
POLITECNICO DI MILANO

School of Industrial and Information Engineering

Master of Science in
Computer Science and Engineering

SCRIPTING LAYER FOR ANDROID:
UPDATED AND EXPANDED SUPPORT

Master graduation thesis:
Miguel Angel Palacio Delgado – Student ID: 816355

Supervisor:
Dr. Giovanni Agosta

Academic Year 2015-2016

iii

Acknowledgements
I would like to thank my family for all their support throughout my master's studies,

without it I would not have been able to complete them. I would also like to express my
gratitude to those friends that somehow helped me during my stay in Milan.

I specially thank my supervisor Giovanni Agosta for all his understanding, cooperation and
availability during the development of this work.

Milan, April 2016

iv

Abstract
The Scripting Layer for Android (SL4A) is a software suite that brings scripting

languages to Android by allowing the creation, edition and execution of scripts and the use of
interactive interpreters directly on Android devices. These scripts have access to many of the
APIs available to traditional Android applications, with the inherent ease of scripting languages.
Despite being initially developed at Google, SL4A was never an official project and it is
currently not maintained. The main purpose of this work is to update the SL4A libraries to
support the most recent versions of the Android operative system as well as to extend the
support for missing components in the user interface library.

Lo Scripting Layer for Android (SL4A) è una suite di software che porta linguaggi di
scripting ad Android, permettendo la creazione, edizione ed esecuzione di scripts e anche l'uso
di interprete interattivi direttamente su dispositivi Android. Questi script hanno accesso a tante
delle API disponibili ad applicazioni tradizionali Android, con la facilità intrinseca dei linguaggi
di scripting. Nonsostanto il fatto che SL4A fu inizialmente sviluppata in Google, non è mai stata
un progetto ufficiale e non si è più sviluppata. Lo scopo principali di questo lavoro è aggiornare
le biblioteche di SL4A per supportare le ultime versioni del sistema operativo Android, così
come estendere il supporto per componenti mancanti nella biblioteca dell'interfaccia utente.

Keywords

android, sl4a, java, python, scripting languages

v

Contents
Acknowledgements..iii

Abstract.. iv

Keywords... iv

Chapter 1 - Introduction..1

Chapter 2 - State of the Art..4

2.1 Alternatives to Android development with Java...4

2.1.1 App Inventor for Android..4

2.1.2 Kivy...5

2.1.3 Qt for Android..5

2.1.4 Xamarin...6

2.1.5 RubyMotion...6

2.2 The Scripting Layer for Android..6

2.2.1 SL4A architecture..7

2.2.2 Understanding the special module..8

2.2.3 Supported languages..10

2.2.4 Current state of the project..11

Chapter 3 - Modernizing SL4A...14

3.1 Start up..14

3.2 Catching up on Android Lollipop...17

3.2.1 Targeting new API levels...17

3.2.2 Interface renovation: Material Design...19

3.3 SL4A API updates...29

3.3.1 The UiFacade...29

3.3.2 Revision of the UiFacade status..30

3.3.3 UiFacade general adjustments...31

3.3.4 Improving the inflation of layouts...34

3.3.5 Extending UiFacade offered functions..47

Chapter 4 - Experiments and Validation..48

4.1 Validating UI changes...48

4.2 Testing the UiFacade..49

4.2.1 Contextual menu..49

4.2.2 Dialogs...50

4.2.3 fullQuery and fullQueryDetail..54

4.2.4 webViewShow...55

vi

4.3 fullSetProperty..56

4.3.1 View class attributes tests..57

4.3.2 TextView class attributes tests...59

4.3.3 Tests for ViewGroup class its subclasses..61

4.4 Toolbar..67

Chapter 5 - Conclusions and Future Development..68

5.1 Work summary..68

5.2 Conclusions...69

5.3 Future development..70

References...72

Chapter 1 -
Introduction

Mobile development is very popular. Nowadays, most of the smartphones sold have
Android on their entrails which means that Android developers are in demand. Nevertheless,
when it comes to develop a “true” Android application, it seems like there is only one
programming language of choice: Java (although it is possible to work with C and C++ by using
the Android NDK1, it requires a lot more of effort).

The election of Java as the language for building applications was a wise decision from Google.
Java is a well known language, many developers already know it and do not have to learn it.
Additionally, Java runs in a virtual machine so there is no need to recompile applications for
every phone.

This has been a clever strategy that has helped to skyrocket Android's popularity. There is no
need to own specific hardware and software in order to get started with development of Android
applications. All what is needed is a computer running Linux/Windows/OSX, along with a copy
of Java and the Android SDK. Moreover, Google distributes the Android Studio IDE that eases
the development and includes many useful tools.

All of this is definitely great for developers. Nevertheless, as an alternative to Java for Android
development we have the Scripting Layer for Android, or SL4A as is commonly abridged.
SL4A allows to write applications for Android using scripting languages. And despite the fact
that there is nothing wrong with Java, it may be really excessive for some applications that only
need to perform a bunch of simple operations.

However, you may still ask: “why would anyone prefer SL4A over Java?”, and there are several
reasons to prefer SL4A. The simplest reason is that not everyone likes Java. Another reason is
that with Java, an “edit – compile – run” cycle is required and it might result too cumbersome
for building simple applications. “I want to use Python/Ruby/etc to develop Android
applications” is a valid reason too.

The Scripting Layer for Android is an open source application that permits programs written in
a variety of interpreted languages to be executed on Android. Furthermore, SL4A provides a
high level API that empowers these programs to interact with the Android device, which makes
it easy to perform tasks like sending SMS, fetching sensor data, and more.

The Scripting Layer for Android is suitable for several kind of tasks, including:

1 The Native Development Kit (NDK) allows developers to implements parts of their applications using C and
C++. However, its use is highly discouraged by Google.

2 | Introduction

• Writing scripts to test certain functionalities available in the Android APIs, as long as

those functionalities are exposed through SL4A.

• Building utilities in order to automate repetitive jobs, as well as simple tasks that do not

require highly sophisticated user interfaces for user interaction.

• Rapid application development (RAD), a software development methodology that

facilitates the creation of application prototypes so that developers can test the viability
of an idea.

All in all, the Scripting Layer for Android is targeting those developers who are looking for
either a way to write simple Android applications or to write scripts to automate tasks on their
Android devices. With this purpose, not only does SL4A provide an interactive console in which
you can to enter a line of code and see the results immediately, but also provides an editor in
which you can write more complex routines to be executed later on. The main idea is that SL4A
makes it possible to write code for Android devices in languages other than Java and doing it in
an interactive way.

Unfortunately, SL4A is no longer under active development and the last meaningful
contributions to the project were nearly three years ago. As a result, a great part of the codebase
is outdated, leading to a plethora of functions that are either deprecated or just not supported in
newer versions of the Android platform.

The main objective of this thesis is to update the project so as to support the most recent
versions of Android, as well as to extend the support for missing components primarily in the UI
library. Beyond bringing up to date and extending the SL4A's API, the user interface of the
application itself is to be modernized too.

In order to achieve these goals, a comprehensive study of the project codebase and its
architecture has to be done in order to understand how SL4A works. The most relevant parts of
the codebase have to be identified so that the modifications required are carried out.
Subsequently, all the modified and introduced functionalities need to be tested thoroughly with
the purpose of verifying its correct operation.

This document is organized in five chapters, as follows:

Chapter 1 provides an introduction to the Scripting Layer for Android, why it is important in the
Android development scene and what is this thesis about. Chapter 2 reviews the state of the art
regarding alternatives to the classical Android Java development. The Scripting Layer for
Android is examined with more detail in order to have a good understanding of the way in
which it operates. Finally, the current status of the project is analyzed in order to know how this
work needed to be directed. Chapter 3 goes meticulously throughout the work that was carried
out in order to bring up to date important components of SL4A such as the user interface of the
application itself, as well as the UI APIs offered by it. Chapter 4 is dedicated to show tests and

Introduction | 3

their respective results performed on SL4A in order to verify the correct functionality of the
application according to the work done in this thesis. Chapter 5 draws some conclusions about
the work carried out, highlighting the challenges and experiences learned that can be applied to
other projects hereafter. Furthermore, reflections about how the development of the Scripting
Layer for Android should be directed in the future are brought up.

Chapter 2 -
State of the Art

The Scripting Layer for Android was created by Damon Kohler, a software engineer at
Google who worked on this project for about 20 months thanks to Google's “20 percent time”
policy2. This project was first introduced on the Google Open Source Blog in June 2009 as
Android Scripting Environment (ASE) and thereafter, other developers started contributing to
help it mature.

Prior to SL4A's initial release, Java was the only choice for building Android applications. The
announcement of SL4A generated excitement among those developers who were yearning to try
other options for Android development different to Java. Some time later and as result of
Android's popularity growth, different other alternatives to develop applications for the platform
began to appear.

This chapter is dedicated to give an overview to some of the alternatives to Android Java
development, as well as to study in more detail how the Scripting Layer for Android works and
what is the current state of the project. In following chapters, the work carried out to bring
SL4A up to date will be reviewed as well as the tests performed in order to assess it.

2.1 Alternatives to Android development with Java
As it was pointed out in chapter 1, Google adopted Java as the programming language to
develop Android applications due to its popularity among developers and the amount of tools
already available for the Java platform. Nonetheless, Java is not a language that appeals
everyone. Therefore, as the Android ecosystem expanded, many alternatives to develop Android
applications emerged.

Some alternatives are remarkably good; however, they center on allowing you to create and
package native applications using some otherwise unsupported language. That said, most of the
alternatives are not meant to run scripts on Android, but to build whole applications with them
in a more “practical” way. The succeeding subsections examine a few of these alternatives.

2.1.1 App Inventor for Android

App Inventor for Android is an open source web application aimed to people new in computer
programming since it eases the way to create applications for Android. This application was
originally offered by Google in December 2010, but during the second half of 2011 its
maintenance was transferred to the Massachusetts Institute of Technology (MIT).

2 This policy encourages Google employees to spend about 20% of their time experimenting with ideas that might
be beneficial for the company.

State of the Art | 5

The application uses a graphical interface that let users drag-and-drop visual objects to create
an application that can execute on Android devices. Figure 2.1 shows the main window of App
Inventor. As we can see there is a rather good number of widgets, their functionality is limited
but it is great for the objective of the project.

2.1.2 Kivy

Kivy is an open source Python library that facilitates the development of applications for several
platforms. A developer can create an application written in Python that will run on Linux,
Windows, OSX, iOS and Android. The idea of the library is to provide a tool for rapid
application development.

However, since it is a tool designed to build multi-platform applications, it does not provide a
direct way to access Android APIs. In this way, Kivy is nice to build entire applications using
Python but it does not allow to write Python scripts and execute them on Android.

2.1.3 Qt for Android

As Kivy, Qt's main goal is to provide a tool to build multi-platform applications. Their idea is
that software development must include a cross-platform user experience. Qt development is
done in standard C++ and QML3.

3 Qt Modeling Language. It is a user interface markup language. It has a JavaScript Object Notation (JSON)
writing style that allows the design of user interfaces.

Figure 2.1: App Inventor for Android

6 | State of the Art

As from the release of version 5.1 in July 2013, Qt supports Android. Qt for Android lets the
developer run QML applications on Android devices, it provides support for Android native
style and allows the creation and deploy Application Packages (APK), among many other
features.

2.1.4 Xamarin

Xamarin is probably one of the most advanced alternatives to Android development with Java
nowadays. As Qt for Android and Kivy, it permits the development of multi-platform
applications including Android. The language for development used in Xamarin is C#.

Xamarin also provides a easy way to build and package Android applications. It is thought to
ease the life of C# developers so that they can build mobile applications that are compatible
with Android, iOS, and Windows Phone.

2.1.5 RubyMotion

As the previous three alternatives, RubyMotion's main goal is to allow the creation of multi-
platform applications for Android, iOS and OSX using Ruby. Support for the Android platform
was added in December 2014.

RubyMotion supports the latest versions of Android (from version 3.2 to 6.0 at the moment of
writing this thesis). It allows to call the entire set of Java APIs for these versions of the Android
platform, and it is also possible to integrate 3rd-party Java libraries.

However, and in the same way as Kivy, despite the fact that Ruby is the programming language
for developing, it is not possible to write Ruby scripts and execute them on Android.

2.2 The Scripting Layer for Android
In section 2.1, some of the alternatives to Android development with Java were reviewed in
order to understand what makes SL4A different.

In a nutshell, the Scripting Layer for Android is a framework that enables scripting language
engines which have been ported to Android, to use the Android application programming
interface (API) by means of remote procedure calls (RPCs) to a server implemented as a
standard Android Java application.

SL4A allows packaging applications too, but it is no more than an option. Having this as an
option rather than an end, is something advantageous since in fact most scripts are not published
on Google Play anyhow. With the Scripting Layer, a developer can start writing and executing
scripts for the supported interpreted languages immediately, like she would do on any other
system.

State of the Art | 7

The Scripting Layer for Android is an Android application itself. It was designed and built
around the Android OS. Thus, it requires Android to be useful but enables a much closer
integration with the operative system.

2.2.1 SL4A architecture

The Scripting Layer for Android exhibits a set of Android APIs to be used by its clients. With
the purpose of achieving this, a special module is implemented for each of the supported
scripting languages. This module is in charge of arranging RPCs and their responses to and from
a RPC server that is implemented as an Android Java application. Due to its nature (i.e., being
an standard Android application), the RPC server has direct access to the Android API. The
server behaves as a remote proxy using a set of façades that encapsulate and expose selected
Android functionalities.

In order to support a scripting language on Android, its respective script engine needs to be
ported to the platform in their purest form avoiding any source code changes. This suggests that
the script engine is completely unaware that it is running on the Android OS. The way in which
a scripting engine gets access to the Android API consists in using the special module
previously mentioned. This module is generally implemented in the scripting language itself,
and it can access the Android API through the remote SLA4 RPC server.

