
Politecnico di Milano
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Matematica

Application of the Multirate TR-BDF2 method to
the time discretization of nonlinear conservation

laws

Ludovica Delpopolo Carciopolo

Relatore:
Prof. Luca Bonaventura
Correlatore:
Dott.ssa Anna Scotti

Anno accademico 2014-2015

A model must be wrong, in some
respects, else it would be the thing
itself. The trick is to see where it is
right.

Henry Bent

Ai miei genitori...

Abstract

In this thesis we focused on the multirate TR-BDF2 method to discretize in time hyper-
bolic non linear conservation laws and non linear ordinary differential equations where
components have different characteristic time scales. Multirate methods use different
time steps for each component to reduce the computational costs. The study of numer-
ical methods for the resolution of partial differential equations of non linear hyperbolic
type represents a vast field of numerical mathematics. These equations are used to de-
scribe many physical phenomena. To discretize in space we use the Finite Volume method
with the Rusanov numerical flux. A C++ code has been developed to demonstrate the
efficiency and accuracy of the multirate method. The algorithm is able to solve, with
the single rate or the multirate TR-BDF2 method, zero-dimensional geochemistry prob-
lems. It is also able to compute the solution of conservation laws in the case they have
a monotone flux.

Keywords: multirate TR-BDF2 method, conservation laws, geochemistry problems,
Finite Volume methods.

i

ii

Sommario

Questo lavoro di tesi ha come oggetto di studio il metodo multirate TR-BDF2 per la
discretizzazione temporale di leggi di conservazione iperboliche non lineari. I metodi
multirate usano differenti passi temporali per ogni componente del sistema in modo da
cercare di ridurre i costi computazionali. Lo studio di metodi numerici per la risoluzione
di equazioni a derivate parziali iperboliche non lineari rappresenta un vasto campo della
matematica numerica. Tali equazioni, infatti, sono usate per descrivere molte applica-
zioni in campo fisico. Per discretizzarle in spazio è stato utilizzato il metodo ai Volumi
Finiti dove, come flusso numerico, è stato utilizzato il flusso di Rusanov. Il tutto è stato
implementato in un codice C++ per verificare l’efficienza e l’accuratezza del metodo mul-
tirate. L’algoritmo implementato è in grado risolvere, con il metodo multirate o single
rate TR-BDF2, dei problemi zero dimensionali geo-chimici. È anche in grado calcolare
la soluzione di leggi di conservazione nel caso in cui esse abbiano un flusso monotono.

Parole chiave: metodo multirate TR-BDF2, leggi di conservazione, problemi geo-
chimici, metodi ai Volumi Finiti.

iii

iv

Contents

Introduction 1

1 Numerical methods for ODE systems 3
1.1 ODE systems . 3
1.2 Stability . 4
1.3 Stiffness . 5
1.4 Numerical methods for ODE systems . 6
1.5 Consistency and convergence . 6
1.6 Runge-Kutta methods . 9
1.7 Monotonicity property of Runge-Kutta methods 11
1.8 TR-BDF2 method . 12

2 Numerical Methods for Conservation Laws 15
2.1 Linear Advection Equation . 16
2.2 Nonlinear Conservation Laws . 16
2.3 Weak solutions . 16
2.4 The Rankine-Hugoniot condition . 17
2.5 Entropy solution . 17
2.6 Inflow and outflow characteristics . 19
2.7 Riemann problem . 20
2.8 Buckley-Leverett equation . 21
2.9 The Finite Volume method . 22

3 Multirate TR-BDF2 method 25
3.1 A self adjusting implicit multirate approach 25
3.2 The time step refinement and partitioning criterion 27
3.3 The interpolation procedures . 28
3.4 Error estimation . 29

v

4 Numerical Experiments 31
4.1 Geochemistry ODE system . 31
4.2 Extended Geochemistry problem . 37
4.3 Linear Advection Equation . 41
4.4 Burgers’ equation . 45
4.5 Buckley-Leverett equation . 51

Conclusions 57

A Code Structure 59
A.0.1 Multirate TR-BDF2 Solver . 60
A.0.2 The right-hand side function . 62

Bibliography 67

vi

List of Figures

2.1 Outflow characteristics for a > 0 (left) and inflow characteristics for a < 0

(right). 19
2.2 Shock wave. 20
2.3 Rarefaction wave. 21
2.4 Flux function of the Buckley-Leverett equation with a = 1

2 22
2.5 Characteristics gives by the Buckley-Leverett flux. 22
2.6 Mesh used for the space discretization. 23

3.1 An example of partitioning, the flagged components are in red, the inter-
polated ones are in green. 28

4.1 Structure of the system. 32
4.2 Amount (from the top to the bottom, from left to right) of H2O, H+,

(CO2)aq, Cl−, Na+ and Ca++ computed with the multirate method (Cu-
bic Hermite interpolation) and with the ode45 matlab method. 35

4.3 Amount (from the top to the bottom, from left to right) of (SiO2)aq,
HCO−3 , OH

−, (CaCO3)s, (SiO2)s and (CO2)g computed with the mul-
tirate method (Cubic Hermite interpolation) and with the ode45 matlab
method. 36

4.4 Amount of the first four new added species computed with the multirate
method (Cubic Hermite interpolation) and with the ode45 matlab method. 39

4.5 The components being computed at each time step by the multirate TR-
BDF2 algorithm for the extended geochemistry ODE. 40

4.6 Multirate TR-BDF2 method with Cubic interpolation for the linear ad-
vection problem. 41

4.7 CPU times for the multirate method with the embedded error estimator
(blue), with the Cubic extrapolator (black) and for the single rate method
(red) for the linear advection problem. 44

4.8 Solution at time t = 3, in red are marked the components with value less
than 0 computed with the multirate algorithm (left) and with the single
rate algorithm (right). 44

vii

4.9 Multirate TR-BDF2 integration with Cubic interpolation for the shock
wave. 46

4.10 The components being computed at each time step by the multirate TR-
BDF2 algorithm for the burgers equation that generates a shock wave. . . 46

4.11 CPU times for the multirate with the embedded error estimator (blue),
with the Cubic extrapolator (black) and single rate method (red) for the
shock wave. 48

4.12 Courant numbers of each time step for the shock wave (with the red color
are indicated the Courant numbers for the global time steps). 48

4.13 Multirate TR-BDF2 integration with Cubic interpolation for the rarefac-
tion wave. 49

4.14 Fraction of components and Courant numbers of each time step for the
rarefaction wave (with the red color are indicated the Courant numbers
for the global time steps). 51

4.15 CPU times for the multirate method with the embedded error estimator
(blue), with the Cubic extrapolator (black) and for the single rate method
(red) for the shock wave. 52

4.16 Solution computed with the multirate TR-BDF2 method for the Buckley-
Leverett equation. 53

4.17 The components being computed at each time with the TR-BDF2 method
for the Buckley-Leverett equation. 54

4.18 Courant numbers of each time step for the Buckely-Leverett equation (with
the red color are indicated the Courant numbers for the global time steps). 54

4.19 CPU times for the multirate method with the embedded error estimator
(blue), with the Cubic extrapolator (black) and single rate method (red)
for the Buckley-Leverett equation. 55

A.1 Interfaces used inside the code to solve an ODE system. 59
A.2 Code structure for the multirate method. 60
A.3 Code structure for the geochemistry problem. 63
A.4 Code structure for the linear conservation laws using the Upwind method. 63
A.5 Code structure for the the nonlinear conservation laws using the Rusanov

numerical flux. 63

viii

List of Tables

1.1 Butcher tableau of a RK method . 10

1.2 Butcher tableaus for different types of RK methods 11

1.3 The Butcher tableau of the TR-BDF2 method 13

4.1 Thermodynamic parameters of the species 34

4.2 Thermodynamic parameters of the reactions 34

4.3 Relative error in infinity norm at a fixed time between the solution com-
puted with ode45 and the solution computed with multirate method with
cubic Hermite interpolator (first column), the solution computed with mul-
tirate method with linear interpolator (second column) and the solution
computed with single-rate method (third column) for the geochemistry
problem. 38

4.4 Computation time and number of time steps for the geochemistry problem. 39

4.5 Computation time and number of time steps for the extended geochemistry
problem with 100 non interacting species. 39

4.6 Computation time and number of time steps for the extended geochemistry
problem with 100 species that interact with pairwise. 40

4.7 Computation time and number of time steps for the linear advection equa-
tion. 42

4.8 Relative error in infinity norm at a fixed time between the exact solu-
tion and the solution computed with the multirate method with cubic
Hermite interpolator (first column), the solution computed with multirate
method with linear interpolator (second column), the solution computed
with single-rate method (third column) and the solution computed with
the multirate method with the cubic Hermite extrapolator as error esti-
mator (fourth column) for the linear advection equation. 42

ix

4.9 Relative error in infinity norm at a fixed time between the approximate so-
lution computed with ode45 and the solution computed with the multirate
method with cubic Hermite interpolator (first column), the solution com-
puted with multirate method with linear interpolator (second column), the
solution computed with single-rate method (third column) and the solution
computed with the multirate method with the cubic Hermite extrapolator
as error estimator (fourth column) for the linear advection equation. . . . 42

4.10 Relative error in infinity norm at a fixed time between the exact solution
and the solution computed by the MATLAB solver for the linear advection
equation. 43

4.11 Relative error in infinity norm at a fixed time between the exact solu-
tion and the solution computed with the multirate method with cubic
Hermite interpolator (first column), the solution computed with multirate
method with linear interpolator (second column), the solution computed
with single-rate method (third column) and the solution computed with
the multirate method with the cubic Hermite extrapolator as error esti-
mator (fourth column) for the shock wave. 45

4.12 Relative error in infinity norm at a fixed time between the solution com-
puted with the matlab solver and the solution computed with the multirate
method with cubic Hermite interpolator (first column), the solution com-
puted with multirate method with linear interpolator (second column),
the solution computed with single-rate method (third column) and the
solution computed with the multirate method with the cubic Hermite ex-
trapolator as error estimator (fourth column) for the shock wave. 47

4.13 Computation time and number of time steps for shock wave 47

4.14 Relative error in infinity norm at a fixed time between the exact solu-
tion and the solution computed with the multirate method with cubic
Hermite interpolator (first column), the solution computed with multirate
method with linear interpolator (second column), the solution computed
with single-rate method (third column)and the solution computed with the
multirate method with the cubic Hermite extrapolator as error estimator
(fourth column) for the rarefaction wave. 50

x

4.15 Relative error in infinity norm at a fixed time between the solution com-
puted by the MATLAB solver with ode45 method and the solution com-
puted with the multirate method with cubic Hermite interpolator (first
column), the solution computed with multirate method with linear inter-
polator (second column), the solution computed with single-rate method
(third column) and the solution computed with the multirate method with
the cubic Hermite extrapolator as error estimator (fourth column) for the
rarefaction wave. 50

4.16 Computation time and number of time steps for the rarefaction wave. . . 51
4.17 Computation time and number of time steps for the Buckley-Leverett

equation. 52
4.18 Relative error in infinity norm at a fixed time between the approximate

solution computed with ode45 method and the solution computed with the
multirate method with cubic Hermite interpolator (first column), the solu-
tion computed with multirate method with linear interpolator (second col-
umn), the solution computed with single rate method (third column) and
the solution computed with the multirate method with the cubic Hermite
extrapolator as error estimator (fourth column) for the Buckley-Leverett
equation. 55

xi

xii

Introduction

There is an ever increasing need to develop numerical methods capable of solving large-
scale real-world problems. Many of these problems arise in the geochemistry, biological
and engineering sciences, such that we must use numerical models, because the problems
cannot be solved analytically. In other words we seek to find numerical methods able
to approximate the solution of a problem that can be modeled as a system of ordinary
differential equations (ODE), or as a partial differential equation (PDE), or system of
PDEs. With a standard single rate time integration approach the entire system evolves
with the same time step. It is obvious that integrating the slow component on the same
time scale as the fast component requires unnecessary computational effort. Our aim
is to reduce these computational costs by using a multirate time stepping strategy that
captures the different time scales of the components. Multirate methods use different
time steps for each component while the coupling influences between the components are
interpolated.

The idea of multirate methods was first proposed in [And79]. In the first approaches
the system is partitioned a priori, based on the knowledge of the specific problem. In
these cases the set of the slow components is integrated first using extrapolated values of
the fast components. Afterwards the second set is integrated using the interpolated values
of the first, as explained in [GW84]. In [SHV07] a self-adjusting time-stepping strategy
is proposed. A tentative global step is taken for all the components and only the ones
with errors that are larger than the tolerance are refined by halving the time-step. The
components that are not refined, but that are required at the refinement stage of other
components, are interpolated. In [Fok15] a multirate algorithm based on the 4th order
accurate Runge Kutta method is proposed. It is assumed that the active components are
coupled only to a small subset of the latent components. The partitioning and time step
refinement strategy is based on the intrinsic error estimates of the Runge Kutta method.
The multirate algorithm has been tested on some simple scalar PDEs. Automatic parti-
tioning methods for multirate algorithms have also been analyzed in [VTB+07]. Different
techniques for optimizing the partitioning and time stepping strategy, based on the error
estimates, have been discussed.

