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Abstract

In this work we propose a Bayesian approach for the analysis of recurrent event data.
The first main original contribution of this thesis consists of a semiparametric Bayesian
model for waiting times between recurrent events. In particular, time-dependency of
waiting times from the previous ones is modelled through mixtures of autoregressive
processes. In addition, this model allows to create clusters of patients according to the
entire trajectory of the event counts over the period of observation. Both fixed and
time-dependent covariates can be introduced in the present framework. As the second
main original contribution of this thesis, we derive the analytical expression of the full-
conditional distributions necessary to build an MCMC algorithm to sample from the
posterior distribution. The algorithm was efficiently coded in the Julia language. Data
in this context usually consist of a large number of processes exhibiting a relatively small
number of recurrent events, which is the typical situation arising in medical studies. In
particular, we study a real dataset containing rehospitalisation times after surgery in
patients diagnosed with colorectal cancer, with more covariates.

Keywords: recurrent events; Bayesian nonparametrics; Dirichlet process mixtures; au-
toregressive processes
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Sommario

Questo lavoro propone un nuovo approccio Bayesiano per lo studio di eventi ricorrenti
per mezzo di un modello semiparametrico per i tempi di attesa. In particolare, la dipen-
denza temporale dei tempi di attesa dai precedenti è modellizzata come una mistura
di processi autoregressivi. Inoltre, questo modello permette di clusterizzare i pazienti a
seconda delle loro traiettorie degli eventi di conteggio nel periodo di osservazione. Nello
studio qui presentato è stato possibile introdurre covariate sia fisse che tempo-dipendenti.
Come ulteriore contributo originale apportato da questa tesi, si sono ricavate le espres-
sioni analitiche delle full-conditionals, necessarie a costruire un algoritmo MCMC per
campionare dalla distribuzione a posteriori dei parametri. L’algoritmo è stato efficiente-
mente implementato usando il linguaggio Julia. I dati di analisi derivano da una grande
quantità di processi stocastici, ognuno dei quali produce un numero relativamente piccolo
di eventi ricorrenti: questa è la situazione caratteristica degli studi clinici. In particolare,
si studia un dataset contenente i tempi di riospedalizzazione post operatoria in pazienti
a cui è stato diagnosticato il cancro al colon.

Parole chiave: eventi ricorrenti, Bayesian nonparametrics, Dirichlet process mixtures,
modelli autoregressivi
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Introduction

The aim of this work is to propose a new Bayesian semiparametric model to study
recurrent event times. Since the literature concerning this particular subject is scarce,
two main methodological topics are integrated in the study. On one hand, the main tools
for Bayesian non-parametric inference, and in particular the Dirichlet Process Mixture
model, are used; on the other hand, the classical framework of survival analysis for
recurrent events is taken into account.

The Bayesian approach to recurrent event times has several advantages over its fre-
quentist counterpart. First of all, frequentist inference is based on asymptotic estimates,
whereas in Bayesian context the inference is exact even with datasets of small dimension,
thanks to numerical integration methods (MCMC). Moreover, when individuals are as-
sumed to be independent in a classical framework, in the corresponding Bayesian model
observations are exchangeable, which leads to better estimates. The drawback is that, in
general, calculations are more laborious and the implementation is more onerous from a
computational point of view.

Stochastic processes that generate events repeatedly over time are referred to as
recurrent event processes and the data they provide are called recurrent event data. When
individuals frequently experience the events of interest, and the events are “incidental” in
the sense that their occurrence does not materially alter the process itself, then methods
based on event counts are often employed. Examples of incidental events include mild
epileptic seizures or asthmatic attacks in humans.

However, data may also be available for a large number of processes exhibiting a
relatively small number of recurrent events. These types of processes arise frequently in
medical studies, where information is often available on many individuals, each of whom
may experience transient clinical events repeatedly over a period of observation. Exam-
ples include myocardial infarctions, severe seizures in epileptic patients, and successive
tumours in cancer studies. In this case, if the events are relatively infrequent and the
prediction of the time to the next event is of interest, models based on gap times are
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used.

This work deals with this second approach to the problem of modelling recurrent
events, i.e. gap times between events. In particular, notation and some results presented
in Cook and Lawless (2007) are used.

The Bayesian non-parametric approach to recurrent event times has several advan-
tages over the parametric one. In either density estimation or clustering problems a
parametric framework could be too restrictive, leading to biased inference and decisions.
Instead, it is desirable to consider infinite dimensional families of probability distribu-
tions. In this work we propose a mixture model that considers as the mixing random
measure a Dirichlet Process. See Müller et al. (2015) for a review of the most com-
mon classes of non-parametric priors and of the main Bayesian non-parametric inference
techniques.