In other words, any ported script engine runs in a self-contained process and it can access the
Android API through bidirectional JSON-RPC4 via a set of API façades. These façades have full
access to the Android platform API and hence they serve as a sort of remote API proxy for the
script engines. Figure 2.2 shows a simplified version of the SL4A architecture that summarizes
the general idea.

4 It is a lightweight remote procedure call protocol encoded in JSON. For more info see: http://json-
rpc.org/wiki/specification.

Figure 2.2: SL4A architecture simplified

8 | State of the Art

2.2.2 Understanding the special module

As it was stated, each supported script engine must implement a special module (from now on,
the android module). This module works as a “wrapper” that provides an “Android object”. A
user can invoke any of the methods provided by the SL4A API through this object and it is seen
as a normal method in the respective scripting language.

For instance, if a user wants to show a toast notification on Android through SL4A using
Python, she could write the following script:

1 import android

2 droid = android.Android()

3 droid.makeToast(“Hello SL4A!”)

This is a very simple script but serves to illustrate the idea of the android module. In the first
line the android module is made available in the script's namespace, whilst in the second line it
is possible to see how it provides the Android object mentioned. The third line invokes a
function of the Android object called makeToast that expects a string that will be displayed on

the device as a toast notification.

Naively, one might assume that each of the methods in the SL4A API has to be implemented
individually in the android module of each script engine, but that would be extremely inefficient
and bitterly unmaintainable. Let us take a look at the android module implementation for the
Python language:

1 __author__ = 'Damon Kohler <damonkohler@gmail.com>'

2

3 import collections

4 import json

5 import os

6 import socket

7 import sys

8

9 PORT = os.environ.get('AP_PORT')

10 HOST = os.environ.get('AP_HOST')

11 HANDSHAKE = os.environ.get('AP_HANDSHAKE')

12 Result = collections.namedtuple('Result', 'id,result,error')

13

14

15 class Android(object):

16

17 def __init__(self, addr=None):

18 if addr is None:

19 addr = HOST, PORT

20 self.conn = socket.create_connection(addr)

21 self.client = self.conn.makefile()

State of the Art | 9

22 self.id = 0

23 if HANDSHAKE is not None:

24 self._authenticate(HANDSHAKE)

25

26 def _rpc(self, method, *args):

27 data = {'id': self.id,

28 'method': method,

29 'params': args}

30 request = json.dumps(data)

31 self.client.write(request + '\n')

32 self.client.flush()

33 response = self.client.readline()

34 self.id += 1

35 result = json.loads(response)

36 if result['error'] is not None:

37 print result['error']

38 # namedtuple doesn't work with unicode keys.

39 return Result(id=result['id'], result=result['result'],

40 error=result['error'],)

41

42 def __getattr__(self, name):

43 def rpc_call(*args):

44 return self._rpc(name, *args)

45 return rpc_call

As it can be seen, there is no trace of a makeToast method nor attribute in the Android class

(which the one that ultimately provides the Android object). So why does it work? Well, Python
offers a special built-in method called __getattr__ that is called when an attribute lookup has

not found the invoked attribute in the usual places (i.e., it is not an instance attribute nor it is
found in the class tree).

Therefore, when makeToast (or any other method offered by the SL4A API) is called and it is

not found, __getattr__ is called. The __getattr__ method receives the name of the method

invoked (line 42), and along with any extra attribute (i.e.,, the parameters required by the
method in particular) it marshals a RPC that is then sent to the SL4A server (lines 26-35).
Afterwards, the server sends back the result of the procedure and that result is handled (lines 36-
40).

This implementation allows any method to be invoked. If the called method has a corresponding
procedure in the server and the parameters passed along with it are correct, the corresponding
procedure is executed on the server and its result is sent back to the client script engine. If there
is something wrong a response explaining the error is sent back. This android module is
implemented similarly for each script engine, making the server agnostic to its clients.

10 | State of the Art

2.2.3 Supported languages

One of the most interesting features of SL4A is the amount of scripting languages that it
supports. Up to release 6, the languages that can be downloaded from SL4A are: BeanShell,
JavaScript, Lua, PHP, Perl, Python and Ruby (the project's README file states that SL4A also
supports Tcl, but it cannot be downloaded from SL4A directly). The following subsections will
talk about these languages and their support on SL4A along with a simple snippet of code to
give a general idea of how to use each of them.

2.2.3.1 BeanShell

BeanShell is a Java source interpreter with object scripting language features. It is written in
Java, and it can execute standard Java syntax dynamically. It is very useful for interactive Java
experimentation and debugging. Scripting Java allows developers to do rapid prototyping, rules
engines, testing, dynamic deployment, etc. The lastest version of BeanShell supported by SL4A
is the 2.0b4.

1 source(“/sdcard/com.googlecode.bshforandroid/extras/bsh/android.bsh”);

2 droid = Android();

3 droid.call(“makeToast”, “Hello SL4A”);

2.3.3.2 JavaScript

JavaScript is supported through Rhino, a JavaScript engine fully written in Java. One interest
advantage of having a JavaScript interpreter is that if a developer wants to build a custom
interface using HTML and JavaScript, she could prototype the JavaScript part and test it with
the Rhino interpreter. The latest supported version of the Rhino JavaScript interpreter is the
1.7R2.

1 load(“/sdcard/com.googlecode.rhinoforandroid/extras/rhino/android.js”);

2 var droid = new Android();

3 droid.makeToast(“Hello SL4A!”);

2.3.3.3 Lua

By its description, Lua is a powerful, fast, lightweight, embeddable scripting language. Thanks
to its embeddable features, it is easy to extend programs written in other languages using Lua.
And since Lua is small, it is great for running it on mobile devices. All of this fits perfectly into
SL4A. The latest supported version of Lua on SL4A is the 5.1.4.

1 require “android”

2 android.makeToast(“Hello SL4A!”)

State of the Art | 11

2.3.3.4 PHP

PHP is one of the most used general-purpose scripting languages to create dynamic web pages.
Given its popularity, supporting it on SL4A enables a countless number of PHP developers to
start building applications on Android. Version 5.3.3 is the latest installable version of PHP on
SL4A.

1 <?php

2 require_once(“Android.php”);

3 $droid = new Android();

4 $droid->makeToast(“Hello SL4A!”); ?>

2.3.3.5 Perl

Perl is probably the oldest among the supported languages. Perl is a general-purpose language
that was originally developed for text manipulation, but it is now used for a wide variety of
tasks including web development, GUI development and more. This language is aimed to be
practical rather than beautiful. Up to release 6.1.1 of SL4A, Perl 5.10.1 is the version supported.

1 use Android;

2 my $a = Android->new();

3 $a->makeToast(“Hello SL4A!”);

2.3.3.6 Python

Python (along with BeanShell) is undoubtedly the most popular language to build applications
using SL4A, and for this reason it is better supported. Python is very popular since it is thought
to be powerful and fast, but also friendly and easy to learn. The last supported version of
Python is 2.6.2. Section 2.2.2 shows the use of Python and how the android module is
implemented for its scripting engine.

2.3.3.7 Ruby

The Ruby programming language is intended to be simple and productive. Its syntax is elegant,
which makes it clear to read and easy to write. It is supported on SL4A by means of JRuby, an
implementation of the Ruby language atop the Java Virtual Machine. JRuby is written mostly in
Java. The latest supported version of Ruby through JRuby is the 1.8.7p249.

1 droid = Android.new

2 droid.makeToast “Hello SL4A!”

2.2.4 Current state of the project

As it was previously stated, SL4A development was carried out by Damon Kohler and other
Google employees for a couple of years. Nowadays, none of them is currently working on the

12 | State of the Art

project and the last meaningful commit was more than three years ago.

SL4A was originally hosted on Google Code, but due to its shutdown5 the project was migrated
to Github in June 2015. SL4A new repository on Github remains untouched and Damon
Kohler's last commit implies that he will not be accepting any pull requests. This commit
suggests filling new issues and making pull requests to an active fork of development.

The version 6 of SL4A was the last release that could be downloaded from the old Google Code
repository. This version can run on Android Lollipop without problems. However, there are
issues with the majority of the script engines that are downloadable from the application. The
Lua, Perl, Python and Rhino script engine do not work. Moreover, the PHP script engine is not
even listed as a recognized interpreter by the application. The only script engines that work are
BeanShell and JRuby.

There are several problems with the graphical user interface as well. One of these problems is
that the interface itself is at least a old as Android Gingerbread, causing some issues in newer
Android devices (e.g, this interface was thought for phones that have a physical “menu” button.
New devices lack of this button and that impacts the usability of the application).

As the former developers claimed, the project is still in alpha state. Hence, in addition to the
aforementioned issues there are many other unsolved bugs. However, these do not interfere with

5 Bidding farewell to Google Code: http://google-opensource.blogspot.it/2015/03/farewell-to-google-code.html

Figure 2.3: SL4A r6 GUI

State of the Art | 13

the creation and execution of scripts (as long as the corresponding script engine works). As it
has been stated, the idea of this work is to update SL4A so that it supports new features of the
Android platform that are missing due to the lack of development. The next chapter is entirely
dedicated to review the work carried out in this thesis.

Chapter 3 -
Modernizing SL4A

In the previous chapter some alternatives to the classic Android development with Java
were reviewed, and it was also mentioned how these alternatives differed to SL4A. Additionally,
the Scripting Layer for Android architecture was analyzed in order to understand its operation,
and the current state of the application was outlined. In this chapter, the work carried out to
bring SL4A up to date is examined at great detail.

Due to the shutdown of Google Code where the Scripting Layer for Android was hosted and the
subsequent migration toward Github, this work started by reviewing the original repository of
the project that is held by Damon Kohler.

Since the main goal of this thesis was to bring up to date the Scripting Layer for Android, the
project targeted the latest Android API levels. At the moment of beginning this work (July
2015), the last stable release of the Android platform was Lollipop (version 5.1, API level 22).
In spite of the fact that Android Marshmallow (version 6.0, API 23) was on the way, it was still
a preview version and things could change in the API so the decision made was to stick to
Android Lollipop.

The first phase of this work consisted in understanding the structure of the project, how the
application worked and what needed to be modified in order to achieve the objectives. This
phase also included an upgrade of the project to target the API level 22. The second phase
involved a renewal of the graphical user interface since it was really outdated, hindering the use
of the application. The third and last phase was intended to update the SL4A API focusing
mainly on the UI functionalities. During the execution of these phases all the deprecated code
seen along the way was either removed or replaced by newer and supported code.

3.1 Start up
This work began by doing a short research about the Scripting Layer for Android. Every post
that talked about SL4A was rather dated and they all linked to the previous Google Code
repository. This repository is closed but it provides a link toward the new repository on Github6.
As it was stated in the previous chapter, the ownership of the new SL4A repository is held by
Damon Kohler; however, he stated on the project's README file that the project is not under
active development and that new issues should be filed against an active fork. This also implies
that he will not be accepting pull requests and that they should be made against an active fork
too.

6 https://github.com/damonkohler/sl4a

Modernizing SL4A | 15

Fortunately, repositories on Github offer several graphs to measure their activity and the activity
of their forks. Taking a look on the network graph, one could see that there was a fork under
active development and that fork itself had been forked several times. As it can be seen in figure
3.1, this active fork belongs to the Github user kuri655367.

This user had already done a very good job migrating the project to Android Studio and they
even included instructions about how to import it. Since the project had been inactive for three
years, it was still configured to run on Eclipse. And despite the fact that Google provides an
excellent tutorial to help developers with the migration of projects from Eclipse to Android
Studio, the Scripting Layer for Android is a very complex project that have many modules and
this makes the migration more traumatic.

For this reason and because it was the most active fork, the decision was to fork it and start this
work from there8. As it was stated before, kuri65536 did a great job making ready the project for
Android Studio and the import to it was smooth. kuri65536 had already tagged the project as
release 6.1.1; however, apart from the migration to Android Studio nothing had really changed
compared to release 6.

The issues with the interpreters mentioned in chapter 2 were still present. Of the interpreters
downloadable from SL4A, the only ones that worked were the BeanShell and JRuby
interpreters. Nevertheless, there was a change made by kuri65536 in the structure of the project.
Formerly, the Scripting Layer for Android held the script engines modules inside the project's
folder, and now they are gone.

Each script engine was a separated Android application that did not intervene with the operation

7 https://github.com/kuri65536/sl4a

8 Incidentally, the repository of this work can be found at https://github.com/miguelpalacio/sl4a.

Figure 3.1: Damon Kohler's SL4A network graph

16 | Modernizing SL4A

of SL4A itself. So they were removed from project's root. They are meant to be completely
separated projects, and in fact kuri65536 created another repository called python-for-android9

that takes care of the Python script engine. kuri65536's version of Python for Android cannot be
downloaded from SL4A yet, but it works correctly on it. The Python version that this project
provides is 2.7.10; however, the support to Python 3.x seems to be on the way.

Besides this change and several bug fixes, kuri65536's fork was nearly the same as the original
SL4A provided by Damon Kohler. In order to bring SL4A up to date, it was necessary to do a
renewal of the graphical user interface and make use of the new functionalities provided by the
Android OS and that had not been yet adopted on SL4A. Section 3.2 is devoted to review this in
great detail.

As it was mentioned before, SL4A is a rather complex project with a huge codebase. One of the
reasons is that the application itself makes use of many modules that are part of the project.
Each of these modules counts as a sort of “independent” Android application, so the project is
quite heavy. Figure 3.3 shows the project structure with the modules it has, being the main
module the one highlighted.

Note: For future reference, when talking about a specific Java file or XML resource, a path of
the following format will be used:

Module_Name/Path_To_File_Directory/File

9 https://github.com/kuri65536/python-for-android

Figure 3.2: Python for Android on SL4A

Modernizing SL4A | 17

3.2 Catching up on Android Lollipop
With the purpose of bringing the Scripting Layer for Android up to date, it was necessary to
target the newest versions of Android. As it was mentioned before, the version chosen as a basis
for this part was Android Lollipop. Although by July 2015 Android Marshmallow was already
available for developers, it was only offered as a preview so that developers could get used to it.
These preview versions have been known by having changeable API so taking Marshmallow as
the target version was not advisable.