1

We will use the multirate TR-BDF2 method proposed by Ranade in [Ran16] where
the system is integrated by means of the TR-BDF2 method, which is a second order,
one step, L-stable, implicit method. Its appealing features also make it an interesting
candidate for multirate approaches targeted at large scale stiff problems or for the time
discretization of partial differential equations. We will focus on the analysis of two spe-
cific applications. First, a zero-dimensional geochemistry problem is considered. In a
geochemistry system many different types of species are present and they can react with
each others or stay constant. Some of them react very slowly, others very fast, so that
in the system different times scales are present. Then, we will apply the self adjusting
multirate TR-BDF2 method proposed by Ranade to some hyperbolic equations, com-
paring the single rate and the multirate methods with respect to the computational cost
point of view and checking the behavior of the solutions with respect to positivity. The
emphasis of the thesis is on the time-integration aspects of numerical modeling and for
this reason we restrict our spatial discretization to simple Finite volume methods with
uniform grids. We have implemented a C++ code to test the multirate TR-BDF2 algo-
rithm on our applications. A part of this work has been developed during a four-month
internship at Istitute Français du Pétrole et Ènergies Nouvelles (IFPEN). The research
group at IFPEN were particularly interested in testing the performance of Ranade’s al-
gorithm on geochemistry and hyperbolic problems. These kinds of problems can have
many applications, such as the CO2 geological storage. We tested the multirate method
on a set of different complexity problem: from a linear advection problem to a Buckley
Leverett equation, where a strong non linearity is present.

In Chapter 1 we review some basic concepts of ODE numerical integration theory, in
particular, the stability, the accuracy and the monotonicity of numerical methods. We
present the TR-BDF2 method with some details of implementation. In Chapter 2 we
introduce shortly the properties of the conservation laws and of their solutions, focusing
on nonlinear conservation laws. We also describe in a brief way the finite volume method
used in this work. In Chapter 3 we explain the multirate algorithm, its time step re-
finement strategy and its partitioning criterion. In Chapter 4 we validate our code and
we present the results with some considerations on the method used to solve a specific
problems. It is also present, in Appendix A, the code structure of the multirate method
for different problems.

2

Chapter 1

Numerical methods for ODE
systems

Mathematical models of physical problems often consist in a system of ordinary differen-
tial equations (ODE) or systems of partial differential equations (PDE) that, after space
discretization, give rise to a large ODE system. In this chapter, we review the standard
notation and terminology that will be used in the rest of the thesis. We also introduce
the basic theory of ODE and some different types of numerical methods employed for the
numerical solution. For a more detailed introduction see e.g. [Ise96]-[HNW87]-[Lam91].

1.1 ODE systems

In this section we formulate the mathematical problem to be solved and we review the
conditions for existence and uniqueness of solutions. The systems of ordinary differential
equations are called initial values problems, also known as the Cauchy problem. These
systems can be written as

{
y′(t) = f(y(t), t) t ∈ [0, T]

y(0) = y0

(1.1)

where y(t) ∈ Rd and f(y, t) : Rd × R→ Rd.

Theorem 1. The solution of (1.1) exists and is unique if the function f(y, t) is contin-
uous respect to t ∈ [0;T] and Lipschitz continuous respect to y i.e.

||f(y1, t)− f(y2, t)|| ≤ L||y1 − y2||, ∀y1,y2 ∈ Rd, t ∈ [0, T] (1.2)

where L > 0 is called the Lipschitz constant.

3

It is well known that a sufficient condition for a function to be Lipschitz continuous
with respect to a certain argument, is to be continuously differentiable with respect to
that argument [Ise96].

1.2 Stability

Any numerical method must preserve the stability property. A problem with unique
solution which continuously depends on the data is called well-posed problem [Lam91].
We consider a solution of problem (1.1) with a perturbation to the right hand side and
the initial condition as follow

{
z′(t) = f(z(t), t) + δ(t), t ∈ [0, T]

z(0) = z0 + δ
(1.3)

Definition 1. For two given perturbations to (1.3) (δ(t); δ) and (ξ(t); ξ), denote the
corresponding solutions z(t) and x(t). Then, if there exists an S > 0 such that ∀t ∈ [0, T]:

||δ(t)− ξ(t)|| < ε ||δ − ξ|| < ε

implies

||z(t)− x(t)|| < Sε

for sufficiently small ε > 0, then the initial value problem (1.1) is said to be totally
stable.

It is important that the problem is totally stable because numerical methods introduce
errors. These errors are equivalent to perturbations of the system, so that if the condition
of stability is not satisfied the numerical method will not produce a reasonable solution.
Another stability property is the Lyapunov stability, it is concerned with the stability of
solutions near an equilibrium point.

Definition 2. (Lyapunov stability) Given an autonomous system y′(t) = f(y(t)) such
that f(0) = 0 ∈ Rd; the origin is called a stable solution if for any ε > 0 there is a δ > 0

such that ||y(0)|| ≤ δ implies ||y(t)|| ≤ ε ∀t ≥ 0.

For the linear, homogeneous, constant coefficient system y′ = Ay the origin is stable
if and only if for all the eigenvalues of A: R(λi(A)) < 0. In this case of linear constant
coefficient systems, the origin is not only stable, but attractive, in the sense that any
solution of the system with any initial condition will tend asymptotically to zero.

4

1.3 Stiffness

ODE systems that describe dynamics with different time scales are often called stiff. A
precise definition of this concept is not easy, a standard definition, given by [Lam91], is

Definition 3. Consider a linear Cauchy problem y′ = Ay such that the eigenvalues
λ(A) = R(λ) + iI(λ) have negative real part. The Cauchy problem is called stiff if

maxi |R(λi)|
mini |R(λi)|

>> 1. (1.4)

Explicit methods are very inefficient to the point of being unusable when they are
used on stiff problems. One is forced to use implicit methods, which can solve the problem
but are computationally more expensive per time step. Understanding the phenomenon
of stiffness could, therefore, help to improve the efficiency of solvers. Several techniques
for automatic detection of stiffness have been developed. The phenomenon of stiffness
was first identified in the paper of Curtiss and Hirschfelder [CH52]. J.D. Lambert has
devoted an entire chapter of his book [Lam91] to stiffness, in which he gives several
definitions of stiffness along with counterexamples. There are also other authors who,
rather than defining the phenomenon of stiffness, have stated that one of the effects of
stiffness is that explicit methods do not work [WH91]. One of the most prolific author
on the subject of stiffness has been L.F. Shampine. He had proposed an interesting idea
for stiffness detection tests based on the stability region of different methods [Sha77].
The idea is to select two methods of which one has a larger stability region. Stiffness
or the lack of it is detected by taking a test step and comparing the results. Another
interesting paper is [SG79], in this paper Shampine and Gear make several interesting
observations on stiffness. Firstly, they state that the stiffness of a problem can change
with time; particularly, and perhaps somewhat counter-intuitively, according to them
a problem is not stiff when there is a rapid transient. They have also discussed with
some detail why explicit methods do not perform very well on stiff problems, using the
forward Euler method to illustrate the issue. Continuing in this line of research, Shampine
proposed type insensitive codes, which detect stiffness and automatically switch between
Newton iteration and fixed-point iteration as the simulation progresses [Sha81]. The
most interesting point in this paper is that a notion of stiffness for implicit A-stable
methods is introduced. This so called IA-stiffness forces a code to use the more expensive
Newton-iteration rather than the cheaper fixed point iteration. The paper also contains
a discussion on the conditions for switching between the two iterations. The basic idea
is that a problem is stiff at a certain point in its trajectory if the local Jacobian is large.
A sufficient condition on the step size for an explicit method to avoid instability is

h||J|| < 1 (1.5)

In the following, we will use the above condition as an indication of stiffness.

5

1.4 Numerical methods for ODE systems

For the systems of ODEs numerical methods are used to find the solutions. Numerical
methods are formulated to compute approximations of the solution at discrete points in
time. The solution y(t) is approximated by values un at time instants tn, n = 0, 1, 2, ..., N

with tN = T .

There are different ways to classify numerical methods for ODEs system. One is the
difference between explicit and implicit methods. If the formula for the computation of
un+1 only involves previously computed approximations such as un; the method is called
explicit. If the formula for the computation involves un+1, then such methods are called
implicit methods. In this case, to compute the solution we need, to solve a nonlinear
system. Explicit methods are thus much cheaper per time step than implicit methods.
However, implicit methods have in general much better stability properties which justify
their use particularly for stiff ODEs.

Another distinction is between multistep and single step methods. If in the formula
are present previously computed values (tn−i; u

n−i); i = 1, 2, .., k to compute the ap-
proximate solution un+1 then such methods are called multistep methods. They are
presented as

k∑
j=0

αju
n+1−j = h

k∑
j=0

βjf(tn+1−j ,u
n+1−j) (1.6)

It can be seen that if β0 6= 0 the method is implicit. Single step methods require only
the solution at the previous time step tn. They can be written as

un+1 = un + hψ(tn; un; tn+1; u
n+1) (1.7)

where the function ψ defines the numerical method. Also in this case, if the method
involves the approximate solution at time tn+1 it will be an implicit method.

1.5 Consistency and convergence

The numerical methods are used to compute an approximate solution of the system and it
is important to know how the numerical solution accurate is. During a simulation we can
commit two types of errors: errors due to round-off and errors due to the discretization.
For this reason it is important to introduce the notion of local truncation error and of
global error.

6

Definition 4. (Local Truncation Error) In a one-step method given by (1.7) from
time tn to time tn+1, the local truncation error is defined as

εn = ||y(tn+1)− y(tn)− hψ(tn; y(tn); tn+1; y(tn+1)||. (1.8)

Local truncation error is the error in the solution computed by a single step of the
numerical method for which the true solution values were plugged in.

Definition 5. A numerical method is consistent if the local truncation error goes to
zero when h→ 0.

Definition 6. (Order of consistency) A numerical method is said to have an order
of consistency p if the local truncation error defined by (1.8) satisfies:

ε ≤ Chp+1 (1.9)

where C > 0 is a constant.

Definition 7. (Global error) The global error in a numerical solution un to the initial
value problem (1.1) at time instants tn, n = 1, 2, ..., N is defined as

τ(h) = max
n=1,...,N

||y(tn)− un|| (1.10)

Another important definition is the order of convergence that tells us how fast a
method converges to the exact solution as the time steps decrease.

Definition 8. (Order of convergence) A numerical method is said to have an order
of convergence p, if the global error in the numerical solution as defined in (1.10), when
a numerical method is applied to (1.1) satisfies

τ(h) ≤ Chp (1.11)

with C>0 is a constant.

For multi-step methods, consistency does not imply convergence. For one-step meth-
ods, however, convergence is guaranteed if the method is consistent [Lam91]. Convergence
of multistep method instead depends on zero-stability. We now introduce the notion of
stability for numerical methods. There are many types of stability definitions depending
on the problem and the corresponding requirements imposed on the numerical solution
computed by the method.

Definition 9. (Zero stability of a numerical method) Let zn and xn be two differ-
ent numerical solution obtained by the numerical method (1.6) applied to the perturbed

7

problem (1.3) for two perturbations δn and ξn. Then if there exists an S > 0 such that,
∀n

||δn − ξn|| < ε

implies
||zn − xn|| < Sε

for sufficiently small ε > 0, then the numerical method (1.6) is said to be zero-stable.

As we have seen before, a sufficient condition for a linear system to be stable is that
the eigenvalues should have negative real part. If we introduce the following scalar linear
problem {

y′(t) = λy, t ∈ [0, T]

y(0) = y0
(1.12)

with λ ∈ C, the analytic solution is y(t) = y0e
λt, therefore, for R(λ) < 0, we have that

y(t) → 0 as t → ∞. We can convert this into a property of numerical solution, in the
following way:

Definition 10. Let un a numerical solution for (1.12), the numerical method is abso-
lutely (linearly) stable if, for a given h > 0,

lim
n→∞

||un|| = 0. (1.13)

Definition 11. Given the linear scalar problem and a single step numerical method with
fixed time step h, the linear stability function is S(z), z ∈ C such that the application
of the method to the scalar problem 1.12 yields

un = S(hλ)ny0 (1.14)

If we consider the explicit Euler method:

un+1 = un + hf(tn,u
n) (1.15)

Applying (1.15) to (1.12) yields

un+1 = (1 + hλ)un n ≥ 0,

thus
un = (1 + hλ)nu0. (1.16)

Consequently, the sequence {un}∞n=0 will converge to zero if |1+hλ| < 1. This requirement
is equivalent to

hλ ∈ C− e 0 < h < −2R(λ)

|λ|2
(1.17)

8

Let us define in (1.12) z = hλ; z ∈ C. The set of z in the complex plane, for which the
numerical method is absolutely stable, is known as the region of absolute stability of
the method. The intersection of this region with the x-axis is known as the interval of
absolute stability.

Definition 12. (A-stable method) If the region of absolute stability of a numerical
method contains the entire left half of the complex plane, the method is said to be A-
stable.

Definition 13. (L-stability) A one step method is called L-stable if S(z) → 0 as
z → −∞.

If methods with a small stability region are used, they will need small steps. For this
reason, A-stable methods are preferred to compute solution of stiff problems.

A method that is L-stable is also A-stable. The above definitions of stability have
as hypothesis the linearity of the problem. We are interested in nonlinear problems, for
this reason in [PR74] another stability definition has been introduced. Prothero and
Robinson linearize the problem, but this does not yield a general definition because the
linearization of the problem is valid only locally. For more details, the reader is referred
to [WH91].

1.6 Runge-Kutta methods

Runge-Kutta methods are a family of one-step methods. The well known forward-Euler,
is the most basic of the Explicit Runge Kutta (ERK) methods. The idea of a Runge
Kutta method is to approximate the derivative of the solution at that point to advance
the solution in time. These methods only use the numerical solution un computed at
time level n to compute the solution un+1 at the next time level n + 1, but in order
to achieve higher order accuracy they perform a number of intermediate updates, called
stages. A general Runge Kutta method RK(A,b) with s stages for a Cauchy problem
(1.1), can be written as follow

un+1 = un + hn

s∑
i=1

biki

ki = f

tn + cihn,u
n +

s∑
j=1

aijkj

 i = 1, ..., s

(1.18)

The structure of the matrix A determines if the method is implicit or explicit. If the
matrix A is such that aij = 0 ∀j ≥ i then the method is explicit. Each stage requires

9

only the previously computed stages, that is used in other function evaluation, to com-
pute the next stage. For an Implicit Runge-Kutta (IRK) method with a full coefficient
matrix A, each step requires the solution of a nonlinear system. When A is a lower
triangular matrix, each stage depends only on the previously computed stages and itself,
it means that a step requires the solution of s different smaller nonlinear systems. These
methods are known as Diagonally Implicit Runge Kutta (DIRK). The computation can
be further simplified by letting all the diagonal elements be the same. In this case, the
iteration matrix for each stage is the same and thus, this type of methods known as Singly
Diagonally Implicit Runge Kutta (SDIRK) methods, avoids to repeat the assembly and
factorization of iteration matrices. Also of interest are Singly Diagonally Implicit Runge
Kutta methods with an Explicit first stage (ESDIRK).

