 6.5. In table 6.6 information on the physical

mesh

he (m) nodes tetrahedra

40◦ 0.007 49477 133318

60◦ 0.007 49529 133604

40◦ substrate 0.007 94031 379243

60◦ substrate 0.007 95749 379548

Table 6.5: Mesh information for the presented simulations, where he is the mesh
size. The number of tetrahedra is refered to the first time step.

and computational time, volume and height of release is shown. In a first instance,

the test with no erodible substrate has been performed with hslip = 0 (no slip at

the interface). In the case with an inclination angle of 40◦ after less than 0.2 s, the
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time

physical computational volume (m3) ∆H (m)

40◦ 1.2 s 12 hours 0.0034 0.3

60◦ 1.2 s 12 hours 0.0034 0.3

40◦ substrate 1.2 s 27 hours 0.0034 0.3

60◦ substrate 1.2s 27 hours 0.0034 0.3

Table 6.6: Time and geometrical information and of the presented simulations.
∆H indicates the vertical distance between the center of mass of the granular
material initial position and the horizontal plane.

front stops advancing, before the material has completely reached the horizontal

plane, while in the case with 60◦ the final front position differs significantly from

the experimental data, as shown in figure 6.10.
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Figure 6.10: Chute of a granular mass on an erodible substrate. Front distance
evolution. Results without slip at the interface.

Considering now the possibility of slip at the interface, the slip length should

be identified. As in the previous example, the first test is used to calibrate the
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value hslip, while the second is used to validate the results. The plot of figure

6.11 shows the time evolution of the front distance for the first case (no erodible

substrate), comparing numerical results and experimental data for the two plane

inclinations. Two values of hslip are considered, showing that better results can

be obtained using hslip = 0.05m, with a ratio hslip/h
e ∼= 7.
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Figure 6.11: Chute of a granular mass on an erodible substrate. Front distance
evolution. Test 1 (without erodible material).

The second test (with erodible substrate) is simulated using the parameters

identified in the first test, and is shown in figures 6.12 and 6.13, for the cases of

40◦ and 60◦, respectively. The snapshots are plotted on the vertical middle plane

of the experimental setup.

The front distance evolution for the second test is plotted in figure 6.14.

A satisfactory agreement is obtained also in this case for the 40◦ inclination.

In the 60◦ case, the numerical solution seems to underestimate the run front

distance. However, it should be noted that, in the case of the erodible substrate,

the experimental identification of the front position is problematic due to the

difficulty to distinguish between the granular material of the moving landslide

and the erodible substrate.
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Figure 6.12: Chute of a granular mass along a plane inclined of 40◦ with erodible
substrate, with µ = 1 Pa s and hslip = 0.05 m. Snapshots at different time
instants. The green color indicates the erodible substrate while the red one
indicates the material flowing from the inclined plane. The blue color indicates
the basal layer.
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Figure 6.13: Chute of a granular mass along a plane inclined of 60◦ with erodible
substrate, with µ = 1 Pa s and hslip = 0.05 m. Snapshots at different time
instants. The green color indicates the erodible substrate while the red one
indicates the material flowing from the inclined plane. The blue color indicates
the basal layer.
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Figure 6.14: Chute of a granular mass on an erodible substrate. Front distance
evolution. Test 2 (with erodible material, hslip = 0.035 m).

Figure 6.15 shows snapshots with contour plots of the velocity magnitude at

different time instants, plotted on the vertical middle plane of the experimental

setup. The effect of the slipping interface can be appreciated in the enlarged

inserts, showing a non-zero relative velocity between the flowing mass and the

basal plane. Figure 6.16 shows the final deposit of the two tests with an enlarged

view of the contour between the flowing material and the erodible substrate.
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Figure 6.15: Chute of a granular mass on an erodible substrate. Test 2 (with
erodible material). Snapshots at time instants t = 0.2 s, 0.4 s, 0.6 s and 0.8 s
(from left to right, from top to bottom, respectively), with hslip = 0.035 m.