The following subsections provide a thorough explanation of the work done in order to get
SL4A fully compatible with Android Lollipop.

3.2.1 Targeting new API levels

The first thing that needs to be addressed is the definition of API level. On the Android
Developers site we find the following definition: API level is an integer value that uniquely
identifies the framework API revision offered by a version of the Android platform. From this
definition it can be inferred that for each version of the Android platform corresponds only one
API level. The newer the version of the Android platform, the larger the integer that represents
its matching API level.

All applications developed for Android can use this framework API to interact with the Android
system. Applications must specify which API levels they cover and this determines the range of
devices they can support. The larger the number of API levels covered the larger the number of
devices supported, but this also makes the maintenance of an application more difficult.

The framework API is updated thinking on keeping backward compatibility with older versions
of this framework. In this manner, if a device runs a version of the Android platform that
delivers an API level that is newer than any of the API levels covered by an application, this
device can execute the application. This is clearly the case of SL4A running on Android
Lollipop without much inconvenience.

The number of API levels that an Android application covers is defined by setting two values:

Figure 3.3: SL4A project structure

18 | Modernizing SL4A

minSdkVersion and targetSdkVersion. As it can be deduced, minSdkVersion specifies the
minimum API level on which the application can run; whilst targetSdkVersion specifies the API
level on which the application is designed to run. targetSdkVersion makes it possible to use
specific functionalities that are available on the target API level rather than being restricted to
what it is offered by the minimum API level.

Both the minSdkVersion and targetSdkVersion on SL4A were set to 4. This means that the
application is meant to fully support Android Donut. However, Android Donut was released in
2009 and there has been a lot of development for the Android platform since then. Naturally,
after nearly 6 years there is a plethora of missing functionalities on SL4A that more recent
Android applications have.

The decision made in order to update the project was to set targetSdkVersion to 22 and
minSdkVersion to 15. Thus, the oldest devices that can run SL4A are the ones with Android Ice
Cream Sandwich. The choice of targetSdkVersion has already been explained. The choice of
minSdkVersion was made after analyzing the Android Dashboards statistics10.

The Dashboards is a tool that provides information about the market share among Android
devices. Not only does it supply information about the versions of the Android platform that
they run, but also other useful information like their screen sizes and the Open GL version they
support. These statistics are obtained by Google on a weekly basis by studying the devices that
visit Google Play.

At the moment of deciding the oldest version of the Android platform to be supported, the idea
was to support as many devices as possible. Initially, the idea was to set minSdkVersion to 10.
The problem is that the lower the minSdkVersion supported, the more the deprecated code that
needs to be handled. For this reason, the criterion used was to support at least the 90% of
devices.

By August 2015, setting the minimum API level to 15 gave support to more than 90% of

10 https://developer.android.com/about/dashboards/index.html

Figure 3.4: Android platform versions distribution

Modernizing SL4A | 19

devices. By January 2016 the same configuration gives support to more than 95% of the
devices. As a side note, from figure 3.3 it is possible to see that devices with Android
Marshmallow are starting to appear in the dashboards; nevertheless, their participation is still
less than 1% of the total distribution.

Changing targetSdkVersion to 22 did not throw any errors upon compiling the project. However,
there were a plethora of new warnings due to code that was now recognized as deprecated. The
real issue emerged once SL4A was executed: it always crashed. The problem was located at
ScriptingLayerForAndroid/src/.../activity/CustomizeWindow.java.

CustomizeWindow.java is in charge of setting a custom window title. It worked fine with API

level 4, but on Android Lollipop the way in which the window title is handled has changed. The
problem was that the default theme that Android applications use now does not allow to use
custom titles; hence, when a custom title was requested it raised an exception making the
application crash. The following lines on CustomizeWindow.java were ruled out:

activity.requestWindowFeature(Window.FEATURE_CUSTOM_TITLE);

activity.getWindow().

 setFeatureInt(Window.FEATURE_CUSTOM_TITLE, R.layout.title);

((TextView) activity.findViewById(R.id.left_text)).setText(title);

 ((TextView) activity.findViewById(R.id.right_text)).setText("SL4A r" +

 Version.getVersion(activity));

Additionally, in order to set the window title the following line was added:

activity.setTitle("SL4A - " + title);

The result can be observed in figure 3.5. It is possible to see now how the application begins to
look more modern.

3.2.2 Interface renovation: Material Design

With the introduction of Android Lollipop a great deal of new features were made available for
developers. Among the most important was Material Design11, an expanded UI toolkit for
integrating the new design patterns recommended by Google easily in applications. At the
moment of carrying out this work, Material Design was the de facto standard for implementing
Android applications UI.

3.2.2.1 From activities to fragments

Fragments were introduced with Android Honeycomb (API level 11) and they were designed
thinking in reusable user interfaces, focusing on the support of large screens such as tablets.

11 http://www.google.com/design/spec/material-design/introduction.html

20 | Modernizing SL4A

Since tablets screens are much larger than those of smartphones, there is more space to integrate
different UI components.

This opens the possibility to divide an activity's layout into several fragments, and as each
fragment is independent from each other (each has its own lifecycle) the result are activities
with much greater flexibility.

In spite of the fact that it is possible to achieve some of the same things that fragments do using
activities and layouts, fragments are now bound to the Android API. Firstly, the navigation
through the application is improved by using them since transitions between fragments are
smoother than transition between activities. Secondly, new widgets such as tabs and navigation
drawer require them. Thirdly, fragments ease portability across different devices (tablets or
phones). Even if an application is aimed at smartphones only, fragments should be used having
portability in mind. Last but not least, development is easier if the API is used the way it is
meant, and not using fragments is going against the Android API ideals.

However, fragments are not a silver bullet and not all activities should be replaced by them. In
many cases, migrating an activity to a fragment would only increase the amount of code and
Java classes without giving any real benefit to the application. For this reason, only a few
activities on SL4A were migrated to fragments.

ScriptingLayerForAndroid/src/.../activity/Preferences.java had to be modified since

the recommendation from the Android developer site is to use fragments to show an

Figure 3.5: Target API 4 vs. Target API 22

Modernizing SL4A | 21

application's settings whenever the case. Their reason is that using fragments improves
navigability and take advantage of bigger screens, as it can be seen in figure 3.6. Moreover, a
large number of the methods of PreferenceActivity (Preference's former superclass) is now

deprecated so it was of utter importance to migrate it.

The idea was to replace PreferenceActivity for a standard activity class that holds

PreferenceFragments. Modifying Preferences to achieve that was a rather simple task.

Preferences superclass PreferenceActivity was replaced by AppCompatActivity (a base

class for activities that use recent features of the Android OS while giving support to older
devices). PreferenceList (a PreferenceFragment subclass) was added to hold the content of

the view that Preferences held. Additionally, a Toolbar widget was added to the modified

Preferences activity in order to follow the Material Design patterns and have more consistency

with the rest of the application.

Following the project standards, a package was created so that it holds all the fragments. Its path
is ScriptingLayerForAndroid/src/.../android_scripting/fragment/. Figure 3.7 shows

the modified Preferences activity. Note that the application's theme was changed to the one

provided by the AppCompat library for Android Lollipop12 with some customizations.

The other activities that were replaced by fragments were: ScriptManager,

InterpreterManager, TriggerManager and LogcatViewer. All of these Java classes are now

found at ScriptingLayerForAndroid/src/.../fragment/. These classes provide the main

screens through which the users interact with the application. In order to switch from one
activity to other the user had two options: performing a swipe gesture (from left to right and

12 http://android-developers.blogspot.com.co/2014/10/appcompat-v21-material-design-for-pre.html

Figure 3.6: Settings screen using fragments. Subgroups of settings can be
placed on different fragments in order to improve navigability (image

taken from the Android developer's site)

22 | Modernizing SL4A

vice versa) or popping up the menu and from there going to the wanted screen.

Google's guideline to increase the navigability of applications is to use a navigation drawer
widget or tabs. For this project, a navigation drawer was deemed as the better choice. For this
widget to work as expected, the transition between screens must be smooth and neat. In order to
achieve this smoothness, it is necessary that the different screens are implemented as fragments.

To implement the navigation drawer, the four previously mentioned Java classes were changed
to fragments. An activity named MainActivity was created with the purpose of holding the
navigation drawer, a Toolbar widget and a container which in turn holds the fragments. Figure

3.8 shows one of the previous ways to access the different main screens as well as the
implementation of the navigation drawer. The navigation drawer is accessible from any of the
four main screens, and also provides a way to access the Settings screen (i.e., the Preferences

activity).

Apart from enabling the use of the navigation drawer, the migration of these activities to
fragments did not change their aesthetics at all. All of these four activities were in fact
subclassing ListActivity, and after the migration they subclassed ListFragment. These

classes require the use of a ListView object bound to a data source. Figure 3.5 shows a list of

scripts in the ScriptManager screen, the list of scripts is displayed by using the mentioned

ListView object.

Figure 3.7: Old Preferences activity vs. New Preferences activity using a
PreferenceFragment and the toolbar widget.

Modernizing SL4A | 23

Nevertheless, due to several limitations of the ListView class, a new type of view called

RecyclerView was released on Android Lollipop with the purpose of replacing the old

ListView and provide many more functionalities. The following section will give a better

insight about RecyclerView and how it was used on this project.

3.2.2.2 Replacing ListView with RecyclerView

RecyclerView was introduced with Android Lollipop in the support-v7 library13 (enabling its

use on all versions of Android from API level 7), and it allows to display a collection of items in
an arbitrary disposition. RecyclerView goes in the same direction of ListView but it is much

more flexible. For instance, with RecyclerView is possible to have elements of different size

whereas with ListView all the elements are constrained to have the same size. Another example

can be seen in figure 3.8, the whole content of the navigation drawer is in fact a single
RecyclerView element that holds a header, a bunch of entries and a divider.

However, with RecyclerView's flexibility also comes a new layer of complexity. With

ListView and GridView an object implementing an Adapter interface is used and it is in charge

of pulling the content from a source and transforming it adequately so that it is placed into the
list. The implementation of this Adapter interface was rather short and simple. With

RecyclerView a whole adapter class must be implemented, and depending on how you wish to

position the elements the implementation changes substantially.

13 https://developer.android.com/tools/support-library/features.html#v7

Figure 3.8: Old menu to access different screens (after clicking on “View” a submenu
listing the screens is displayed) vs. New navigation drawer

24 | Modernizing SL4A

As it was mentioned in the previous section, in SL4A many of the activities were implemented
by subclassing ListActivity, and most of the main screens were migrated to ListFragment.

The purpose of ListActivity is to host a ListView so that it can show a set of items, and the

purpose of ListFragment is not different. After the implementation of the navigation drawer,

the four main screens were subclassing ListFragment, but by using RecyclerView this class is

of no use so they now subclass Fragment.

Most activities (i.e., screens) that were subclassing ListActivity were modified to use

RecyclerView and now subclass AppCompatActivity. In total, six screens (either activities or

fragments) were modified to use a RecyclerView widget. For them, it was necessary to

implement five different adapters due to the nature of the elements of each list. Table 3.1 shows
which screens were modified to replace ListView with RecyclerView, their previous and

current superclass and the adapter they use to bind the data with the views within the lists. All
the classes that implement the adapters for the RecyclerView widgets can be found in the

package ScriptingLayerForAndroid/src/.../custom_component/item_lists/.

Screen (activity/fragment)
Previous

superclass
Current superclass Adapter

ScriptManager ListFragment Fragment ScriptListAdapter

InterpreterManager ListFragment Fragment InterpreterListAdapter

TriggerManager ListFragment Fragment TriggerListAdapter

LogcatViewer ListFragment Fragment LogcatListAdapter

ScriptPicker ListActivity AppCompatActivity ScriptListAdapter

ScriptProcessMonitor ListActivity AppCompatActivity ScriptMonitorListAdapter

Table 3.1: Screens were RecyclerView was used to replace ListView.

As it can be seen in table 3.1, the reuse of the adapters is minimal. The only adapter that is
reused is ScriptListAdapter, and the reason for this is that both screens (ScriptManager and

ScriptPicker) use exactly the same layout and data collection. The problem with the

implementation of these adapters is that even the slightest difference between two lists, can
make it be very difficult to use the same adapter for both. There are ways to use the the same
adapter for all the lists (or collections of objects) that need to be displayed but the result would
be a huge and very hard to maintain piece of code.

All the adapters listed in table 3.1 inherit from the RecyclerView.Adapter abstract class. This

class provides all the methods that need to be overwritten so that Android OS handles the
binding between a specific data set to views that are displayed within a RecyclerView widget.

The following chunks of code are used to explain how the adapters are implemented. The
RecyclerView used to implement the content of the navigation drawer shown in figure 3.8 will

be used as a example.

Modernizing SL4A | 25

public static class ViewHolder extends RecyclerView.ViewHolder { … }

This class is implemented inside of the adapter and serves to bind the data with the views inside
a RecyclerView. The same ViewHolder can be used for different view types. Its job is to bind

data to TextViews, ImageViews, etc. For instance, the navigation drawer header's data is bound

to two TextViews, whilst the list items' data is bound to an ImageView for the icon and a

TextView to display the entry's name.

public void onCreateViewHolder(ViewGroup parent, int viewType) { … }

This method inflates a layout depending on viewType. For the case of the navigation drawer, it

inflates three different type of layouts: one for the header, one for each item of the list, and a
very simple one to be used as a divider (the line separating Logcat from Settings). Once a layout
is inflated, a new ViewHolder is created.

public void onBindViewHolder(ViewHolder holder, int position) { … }

This methods fills the ViewHolder with data from item at position position of the collection of

data that wants to be represented using the RecyclerView.

public int getItemCount() { … }

This method returns the number of views that will be present in the whole RecyclerView. The

reason to implement this method is that the number of views in the RecyclerView not

necessarily match the number of items in a collection of data. For the navigation drawer, the
number of entries of the list cannot be used as the number of views in the corresponding
RecyclerView since no data is assigned to the divider, and the data used for the header comes

from a different source as well.

public int getItemViewType(int position) { … }

This method is implemented to return a view type depending on the position of the item within
the RecyclerView. Here, the the order in which the items are arranged within the RecyclerView

is defined. The result is then used by onCreateViewHolder.