The Runge Kutta parameters that identify a methods are:

c = [c1, c2, ..., cs]
T b = [b1, b2, ..., bs]

T A = {aij}

the methods can be represented with a table called Butcher tableau.

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

Table 1.1: Butcher tableau of a RK method

The Butcher tableaus of ERK, DIRK and SDIRK methods would have the form as
shown in tables (1.2).

The coefficients in the Butcher tableau have to be chosen carefully to obtain a certain
consistency order.

Theorem 2. (Order conditions for generic Runge Kutta method) Any Runge
Kutta method such that

∑
j aij = cj is

1. of order one if and only if
∑

i bi = 1,

2. of order two if and only if 1. holds and
∑

i bici = 1
2 ,

3. of order three if and only if 1. and 2. hold and
∑

i bic
2
i = 1

3

∑
i,j biaijcj = 1

6 .

For higher orders more details are present in [But63].

10

0 0 0 · · · 0

c2 a21 0 · · · 0
...

...
...

. . .
...

cs as1 as2 · · · 0

b1 b2 · · · bs

(a) ERK methods

c1 γ1 0 · · · 0

c2 a21 γ2 · · · 0
...

...
...

. . .
...

cs as1 as2 · · · γs

b1 b2 · · · bs

(b) DIRK methods
c1 γ 0 · · · 0

c2 a21 γ · · · 0
...

...
...

. . .
...

cs as1 as2 · · · γ

b1 b2 · · · bs

(c) SDIRK methods

Table 1.2: Butcher tableaus for different types of RK methods

1.7 Monotonicity property of Runge-Kutta methods

In many applications, the solution is required to remain non negative: this is the case, for
example, in chemistry modeling problems where negative solutions correspond to non-
physical negative concentrations. In [Kra91] an analysis of the monotonicity properties
for general Runge-Kutta methods has been done. Following [Kra91], we introduce for
real z the quantities

A(z) = A(I− zA)−1 bT (z) = bT (I− zA)−1

e(z) = (I− zA−1)e S(z) = 1 + zbT (I− z)A−1e
(1.19)

Definition 14. (Absolute monotonicity of RK) An irreducible s-stage RK(A,b) is
absolutely monotone at z ∈ R if A ≥ 0, b ≥ 0, e ≥ 0 and S ≥ 0 element wise.

These notations are useful to introduce the radius of absolute monotonicity for a RK
method.

Definition 15. (Radius of absolute monotonicity) An s-stage RK with scheme
(A,b) and A ≥ 0 and b ≥ 0 is characterized by its radius of absolute monotonicity
defined for all z in −r ≤ z ≤ 0 as

R(A,b) = sup{r : r ≥ 0, A(z) ≥ 0, b(z) ≥ 0, e(z) ≥ 0, S(z) ≥ 0} (1.20)

In [Kra91] two results are derived to simplify practical investigation for the mono-
tonicity property of the method. We introduce the incidence matrix Inc(A) as the matrix
that contains 0 if the corresponding element in A is aij = 0, 1 if aij 6= 0.

11

Theorem 3. For an irreducible RK R(A,b) > 0 if and only if A > 0, b > 0 and
Inc(A2) ≤ Inc(A).

Lemma 1. For an irreducible RK R(A,b) ≥ r if and only if A ≥ 0 and (A,b) is
absolutely monotone at z = −r.

1.8 TR-BDF2 method

The TR-BDF2 method was originally proposed in [BCF+85]. It is a composite one step,
two stages method, consisting of one stage of the trapezoidal method followed by another
of the BDF2 method. The stages are so adjusted that both the trapezoidal and the BDF-
2 stages use the same Jacobian matrix. This composite method has been reinterpreted in
[HS96] as a one step Diagonally Implicit Runge Kutta (DIRK) method with two internal
stages. The TR-BDF2 method is also in some sense the optimal method among all
2-stage DIRK methods, owing to the following properties:

1) it is first same as last (FSAL), so that only two implicit stages need to be evaluated;

2) the Jacobian matrix for both the stages is the same;

3) it has an embedded third order companion that allows for a cheap error estimator;

4) the method is strongly S-Stable;

5) all the stages are evaluated within the time step;

6) it is endowed with a cubic Hermite interpolation algorithm for dense output that
yields globally C1 continuous trajectories.

Features 3), 5) and 6) will play an important role in the multirate method proposed here.
Furthermore, as shown in [GKC13], the method has an explicit second order companion
with which it can be combined to form a second order implicit-explicit additive Runge
Kutta method. Due to its favorable properties, it has been recently applied for efficient
discretization of high order finite element methods for numerical weather forecasting in
[GKC13], [TB15].

The TR-BDF2 method, considered as a composite method consisting of a step with
the trapezoidal method followed by a step of the BDF2 method, can be written as

un+γ = un +
γhn

2

(
f(t,un) + f(t,un+γ)

)
un+1 =

1

γ(2− γ)
un+γ − (1− γ)2

γ(2− γ)
un +

1− γ
2− γ

hnf(t,un+γ)
(1.21)

The TR-BDF2 method viewed as a DIRK method has the following Butcher tableau
1.3, where γ = 2−

√
2, d = γ

2 and w =
√
2
4 .

12

0 0 0 0

γ d d 0

1 w w d

w w d

(1− w)/3 (3w + 1)/3 d/3

Table 1.3: The Butcher tableau of the TR-BDF2 method

The last row corresponds to the companion third order method that can be used to
build a convenient error estimator. Here, the value γ = 2 −

√
2 is chosen for the two

stages to have the same Jacobian matrix, as well as in order to achieve L-stability, as it
will be shown shortly. It can be seen that the method has the First Same As Last (FSAL)
property, i.e., the first stage of any step is the same as the last stage of the previous step.
Thus, in any step, the first explicit stage need not be computed.

The implementation of the two implicit stages is done as suggested in [HS96]. The two
stages according to the Butcher tableau are given by equation (1.21). Instead of iterating
on the variable un+1, we define another variable z = hf(t,u) and solve for this variable
by iteration. Thus, for the first implicit stage, we take un+γ,k = un + dzn + dzn+γ,k and
zn+γ,k is computed by Newton iterations as

(I− hdJn)∆k = hnf(tn+γ ,u
n+γ,k)− zn+γ,k

zn+γ,k+1 = zn+γ + ∆k,

where Jn = J(tn,u
n) denotes the Jacobian of f . Similarly, for the second implicit stage

we take un+1,k = un + wzn + wzn+γ + dzn+1,k and the Newton iteration is given by

(I− dhJn)∆k = hf(tn+γ ,u
n+γ,k)− zn+γ,k

zn+1,k+1 = zn+1 + ∆k.

The reason for doing so is that, if the problem is stiff, a function evaluation will
amplify the numerical error in the stiff components. Iterating on z, however, ensures
that it is computed to match the tolerance. For a more detailed discussion the interested
reader is referred to [HS96]. An important point to be noted is that, although the TR-
BDF2 method is L-stable, its 3rd order companion formula is not. Therefore, the error
estimate at time level n+ 1, given by

εn+1,∗ = (b∗1 − b1)zn + (b∗2 − b2)zn+γ + (b∗3 − b3)zn+1

cannot be expected to be accurate for stiff problems. To overcome this problem, it is
suggested in [HS96] to modify the error estimate by considering as error estimator the
quantity εn+1 defined as the solution of the linear system

13

(I− dhJn)εn+1 = εn+1,∗. (1.22)

This modification of the error estimate allows to improve it for stiff components, while
preserving its accuracy in the limit of small time steps. Notice that the stability function
of the TR-BDF2 method is given by

S(z) =
[1 + (1− γ)2]z + 2(2− γ)

z2(1− γ)γ + z(γ2 − 2) + 2(2− γ)
, (1.23)

whence it can be seen that the method is L-stable for γ = 2−
√

2.

We report the monotonicity properties of the TR-BDF2 method studied in [HS96] as
a DIRK according to the analysis of [BR15]. Following the definition (15), we find

A(z) =

0 0 0

γ
2−γz

γ
2−γz 0

1
(2−γ)(2−γz)β

1
(2−γ)(2−γz)β

1−γ
(2−γ)β

bT (z) =

2β−zγ
4(2−γ)
2β−zγ
4(2−γ)
(1−γ)β

2γ

 e(z) =

1

2+γz
2−γz

[1+(1−γ)2]z+2(2−γ)
z2(1−γ)γ+z(γ2−2)+2(2−γ)

where β = 1 − z(1 − γ)/(2 − γ). The conclusion is that the radius of absolute

monotonicity of TR-BDF2 is R(A,b) =
2(2− γ)

1 + (1− γ)2
. It is maximized for γ = 2 −

√
2,

the value that makes the TR-BDF2 method L-stable. If we substitute this value, we
obtain that the radius of absolute monotonicity is R(A,b) ≈ 2.414, it also the step
size coefficient c for conditional monotonicity for any nonlinear problem as explained in
[FS04]. The conclusion is that the TR-BDF2 method is not unconditionally monotone,
in literature some variants are proposed to have unconditional monotonicity (see e.g.
[BR15]).

14

Chapter 2

Numerical Methods for
Conservation Laws

In this chapter we review some basic theory about conservation laws and some numeri-
cal methods to discretize them in space. For more details the reader is referred to [LeV92].

Hyperbolic equations arise naturally from the conservation laws of physics. In this
chapter we will introduce a classical method for numerically solving such equations.
These are time-dependent systems of partial differential equations (usually nonlinear).
In one space dimension the equations are of this form

∂

∂t
u(t, x) +

∂

∂x
f(u(t, x)) = 0 (2.1)

Here u : R × R → R is the conserved quantity. The flux is given by a function
f(u(t, x)) and it is called the flux function for the conservation laws, so f : R→ R.

The simplest problem is the pure initial value problem, or Cauchy problem, in which
(2.1) holds for −∞ < x <∞ and t ≥ 0. We have to specify the initial condition only

u(0, x) = u0(x) −∞ < x <∞ (2.2)

We separate the time and space discretization because we are interesting in applying
multirate methods to discretize in time. The method of lines consist in applying a
discretization scheme in space first. As a result,a system of ordinary differential equations
of the form

du

dt
= Au (2.3)

is obtained, where u(t) is the vector whose components are ui(t) the unknown values
at the grid point at any time t. Then one can use any Ordinary Differential Equation
(ODE) solver for the time discretization.

15

2.1 Linear Advection Equation

We consider first the linear scalar advection equation

∂u

∂t
+ a

∂u

∂x
−∞ < x <∞, t ≥ 0 (2.4)

The Cauchy problem is defined by this equation together with initial conditions u(0, x) =

u0(x) and the solution is
u(t, x) = u0(x− at) (2.5)

for t ≥ 0. As time evolves, the initial data propagates unchanged to the right (if a > 0)
or left (if a < 0) with velocity a. The solution is constant along each ray x − at = x0,
which are known as the characteristics of the equation. The characteristics are curve
on the t − x plain satisfying x′(t) = a, x(0) = x0. Therefore, if we differentiate u(t, x)

along one of these curves along the characteristic, we find that

d

dt
u(t, x(t)) =

∂

∂t
u(t, x(t)) +

∂

∂x
u(t, x(t))x′(t) = 0 (2.6)

confirming that u is constant along the characteristics.

2.2 Nonlinear Conservation Laws

Now we focus on a generic scalar conservation law of the form

∂u

∂t
+
∂f(u)

∂x
= 0 (2.7)

with initial condition u(0, x) = u0(x). Assuming f ∈ C1(R), u also verify

∂u

∂t
+ f ′(u)

∂u

∂x
= 0 (2.8)

Also in this case we can define the characteristic curves associated to the conservation
law as the solution of the differential equation. We deduce that u(t, x(t)) = u(0;x(0)) =

u0(x(0)) which is independent of t. This allows us to get the solution at a given point
x and time t if the characteristic curve can be traced back in the t-x plane to the line
t = 0. This is not always possible when f is nonlinear.

2.3 Weak solutions

In same cases, the characteristics associated to a non linear conservation law can cross,
in which case the method of characteristics can non longer be used to find a solution.
Actually when this happens the solution is no longer of class C1 and can even become
discontinuous. Let us define the notion of weak solution:

16

Definition 16. Let u0 ∈ L∞(R) the initial condition of the scalar conservation law (2.7),
then u ∈ L∞(R+ × R) is weak solution if satisfies∫ T

0

∫ +∞

−∞
u
∂ϕ

∂t
+f(u)

∂ϕ

∂x
dtdx+

∫ +∞

−∞
u0(x)ϕ(0, x)dx = 0 ∀ϕ ∈ C10([0, T)×R) (2.9)

C10 is the space of function that are continuously differentiable with "compact support"
it means that ϕ(t, x) is identically zero outside of some bounded set, and so the support
of the function lies in a compact set. The notion of weak solutions generalizes the notion
of classical solutions because multiplying by ϕ and integriting by parts equation (2.7) we
obtain (2.9).

2.4 The Rankine-Hugoniot condition

The Rankine-Hugoniot condition gives a constraint on the discontinuity along a line for
the piecewise smooth solution to be a weak solution of the equation.

