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Sommario

Il rumore ambientale è un problema pervasivo nella società odierna. Espo-

sizioni per lunghi periodi di tempo a rumori acustici di forte intensità hanno

ripercussioni gravi di tipo fisico, fisiologico e psicologico sulle persone. Per

far fronte a questi problemi, sono state sviluppate tecniche di controllo at-

tivo del rumore (Active Noise Control - ANC), che rimuovono efficacemente

i rumori a bassa frequenza.

In questa tesi presentiamo un nuovo sistema di controllo attivo del ru-

more a banda stretta (Narrowband Active Noise Control - NANC) che è

basato sull’identificazione di stime locali di basso ordine del cammino secon-

dario. Il sistema proposto permette di ridurre il costo computazionale asso-

ciato alle operazioni di filtraggio del segnale di riferimento nei sistemi NANC

basati sull’algoritmo FxLMS, mantenendo allo stesso tempo prestazioni pa-

ragonabili in termini di cancellazione del rumore e velocità di convergenza.

Inoltre, il sistema proposto offre robustezza ai cambiamenti nel cammino

secondario, grazie al basso ordine delle stime locali utilizzate. Questo lavoro

fornisce anche una legge empirica di correzione del guadagno dell’algoritmo

adattivo, che è equivalente alla versione normalizzata dell’algoritmo FxLMS.

Il sistema proposto viene confrontato con il sistema NANC tradizionale

e con due varianti efficienti dal punto di vista computazionale che sono state

studiate nella letteratura. Le analisi computazionali e le simulazioni effet-

tuate mostrano che il sistema proposto riduce notevolmente il costo com-

putazionale del sistema NANC tradizionale senza peggiorare le prestazioni

in maniera significativa. Inoltre, le simulazioni mostrano che le stime lo-

cali si adattano ai cambiamenti nel cammino secondario più rapidamente

rispetto alla stima globale utilizzata finora in letteratura.
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Abstract

Environmental noise is ubiquitous and pervasive in our society. Long-term

exposure to high-intensity acoustic noise has severe and far-reaching phys-

ical, physiological and psychological effects on human beings. For this rea-

son, active noise control (ANC) techniques have been developed to remove

low-frequency noise.

We present in this thesis a novel narrowband ANC (NANC) system

based on the identification of low-order local secondary-path estimates that

reduces the computational cost associated to the reference-filtering oper-

ations of FxLMS-based NANC systems while retaining their performance

characteristics. The proposed system offers more reactive secondary path

online modelling thanks to the low-order of the employed secondary path

estimates. We also provide a step size-correction law that acts as a normal-

isation term for the FxLMS algorithm.

We compare the proposed system with the traditional NANC system and

two cost-effective NANC systems in the literature. Computational analyses

are provided and computer simulations are carried out to assess the perfor-

mance of the proposed system. The proposed system reduces the number of

required computations with respect to the traditional NANC system and its

online-modelling subsystem is faster in adapting to changes in the secondary

path with respect to global online-modelling subsystems.

3





Acknowledgements

First and foremost, I would like to offer my sincere gratitude to my su-

pervisor Prof. Luigi Piroddi, whose precious help, expertise, patience and

constant support during these months has been essential to the completion

of this thesis. I would also like to thank my co-supervisor Prof. Gian-

carlo Bernasconi for his insightful comments and support throughout these

months.

A very special thank you goes out to all the great people I have met

during my two years in Como. This experience would not have been the

same without you.

Last but not least, I would like to thank my family and friends who have

always been there for me.

5





Contents

Sommario 1

Abstract 3

Acknowledgements 5

1 Introduction 15

2 State of the art 19

2.1 A taxonomy of noise-cancelling methods . . . . . . . . . . . . 19

2.1.1 On stability and convergence speed . . . . . . . . . . . 25

2.2 A focus on narrowband ANC . . . . . . . . . . . . . . . . . . 26

2.2.1 Narrowband adaptive sinusoidal canceller . . . . . . . 27

2.2.2 Single-frequency ANC using the filtered-reference LMS

algorithm (traditional system) . . . . . . . . . . . . . 30

2.2.3 Multiple-frequency ANC using the filtered-reference

LMS algorithm . . . . . . . . . . . . . . . . . . . . . . 32

2.2.4 Multiple-frequency ANC using the filtered-reference

LMS algorithm with online modelling of the secondary

path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.5 Single-frequency ANC using delay compensation (Ziegler’s

system) . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Limits of narrowband ANC systems: frequency control and

frequency estimation . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Limits of narrowband ANC systems: time-varying controlled

frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7



2.5 Recent research in narrowband ANC . . . . . . . . . . . . . . 40

2.5.1 Modifications of the parallel narrowband ANC controller 41

2.5.1.1 Xiao’s system . . . . . . . . . . . . . . . . . 41

2.5.1.2 Chang and Kuo’s system . . . . . . . . . . . 42

2.5.1.3 Conclusions . . . . . . . . . . . . . . . . . . . 46

2.5.2 The frequency estimation problem . . . . . . . . . . . 46

2.5.2.1 A theoretical analysis of narrowband ANC

in the presence of frequency mismatch . . . . 46

2.5.2.2 Mitigation of the performance drop due to

frequency mismatch . . . . . . . . . . . . . . 46

2.6 ANC applications . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.1 Headsets . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 The proposed system 51

3.1 Local secondary paths . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 On the excitation signals . . . . . . . . . . . . . . . . 58

3.1.1.1 Bandpassed white noise . . . . . . . . . . . . 58

3.1.1.2 Multiple sinusoids . . . . . . . . . . . . . . . 59

3.2 Online modelling of local secondary paths . . . . . . . . . . . 60

3.2.1 An efficient modification . . . . . . . . . . . . . . . . . 62

3.3 Empirical step size-correction law . . . . . . . . . . . . . . . . 63

3.4 Characteristics of the proposed system . . . . . . . . . . . . . 64

4 Computer simulations 67

4.1 Local secondary paths . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Computational analysis . . . . . . . . . . . . . . . . . 68

4.1.1.1 Space . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1.2 Time . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Identification comparison between local and global es-

timates . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.3 Identification comparison between local estimates with

different excitation signals . . . . . . . . . . . . . . . . 74

4.1.3.1 Effect on control . . . . . . . . . . . . . . . . 75

4.1.4 Speed of convergence and noise cancellation . . . . . . 79

8



4.1.4.1 Simulation one: single-frequency noise . . . . 80

4.1.4.2 Simulation two: multiple-frequency noise . . 80

4.1.4.3 Simulation three: two close frequencies . . . 83

4.1.4.4 Simulation four: frequency mismatch . . . . 85

4.1.4.5 Simulation five: time-varying frequency . . . 85

4.1.4.6 Simulation six: real noise . . . . . . . . . . . 88

4.1.4.7 Conclusions . . . . . . . . . . . . . . . . . . . 90

4.2 Online modelling . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Problem definition . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Simulation seven: online modelling of a global estimate 93

4.2.3 Simulation eight: online modelling of local estimates . 93

4.2.3.1 Online modelling of local estimates (two si-

nusoidal excitation signals) . . . . . . . . . . 95

4.2.4 Computational analysis . . . . . . . . . . . . . . . . . 95

4.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Conclusions and future research directions 99

Bibliography 101

9



10



List of Figures

2.1 Destructive interference. . . . . . . . . . . . . . . . . . . . . . 19

2.2 A physical ANC system and its equivalent block diagram. . . 21

2.3 A typical secondary path. . . . . . . . . . . . . . . . . . . . . 22

2.4 Broadband feedforward ANC. . . . . . . . . . . . . . . . . . . 23

2.5 General narrowband ANC scheme . . . . . . . . . . . . . . . 24

2.6 Broadband feedback ANC. . . . . . . . . . . . . . . . . . . . . 25

2.7 Adaptive notch filter . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Adaptive notch filter bandwidth . . . . . . . . . . . . . . . . 29

2.9 Adaptive notch filter with the FxLMS algorithm. . . . . . . . 30

2.10 Parallel-form narrowband ANC. . . . . . . . . . . . . . . . . . 32

2.11 Parallel-form narrowband ANC with online modelling . . . . 35

2.12 Ziegler’s adaptive filter with secondary path-delay compensa-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.13 Noise attenuation when the controlled frequency changes . . . 41

2.14 Xiao’s system’s shortcomings with close frequencies . . . . . . 43

2.15 Xiao’s system’s reliance on ρ . . . . . . . . . . . . . . . . . . 44

2.16 Performance degradation in the parallel ANC scheme . . . . . 45

2.17 Typical off-the-shelf commercial noise-cancelling headphones. 47

3.1 Proposed system . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Offline modelling in the proposed system . . . . . . . . . . . . 54

3.3 Estimation accuracy of the local models . . . . . . . . . . . . 57

3.4 Proposed system with online modelling . . . . . . . . . . . . . 60

3.5 Efficient modification . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Secondary path . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11



4.2 Identification comparison . . . . . . . . . . . . . . . . . . . . 73

4.3 Identification comparison: single-sinusoid approach . . . . . . 76

4.4 Identification comparison: two-sinusoid approach . . . . . . . 77

4.5 Identification comparison: bandpassed white-noise approach . 78

4.6 Performance comparison between local estimation approaches 79

4.7 First simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8 First simulation bis . . . . . . . . . . . . . . . . . . . . . . . . 82

4.9 Second simulation . . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 Third simulation . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 Fourth simulation . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.12 Fifth simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.13 Motorbike noise . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.14 Sixth simulation . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.15 Secondary path change . . . . . . . . . . . . . . . . . . . . . . 92

4.16 Global online modelling . . . . . . . . . . . . . . . . . . . . . 94

4.17 Local online modelling . . . . . . . . . . . . . . . . . . . . . . 96

4.18 Local online modelling bis . . . . . . . . . . . . . . . . . . . . 97

12



List of Tables

4.1 The memory needed to store the local secondary paths as a

function of the number of local models K and their order L. 70

4.2 The number of multiplications per iteration needed to con-

volve the reference signals as a function of the number of

controlled harmonics M and the order of the secondary-path

estimates L and L′. . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Comparison between the cost and performance of the evalu-

ated systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Online modelling computational cost . . . . . . . . . . . . . . 98

13



14



Chapter 1

Introduction

Environmental noise is ubiquitous and pervasive in our society. Long-term

exposure to high-intensity acoustic noise presents a potential health hazard

in the form of noise-induced hearing loss (NIHL), cardiovascular disease,

stress, sleep disturbance, childhood cognitive development and annoyance.

Major sources of noise pollution include: industrial and agricultural activ-

ities, transportation, household items and social events. Noise regulations

aim to mitigate the ill effects of noise pollution via efficient urban planning,

architectural design and noise control.

The rotating components in vehicles and industrial machinery emit high-

decibel low-frequency periodic noise. Long periods of exposure to low-

frequency noise may lead to fatigue and loss of concentration, which may

result in reduced comfort and occupational accidents. Noise control is thus

necessary. Traditional passive noise-control techniques such as enclosures,

barriers and silencers are not effective because the wavelengths associated

to low-frequency noise are large with respect to the thickness of the acoustic

absorbers typically allowed in these applications. In order to attenuate low-

frequency periodic noise, active noise control (ANC) techniques have been

developed. ANC works by superposition: the undesired noise is cancelled

by injecting an anti-noise signal of equal amplitude and opposite phase us-

ing a secondary source, such as a loudspeaker. This is called destructive

interference. More specifically, a reference microphone picks up a measure-

ment of the noise and the ANC system processes it to generate a driving



signal for the cancelling loudspeaker. An error microphone is placed where

the anti-noise signal is injected to monitor the performance of the system.

Low-cost and fast computational devices such as digital signal processors

(DSPs) are used to implement a wide variety of digital ANC algorithms

based on adaptive filters. These filters are employed as controllers to drive

the secondary source and they are often based on variations of the Least

Mean Squares (LMS) algorithm, such as the Filtered-x Least Mean Squares

(FxLMS) algorithm. FxLMS compensates the phase delays introduced by

the measurement and control chain by convolving the reference signal with a

finite impulse response (FIR) estimate of the so-called secondary path. The

performance and stability of FxLMS-based ANC systems depends largely

upon the secondary path and its estimate.

Since most of the spectral power in the applications mentioned above is

concentrated in the harmonic components of the noise, narrowband ANC

techniques have been developed to attenuate those components. Narrow-

band ANC systems inject synthesised sine waves (the reference signals)

which are adaptively phase shifted and amplified to control corresponding

harmonics in the undesired noise. The parallel-form narrowband ANC sys-

tem based on Widrow’s adaptive notch filter [1] convolves each sinusoidal

reference signal with an estimate of the secondary path in order to obtain

the filtered-reference signals necessary for the FxLMS algorithm [2]. More-

over, since the environment is often time varying in industrial workplaces or

aircraft cabins, narrowband ANC systems include a subsystem that updates

the secondary-path estimate during the operations of the system to avoid

instability.

The narrowband ANC system based on Widrow’s adaptive filter and the

FxLMS algorithm offers fast and effective narrowband attenuation, but the

reference-filtering operations determine a computational cost that grows lin-

early with both the order of the FIR secondary-path estimate and the num-

ber of controlled harmonics. Therefore, the computational cost associated

to the reference-filtering operations may become a performance bottleneck

in the implementation of the system. Moreover, the online-modelling sub-

system is often quite slow in adapting the secondary-path estimate due to

the high order of the estimate, which may render the system unstable if the

16



estimation errors exceed the stability condition. Finally, since it is imprac-

tical to manually set a step size for each adaptive narrowband controller,

narrowband ANC systems often rely on the normalised FxLMS algorithm,

which further increases their computational cost.

Systems have been proposed in the literature to reduce the computa-

tional burden of the parallel-form narrowband ANC system and to offer the

same performance in terms of noise cancellation and speed of convergence. In

1989 [3] Ziegler developed a narrowband ANC system that compensates the

delay introduced by the secondary path by estimating the integer phase de-

lay it introduces on the controlled harmonics, so that the reference-filtering

operations only consist in a time delay. This system is computationally

very efficient but the estimation errors limit its convergence speed and noise

cancellation. More recently [4] Xiao proposed a system where the reference

signals are summed, their sum is convolved with the secondary-path esti-

mate and each filtered reference signal is retrieved by filtering the convolved

signal through a bank of bandpass filters. While not computationally as effi-

cient as Ziegler’s system, Xiao’s system only performs one reference-filtering

operation regardless of the number of controlled harmonics and maintains

the same convergence-speed and noise-cancellation properties of the origi-

nal system in many situations. However, it relies on the correct a priori

choice for a bandwidth-control parameter of the bandpass filters to separate

the filtered reference signals, especially if their frequencies are close: if this

parameter is too small, the system may be unstable; if it is too large, the

system may exhibit slow convergence.