(a) (b)

Figure 6.16: Chute of Hostun sand on a plane inclined of 40◦ (a) and 60◦ (b).
Comparison of the final deposits at t = 1.2 s, with µ = 1 Pa s and hslip = 0.05
m. The green color indicates the erodible substrate while the red one indicates
the material flowing from the inclined plane. The blue color indicates the basal
layer.
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6.3 Mass variation

In the mechanics of incompressible fluids the mass conservation is an im-

portant issue, in the lagrangian framework especially, even though this problem

exists also in the Eulerian and ALE approaches (Pelletier et al., 1989). In the la-

grangian formulation, the mass loss is immediately observed (Aubry et al., 2006)

since the particles are used to define the domain. In the proposed method, the

issue of mass conservation is particularly critical, mainly due to the method em-

ployed for boundary identification. Various works have been presented to find

a way to improve the mass conservation for incompressible fluids, in the PFEM

approach. In (Ryzhakov et al., 2012), a second order fractional step scheme is

used and the compressibility condition is applied on the intermediate velocity

using a prediction of the end-step pressure. In (Oñate et al., 2014), a residual-

based stabilized expression of the mass balance equation is obtained using the

finite calculus method. An example of a critical situation for mass variation is

the adding or removing of tetrahedra from a step to another. In particular, when

a particle separates from the bulk of the fluid through the deletion of one or more

elements, a mass equal to the total mass of the deleted elements is attached to

the particle. If subsequently the same particle merges back within the bulk, the

mass added to the bulk itself is not exactly the mass of the particle, but is the

mass of the newly created elements which first connect the particle to the bulk

according to the alpha-shape algorithm. This issue also affects the momentum

balance equation, which is enforced separately for the bulk of the fluid and for the

isolated particles. The momentum added to the bulk when an isolated particle is

re-attached, is not exactly the momentum of the particle itself. Similar remarks

also hold for the formation and annihilation of internal cavities.

In figures 6.17 the mass variation of the numerical simulation presented in

section 6.1 and 6.2 is shown. For the tests of section 6.2 (figure 6.17(b)) the

difference in the percentage mass variation between the cases with or without

the erodible substrate, is due to the presence of the erodible substrate of Hostun
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sand which is partially or totally at rest in the horizontal plane, for the entire

simulation. Hence the mass variation of the sand of the erodible layer, which

undergoes small displacements, is limited.
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Figure 6.17: Mass percentage variation for the tests of section 6.1: chute of
aquarium gravel (black and blue lines) and Hostun sand (red line) along one or
two inclined planes (a). Mass percentage variation for the tests of section 6.2:
chute of Hostun sand on an inclined plane without erodible substrate (black and
blue lines) and with erodible substrate (red and green lines) (b).



7
Lanslides Simulations

In this chapter, the numerical simulations of three historical events are pre-

sented: the Cougar Hill dump flowslide, the Frank avalanche and the Vajont slide.

A brief description of these events can be found in the introduction of this work.

The constitutive model discussed in the previous chapters for a rigid-viscoplastic

material (see section 3.5.2) with slip boundary conditions (see section 5.1) is

here adopted. In the Vajont event, the mobilized material slips into the water

reservoir, generating a huge wave. In this case both the terrain and the water

have been modelled and simulated. Some remarks on large scale simulations are

presented, before introducing numerical results.

7.1 Remarks on large scale simulation

Accurate digital elevation models, describing the terrain topography, are of

primary importance to perform numerical simulation of real events. They can

been obtained with different methods such as photogrammetry, lidar (laser imag-

119
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ing detection and ranging) and land surveying. Digital elevation models can be

involved in more general Geographical Information Systems (GIS) with the aim

to analyses and evaluate the risk (see Morgenstern and Martin, 2008 for a review

on application of GIS).