Theorem 4. Assume the half space R+×R is split into two partsM1 andM2 by a smooth
curve S parametrized by (t, σ(t)) with σ ∈ C1(R+). We also assume that u ∈ L∞(R+×R)

and that u1 = u|M1 ∈ C1(M1) and u2 = u|M2 ∈ C1(M2) with u1 and u2 two classical
solutions of our equation in respectively M1 and M2. Then u is a weak solution if and
only if

[u1(t, σ(t))− u2(t, σ(t))]σ′(t) = f(u1(t, σ(t)))− f(u2(t, σ(t))) ∀t ∈ R+ (2.10)

Relation (2.10) is called Rankine-Hugoniot condition where σ′(t) is the the prop-
agation speed of the discontinuity.

2.5 Entropy solution

There are situations in which the weak solution is not unique and an additional condition
is required to capture the physically solution that instead is unique. There are different
sufficient conditions to obtain the physical solution of the problem. The condition is that
it should be the limiting solution of the viscous equation:

∂u

∂t
+
∂f(u)

∂x
− ε∂

2u

∂x2
= 0 (2.11)

for ε → 0. Associated to a smooth initial condition this equation has a unique smooth
solution. And the physically correct solution of our conservation law, will be the unique
limit of this solution (which depends on ε) when ε → 0 if the flux f is convex. This
unique solution can be characterized using the notion of entropy. First of all we have

17

to define an entropy function η(u), for which another conservation law holds if the
solution u is smooth. If we have a discontinuity solution the conservation laws becomes
an inequality.

Suppose a function η(u) satisfies a conservation law

∂η(u)

∂t
+
∂ψ(u)

∂x
= 0 (2.12)

for some entropy flux ψ(u). For smooth u we obtain

η′(u)
∂u

∂t
+ ψ′(u)

∂u

∂x
= 0 (2.13)

If we write (2.7) as (2.8), multiply this by η′(u) and compare with (2.13) we obtain

ψ′(u) = η′(u)f ′(u) (2.14)

For a scalar conservation law this equation admits many solutions ψ(u) and η(u). An
additional condition we place on the entropy function is that it be convex, η′′(u) > 0.
The reason is that if we look at equation (2.11) we can derive the corresponding evolution
equation for the entropy, multiplying it by η′(u) we obtain

∂η(u)

∂t
+
∂ψ(u)

∂x
= ε

∂2u

∂x2
(2.15)

rewriting the right hand side

∂η(u)

∂t
+
∂ψ(u)

∂x
= ε

∂

∂x

(
η′(u)

∂u

∂x

)
− εη′′(u)

∂u2

∂x
(2.16)

Integrating this equation over a control volume [x1, x2]× [t1, t2] gives∫ t2

t1

∫ x2

x1

∂η(u)

∂t
+
∂ψ(u)

∂x
dxdt =ε

∫ t2

t1

η′(u(t, x2))
∂

∂x
(u(t, x2)− η′(u(t, x1))

∂

∂x
(u(t, x1))dt+

− ε
∫ t2

t1

∫ x2

x1

η′′(u)
∂u2

∂x
dxdt

(2.17)

As ε → 0 the first term of the right hand side vanishes. For the other term, if the
weak solution is discontinuous in the rectangle, it will not vanish. However, since ε > 0,
∂u2

∂x > 0 and η′′(u) > 0 thanks to the convexity assumption, we can conclude that the
right hand side is not positive, therefore the weak solution satisfies∫ t2

t1

∫ x2

x1

∂η(u)

∂t
+
∂ψ(u)

∂x
dxdt ≤ 0 (2.18)

for all t1, t2, x1 and x2.

18

Proposition 1. (Entropy condition) The function u(t, x) is the entropy solution of
(2.7) if, for all convex entropy functions and corresponding entropy fluxes, the inequality

∂η(u)

∂t
+
∂ψ(u)

∂x
≤ 0 (2.19)

is satisfied in the weak sense.
The weak form of the entropy inequality is∫ T

0

∫ +∞

−∞
η(u(t, x))

∂ϕ(t, x)

∂t
+ ψ(u(t, x))

∂ϕ(t, x)

∂x
dxdt ≤ −

∫ +∞

−∞
η(u0(x))ϕ(0, x)dx

(2.20)
for all ϕ ∈ C10([0, T)× R).

2.6 Inflow and outflow characteristics

We consider now the imposition of the boundary condition for the problem (2.7) with
initial condition in restricted domain x ∈ [0, R]. The characteristics are straight lines of
equation

x = f ′(u0(x0))t+ x0, (2.21)

where f ′(u(x, t)) is the characteristic speed. To simplify the problem, we consider the
linear advection equation f(u(t, x)) = au(t, x) with a constant.

1. 2. 3. 4. 5. 6.

1.

2.

3.

4.

0 1. 2. 3. 4. 5. 6.

1.

2.

3.

4.

0

Figure 2.1: Outflow characteristics for a > 0 (left) and inflow characteristics for a < 0

(right).

As showed in Figure 2.1, if a > 0 therefore the characteristics get out from the axis
x and t into the domain; in this case the boundary conditions are given in x = 0 and the
characteristics are called outflow characteristics. If a < 0, instead the characteristics get

19

out from x axis and the straight line x = R into the domain, the the characteristics, in
this case, are called inflow characteristics.

The boundary conditions are:{
u(t, 0) a > 0

u(t, R) a < 0
(2.22)

2.7 Riemann problem

The Riemann problem for a generic conservation law is defined by assigning an initial
condition given by the piecewise constant function:

u0(x) =

{
ul x < 0

ur x > 0
(2.23)

For a convex flux, the form of the solution depends on the relation between ul and ur. We

will give an example considering the Burgers’ equation with flux function f(u) =
1

2
u2.

First case: ul > ur

In this case exist a unique weak solution

u(t, x) =

{
ul x < st

ur x > st
(2.24)

where s =
ul + ur

2
is the shock speed, the speed at wich the discontinuity travels.

ul

ur

0

Figure 2.2: Shock wave.

20

Second case: ul < ur

For this kind of problem there are infinitely many weak solutions, the weak solution
physically correct is called rarefaction wave and corresponds to a series of characteristics
emanating from the origin with continuous slopes between ul and ur:

u(t, x) =

ul x < ult
x

t
ult < x < urt

ur x > urt

(2.25)

ul

ur

0

Figure 2.3: Rarefaction wave.

2.8 Buckley-Leverett equation

The Buckley-Leverett equation is a simple model for two phase fluid flow in a porous
medium, as expleined in [LeV92]. An interesting application is to oil reservoir simulation.
When an underground source of oil is tapped, a certain amount of oil flows out on its own
due to high pressure in the reservoir. After the flow stops, there is a large amount of oil
still in the ground. One standard method of "secondary recovery" is to pump water into
the oil field through some wells, forcing oil out through others. In this case the two phases
are oil and water, and the flow takes place in a porous medium of rock or sand. The
Buckley-Leverett equations are a particularly simple scalar model that captures some
features of this flow. In one space dimension the equation has the standard conservation
law form (2.7) with

f(u) =
u2

u2 + a(1− u)2
(2.26)

where a is a constant. In this application u represents the saturation of water and so lies
between 0 and 1. Figure 2.4 shows f(u) and its derivative when a = 1

2 .

21

Figure 2.4: Flux function of the Buckley-Leverett equation with a = 1
2 .

The characteristics of this problem are present in Figure 2.5. If we consider as initial
condition the Riemann problem with initial states ul = 1 and ur = 0, it models the flow
of pure water if u = 1 into pure oil u = 0. In this case the Riemann solution involves both
a shock and a rarefaction wave, in fact if f(u) had more inflection points, the solution
might involve several shocks and rarefactions.

Figure 2.5: Characteristics gives by the Buckley-Leverett flux.

2.9 The Finite Volume method

In the Finite Volume method, the computational domain is divided into cells and the
unknown quantity that is numerically computed is the cell average of u on each cell.
This is in contrast to the Finite Difference method, for which the unknowns are the
point values of u at the grid points. We need to number the cells. In 1D a convenient
way to do it in order to avoid confusion with the grid points, is to assign half integers.

Let us denote by

ui(t) =
1

∆xi

∫ x
i+1

2

x
i− 1

2

u(t, x)dx (2.27)

22

xi+1xi+1/2xixi−1/2xi−1

Figure 2.6: Mesh used for the space discretization.

where ∆xi = xi+1 − xi−1.
Finite Volume numerical schemes is then obtained by integrating the original equation
on each cell of the domain. As for the time scheme use the method of lines and separate
space discretization from time discretization. So integrating (2.7) on the generic cell
[xi−1, xi+1] and dividing by ∆xi yields:

dui(t)

dt
= − 1

∆xi
(f(u(t, xi+ 1

2
))− f(u(t, xi− 1

2
))). (2.28)

An important requirement, of our method is that it has to converge to a weak solution
of the problem. For this reason the numerical method should be in conservation form
which means it has form, where with c the numerical solution,

dci(t)

dt
= − 1

∆xi
[F (ci−p(t), ci−p+1(t), · · · , ci+q(t))+

−F (ci−p−1(t), ci−p(t), · · · , ci+q−1(t))]
(2.29)

for some function F of p+ q + 1 arguments. F is called the numerical flux function.
In the simplest case, p = 0 and q = 1 so that F is a function of only two variables and
(2.29) becomes

dci(t)

dt
= − 1

∆xi
[F (ci(t), ci+1(t))− F (ci−1(t), ci(t))] (2.30)

This form satisfies the integral form of the conservation law if we view ci as an approxi-
mation to the cell average defined by (2.27).

In the case of linear advection equation we use the upwind method, that in conservation
form, it will be:

dci(t)

dt
= − 1

∆xi

(
Fi+ 1

2
(t)− Fi− 1

2
(t)
)

(2.31)

with a numerical flux equal to:

Fi+ 1
2
(t) =

{
aci(t) a > 0

aci+1(t) a < 0

23

The method is consistent if the numerical flux function reduces to the original flux
in case of constant flow, that it means if u(t, x) = ū then

F (ū, ū) = f(ū) ∀ū ∈ R (2.32)

For the upwind method it is easy to verify the the method is consistent, in fact for both
the cases we obtain the exact flow of the conservation law that it is discretized in space.
If we have to solve a nonlinear equation, the upwind method does not guarantee that
weak solution obtained satisfy the entropy condition. An alternative numerical flux can
be propose to approximate the scalar problem that gives the correct solution. They
must be determined in order to ensure that the scheme preserves the monotonicity of
the solution, in order to avoid spurious oscillations. Schemes satisfying this request are
called monotone and as showed in [GR13] satisfy the entropy inequalities, and thus they
converge to the unique entropy solution in the scalar case.

An example of monotone method in conservation form is given by (2.31) where we take as
numerical flux the Rusanov flux, also called Local Lax Friedrichs flux, which is defined
by

Fi+ 1
2
(t) =

[
f(ci(t)) + f(ci+1(t))

2
− α(ci+1(t)− ci(t))

2

]
(2.33)

where
α = max

c∈[β,γ]
|f ′(c)|

with β = min(ci, ci+1) and γ = max(ci, ci+1).
The idea behind this flux, instead of approximating the exact Riemann solver, is to

recall that the entropy solution is the limit of viscous solutions and to take a centered
flux to which some viscosity (with the right sign) is added. The only requirement is that
the numerical flux must to be differentiable to evaluate the derivative of the flux.

24

Chapter 3

Multirate TR-BDF2 method

To calculate the numerical solution of an ODEs system there are a lot of methods that
use different local time steps that are varying in time, but constant over the components.
With the multirate methods we are able to have a big time step for the slow components
while a smaller time step for the faster ones.

Given a system of ODEs with the notation present in equation (1.1), in a multirate
approach, the system is partitioned into two subsystems, so that it is rewritten as

y′a = fa(t,ya,yl)

y′l = fl(t,ya,yl).
(3.1)

The active components ya are associated to phenomena on a fast time scale, while latent
components are associated to slower phenomena. Given a global time step hn = tn+1−tn,
where the intervals [tn, tn+1] are called time slabs, we compute the approximation of
the solution at this new level for all components and, for those components that the
error estimator is bigger than the tolerance, we recalculate the solution with a smaller
time step, where the size of the new time step is selected with a self-adjusting strategy.
In this smaller time step, for some components from the refinement set, we will need
solution values of components not refined in that time, we use interpolation based on the
information available at the time tn and tn+1 to know the value of the latent components.
Multirate methods avoid some computation that is necessary in the standard single rate
approach. In other words, in the multirate approach, we are trying to use the most
appropriate resolution for each state variable of the system. These algorithms can be
very useful in problems having widely varying time scales.

3.1 A self adjusting implicit multirate approach

We consider multirate methods for the solution of the Cauchy problem

y′ = f(t,y) y(0) = y0 ∈ Rm, t ∈ [0, T]. (3.2)

25

We will consider time discretizations defined by discrete time levels tn, n = 0, . . . , N such
that hn = tn+1− tn and we will denote by un the numerical approximation of y(tn). We
will also denote by un+1 = S(un, hn) the implicitly defined operator whose application is
equivalent to the computation of one step of size hn of a given implicit, single step method.
Furthermore, we will denote by Q(un+1,un, ζ) an interpolation operator, that provides
an approximation of the numerical solution at intermediate time levels tn + ζ, where ζ ∈
[0, hn]. Linear interpolation is often employed, but, for multistage methods, knowledge
of the intermediate stages also allows the application of more accurate interpolation
procedures without substantially increasing the computational cost.

The self adjusting multirate approach proposed by Ranade [Ran16], inspired by the
method introduced in [SHV07], can be described as follows.