In this thesis, a novel cost-effective approach to the compensation of

the delays introduced by the secondary path in narrowband ANC systems

is proposed. Instead of using a single global high-order FIR model, we in-

vestigate how multiple local lower-order FIR models (called local secondary

paths) may be employed to obtain the filtered reference signals. A compu-

tational analysis establishes that the proposed system reduces the number

of required computations with respect to the original system. Simulations

show that the proposed system offers comparable convergence speed and

noise cancellation with respect to the original system and that it outper-

forms Ziegler’s and Xiao’s systems in situations that are critical for those

17



systems. Furthermore, simulations show that the online modelling of local

secondary paths is more reactive to changes in the secondary path than the

global online-modelling system thanks to the low order of the local esti-

mates. This increased reactivity makes the system less prone to instability

if the environment changes fast. Finally, we provide an empirical step size-

correction law that is equivalent to the normalised FxLMS algorithm and

less computationally demanding.

The thesis is organised as follows. Chapter 2 contains a review of ANC

methods with a focus on narrowband systems and their limits. An overview

of the recent research in narrowband ANC is presented. A thorough bibli-

ographic research on one of the most successful ANC applications, namely

noise-cancelling headsets, is also provided. In Chapter 3 the proposed sys-

tem based on the identification of local secondary paths is introduced and

discussed, together with the online-modelling subsystem and the step size-

correction law. In Chapter 4 the proposed system, Ziegler’s system and

Xiao’s system are analysed and tested against the traditional system. Com-

putational analyses are provided to assess the reduction in computational

cost allowed by the evaluated systems. Simulations are carried out to deter-

mine how the speed of convergence and noise cancellation of the evaluated

systems compares to the traditional system. Chapter 5 reports the conclu-

sions and future research directions.
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Chapter 2

State of the art

2.1 A taxonomy of noise-cancelling methods

Acoustic noise can be controlled using passive-cancellation techniques such

as enclosures, barriers and silencers. These devices combine different ab-

sorbing materials in order to reduce the unwanted interference and they can

achieve high attenuation over a broad frequency range at the cost of using

thicker materials. For this very reason however, in many practical applica-

tions where the controller cannot afford to be bulky (e.g. headsets, helmets,

cars or planes), passive techniques fail to remove low frequencies effectively.

As a consequence, active noise control (ANC) techniques were devel-
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Figure 2.1: Destructive interference.



oped; ANC works by superposition: the undesired noise is cancelled by

injecting an anti-noise signal of equal amplitude and opposite phase us-

ing an electroacoustic or electromechanical actuator. This phenomenon is

called destructive interference (Figure 2.1). The main advantages of ac-

tive control technologies over passive methods are the reduced cost and the

improvements in low-frequency attenuation. Therefore many commercial

noise-removal systems combine passive and active techniques.

The first acoustic ANC system was patented in 1936 by Lueg [5]. This

analogue system was composed of a microphone and an electronically driven

loudspeaker that generated a cancelling sound. Figure 2.2a shows the single-

channel duct-acoustic ANC setting: a reference microphone measures the

primary noise within the duct, which is then processed by the ANC system

to generate the driving signal for the cancelling loudspeaker. Finally, the

primary noise and cancelling signal sum up at the error-microphone loca-

tion. The objective of the ANC controller is to minimise the residual noise

contained in the error signal. This setting can be interpreted as a system-

identification problem as shown in Figure 2.2b, where an adaptive filter

W (z) estimates an unknown time-varying plant P (z), which represents the

acoustic response from the reference microphone to the error microphone, so

that the error signal may be minimised. It should be noted that this scheme

is applicable to a large variety of acoustic problems.

The advent of fast and low-cost computational devices such as digital

signal processors (DSPs) has made the digital implementation of active con-

trollers possible. Although digital systems suffer from the delay introduced

by the analogue-to-digital and digital-to-analogue converters and the phase

delay introduced by the antialiasing low-pass filter, which degrade both the

control bandwidth and the attenuation level, they allow the implementa-

tion of adaptive algorithms, so that issues related to time-varying and non-

stationary noise sources or environments may be tackled effectively.

Most adaptive digital controllers are based on variations of the Least

Mean Squares (LMS) algorithm, a stochastic gradient descent method widely

used in many fields of engineering because of its effectiveness and relatively

low computational cost. Other algorithms commonly used in the field of

ANC are based on infinite impulse response (IIR), lattice and transform-
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Figure 2.2: A physical ANC system and its equivalent block diagram.

domain filters.

In ANC applications a non-negligible phase delay is introduced by the so-

called secondary path. This transfer function (Figure 4.1a) accounts for the

measurement and control chain at the summing junction, i.e. the digital-

to-analogue converter, the reconstruction filter, the power amplifier, the

loudspeaker dynamics, the acoustic path from the loudspeaker to the mi-

crophone, the error microphone, the preamplifier, the anti-aliasing filter and

finally the analogue-to-digital converter (as described in [6]) and it can be

compactly modelled by an infinite impulse response (IIR) filter

S(z) =

∑P
i=0 biz

−i

∑Q
j=0 ajz

−j
. (2.1)

For this reason, variations of the LMS algorithm have been proposed in

the ANC literature whose performance depends largely upon the estimation

of the secondary path. For example, a zero in the secondary path causes an

unobservable and thus uncontrollable frequency component.

Adaptive digital noise cancellers may be based either on feedforward

21
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Ŝ(z)

LMS

x(n) d(n)

y′(n)y(n)

x′(n)

+

−

W (z)

Figure 2.4: Broadband feedforward ANC.

control or on feedback control.

In digital feedforward control systems (Figure 2.4) an external sensor

(called reference microphone) picks up a measurement of the external noise

x(n), which is subsequently filtered by the LMS-based controller W (z) and

fed to the loudspeaker. An internal sensor (called error microphone) is used

to tune the digital filter in order to minimise the error signal e(n) at this

location. The adaptive controller W (z) is used to simultaneously estimate

the unknown time-varying plant P (z) and invert the secondary path S(z).

To achieve this, the most commonly used variation of the LMS algorithm is

the so-called filtered-reference LMS (FxLMS) algorithm, which is based on

the following update equation:

w(n+ 1) = w(n) + µx′(n)e(n), (2.2)

where w(n) = [w0(n) w1(n) ... wL−1(n))]
T are the coefficients of the L-

order adaptive FIR filter W (z), x(n) = [x(n) x(n− 1) ... x(n− L+ 1))]T is

the signal vector, x′(n) = (ŝ ∗ x)(n) is the filtered signal vector and µ > 0

is a step size. Refer to [7] for a complete description and analysis of the

algorithm.

The main constraint on feedforward ANC systems is that the electrical

delay between the two microphones must not exceed the acoustic delay lest

the cancellation signal arrive too late to act on the unwanted noise. If that

is the case, then only cancellation of periodic (i.e. predictable) noise can be

achieved by feedforward systems.
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Figure 2.5: General narrowband ANC scheme using a non-acoustic sensor to estimate

the frequency of the sinusoidal interferences.

A problem this system may suffer from is acoustic feedback, which hap-

pens when the generated anti-noise signal radiates upstream to the primary

microphone. This may lead to instability or performance degradation and

variants of the FxLMS algorithm have been proposed to solve this problem.

For example, the so-called filtered-u LMS (FuLMS) algorithm was proposed

by Eriksson in [8].

This feedforward configuration (sometimes called broadband ANC ) is

fastest when controlling flat-spectrum noise signals such as white noise, but

works in principle on any kind of noise. When the noise to be removed

is periodic however, a single-microphone feedforward configuration may be

used.

Narrowband ANC systems (Figure 2.5) control harmonic sources by

adaptively filtering an internally generated reference signal. The signal gen-

erator is triggered by a non-acoustic sensor (such as a tachometer) and the

produced reference signal can either be a train of impulses (waveform syn-

thesis) or a sine wave (adaptive notch filter).

A digital feedback control system (Figure 2.6) works like a broadband

feedforward system that synthesises its reference signal based on the adap-

tive filter output and the error signal, thus avoiding acoustic feedback en-

tirely. The main advantages of this configuration are its compactness, low

cost and effectiveness at controlling harmonic noise.
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Figure 2.6: Broadband feedback ANC.

2.1.1 On stability and convergence speed

The theoretical analysis of the FxLMS algorithm in the broadband feedforward-

control case (Figure 2.4) highlights that both the stability and the perfor-

mance of the FxLMS algorithm depend on the secondary path [6]:

Stability A frequency-domain analysis of the time-domain behaviour of the

FxLMS algorithm shows that stability is ensured as long as the phase

error between the estimated secondary path and the actual secondary

path stays below 90◦ at all frequencies.

Performance The convergence speed of the FxLMS algorithm depends in-

stead on the eigenvalue spread of the autocorrelation matrixR, defined

as R = E[x(n)x(n)T ]; the larger the eigenvalue spread, the longer

the convergence time. As a consequence, flat-spectrum signals such

as white noise show fastest convergence. Moreover, despite the algo-

rithm robustness to secondary-path estimation errors both in phase

and magnitude, these errors do slow down the adaptation process.

For these reasons, the secondary path is estimated offline prior to the

operations of the ANC system. However, if the environment changes, the

secondary-path phase response might change by more than 90◦, making the

FxLMS algorithm unstable. Hence, the secondary-path estimate must be

updated when the ANC system is operating to ensure both stability and

performance.
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Several techniques have been proposed to tackle the time variance of

the secondary path: some are based on the injection of an excitation signal

in the system to update the secondary-path estimate online, others exploit

application-specific characteristics of the problem to avoid instability. See

[7] for an in-depth overview of secondary-path online modelling techniques.

2.2 A focus on narrowband ANC

In many applications the undesired noise has a periodic nature if the noise

source is related to rotating machinery, such as engines, compressors, motors,

fans, propellers, etc. Air-acoustic ANC systems can therefore employ a non-

acoustic sensor (e.g. an accelerometer, a tachometer or an optical sensor)

to estimate the fundamental frequency of the noise and generate a reference

signal that is unaffected by the acoustic actuator radiating upstream to the

sensor.

As shown in Figure 2.5, the system filters the synthesised reference signal

x(n) throughW (z) to produce a cancelling signal y(n) and adapts the digital

controller W (z) with an error microphone placed in the noise field. This

technique has the following advantages [6]:

• The acoustic feedback problem of feedforward broadband ANC sys-

tems is avoided.

• The periodicity of the noise removes allows longer controller delays.

• Using synthesised reference signals allows the independent control of

each periodic component.

• Lower-order controllers may be used since the acoustic path transfer

functions only need to be modelled in a neighbourhood of the harmonic

tones, which results in computational efficiency.

• Typical problems associated with acoustic sensors, such as nonlineari-

ties and aging, are avoided (e.g. the high temperatures found in engine

exhausts can make it difficult to retrieve an acoustic measurement of

the noise).
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Figure 2.7: Widrow’s sinusoidal canceller or adaptive notch filter.

Two classic narrowband ANC techniques are the waveform synthesis and

the adaptive notch filter. The first method uses a train of impulses whose

period is equal to the inverse of the fundamental frequency of the harmonic

noise as its reference signal. The second method uses synthesised sinusoidal

signals that have the same frequencies as the harmonic tones to be cancelled.

Our focus will be on the latter, since waveform synthesis only works under

very constrained conditions [7].

The single-frequency adaptive notch filter was first proposed in 1975 by

Widrow [1] as a way to cancel sinusoidal interferences from a given sig-

nal. Applications of this technique were later formulated in the context of

narrowband ANC [3] [2].

2.2.1 Narrowband adaptive sinusoidal canceller

The basic idea behind the single-frequency adaptive notch filter as proposed

by Widrow is that by injecting a sine wave and adaptively tuning its phase

and amplitude the filter can cancel a sinusoidal interference at a specific

frequency (Figure 2.7). In fact, any signal u(n) corrupted by a sinusoidal
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interference at frequency f0 can be written as

d(n) = an cos(2πf0n) + bn sin(2πf0n) + u(n). (2.3)

The controller injects a linear combination of the reference signal x0(n) =

A cos(2πf0n) and its phase-shifted version x1(n) = A sin(2πf0n) at the con-

trol point

y(n) = w0(n)x0(n) + w1(n)x1(n), (2.4)

and uses the error signal e(n) = d(n)−y(n) to tune the two adaptive coef-

ficients w0(n) and w1(n) so that they converge to the two Fourier coefficients

of the interference scaled by the reference-signal amplitude (respectively an
A

and bn
A
). The adaptation is based on the LMS update law:

wi(n+ 1) = wi(n) + µxi(n)e(n) i = 0, 1. (2.5)

After convergence, the residual error is

e(n) ≈ u(n) (2.6)

and the controller will try to track any phase or magnitude change that

may occur in the sinusoidal interference.

It can be shown that after convergence the transfer function from e(n)

to y(n) is equivalent to

G(z) ≈ µA2 z cos(2πf0)− 1

z2 − 2z cos(2πf0) + 1
. (2.7)

This transfer function has two complex-conjugate poles on the unit circle

at z = e±j2πf0 and a real zero at z = 1
cos(2πf0)

.

The steady-state transfer function H(z) from the corrupted primary in-

put d(n) to the error signal e(n) is

H(z) =
E(z)

D(z)
=

1

1 +G(z)
=

z2 − 2z cos(2πf0) + 1

z2 − (2− µA2)z cos(2πf0) + 1− µA2
. (2.8)

The zeros of H(z) are the poles of G(z) and its poles are located roughly

at the same angle of the zeros but inside the unit circle (provided that µ is

small enough). It can be proven that the stability condition is
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Figure 2.8: The bandwidth of the adaptive notch filter depends on the µA2 gain.