In spite of the fact that the navigation drawer was used to illustrate how a RecyclerView's

adapter works, that specific adapter used for the navigation drawer has some particularities. It
does not extend RecyclerView.Adapter but SelectableAdapter. The latter allows to keep a

register of which items were selected. Figure 3.8 shows that the “Scripts” entry was just selected
since it appears highlighted.

Figures 3.9 to 3.13 show the results obtained after implementing the adapters and carrying out
the necessary modifications in each Java class corresponding to the screens in which

26 | Modernizing SL4A

RecyclerView replaced ListView. The lists were implemented so that they matched the

previous design. Also note that some of the icons for the lists were renewed to match more
current trends. Also note that as stated in section 3.2.2.1, MainActivity holds a Toolbar object

and the fragment that contains the RecyclerView.

There was obviously a lot of work in modifying these screens (Java classes) in order to make
them work using RecyclerView. To begin with, the modification of the superclass from which

they were inheriting. This single change introduced a lot of errors due to specific methods of the
previous superclasses (see table 3.1). However, this errors clearly underlined what it had to be
implemented in order to match the previous functionalities and not leaving out any.

Each screen represented a different challenge so speaking thoroughly about the changes made in
each of them gets out of the scope of this text. It is recommended to head to the Github
repository of this project in order to examine the changes with a level of detail that this text
cannot possibly hope to have.

Figure 3.9: Scripts screen: using ListView vs. RecyclerView.

Modernizing SL4A | 27

Figure 3.10: Interpreters screen: using ListView vs. RecyclerView

Figure 3.11: Triggers screen: using ListView vs. RecyclerView

28 | Modernizing SL4A

Figure 3.12: Logcat screen: using ListView vs. RecyclerView

Figure 3.13: Script monitor screen: using ListView vs. RecyclerView

Modernizing SL4A | 29

Roughly, these are the most important changes introduced in the graphical user interface of the
application. Details such as making the interface coherent throughout the different API levels
supported were skipped in this text, but again, if the reader wish to go through all the
technicalities, it is advised to visit the repository of this work and its commit history.

In the following section, the longest part of this project will be reviewed: the modifications and
enhancements done in the API offered by SL4A.

3.3 SL4A API updates
The main objective of this work was to update the API offered by SL4A. Bringing up to date the
whole SL4A API is something way beyond the scope of this work since there are many façades
and each façade offers numerous functions. As it has been stated several times in this text, the
focus is to extend the support for UI library. Hence, all the work of this phase was about
updating and extending the façade in charge of the UI: the UiFacade.

3.3.1 The UiFacade

The UI façade gives access to a series of dialog boxes for general user interaction. It also offers
the webViewShow and fullShow functions. The former permits the use of interactive HTML

pages whilst the latter allows to inflate any Android XML layout that is passed to it.

Some of the dialog boxes supported are input dialog, alert dialog, date picker, horizontal
progress dialog, seek bar dialog and spinner progress dialog. Each dialog can be customized
with features such as setting a list of items (to be used like a menu), a multi-choice list of items,
or a single-choice list of items; setting positive, negative and neutral buttons, etc.

With webViewShow it is possible to display a WebView with the given URL. It is possible to

display external URLs as well as “internal” URLs (HTML pages written by the user and that
reside on the phone local storage), where there is some JavaScript code that can be later
executed by the JavaScript interpreter of the browser.

fullShow and fullSetProperty are the functions that took the most attention in this façade,

since they are some of the most complex functions offered by the SL4A API. These functions
are closely related. The idea of fullShow is to provide a way to display XML layouts, so it must

be able to inflate any layout that is passed to it. fullSetProperty allows to modify view

attributes of inflated layouts; however, the fullShow uses the same implementation of

fullSetProperty to set the attributes of the views that it is inflating.

These functions are also some of the most powerful since they allow to implement complex user
interfaces for applications built using SL4A only. This goes beyond the creation of “simple”
scripts that use user data as input and then show some results.

30 | Modernizing SL4A

3.3.2 Revision of the UiFacade status

The first thing that had to be done was checking the UiFacade to determine what was working
fine and what was not. In this way, it was necessary to test all the functions provided by this
façade. Table 3.2 lists all the functions offered by the UiFacade and the state in which they
were.

Function State

addContextMenuItem OK

addOptionsMenuItem OK

clearContextMenu OK

clearOptionsMenu OK

dialogCreateAlert OK

dialogCreateDatePicker

The dialog was not dismissed automatically after
selecting a choice, nor after pressing the hardware
back button. The only way to dismiss it was by
explicitly calling dialogDismiss() in the script.

dialogCreateHorizontalProgress Same problem of dialogCreateDatePicker.

dialogCreateInput OK

dialogCreatePassword OK

dialogCreateSeekbar OK

dialogCreateSpinnerProgress Same problem of dialogCreateDatePicker.

dialogCreateTimePicker Same problem of dialogCreateDatePicker.

dialogDismiss OK

dialogGetInput OK

dialogGetPassword OK

dialogGetResponse OK

dialogGetSelectedItems
It did not work. The selected items were not
returned, the result was always the items selected
by default.

dialogSetCurrentProgress OK

dialogSetItems OK

dialogSetMaxProgress OK

dialogSetMultiChoiceItems OK

dialogSetNegativeButtonText OK

dialogSetNeutralButtonText OK

dialogSetPositiveButtonText OK

Modernizing SL4A | 31

dialogSetSingleChoiceItems OK

dialogShow OK

fullDismiss OK

fullKeyOverride OK

fullQuery OK

fullQueryDetail OK

fullSetList OK

fullSetProperty

It did work. However, the support was rather
limited. This function along with fullShow are
truly complex, for that reason section 3.3.4 is
entirely dedicated to them.

fullSetTitle OK

fullShow

It worked. Although if the function was given an
empty string (i.e., no layout) the application
crashed. The main problems were related with the
setting of attributes. See section 3.3.4 for more
details.

webViewShow

It worked but it had a couple of issues: only local
URLs were supported, and once this function was
called it was no possible to go back to SL4A
without a forced closure. It also had some
security issues due to deprecated code.

Table 3.2: UiFacade status of the functions.

3.3.3 UiFacade general adjustments

In the previous section all the functions offered by the UiFacade were listed and their state was
specified. This section is dedicated to show how the problems of the functions that were not
working fine were addressed. As it was stated, fullSetProperty has section 3.3.4 dedicated to it
so it will not be seen in this section.

3.3.3.1 Dialog dismissal problem

As it was seen, after calling dialogCreateDatePicker, dialogCreateHorizontalProgress,

dialogCreateSpinnerProgress and dialogCreateTimePicker, these dialogs were not

dismissed automatically after the user tapped on any dialog button, and it was not possible to
dismiss them by pressing the hardware back button. The only way to dismiss these dialogs was
to call dialogDismiss explicitly in any script that used the previously mentioned functions.

The solution was fairly simple. All the Java classes in charge of handling these dialogs
(DatePickerDialogTask, ProgressDialogTask and TimePickerDialogTask in

Common/src/.../androd_scripting/facade/ui/) had to be modified in the same way: a call

32 | Modernizing SL4A

to dismissDialog, a function of their superclass. Dialogs without the dismissal issue (such as

AlertDialogTask) had it. This function was in charge of dismissing the dialog upon user

request. The following code applied for all the aforementioned classes:

mDialog.setOnDismissListener(new DialogInterface.OnDismissListener() {

 @Override

 public void onDismiss(DialogInterface dialog) {

 // Some code specific for each dialog

 ...

 dismissDialog();

 }

}

Where mDialog is an object of a class subclassing DialogTask. In this class, dismissDialog is

implemented and it is the function that is in charge of dismissing (i.e., destroying) any existing
dialog. The problem existed because dismissDialog was not being called when each dialog

called its onDismiss method (that was invoked when the user pressed the hardware back button

or tapped on any dialog button). Simply adding a call to dismissDialog in onDismiss fixed the

issue.

3.3.3.2 dialogGetSelectedItems

This function is used along with dialogSetMultiChoiceItems and

dialogSetSingleChoiceItems. As mentioned in table 3.2, the problem with this function is

that it was not returning the item or items selected in the dialogs. The supposedly selected items
were always the same as the items selected by default, regardless of which items were selected
by the user.

The issue occurred if the result was requested just after the dialog was created, returning the set
of items selected by default since it was impossible for the user to be faster than the execution
of the script. In spite of the fact that this problem could be circumvented via scripting, it was
deemed better to solve it internally in the function implementation. It was solved by postponing
the retrieval of the selected values until the user pressed the positive button in the corresponding
dialog.

3.3.3.3 fullShow

fullShow is in charge of inflating a layout based on the string it is passed. The string

corresponds to an XML file used on Android to represent layouts. Typically, what is done in the
scripts written for SL4A, is that an external XML file with the layout is loaded and then
converted into a single string that is then passed to fullShow so that it can be inflated.

This worked relatively fine, however a corner case was missing: if this string was empty, the
application went into an exception and crashed. This happened because when the method to

Modernizing SL4A | 33

inflate a layout receives an empty string, it simply returns a view with value null. This was

easily solved by checking the outcome of the inflater and in case it is null, it is replaced by a

default view. In Common/src/...android_scripting/facade/ui/FullScreenTask.java:

@Override
public void onCreate() {

 ...

 try {

 // Try to inflate view

 } catch (Exception e) {

 // Catch any error when trying to inflate view

 // (null strings were not caught)

 } finally {

 if (mView == null) {

 // Replace view with null value with default view

 }

 }

}

...

3.3.3.4 webViewShow

The webViewShow function permits to open a custom HTML page in a WebView. This custom

HTML page can be specified by passing a URL (which also includes the possibility of using
local HTML files by providing file://... paths). The attractiveness of using WebViews is the

possibility of executing JavaScript scripts that access the Android APIs through SL4A.

As it can be seen in table 3.2, this function had several issues. One of the issues was that it was
not possible to open external URLs. In order to solve this problem the decision was to delegate
this responsibility to a dedicated browser. It is not optimal since scripts meant to use the SL4A
API will not work; however, allowing external scripts to use this API poses an enormous
security risk. Local files are still handled within WebViews.

A second issue was that once webViewShow was called, it was impossible to return to SL4A

unless the application was closed by force. In order to overcome this problem, it was necessary
to subclass WebView and then override the function regarding the hardware back button. Since

this new class is not needed anywhere else, it could be safely implemented as an inner class
within Common/src/.../interpreter/html/HtmlActivityTask.java.

public class MyWebView extends WebView {

 Activity mActivity;

 public MyWebView(Context context) {

 super(context);

 mActivity = (Activity) context;

34 | Modernizing SL4A

 }

 @Override

 public boolean onKeyDown(int keyCode, KeyEvent event) {

 if (keyCode == KeyEvent.KEYCODE_BACK) {

 mActivity.onBackPressed();

 return true;

 } else {

 return super.onKeyDown(keyCode, event);

 }

 }

}

The last issue was due to deprecated code. From API level 17 all public methods that need to be
accessed from JavaScript have to be annotated with @JavaScriptInterface, otherwise they

will be ignored. Obviously, due to the long time of abandonment of the project these annotations
were not present and without them it was not possible to execute any JavaScript within
WebViews. Simply annotating the objects to be injected in the WebView solved the issue.

As a caveat, these annotations allow JavaScript to control the host application. As it was
previously stated, there is a big security risk with this. However, since SL4A is aimed to
developers they must know the security risks involved. Additionally, and as it was stated too, it
is only possible to execute scripts in WebViews locally.

3.3.4 Improving the inflation of layouts

As it could be inferred from the previous section, fullShow and fullSetProperty are the most

complex functions offered by the UiFacade. fullShow allows to inflate layouts which makes it

possible to create complex applications using SL4A. Normally, applications created natively for
Android use layouts created in XML and by compilation these layouts are transformed into
something that Android understands.

However, due to the nature of SL4A these layouts cannot be pre-compiled (the idea is that a
developer can create any layout on the fly so that it is inflated). This makes it really complex
since the XML file has to be parsed in runtime within the application. This task is delegated to
Common/src/.../facade/ui/ViewInflater.java. In order to be able to inflate any XML

layout, SL4A makes use of a metaprogramming strategy called reflection that offered by Java.

Reflection is a computer process that embraces self-awareness. It is the capacity of a computer
program to analyze and transform its own structure and behavior at runtime. Reflection allows
to modify the execution of a program based on the same execution. This is normally achieved
by dynamically designating program code at runtime. In Java, reflection permits to inspect
classes, interfaces, fields and methods at runtime without knowing their names at compile time.
It also permits to instantiate new objects and invocate methods of generic objects.

Modernizing SL4A | 35

What it is done in ViewInflater when a layout is passed, is parsing it and building every view

contained by the layout along the way. The first task is done by the inflateView method with

the help of an XmlPullParser object that provides parsing functionality for XML. inflateView

makes a recursive call if the view being parsed is an instance of ViewGroup (i.e., a view that

groups other views). In this case the child views are constructed by calling inflateView

recursively and then appending them to the current view group.

What inflateView does internally is calling buildView. buildView is is charge of the second

task: creating the actual views. Here is when reflection comes into the game for the first time:
by using the name of the XML element that is being parsed, an instance of the corresponding
view is created. The way in which Android was thought allows this, since the names of the
elements in an XML layout, coincide with the Java classes names that represent those layout
elements (or views).