• Perform a tentative global (or macro) time step of size hn = h
(0)
n with the standard

single rate method and compute

ûn+1 = ûn,0 = S(un, h(0)n)

• Compute the error estimator and partition the state space into active and latent
variables, based on the value of the error estimate. The projection into the subspace
of the active variables is denoted by Pn = P

(0)
n . The specific way in which error

control mechanisms are applied to the choice of the global step is crucial for the
efficiency of the algorithm and will be discussed in detail in section 3.2. Here, we
simply assume that h(0)n has been chosen by an appropriate criterion.

• Set (
I−P(0)

n

)
un+1 =

(
I−P(0)

n

)
ûn+1

and define P
(0)
n un,0 = P

(0)
n un and tn,0 = tn.

• For k = 0, . . . , kmax

– Choose a local (or micro) time step h(k+1)
n for the active variables, not larger

than tn+1 − tn,k.

– At the intermediate time level tn,k+1 = tn + h
(k+1)
n , compute by interpolation

(I−P(k)
n)ûn,k+1 = Q

(
(I−P(k)

n)un+1, (I−P(k)
n)un,k, h(k+1)

n

)
– Compute

un,k+1 = P(k)
n S(P(k)

n un,k, h(k)n) + (I−P(k)
n)ûn,k+1

– Compute the error estimate and and partition the image of P
(k)
n into active

and latent variables. Denote by P
(k+1)
n the projection onto the subspace of

variables that need further refinement and repeat until
∑k+1

l=1 h
l
n = hn.

26

Clearly, the effectiveness of the above procedure depends in a crucial way on the ac-
curacy and stability of the basic ODE solver S, as well as on the time step refinement and
partitioning criterion. Furthermore, as well known in multirate methods, unconditional
stability of the solver S does not necessarily entail that the same property holds for the
derived multirate solver. The refinement and partitioning criterion will be described in
detail in section 3.2. Here, we only remark that, as it will be shown by the numerical
experiments in chapter 4, the approach outlined above is able to reduce significantly the
computational cost with respect to the equivalent single rate methods, without a major
reduction in stability for most of the envisaged applications. A linear stability analysis
is present in [Ran16].

3.2 The time step refinement and partitioning criterion

We now describe in detail the time step refinement and partitioning strategy that
we have used in the multirate algorithm described in section 3.1. Ranade’s approach is
based on the strategy proposed for an explicit Runge Kutta multirate method in [Fok15],
where the time steps for refinement are obtained from the error estimates of the global
step. The user specified tolerance plays an important role in the partitioning of the
system. In [Fok15], a simple absolute error tolerance was considered. However, in most
engineering system simulations, whenever the typical values of different components can
vary greatly, the tolerance used is in general a combination of absolute and relative error
tolerances, see e.g. [SW06]. Ranade has thus extended the strategy proposed in [Fok15]
in order to employ such a combination of absolute and relative error tolerances.

More specifically, denote by τr, τa the user defined error tolerances for relative and
absolute errors, respectively. Furthermore, assume that the tentative global step ûn+1 =

S(un, h
(0)
n) has been computed and that an error estimator ε0n+1 is available. The first

task of the time step selection criterion is to asses whether the global time step h(0)n has
been properly chosen. Denoting by εn+1,0

i , ûn+1
i , i = 1, . . . ,m the i−th components of

the error estimator and of the tentative global step numerical solution, respectively, we
define a vector ηn+1,0 of normalized errors with components

ηn+1,0
i =

εn+1,0
i

τr|ûn+1
i |+ τa

.

Since clearly the condition maxi η
n+1,0
i ≤ 1 has to be enforced, before proceeding to the

partitioning into active and latent variables, this condition is checked and the global step
is repeated with a smaller value of h(0)n whenever it is violated. Numerical experiments
have shown that, while an increase of efficiency with respect to the single rate version
of the method is always achieved, independently of the choice of the tentative step, the

27

greatest improvements are only possible if the global time step does not have to be
repeated too often.

Once condition maxi η
n+1,0
i ≤ 1 is satisfied, the set of indices of the components

flagged for the first level of time step refinement is identified by

A0
n+1 = {i : ηn+1,0

i > δ‖ηn+1,0‖∞}, (3.3)

where δ ∈ (0, 1) is a user defined coefficient. The smaller the value of δ, the larger is
the fraction of components marked for refinement. Notice that, if δ is set to unity, the
algorithm effectively operates in single rate mode. For each iteration k = 1, . . . , kmax
of the algorithm described in section 3.1, active variable sets Akn+1 are then defined
analogously. In each iteration k = 0, . . . , kmax, the time step h(k)n is chosen:

h(k)n = ν min
j∈Ak

n+1

(
τr|uni |+ τa

εn+1,k
i

) 1
p+1

, (3.4)

where p is the convergence order of the solver S and ν is an user defined safety parameter.

1 7tn 65432

1 7t1n+1 65432

1 7t0n+1
65432

Figure 3.1: An example of partitioning, the flagged components are in red, the interpolated
ones are in green.

3.3 The interpolation procedures

An essential component of any multirate algorithm is the procedure employed to
reconstruct the values of the latent variables at those intermediate time levels for which
only the active variables are computed. Self-adjusting multirate procedures based on
implicit methods, such as the one proposed in [SHV07] and that presented in this paper,
can avoid the use of extrapolation, thus increasing their overall stability. The simplest
and most commonly used procedure is linear interpolation, that is defined for ζ ∈ [0, hn]

as
Q(un+1,un, ζ) =

ζ

hn
un+1 +

(hn − ζ)

hn
un. (3.5)

28

An interesting feature of the TR-BDF2 method in the multirate framework is that
the method, as explained in [HS96], is endowed with a cubic Hermite, globally C1 inter-
polation algorithm for dense output. This interpolant allows to have accurate approx-
imations of the latent variables without extra computational cost or memory storage
requirements, since it employs the intermediate stages of the TR-BDF2 method in order
to achieve higher order accuracy. using the notation of section 1.8, the Hermite cubic
interpolant can be defined as

Q(un+1,un, ζ) = (α3 − 2α2)β
3(ζ) (3.6)

+ (3α2 −α3)β
2(ζ) +α1β(ζ) +α0,

where, for 0 ≤ ζ ≤ γhn one has

α0 = un, α1 = γzn, α2 = un+γ − un − γzn,

α3 = γ(zn+γ − zn), β(ζ) =
ζ

γhn

and for γhn ≤ ζ ≤ hn one has instead

α0 = un+γ , α1 = (1− γ)zn+γ , α2 = un+1 − un+γ −α1,

α3 = (1− γ)(zn+1 − zn+γ) β(ζ) =
ζ − γhn

(1− γ)hn
.

3.4 Error estimation

In the Ranade’s algorithm, the error is estimated with a modified error estimator. First
he compares the result of the second order formula to that of the embedded third order
formula, then he takes as final result the solution of the linear system gives by equation
1.23, as proposed in [HS96]. As explained in section 1.8, this modification improve it for
stiff components preserving its accuracy as h→ 0.

For a large PDE problem, solving at each time step another linear system could
turn out to be very expensive. We propose other types of error estimator that are less
expensive as they do not require to solve a linear system. At each time step, we know the
active components values at times tn and tn+γ , so we can use an extrapolation technique.
The simplest one is the linear extrapolation, given by

ûn+1
lin = un +

tn+1 − tn
tn+γ − tn

(un+γ − un). (3.7)

Another estimator can be obtained by applying the Cubic Hermite extrapolation:

ûn+1
cub = (α3 − 2α2)β

3 (3.8)

+ (3α2 −α3)β
2 +α1β +α0,

29

where
α0 = un, α1 = γzn, α2 = un+γ − un − γzn,

α3 = γ(zn+γ − zn), β =
tn+1 − tn
γhn

.

Therefore, the error estimate , is given by:

εn+1 = |ûn+1 − un+1| (3.9)

where ûn+1 denotes either lines or cubic extrapolator.

30

Chapter 4

Numerical Experiments

A number of tests have been performed to assess the accuracy and efficiency of the
propose multirate TR-BDF2 method. In Appendix A is present the structure of the used
code.

4.1 Geochemistry ODE system

The first case test is an ODE system that is a model of geochemistry reactions. Given
a system of species that are reacting with each other, the problem can be modeled,
according to [BGG12], in the following way:

dn

dt
= R(n) (4.1)

where

Rj =
N∑
l=1

Sjlπl j = 1...nspecies (4.2)

• N is the total number of reactions that are present in the system,

• S is the stoichiometric matrix and

πl = Kl

 ∏
Sjl>0

(
aj(n)

kj

)|Sjl|
−
∏
Sjl<0

(
aj(n)

kj

)|Sjl|
 (4.3)

where Kl is the reaction speed, which could be a function of the temperature or a constant
value. In this first approach to the problem, we have assumed it to be constant. aj is
the activity of a chemical species, which is modeled according to the the ideal activity
law for every species. The constant kj is the equilibrium constant for the j-th species.

31

The activity of a chemical species is modeled by the ideal law:

ai =

xi =
nH2O∑
i∈w

ni
i = H2O

mi =
ni

nH2O

1

18 · 10−3
i ∈ w 6= H2O

xi = 1 i /∈ w.

(4.4)

Here,w denotes the aqueous phase, while:

• xi is the molar fraction of the considered species in its phase,

• mi represents the amount of a species expressed in moles/kg of solvent.

In the first test case, we consider a system formed of 12 species divided into 4 phases:

Figure 4.1: Structure of the system.

• Phase 1. Gas: CO2(g)

• Phase 2. Aqueous solution: H2O,H
+, CO2(aq), Cl

−, Na+, Ca+2, SiO2(aq), HCO
−
3 , OH

−

• Phase 3. Calcite mineral: CaCO3(s)

• Phase 4. Quartz mineral: SiO2(s)

We consider the following three equilibrium reactions:

• Req 1. Hydrolysis of water

H2O
 H+ +OH−

32

• Req 2. Dissolution of CO2(g) in water

CO2(aq)
 CO2(g)

• Req.3 Dissociation of CO2(aq)

H2O + CO2(aq)
 HCO−3 +H+

We model dissolution-precipitation reactions by the following kinetics:

• Rkin 1. Dissolution of Calcite

CaCO3(s) +H+ → Ca2+ +HCO−3

• Rkin2. Precipitation of Calcite

CaCO3(s) +H+ ← Ca2+ +HCO−3

• Rkin3. Dissolution of Quartz

SiO2(s)→ SiO2(aq)

• Rkin 4. Precipitation of Quartz

SiO2(s)← SiO2(aq)

In Table 4.1 we can see the parameters of the species and in table 4.2 the reaction
kinetic values that, in our model, are taken as constants.

The problem considered has initial time t0 = 0 s and final time tfinal = 300s, we take
as Newton tolerance 1 × 10−11; the tolerance for the error estimator is taken equal to
[1×10−4, 1×10−5]. We denote here tolerance as [τr, τa], where τr is the relative tolerance
while τa is the absolute tolerance. The initial time step is equal to 1× 10−4s.

In Figure 4.2 and 4.3 we show the species concentrations, as computed with the
multirate TR-BDF2 method and with the ode45 method implemented in MATLAB. The
species amounts are in agreement with the qualitative evolution expected. The amount of
(CO2)g increases producing a loss of (CO2)aq, that is also present in reaction Req.3. For
this reason also the H+ and HCO−3 amounts decrease, in order to try reach equilibrium.
Another reaction is also involved in the process, that is the hydrolisis of water, the loss
of H+ amount causes the growth of OH− and H2O. H+ and HCO−3 are also present
in the first kinetic reaction, they induce the precipitation of calcite thus reducing the
Ca++ amount. The slow increment of (SiO2)s is linear inasmuch the activity value of

33

Phase Species log10(k) initial concentration [mol/m3]

Aqueous H2O 0 8071.20559

Aqueous H+ 0 0.00377657

Aqueous CO2(aq) 0 119.23091

Aqueous Cl− 0 156.803187

Aqueous Na+ 0 145.432629

Aqueous Ca+2 0 7.01164993

Aqueous SiO2(aq) 0 0.03770169

Aqueous HCO−3 −6.2206340 2.62191679

Aqueous OH− −13.235362 3.091 · 10−7

Mineral Calcite CaCO3(s) −7.7454139 4.33 · 103

Mineral Quartz SiO2(s) 3.5862160 2.82 · 104

Gas CO2(g) 2.0861861 4.27 · 102

Table 4.1: Thermodynamic parameters of the species

Reaction Type Name K
Req 1 Aqu Hydrolisis of water 1 · 103

Req 2 Gas-Aqu Dissolution of CO2(g) in water 1 · 101

Req 3 Aqu Dissociation of CO2(aq) 1 · 103

Rkin 1 Min-Aqu Dissolution of Calcite −1 · 10−1

Rkin 2 Min-Aqu Precipitation of Calcite 1 · 10−1

Rkin 3 Min-Aqu Dissolution of Quartz −1 · 10−1

Rkin 4 Min-Aqu Precipitation of Quartz 1 · 10−1

Table 4.2: Thermodynamic parameters of the reactions

34

Figure 4.2: Amount (from the top to the bottom, from left to right) of H2O, H+, (CO2)aq,
Cl−, Na+ and Ca++ computed with the multirate method (Cubic Hermite interpolation)
and with the ode45 matlab method.

this species is equal to 1. The Cl− and Na+ are not present in any reaction, so their
amounts stay constant for all the simulation.

The evolution of the Ca++ amount computed with the multirate TR-BDF2 method
is not captured as well as the amount computed by the MATLAB solver. The reason of

35

Figure 4.3: Amount (from the top to the bottom, from left to right) of (SiO2)aq, HCO−3 ,
OH−, (CaCO3)s, (SiO2)s and (CO2)g computed with the multirate method (Cubic Her-
mite interpolation) and with the ode45 matlab method.

this fact, is because the reaction where the species is present has a slow speed respect
the other reactions, so that the Ca++ amount is always interpolated.
In section 1.8 we have explained that the TR-BDF2 method is not unconditionally mono-
tone, so that the computed concentrations can become negative. In this system the only

36

species that goes to zero is the (CO2)aq, as showed in Figure 4.2, but its amount remains
positive for every time step.