0 < µ <
2

A2
. (2.9)

Since the zeros lie on the unit circle, the filter achieves an infinite null

at the frequency f0. The sharpness of the notch depends on the µA2 factor,

which determines the closeness of the poles to the unit circle. Figure 2.8

shows a typical frequency response of the adaptive sinusoidal canceller. Us-

ing a larger step size has the effect of providing wider notches and faster

tracking of jittering frequencies.

A convergence analysis of the LMS algorithm shows that the adaptive

notch filter exhibits very fast convergence since the eigenvalue spread of the

autocorrelation matrix equals one. Variations of this algorithm employing

non-orthogonal reference signals, such as x0(n) = A cos(2πf0n) and x1(n) =

x0(n− 1), will exhibit a slower convergence but will converge nonetheless.

This controller cannot be applied to ANC problems as is because it does

not account for the phase delay and amplitude change introduced by the

secondary path. We will present in the following sections two modifications

to Widrow’s adaptive notch filter, where the sinusoidal reference signals

are convolved with an estimate of the secondary path so that the FxLMS

algorithm may be used. The first method estimates S(z) with an FIR filter
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Figure 2.9: Adaptive notch filter with the FxLMS algorithm.

Ŝ(z), while the second method estimates the phase delay ∆ introduced by

S(z) exactly at the controlled frequency and delays the reference signal

accordingly. The first approach yields good noise-attenuation results but is

computationally demanding because it requires a high-order FIR estimate

to operate correctly and ensure stability; viceversa, the second approach

is computationally very efficient but does not perform as well because the

estimated phase delay is never exact in practice.

2.2.2 Single-frequency ANC using the filtered-reference LMS

algorithm (traditional system)

A popular approach for the compensation of the secondary path is to em-

ploy a global secondary-path estimate Ŝ(z), as in the FxLMS algorithm [2]

(Figure 2.9). The adaptive weights are updated as

wi(n+ 1) = wi(n) + µx′i(n)e(n) i = 0, 1 (2.10)

where x′0(n) and x′1(n) are the filtered versions of the two reference sig-

nals through the secondary-path model Ŝ(z).

If the primary input can be written as

d(n) = Ad cos(2πf0n+Φd) (2.11)

and the injected control signal as
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y(n) = (x0 ∗ w ∗ s)(n) = AAwAs cos(2πf0n+Φw +Φs) (2.12)

then the error signal is

e(n) = Ad cos(2πf0n+Φd)−AAwAs cos(2πf0n+Φw +Φs), (2.13)

where Aw =
∣

∣W (ej2πf0)
∣

∣, Φw = ∠W (ej2πf0) and similarly As and Φs

denote respectively the amplitude and phase of the secondary path at fre-

quency f0.

Therefore, the optimal controller, in order to minimise the error signal,

will adapt the filter weights so that

Aw =
Ad

AAs
(2.14)

and

Φw = Φd − Φs, (2.15)

i.e. it will tune the phase and magnitude of the injected signal to both

compensate for the amplitude and phase shift introduced by the secondary

path (inversion of S(z)) and identify the amplitude and phase of the unde-

sired periodic interference (modelling of P (z)).

It can be proven that in the limit of slow adaptation the transfer function

from d(n) to e(n) becomes

H(z) =
z2 − 2z cos(2πf0) + 1

z2 − [2 cos(2πf0)− β cos(2πf0 − Φ∆)]z + 1− β cosΦ∆
(2.16)

where Φ∆ = ΦS − Φ
Ŝ
is the phase difference between S(z) and Ŝ(z) at

f0 and β = µA2As. H(z) notches at f0 and is stable if and only if

−90◦ < Φ∆ < 90◦, (2.17)

i.e. when the secondary-path phase estimation error is limited between

±π
2 . This stability condition is the same as the one found for the broadband

feedforward configuration.
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Figure 2.10: Parallel-form narrowband ANC.

2.2.3 Multiple-frequency ANC using the filtered-reference

LMS algorithm

When the sinusoidal interference is multi-harmonic, i.e.

d(n) =

M−1
∑

i=0

(ai cos(2πfin) + bi sin(2πfin)) + u(n), (2.18)

different approaches may be tried [6]:

• A signal containing multiple frequencies (such as a sum of sinusoids, a

square wave, a triangular wave, etc) may be employed as the excitation

signal. This method has several drawbacks, such as the need to use a

higher-order adaptive controller and one single step size which makes

it virtually impossible to control each interference independently.

• Single-frequency narrowband ANC systems may be connected in cas-

cade, but this structure suffers from the increase in computational cost

and convergence speed each time a further stage is added.

• Finally, single-frequency narrowband cells may be connected in paral-

lel, which is the most commonly studied configuration in the narrow-

band ANC literature for its simplicity and effectiveness at controlling

multiple harmonics.

The block diagram for the parallel configuration is shown in Figure 2.10.
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Each single-frequency ANC controller is connected in parallel and their

outputs

yi(n) = w0,i(n)x0,i(n) + w1,i(n)x1,i(n) i = 0, . . . , M − 1 (2.19)

are summed into

y(n) =
M−1
∑

i=0

yi(n), (2.20)

which is subsequently fed to the loudspeaker at the control point.

The adaptive coefficients are updated using a single error signal e(n)

according to the FxLMS algorithm

w0,i(n+ 1) = w0,i(n) + µix
′

0,i(n)e(n) i = 0, . . . , M − 1, (2.21a)

w1,i(n+ 1) = w1,i(n) + µix
′

1,i(n)e(n) i = 0, . . . , M − 1 (2.21b)

where x′0,i(n) and x′1,i(n) are the filtered reference signals and µi are the

step sizes of each narrowband ANC block.

Since the secondary path attenuates some frequencies and amplifies some

others according to its resonances, when the reference signals are convolved

with the secondary-path estimate they are scaled by the magnitude value of

the transfer function at the controlled frequency. This effectively scales the

step size. In fact, the FxLMS update rule for the first coefficient becomes

w0,i(n+ 1) = w0,i(n) + µix
′

0,i(n)e(n) =

= w0,i(n) + µiAŜ
A cos(2πfin+Φ

Ŝ
)e(n)

i = 0, . . . , M − 1

(2.22)

where A
Ŝ
=
∣

∣

∣
Ŝ(ej2πfi)

∣

∣

∣
and Φ

Ŝ
= ∠Ŝ(ej2πfi) and similarly for the sec-

ond coefficient. Let us remind that by reducing the step size convergence

slows down and conversely by increasing the step size the convergence time

decreases.
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Using a parallel configuration when controlling multiple harmonics offers

a great deal of flexibility in this respect, thanks to the fact that each nar-

rowband block can use a different step size µi to compensate for this scaling.

Multiple-frequency narrowband ANC systems that use a single reference sig-

nal containing all the harmonics to be controlled (e.g. a rectangular wave)

and a single controller, instead, are forced to use a single step size for all

narrowband components. This entails balancing two conflicting goals. On

the one hand, a large step size is needed to compensate for the performance

drop due to the attenuation of some frequencies. On the other hand, a large

step size can be further magnified if the secondary path has a resonance

around one of the controlled frequencies, which may destabilise the entire

system. Parallel systems do not have to deal with this tradeoff because each

step size µi may be chosen independently from the others.

Since in practice it is not trivial to choose a step size for each controlled

harmonic a priori, most systems either use the same step size for all con-

trolled frequencies or they implement the normalised version of the FxLMS

algorithm:

w0,i(n+ 1) = w0,i(n) +
µix

′
0,i(n)e(n)

x′0,i(n)
2 + ǫ

i = 0, . . . , M − 1, (2.23a)

w1,i(n+ 1) = w1,i(n) +
µix

′
1,i(n)e(n)

x′1,i(n)
2 + ǫ

i = 0, . . . , M − 1, (2.23b)

where ǫ is a small regularisation term and µi in this case is the normalised

step size. This removes the need to manually tune every step size, but it

comes at the cost of additional multiplications that increase linearly with

the number of controlled harmonics.

Another problem of the parallel-form ANC system is the computational

cost of convolving each reference signal with the secondary-path estimate

Ŝ(z), whose order L′ in many practical situations must be quite large to

provide a decent approximation of the secondary path: increasing the num-

ber of controlled harmonics M results in a linear increase in the computa-

tional load. In particular, the overall system performs ML′ multiplications

per iteration to obtain the filtered reference signal of each narrowband ANC

unit.
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Figure 2.11: Parallel-form narrowband ANC with online modelling. This system can

also perform offline modelling when the ANC units are switched off (yi(n) ≡ 0 ∀i, n).

2.2.4 Multiple-frequency ANC using the filtered-reference

LMS algorithm with online modelling of the secondary

path

In general, the secondary path S(z) does not remain constant in time because

the environment in many ANC applications is time-varying. This means that

the estimate Ŝ(z), which is learnt prior to the operations of the system, may

diverge from S(z) to the point of instability. To avoid this from happening,

an online-modelling subsystem may be added to the ANC scheme. Many

online-modelling schemes have been proposed in the literature, such as the

one shown in Figure 2.11.

A broadband exciting signal (such as white Gaussian noise) a(n) of vari-

ance σ2
a is injected into the system at the control point:

y(n) =
M−1
∑

i=0

yi(n)− a(n). (2.24)

The secondary-path model is updated using the signal

e′(n) = e(n)− a′(n) (2.25)

with the FxLMS algorithm:

ŝ(n+ 1) = ŝ(n) + µsa(n)e
′(n) (2.26)

where
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• ŝ(n) = [ŝ0(n) ŝ1(n) . . . ŝL′−1(n)]
T is the impulse response of the secondary-

path estimate Ŝ(z),

• a(n) = [a(n) a(n− 1) . . . a(n− L′ + 1)]T is the excitation-signal vec-

tor and

• µs is the step size.

If we turn off the ANC units (µi = wj,i(n) = 0 ∀i, j, n), the z transform

of e′(n) becomes

E′(z) = D(z) +
(

S(z)− Ŝ(z)
)

A(z), (2.27)

whose minimum (when minimising with respect to Ŝ(z)) is reached for

Ŝ(z) = S(z).

Similarly, e′(n) should be used when adapting the ANC filters instead of

e(n) because, once the secondary-path model has converged to its optimal

solution and the ANC units have been switched on, we have that

E′(z) ≈ D(z)−

M−1
∑

i=0

S(z)Yi(z), (2.28)

which is equivalent to the expression for E(z) in the system without

online modelling, whereas

E(z) = D(z)−
M−1
∑

i=0

S(z)Yi(z) + S(z)A(z) (2.29)

contains the online-modelling excitation signal which would disturb and

slow down (or possibly bias) the convergence of the ANC units. The formula

also highlights that the variance of the excitation signal a(n) must be kept

small because, despite not disturbing the convergence of the ANC filters once

Ŝ(z) has converged, a(n) is heard at the control point and thus influences

the achievable noise-attenuation level.

Online modelling algorithms can adapt the secondary-path estimate when

S(z) is slowly varying, but they may become unstable when the changes are

abrupt and large. For this reason, application-specific approaches have been

proposed in the literature. However, even when the changes are not abrupt,
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Figure 2.12: Ziegler’s adaptive filter with secondary path-delay compensation.

online-modelling algorithms may fail to update Ŝ(z) fast enough before S(z)

changes further, which may allow the phase error between S(z) and Ŝ(z)

to grow beyond 90◦. This is due to the fact that the step size for online

modelling, and therefore the convergence speed of the online-modelling sub-

system, is constrained by the large order L′ of Ŝ(z):

µs <
0.1

L′σa
. (2.30)

2.2.5 Single-frequency ANC using delay compensation (Ziegler’s

system)

Another application of Widrow’s adaptive notch filter to narrowband ANC

was developed by Ziegler in 1989 [3] (Figure 2.12). The proposed sys-

tem compensates for the secondary-path transfer function by estimating

the phase delay it introduces at the controlled frequency f0.

The LMS algorithm updates the filter weights to minimise the residual

error e(n):

wi(n+ 1) = wi(n) + µxi(n−∆)e(n) i = 0, 1. (2.31)

This update law can be interpreted as a particular case of the FxLMS

algorithm where the secondary-path estimate is Ŝ(z) = z−∆.

Since in general the phase delay depends on the frequency to be con-

trolled, the phase-dependent phase lag ∆(f) can be computed by taking the
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discrete Fourier transform of the secondary-path impulse response, comput-

ing the phase delay

τ(f) = −
∠Ŝ(f)

2πf
, (2.32)

where ∠Ŝ(f) represents the phase response of the secondary path eval-

uated at frequency f , and finally by approximating the phase lag as

∆ = nint

[

τ(f0)

Ts

]

(2.33)

where Ts is the sampling period and nint is the nearest-integer function.

Since the phase lag ∆ must be integer, the delay compensation intro-

duced by the z−∆ block will not in general be the same phase delay intro-

duced by the actual secondary path S(z). This is especially aggravated as

the sampling frequency gets smaller since the choice for phase lags becomes

more coarse-grained and this causes larger estimation errors. For this rea-

son, Ziegler’s controller, while computationally very efficient with respect to

the approach based on FxLMS since it requires no multiplications to obtain

its equivalent filtered reference signals x0(n − ∆) and x1(n − ∆), will per-

form worse because a phase error in the estimation of the secondary path is

always present in practice.

2.3 Limits of narrowband ANC systems: frequency

control and frequency estimation

Narrowband ANC systems based on Widrow’s adaptive notch filter outper-

form broadband techniques when the undesired noise is multi-harmonic, but

this advantage comes at the significant cost of frequency estimation; in fact,

the signal generator must know the frequency (frequencies) of the periodic

interference (interferences) in order to synthesise the correct reference signal

and an error in the frequency estimation degrades the achievable noise atten-

uation, because Widrow’s filter exhibits a perfect null only at the estimated

frequency.

Since engine-produced frequencies at steady state tend to fluctuate to

some extent and slight errors in the frequency estimation are always present
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in practice, due, if nothing else, to the finite-precision arithmetics of the

processor, the theoretical analysis of the performance and stability of the

adaptive notch filter in the case of frequency mismatch (FM from now on)

is important.

The 3-dB bandwidth of the notch filter can be estimated as [9]

B ≈
µA2

2πTs
, (2.34)

where µ is the step size, A is the amplitude of the reference signal and

Ts is the sampling period. Thus, a first rough but effective method for

improving the attenuation when FM occurs is to choose a larger step size

within the limits of stability.