Let us remark that the posterior inference on a model with a Dirichlet Process prior
is carried on infinite unknown parameters. In literature, there are two main schemes
to deal with the inference on a infinite-dimensional “parameter”, namely marginal and
truncation algorithms. The former ones integrate out the infinite dimensional parameter
(i.e. the random probability measure), whereas the latter ones approximate the infinite
dimensional process with a finite dimensional one. In this work, the first scheme is used.
The main advantage of the marginal algorithms is that they are exact, because they do
not introduce any truncation error. However, since the random probability measure is
integrated out, we cannot recover it and the estimates of the parameters can be obtained
by means of the predictive distributions.

The drawback of the Bayesian non-parametric approach consists in its computational
heaviness. However, the increasing computational power of the last years has made
Bayesian non-parametric inference feasible and more popular in literature. For this rea-
son, the research of efficient algorithms is one of the main goals when dealing with this
kind of models. In this work, an efficient Polya urn scheme algorithm is coded in the
Julia language, while the post-processing has been developed with the R software.

An additional difficulty in the implementation of the model was its non-conjugacy.
In fact, in order to be more flexible with respect to the prior specification and to the
choice of the density of the data, the most general case has been implemented following
the approach presented with Algorithm 8 in Neal (2000). Once again, the computational
heaviness of this algorithm was successfully overcome by an efficient implementation in
Julia language, whose performances are similar as the ones of the C language.

In conclusion, the model proposed in this thesis allows for a flexible estimation of
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the dependence that each hospitalisation has on the following ones. Since it can be in-
terpreted as a Dirichlet Process Mixture model, it leads to a mixture of autoregressive
processes in order to estimate the data density. Clusters of patients are created according
to the entire trajectories of the event counts. Moreover, this model allows us to introduce
both fixed and time-dependent covariates as another factor of differentiation among pa-
tients. The implementation of the model starts from a well-known algorithm (see Neal,
2000). However, the general algorithm has been detailed in this particular case and it
has been entirely implemented in an efficient language.

The functioning of the model has been verified on two different simulated datasets.
The posterior estimates are able to recover the correct number of clusters and to parti-
tion the data coherently with the component of the mixture they were generated from.
Subsequently, a study on a real dataset is proposed. In this case, posterior inference on
fixed as well as on time-dependent covariates is also available.

The work is organised as follows: in Chapter 1, after a brief introduction to non-
parametric Bayesian approach, we present the main properties of the Dirichlet process.
The most popular density estimation model, the Dirichlet Process Mixture model, and
the sampling strategies for the posterior simulation are discussed. In Chapter 2 the
basic theory underlying recurrent event times is presented. A review of existing Bayesian
semi-parametric approaches to gap times is proposed. In Chapter 3 we present the new
model proposed in this work. Afterwards, the calculation of the full conditionals and
the sampling scheme are described. A test on two different simulated datasets is carried
out in order to assess the validity of the proposed model and the of the algorithm. In
Chapter 4 we present the results of the model on a dataset containing rehospitalisation
times after surgery in patients diagnosed with colorectal cancer. Then, the inferences are
compared to the ones obtained with the “shared frailty model”, which is a semi-parametric
method used to estimate the hazard function of the observations. At last, a robustness
analysis with respect to the DP prior specification, which is a crucial step in Bayesian
nonparametrics, is carried out. In Appendix A we derive the analytic expressions of the
full-conditionals of the model, whereas in Appendix B the implementation in the Julia
language is briefly described.
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Chapter 1

Bayesian Nonparametrics

In this chapter we summarise some relevant results concerning Bayesian nonparametrics,
detailing the most popular models and algorithms that are successively used in this
work. We refer to Müller et al. (2015) for a full review of Bayesian nonparametrics and
its applications.

1.1 The general framework

Classical statistics is based on a framework where observations X1, X2, . . . are assumed
to be independent and identically distributed (i.i.d.) from an unknown probability dis-
tribution P . The statistical problem begins when there exists uncertainty about P . If
we denote with p the probability density function (p.d.f.) of P , we say that we are in
a parametric framework if p is known to be a member pθ from a family of distributions
P = {pθ : θ ∈ Θ}, indexed by a finite dimensional parameter θ from a set Θ. The aim of
the inference is, in this case, to use the observed sample in order to estimate a plausible
value (or a set of values) for θ.

In many situations, however, constraining the analysis to a specific parametric form
may be a limit to the inference. Therefore, we would like to relax parametric assumptions
in order to allow greater modelling flexibility and robustness against misspecification of
a parametric statistical model. In these cases, we may want to consider models where
the class of densities is so large that it can no longer be indexed by a finite dimensional
parameter, and we therefore require parameters to belong to an infinite dimensional
space. We say that we are in a non-parametric framework when P lies in the generic
space of probability distributions P(R).