In Table 4.3 we report the relative error :

||uj − nj ||∞
||nj ||∞

∀j = 1 · · ·nspecies (4.5)

where we consider for every species the infinity norm of the difference between the solution
computed by our algorithms (u) and the solution computed by the MATLAB solver (n)
divided by the infinity norm of the MATLAB solution. In the the first column the
algorithm used is the multirate TR-BDF2 with a cubic interpolator that turn out to be
better than the multirate TR-BDF2 method with the linear interpolator (second column),
even if the single rate method with the same tolerance for the error estimator gives an
extra order of accuracy. If we analyze the computational cost between the multirate and
single-rate method presents in Table 4.4, we do not see a lot of difference because the
system is not sufficiently big to underline the benefit of the multirate method.

4.2 Extended Geochemistry problem

We have seen a simple case test for a geochemistry problem. Now we want to test the
multirate algorithm performance, we consider a larger chemistry system where a lot of
species are not interacting with each other. Let us consider a bigger system with the same
species and reactions of the previous case where we add 100 species that stay constant for
all the simulation, they will be present in no reaction. We set the initial amount of these
species equal to the Cl− species value. In Table 4.6 are reported the computation time
and the number of time step for the multirate TR-BDF2 method with cubic Hermite
interpolation and the single rate TR-BDF2 method. We can see that in the multirate
version we obtain a bigger computational cost respect the single rate method because,
at each time step, the the last one computes the species amount for all the components.
It also requests more time steps.

Another geochemistry problem that we want to analyze is like the previous one, but
this time, the species interact with each other two by two. This means that, adding 100

of species at the base system, we have that:

s1 + s2
 s3 + s4

s3 + s4
 s5 + s6

...

s99 + s100
 s1 + s2.

37

Species Cubic Linear Single rate

H2O 2.11× 10−7 6.67× 10−7 3.31× 10−8

H+ 1.07× 10−3 4.24× 10−3 1.92× 10−4

(CO2)aq 2.74× 10−4 6.31× 10−4 1.12× 10−5

Cl− 0 0 0

Na+ 0 0 0

Ca++ 9.09× 10−3 3.22× 10−2 3.80× 10−5

SiO2aq 1.97× 10−8 3.97× 10−8 1.54× 10−9

HCO−3 5.08× 10−4 2.17× 10−3 2.03× 10−4

OH− 4.40× 10−3 3.35× 10−2 4.78× 10−4

(CaCO3)s 3.92× 10−7 1.24× 10−6 6.15× 10−8

(SiO2)s 2.54× 10−14 5.27× 10−14 1.54× 10−15

(CO2)g 1.24× 10−4 5.17× 10−4 2.50× 10−5

Table 4.3: Relative error in infinity norm at a fixed time between the solution computed
with ode45 and the solution computed with multirate method with cubic Hermite interpo-
lator (first column), the solution computed with multirate method with linear interpolator
(second column) and the solution computed with single-rate method (third column) for
the geochemistry problem.

For all these reactions we take as kinetic parameter the same value of the slowest reaction,
the precipitation of calcite. These species have not to be at the equilibrium so the
equilibrium constant kj in (4.3) is different for the 100 species, log(ks1) = log(ks2) =

0, log(ks3) = log(ks4) = 2.0861861, log(ks5) = log(ks6) = 0, log(ks7) = log(ks8) =

2.0861861 and so on.
In Figure 4.4 we can see the amount of the fist four new added species, for the other

new species the plot is identically. The reactions, for the new species, have a slow speed,
in fact at time t = 300s they have not yet reach equilibrium. The amount of the species
that were present in the first system have the same trend (Figures 4.2 and 4.3) and reach
equilibrium at time t = 150s. After this time, as showed in Figure 4.5, the refinement
strategy does not reject any more components and proposes every time a bigger global
time step, where is not necessary any refinement.

38

Method Computation time Numb. time steps
Singlerate TR-BDF2 2.67s 256

Multirate TR-BDF2 1.93s 139

Table 4.4: Computation time and number of time steps for the geochemistry problem.

Method Computation time Numb. time steps
Singlerate TR-BDF2 8.7s 256

Multirate TR-BDF2 6.78s 139

Table 4.5: Computation time and number of time steps for the extended geochemistry
problem with 100 non interacting species.

Figure 4.4: Amount of the first four new added species computed with the multirate
method (Cubic Hermite interpolation) and with the ode45 matlab method.

39

Figure 4.5: The components being computed at each time step by the multirate TR-BDF2
algorithm for the extended geochemistry ODE.

Method Computation time Numb. time steps
Singlerate TR-BDF2 33.78s 170

Multirate TR-BDF2 27.15s 144

Table 4.6: Computation time and number of time steps for the extended geochemistry
problem with 100 species that interact with pairwise.

40

4.3 Linear Advection Equation

As first case test for the hyperbolic equations we consider a linear case
∂u

∂t
+
∂u

∂x
= 0, x ∈ [−20, 20], t > 0

u(x, 0) = exp(−x2) t > 0.

(4.6)

To discretize in space we used a first order upwind method. We set a = 1 if we
consider the notation used in (2.4), so we use as boundary condition u(x0, t) = u0(t0).
The interval time is [0, 3]s with a number of cells equal to 400, the error tolerance is
[1× 10−6, 1× 10−8], where the first value is the relative error tolerance while the second
is the absolute error tolerance. The initial size of the time step is equal to 1× 10−2s.

Figure 4.6: Multirate TR-BDF2 method with Cubic interpolation for the linear advection
problem.

The upwind discretization has a diffusion term which is responsible for the spread-
ing of the initial condition. This diffusion also ensures that the number of computed
components increases as time progresses (Figure 4.6).

41

Method Computation time Numb. time steps
Single rate TR-BDF2 21.41s 323

Multirate TR-BDF2 11.59s 433

Table 4.7: Computation time and number of time steps for the linear advection equation.

time [s] Cubic interp. Linear Interp. Single rate Cubic extrap.

0.2 5.7× 10−2 5.71× 10−2 5.88× 10−2 5.92× 10−2

1 2.73× 10−1 2.74× 10−1 2.63× 10−1 2.74× 10−1

1.8 4.52× 10−1 4.53× 10−1 4.46× 10−1 4.54× 10−1

2.8 6.41× 10−1 6.43× 10−1 6.41× 10−1 6.44× 10−1

Table 4.8: Relative error in infinity norm at a fixed time between the exact solution and
the solution computed with the multirate method with cubic Hermite interpolator (first
column), the solution computed with multirate method with linear interpolator (second
column), the solution computed with single-rate method (third column) and the solution
computed with the multirate method with the cubic Hermite extrapolator as error estimator
(fourth column) for the linear advection equation.

time [s] Cubic interp. Linear Interp. Single rate Cubic extrap.

0.2 1.41× 10−6 3.07× 10−5 1.38× 10−6 1.53× 10−5

1 5.45× 10−6 1.54× 10−5 4.76× 10−6 1.53× 10−5

1.8 8.78× 10−6 1.49× 10−5 8.80× 10−6 1.44× 10−5

2.8 1.24× 10−5 1.72× 10−5 1.02× 10−5 1.54× 10−5

Table 4.9: Relative error in infinity norm at a fixed time between the approximate solution
computed with ode45 and the solution computed with the multirate method with cubic
Hermite interpolator (first column), the solution computed with multirate method with
linear interpolator (second column), the solution computed with single-rate method (third
column) and the solution computed with the multirate method with the cubic Hermite
extrapolator as error estimator (fourth column) for the linear advection equation.

42

time [s] 0.2 1 1.8 2.8

5.88× 10−2 2.61× 10−1 4.43× 10−1 6.40× 10−1

Table 4.10: Relative error in infinity norm at a fixed time between the exact solution and
the solution computed by the MATLAB solver for the linear advection equation.

To compute the relative errors we used the exact solution (Table 4.8) and the ap-
proximate solution with ode45 MATLAB’s method set to a suitably stringent tolerance
(Table 4.9). We used the last one to not consider the error caused by the upwind space
discretization. To not assess the errors caused by the space discretization we have also
report the relative errors between the exact solution and the solution computed by the
MATLAB solver with the ode45 method. As Figure 4.6 confirms, the method uses the
interpolation for constant component values, and we can not see a relevant difference in
terms of time errors between the multirate and single rate method.
In the multirate TR-BDF2 algorithm we can choose the components to refine using the
error estimator given by (1.23). As explained in Section 3.4, this approach can be ex-
pensive from a computational cost point of view. We first used the linear extrapolation
to estimate the solution at time tn+1 with bad results. The method executes 12826 time
steps so it rejects the micro time steps more times of the due. With the Cubic Hermite
extrapolation we obtain better results, 503 time steps are necessary, the execution time
is equal to 13.21 s. In Tables 4.8 and 4.9 we report the relative errors in infinity norm.
In this last case the multirate method with Cubic Hermite extrapolator as error estima-
tor is as accurate as the one with the original error estimator. In Figure 4.7 we have
computed the CPU times at different cell numbers for the single rate method, multirate
method with Cubic interpolation and original error estimator and multirate method with
Cubic interpolation and Cubic extrapolator as error estimator. The multirate algorithms
performed better than the single rate method. In this case we have not any benefit with
the new error estimator because to solve the linear systems a direct method is used and
the matrix, that is at each time step always the same, is already factored. If we use a
iterative method this would not be true and we could see a computational gain.

As explained in Section 1.8 the TR-BDF2 method can not preserve the positivity
of the solution. To obtain a violation of the monotonicity propriety we increased the
number of cells to obtain a higher Courant number for each time step. The threshold
to obtain a negative solution is a Courant number major than 2.5. We use 1000 cells
and a tolerance equals to [1× 10−2, 1× 10−3]. In Figure 4.8 we have reported in red the
components with negative values for the multirate (left) and for the single rate (right)
algorithms. The number of components less than zero is major for the multirate method
because the latent components do not require a small time step to be computed and so
it is easer to violate the property.

43

Figure 4.7: CPU times for the multirate method with the embedded error estimator (blue),
with the Cubic extrapolator (black) and for the single rate method (red) for the linear
advection problem.

Figure 4.8: Solution at time t = 3, in red are marked the components with value less than
0 computed with the multirate algorithm (left) and with the single rate algorithm (right).

44

time [s] Cubic interp. Linear interp. Single rate Cubic extrap.

0.2 4.85× 10−1 4.83× 10−1 4.81× 10−1 4.87× 10−1

0.5 4.86× 10−1 4.86× 10−1 4.83× 10−1 4.88× 10−1

0.8 4.81× 10−1 4.82× 10−1 4.80× 10−1 4.87× 10−1

0.99 5.27× 10−1 5.31× 10−1 5.24× 10−1 5.3× 10−1

Table 4.11: Relative error in infinity norm at a fixed time between the exact solution and
the solution computed with the multirate method with cubic Hermite interpolator (first
column), the solution computed with multirate method with linear interpolator (second
column), the solution computed with single-rate method (third column) and the solution
computed with the multirate method with the cubic Hermite extrapolator as error estimator
(fourth column) for the shock wave.

4.4 Burgers’ equation

In this section we consider the Riemann problems applied to inviscid Burgers’ equation
with piecewise constant initial data. A Riemann problem is simply the conservation law
together with particular initial data consisting of two constant states separated by a
single discontinuity.

∂u

∂t
+

∂

∂x

(
1

2
u2
)

= 0, x ∈ [−1, 3], t > 0 (4.7)

As initial data we take:

u0(x) =

{
ul x < 0

ur x > 0
(4.8)

First case: ul > ur

In this case to discretize in space we have used the Finite Volume method with the
Rousanov numerical flux. The interval time is [0, 1]s with a number of cells equal to 400,
the error tolerance is [1 · 10−4, 1 · 10−6], the tolerance for the Newton solver is 1 · 10−8.
We took the initial size of the time step equal to 1 · 10−2s. For the Riemann problem
we used in this first case ul equals to 1 while ur equals to 0. As boundary condition we
have u(−1) = ul.

Figure 4.13 shows that the solution travels forward in space as time progresses. Also
the interval of active components moves forward, but in this case the range stays constant
and does not increase. Inside a global step, all fast components are then solved with

45

Figure 4.9: Multirate TR-BDF2 integration with Cubic interpolation for the shock wave.

Figure 4.10: The components being computed at each time step by the multirate TR-BDF2
algorithm for the burgers equation that generates a shock wave.

46

time [s] Cubic interp. Linear interp. Single rate Cubic extrap.

0.2 4.37× 10−5 1.48× 10−4 1.34× 10−5 1.23× 10−3

0.5 2.76× 10−1 6.08× 10−4 3.5× 10−5 1.28× 10−3

0.8 6.65× 10−4 1.08× 10−3 3.63× 10−5 1.55× 10−3

0.99 9.18× 10−4 1.2× 10−3 3.59× 10−5 1.5× 10−3

Table 4.12: Relative error in infinity norm at a fixed time between the solution computed
with the matlab solver and the solution computed with the multirate method with cubic
Hermite interpolator (first column), the solution computed with multirate method with
linear interpolator (second column), the solution computed with single-rate method (third
column) and the solution computed with the multirate method with the cubic Hermite
extrapolator as error estimator (fourth column) for the shock wave.

smaller step sizes. In this way a factor of 3.2 of improvement in execution time is
obtained in comparison to the single rate scheme, as showed in Table 4.13. We denote
by Multirate TR-BDF2 (1) the multirate algorithm with the error estimate proposed in
[Ran16], and by Multirate TR-BDF2 (2) the multirate algorithm with the Cubic Hermite
extrapolator as error estimate. Even if the second error estimator requires more time
steps the execution time is lower. Anyway as the number of cells increases, the number of
time steps increases too, so we do not have any computational gain, as showed in Figure
4.11.