Equation 2.34 also highlights another important property of the adap-

tive notch filter: the out-of-band attenuation is directly proportional to the

sampling frequency. In fact, while in the ideal case the adaptive weights

converge to a constant solution, in the case of FM they converge to an os-

cillating solution in order to make up for the frequency-estimation error: a

larger sampling frequency gives the system more leeway for this adjustment.

The actions that can be taken to improve FM attenuation on the con-

troller side are therefore limited by the very nature of the adaptive notch

filter. For this reason, it is important to design a robust and precise fre-

quency estimator. Some solutions in this area include:

Hardware-based approach Use an external hardware device such as an

tachometer or phase-locked loops (PLL’s) to provide a reliable estima-

tion of the fundamental frequency.

Adaptive algorithms Adaptive frequency trackers have been developed

in the literature, such as Regalia’s lattice-based IIR adaptive notch

filter [10]. These algorithms often find difficulties in tracking multiple

frequencies however.

Pitch detection algorithms Non-adaptive frequency trackers may also

be employed, even though these algorithms must resolve a tradeoff be-

tween computational cost and accuracy: for example, the zero-crossing
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method is computationally efficient but not reliable in practical appli-

cations, while the mel-frequency cepstrum method is accurate but it

requires more computations.

2.4 Limits of narrowband ANC systems: time-

varying controlled frequencies

So far we have assumed that the frequencies of the reference signals remain

constant in time. In practical situations however, periodic interferences tend

to vary not only in phase and amplitude but also in frequency. While narrow-

band ANC systems based onWidrow’s adaptive filter can adapt to phase and

amplitude changes, they are less effective against frequency mismatch, which

inevitably degrades the achievable noise attenuation (see Equation 2.34).

Figure 2.13 shows what happens when the controlled frequency grows

smoothly and the reference-signal frequency follows it. In both simulations,

the sampling frequency is Fs = 8000Hz, the step size is set to µ0 = 0.0028

and we assumed that the frequency estimator yields the correct value for the

controlled frequency at each iteration. Even under this unrealistic hypoth-

esis, the simulations show that when the frequency variation is too steep

(as in Figure 2.13b), the system struggles to attenuate the noise when the

change is taking place. This suggests that narrowband ANC systems remove

noise effectively only when the controlled frequency varies slowly or when it

remains constant for long periods of time (e.g. industrial machinery working

at steady-state) and, consequently, this suggests that performing frequency

estimation at every iteration may be an unnecessary computational cost.

2.5 Recent research in narrowband ANC

Multi-harmonic control and frequency estimation can be seen as two comple-

mentary tasks in the field of narrowband ANC. In the following two sections,

we will discuss these two problems in the context of the recent literature.
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(a) The controlled frequency grows from f0 = 300Hz to f0 = 301Hz in 500ms.
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(b) The controlled frequency grows from f0 = 300Hz to f0 = 320Hz in 500ms.

Figure 2.13: Testing the traditional ANC system when the controlled frequency varies

smoothly from one value to another in 500ms.

2.5.1 Modifications of the parallel narrowband ANC con-

troller

2.5.1.1 Xiao’s system

As already mentioned in the previous sections, when more than one har-

monic noise component must be controlled, each reference signal must be

convolved with the secondary-path FIR estimate Ŝ(z), whose order L′ in

many practical situations can be quite large to provide a decent approxi-

mation of the secondary path (at least one hundred). As a consequence,

increasing the number M of controlled harmonics results in a linear increase

in the computational load.

In 2008 [4] Xiao proposed a variation of the parallel narrowband ANC

system that avoids this computational burden by summing every reference

signal, convolving the resulting signal with the secondary-path estimate and
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then retrieving each filtered reference signal with a bank of IIR bandpass

filters

Hbp,i =
(ρ− 1)ciz

−1 + (ρ2 − 1)z−2

1 + ρciz−1 + ρ2z−2
i = 0, 1, . . . M − 1, (2.35)

where ci = −2 cos(2πfi) and ρ is a pole-attraction factor. Thus the

new system requires fewer multiplications since it only performs one Ŝ(z)

convolution instead of M convolutions per iteration.

However, when two controlled frequencies are close, the bandpass filters

struggle to separate their frequency peaks. To do so, they must use a larger

ρ, which increases the time constant associated to the bandpass filters. This

slows down the convergence as shown in Figures 2.14 and 2.15. Xiao’s

system takes a longer time to reduce the noise by 20dB with respect to the

traditional system and its behaviour is very sensitive to the choice of the

pole-attraction factor ρ.

2.5.1.2 Chang and Kuo’s system

In order to cancel several narrowband components, the parallel-form nar-

rowband ANC system uses a single error signal containing all harmonics to

update all adaptive filters. This degrades the convergence speed and thus

noise reduction, since the other harmonic components act as a disturbance

for every controller.

In 2013 [11] Chang and Kuo developed a parallel narrowband ANC sys-

tem that uses individual error signals to update the corresponding adaptive

filters and thus improves the system’s speed of convergence. The system

uses a bank of second-order IIR bandpass filters to split the error signal into

corresponding channels. The filters are designed to have unity gain and zero

phase at the centre of the pass band to avoid introducing an additional delay

in the secondary path.

As pointed out in a 2014 correspondence paper however [12] the em-

ployed bandpass filters exhibit a peak in the group delay which increases

as the bandwidth is decreased. Simulations showed that this overlooked

issue appears to limit the convergence speed such that the fastest conver-

gence speed is achieved by the conventional narrowband controller without
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(a) Traditional system based on FxLMS.
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(b) Xiao’s system when ρ = 0.9999.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

−80

−60

−40

−20

0

Time (s)

P
ow

er
of

th
e
er
ro
r
si
gn

al
(d
B
)

(c) Xiao’s system when ρ = 0.985.

Figure 2.14: Comparison between Xiao’s system and the traditional narrowband system.

The signal d(n) contains two pure sinusoids at f0 = 300Hz and f1 = 303Hz, the step

sizes are set to µ0 = µ1 = 0.0015 in all simulations, the pole-attraction factor in Xiao’s

system is set to two different values, the order of the secondary-path model is L′ = 150

and the sampling frequency is Fs = 8000Hz.
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(a) Traditional system based on FxLMS.
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(b) Xiao’s system when ρ = 0.9999.

Figure 2.15: Comparison between Xiao’s system and the traditional narrowband system.

Signal d(n) contains M = 20 harmonics with fundamental f0 = 30Hz, the order of

the secondary-path model is L′ = 150, the sampling frequency is Fs = 8000Hz and

the step sizes are employed in both simulations. If ρ = 0.985, Xiao’s system is unstable

because the bandpass filters are not sharp enough to separate the filtered reference

signals. If ρ = 0.9999, the system is stable but it is still slower than the traditional

system.
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(b) M = 5, µ0 = 0.2935, µ1 = 0.0188, µ2 = 0.0019, µ3 = 0.0008 and µ4 = 0.0004.

Figure 2.16: The traditional system based on FxLMS is tested. In the first picture,

only one harmonic f0 = 100Hz is present. In the second picture, M = 5 harmonics

are present with fundamental f0 = 100Hz and fi = (i + 1)f0, i = 1, 2, 3, 4. Both

pictures show the residual signal e(n). The performance degradation when controlling

one single frequency or five is not noticeable.

bandpass filters. Furthermore, as shown in Figure 2.16, the degradation in

convergence speed is limited in the parallel-form narrowband ANC system

when multiple harmonics are being controlled. The performance degrada-

tion encountered when controlling multiple harmonics seems inevitable and

the solutions proposed so far in the literature have not solved this problem.
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2.5.1.3 Conclusions

In conclusion, both these solutions try to improve the performance of the

traditional narrowband ANC architecture by introducing bandpass filters in

the scheme. However, the traditional system still outperforms them in some

situations. Xiao’s system in particular, although certainly computationally

more efficient than the traditional system, struggles to control sinusoidal

interferences that are close in frequency and is very sensitive to the choice

of the pole-attraction factor ρ.

2.5.2 The frequency estimation problem

2.5.2.1 A theoretical analysis of narrowband ANC in the pres-

ence of frequency mismatch

A 2010 paper [13] studied the effect of frequency mismatch on narrowband

ANC and investigated the intricate interplay of several different parameters

in determining the attenuation performance of the system:

Stability The stability bounds for both the step size and the secondary-

path phase-estimation error are in substantial agreement with the 90◦

condition found in other ANC contexts.

Optimal step size To minimise the excess mean square error (MSE) in

the presence of FM, an expression for the optimal step size is found.

Noise reduction The noise reduction (NR) is formulated in terms of the

FM, the step size and the secondary-path phase error. As expected,

the NR can be increased by reducing the FM and/or by increasing

the step size. As the phase error increases though, the noise reduction

may either increase or decrease depending on the sign of the FM.

2.5.2.2 Mitigation of the performance drop due to frequency mis-

match

Various efforts have been recently carried out to provide more reliable fre-

quency estimators to be integrated in narrowband ANC systems.
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(a) In-ear. (b) Supra-aural. (c) Circum-aural.

Figure 2.17: Typical off-the-shelf commercial noise-cancelling headphones.

A 2004 paper [14] replaced the conventional hardware-based cosine wave

generator with a software-based one; the information from the non-acoustic

sensor is mapped to the frequency of the generated reference sinusoid through

an AR-based filter, providing a way to reduce the FM with an LMS-like

algorithm (which preserves the cost-efficiency of the conventional narrow-

band architecture). The new system provides improved robustness against

frequency-estimation errors as large as 10%.

The minimum variance distortionless response (MVDR) spectral estima-

tion was integrated in a conventional narrowband ANC system to minimise

the FM in [15]. The iterative frequency-estimation algorithm based on the

MVDR spectrum was chosen because of its accuracy and fast convergence,

which improved the performance of the overall system. Theoretical analyses

were also provided and verified through computer simulations with respect

to FM, phase errors in secondary-path estimation and amplitude, phase and

frequency variations of the sinusoidal interferences.

A new system was proposed in 2014 [16] that substituted the cosine gen-

erators used in conventional narrowband ANC systems with functional link

artificial neural network (FLANN) units which provide superior performance

even in the presence of 10% FM.

2.6 ANC applications

2.6.1 Headsets

Noise-cancelling headsets have been one of the most successful applications

of ANC technology: while the first ANC headset was patented as early as
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the 50s [17] [18], it was in 1989 that the first commercial noise-cancelling

headphone was marketed by Bose inside a flight helmet. Throughout the

90s, other companies joined Bose in manufacturing ANC headsets mainly

for military and civil aviation use. In 2000, Bose launched the Bose Qui-

etComfort Headphone, the first consumer noise-cancelling headphone; since

then, many companies (e.g. Sony, Sennheiser, etc) have marketed different

models in a price range that spans entry-level products (just below a hun-

dred euros), top-of-the-line consumer devices (several hundreds of euros) to

high-end multi-purpose industrial or military headsets (several thousands of

euros).

Many ANC techniques have been implemented on noise-cancelling head-

phones in the recent literature.

In 2002 [19] Gan and Kuo proposed a novel ANC headset design based

on internal model control. While most research headsets at the time were

based on adaptive feedforward technology and suffered from stability and

performance deficiencies due to nonstationary reference inputs, spatially in-

coherent noise sources, acoustic feedback and practical constraints, they

based their headset on adaptive feedback control.

The noise-control system was to be integrated into an existing audio

playback system (such as an mp3 player) and could discriminate between

the unwanted noise and the audio signal without degrading the latter. On

top of that, the system tried to alleviate the instabilities due to changes in

the secondary path by including online secondary-path modelling.

The system was improved in later articles [20] [21] by studying the op-

timal position of the microphone within the ear cup to obtain the flattest

secondary-path magnitude response, since spectral flatness makes the algo-

rithm less prone to instability. Secondly, by analysing the effects of mod-

elling the secondary path using a generic audio signal instead of white noise,

they discovered that music could have a threefold use: as a masking signal

for residual noise using psychoacoustics principles [22] and as an excitation

signal for both offline and online secondary-path estimation (as long as the

piece of music is spectrally rich within the control frequency range).

Some extensions to this basic system have been in the direction of hybri-

dising it with other systems [23] [24] [25] to make up for the shortcomings
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of a pure feedback system, such as the difficulty of removing unpredictable

broadband noise (e.g. white noise), possible feedback-loop instability and

the absence of verifiable and strong theoretical results regarding algorithmic

stability save for a few efforts in this direction [26] [27] [28]). Alternatively,

cost-effective solutions [29] and alternative algorithms to the plain FxLMS

[30] have been explored.

Other papers studied ways to solve the communication problem, i.e. dis-

criminating between noise and useful signal in applications where communi-

cation is vital (e.g. flight helmets), since traditional broadband algorithms

minimise the error signal completely [31] [32].

Finally, headset-specific approaches to dealing with secondary-path ef-

fects have been researched in order to find robust solutions to abrupt changes

in the transfer function when the headphones are shifted around the ears or

lifted entirely [33] [34] [24].

Other practical applications for ANC headsets explored in the recent

literature include: a head-mounted ANC system with speech communication

to deal with high-decibel magnetic resonance imaging (MRI) scanners [35], a

feedforward audio-integrated ANC system for motorcycle helmets [36] and a

hearing aid-integrated ANC headset for hearing-impaired industrial workers

[37].
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Chapter 3

The proposed system

The previous chapter discussed several variations of Widrow’s adaptive notch

filter that have been proposed in the ANC literature to control periodic noise.

In the 80s two different approaches for the compensation of the phase

delays introduced by the secondary path were proposed.

In [2], the sinusoidal reference signals are convolved with an FIR esti-

mate of the secondary path so that the FxLMS algorithm may be used to

update the narrowband controller. This approach offers good noise attenu-

ation and fast convergence time and it has been studied thoroughly in the

literature. However, it suffers from the linearly increasing computational

cost of convolving each reference signal with a high-order secondary-path

estimate.

In [3], a phase lag ∆ is estimated for each controlled frequency from a

secondary-path model and the reference signals are delayed accordingly. The

update algorithm for this system can be seen as a variation of the FxLMS

algorithm where the secondary-path estimate is a frequency-dependent unit-

delay block. This approach is computationally more efficient than the pre-

vious one, but it performs worse because the phase delay introduced by the

z−∆ block is different in general from the phase delay actually introduced

by the secondary path.