Thanks to the XmlPullParser object the name of the element being parsed can be easily known,

and since this name corresponds to a Java class of Android it is possible to create an view object
of that class using reflection. The following lines of code explains it better. Please note that this
is just an example and that the actual code in ViewInflater that does this task is more complex.

// Get name of the XML element being currently parsed

String name = xmlPullParser.getName();

// Create a class object and obtain a constructor object from it

Class<? extends View> viewClass = Class.forName(name).asSubclass(View.class);

Constructor<? extends View> ct = viewClass.getConstructor(Context.class);

// Create the view using the constructor object

View view = ct.newInstance(getActivity());

In this way it is possible to create any view by parsing an XML layout file/string. In fact, no
problems regarding the inflation of views were found. In all the ahtests done there were no
problems inflating the views themselves. The situation becomes really complex at the moment
of setting attributes for the views created. The fullSetProperty of the UiFacade suffers the

same problem since this function uses the same implementation that fullShow uses to set

attributes for views.

3.3.4.1 Explicitly supported view attributes

The setting of attributes was performed in setProperty by checking a bunch of conditionals,

and calling the corresponding methods to set the attributes for the views. The rest of the
attributes were attempted to be set by setDynamicProperty with the use of reflection. Table 3.3

lists the attributes that were explicitly supported by this set of conditionals just mentioned and
the state in which they were.

36 | Modernizing SL4A

View attribute Initial state of the setting method

background It had some deprecated code.

digits OK

gravity OK

height
It had problems when using “mm” as the units of
measurement. The resulting views were larger than
expected.

id

It worked partially. The only way to set an id to a
view was by prefixing the id with “@+id/” or
“@id/”. This is accurate when inflating a layout
but it does not make much sense while setting an id
using fullSetProperty.

inputType OK

layout_*
Some attributes related with RelativeLayout
presented issues and were not set properly.

nextFocus[Down|Forward|Left|Right|Up]

Related to the id attribute problem. It worked fine
as long as the given id had was prefixed by
“@+id/” or “@id/”. This is accurate while inflating
a layout but it is makes no sense while setting the
property using fullSetProperty.

padding OK

src OK

stretchColumns
It worked, although it had some issues with some
strings. “*” which is a valid value for this attribute
was not supported either.

textColor
It worked fine as long as the given color was in the
RGB color model format.

textColorHint Same problem as with textColor.

textColorHighlight It did not work.

textSize
It sort of worked, but the text was abnormally large
for the values that it was given.

textStyle OK

typeFace OK

width Same problem as height.

Table 3.3: Initial support of view attributes on SL4A.

The following paragraphs are dedicated to explain how the problems listed in table 3.3 were
solved.

Modernizing SL4A | 37

background

The deprecated code could not be entirely removed because it was necessary to support devices
with older versions of the Android platform. A conditional was introduced so that newer devices
use the new code, whilst older devices that do not support the code keep using the deprecated
code. This solution is used in many other instances of SL4A where a complete removal of
deprecated code was not possible.

if (Build.VERSION.SDK_INT < Build.VERSION_CODES.JELLY_BEAN) {

 // Old deprecated code

 view.setBackgroundDrawable(getDrawable(value));

} else {

 // Newer implementation

 view.setBackground(getDrawable(value));

}

Build.VERSION.SDK_INT is an integer that is equal to the API level in which the device is,

whereas Build.VERSION_CODES contains a set of integer named after the released versions of

the Android platform, and their values correspond to the API levels the releases. This version
code correspond to the last API level before the code was deprecated.

height and width

The problem was that when the units used for these attributes were millimeters (mm), the
resulting view sizes did not correspond to what was expected. These views were clearly larger.
The problem was simply a wrong conversion of units.

if (units.equals(“mm”))

 return (float) (inches / 2.54); // This converts to cm. Changed to 25.4

id

As it was stated in table 3.3, setting an id always required it to be prefixed by “@+id/” or
“@id/”. This is accurate while loading a layout (e.g., when fullShow is invoked); however, it

was no sensible when modifying the id of an existing view.

In order to make SL4A coherent with Android Java development, “@+id/” is required to set a
view id while loading a layout, whereas “@id/” must only be used if the id is an existing id on
the same layout or in a built-in Android class (e.g., in the android.R.id class). To change an id
after the view is created, does no require the new id to be prefixed anymore.

layout_*

Most attributes of this set worked without issues. The problems belonged to a subset of
attributes used only with RelativeLayout. These attributes were not correctly supported, and

when they were attempted to be set, errors raised and attributes in other views were not set

38 | Modernizing SL4A

either. The issue was that for all RelativeLayout attributes, the value given was always treated

as an id of an anchor view. Nevertheless, attributes such as layout_alignParentTop expect a

boolean and the anchor view is implicitly defined as the parent view.

nextFocus*

The issue with these attributes was closely related to the one with the id attribute. In this case,
the id passed as the value to set these attributes had to be prefixed by “@+id/” or “@id/”. It is
now not necessary (which makes the calls to these function more natural), but it is still possible
to use them so that older scripts do not stop working. This solution also apply to a plethora of
attributes that require an id as an input parameter.

stretchColumns

This attribute accepts strings of the type “1,2,4”, in which each number corresponds to a column
of a TableLayout view that needs to be stretched. It worked as long as the string did not have

any space character in between. It is not a serious issue but might be tricky in some cases. It
now accepts strings with spaces (as long as they are well formed). Moreover, it now supports
the string “*” as input when it is wanted to stretch all the columns of a TableLayout view.

textColor and textColorHint

As it is expressed in table 3.3 these attributes worked. Although they only accepted strings in
the RGB model format (i.e., “#RGB”, “#RRGGBB”, “#ARGB”, “#AARRGGBB”). Now, colors coming

from Android resources (for instance, from android.R.color) are also accepted.

textColorHighLight

This attribute goes in the same direction of textColor and textColorHint. However, it did not
work because it was wrongly named in the set of conditionals. The set of conditionals were
expecting an attribute named textHighlightColor. This was easily solved by changing the name
expected. Also, the enhancement done for the previous two attributes also apply to this one.

textSize

In spite of the fact that the setting of this attribute sort of worked, the resulting text size did not
correspond to what was expected. It was much larger. For the majority of attributes related with
sizes, their corresponding setting methods expect sizes in pixels. However, the method
corresponding to textSize expects the size in Scaled-Independent Pixels (sp), and it was being
given sizes in pixels.

3.3.4.2 Implicitly supported view attributes

Table 3.3 lists the attributes “explicitly” supported, i.e., the attributes that were in a set of
conditionals inside ViewInflater. However, there were many attributes “implicitly” supported,

Modernizing SL4A | 39

inclduing scaleX, scaleY, rotation, and text (in the case of TextViews). These attributes were

supported by using reflection. The setDynamicProperty method in ViewInflater was in

charge of handling this.

The strategy to set the attribute of a view implicitly consisted in forming a string of the form
“set” + “AttributeName”, and then use it with reflection to retrieve a method from the view

with a name matching the string. This method is then invoked with the value given for the
attribute. The following lines of code is aimed to clarify this strategy, but it must be taken only
as a simple example.

private void setDynamicProperty(View view, String attr, String value) {

 String name = “set” + toPascalCase(attr);

 Class<?>[] parameters = {CharSequence.class}; // A method may accept

 // several parameters

 Method method = view.getClass().getMethod(name, parameters);

 method.invoke(view, value);

}

This strategy proves useful for many attributes but it is not a silver bullet, and a plethora of
attributes do not get supported in this way. The following section will go through the work done
in order to support more view attributes.

3.3.4.3 Extending the supported view attributes

As it was just mentioned, the strategy of “set” + “AttributeName” is useful to support many

attributes in an implicit way but it has limitations. Firstly, important attributes like paddingLeft,
paddingBottom, transformPivotX, among others do not match this pattern since these attributes
have setting methods that are named differently.

Secondly, this strategy passes to the setting method the attribute value to be assigned as it is or
with minor class casting. Nevertheless, many attributes need treatment for those values. For
instance, some attributes accept a number with a valid measurement unit, but their setting
methods expect an integer value that represents a number of pixels. Another example is with
attributes that accept colors (either in the RGB model format or from a resource) but expect an
integer value representing the color. For these and other cases, the value has to treated so that it
is valid and consistent with the setting method.

Thirdly, the “set” + “AttributeName” strategy accepts class constants as values. By using

reflection, based on the given attribute value the view's class is examined to find a matching
constant field. If it is found the value of the constant is passed to the setting method. This
strategy works as long as the class constant matches the value given in upper case, and the
constant is a field of the same class of the view whose attribute is being set. For many attributes,
this is not the case, so the value is not recognized as a valid class constant.

40 | Modernizing SL4A

Lastly, some attributes are so complex to set that they require a special treatment. There is no
possible way to treat the given value by a simple use of reflection. One example is the textSize
attribute. For nearly every attribute that accepts values with units in their XML, its
corresponding setting method expects an integer value in pixels. However, in the case of
textSize, setTextSize expects a value in Scaled-Independent Pixels (sp), which breaks the

pattern.

In spite of the fact that it does not support every single attribute, the strategy is still useful. In
fact, since Android View classes count with a very large number of attributes it is basically
impossible to treat all view attributes by employing only one strategy. The idea then was to
implement different strategies and depending on each attribute using one or more.

In order to give support to the most critical view attributes, a thorough verification of the
operation of the attributes was done for the following view classes: View, ImageView, TextView,

GridLayout, LinearLayout, RelativeLayout and TableLayout. In each of these classes all the

attributes were revised in order to known if they were correctly handled by the “set” +

“AttributeName” strategy or they needed some special treatment. Of course there are many

other view classes, however, there are way too many and these classes cover the most used
views in Android.

After analyzing all the attributes for the aforementioned view classes and subclasses and taking
into account the problems listed, the following are the identified cases in which it is necessary to
apply a special treatment to an attribute in order to set its value correctly:

• The attribute's setting method is named differently to “set” + “AttributeName”.

• The given value needs some treatment. This value needs to be treated when the setting

method expects a view id, a size in pixels or an integer matching a color.

• The given value corresponds to a class constant, but the name of the value in upper case

does not match the class constant name or the constant is in a different class of the view
whose attribute is being set. In many cases the class name do not match because it
follows a different pattern. The identified patterns used for class constant names are
(notice that they are in snake case): “ATTRIBUTE_NAME” + “_” + “VALUE”,

“SOME_PREFIX” + “_”+ “VALUE”, “SOME_PREFIX” + “ATTRIBUTE_NAME” + “_” +

“VALUE”.

And the following are the strategies that need to be applied in order to overcome the just
mentioned problems:

• Provide the correct name so that it can be found using reflection.

• Transform the given value depending on its type. In order to know what transformation

Modernizing SL4A | 41

hast to be applied, a set of helper flags are used.

• Provide the name of the class where the constants matching the values accepted are

defined, and provide a string that serves as a prefix in case it is needed.

For many view attributes, applying one or more of the aforesaid strategies is enough to enable
their correct setting by using reflection. Nevertheless, and as it was mentioned before, due to
their complexity many attributes cannot be handled with any of these strategies. In these cases
they need to be handled independently. Therefore, the more attributes that need to be handled
this way, the longer the code and hence the more difficult its maintenance.

In order to attenuate this problem, it was necessary to apply an strategy that made the code
readable and easily extensible. After several strategies used, the definitive one for this project
was to use a HashMap object in ViewInflater, in which each key of the map is the name of the

view attribute and the value is some information about how to handle this attribute. This
HashMap is populated statically so that it is always available and does not have to be populated

every time a ViewInflater object is created.

The question just after was, how to encode the information that each attribute will have? It was
thought of enconding this information by using a JSON object passed as string that later would
have to be decoded to extract all its attributes, each attribute being some information to handle
the setting of the attribute correctly. The problem with this is that Java does not support JSON in
a simple way, so encoding and decoding not only takes a long time but makes the code less
natural.

Another option was to use HashMaps as values for the first HashMap, however, the concern was

about the amount of memory that each HashMap would take, and taking into account the high

number of attributes to be supported this way, the concern was even higher. The solution was to
use a different Java implementation for maps called EnumMap. In this map all the keys come

from a single enum type that is specified when the map is created. EnumMap objects are

represented internally as arrays, which make them extremely efficient and compact.

Knowing this, the following enum was implemented:

private enum AttributeInfo {

 HELPER_METHOD, ATTR_METHOD, VAL_MODIFIER, CONSTANT_CLASS, CONSTANT_PREFIX

}

With this, it is possible to create EnumMap objects in which the keys are the members of the

enum, whilst the value can be any object. In this case, the values are strings that provide specific

pieces of information about how the attribute has to be handled. For each attribute, an EnumMap

object is used. On the other hand, not all the keys of an EnumMap object have to be used.

ATTR_METHOD is used to specify the correct name of an attribute setting method. VAL_MODIFIER

42 | Modernizing SL4A

is used to specify a modifier that must be used to transform the value given into something that
is meaningful and coherent with the setting method. CONSTANT_CLASS is used to specify a class

when an attribute accepts a set of values matching the constants of that class, and that class is
not View nor a subclass of it. CONSTANT_PREFIX is related with class constants as well, but in

this case it serves to specify a prefix because in many cases the class constants are named with
the pattern SOME_PREFIX + VALUE_IN_UPPERCASE. Finally, HELPER_METHOD is used when the

setting of the attribute is so complex that it needs to be handled by a method defined just for this
purpose.