We have reported the Courant numbers at each time step, computed with the follow-
ing formula:

max
i=1,...,Nx

|f ′(cni)| hn
∆x

∀n = 1, · · · , NT (4.9)

where Nx is the total number of cells. In Figure 4.12 we represent in red the Courant
values for the global steps. The latent components, where nothing happens, have a high
Courant number. The active components instead have a very low Courant value because
a small time step is required to capture the shock.

Method Computation time Numb. time steps
Singlerate TR-BDF2 78.23s 1008

Multirate TR-BDF2 (1) 24.25s 1378

Multirate TR-BDF2 (2) 22.99s 1558

Table 4.13: Computation time and number of time steps for shock wave .

47

Figure 4.11: CPU times for the multirate with the embedded error estimator (blue), with
the Cubic extrapolator (black) and single rate method (red) for the shock wave.

Figure 4.12: Courant numbers of each time step for the shock wave (with the red color
are indicated the Courant numbers for the global time steps).

48

Second case: ul > ur

To obtain a rarefaction wave we take ul = 0 and ur = 1. The boundary condition is
u(−1) = ul, while the other parameters are the same of the previous case.

Figure 4.13: Multirate TR-BDF2 integration with Cubic interpolation for the rarefaction
wave.

If we compare the results obtained with the shock and the rarefaction waves, we can
see that for the same cells number the rarefaction problem requires less time steps. At
each global step two refinement levels are computed, as showed in Figure 4.14 where we
have reported the fraction of components involved and the Courant numbers of each time
step. The first sub-level involves more and more components as time progresses, this is
because the size of the global step increases and so the number of active components is
bigger than the previous one. In the second sub-level the number of refined components
is constant. In Figure 4.15 we have reported the CPU times varying the number of cells.
For lower values the single rate method is comparable with the multirate algorithms, but
as the number of cells increase, the multirate methods have better performance in terms
of computational time.

49

time [s] Cubic interp. Linear interp. Single rate Cubic extrap.

0.2 3.59× 10−1 3.59× 10−1 3.59× 10−1 3.60× 10−1

0.5 3.16× 10−1 3.16× 10−1 3.14× 10−1 3.41× 10−1

0.8 2.93× 10−1 2.95× 10−1 2.85× 10−1 3.27× 10−1

0.99 2.84× 10−1 2.92× 10−1 2.83× 10−1 3.18× 10−1

Table 4.14: Relative error in infinity norm at a fixed time between the exact solution and
the solution computed with the multirate method with cubic Hermite interpolator (first
column), the solution computed with multirate method with linear interpolator (second
column), the solution computed with single-rate method (third column)and the solution
computed with the multirate method with the cubic Hermite extrapolator as error estimator
(fourth column) for the rarefaction wave.

time [s] Cubic interp. Linear interp. Single rate Cubic extrap.

0.2 3.13× 10−4 4.42× 10−4 1.92× 10−4 6.93× 10−4

0.5 5.53× 10−4 9.91× 10−4 6.99× 10−4 2.10× 10−2

0.8 7.57× 10−4 1.75× 10−3 7.25× 10−4 1.33× 10−2

0.99 7.48× 10−4 1.25× 10−3 6.64× 10−4 1.10× 10−2

Table 4.15: Relative error in infinity norm at a fixed time between the solution computed
by the MATLAB solver with ode45 method and the solution computed with the multi-
rate method with cubic Hermite interpolator (first column), the solution computed with
multirate method with linear interpolator (second column), the solution computed with
single-rate method (third column) and the solution computed with the multirate method
with the cubic Hermite extrapolator as error estimator (fourth column) for the rarefaction
wave.

50

Method Computation time Numb. time steps
Singlerate TR-BDF2 7.13s 79

Multirate TR-BDF2 2.99s 169

Table 4.16: Computation time and number of time steps for the rarefaction wave.

Figure 4.14: Fraction of components and Courant numbers of each time step for the
rarefaction wave (with the red color are indicated the Courant numbers for the global
time steps).

4.5 Buckley-Leverett equation

A more complex conservation law is the Buckley-Leverett equation:

∂u

∂t
+

∂

∂x

(
u2

u2 + a(1− u)2

)
x ∈ [−1, 2], t > 0 (4.10)

where we take a = 1
2 .

To discretize in space we use the Finite Volume method with the Rusanov numerical
flux. As initial condition we used the Riemann problem with ul = 1 and ur = 0.
The interval time is [0, 1]s with a number of cells equal to 300, the error tolerance is
[1 × 10−6, 1 × 10−8], the Newton tolerance is equal to 1 × 10−8. The initial size of the
time step is taken equal to 1 · 10−2s.

Note the physical interpretation of the solution shown in Figure 4.16 for the appli-

51

Figure 4.15: CPU times for the multirate method with the embedded error estimator
(blue), with the Cubic extrapolator (black) and for the single rate method (red) for the
shock wave.

cation described in Section 2.8. As the water moves in, it displaces a certain fraction u
of the oil immediately. Behind the shock, there is a mixture of oil and water, with less
and less oil as time goes on. At a production well, one obtains pure oil until the shock
arrives, followed by a mixture of oil and water with diminishing returns as time goes on.
It is impossible to recover all of the oil in finite time by this technique.

To compute the solution more time steps are necessary respect the others cases, as
showed in Table 4.17 where the number of time steps and the computational time are
reported.

In Figure 4.19 we plotted the execution time for different sizes of the space discretiza-
tion. We pass from a factor of 2.7 of improvement with 200 cells to a factor of 5.9 with
500 cells if we compare the multirate algorithm with the single rate.

Method Computation time Numb. time steps
Singlerate TR-BDF2 267.73s 3371

Multirate TR-BDF2 79.78s 4780

Table 4.17: Computation time and number of time steps for the Buckley-Leverett equa-
tion.

We want to know if the multirate is a mass conservative method. At each time step,
if the step is accepted and if it does not have to be refined, we check:

52

Figure 4.16: Solution computed with the multirate TR-BDF2 method for the Buckley-
Leverett equation.

∣∣∣∣∣∆x
Nx∑
i=1

cn+1
i −∆x

Nx∑
i=1

cni − (f(c0(t))− f(cNx+1(t)))hn

∣∣∣∣∣ < tol ∀n = 0, · · · , NT (4.11)

where Nx is the cells number, f is the flux function of the conservation law and tol is
the prescribed Newton tolerance. We indicate with c0 and cNx+1 the boundary condition
values. In this test case we have not mass conservation because for some time steps we
interpolate the solution where it is not constant and the method does not control the flow
exchanges between a cell and its neighbors. The maximum value where the inequality
(4.11) is not verified is equals to 2.772× 10−3.

53

Figure 4.17: The components being computed at each time with the TR-BDF2 method
for the Buckley-Leverett equation.

Figure 4.18: Courant numbers of each time step for the Buckely-Leverett equation (with
the red color are indicated the Courant numbers for the global time steps).

54

time [s] Cubic interp. Linear interp. Single rate Cubic extrap.

0.2 4.11× 10−6 2.63× 10−5 6.14× 10−6 4.45× 10−5

0.5 5.82× 10−6 6.01× 10−5 7.09× 10−6 8.48× 10−5

0.8 6.27× 10−6 9.62× 10−5 7.34× 10−6 1.38× 10−4

0.99 1.05× 10−5 1.14× 10−4 7.33× 10−6 1.69× 10−4

Table 4.18: Relative error in infinity norm at a fixed time between the approximate so-
lution computed with ode45 method and the solution computed with the multirate method
with cubic Hermite interpolator (first column), the solution computed with multirate
method with linear interpolator (second column), the solution computed with single rate
method (third column) and the solution computed with the multirate method with the
cubic Hermite extrapolator as error estimator (fourth column) for the Buckley-Leverett
equation.

Figure 4.19: CPU times for the multirate method with the embedded error estimator
(blue), with the Cubic extrapolator (black) and single rate method (red) for the Buckley-
Leverett equation.

55

56

Conclusions

The objective of this thesis was to study the behavior of the multirate TR-BDF2 method
when applied to nonlinear ODE systems and nonlinear conservation laws. This work
was motivated by desire to improve the efficiency of numerical integration algorithms for
very large systems of ordinary differential equations. A multirate method is character-
ized by three components: the numerical method to integrate in time, the interpolation
scheme for the latent components and the time stepping strategy. We chose to use the
self-adjusting partitioning strategy, which takes a global step for all the components.
The system is then partitioned into a set of active and latent components based on the
error estimate. The active components are refined with smaller time steps. The process
is repeated until all components errors are within the specified tolerances. We have run
the algorithm choosing different error estimators and investigated the accuracy of the
method changing the interpolation scheme.

The multirate algorithm was tested on some applications with different time scale compo-
nents and large size of the system. First of all we have tested the multirate algorithms on
a geochemistry problem where the species react with different speeds. We have seen that
in terms of accuracy the multirate method does not differ from the single rate method
but we have not obtained a big computational gain. We have then extended our study
to a larger geochemistry problem, with more species reacting with each other. In this
case an improvement in terms of computational cost has been found. After that we
have studied the multirate method for time discretization of conservation laws. First
of all a linear case has been analyzed. The monotonicity property is violated in the
multirate method, as in the single rate method, for high Courant numbers. Nonlinear
case tests, where the method is effective, has been analyzed. In Burgers equations test,
the multirate method has different behaviors and it seems to capture the difficulty of
a shock wave: more time steps are necessary if we compare it to the rarefaction wave
results. This involves smaller Courant numbers for the latent components of the shock
wave, while the latent components of the rarefaction waves have higher Courant num-
bers. Finally, we have assessed the efficiency for the Buckley-Leverett equation where
both a shock and a rarefaction wave are involved. In this test, we can see the benefits

57

of the multirate method: as the number of cells increase the efficiency gains also improve.

The code can be improved in many aspects. We observed that monotone methods for
scalar conservation laws satisfy a discrete entropy condition and they converge in a non
oscillatory manner to the unique entropy solution. However, linear monotone methods
are at most first order accurate, giving poor accuracy in smooth regions of the flow. It
would be useful to study the conservation laws with higher order monotonized methods.
Another possible further work is to select the set of active components relying not only
on the accuracy of the solution, but also on the positivity violation. If some components
do not respect the monotonicity property they can be recomputed with a smaller time
step. Another way to obtain a positive solution is to use some unconditionally monotone
variants of the TR-BDF2 method.

It would be very interesting to investigate also other different issues, for example, the
Buckley-Leverett equation where at each cell, a geochemistry problem is present.

58

Appendix A

Code Structure

We describe the code used to solve a ODE with the multirate TR-BDF2 method. We
explain the structure of the code and how it works. The code has been implemented
completely in C++, to solve some linear algebra systems the Eigen library is used (http:
//eigen.tuxfamily.org/index.php?title=MainPage).

The code solves, with the multirate or single rate TR-BDF2 algorithm, an ODE
system. Inside the code a geochemistry problem and three PDE are implemented (the
case tests that we have analyzed in chapter 4). To generalize the code and to make it
reliable, we have created some interfaces, for each one, more than one derived class has
being implemented.

src/IMasterSolver.h

IRHSFunction.h ISolverData.h INewtonSolver.h IInterpolationSolver.h

INewtonFunction.h
InterpolationSolver
/InterpolationInputSolver.h

InterpolationSolver
/InterpolationOutputSolver.h

Figure A.1: Interfaces used inside the code to solve an ODE system.

The IMasterSolver interface allow to choose which algorithm we want to use to com-
pute the solution. We can compare our multirate method with other time integration
methods or other time stepping strategies. Its derived classes are the MultiRateTRBDF2Solver
and the SingleRateTRBDF2Solver. As attributes of this interface there are some interfaces
useful to solve the problem, and there are also some pure virtual methods that must to
be implemented inside each derived class.

The INewtonSolver is used when the system is nonlinear and two possible different
solver can be selected.

59

http://eigen.tuxfamily.org/index.php?title=Main Page
http://eigen.tuxfamily.org/index.php?title=Main Page

To store the output we implemented another interface named ISolverData. For both
the methods, we created the respective derived classes. We need two different classes
because we can store different objects for each master solver.

A.0.1 Multirate TR-BDF2 Solver

In this section we see in detail the multirate algorithm. The single rate class has the
same structure, the only difference is that it does not require the interpolation. Every
time we declare an object of this class, we have to set all the classical variables as the
Newton tolerance or the initial and final times; but also: the right-hand side function of
the problem (IRHSFunction), which Newton solver we want to use (INewtonSolver) and
finally the interpolator for the latent components (IInterpolationSolver). Before to call
the interpolator, we have to set its input that is the same for both the interpotators: the
LinearInterpolation and the CubicHermiteInterpolation. The attributes present in the input
interpolator class are:

- ref a boolean vector, where the dimension represents the number of components
of the system. If a component has value equal to 0 it means that it must to be
interpolated,

- y and z vectors at the initial and final times of the bigger time step,

- the time where the method has to compute the interpolation.

After the interpolation, the latent component values are stored inside an object of type
InterpolationOutputSolver where is present the y vector. To advance by one time step,
the class TRBDF2Solver is being implemented, inside there is a method that compute
the solution for the active components with the TR-BDF2 method. Inside the class
MultiRateTRBDF2Solver is present the method compute() with the time stepping strategy
explained in section 3.2.

src/MultiRateTRBDF2Solver
/MultiRateTRBDF2Solver.h

IMasterSolver.h

IRHSFunction.h INewtonSolver.h IInterpolationSolver.h

TRBDF2Solver/TRBDF2Solver.h MultiRateTRBDF2SolverData.h

ISolverData.h

INewtonFunction.h
InterpolationSolver
/InterpolationInputSolver.h

InterpolationSolver
/InterpolationOutputSolver.h

TRBDF2SolverInput.hTRBDF2SolverOutput.h TRBDF2SolverParameters.h

Figure A.2: Code structure for the multirate method.