In recent years, two variations of the traditional narrowband ANC sys-

tem based on FxLMS have been proposed to improve it.

In [4], Xiao proposed a system that only requires one single convolution



per iteration regardless of the number of controlled harmonics; while very

computationally efficient, the system’s performance suffers from the intro-

duction of a bank of bandpass filters when close frequencies must be con-

trolled and the system is very reliant on the correct choice of a bandwidth-

control parameter to separate the filtered reference signals.

In [11] Chang and Kuo developed a parallel narrowband ANC system

that uses bandpassed individual error signals to update the corresponding

controllers instead of a single error signal as in the traditional narrowband

system. However, this modification does not always yield better conver-

gence time than the traditional system (as discussed in [12]) because of an

overlooked issue in the design of the bandpass filterbank.

Thus, Xiao’s and Ziegler’s systems are computationally more efficient

than the traditional system but they encounter performance issues in several

situations.

Furthermore, all these systems suffer from two additional problems if

they are extended to parallel multi-harmonic control and online modelling

of the secondary path. Firstly, the parallel approach these systems use to

control multiple harmonics allows each harmonic to be controlled indepen-

dently with a different step size, but, since tuning each step size manually is

difficult, these systems often implement the normalised FxLMS algorithm,

which increases the computational cost linearly with the number of con-

trolled harmonics. Secondly, all the systems are slow in reacting to changes

in the secondary path because the high order of the secondary-path estimate

requires a small online-adaptation step size.

The system we propose reduces the convolutional cost of the conven-

tional system by employing lower-order FIR models of the secondary path

called local secondary paths and at the same time it maintains roughly the

same performance properties; additionally, the proposed system offers faster

online adaptation to changes in the secondary path thanks to the low order

of the local secondary paths and it offers cost-effective independent control

of each harmonic component with an empirical step size-correction law.
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Figure 3.1: The proposed system employs a local estimate of the secondary path.

3.1 Local secondary paths

To reduce the computational cost of the reference-filtering operations, our

idea is to substitute the global L′-order secondary-path estimate Ŝ(z) that

has been used so far in the literature with a set of local L-order secondary-

path estimates Ŝk(z) (Figure 3.1). Local secondary-path estimates are FIR

filters that approximate the secondary path well enough in a neighbourhood

of a certain frequency fk.

The order L′ of the global estimate Ŝ(z) must be quite large in order

to provide a decent spectral approximation of S(z) over the whole control

frequency range. However, convolving a tonal reference signal with Ŝ(z)

essentially only yields a phase-shifted and amplified version of the input

sinusoid. For this reason, to control one known frequency we only need

two parameters to obtain the filtered reference signals: the phase and the

magnitude of S(z) at that frequency. For example, Ziegler’s narrowband

ANC system uses a pure-delay unit to compensate for the delay introduced

by the secondary path, which can be interpreted as an ultra-local secondary-

path approximation (even though the amplitude is not taken into account

and the integer delay compensation is not accurate in practice).

We here propose a different approach: after splitting the frequency axis

into K frequency bins of width ∆f from the lowest frequency fL to the

largest frequency fH such that
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Figure 3.2: Offline modelling using sinusoidal excitation signals. This scheme is equiv-

alent to the one in Figure 3.4 when the ANC controllers are switched off.

K =
fH − fL

∆f
, (3.1)

the offline-modelling system (as shown in Figure 3.2) feeds the cancelling

loudspeaker the sum of the sinusoidal excitation tones

ak(n) = δ cos(2πfkn) k = 0, 1, . . . , K − 1 (3.2)

at the central frequency fk of the k-th bin

fk =
2fL +∆f(2k + 1)

2
k = 0, 1, . . . K − 1. (3.3)

The signal that is picked up by the error microphone is the convolution

between the sinusoidal excitation signals and the (infinite) secondary-path

impulse response s(n):

a′(n) = (a ∗ s) (n) =

(

K−1
∑

k=0

ak ∗ s

)

(n). (3.4)

Each controller produces the signal

â′k(n) =
L−1
∑

l=0

ŝl(n)ak(n− l) k = 0, 1, . . . , K − 1, (3.5)
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subtracts it from the error-microphone signal a′(n)

e(n) = a′(n)− â′(n) = a′(n)−
K−1
∑

k=0

â′k(n) (3.6)

and finally adjusts its local secondary-path estimate according to the

FxLMS algorithm

ŝk(n+ 1) = ŝk(n) + µsak(n)e(n) k = 0, 1, . . . , K − 1 (3.7)

where

• ŝk(n) = [ŝk,0(n) ŝk,1(n) . . . ŝk,L−1(n)]
T is the impulse response of the

local L-order secondary-path estimate Ŝk(z),

• ak(n) = [ak(n) ak(n− 1) . . . ak(n− L+ 1)]T is the excitation-signal

vector and

• µs is the offline-modelling step size.

In the z-transform domain, we have that

A′(z) = S(z)A(z) = S(z)

K−1
∑

k=0

Ak(z) (3.8a)

Â′(z) =
K−1
∑

k=0

A′

k(z) =
K−1
∑

k=0

Ŝk(z)Ak(z) (3.8b)

so that E(z) becomes

E(z) = A′(z)− Â′(z) =
K−1
∑

k=0

S(z)Ak(z)−
K−1
∑

k=0

Ŝk(z)Ak(z) =

=
K−1
∑

k=0

(

S(z)− Ŝk(z)
)

Ak(z).

(3.9)

Therefore, the minimum for the k-th optimisation problem is reached

when
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Ŝk(z) ≡ S(z) (3.10)

in correspondence of the central frequencies fk.

After convergence, each local secondary path Ŝk(z) will yield a good

local approximation in a ∆f -wide neighbourhood of fk by virtue of the fact

that the magnitude and phase of the secondary path at frequency fk will be

identified accurately. However, since the offline-modelling signal only excites

S(z) at the central frequency, the approximation for near frequencies within

the frequency bin will not be as accurate, depending on the order L of Ŝk(z)

and the frequency-bin width ∆f , as shown in Figure 4.2. This is a small

price to pay for the advantages the local-identification approach brings, but

simulations prove that this (tunable and controllable) inaccuracy does not

noticeably slow down the convergence speed thanks to the robustness of

Widrow’s adaptive notch filter to identification errors. The only care that

must be taken is to design ∆f and L so that the frequency bins are narrow

enough to ensure stability (in other words, the phase error should remain

well below 90◦ within the frequency bin).

As a further remark, it should be noted that the primary noise d(n)

(if present during the offline-modelling phase) and every other excitation

signal ai(n) (i 6= k) act as disturbances for the identification of a given local

secondary-path model Ŝk(z). If this turns out to be an issue, each local

model may be learnt separately at the cost of a longer offline-modelling

time. However, simulations show that modelling the local transfer functions

simultaneously does not put a strain on the system and each local model

converges to a good solution after a reasonable time.

Once the local secondary paths Ŝk(z) have converged, the narrowband

ANC units in Figure 3.1 can be switched on. Each sinusoidal reference

signal x0,i(n) and x1,i(n) is convolved with the local secondary path Ŝk(z)

its frequency falls under:

k : fi ∈

(

fk −
∆f

2
; fk +

∆f

2

]

. (3.11)

The local-modelling approach here proposed can be seen as a compro-

mise between the frequency-wise modelling used by Ziegler and the global
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Figure 3.3: The solid line depicts the secondary-path phase response while the dash-

dotted line is the estimated phase by the local model; as expected, the transfer functions

intersect at the central frequency 400Hz and provide a decent approximation in a ∆f -

wide neighbourhood. The largest phase-estimation error within the frequency bin varies

depending on L and ∆f = 100Hz.

modelling of the traditional narrowband FxLMS algorithm. The advan-

tage with respect to the global-identification approach lies in the reduced

computational burden. Instead of convolving the reference sinusoids x0(n)

and x1(n) with a long FIR model Ŝk(z), as few as two coefficients can be

sufficient to provide a decent local approximation, provided that the fre-

quency bins are small enough. The proposed system also achieves better

performance with respect to Ziegler’s system, since the provided estimation

error is lower. Moreover, estimating Ziegler’s delay requires the computa-

tion of the discrete Fourier transform of Ŝ(z) and of its group delay which

may prove to be computationally demanding when the controlled frequency

changes and the system must be able to provide a phase lag ∆ for each

frequency in the control frequency range [fL, fH ].
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Two final comparative remarks:

• If we imagine to have infinitesimal frequency bins (∆f → 0) and thus

an infinity of sinusoidal excitation signals spanning the entire control

frequency range, the local-identification approach becomes equivalent

to the global-identification approach from a spectral viewpoint.

• In practice, the phase lag ∆ in Ziegler’s system must be integer, which

implies that multiple frequencies will be assigned to the same phase lag.

Similarly in our approach a group of adjacent frequencies is assigned to

the same local secondary-path estimate. However, instead of a pure-

delay unit, the proposed system uses an L-order FIR filter, which is

more accurate.

3.1.1 On the excitation signals

The system we propose employs sinusoidal excitation signals in order to

estimate the low-order local secondary paths. This method yields minimal

spectral overlapping between the excitation signals and allows as few as two

coefficients to be used in estimating the local models. Spectral overlapping

between the excitation signals determines a degradation in convergence time

because the signals will interfere with each other’s local identification, since

a single error signal is used to adapt the local models.

Nonetheless, other approaches to the estimation of the local secondary

paths may be explored. We will present two possible excitation signals that

may be used for this purpose. Choosing the excitation signal presents a

tradeoff between model order, which determines the convergence time of

the offline and online modelling processes, and estimation accuracy, which

determines the performance of the narrowband ANC units that employ those

local models to compensate the secondary-path effects.

3.1.1.1 Bandpassed white noise

Bandpassed white noise might be employed as the excitation signal:

ak(n) = (wk ∗ hk)(n) k = 0, 1, . . . , K − 1 (3.12)
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where wk(n) is a zero-mean white-noise signal with variance σ2
wk

wk(n) ∼ W.N.(0, σ2
wk

) k = 0, 1, . . . , K − 1 (3.13)

and hk(n) is the impulse response of a bandpass filter Hk(z). The band-

width of each bandpass filter must be centred at the central frequency fk

(Equation 3.11) of the k-th frequency bin and the quality factor must be

designed so that the spectral overlapping is small outside the frequency bin

in order to reduce the interference between the excitation signals.

Employing bandpassed white noise as the excitation signal yields more

accurate local models with respect to the single-sinusoid approach, but it

requires higher-order local secondary paths, which increase the computa-

tional cost associated to the reference-filtering operations. Furthermore, the

spectra of the bandpassed white-noise signals always overlap to some ex-

tent, which slows down the convergence of the offline and online modelling

process.

3.1.1.2 Multiple sinusoids

Since using a single sinusoid at the central frequency fk of each frequency

bins allows the local secondary paths to only model the secondary path

accurately at fk, we can use multiple excitation sinusoids within the k-th

frequency bin so that the k-th local model will interpolate the secondary path

between these frequencies and be more accurate. This can be interpreted as

a generalisation of the single-sinusoid approach.

The excitation signals become

ak(n) =
N−1
∑

i=0

δi cos(2πφk,in) k = 0, 1, . . . , K − 1, (3.14)

where the N frequencies φk,i belong to the k-th frequency bin. For

example, if N = 2, the two excitation frequencies may be chosen as

φk,0 = fk −
∆f

2
(3.15a)

φk,1 = fk +
∆f

2
(3.15b)
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Figure 3.4: The proposed system, with online modelling and multiple narrowband con-

trollers arranged in parallel. Only one controller and one online-modelling unit are

shown for convenience.

and when N = 1 we have the single-sinusoid approach:

φk,0 = fk. (3.16)

This approach yields more accurate models as N increases. However,

higher order models will be needed, which deteriorates the convergence time

of the offline and online modelling systems, and a large number of excitation

sinusoids might degrade the performance of the ANC units.

3.2 Online modelling of local secondary paths

In order to adapt to a time-varying secondary path, the K online-modelling

units in Figure 3.4 adapt to changes in the secondary path by injecting the

system with small-amplitude sinusoids at the central frequency fk (Equa-

tion 3.11) of each frequency bin (Equation 3.2) and they use the FxLMS

algorithm (Equation 3.7) to update the filter weights of each local secon-

dary path Ŝk(z). If we turn off the ANC units, the system is equivalent to

the one in Figure 3.2 and thus can perform offline modelling.

The amplitude δ of the online-modelling excitation signals must be de-

signed with special care because it determines the system reactivity to

changes in the secondary path but at the same time it determines the achiev-

able level of noise attenuation since it is injected at the control point. More-
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over, when the local models are converging after a change in the secondary

path, the sinusoids act as a disturbance for the narrowband controllers. Con-

sequently, a tradeoff between reactivity and noise reduction must be resolved

in practice when implementing the online-modelling subsystem.

In the z-transform domain, the expression for e′(n) becomes

E′(z) = D(z)−
M−1
∑

i=0

S(z)Yi(z) +
K−1
∑

k=0

(

S(z)− Ŝk(z)
)

Ak(z) (3.17)

which can be approximated to

E′(z) ≈ D(z)−
M−1
∑

i=0

S(z)Yi(z) (3.18)

when the local secondary paths have converged to their optimal solution.

Therefore, e′(n) may be used to update the ANC units as well as the local

secondary-path estimates.

The reactivity of the system to changes in the secondary path depends

on the step size µs (see Equation 3.7) and the amplitude of the excitation

signals δ. While the second should be kept as small as possible for the

reasons outlined above, the first can be designed to speed up the algorithm

within the limits of stability.

Since the stability condition of the FxLMS algorithm is determined by

the order of the adaptive filter, the low-order filters used to estimate the

secondary path allow great reactivity to changes in the secondary path.

Instead, systems with online modelling of a global transfer function adapt

to changes more slowly because the upper limit for the online-modelling

step size is lower. This can become dangerous when the phase difference

between the secondary-path model and the secondary path exceeds 90◦ and

the online-modelling subsystem fails to keep track of the change.