In this work the geometry of the problem can be defined starting from the

discretization of two surfaces: the sliding surface and the free surface. The sliding

surface represents the border of the simulation, it includes partially the slope

topography before the event and entirely the surface of rupture (figure 7.16(a)).

The free surface is the surface of the sliding material, before the event (figure

7.16(b)). The geometry of the slope is an important factor that strongly affects

the propagation, the velocity and the run-out of a landslide. The code uses a

set of ASCII data files which have to be prepared in order to run the problem.

These files have to include a sets of points describing the discrete approximation

of the boundary (sliding surface) and the free surface, as well as the volume of the

moving terrain and/or water (figure 7.1(c)). All the previous points constitute

nodes of the initial mesh of the problem.

A modification to the continuous re-triangulation strategy has been realized in

order to reduce the computational time. In fact, considering the sliding surface of

figure 7.16(a), most part of the nodes are not active during the analysis. Indeed

the Delaunay triangulation can be performed only in a box containing all the

active nodes. The box is a rectangular cuboid where the faces are defined starting

from the maximum and minimum values of the x coordinates of the active nodes.

In figure 7.2(a) the entire mesh is shown and the edges of the box are highlighted.

The partial set of nodes used to perform the Delaunay triangulation is shown in

figure 7.2(b). To allow the correct identification of the evolving boundary, the

faces of the box have to be located at a distance ∆h from the maximum and

minimum values of the x coordinates of the active nodes. In the present work:

∆h = 3h (7.1)

where h is the average smaller edge of all the elements (see section 4.6.2).
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(a) (b)

(c)

Figure 7.1: Discrete representation of the sliding surface (a), the free surface (b)
and the complete mesh (c) of Frank avalanche.

Considering now the case of a tetrahedral initial mesh, at the end of step tn,

not excessively distorted to require a new triangulation, but with some nodes too

close to each other. In this case the routine add rem (see section 4.6.4) removes

these and a new triangulation is necessary. Instead of performing a complete
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(a) (b)

Figure 7.2: Tessellation box: entire mesh and edges of the box (a), partial domain
(b) where to perform the Delaunay triangulation.

triangulation, a partial one, involving only some nodes, can be performed. In

the set of elements in figure 7.3(a) a node (figure 7.3(b)) does not respect the

minimum distance to the closest node. In this case a constrained Delaunay

triangulation is performed. The constrained Delaunay triangulation allows to

triangulate a set of nodes bounded by triangular faces.

(a) (b)

Figure 7.3: Constrained Delaunay triangulation: set of tetrahedral elements (a)
and set of nodes with one node that have to be removed (b).
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7.2 Cougar Hill

On May 11, 1992, the Cougar 7 dump at the Greenhills Mine located near

Elkford, British Columbia, failed. It is one of a large number of long runout

flowslides that happened during 25 years in the Greenhills Mine (Dawson et al.,

1998). Forty-eight landslides have been classified with a modal value of runout

distance ranging from 500 m to 1000 m. All the events occurred rapidly even

if the absence of a eyewitness did not allow for an accurate estimation of the

physical propagation time. The considered event is the Greenhills Cougar 7

flowslide. Approximately 200000 m3 of failure debris slid off the 100 m high

waste dump, travelled across an access roadway, and flowed downslope for a total

runout distance of 700 m. The dump slope was at an angle of repose of 37o-

38o. The debris was mainly sandy gravel and the foundation was composed by

sand and gravel colluvium. A few days prior the flowslide, warm weather could

have caused the melting of the snow cover and just before the propagation flow

some crack appeared on the waste dump. The propagation mechanism described

by (Dawson et al., 1998) dwells on the presence of a fine-grained layer which

underwent liquefaction and the wast debris flow above this layer. This hypothesis

is deduced from the finding of the fine layer in the deposition zone. Numerical

simulations of the Greenhills Cougar 7 flowslide, using different approaches, can

be found in (Pastor et al., 2014; Quecedo et al., 2004) and (Herrores et al., 2002).