In Bayesian statistics it is also possible to distinguish between these two alternatives.
In the parametric framework we set a prior distribution Π on a finite dimensional space
Θ and, given θ, the observations are assumed i.i.d. from Pθ. In the non-parametric
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case, we attempt to give a prior Π on the space P(R) of all probability distributions on
(R,B(R)) and, given P , the observations are assumed i.i.d. from P .

Under the assumption of exchangeability, de Finetti’s Representation Theorem gives
a validation of the Bayesian setting. Let us consider an infinite sequence of observations
{Xn}n≥1, with each Xi taking values on R.

Definition 1. A sequence {Xn}n≥1 is exchangeable when, ∀n ≥ 1 and for any finite
permutation π of (1, 2, . . . , n), the random vectors (X1, . . . , Xn) and (Xπ(1), . . . , Xπ(n))

have the same probability distribution.

This assumption (also called symmetry on the joint law) represents in some way the
lack of information. Let us think, for instance, of a sample of binary r.v.s. Then, under
the exchangeability assumption, the information in the joint law depends only on the
number of 1 and of 0 outcomes, but not on the order of their appearance. This is true
in general, i.e. the information that the observations Xi’s provide is independent of the
order in which they are collected. We also remark that exchangeability implies that the
marginal distributions of the Xi’s are the same.

Let us now give some preliminary definitions in order to present de Finetti’s Rep-
resentation Theorem. Let P(R) be the space of all probability measures on (R,B(R))

and let CP be the Borel σ-algebra on P(R). This latter is the the smallest σ-algebra
generated by the open sets in the weak topology, i.e. the smallest σ-algebra that makes
the sets {P ∈ P(R) : P (B) ≤ t} measurable ∀t ∈ [0, 1], ∀B ∈ B(R). For further details
about the notions of weak topology and weak convergence, see Regazzini (1996).

Definition 2. A random probability measure (r.p.m.) is a random element P : (Ω,F ,P)→
(P(R), CP), i.e. it is a stochastic process whose trajectories ω → P (ω) are probability
measures on R.

In the Bayesian context, a r.p.m. will be given as the conditional distribution of
the observations P ∼ π(·). For application purposes, there are two desirable proper-
ties for r.p.m.s. First of all, we require a full support for the prior distribution, i.e.
supp(π) = P(R), in order to explore the space of all possible probability distributions.
Moreover, the posterior has to be analytically tractable in order to lead to a computation-
ally feasible model. The latter property is now less necessary thanks to the development
of Markov Chain Monte Carlo (MCMC) methods.

Theorem 1 (de Finetti). Let {Xn}n≥1 be a sequence of r.v.’s with values in R. Then,
{Xn}n≥1 is exchangeable if and only if there exists a unique r.p.m. P : (Ω,F) →
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(P(R), CP) such that

P(X1 ∈ A1, . . . , Xn ∈ An) =

∫
P(R)

n∏
i=1

P (Ai)π(dP ) ∀n ≥ 1, ∀Ai ∈ B(R).

In other words, for any n = 1, 2, . . .

X1, . . . , Xn|P
iid∼ P

P ∼ π(·).

This theorem justifies the Bayesian approach, since the existence of a r.p.m. as the
conditional distribution of the data is implied by the mild assumption of exchangeability.

In the non-parametric Bayesian context, inference and prediction are carried out
similarly to the parametric case. If we denote with π a probability measure on P(R), the
posterior distribution can be expressed by means of Bayes’ Theorem, i.e.

L(dP |X1, . . . , Xn) =

∏n
i=1 P (xi)π(dP )∫

P(R)

∏n
i=1 P (xi)π(dP )

and the predictive distribution of a new observation Xn+1 is

P(Xn+1 ∈ A|X1, . . . , Xn) =

∫
P(R)

P (A)L(dP |X1, . . . , Xn).

1.2 Dirichlet Process

In this section, the Dirichlet process is defined and its properties are presented. All the
definitions are given over R, but any generalisation over Rp with p ≥ 1 is evident.

1.2.1 Definition and Properties

The Dirichlet Process (DP) prior is one of the most popular families of BNP models.
Originally introduced by Ferguson (1973), the DP is a prior on the space of probability
measures P(R). It is straightforward to define it from its finite-dimensional analogous
(the Dirichlet Distribution) and it has some nice properties, such as the conjugacy.

First of all, let us recall the definition of the Dirichlet distribution.