An alternative solution to compensate for the small amplitude of the

online-modelling excitation sinusoids is to use the normalised version of the

FxLMS algorithm:

ŝk(n+ 1) = ŝk(n) +
µsak(n)e

′(n)

akTak + ǫ
k = 0, 1, . . . , K − 1 (3.19)
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Figure 3.5: In this case, the system is only controlling one frequency f0, which belongs

to the k-th frequency bin. Therefore, the online-modelling subsystem only models Ŝk(z)

and its two adjacent estimates Ŝk−1(z) and Ŝk+1(z).

where ǫ is a tunable regularisation term to avoid instability when âk(n) ≡

0 and µs is the normalised step size. This approach requires more compu-

tations per iteration but it is less reliant on the proper choice for the step

size.

3.2.1 An efficient modification

In general the undesired harmonics fi may not always occupy every fre-

quency bin (i.e. there may exist a frequency bin k that is currently being

unused by the ANC units). If this is the case, the system does not need to

update the local secondary paths to which no controlled frequency is associ-

ated. Instead, it may decide to adapt only the local models that are actually

being used by some ANC unit.

The advantages of this modification are twofold. First, the computa-

tional cost due to the online modelling is reduced. Secondly, since fewer

online-modelling excitation signals will be injected into the system at the

control zone, the noise-attenuation degradation due to their presence is re-

duced. If the controlled frequencies are time varying, we might want to also

model the two adjacent frequency bins to each currently used local model

in order to have a safety margin should the controlled frequency change and

fall under another frequency bin (Figure 3.5).
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3.3 Empirical step size-correction law

In parallel-form narrowband ANC systems, each secondary-path convolution

has the effect of scaling each step size µi by the magnitude value of the

secondary path at the controlled frequency fi. In fact, the FxLMS update

rule for the first coefficient becomes

w0,i(n+ 1) = w0,i(n) + µix
′

0,i(n)e(n) =

= w0,i(n) + µiAŜk
A cos(2πfin+Φ

Ŝk
)e(n)

i = 0, . . . , M − 1

(3.20)

where A
Ŝk

=
∣

∣

∣
Ŝk(e

j2πfi)
∣

∣

∣
and Φ

Ŝk
= ∠Ŝk(e

j2πfi) and similarly for the

second coefficient. Let us remind that by reducing the step size the conver-

gence slows down and conversely by increasing the step size the convergence

speeds up.

Since in practice it is impossible to tune each step size manually to

compensate the scaling and force comparable convergence times on the con-

trollers, to this end we propose the following empirical step size-correction

law:

µi =
α

∣

∣

∣
Ŝ(ej2πfi)

∣

∣

∣

β
i = 0, . . . , M − 1, (3.21)

where α and β are two tunable parameters (α = β = 1 for example).

A more efficient alternative to computing
∣

∣

∣
Ŝ(ej2πfi)

∣

∣

∣
for each possible con-

trolled frequency could be to compute a representative magnitude value for

each frequency bin after offline secondary-path identification so that the

µ-correction law becomes

µi =
α

A
β
i

i = 0, . . . , M − 1, (3.22)

where Ai can be, e.g.:

• The average magnitude of the local secondary-path model over the

frequency bin.

63



• The maximum magnitude within the frequency bin for a more conser-

vative solution (for what concerns stability).

This step size-correction law is equivalent to the normalised version of the

FxLMS algorithm, whose update law (in the single-frequency case) becomes

wj(n+ 1) = wj(n) +
µx′j(n)e(n)

x′j(n)
2

j = 0, 1. (3.23)

In fact, dividing by the square of x′j(n) is equivalent to scaling by the

reciprocal of the squared magnitude of Ŝk(z). However, instead of perform-

ing the normalisation at every iteration, µ correction is performed only once

(or until the controlled frequency changes).

3.4 Characteristics of the proposed system

We conclude this chapter with a brief summary of the characteristics and

relative advantages of the system introduced in the preceding sections:

Local secondary paths Switching from high-order global secondary-path

estimates to lower-order local models allows the system to perform

fewer multiplications and additions per iteration. Furthermore, these

local models allow the system to be very reactive to secondary-path

changes during the operations of the system. The downside of esti-

mating local models with sinusoidal excitation signals however is that

the approximation may become too rough and particular care must be

taken in designing their “range of validity” (here defined as frequency-

bin width) so that the models satisfy the 90◦ stability condition. This

notwithstanding, the adaptive notch filter our system is based on is

very robust to estimation errors and exhibits good performance even

in the presence of estimation errors.

Independent control of harmonics with step size correction Each mod-

ified ANC controller can choose its own step size independently accord-

ing to the µ-correction formula that acts as a normalisation term for

the FxLMS algorithm. This is especially important in case of fre-

quency mismatch when the secondary path attenuates some control
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frequency, since a larger step size widens the rejection bandwidth of

the adaptive notch filter.
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Chapter 4

Computer simulations

In this chapter computer simulations are carried out in MATLAB to as-

sess the performance of the proposed narrowband ANC system with respect

to three other systems presented in the previous chapters: the traditional

narrowband ANC system [2], Ziegler’s system [3] and Xiao’s system [4].

Two types of noise are used:

Synthesised noise A sum of sinusoids was used to give a first evaluation of

the performance of the systems. Synthesising the noise gives us a good

degree of flexibility in testing the systems against a wide range of dif-

ferent scenarios (multiple frequencies, mixture of sines and wideband

noise, varying frequencies, etc).

Recorded noise A recording of a motorbike engine was used to assess the

robustness of the systems to real-life harmonic noises, whose frequen-

cies tend to flicker to some extent and which normally come embedded

in wideband noise or other signals (e.g. speech).

We simulated the secondary path S(z) using a compact 24th-order infi-

nite impulse response (IIR) filter with 24 poles and 24 zeros. Its frequency

response is shown in Figure 4.1a and its zero-pole plot is shown in Fig-

ure 4.1b. Using an IIR filter instead of a finite impulse response (FIR) filter

to simulate the secondary path yields more realistic simulation results. The

secondary path was taken from the textbook “Active Noise Control Systems:

Algorithms and DSP Implementations” [6].



The sampling frequency is Fs = 8000Hz in all simulations and the con-

trol frequency ranges from fL = 0Hz to fH = 700Hz. This choice is some-

what arbitrary in a simulated context and the range was decided to be in line

with the range of frequencies that real active noise control systems are nor-

mally able to control. Furthermore, since the highest controlled frequency is

much lower than the Nyquist frequency, any potential effect on the system

noise-attenuation capabilities when the controlled frequencies approach Fs

2

will not be present.

4.1 Local secondary paths

In this section, we first provide a computational analysis to estimate the re-

duction in computational cost that the proposed system allows with respect

to the conventional system based on global modelling. We provide a spectral

comparison between the IIR secondary path S(z), the global secondary-path

estimate Ŝ(z) used in traditional narrowband ANC systems and the local

secondary-path estimates Ŝk(z) used in our system. Finally, we carry out

some representative simulations to verify that our system achieves compa-

rable noise-cancellation and convergence-speed results with respect to the

traditional narrowband ANC system and that it performs better than Xiao’s

and Ziegler’s systems in some situations.

4.1.1 Computational analysis

The conventional narrowband ANC system compensates the phase delays

and magnitude changes introduced by the secondary path by convolving each

reference sinusoid with a global FIR estimate of the secondary path Ŝ(z),

whose order L′ must be quite large to provide a good spectral approximation

of S(z). The system we propose, instead, convolves each reference signal

with a local L-order FIR estimate (i.e. an estimate that only has local

validity within a certain frequency bin) Ŝk(z), whose order can be very low

with respect to the global estimate. This reduces the cost of the ANC system

for two reasons:

Space The memory needed to store the coefficients of the secondary-path
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Figure 4.1: The secondary path used in the simulations.
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❍
❍

❍
❍
❍

❍
❍❍

K

L
2 5 10

7 14 35 70

14 28 70 140

21 42 105 210

Table 4.1: The memory needed to store the local secondary paths as a function of the

number of local models K and their order L.

models is smaller.

Time The convolution operation requires fewer multiplications and sums.

4.1.1.1 Space

The storage space needed for the local secondary paths is proportional to

LK, where K = fH−fL
∆f

is the number of frequency bins, whereas the mem-

ory needed to store the global secondary-path estimate is proportional to

L′. As shown in Table 4.1, depending on the situation, as few as 14 total

coefficients may need to be stored in the proposed system, which is one or-

der of magnitude lower than the typical number of coefficients needed for

an accurate global estimate.

4.1.1.2 Time

Table 4.2 compares the number of multiplications needed to obtain the fil-

tered reference signals in the traditional system and in the proposed system

when the orders of the secondary-path estimates (L and L′) and the num-

ber of controlled harmonics (M) change. The convolution operation requires

ML′ multiplications per iteration in the traditional system and ML mul-

tiplications per iteration in the proposed system. The values for L and L′

are some of the values we used when simulating the systems and they yield

different degrees of accuracy (the higher the order, the more accurate the

model).

The number of multiplications performed in the proposed system is re-

duced by a factor of ML′

ML
= L′

L
with respect to the traditional system. In
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❍
❍

❍
❍
❍
❍

❍❍
M

L’
100 150 200

1 100 150 200

5 500 750 1000

10 1000 1500 2000

20 2000 3000 4000

(a) The traditional system employs an estimate Ŝ(z) of order L′.
❍
❍

❍
❍
❍
❍

❍❍
M

L
2 5 10

1 2 5 10

5 10 25 50

10 20 50 100

20 40 100 200

(b) The proposed system employs several estimates Ŝk(z) of order L.

Table 4.2: The number of multiplications per iteration needed to convolve the reference

signals as a function of the number of controlled harmonics M and the order of the

secondary-path estimates L and L′.
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our simulations, L′ = 150 and L = 5 yield the same noise attenuation and

speed of convergence, which means that the proposed system reduces the

number of performed multiplications by a factor of L′

L
= 150

5 = 30.

A new system was recently proposed in [4] by Xiao to reduce the com-

putational cost of the conventional system. In this system, the reference

signals are summed, their sum is convolved with a global estimate Ŝ(z) and

each filtered reference signal is retrieved by filtering the convolved signal

through a bank of bandpass filters. Xiao’s system performs only L′ mul-

tiplications per iteration regardless of the number of controlled harmonics

and 4M multiplications due to the 3rd-order bandpass IIR filters

Hbp,i =
(ρ− 1)ciz

−1 + (ρ2 − 1)z−2

1 + ρciz−1 + ρ2z−2
i = 0, 1, . . . M − 1, (4.1)

where ci = −2 cos(2πfi) and ρ is a pole-attraction factor that determines

the bandwidth of the filter and the time constant associated to it.

Even though they vary depending on the number of controlled harmonics

and secondary-path model orders, the number of multiplications performed

by the proposed system and Xiao’s system remain in the same order of

magnitude:

• If L = 10, L′ = 100 and M = 20, Xiao’s system performs fewer

multiplications than the proposed system: L′ + 4M = 180 against

ML = 200.

• However, if L = 5, L′ = 150 andM = 20, the proposed system requires

fewer multiplications per iteration: L′+4M = 230 against ML = 100.

Finally, Ziegler’s system is the most efficient of the four, since the delay

blocks produce the filtered reference signals with zero multiplications. The

system however has a significant offline overhead because it must compute

the phase lags ∆ for all possible controlled frequencies, which requires the

computation of the discrete Fourier transform of Ŝ(z) and of its phase delay.
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(a) Magnitude response.
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(b) Phase response.

Figure 4.2: Identification comparison between S(z) (black solid line), Ŝ(z) (red dashed

line) and Ŝk(z) (blue dash-dotted line).
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4.1.2 Identification comparison between local and global es-

timates

Figure 4.2 shows the comparison between the frequency response of the

secondary path S(z), the global estimate Ŝ(z) and the local estimates Ŝk(z).

The secondary path is a 24th order IIR transfer function. The order of

the global secondary-path estimate is L′ = 150. The order of the K = 14

local secondary paths is L′ = 5 and the width of the frequency bins is

∆f = 50Hz. In order to estimate the local secondary paths we used the

single-sinusoid approach.

The global estimate exhibits very good identification accuracy in the

whole control frequency range, whereas the local secondary paths identify

the secondary path accurately only at the central frequency of each frequency

bin and exhibit various degrees of accuracy within the different frequency

bins. For example, in the 9th frequency bin (between 400Hz to 450Hz)

the magnitude estimation provided by the local secondary path Ŝ9(z) is

comparable to that of Ŝ(z); in the 14th frequency bin (between 650Hz to

700Hz) instead, Ŝ14(z) yields a maximum 4dB magnitude-estimation error.

In the first frequency bin (between 0Hz to 50Hz), Ŝ1(z) yields a maximum

5◦ phase-estimation error; in the 13th frequency bin (between 600Hz to

650Hz) instead, the maximum phase-estimation error is 30◦.

4.1.3 Identification comparison between local estimates with

different excitation signals

In the previous chapter we discussed different approaches for the identifica-

tion of the local models.

Figures 4.3 and 4.4 show the comparison between the identification

accuracy yielded by two approaches. In the first case, the local secondary

paths are learnt with a single excitation sinusoid centred at the central

frequency of each frequency bin. In the second case, the local secondary

paths are learnt with two excitation sinusoids positioned around the central

frequency of each frequency bin. In the third case, the local secondary paths

are learnt with a single bandpassed white-noise signal centred at the central

frequency of each frequency bin.

74



In Figure 4.3, the excitation signals contain a single sinusoid at frequency

φk,0 = fk, the width of the frequency bins is set to ∆f = 50Hz and the order

of the local models is L = 5. This results in K = 14 local secondary paths.

In Figure 4.4,the excitation signals contain a two sinusoids at frequencies

φk,0 = fk −
∆f
2 and φk,1 = fk +

∆f
2 , the width of the frequency bins is set

to ∆f = 100Hz and the order of the local models is L = 30. This results in

K = 7 local secondary paths.

The single-sinusoid approach is less accurate with respect to the two-

sinusoid approach because the local models intersect the secondary path

only at fk, but it allows low-order local models. On the other hand, the

approach with two sinusoids yields more accurate models that interpolate

the secondary path in two points, but it requires a higher order. In practice,

a tradeoff must be resolved between identification accuracy, which deter-

mines the noise reduction and convergence time, and model order, which

determines the computational efficiency of the system and its reactivity to

changes in the secondary path.