The original data of the sliding surface is shown in figure 7.4(a), from which

the set of nodes of figure 7.4(b) has been generated.

Material parametes, as provided in (Dawson et al., 1998), are: density ρ =

1900 Kg/m3, friction angle ϕ = 37◦ and basal friction angle ϕbasal = 32◦. Mate-

rial parameters used in the numerical analysis, are shown in table 7.1.

The difference between the physical and the numerical parameters, in partic-

ular the smaller friction angle used in the simulation, can been explained consid-

ering that in the presented model, the liquefaction process can not be modelled.

In the analysis, the following numerical parameters have been used: ∆t = 0.005
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(a) (b)

Figure 7.4: Sliding surfaces of Greenhills Cougar 7 dump. Original data (a) and
the set of points used for the numerical simulation (b).

material parameters

hslip (m) µ (Pa s) φ φbasal ρ (kg/m3)

2 0.1 32◦ 32◦ 1900

Table 7.1: Cougar Hill: material parameter.

s, N = 1000, α = 1.8 and 1
ε = 107, where N is the parameter of the regularized

apparent viscosity (section 3.5.2 ), α is the parameter used in the alpha-shape

algorithm (section 4.6.2) and 1
ε is the penalization term to prevent normal ve-

locity at the slip boundary (section 5.6). The geometry of the problem has been

provided by the department of Applied Mathematics in Civil Engineering at the

Polytechnical University of Madrid. Mesh and time information are shown in

table 7.2 and 7.3, respectively.

The presented simulation have been used as first test on large scale simu-

lation. Material parameters, and in particular viscosity and slip height, have

been calibrated performing different attempts. Even if the comparison with the

experimental observation is qualitative, figure 7.5, it can be observed that the

presented model works well on irregular topography and is able to capture the
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mesh

he (m) nodes tetrahedra

5 106046 104360

Table 7.2: Cougar Hill: mesh information, he is the reference mesh size. The
number of tetrahedra is the one at the first time step.

time

physical computational volume (m3)

110 s 14 hours 2 105

Table 7.3: Time information and mobilized terrain volume of the Cougar Hill
landslide.

propagation mechanism.

Figure 7.5: Comparison between experimental observation and simulation of the
final deposit

Figure 7.6 and 7.7 show snapshots of the numerical simulation at different

instants, in the second one the velocity magnitude is plotted.



126

Figure 7.6: Cougar Hill: Cougar dump 7 failure. Position of nodes at different
instants
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Figure 7.7: Cougar Hill: Cougar dump 7 failure. Contours of velocity magnitude
at different instants.
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7.3 Frank rock avalanche

Frank slide (Canada, 1903) is considered as one of the most severe tragedies in

Canada with a loss of approximately 70 lives. It involved more than 30 million of

cubic meters of limestone rock detached from the ridge of Turtle Mountain, in the

Northwest Territories. The landslide, with a 700 m wide front, descended along

a 800 m slope creating a deposit 1.7 km wide and almost 2 km long. The deposit

was approximately 18 m thick and the estimated duration of the event was of

less than 100 s. A detailed description of the event can be found in (Cruden and

Hungr, 1986; Wang and Sassa, 2010a). A view of the final deposit is shown in

Figure 7.9. The track followed by the running landslide is also clearly visible in

the picture.

Figure 7.8: Frank rock avalanche. View of the final deposit (Wang and Sassa,
2010a).
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Material properties are as in (Pastor et al., 2015): density ρ = 1800 Kg/m3,

internal friction angle ϕ = 12.4◦, viscosity µ = 0.01 Pa s. A basal friction angle

ϕbasal = ϕ = 12.4◦ has also been assumed (table 7.4). Three different values of

the slip height have been considered: hslip = 0 m, 20 m, 50 m. The used initial

mesh consists of 194795 tetrahedra, with 191028 nodes and an average mesh size

he = 10 m (table 7.5).