The following function was written to instantiate and populate EnumMap objects:

private static Map<AttributeInfo, String> mapAttrInfo(Object... attrInfo) {

 Map<AttributeInfo, String> infoMap = new EnumMap<>(AttributeInfo.class);

 for (int i = 0; i < attrInfo.length; i = i + 2) {

 infoMap.put((AttributeInfo) attrInfo[i], (String) attrInfo[i + 1]);

 }

 return infoMap;

}

For each attribute in the HashMap an EnumMap is created using this method. This shortens the

definition of such HashMap and also makes it more readable. The following example, allows to

see how some attributes are added:

static final Map<String, Map<AttributeInfo, String>> mXmlAttrs =

 new HashMap<>();

mXmlAttrs.put(“elevation”,

 mapAttrInfo(AttributeInfo.ATTR_MODIFIER, “dimension”));

mXmlAttrs.put(“nextFocusUp”,

 mapAttrInfo(AttributeInfo.ATTR_METHOD, “setNextFocusUpId”,

 AttributeInfo.ATTR_MODIFIER, “viewId”));

mXmlAttrs.put(“id”, mapAttrInfo(AttributeInfo.HELPER_METHOD, “setViewId”));

The way in which mapAttrInfo works consists in specifying the kind of information that will

be specified, and then the corresponding string providing the information itself. We can see in
the previous example that for the elevation view attribute a value modifier is used, “dimension”
in this case. This information is used later to transform the value for elevation from dp, sp, etc,
to an integer representing a number of pixels. For nextFocusUp two pieces of information are
specified: the correct setting method name, and a modifier to retrieve an integer representing a
view id from a string. The id attribute is complex to set so it needs to be handled separately, that
is why a helper method is specified for it.

The case of the helper method also takes advantage of reflection, it is used to retrieve the

Modernizing SL4A | 43

needed helper method having only a string with its name. In order to keep everything as
organized as possible, a class inside ViewInflater was defined. This class has the task of

holding all the helper methods and auxiliary functions that the helper methods use. This inner
class is called ViewAttributesHelper.

Not only was this HashMap implemented, but also the “set” + “AttributeName” strategy was

improved in order to support more attributes. Several attributes whose valid values have a
corresponding class constant do not need to be specified in the HashMap. They can be easily

solved by “parsing” the value given. The “set” + “AttributeName” strategy takes the given

value and put it in upper case since many class constants match this pattern. However, when it
was a string composed of several words in camel case, the uppercase version did not match.
Converting from camel case to snake case and then to uppercase, gave support to several more
attributes.

Table 3.4 lists all the attributes that got support by the previous strategies. The attributes that are
not in this table, still rely on the “set” + “AttributeName” strategy for their setting. The

attributes supported by these new strategies plus the ones supported by the “set” +

“AttributeName” strategy, are in the vast majority of layouts used for Android applications.

There is a still a long way to support all of the view attributes, but since supporting them
represent a immeasurable amount work and they are hardly used, it was decided to stick to the
ones supported so far.

Attribute Problem(s) and solution

View

accessibilityLiveRegion
Attribute values did not match class constants names.
Solved by transforming the values from camel case to
snake case.

accessibiltyTraversalAfter
Could not handle id as strings, only numbers. Solved
with the VAL_MODIFIER for ids.

accessibiltyTraversalBefore
Could not handle id as strings, only numbers. Solved
with the VAL_MODIFIER for ids.

backgroundTint
Very complex method. Needs to define a special kind
of object to be passed to the setting function.
HELPER_METHOD was implemented for it.

drawingCacheQuality
Attribute values did not match class constants names.
Solved by transforming the value from camel case to
snake case.

elevation
Accepts values with screen units. Got fully supported
using the VAL_MODIFIER for units.

fadeScrollbars The setting method name did not match “set” +
“AttributeName”. Solved using the ATTR_METHOD.
However, enabling the setting of this attribute is
dangerous since if it set for a non scrollable view the

44 | Modernizing SL4A

whole application crashes. It was kept disabled.

fadingEdgeLength
Accepts values with screen units. Got fully supported
using the VAL_MODIFIER for units.

importantForAccessibility
Attribute values did not match class constants names.
Solved by transforming the value from camel case to
snake case.

isScrollContainer
The setting method name did not match “set” +
“AttributeName”. Solved using the ATTR_METHOD.

layoutDirection
Attribute values did not match class constants names.
Solved by transforming the value from camel case to
snake case.

minHeight

The setting method name did not match “set” +
“AttributeName”. Moreover, this method accepts
values with screen units. Solved using ATTR_METHOD.
for the method name and VAL_MODIFIER for units.

minWidth Same problems as minHeight.

paddingBottom

These attributes were quite complex since there is not
method to set them individually.

Therefore, HELPER_METHOD was used to handle the
setting of each attribute using the general method
View.setPadding.

paddingEnd

paddingLeft

paddingRight

paddingStart

paddingTop

requiresFadingEdge
In order to set this attribute correctly, several methods
need be used. Hence, it needed a specific method for
this and HELPER_METHOD was used.

scrollbarDefaultDelayBeforeFade The setting method name did not match “set” +
“AttributeName”. Solved using the ATTR_METHOD.scrollbarFadeDuration

scrollbarSize

The setting method name did not match “set” +
“AttributeName”. Moreover, this method accepts
values with screen units. Solved using ATTR_METHOD.
for the method name and VAL_MODIFIER for units.

scrollbarStyle

The setting method name did not match “set” +
“AttributeName”, and attribute values did not match
the class constants names. Solved using the
ATTR_METHOD and CONSTANT_PREFIX.

textAlignment Attribute values did not match class constants names.
Solved by transforming the value from camel case to
snake case.textDirection

transformPivotX
The setting method name did not match “set” +
“AttributeName”. Moreover, this method accepts
values with screen units. Solved using ATTR_METHOD.

Modernizing SL4A | 45

for the method name and VAL_MODIFIER for units.

transformPivotY Same problems as transformPivotX

translationX
Accept values with screen units. Got fully supported
using the VAL_MODIFIER for units.

translationY

translationZ

ImageView

baseline
Accept values with screen units. Got fully supported
using the VAL_MODIFIER for units.

maxHeight

maxWidth

tint
Complex attribute. A special kind of object has to be
defined and then passed to the setting method.
HELPER_METHOD was used to handle this.

TextView

autoText
This attribute is complex to set since its setting
conflicts with capitalize. Got fully supported with a
HELPER_METHOD.

bufferType
This attribute is complex to set since its setting
method requires two arguments. Got supported with
HELPER_METHOD.

capitalize
This attribute is complex to set since its setting
conflicts with autoText. Got fully supported with a
HELPER_METHOD.

drawableBottom

Setting these attributes is complex since they are all
set with the same function. Additionally, it is
necessary to create a Drawable object based on the
value given. Got fully supported with HELPER_METHOD.

drawableEnd

drawableLeft

drawablePadding

drawableRight

drawableStart

drawableTop

ellipsize

The “constant” values related to this attribute come
from an enum, not from a class. Which makes it hard
to use reflection. Got supported with a
HELPER_METHOD.

fontFamily
The setting method name did not match “set” +
“AttributeName”. Solved using the ATTR_METHOD.

imeActionId
The setting method needs information about
imeActionLabel. Got supported with HELPER_METHOD.

imeActionLabel
The setting method needs information about
imeActionId. Got supported with HELPER_METHOD.

46 | Modernizing SL4A

lineSpacingExtra
The setting method requires information about
lineSpacingMultiplier. Got supported with
HELPER_METHOD.

lineSpacingMultiplier
The setting method requires information about
lineSpacingExtra. Got supported with
HELPER_METHOD.

maxLength
Complex attribute. A special kind of object has to be
defined and then passed to the setting method.
HELPER_METHOD was used to handle this.

scrollHorizontally
The setting method name did not match “set” +
“AttributeName”. Solved using the ATTR_METHOD.

shadowColor These attributes use the same setting method and thus
all the attributes are setting at once. When setting one
of these attributes, it is necessary not to overwrite the
rest. Due to this complexity, it was necessary to use
HELPER_METHOD.

shadowDx

shadowDy

shadowRadius

textAllCaps
The setting method name did not match “set” +
“AttributeName”. Solved using the ATTR_METHOD.

textColorLink
The setting method name did not match “set” +
“AttributeName”. Solved using the ATTR_METHOD.

GridLayout class

alignmentMode
Attribute values did not match class constants names.
Solved by transforming the value from camel case to
snake case.

LinearLayout

divider
The setting method of this attribute is complex
because it requires a Drawable object. Got supported
with a HELPER_METHOD.

measureWithLargestChild
The setting method name did not match “set” +
“AttributeName”. Solved using the ATTR_METHOD.

showDividers
Attribute valid values did not match class constants
names. Solved using CONSTANT_PREFIX.

RelativeLayout

ignoreGravity
Could not handle id as strings, only numbers. Solved
with the VAL_MODIFIER for ids.

TableLayout

collapseColumns These attributes is closely related to the
stretchColumns attribute that was explicitly supported.
HELPER_METHOD is now used for all of them.shrinkColumns

Table 3.4: View attributes that got support for full screen tasks.

Modernizing SL4A | 47

3.3.5 Extending UiFacade offered functions

In the previous section we saw how the layout inflation was improved by supporting a good
deal of view attributes that were not supported before. In order to keep consistency with the
update to Android Lollipop, four new functions were added to the UiFacade itself. These
functions are:

• fullSetToolbarTitle

• fullSetToolbarSubtitle

• fullSetToolbarTitleColor

• fullSetToolbarSubtitleColor

These functions require an existing Toolbar object in a full screen task. In order to have a

Toolbar object it is only necessary to define a Toolbar element in the XML layout passed to

fullShow. After this, we only require the Toolbar object's id to be able to set its properties.

This is roughly the changes implemented in SL4A for this work. Due to the nature of SL4A,
there are still many things to do as it can grow along Android's growth. This will be touched in
more detail in chapter 5. The following chapter reviews the tests performed to verify that the
modifications did not introduce bugs that jeopardize SL4A's use.

Figure 3.14: New supported Toolbar
properties

Chapter 4 -
Experiments and Validation

As it has been stated in previous chapters, the Scripting Layer for Android is a
framework that allows a developer to execute code written in different scripting languages on an
Android device. However, this project has been abandoned for a long time and despite that there
are some new forks that are working on it, the progress have been of minor consideration.

In chapter 3 all the carried out changes in SL4A were reviewed, and also it was examined how
these changes brought SL4A up to date in several aspects. All of these changes and introduced
functionalities were tested along the development cycle. However, with the purpose of having
better readability in this text, the development and testing were separated into two different
chapters. This chapter is dedicated to test and validate all of what was reviewed in chapter 3.

4.1 Validating UI changes
As it was seen in the chapter 3, SL4A went under a restyle with the purpose of making the
application more according to current trends. It now follows the Google's Material Design
principles that all Android applications are supposed to follow after the release of Android
Lollipop.

In order to validate this facelift, it was necessary to check that none of the functionalities present
with the old user interface went missing or did not work accordingly. The following use cases
were tested in both the older and newer version to check that the behavior was identical:

Figure 4.1: Use cases tested after graphical user interface renewal.

Experiments and validation | 49

4.2 Testing the UiFacade
As it was seen in chapter 3, table 3.2 lists all the functions offered by the UiFacade and the state
in which they were before carrying out this work. In order to check the functionality of these
functions, there was no better choice than writing scripts in order to evaluate their behavior. The
following subsections will show the scripts used to test along with the results obtained.

In spite of the fact that some of the scripts test several functions of the facade at once which
helps compact and not repetitive tests, the number of functions offered by the facade is large so
this text only shows the most representative tests. If the reader wants to check all the test scripts,
please go to the corresponding folder in the repository14. All of these scripts are written in the
Python Language.

4.2.1 Contextual menu

This section is dedicated to the functions addContextMenuItem and clearContextMenu of the

UiFacade. The first function allows us to add extra items to the context menu, which is
displayed when the user taps and holds for about one second. The script for
addOptionsMenuItem and clearOptionsMenu is very similar.

1 import android

2 import time

3

4 droid = android.Android()

5

6 droid.addContextMenuItem("Entry 1", "entry1", None)

7 droid.addContextMenuItem("Entry 2", "entry2", "Tapped 2.")

8 droid.addContextMenuItem("Off", "off", None)

9

10 print "Hit menu to see extra options."

11 print "Will timeout in 10 seconds if you hit nothing."

12

13 while True: # Wait for events from the menu.

14 response = droid.eventWait(10000).result

15 if response is None:

16 break

17 print response

18 if response["name"] == "off":

19 print "You tapped \"Off\""

20 break

21

22 droid.clearContextMenu()

23

24 print "Context menu cleared"

14 https://github.com/miguelpalacio/sl4a/tree/UpdateToApi22/test-scripts/UiFacade

50 | Experiments and validation

25 time.sleep(5)

26 print "And done."

Figure 4.2 shows the results. Firstly, with the contextual menu populated with the entries we
added with addContextualMenuItem, and then the contextual menu after removing the entries

previously added with clearContextMenu. When “Off” is tapped the contextual menu is cleared

before the timeout and the script finishes.

4.2.2 Dialogs

When talking about the number of functions offered, most of the UiFacade functions are related
to dialogs. And this is fine, since dialogs provide a very simple but effective way to display
information to the user and also receive input from her in order to program scripts. The
following subsections will review tests for some of the dialogs offered by SL4A's UiFacade.

4.2.2.1 Alert dialogs

This is the simplest of the dialogs but it is very useful to provide information or for instance, to
ask “yes” or “no” questions. The following script tests some of the functions offered for dialogs
in general, including setting message and button labels. It also fetches the user answer as it can
be seen in figure 4.3.

Figure 4.2: Testing the operation of addContextualMenuItem

Experiments and validation | 51

1 import android

2

3 droid = android.Android()

4

5 message = "This is a test of alert dialog"

6

7 positive = "OK"

8 negative = "Cancel"

9 neutral = "Whatever"

10

11 droid.dialogCreateAlert("", message)

12

13 droid.dialogSetNegativeButtonText(negative)

14 droid.dialogSetPositiveButtonText(positive)

15 droid.dialogSetNeutralButtonText(neutral)

16

17 droid.dialogShow()

18

19 print droid.dialogGetResponse().result

4.2.2.2 Date and time picker dialogs

SL4A also provides date and time picker dialogs. These types of dialogs provide very useful
data since it allows the user to specify dates and times that can be used in many ways by scripts.