Another problem that may arise when designing the excitation signal for

the local secondary path is spectral overlapping. In the sinusoid-based ap-

proaches exposed above, there is no spectral overlapping between the excita-

tion signals. Instead, if bandpassed white noise is employed as the excitation

signal, spectral overlapping is inevitable and it may degrade the identifica-

tion accuracy. In Figure 4.5, the excitation signal contains bandpassed white

noise centred at frequencies φk,0 = fk, the width of the frequency bins is set

to ∆f = 100Hz and the order of the local models is L = 35. Almost all local

models are estimated accurately, but the first local estimate Ŝ1(z) is not.

This inaccuracy is due to the bias introduced by the spectral overlapping

and it would determine instability in the system because the phase error

exceeds the stability condition.

4.1.3.1 Effect on control

Figure 4.6 compares the performance of the three local-estimation approaches

described above with respect to the performance of global estimates. The

signal d(n) contains one single sinusoid at f0 = 400Hz and the step size is
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(a) Magnitude response.
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(b) Phase response.

Figure 4.3: Identification comparison between S(z) (black solid line) and Ŝk(z) (red

dashed line) when only one excitation sinusoid is employed in each frequency bin.
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(b) Phase response.

Figure 4.4: Identification comparison between S(z) (black solid line) and Ŝk(z) (red

dashed line) when two excitation sinusoids are employed in each frequency bin.
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(b) Phase response.

Figure 4.5: Identification comparison between S(z) (black solid line) and Ŝk(z) (red

dashed line) when a bandpassed white-noise signal is employed in each frequency bin.
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Figure 4.6: Performance comparison between local estimation approaches. The plots

show the error signal e(n) when a single sinusoid at 400Hz must be removed.

set to µ0 = 0.0011. All the systems remove the noise after 0.2s without any

noticeable difference. Therefore in the following simulations we will employ

the single-sinusoid approach because its estimation inaccuracy does not de-

grade the performance of the system appreciably and it allows the lowest

order for the local paths.

4.1.4 Speed of convergence and noise cancellation

In the following, computer simulations are carried out to evaluate and com-

pare the convergence time of the proposed system with respect to the tra-

ditional ANC system, Ziegler’s system and Xiao’s system.

The local models Ŝk(z) and the global model Ŝ(z) are learnt before

the operations of the system using the LMS algorithm. The order of the

global model is set to L′ = 150. The width of the frequency bins is set

to ∆f = 50Hz which is small enough to ensure the 90◦ stability condition

for all the local paths. The total number of frequency bins is K = 14

and the order of each local secondary path is L = 5. The local secondary
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paths are learnt with a single sinusoidal signal at the central frequency of

each frequency bin. Figure 4.2 shows a comparison between the frequency

response of the local models and the actual secondary path.

In the following simulations, the secondary path S(z) does not change

and the online-modelling subsystem is turned off.

4.1.4.1 Simulation one: single-frequency noise

In the first simulation, d(n) contains a single sinusoidal component at fre-

quency f0 = 400Hz. A step size of µ0 = 0.0012 is used to adapt the

coefficients w0(n) and w1(n). The pole-attraction factor in the bandpass

filter of Xiao’s system is set to ρ = 0.985.

The convergence trajectory of the two adaptive coefficients w0(n) and

w1(n) and the residual error e(n) are shown in Figure 4.7. The traditional

system, Xiao’s system and the proposed system converge to the optimal

solution in about 100ms, whereas Ziegler’s system takes roughly 200ms.

The controlled frequency f0 lies between two central frequencies f8 =

375Hz and f9 = 425Hz and both Ŝ8(z) and Ŝ9(z) yield a 10◦ phase-

estimation error at that frequency (Figure 4.2). Despite this, the proposed

system does not show any noticeable reduction in convergence time with

respect to the traditional system.

The largest phase-estimation error yielded by the local secondary paths

is a 30◦ error at frequency f0 = 600Hz. We test our system in this un-

favourable situation in Figure 4.8. The step size is set to µ0 = 0.00024

in both simulations. Even in this unfortunate case the proposed system

exhibits roughly the same convergence time as the traditional system.

4.1.4.2 Simulation two: multiple-frequency noise

In the second simulation, d(n) containsM = 20 sinusoids whose fundamental

is f0 = 30Hz and fi = (i + 1)f0, i = 0, 1, . . . 19. The step sizes are the

same in all simulations. Figure 4.9 shows the convergence of the two adaptive

coefficients w0,0(n) and w1,0(n) associated to the fundamental frequency and

the error signal.

The proposed system takes slightly longer than the traditional system to
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Figure 4.7: The two adaptive coefficients (on the left) and the error signal e(n) (on the

right) in the evaluated systems when a single frequency (f0 = 400Hz) is controlled.

completely remove all the harmonics. As discussed in the previous chapters,

both systems suffer from a performance degradation with respect to the
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Figure 4.8: The two adaptive coefficients (on the left) and the error signal e(n) (on the

right) in the traditional and proposed systems when one single frequency (f0 = 600Hz)

is controlled.

single-frequency case due to the fact that each controller uses a single error

signal to update its adaptive coefficients. In the multiple-frequency case, in

fact, the error signal will contain all the harmonic components, which will

slow down the convergence of each controller.

Xiao’s system struggles to remove the noise: if ρ = 0.985, the system is

unstable because the bandwidth of the bandpass filters is not sharp enough

to separate the filtered reference signals; if ρ = 0.999, the system is stable,

but it takes longer to remove the noise with respect to the proposed and

traditional systems due to the long time constant associated to the bandpass

filters.

Ziegler’s system is considerably slower than all three systems: after one

second it is still converging to its optimal solution, as evident in the spikes

of the convergence trajectory of the first couple of adaptive coefficients.
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(h) Ziegler’s system.

Figure 4.9: The evaluated systems when the primary signal contains a mixture of

M = 20 sinusoids. The pictures show the adaptive coefficients associated to f0 = 30Hz

on the left and the error signal e(n) on the right.

4.1.4.3 Simulation three: two close frequencies

In the third simulation, d(n) contains two close frequencies f0 = 400Hz and

f1 = 401Hz and the step sizes are µ0 = µ1 = 0.0012. Figure 4.10 shows the
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Figure 4.10: The evaluated systems when the primary signal contains two close si-

nusoids. On the left the error signal e(n) is shown, while on the right the adaptive

coefficients associated to f0 = 400Hz are shown.
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adaptive coefficients w0,0(n) and w1,0(n) associated to f0 and the residual

error e(n).

The proposed system and the traditional system exhibit similar perfor-

mances, quickly removing the noise except for a small low-level residual.

As previously, depending on the choice of the bandwidth-control param-

eter ρ, Xiao’s system exhibits different behaviours: if ρ = 0.985, the system

has an oscillating behaviour with partial instabilities. If ρ = 0.999, the os-

cillating behaviour is still present but after some time the system attenuates

the noise like the traditional system.

Ziegler’s system exhibits an oscillating behaviour as well. The noise is

reduced quickly except for an oscillating residual which is dampened after

about 5s.

4.1.4.4 Simulation four: frequency mismatch

In the fourth simulation (Figure 4.11), d(n) contains one single frequency

f0 = 300Hz and the step size is set to µ0 = 0.0022. The controller injects

sinusoidal reference signals at the frequency f
ref
0 = 303Hz, which results

in a 1% frequency mismatch. Figure 4.11 shows the spectral power of the

residual noise e(n).

The proposed system attenuates the noise by 5dB, which is the same

noise attenuation allowed by the traditional system. This is in accordance

with the theory, since narrowband ANC systems only exhibit a perfect notch

at the controlled frequency (see Chapter 2).

Xiao’s system exhibits an oscillating behaviour that amplifies the noise

by 9dB during its first oscillation and converges to a 3dB amplification when

ρ is large, while it attenuates the noise by 5dB when ρ is small.

Ziegler’s system attenuates the noise by 2.5dB, due to its inaccurate

secondary path compensation.

4.1.4.5 Simulation five: time-varying frequency

In the fifth simulation (Figure 4.12), d(n) contains one single time-varying

frequency that varies linearly from 525Hz to 535Hz in 500ms. The step

size is set to µ0 = 0.0004. The frequency of the reference signal is equal to
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(c) Xiao’s system (ρ = 0.9).
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(d) Ziegler’s system.
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(e) Xiao’s system (ρ = 0.9995).

Figure 4.11: The evaluated systems in the presence of 1% frequency mismatch. The

pictures show the power of the error signal.

the controlled frequency at each iteration so that no frequency mismatch is

present. The phase lag ∆ of Ziegler’s system is changed at every iteration

so that its delay compensation is as accurate as possible.

The proposed system attenuates the time-varying frequency similarly to

the traditional system. The systems attenuate the noise by roughly 15dB

after 200ms, but then the attenuation degrades by the time the linear fre-

quency sweep is finished.
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(c) Xiao’s system when ρ = 0.985.
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(e) Xiao’s system when ρ = 0.9995.

Figure 4.12: The evaluated systems when one single time-varying frequency is con-

trolled. The frequency varies from 525Hz to 535Hz in 500ms. The pictures show the

power of the error signal.

The behaviour of Xiao’s system is again dependent on the choice of ρ.

A small ρ yields the same performance as the proposed system and the

traditional system, but a large ρ results in an oscillating behaviour during

the frequency sweep.

The maximum attenuation achieved by Ziegler’s system is only 5dB and

the system amplifies the noise by 2dB in the middle of the frequency sweep.
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Figure 4.13: Motorbike noise.

4.1.4.6 Simulation six: real noise

In the sixth simulation (Figure 4.14), the systems are tested against the

recording of a motorbike noise, which contains a mixture of low-level broad-

band noise and several flickering harmonics with fundamental f0 = 34.26Hz.

The fundamental was estimated with the autocorrelation method. Fig-

ure 4.13 shows the plot of the motorbike noise signal and its spectrum.

The step sizes for each controlled frequency are chosen according to the

empirical step size-correction law presented in the previous chapter. The

average magnitude of the secondary-path model is computed in a neighbour-

hood of each controlled harmonic and the step sizes are chosen according to

the following law:

µi =
α

A
β
i

i = 0, . . . , M − 1, (4.2)

where Ai is the average magnitude of Ŝ(z) (or Ŝk(z) in the proposed

system) around the controlled frequency fi.
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Figure 4.14: The evaluated systems when the primary signal contains motorbike noise.

The pictures show the power spectral density (PSD) of the primary noise in blue and

the PSD of the residual error in orange.
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We set α = 0.003 and β = 2 in the traditional system, in the proposed

system and in Xiao’s systems. Ziegler’s system required α = 0.0005 and

β = 2 to be stable.

The traditional system removes the strongest low-frequency harmonics

completely, but only attenuates the high-frequency harmonics because they

fluctuate and the adaptive filter cannot track them fast enough even with

a large step size. Consequently, the noise appears to be amplified between

600Hz and 700Hz because the adaptive controllers working in that range

inject noise at the wrong frequency.

The proposed system removes the low-frequency harmonics completely

and slightly attenuates the high-frequency harmonics as well.

Xiao’s system is unstable for ρ = 0.985, but it achieves good noise at-

tenuation when ρ = 0.9995.

Ziegler’s system removes the first five low-frequency harmonics com-

pletely, but due to the lower step size needed to ensure its stability it fails

to attenuate the high-frequency harmonics by more than a few dB.

4.1.4.7 Conclusions

From these simulations we can conclude that:

• Despite the inaccuracies in the phase and magnitude estimation of the

local secondary paths, the proposed system offers comparable perfor-

mance as the traditional system that uses a global and accurate model

in terms of convergence speed and noise cancellation. This suggests

that the local secondary paths may be employed in other modifica-

tions of the narrowband ANC systems to reduce the computational

cost associated to global secondary-path models.

• Xiao’s system has also comparable performance to the traditional sys-

tem, but it relies on the proper choice of the bandwidth-control pa-

rameter ρ when the controlled frequencies are close or when multi-

ple harmonics are being controlled: a large value for ρ determines a

sharper bandwidth at the cost of a longer convergence time, while a

small value for ρ determines faster convergence but it may make the

system unstable since it will not separate close frequencies effectively.
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Traditional Ziegler Xiao Proposed

Computational cost High Very low Low Low

Performance High Medium-low Medium Medium-high

Table 4.3: Comparison between the cost and performance of the evaluated systems.

• Ziegler’s system offers the lowest computational cost of the evaluated

systems, but its performance is worse than the other systems due to

the inaccuracy of its delay compensation.

Table 4.3 illustrates the comparison between the evaluated systems.

4.2 Online modelling

In this section, we test the online-modelling subsystems when a global model

is estimated and when several local models are estimated.

4.2.1 Problem definition

The secondary path S(z) changes as shown in Figure 4.15. The change is

obtained by rotating two complex-conjugate poles of S(z) by 2.25◦ (which

corresponds to a change in the resonant frequency of 50Hz) and scaling

them by a 0.88 factor. Since online modelling algorithms are not robust

against abrupt step-like changes in the secondary-path transfer function, we

simulate a smooth transition between the two functions as follows. If the

secondary path can be written as

S(z) =

∑P
i=0 biz

−i

∑Q
j=0 ajz

−j
=

bT zb
aTza

, (4.3)

where

• b = [b0 b1 . . . bP ]
T are the coefficients of the transfer function’s nu-

merator,

• a = [a0 a1 . . . aQ]
T are the coefficients of the transfer function’s

denominator,
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(b) Phase response.

Figure 4.15: The variation of the secondary path. The blue line represents S(z) before

the change, the orange one represents S(z) after the change.
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• zb = [1 z−1 . . . z−P ]T and

• za = [1 z−1 . . . z−Q]T ,

then the secondary-path variation follows the following law:

a(n+ 1) = αaa(n) + (1− αa)a
new (4.4)

where anew is the denominator of the secondary path after the change.

The change is triggered in the simulation at a given time and αa controls

the speed of the variation. We chose αa = 0.985, which means that the

secondary path completes its variation in about 50ms (given our choice for

the sampling frequency Fs = 8000Hz). This change is fast enough to study

how the two evaluated online-modelling systems adjust to it, but not so

abrupt as to determine instability.