Snapshots of the landslide runout are shown in Figure 7.10 at time instants

t = 0 s, 14 s, 31 s, 71 s. The last snapshot shows the configuration of the final

deposit and the corresponding time of 71 s compares well with the duration of less

than 100 s reported by witnesses and with the propagation time of 80 s estimated

in (Pastor et al., 2015). The profile of the final deposit is shown in Figure 7.11 for

the different values of hslip. Also in this case, the no-slip condition hslip = 0 leads

to an underestimation of the runout distance, while better accuracy is achieved

with the largest value hslip = 50 m, with a ratio hslip/h
e = 5. This large value of

hslip can be explained with the very large (compared to the previous laboratory

tests) average mesh size used in this case (he = 10 m). In fact, the slip condition

directly affects an amount of flowing material which is of the order of magnitude

of the mass in the elements in contact with the basal interface.

material parameters

φ φbasal ρ (kg/m3)

12.4◦ 12.4◦ 1800

Table 7.4: Frank avalanche: material parameter.
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Figure 7.9: Frank rock avalanche. View of the final deposit.

Figure 7.10: Frank rock avalanche. Snapshots at time instants t = 0 s, 14 s, 31
s, 71 s (from left to right, from top to bottom, respectively), with hslip = 50 m.
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Figure 7.11: Frank rock avalanche. Landslide track and final deposit at t = 71 s.
Comparison between experimental observation and simulation with different slip
lengths: hslip = 0 m, 5 m, 20 m, 50 m.

mesh

he (m) nodes tetrahedra

10 194795 191028

Table 7.5: Mesh information for the presented simulations, where he is the mesh
size. The number of tetrahedra is relative to the first time step.

time

physical computational volume (m3)

80 s 19 hours 30 106

Table 7.6: Time information and mobilized terrain volume of the Frank avalanche.
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7.4 Vajont Slide

The Vajont valley is located in the western part of Friuli Venezia Giulia region,

Italy, between the towns of Erto and Casso and it extends to the left bank of

Piave valley near the city of Longarone. The topographic boundaries of the

Vajont valley are the S. Osvaldo pass on the east, the Tòc mount on the south,

the dam on the west and the mount Borga on the north. The valley is east-west

oriented, formed as a result of the erosion of an ancient glacial, with two main

waterways which are the Vajont stream, which gives the name to the valley, and

its major tributary, the stream Mesazzo (figure 7.12).

Figure 7.12: Aerial view of the Vajont valley

The reservoir was finalized to electric energy production through Vajont

stream water usage. The doubly arched dam was constructed between 1957 and

1959. The 276 meters high dam had a maximum level of water storage equal to

722.5 m a.s.l. and a volume of 169 · 106 m3.

The 9th October 1963 approximately 270 million cubic meter of rock slid

from the mount Toc, generating a huge impulsive wave which overtopped the

dam destroying the town of Longarone and other towns on its path. In the years
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Figure 7.13: Aerial view of the Vajont valley after the slide of 1960

Figure 7.14: Aerial view of the Vajont valley after the catastrophic slide of 1963
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Figure 7.15: View of the mount Toc in the present days, with vegetation on the
surface of the slide.

preceding the catastrophic event, there were two important warning signs: the

landslide on the close reservoir of Pontisei in March 1959 and the landslides of

November 1960 in the same Vajont reservoir from the plain della Pozza with

700.000 cubic meters of mobilized terrain (figure 7.13). These signs were under-

estimated and the lowering of the water level in the reservoir, up to 700 meters,

was considered a sufficient measure to mitigate hazards.