Figure 4.3: Testing alert dialogs and related functions of the UiFacade.

52 | Experiments and validation

The following script tests the date picker dialog and also fetches the user response to be used
later. Figure 4.4 shows the resulting dialog and the result of the selection of date, please note
that the result in this case also provides information about which button the user clicked on. As
it was mentioned in chapter 3, this dialog did not dismiss automatically after a date was chosen,
so dialogDismiss needed to be called explicitly. This problem is now solved and the dialog is

dismissed once the user taps on one of the buttons.

1 import android

2

3 droid = android.Android()

4

5 droid.dialogCreateDatePicker(2016, 10, 1)

6 droid.dialogShow()

7

8 response = droid.dialogGetResponse().result

9

10 print response

4.2.2.3 Multi choice dialogs

SL4A provides single and multi choice dialogs. These type of dialogs are very useful to present
to the user a series of options from which she can choose one or more. These dialogs are very
useful for scripts as well. The following script test this dialog and fetches the response received
can be use later for many purposes. Figure 4.5 shows the dialog with the selections made, and

Figure 4.4: Testing the date picker dialog function offered by the UiFacade

Experiments and validation | 53

also the format of the response later.

1 import android

2

3 droid = android.Android()

4

5 title = "Multi Choice Dialog"

6 droid.dialogCreateAlert(title, "")

7

8 droid.dialogSetNegativeButtonText("cancel")

9 droid.dialogSetPositiveButtonText("ok")

10

11 items = ["Choice 1", "Choice 2", "Choice 3", "Choice 4"]

12 selected = [0, 2] # Default selection

13

14 droid.dialogSetMultiChoiceItems(items, selected)

15

16 droid.dialogShow()

17

18 selection = droid.dialogGetSelectedItems()

19 print selection

As it was stated in chapter 3, there was a problem with dialogGetSelectedItems since it was

not returning the user's choices, only whatever thing it was selected by default. This was

Figure 4.5: Testing the multi choice dialog and dialogGetSelectedItems functions
offered by the UiFacade

54 | Experiments and validation

corrected and now the user input is correctly retrieved.

4.2.3 fullQuery and fullQueryDetail

These functions are used along with fullShow (which will be the main topic in section 4.3) and

serve to retrieve information about the layout being displayed or a specific item in the same.
fullQuery retrieves the information of the whole layout, whilst fullQueryDetail retrieves the

information regarding a specific view. The following test script loads a simple layout with a
TextView and a Button and retrieves the information about the button. Figure 4.6 shows the

information retrieved.

1 import android

2 import os.path

3 import time

4 from string import join

5

6 # Get XML layout as a string

7 f_path = os.path.dirname(os.path.realpath(__file__)) + "/" + "layout.xml"

8 f = open(f_path)

9 xml = join(f.readlines())

10 f.close()

11

12 droid = android.Android()

13

14 droid.fullShow(xml)

15

16 query = droid.fullQueryDetail("button") # Get view info by passing its id

17

18 time.sleep(2)

19

20 droid.fullDismiss()

21

22 print query.result

Experiments and validation | 55

4.2.4 webViewShow

This function is special since it is possible to execute JavaScript code that can make use of the
API offered by SL4A. Due to the changes that have experienced Android and that were
mentioned in section 3.3.3.4, this function did not work. The following script tests the operation
of webViewShow with a local HTML file. Please remember that external URLs are now handled

by a external browser.

1 import android

2

3 droid = android.Android()

4

5 droid.webViewShow("file:///sdcard/sl4a/scripts/Tests/

 UiFacade/webViewShow_test.html")

The following code shows the HTML used by the previous script, as well as the JavaScript code
that is executed. Figure 4.7 shows the resulting screen after loading the HTML file using
webViewShow, and then clicking at the button to display a toast with a custom message.

<html>

 <head>

 <title>Toast Notifications</title>

 <script>

 var droid = new Android();

Figure 4.6: Testing the fullQueryDetail function offered by the UiFacade

56 | Experiments and validation

 var toast = function() {

 droid.makeToast(document.getElementById("notify").value);

 }

 </script>

 </head>

 <body>

 <form onsubmit="toast(); return false;">

 <label for="notify">What would you like to notify?</label>

 <input type="text" id="notify" />

 <input type="submit" value="Toast" />

 </form>

 </body>

</html>

4.3 fullSetProperty

This function offered by the UiFacade deserves its own section since it had a great part of the
focus of this work and most of the scripts written to test the functionality of this facade were
done specifically to test fullSetProperty. There are as many scripts for this function as there

are view attributes whose correct setting had to be tested. As it happened with the rest of the
functions offered by the façade, it is really unthinkable to show in this document all the scripts
that test how fullSetProperty sets values for all the supported view attributes, so it is

Figure 4.7: Testing the webViewShow function offered by the UiFacade as well as some
scripting with JavaScript

Experiments and validation | 57

recommended to visit the project repository to check a larger number of test scripts.

In the following subsections some of the test scripts will be shown and with them their
respective results. These subsections will be divided into the View class and some of its

subclasses. But before going to the subsections, let us review the following code:

1 import os.path

2 from string import join

3

4 cur_dir = os.path.dirname(os.path.realpath(__file__)) + "/"

5

6 def getXML(filename):

7 fin = open(cur_dir + filename, "r")

8 lines = fin.readlines()

9 fin.close()

10 return join(lines)

This code is used to load an XML layout and convert it into a string, that then is used by
fullShow to load and display such layout. Since this functionality will be used heavily by the

test scripts, it is better to define a module to use the function. The file corresponding to this
module (xml_loader.py) must be in the same directory that the scripts that use the getXML

function.

4.3.1 View class attributes tests

It is impossible to write isolated tests for each attribute. Not only is it unpractical, but also it is
necessary to use some attributes in order to test others. Therefore, in this and the following
sections the test scripts shown are aimed to test a set of attributes at once.

Since the amount of attributes supported by the View class is huge, only a few of them will be
tested by the next script. The following is the layout that will be used. This layout contains one
TextView and two Button widgets.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="#BCA1C4"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <Button

 android:id="@+id/buttonA"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button A"

58 | Experiments and validation

 android:textSize="16sp"

 android:gravity="center" />

 <Button

 android:id="@+id/buttonB"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button B"

 android:textSize="16sp"

 android:gravity="center" />

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Testing View Class"

 android:textSize="14sp"

 android:gravity="center" />

</LinearLayout>

The script is centered in testing some of the attributes of the View class, however, it can be seen

in figure 4.8 that the attributes set for both TextView and Button classes are correctly handled

as well (and thus implicitly testing some TextView attributes).

1 import android

2 import time

3 from xml_loader import getXML

4

5 xml = getXML("layout_view.xml")

6 droid = android.Android()

7

8 droid.fullShow(xml)

9

10 # Short delay to observe changes

11 time.sleep(3)

12

13 droid.fullSetProperty("buttonA", "elevation", "32dp")

14 droid.fullSetProperty("buttonA", "paddingLeft", "24dp")

15 droid.fullSetProperty("buttonA", "paddingTop", "24dp")

16

17 droid.fullSetProperty("buttonB", "transformPivotX", "16dp")

18 droid.fullSetProperty("buttonB", "transformPivotY", "16dp")

19 droid.fullSetProperty("buttonB", "rotation", "10")

20

21 droid.fullSetProperty("textView", "visibility", "invisible")

22

23 time.sleep(3)

Experiments and validation | 59

As it can be seen in figure 4.8 in the picture to the right, the setting of elevation, paddingLeft,
paddingBotton, transformPivotX, transformPivotY, rotation and visibility are correctly handled
in run time. The setting of attributes such as background, id, etc, are handled implicitly by
fullShow. However, if something cannot be handled by fullShow, it cannot be handle by

fullSetProperty either.

4.3.2 TextView class attributes tests

As with the View class, a script testing only a few of the TextView attributes can be shown not

to make this reading too long. In the same way as with the View class, there are other attributes

that had to be set and that were not part of the TextView class in order to perform a clear test.

The following code corresponds to the layout file used for this test. Notice that the EditText

class is a subclass of TextView.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="#A590AB"

 android:orientation="vertical"

 xmlns:android="http://schemas.android.com/apk/res/android">

Figure 4.8: Testing attributes for the View class.

60 | Experiments and validation

 <TextView

 android:id="@+id/textViewA"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="SL4A demo"

 android:textSize="16sp"

 android:gravity="center" />

 <EditText

 android:id="@+id/editText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Default input"

 android:textSize="16sp"

 android:gravity="center" />

 <TextView

 android:id="@+id/textViewB"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="TextView test"

 android:textSize="16sp"

 android:gravity="center" />

</LinearLayout>

The following code corresponds to the script used to test the TextView class. Each TextView

widget of the previous layout was set different attributes. The result can be seen in figure 4.9.

1 import android

2

3 import time

4 from xml_loader import getXML

5

6 xml = getXML("layout_text_view.xml")

7 droid = android.Android()

8

9 droid.fullShow(xml)

10

11 # Short delay to observe changes

12 time.sleep(3)

13

14 droid.fullSetProperty("textViewA", "textColor", "#ff0")

15 droid.fullSetProperty("textViewA", "textSize", "13sp")

16 droid.fullSetProperty("textViewA", "textStyle", "italic")

17 droid.fullSetProperty("textViewA", "typeface", "monospace")

18

Experiments and validation | 61

19 droid.fullSetProperty("editText", "drawableLeft",

 "@android:drawable/ic_dialog_alert")

20 droid.fullSetProperty("editText", "inputType", "textPassword")

21 droid.fullSetProperty("textViewB", "shadowColor",

 "@android:color/holo_red_dark")

22 droid.fullSetProperty("textViewB", "shadowDx", "45")

23 droid.fullSetProperty("textViewB", "shadowDy", "45")

24 droid.fullSetProperty("textViewB", "shadowRadius", "5")

25

26 time.sleep(3)

4.3.3 Tests for ViewGroup class its subclasses

ViewGroup is one of the most important classes since it is the super class of all the views that

hosts other views, i.e., the layout views. The most common group view is LinearLayout, and it

has been the one used for the previous tests, so it can be safely assumed that it has been well
tested. LinearLayout does not have many attributes by itself to be tested, however, it is worth

mentioning that for the TextView test the layout orientation changed to vertical.

Within ViewGroup there is an inner class that defines the layout_height and layout_width

properties. As it can be seen in the previous tests, these two attributes are used by all the views
in order to set their size. However, all the tests have been using wrap_content as the special
value for both attributes. The following layout uses a richer set of values in order to test their
correct operation.

Figure 4.9: Testing attributes for the TextView class

62 | Experiments and validation

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="#A590AB"

 android:orientation="vertical"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <Button

 android:layout_width="150dp"

 android:layout_height="wrap_content"

 android:text="Button A"

 android:textSize="16sp"

 android:layout_marginLeft="32dp"

 android:gravity="center" />

 <Button

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Button 3"

 android:textSize="16sp"

 android:gravity="center" />

 <Button

 android:layout_width="200dp"

 android:layout_height="200dp"

 android:text="Button C"

 android:textSize="16sp"

 android:layout_gravity="center"

 android:gravity="center" />

</LinearLayout>

Also notice that there are a couple of more attributes that have not been tested before. Such
attributes are layout_gravity, layout_marginLeft (also applies for layout_marginRight,
layout_marginBottom, etc). The result can be seen in figure 4.10 after the layout is loaded using
fullShow.

Experiments and validation | 63

Continuing with another ViewGroup subclass, it is now the turn for TableLayout. This kind of

layout is very useful to organize a series of widgets in a table manner. The following lines of
code represent a simple table layout:

<?xml version="1.0" encoding="utf-8"?>

<TableLayout

 android:id="@+id/tableLayout"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="#A590AB"

 android:orientation="vertical"

 android:shrinkColumns="*"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <TableRow

 android:layout_width="match_parent"

 android:layout_height="wrap_content" >

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="r1c1"

 android:textSize="16sp"

 android:gravity="center" />

Figure 4.10: Testing some attributes defined
in the ViewGroup class

64 | Experiments and validation

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="r1c2"

 android:textSize="16sp"

 android:gravity="center" />

 </TableRow>

 <TableRow

 android:layout_width="match_parent"

 android:layout_height="wrap_content" >

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="r2c1"

 android:textSize="16sp"

 android:gravity="center" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="r2c2"

 android:textSize="16sp"

 android:gravity="center" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="r2c3"

 android:textSize="16sp"

 android:gravity="center" />

 </TableRow>

</TableLayout>

This layout has all its columns shrunk, as it can be seen in the TableLayout definition where the

property shrinkColumns is set to “*”, meaning that this property applies to all the columns of

the table layout. This can also be done via scripting by calling
fullSetProperty(“tableLayout”, “shrinkColumns”, “*”). In fact, figure 4.11 shows the

layout just after it is loaded and after fullSetProperty(“tableLayout”, “stretchColumns”,

“0,2”) is called.

Experiments and validation | 65

The last test of this section is reserved for RelativeLayout. As LinearLayout,

RelativeLayout is also a very important and widely used subclass of ViewGroup. In this kind

of layout, the position of the views is relative to each other. The following lines of code
represent a simple relative layout:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="#A590AB"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <ImageView

 android:layout_width="200dp"

 android:layout_height="200dp"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:src="file:///sdcard/download/polimi_logo.png" />

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerVertical="true"

 android:layout_alignParentStart="true"

Figure 4.11: Testing attributes of the TableLayout class. A ViewGroup subclass.

66 | Experiments and validation

 android:text="RelativeLayout Test"

 android:textSize="16sp" />

 <EditText

 android:id="@+id/editText"

 android:layout_width="180dp"

 android:layout_height="wrap_content"

 android:hint="Please type here"

 android:layout_below="@id/textView"

 android:layout_toEndOf="@id/textView"

 android:textSize="16sp" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_toStartOf="@id/editText"

 android:text="Button"

 android:textSize="16sp" />

</RelativeLayout>

The result after it is inflated can be observed in figure 4.12. Please notice that the problems
mentioned in section 3.3.4.1 are now gone and there are no issues by setting attributes such as
layout_alignParentBottom.