4.2.2 Simulation seven: online modelling of a global estimate

In the seventh simulation, the online-modelling parameters are set as follows:

the variance of the white-noise excitation signal is σ2
a = 0.01 and the nor-

malised online-modelling step size is set to µs = 0.01. The online-modelling

subsystem uses the normalised FxLMS algorithm. The order of the global

estimate Ŝ(z) is L′ = 150. Only one ANC controller is working to remove a

single frequency at f0 = 500Hz.

Figure 4.16 shows the tracking capabilities of the online-modelling sub-

system when the change takes place. The system is initialised with an

accurate global model at time 0. After the change, the system takes about

5s to adjust the global model Ŝ(z) to the new secondary path S(z).

4.2.3 Simulation eight: online modelling of local estimates

In the eighth simulation, the online-modelling parameters are set as follows:

the normalised online-modelling step size is set to µs = 0.01 and the ampli-

tude of the sinusoidal excitation signals is δ = 0.04 so that the power of the

overall excitation signal that is fed to the loudspeaker is the same as in the

previous simulation. The online-modelling subsystem uses the normalised

FxLMS algorithm. The order of the local estimates is L = 5 and the width
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(c) 3s after the change.
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(d) 5s after the change.

Figure 4.16: Online modelling of a global secondary path. Each picture represents a

snapshot of the magnitude response of S(z, n) (solid line) and Ŝ(z, n) (dash-dotted

line) at a given time after S(z, n) changes.
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of the frequency bins is ∆f = 50Hz. Only one ANC controller is working

to remove a single frequency at f0 = 500Hz.

Figure 4.17 shows the tracking capabilities of the online-modelling sub-

system when the change takes place. The system is initialised with an

accurate global model at time 0. After the change, the majority of the local

secondary paths converge to the new optimal solution in 600ms. Only two

local models, namely Ŝ3(z) and Ŝ4(z), take roughly 3s to converge to the

new solution.

4.2.3.1 Online modelling of local estimates (two sinusoidal exci-

tation signals)

We present here the performance of the online-modelling system when the

local secondary paths are learnt with two sinusoidal excitation signals for

each frequency bin. The online-modelling parameters are set as follows: the

normalised online-modelling step size is set to µs = 0.01 and the amplitude

of the sinusoidal excitation signals is δ = 0.04 so that the power of the

overall excitation signal that is fed to the loudspeaker is the same as in the

previous simulations. The online-modelling subsystem uses the normalised

FxLMS algorithm. The order of the local estimates is L = 30 and the width

of the frequency bins is ∆f = 100Hz. Only one ANC controller is working

to remove a single frequency at f0 = 500Hz.

Figure 4.18 shows the tracking capabilities of the online-modelling sub-

system when the change takes place. The system is initialised with an ac-

curate global model at time 0. After the change, the local secondary paths

converge to the new secondary path after 4s. As expected, this approach

is slower than the single-sinusoid approach because the order of the local

models is higher.

4.2.4 Computational analysis

We provide here a computational comparison between the two online-modelling

systems.

The online-modelling system in the global case performs L′ multiplica-

tions per iteration in order to convolve the white-noise excitation signal with

95



0 200 400 600

−20

0

20

Frequency (Hz)

M
ag
n
it
u
d
e
(d
B
)

(a) Before the change.

0 200 400 600

−20

0

20

Frequency (Hz)

M
ag
n
it
u
d
e
(d
B
)

(b) 0.2s after the change.
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(c) 0.6s after the change.
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(d) 3.2s after the change.

Figure 4.17: Online modelling ofK = 14 local secondary paths. Each picture represents

a snapshot of the magnitude response of S(z, n) (solid line) and Ŝk(z, n) (dash-dotted

line) at a given time after S(z, n) starts to change.
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(b) 0.2s after the change.
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(c) 1s after the change.
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(d) 4s after the change.

Figure 4.18: Online modelling of K = 7 local secondary paths. Each picture represents

a snapshot of the magnitude response of S(z, n) (solid line) and Ŝk(z, n) (dash-dotted

line) at a given time after S(z, n) starts to change.
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❍
❍

❍
❍
❍

❍
❍❍

K

L
2 5 10

7 14 35 70

14 28 70 140

21 42 105 210

Table 4.4: The number of multiplications per iteration performed by the proposed

online-modelling system as a function of the order of the local estimates L and the

number of frequency bins K.

the current global estimate. In the local case the number of performed mul-

tiplications depends on the order of the local estimates L and the number

of frequency bins K (Table 4.4). In the simulations we performed, L′ must

be at least 100 to yield a decent spectral approximation of the secondary

path, whereas K = 14 local estimates of order L = 2 are enough to ensure

that the phase-estimation error stays well below the 90◦ stability condition.

In this case, the proposed system performs only KL = 28 multiplications

per iteration instead of L′ = 100. The amount of performed multiplications

can be reduced further if the system only updates the local models that

are currently being used by the ANC units, instead of updating all K local

models (see Chapter 3).

4.2.5 Conclusions

The simulations showed that the online modelling of local estimates is con-

siderably more reactive to changes in the secondary path with respect to the

online modelling of a global estimate, thanks to the lower order of the local

models. The proposed system can be 5s
3.2s ≈ 2 times faster than the con-

ventional online-modelling system in tracking the secondary path ( 5s
0.6s ≈ 8

faster for some local secondary paths). Moreover, it requires fewer multi-

plications because in practice we only need to update the local models that

are currently being used by the ANC units.
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Chapter 5

Conclusions and future

research directions

In this thesis, a novel narrowband ANC system has been proposed. The

system is based on the identification of low-order secondary-path estimates

(called local secondary paths) that reduce the computational cost associated

to the reference-filtering operations in the traditional narrowband ANC sys-

tem. The low order allowed by the local secondary paths determines an

increase in the reactivity to changes in the secondary path, which makes the

resulting system more robust to time-varying environments than systems

that rely on a global high-order estimate of the secondary path. An empir-

ical step size-correction law is also proposed to automatically tune the step

size of each controller in parallel-form narrowband ANC systems.

Simulations show that the proposed system offers comparable perfor-

mance to the traditional narrowband ANC system while reducing the cost

of the reference-filtering operations by a factor of 30 and that it outperforms

two other cost-effective systems in the literature in some situations. More-

over, the local online-modelling scheme is more reactive to smooth changes

in the secondary path by a factor of 2 with respect to the global offline-

modelling scheme and it requires fewer multiplications.

Future research directions include: a detailed theoretical performance

analysis of the proposed system and its DSP-based implementation. The



cost reduction offered by the proposed system makes it a viable choice for

low-energy narrowband ANC applications, such as hearing-protection head-

sets for industrial workers.

100



Bibliography

[1] B Widrow et al. Adaptive noise cancelling: Principles and applications.

Proceedings of the IEEE, 63(12), 1975.

[2] J.C. Burgess. Active adaptive sound control in a duct: A computer

simulation. Journal of the Acoustical Society of America, 70(1), 1981.

[3] E. Ziegler Jr. Selective active cancellation system for repetitive phe-

nomena, 1989.

[4] Yegui Xiao. New narrowband active noise control systems requiring

considerably less multiplications. In Signal Processing Conference, 2008

16th European, 2008.

[5] P. Lueg. Process of silencing sound oscillations, 1936.

[6] Sen M. Kuo and Dennis R. Morgan. Active Noise Control Systems:

Algorithms and DSP Implementations. Wiley, 1996.

[7] Woon-Seng Gan and D.R. Morgan. Active noise control: A tutorial

review. Proceedings of the IEEE, 87(6), 1999.

[8] L.J. Eriksson. Development of the filtered-u algorithm for active noise

control. Journal of the Acoustical Society of America, 89(1), 1991.

[9] J.C. Burgess. Adaptive noise canceling applied to sinusoidal interfer-

ences. IEEE Transactions on Acoustics, Speech, and Signal Processing,

25(6), 1977.

[10] P.A. Regalia. An improved lattice-based adaptive iir notch filter. IEEE

Transactions on Signal Processing, 39(9), 1991.

101



[11] C.-Y. Chang and S.M. Kuo. Complete parallel narrowband active noise

control systems. IEEE Transactions on Audio, Speech and Language

Processing, 21(9), 2013.

[12] J. Cheer and S.J. Elliott. Comments on complete parallel narrowband

active noise control systems. Audio, Speech, and Language Processing,

IEEE/ACM Transactions on, 22(5), 2014.

[13] Hyeon-Jin Jeon et al. Frequency mismatch in narrowband active noise

control. In Acoustics Speech and Signal Processing (ICASSP), 2010

IEEE International Conference on, 2010.

[14] Y. Xiao et al. A new narrowband active noise control system in the

presence of sensor error. In Circuits and Systems, 2004. MWSCAS 04.

The 2004 47th Midwest Symposium on, 2004.

[15] Hyeon-Jin Jeon, Tae-Gyu Chang, Sungwook Yu, and Sen M. Kuo. A

narrowband active noise control system with frequency corrector. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 19(4), 2011.

[16] Ruchi Kukde, M.S. Manikandan, and G. Panda. Development of a

novel narrowband active noise controller in presence of sensor error. In

Advances in Computing, Communications and Informatics (ICACCI,

2014 International Conference on, 2014.

[17] W. F. Meeker. Components characteristics for an active ear defender.

Journal of the Acoustical Society of America, 29(1252), 1957.

[18] E. D. Simshauser and M. E. Hawley. The noise canceling headset:

an active ear defender. Journal of the Acoustical Society of America,

27(207), 1955.

[19] Woon-Seng Gan and Sen M. Kuo. An integrated audio and active noise

control headsets. IEEE Transactions on Consumer Electronics, 48(2),

2002.

[20] Sen M. Kuo, Sohini Mitra, and Woon-Seng Gan. Adaptive feedback

active noise control headset: Implementation, evaluation and its exten-

sions. IEEE Transactions on Consumer Electronics, 51(3), 2005.

102



[21] Sen M. Kuo, Sohini Mitra, and Woon-Seng Gan. Active noise con-

trol system for headphone applications. IEEE Transactions on Control

Systems Technology, 14(2), 2006.

[22] Sen M. Kuo, Kevin Kuo, and Woon-Seng Gan. Active noise con-

trol: Open problems and challenges. In Green Circuits and Systems

(ICGCS), 2010 International Conference on, 2010.

[23] Yong-Kim Chong, Liang Wang, See-Chiat Ting, and Woon-Seng Gan.

Integrated headsets using the adaptive hybrid active noise control sys-

tem. In Information, Communications and Signal Processing, 2005

Fifth International Conference on, 2005.

[24] Ying Song, Yu Gong, and Sen M. Kuo. A robust hybrid feedback

active noise cancellation headset. IEEE Transactions on Speech and

Audio Processing, 13(4), 2005.

[25] Thomas Schumacher, Hauke Krueger, Marco Jeub, Peter Vary, and

Christophe Beaugeant. Active noise control in headsets: a new ap-

proach for broadband feedback anc. In Acoustics, Speech, and Signal

Processing, 2011 IEEE International Conference on, 2011.

[26] Hideaki Sakai and Shigeyuki Miyagi. Analysis of the adaptive filter

algorithm for feedback-type active noise control. In Acoustics, Speech,

and Signal Processing, 2001 IEEE International Conference on, 2001.

[27] Jian Liu, Jinwei Sun, Yegui Xiao, and Lin Sun. Dynamic properties of

feedback active noise control with sinusoidal primary noise. In Mecha-

tronics and Automation (ICMA), 2010 International Conference on,

2010.

[28] Seong-Pil Moon, Jeong Woo Lee, and Tae-Gyu Chang. Performance

analysis of an adaptive feedback active noise control based earmuffs

system. Applied Acoustics, 96(1), 2015.

[29] Cheng-Yuan Chang and Sheng-Ting Li. Active noise control in headsets

by using a low-cost microcontroller. IEEE Transactions on Industrial

Electronics, 58(5), 2011.

103



[30] Say-Wei Foo, T.N. Senthilkumar, and Charles Averty. Active noise

cancellation headset. In Circuits and Systems, 2005. ISCAS 2005. IEEE

International Symposium on, 2005.

[31] Woon-Seng Gan and Sen M. Kuo. Integrated active noise control com-

munication headsets. In Circuits and Systems, 2003. ISCAS ’03. Pro-

ceedings of the 2003 International Symposium on, 2003.

[32] Jiun-Hung Lin, Shih-Tsang Tang, et al. Evaluation of speech intel-

ligibility for feedback adaptive active noise cancellation headset. In

Biomedical and Pharmaceutical Engineering, 2006. ICBPE 2006. In-

ternational Conference on, 2006.

[33] Markus Guldenschuh. Secondary-path models in adaptive-noise-control

headphones. In Systems and Control (ICSC), 2013 3rd International

Conference on, 2013.

[34] Markus Guldenschuh and Robert Hoeldrich. Prediction filter design

for active noise cancellation headphones. IET Signal Processing, 7(6),

2013.

[35] Nobuhiro Miyazaki, Kohei Yamakawa, and Yoshinobu Kajikawa. Head-

mounted active noise control system to achieve speech communication.

In Signal and Information Processing Association Annual Summit and

Conference (APSIPA), 2013 Asia-Pacific, 2013.

[36] Kishan P. Raghunathan, Sen M. Kuo, and Woon-Seng Gan. Active

noise control for motorcycle helmets. In Green Circuits and Systems

(ICGCS), 2010 International Conference on, 2010.

[37] J.-H. Lin, P.-C Li, S.-T. Tang, P.-T. Liu, and Young S.-T. Indus-

trial wideband noise reduction for hearing aids using a headset with

adaptive-feedback active noise cancellation. Medical and Biological En-

gineering and Computing, 43(6), 2005.

[38] Boaz Rafaely. Active noise reducing headset: an overview. In The 2001

International Congress and Exhibition on Noise Control Engineering,

2001.

104



105

[39] Yoshinobu Kajikawa, Woon-Seng Gan, and Sen M. Kuo. Recent ap-

plications and challenges on active noise control. In Image and Signal

Processing and Analysis (ISPA), 2013 8th International Symposium on,

2013.

[40] Ben Rudzyn and Michael Fisher. Performance of personal active noise

reduction devices. Applied Acoustics, 96(1), 2012.

[41] E. A. G. Shaw and G. J. Thiessen. Acoustics of circumaural earphones.

Journal of the Acoustical Society of America, 34(9), 1962.