The landslide of 1963 had a catastrophic and unexpected effect. The land-

slide mass moved laterally and upwards on the opposite valley flank and rapidly

displaced the water in the reservoir which reached over the dam. The village of

Casso, in the opposite bank of the lake, was not damaged and only water spray

and some stones of medium dimension hit the village. Due to the irregular terrain

topography the water did not reach the same level around the reservoir. In the

Piave valley, the effects were much more destructive: the villages of Longarone,

Pirago, Villanova, Rivalta, Faè and Codissago were destroyed. Over 2000 people

were killed and it is considered the most disastrous landslide that occurred in the
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XX century. An aerial view of the Vajont valley after the landslide is shown in

figure 7.14 and a view of the mount Toc in present days is shown in figure 7.15.

In the analysis, the following numerical parameters have been used: ∆t = 0.01

s, N = 100, α = 1.9 and 1
ε = 107, where N is the parameter of the regularized

apparent viscosity (section 3.5.2 ), α is the parameter used in the alpha-shape al-

gorithm (section 4.6.2) and 1
ε is the penalization term to prevent normal velocity

at the slip boundary (section 5.6). Material parameters for the numerical simula-

tion are provided in (Semenza, 2001; Genevois and Ghirotti, 2005; Crosta et al.,

2007) and are summarized in table 7.7. In figure 7.16 the contours of the velocity

material parameters

material geometry φ φbasal ρ (kg/m3)

terrain fig. 7.18 brown 26◦ 5◦ 2400

water fig. 7.18 blue 1000

Table 7.7: Vajont slide: material parameter.

magnitude plotted on a vertical plane of the moving terrain are shown for two

different values of hslip. The very high value of the slip parameter hslip is justified

(a) (b)

Figure 7.16: Terrain velocity profile in a section: hslip = 5 m (a) and hslip = 1000
(b)

considering that the prevalent movement was of translational type along a well

defined surface of rupture. Hence, for the terrain material a viscosity of µ = 0.1
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Pa s and a slip height of hslip = 1000 m have been considered. Water viscosity

has been set equal to µ = 0.001 Pa s. To avoid irregularities in the pressure field

between the water and the terrain (figure 7.17, on the nodes on the boundary

slip conditions have been imposed even for water with a value of hslip = 1 m.

The input data that define the geometry of the problem, were provided by the

terrain

water

Figure 7.17: 2D representation of terrain and water elements. If water has no
slip at the boundary interface (highlighted nodes) high pressure is generated.

department of Environmental Sciences at the University of Milano-Bicocca. The

considered area for the simulation is about 3 × 4 km2. Figure 7.18 shows the

discretized geometry of the problem. An initial mesh of 273695 tetrahedra with

78137 nodes has been used with an average element size of he = 20 m (table 7.8).

Snapshots of the numerical simulation at different time instants are presented in

mesh

he (m) nodes tetrahedra

20 78137 273695

Table 7.8: Mesh information for the presented simulations, where he is the mesh
size. The number of tetrahedra is relative to the first time step.

figure 7.19. Figure 7.20 shows the contour of the wave height on the opposite

bank of the mount Toc. The comparison between the in situ observation (the

wave eroded trees and soil on the northern side of the Vajont valley) and the
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Figure 7.18: Complete geometry of the Vajont slide.

numerical results shows a good agreements. Not a successful accordance is found

only in the center of the bank, where the slope is very steep and the size of the

tetrahedral elements are too big to capture the correct water propagation. In

table 7.9 time and volume information of the Vajont landslide simulation are

shown.

time

physical computational volume (m3)

70 s 34 hours 270 106

Table 7.9: Time information and mobilized terrain volume of the Vajont landslide.
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Figure 7.19: Numerical simulation of the Vajont slide. Snapshots at different
instants.
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Figure 7.20: Profile of the wave height, comparison between numerical (blue) and
in situ records (red)





8
Conclusions

This work has been devoted to the development of a three-dimensional nu-

merical tool for the analysis of landslides runouts. To this purpose, a Lagrangian

Finite Element Method, based on the so called Particle Finite Element Method

(PFEM), first proposed by Oñate, Idelsohn and coworkes, has been developed.