60

The implementation of the multirate method can be outline with this algorithm:

Algorithm 1 MultiRateTRBDF2Solver.compute()
1: Initialization and declaration of vectors useful for the interpolation
2: initialization of the TR-BDF2 parameters
3: nsub = 0

4: while tcurrent < Tfinal[nsub] do
5: compute the Jacobian
6: compute matrix-iteration I − dhJ
7: compute mixed tolerance τr|ucur|+ τa
8: if nsub > 0 then
9: call the interpolator

10: end if
11: call the TRBDF2Solver
12: if Newton solver has converged then
13: store the solution from TRBDF2SolverOutput in the output vector
14: set ref = Est > δmixed_tol
15: if have to refine then
16: initialize the input for the interpolation
17: propose a new time step
18: nsub+ = 1

19: else if refuse the time step then
20: propose a new smaller time step
21: else
22: tcur = tnew
23: ucur = unew
24: propose new time step and check tcur + h <= Tfinal[nsub]

25: end if
26: else
27: propose a new smaller time step because Newton solver has failed
28: end if
29: while |tcur − Tfinal[nsub]| < εmac and nsub! = 0 do
30: erase interpolator values for the current nsub
31: nsub− = 1

32: end while
33: end while

In the algorithm the Newton solver might not necessarily converge, in this case the
method rejects the size of the time step and it proposes a smaller one.

At the end of the while loop, when we exit from a sub-level we have to pay attention

61

at a special case: if the value tfinal of the previous (or more) sub-level is equal to the
current one, we have to set: the correct initial guess for the z variables, the new proposal
time step and we have to exit from more than one sub-level. Every time that we compute
the new size of the time step, even if we are in a sub-level, we must check that the time
is not over the final time of the sub-level.

TRBDF2Solver

To solve a single step, the multirate class calls the method compute() of the TRBDF2Solver
class. This method computes the solution for the active components, respect the z

variables as explained in section 1.8. Inside the method we have to specify the Newton
function that the Newton solver is going to solve.

INewtonSolver

Inside the INewtonSolver interface there is only a pure virtual method. We pass as
reference the Jacobian that is a sparse matrix and the vector y that is the initial guess
for the Newton solver. Inside the method, if it converges, it updates y with the new
solution. The two derived classes are:

- BasicNewtonSolver. Its method, for each iteration, until the error is less than a
prescribed tolerance, evaluates the Jacobian matrix and the right-hand side vector,
calculates the error using the L∞ norm, solves the system for the increment with
the SparseLU solver and finally updates the solution by adding the increment.

- FixedJacobianNewtonSolver has inside a method that it is the same of the Basic-
NewtonSolver, the only difference is that it uses the same Jacobian evaluation for
all the iterations that are necessary.

A.0.2 The right-hand side function

In the code, to solving different types of problem, an interface has been implemented,
its name is IRHSFunction. Inside the derived classes we have implemented the method
that evaluates the right-hand side of the problem and another one that evaluates the
Jacobian, it can be analytic or calculates with finite differences. In these classes is
present the overloading of the two methods because in a sub-level we have to evaluate
the right-hand side only for a smaller set of components and the method has to know
the indices of the active components. In Figures A.3, A.4 and A.5 we have reported the
code structure for the numerical experiments showed in chapter 4.

62

src/TestCases/Test
_Geochemistry.h

SetProblemSHPCO2SourceRate.h SetProblemGeoChemEx.h SetProblemGeoChemEx2.h
GeochemistryRHSFunction
/GeochemistryRHSFunction.h

ChemicalSystemTools
/ChemicalSystem.h

ChemicalSystemTools
/ChemicalSystemState.h

ChemicalSystemTools
/ChemicalSourceRate.h

GeochemistryRHSFunction
/GeochemistryParameters.h

ChemicalProblemsUtils
/ChemicalProblemsUtils.h

ChemicalPhase.h ChemicalSpecies.h ChemicalReaction.h

IRHSFunction.h

Figure A.3: Code structure for the geochemistry problem.

src/TestCases/Test
_HyperbolicEquationUpwind.h

HyperbolicEquationUpwind
RHSFunction/HyperbolicEquation

UpwindRHSFunction.h

HyperbolicEquationUpwind
RHSFunction/LinearFluxFunction.h

SetProblemLinearHyperbolic
Equation.h

ConstantBCFunction
/ConstantBCFunction.h

MasterSolverOutputManipulator
/IsConservativeMethod.h

MasterSolverOutputManipulator
/CourantNumber.h

IRHSFunction.hIBCFunction.h IFluxFunction.h ISolverData.h

Figure A.4: Code structure for the linear conservation laws using the Upwind method.

src/TestCases/Test
_HyperbolicEquationRusanov.h

HyperbolicEquationRusanov
Flux/HyperbolicEquationRusanov

Flux.h

HyperbolicEquationRusanov
Flux/BurgersFluxFunction.h

HyperbolicEquationRusanov
Flux/TwoPhaseFlowFluxFunction.h

SetRiemannProblem.h
ConstantBCFunction
/ConstantBCFunction.h

MasterSolverOutputManipulator
/IsConservativeMethod.h

MasterSolverOutputManipulator
/CourantNumber.h

IRHSFunction.hIBCFunction.h IFluxFunction.h ISolverData.h

Figure A.5: Code structure for the the nonlinear conservation laws using the Rusanov
numerical flux.

63

64

Bibliography

[And79] J.F. Andrus. Numerical solution of systems of ordinary differential equations
separated into subsystems. SIAM Journal of Numerical Analysis, 16:605–611,
1979.

[BCF+85] R.E. Bank, W.M. Coughran, W. Fichtner, E.H. Grosse, D.J. Rose, and R.K.
Smith. Transient simulation of silicon devices and circuits. IEEE Transactions
on Electron Devices, 32:1992–2007, 1985.

[BGG12] A. Bermùdez and L. M. Garcìa-Garcìa. Mathematical modeling in chem-
istry. application to water quality problems. Applied Numerical Mathematics,
62(4):305 – 327, 2012.

[BR15] L. Bonaventura and A. Della Rocca. Monotonicity, positivity and strong
stability of the TR–BDF2 method and of its SSP extensions. MOX-Report
No. 56/2015, 2015.

[But63] J.C. Butcher. Coefficients for the study of Runge-Kutta integration processes.
Journal of the Australian Mathematical Society, 3(02):185–201, 1963.

[CH52] C.F. Curtiss and J.O. Hirschfelder. Integration of stiff equations. Proc. Nat.
Acad. Sci, 38(235):1, 1952.

[Fok15] P.K. Fok. A linearly fourth order multirate Runge–Kutta method with error
control. Journal of Scientific Computing, pages 1–19, 2015.

[FS04] L. Ferracina and M.N. Spijker. Stepsize restrictions for the total-variation-
diminishing property in general Runge–Kutta methods. SIAM journal on
numerical analysis, 42(3):1073–1093, 2004.

[GKC13] F.X. Giraldo, J.F. Kelly, and E.M. Constantinescu. Implicit-explicit formula-
tions of a three-dimensional nonhydrostatic unified model of the atmosphere
(NUMA). SIAM Journal of Scientific Computing, 35(5):1162–1194, 2013.

65

[GR13] E. Godlewski and P.A. Raviart. Numerical approximation of hyperbolic sys-
tems of conservation laws, volume 118. Springer Science & Business Media,
2013.

[GW84] C.W. Gear and D.R. Wells. Multirate linear multistep methods. BIT Numer-
ical Mathematics, 24:484–502, 1984.

[HNW87] E. Hairer, S.P. Norsettl, and G. Wanner. Solving ordinary differential equation
I: nonstiff problems. Springer Ser. in Comput. Math, 8, 1987.

[HS96] M.E. Hosea and L.F. Shampine. Analysis and implementation of TR-BDF2.
Applied Numerical Mathematics, 20:21–37, 1996.

[Ise96] A. Iserles. A first course in the numerical analysis of differential equations.
Cambridge texts in Applied Mathematics, 1996.

[Kra91] J.F.B.M. Kraaijevanger. Contractivity of Runge–Kutta methods. BIT Nu-
merical Mathematics, 31(3):482–528, 1991.

[Lam91] J.D. Lambert. Numerical methods for ordinary differential systems: the initial
value problem. Wiley, 1991.

[LeV92] R.J. LeVeque. Numerical methods for conservation laws, volume 132. Springer,
1992.

[PR74] A. Prothero and A. Robinson. On the stability and accuracy of one-step meth-
ods for solving stiff systems of ordinary differential equations. Mathematics
of Computation, 28(125):145–162, 1974.

[Ran16] A. Ranade. Multirate Algorithms Based On DIRK Methods For Large Scale
System Simulation. PhD thesis, Politecnico di Milano, 2016.

[SG79] L.F. Shampine and C.W. Gear. A user’s view of solving stiff ordinary differ-
ential equations. SIAM review, 21(1):1–17, 1979.

[Sha77] L.F. Shampine. Stiffness and nonstiff differential equation solvers, ii: detect-
ing stiffness with runge-kutta methods. ACM Transactions on Mathematical
Software (TOMS), 3(1):44–53, 1977.

[Sha81] L.F. Shampine. Type-insensitive ODE codes based on implicit A–stable for-
mulas. Mathematics of Computation, 36(154):499–510, 1981.

[SHV07] V. Savcenco, W. Hundsdorfer, and J.G. Verwer. A multirate time stepping
strategy for stiff ordinary differential equations. BIT Numerical Mathematics,
47:137–155, 2007.

66

[SW06] G. Söderlind and L. Wang. Evaluating numerical ODE/DAE methods, al-
gorithms and software. Journal of Computational and Applied Mathematics,
185:244–260, 2006.

[TB15] G. Tumolo and L. Bonaventura. A semi-implicit, semi-Lagrangian, DG frame-
work for adaptive numerical weather prediction. Quarterly Journal of the
Royal Meteorological Society, 141:2582–2601, 2015.

[VTB+07] A. Verhoeven, B. Tasić, T.G.J. Beelen, E.J.W. ter Maten, and R.M.M.
Mattheij. Automatic partitioning for multirate methods. In Scientific Com-
puting in Electrical Engineering, pages 229–236. Springer, 2007.

[WH91] G Wanner and E Hairer. Solving ordinary differential equations II, volume 1.
Springer-Verlag, Berlin, 1991.

67

68

Ringraziamenti

Innanzitutto vorrei ringraziare il Professor Luca Bonaventura e la Dottoressa Anna Scotti
per essere sempre stati disponibili e pazienti, per avermi guidato e consigliato saggiamente
durante questo lavoro. Poi ringrazio il Professor Luca Formaggia per avermi proposto
uno stage all’IFPEN, lì ho incontrato delle persone con grande passione per il loro lavoro.

Je remercie Thibault pour sa disponibilité et pour la passion qu’il m’a transmise pendant
les quatre mois de stage, ainsi que Antony pour ses conseilles et sa patience. J’ai trouvé
l’IFPEN une ambiance de travail vraiment accueillante et heureuse.

Un grandissimo grazie va ai miei genitori, loro mi hanno sempre sostenuta in tutte le mie
scelte e anche sopportata durante le mie catastrofissime ansie. Grazie mamma per essere
sempre presente, per mettere sempre me al primo posto davanti a tutto. Grazie papà per
essere il mio punto di riferimento e per avermi dato dei preziosi consigli durante questi
cinque anni di università. Vi voglio davvero un immenso bene!

Un grazie di cuore va a tutti gli Ing. Mat. Specialmente vorrei ringraziare i compagni
dell’aula tesiti, Giorgio e Jacopo che, in questi 3 mesi, mi sono sempre stati accanto,
insieme abbiamo condiviso risate, ansie, preoccupazioni ed errori di Latex. Lollo e Nicola,
i due calcolisti che mi hanno sopportato durante le ore di lezione e che non mi hanno
mai negato un aiuto. Anna, Cate, Marta e Vale per essere state delle amiche preziose
durante questi anni di università. E ringrazio anche Tommy, non so per cosa, ma grazie!
Infine ringrazio Giulia, non so come avrei fatto senza di te a Parigi!

Ringrazio tutti i miei amici di Caltanissetta, con loro sono cresciuta, con loro ho
affrontato i momenti più felici e spensierati, in particolare ringrazio Anita per essere la
mia amica di sempre, anche a distanza.

Infine ringrazio la persona che più di tutti ha creduto in me, più di quanto facessi io,
sei stato la mia roccia. Anche a distanza, hai saputo tirarmi sù di morale nei momenti
più difficili, e regalatomi dei sorrisi che porterò per sempre nel mio cuore. Tu sei "la luce
dei miei occhi" !

69

	Introduction
	Numerical methods for ODE systems
	ODE systems
	Stability
	Stiffness
	Numerical methods for ODE systems
	Consistency and convergence
	Runge-Kutta methods
	Monotonicity property of Runge-Kutta methods
	TR-BDF2 method

	Numerical Methods for Conservation Laws
	Linear Advection Equation
	Nonlinear Conservation Laws
	Weak solutions
	The Rankine-Hugoniot condition
	Entropy solution
	Inflow and outflow characteristics
	Riemann problem
	Buckley-Leverett equation
	The Finite Volume method

	Multirate TR-BDF2 method
	A self adjusting implicit multirate approach
	The time step refinement and partitioning criterion
	The interpolation procedures
	Error estimation

	Numerical Experiments
	Geochemistry ODE system
	Extended Geochemistry problem
	Linear Advection Equation
	Burgers' equation
	Buckley-Leverett equation

	Conclusions
	Code Structure
	Multirate TR-BDF2 Solver
	The right-hand side function

	Bibliography