Figure 4.12: Testing attributes of the
RelativeLayout class.

Experiments and validation | 67

4.4 Toolbar
This last section shows the script used in order to test the Toolbar related functions that were

added to the UiFacade. The following is the layout used for testing these functions.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="#ff314859"

 android:orientation="vertical"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:background="#BBB"

 android:elevation="4dp" />

</LinearLayout>

Please observe the way in which the Toolbar widget is used. This is the actual way in which it

is used in standard Android projects. The following script is in charge of testing the new
Toolbar functions. The result is the one seen in figure 3.14.

1 import android

2 from xml_loader import getXML

3

4 xml = getXML("layout_toolbar.xml")

5 droid = android.Android()

6

7 droid.fullShow(xml)

8

9 droid.fullSetToolbarTitle("toolbar", "Toolbar Title")

10 droid.fullSetToolbarSubtitle("toolbar", "I'm a subtitle!")

11 droid.fullSetToolbarTitleColor("toolbar", "#0A0")

12 droid.fullSetToolbarSubtitleColor("toolbar", "#DDD")

And with this test this chapter finalizes. There could be a plethora of other tests but as it was
aforesaid, there is no extra benefit in putting all those tests in this document.

The following chapter is aimed at looking at the future work that has to be carried out in order
to keep SL4A alive and to make it grow so that it becomes more attractive for a higher number
of Android developers. Moreover, some conclusions about the impact of this work will are
reviewed.

Chapter 5 -
Conclusions and Future Development

As it has been seen throughout the chapters of this text, the Scripting Layer for Android
development got stalled after the initial work of Damon Kohler. This project aimed to bring
SL4A back to life again by updating the project to support the latest versions of the Android
platform, and this objective was achieved.

The purpose of this chapter is to summarize what was accomplished with this project, and also
to show the conclusions that were reached after the execution of it. Nevertheless, since SL4A is
far from being complete, some ways in which this project can become a greater alternative for
developers will be analyzed.

5.1 Work summary

• This work started by carrying out a research about the current status of the project. Due

to the closure of Google Code where SL4A was initially hosted, the codebase was
migrated towards Github. In the Github repository, different branches started and after
an analysis in the commit history and activity of those branches, it was decided to fork
kuri65536's branch. This user had already migrated the codebase from Eclipse to
Android Studio, and given the size and complexity of the project, that was a huge time
saving.

• Afterwards, the focus was to bring SL4A to the last version of Android by then:

Android Lollipop. This required to replace many lines of code, that not only were
obsolete but also were breaking the correct operation of the application.

• However, after the update of the target API to Android Lollipop, the interaction with the

application was clumsy due to the outdated interface. One of the most highlighted
features of Lollipop was the introduction of a new UI paradigm called Material Design.
The work went in that direction in order to make SL4A be a more standard application,
increasing the ease of use and familiarity for new users.

• After the application backbone and interface were updated to Android Lollipop and

followed its guidelines, all the work was focused in updating the SL4A API, which was
the main objective of this thesis. Initially, the idea was to carry out a review of all the
functions offered by SL4A; however, due to the enormous amount of functions offered
by the vast number of different façades, all the work was done in the UiFacade. The
UiFacade was thoroughly reviewed, several of the functions offered were not working
properly and they were corrected. The functions that got the most attention were
fullShow and fullSetProperty due to its complexity and the possibilities they

Conclusions and Future Development | 69

provide: creating applications with complex user interfaces.

5.2 Conclusions
• The longer the time a project has been stalled, the more difficult it is to bring it back to

life. This is specially true in mobile projects were the pace of development is really fast.
With tons of new features in each release of the Android platform, the Scripting Layer
for Android was very outdated after approximately three years of no development. It
required, and still requires a lot of effort to make it fully up do date with current
versions of the Android platform.

• The more devices an Android project supports, the larger its codebase and also the

greater amount of obsolete code that has to be kept. Supporting a great number of
versions of the Android API is really good since the number of possible users increase;
nevertheless, it also makes it difficult to maintain a project. Moreover, in most
occasions supporting a great number of Android versions is not practical since most
users are also up to date in terms of the Android platform. A nice way to determine
which platforms to support in a project is to visit the Android Dashboards utility that
Google provides on its page for Android developers.

• Due to the characteristics of the operation of the Scripting Layer for Android,

everything regarding the scripts executed must be done in runtime. This is very different
to the way in which Android normally builds applications (statically via compilation).
Performing everything in runtime is a clear challenge when compared with static
analysis. Not everything is possible to be done in runtime and in many times advanced
techniques such as type introspection and reflection need to be used in order to keep the
code neat and compact.

• Considering the amount of functions that must be implemented in SL4A in order to

provide a rich API, it is necessary to reuse as much code as possible otherwise the code
can grow really quickly rendering it unmaintainable. This can be seen in ViewInflater

where the amount of code increased a lot in spite of the efforts done to reuse as much
code as possible. Reflection and type introspection were used in order to keep the code
minimal, but it was not enough to prevent its growth. Other techniques ought to be
sought to achieve a better code reuse.

• Giving support to all (or at least most) Android features require a very long and tiring

review of the whole Android documentation. This increases the difficulty of the project
since the functionalities provided by Android are naturally many. Each of them must be
studied carefully in order to understand and implement it correctly. This makes this
project extremely difficult since the amount of work is immense and the number of
contributors is rather limited.

70 | Conclusions and Future Development

• The use of this application is to be limited to developers only. Its use may lead to

stability and security problems, so only people with certain degree of knowledge should
use it. Due to this nature it is very unlikely that SL4A can be distributed from Google
Play. Fortunately, installing applications on Android that are not distributed officially is
as simple as downloading an installer from the Internet and execute it. The distribution
can be done from the project's repository as it has been done so far. Once the project
gets some exposure it can reach more developers.

• Understanding the whole codebase of this project would require a lot of effort, and it is

very unlikely that without being a paid contributor someone can achieve this in a
sensible amount of time. That is why it is better to understand only some pieces of it
and tackle them. This is precisely what it was done in this work: getting certain grasp of
the way in which the user interface work in order to modify, and afterwards getting
familiar with the RPC protocol used and the façades with the purpose of enhancing the
UiFacade.

• From it was said in the previous point, understanding the whole codebase of the project

is a daunting task. It is better to align efforts with other developers in order to distribute
the work and improving the project from different flanks. Unfortunately, this is
something too ideal. It is normal very difficult to achieve this sort of synergy since
people have their own goals. Bigger projects have suffered this a lot and that is why we
can see many projects with many forks attempting to achieve similar things. For this
reason it was decided to keep this thesis isolated at least during its execution.

5.3 Future development

The Scripting Layer for Android is far from being complete. In fact, it will never be as long as
the development of the Android platform continues.

Regarding to what was done in this project, there is still much work to be done in the UiFacade.
There are still many view attributes that can be supported, and many others are supported but
their support can be improved. Moreover, the UiFacade is not only about view attributes. It was
already seen that dialogs are quite well supported as well. In this thesis a new feature was added
to support more complex user interfaces: the Toolbar widget.

Additionally, there are other widgets that can be offered in SL4A and will provide a way to
make complex applications. Tabs and the navigation drawer are among those widgets; however,
a lot of work has to be done in order to provide a decent support of them. Furthermore, the
Toolbar support is far from be complete, it is necessary to enable the use of its pop-up menu to

make it more than a simple decoration.

As it was done with the UiFacade, it is necessary to perform a complete review of the other
façades that conform the SL4A API. Such façades must have obsolete code, and many new

Conclusions and Future Development | 71

functionalities and features for new sensors provided by the Android platform are not supported
by them. For instance, Android Beam for near field communication (NFC) was introduced with
Android Ice Cream Sandwich and it is not supported by SL4A.

Due to time constraints, it was no possible to extend the support to the new Android
Marshmallow. The main issue with Android Marshmallow is the way in which permissions are
managed. Not only are they handled in the Android Manifest as it has been traditionally done,
but now they must be handled in runtime as well. Permissions are disabled by default despite
the fact that users grant permissions upon installing applications. These permissions must be
enabled by the user in runtime, once the application requires them and asks the user to enable
them. In order to achieve this, it is required to have a very profound knowledge of the whole
codebase of the project in order to know where this permissions must be asked to the user.

Since the number of features offered by SL4A is large, the number of permissions required is
also large. And since the codebase is huge, finding where these permissions must be asked is a
exhausting task. Nonetheless, this job needs to be done in order to keep the project alive, so it is
of utter importance to make the application compliant with the Android Marshmallow
guidelines.

Regarding the scripting languages that SL4A supports, theoretically many are supported but
only very few are working. Thanks to the nature of SL4A, each scripting language engine for
Android is a work that should be carried out independently from it. In order to truly support the
languages offered by SL4A, each of script engine needs to be tackled independently in order to
make them work with Android itself.

Despite the fact that aligning efforts with other developers is rather complex, it is strictly
necessary in order to maintain the Scripting Layer for Android alive. As it has been stated, the
size of this project is enormous and there is no way in which a single developer can cope with
all the work that needs to be done, even if paid. Therefore, it is of utter importance to create a
community of developers who want to make contributions to the project.

It is critical to get more visibility in the Android developer scene once the project is more
robust. This can be achieved by developing all sorts of sample applications and writing about
the possibilities given by the Scripting Layer for Android. Moreover, the bigger the community
of developers, the higher the likelihood of the growth of SL4A itself since the number of
possible contributors will also increase.

References
Lucas Jordan, and Pieter Greyling. Practical Android Projects, Chapter 5: Introducing SL4A:
The Scripting Layer for Android. 2011th Edition. New York: Apress, 2011.

Paul Ferrill. Pro Android Python with SL4A. 2011th Edition. New York: Apress, 2011.

Carl Smith. “Python for Android: The Scripting Layer (SL4A)”. Online posting. December 5,
2013. Python Central.

 <http://pythoncentral.io/python-for-android-the-scripting-layer-sl4a/>

Damon Kohler. “Introducing Android Scripting Environment”. Online posting. June 8, 2009.
Google Open Source Blog.

 <http://google-opensource.blogspot.com.co/2009/06/introducing-android-scripting.html>

Paul Barry. “Python for Android”. Online posting. April 30, 2011. Linux Journal.

 <http://www.linuxjournal.com/article/10940>

Android Developers site. Online Android Reference.

 <https://developer.android.com/reference/packages.html>

Android Developers site. API Guides – API levels.

 <https://developer.android.com/guide/topics/manifest/uses-sdk-element.html>

The Python Language Reference. Data model – The standard type hierarchy.

 <https://docs.python.org/2/reference/datamodel.html#the-standard-type-hierarchy>

Mark Friedman. “App Inventor for Android”. Online posting. July 12, 2010. Google Official
Blog.

 <https://googleblog.blogspot.com.co/2010/07/app-inventor-for-android.html>

Qt Documentation. Qt for Android.

 <http://doc.qt.io/qt-5/android-support.html>

Conclusions and Future Development | 73

“Announcing RubyMotion 3.0: Android Platform, WatchKit Apps, and More”. Online posting.
December 11, 2014. RubyMotion News.

 <http://www.rubymotion.com/news/2014/12/11/announcing-rubymotion-3.html>

	Acknowledgements
	Abstract
	Keywords
	Chapter 1 - Introduction
	Chapter 2 - State of the Art
	2.1 Alternatives to Android development with Java
	2.1.1 App Inventor for Android
	2.1.2 Kivy
	2.1.3 Qt for Android
	2.1.4 Xamarin
	2.1.5 RubyMotion

	2.2 The Scripting Layer for Android
	2.2.1 SL4A architecture
	2.2.2 Understanding the special module
	2.2.3 Supported languages
	2.2.3.1 BeanShell
	2.3.3.2 JavaScript
	2.3.3.3 Lua
	2.3.3.4 PHP
	2.3.3.5 Perl
	2.3.3.6 Python
	2.3.3.7 Ruby

	2.2.4 Current state of the project

	Chapter 3 - Modernizing SL4A
	3.1 Start up
	3.2 Catching up on Android Lollipop
	3.2.1 Targeting new API levels
	3.2.2 Interface renovation: Material Design
	3.2.2.1 From activities to fragments
	3.2.2.2 Replacing ListView with RecyclerView

	3.3 SL4A API updates
	3.3.1 The UiFacade
	3.3.2 Revision of the UiFacade status
	3.3.3 UiFacade general adjustments
	3.3.3.1 Dialog dismissal problem
	3.3.3.2 dialogGetSelectedItems
	3.3.3.3 fullShow
	3.3.3.4 webViewShow

	3.3.4 Improving the inflation of layouts
	3.3.4.1 Explicitly supported view attributes
	background
	height and width
	id
	layout_*
	nextFocus*
	stretchColumns��
	textColor and textColorHint
	textColorHighLight
	textSize

	3.3.4.2 Implicitly supported view attributes
	3.3.4.3 Extending the supported view attributes

	3.3.5 Extending UiFacade offered functions

	Chapter 4 - Experiments and Validation
	4.1 Validating UI changes
	4.2 Testing the UiFacade
	4.2.1 Contextual menu
	4.2.2 Dialogs
	4.2.2.1 Alert dialogs
	4.2.2.2 Date and time picker dialogs
	4.2.2.3 Multi choice dialogs

	4.2.3 fullQuery and fullQueryDetail
	4.2.4 webViewShow

	4.3 fullSetProperty
	4.3.1 View class attributes tests
	4.3.2 TextView class attributes tests
	4.3.3 Tests for ViewGroup class its subclasses

	4.4 Toolbar

	Chapter 5 - Conclusions and Future Development
	5.1 Work summary
	5.2 Conclusions
	5.3 Future development

	References