The main results achived can be summarized as follows.

• Landslide runouts involve extremely large deformations of the moving soil

mass. For this reason, in the literature they have been modelled mainly

by considering the soil as a viscous fluid. This assumption implies that the

initial, statically equilibrated state cannot be included in the model and the

transition from stable slope configuration to an unstable moving landslide

cannot be described. In this work, the moving mass is modeled as a rigid-

viscoplastic solid undergoing large deformations. This implies that also in

this case only the landslide motion can be described. The assumed rigid-

viscoplastic behavior is obtained by simply neglecting the elastic part of the

141
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behavior of an elastic-viscoplastic material model. In contrast, the modeling

of the soil evolution from its initially stable equilibrium configuration to

the final unstable state of running landslide will require consideration of

the complete elasto-viscoplastic material behavior. The kinematic and the

material model have been described in chapter 3.

• For the viscous fluid, normally adopted in the simulations of fast propagat-

ing landslides, the standard boundary conditions enforce zero relative slip

between the fluid and the containing wall. These conditions are physically

motivated for fluids, but have been shown to loose validity when the flowing

material has a granular structure, in particular for increasing grain size. In

the present work, the soil material has been modeled as a rigid-viscoplastic,

non-dilatant, Drucker-Prager material and specific slip conditions have been

defined to model the interaction between the flowing mass and the basal

surface (chapter 5). The new slip conditions are of Navier type, i.e. the

resisting tangential force is proportional to the slip velocity. A pressure

sensitive threshold has also been introduced, so that the slip can occur only

when the tangential stress exceeds the current limit value. The proposed

interface law is characterized by two parameters: the slip height hslip and

the basal friction angle ϕbasal.

• The new boundary conditions require a special treatment to fit into the

PFEM framework in view of the special role of the nodes on the basal sur-

face, which are used to define the geometry of the computational domain

and therefore cannot move. Finite elements having at least a node onto

the basal surface are defined to have a mixed Lagrangian-Eulerian nature:

nodes on the boundary are Eulerian, i.e. their velocity is set to zero and

a convective term is added to the balance equation; interior nodes are La-

grangian, i.e. they move with the material velocity and the corresponding

convective term is zero. Slip boundary conditions need to be supplemented

with no-flux conditions, stating that the soil material cannot interpenetrate
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the basal surface. These no-flux conditions are known to lead to inconsis-

tencies when the surface is not smooth, due to ambiguity in the definition

of the normal. The problem has been circumvented by relaxing the no-flux

condition using a penalty approach.

• The importance of the slip conditions has been assessed by simulating lab-

oratory tests (chapter 6). In all cases, a proper definition of the slip pa-

rameters has allowed for a significant accuracy gain in the prediction of the

runout distance and of the shape of the final deposit. The proposed numer-

ical model has finally been applied to the simulation of a real large scale

landslides (chapter 7) obtaining good accuracy in the prediction of the final

deposit. Some modification to the continuous re-triangulation strategy has

been realized in order to reduce the computation time (chapter 7).

The numerical tool has been implemented by the author using the FORTRAN

90 programming language, with the exceptions of the PARDISO solver used for

the solution of the linear system and the public domain tool TETGEN used to

create the Delaunay triangulation.

Future developments

The present work could be improved under several points of view. Some

possible new developments are listed below.

• In chapter 5 the present approach has been formulated using a nodal inte-

gration. 2D tests using Newtonian fluids show a good agreement in com-

parison with the standard elemental integration while considering the rigid

viscoplastic model, spurious oscillations appear in the pressure field. It

would be of interest to consider others stabilization techniques, for example

the direct pressure stabilization, to improve the results. In view of a future

parallel implementation of the code, it is interesting to note that in this
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case, the matrices assembly can be performed with a loop on nodes instead

of on elements. Furthermore, historic variables for more complex plastic

laws, can be defined and stored in the integration points (nodes). This

approach can be easily implemented also in the 3D case.

• Other constitutive laws can be implemented to allow the model to describe

different cases from more fluid-like landslides to the slide or fall of rigid

solids and more realistic constitutive law for landslide material can be in-

vestigated, allowing for initial equilibrium and instability triggering.

• Further validations on real landslides should be performed. To speed-up

calculation to allow for practical engineering applications a parallelization

of the code should be investigated.
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Oñate, E., Franci, A., Carbonell, J. M., Tezduyar, T. E., Sathe, S., Schwaab, M.,

and Conklin, B. S. (2014). Lagrangian formulation for finite element analysis

of quasi-incompressible fluids with reduced mass losses. International Journal

for Numerical Methods in Fluids, 74(10):699–731.

Osher, S. and Sethian, J. a. (1988). Fronts propagating with curvature-dependent

speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Com-

putational Physics, 79(1):12–49.

Papanastasiou, T. C. (1987). Flows of Materials with Yield. Journal of Rheology,

31(5):385.

Pastor, M., Blanc, T., Haddad, B., Drempetic, V., Morles, M. S., Dutto, P.,

Stickle, M. M., Mira, P., and Merodo, J. a. F. (2015). Depth Averaged Models

for Fast Landslide Propagation: Mathematical, Rheological and Numerical

Aspects. Archives of Computational Methods in Engineering, 22(1):67–104.

Pastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez Morles, M., Drempetic,

V., Issler, D., Crosta, G. B., Cascini, L., Sorbino, G., and Cuomo, S. (2014).



156

Application of a SPH depth-integrated model to landslide run-out analysis.

Landslides, (August 2013):793–812.

Pastor, M., Blanc, T., and Pastor, M. (2009a). A depth-integrated viscoplastic

model for dilatant saturated cohesive-frictional fluidized mixtures: Application

to fast catastrophic landslides. Journal of Non-Newtonian Fluid Mechanics,

158(1-3):142–153.

Pastor, M., Haddad, B., Sorbino, G., Cuomo, S., and Drempetic, V. (2009b).

A depth-integrated , coupled SPH model for flow-like landslides and related

phenomena. International Journal for Numerical Methods in Biomedical En-

gineering, 33:143–172.

Pelletier, D., Fortin, A., and Camarero, R. (1989). Are FEM solutions of

incompressible flows really incompressible?(or how simple flows can cause

headaches!). International Journal for Numerical in Fluids, 9(February

1988):99–112.

Perot, J. (1993). An analysis of the fractional step method. Journal of Compu-

tational Physics, 108:51–58.

Pitman, E. B. and Le, L. (2005). A two-fluid model for avalanche and debris flows.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 363(1832):1573–1601.

Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M., and Bursik,

M. (2003). Computing granular avalanches and landslides. Physics of Fluids,

15(12):3638.

Pudasaini, S. P. (2012). A general two-phase debris flow model. Journal of

Geophysical Research, 117(F3):F03010.

Quarteroni, A., Saleri, F., and Veneziani, A. (2000). Factorization methods for

the numerical approximation of Navier–Stokes equations. Computer Methods

in Applied Mechanics and Engineering, 188(1-3):505–526.



157

Quecedo, M., Pastor, M., Herreros, M. I., and Fernández Merodo, J. a. (2004).

Numerical modelling of the propagation of fast landslides using the finite el-

ement method. International Journal for Numerical Methods in Engineering,

59(6):755–794.

Radovitzky, R. and Ortiz, M. (1998). Lagrangian Finite Element Analysis of

Newtonian Fluid Flow. International Journal for Numerical Methods in Engi-

neering, 619(February):607–619.

Richardson, S. (1973). On the no-slip boundary condition. Journal of Fluid

Mechanics, 59(04):707.

Rossi, R., Larese, A., Dadvand, P., and Oñate, E. (2013). An efficient edge-based
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