Definition 3. Let α = (α1, . . . , αk) with αi ≥ 0 ∀i = 1, . . . , k. The random vector
P = (P1, . . . , Pk),

∑k
i=1 Pi = 1, Pi ≥ 0 ∀i = 1, . . . , k, has Dirichlet distribution with

parameter α if (P1, . . . , Pk−1) is absolutely continuous with respect to the Lebesgue
measure on Rk−1 with density

f(p1, . . . , pk−1) =
Γ(α1 + · · ·+ αk)

Γ(α1) . . .Γ(αk)
pα1−1

1 . . . p
αk−1−1
k−1

(
1−

k−1∑
i=1

pi

)αk−1

ISk−1
(p1, . . . , pk−1),
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where ISk−1
(p1, . . . , pk−1) is the indicator function on the k − 1-dimensional simplex,

defined as the set Sk−1 =
{

(p1, . . . , pk−1)
′ ∈ Rk+1 :

∑k−1
i=1 pi = 1, pi ≥ 0 ∀i

}
. We will

write P ∼ Dirichlet(α).

By generalising to the infinite-dimensional case, we introduce the following definition
(Ferguson, 1973).

Definition 4. Let α be a finite measure on R, and M := α(R); let P0(·) = α(·)/M . A
r.p.m. P : (Ω,F ,P) → (P(R), CP) is a Dirichlet Process if, for any finite measurable
partition A1, . . . , Am of R,

(P (A1), P (A2), . . . , P (Am)) ∼ Dirichlet(α(A1), α(A2) . . . , α(Am)).

We will write P ∼ DP(MP0).

The collection of finite dimensional distributions implies a well defined (existent and
unique) process with values on P(R); see Ferguson (1973) for the proof. The parameter
M is called the precision or total mass parameter, P0 is the centering measure, and the
productM×P0 is referred to as the base measure of the DP. If P ∼ DP(MP0), it follows
that E[P (A)] = P0(A) for any Borel set A, and thus we can interpret P0 as the prior
expectation of P . Moreover, Var[P (A)] = P0(A)(1−P0(A))

M+1 , therefore the total mass of the
DP reflects the degree of belief in the prior expectation.

One of the most important properties of the Dirichlet process prior is its conjugacy.
In fact, let (X1, . . . , Xn) be a sample from a Dirichlet process, i.e.

X1, . . . , Xn|P
iid∼ P

P ∼ DP(MP0).

Then, the posterior distribution is given by

P |X1, . . . , Xn ∼ DP(MP0 +
n∑
i=1

δXi).

We remark that, ∀A ∈ B(R), the posterior mean

E[P (A)|X1, . . . , Xn] =
M

M + n
P0(A) +

n

M + n

∑n
i=1 δXi(A)

n

is a weighted sum of the prior expectation and of the empirical distribution of {X1, . . . , Xn}.
It can also be proved that the predictive distribution of Xn+1 has the following

representation:

X1 ∼ P0

Xn+1|X1, . . . , Xn ∼
M

M + n
P0 +

n

M + n

∑n
i=1 δXi
n

.
(1.1)
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The predictive distribution (1.1), also called Blackwell-Macqueen Urn Scheme (see Pit-
man, 1996, for further details), implies that a new value is sampled either from a baseline
measure P0 with probability M

M+n or from one of the previous sampled values, each one
with probability 1

M+n . Therefore there is a positive probability of obtaining ties in the
sample. The allocation process associated with the predictive distribution is also known
as the generalised Polya urn. Consider an urn that initially has M black balls and one
coloured ball (whose “colour” is randomly selected according to P0). We sequentially
draw balls from the urn; if a coloured ball is drawn then we return it to the urn along
with another ball of the same color; if a black ball is drawn, we return it to the urn along
with a ball of a new color randomly selected according to P0.

Formula (1.1) also allows us to sample P without simulating any trajectory of the
Dirichlet process, which will be a fundamental feature for the Polya urn scheme algorithm
used in this thesis.

1.2.2 Sethuraman’s construction

Let us now give a constructive definition of the Dirichlet process. Let us consider two
independent sequences of r.v.s, {θi}i≥1 and {vi}i≥1 s.t. θi

iid∼ P0 and vi
iid∼ Beta(1,M).

Let us now define the weights  w1 = v1

wi = vi
∏i−1
j=1(1− vj).

Sethuraman (1994) proved that

P (·) d
=

∞∑
n=1

wnδθn(·) (1.2)

where wi and θi are defined above.
Equation (1.2) is called stick-breaking representation because of the analogy with a

stick of unit length: w1 represents a piece of the stick, w2 a piece of the remainder
obtained after cutting w1 away, and so on. Each piece is independently modelled as a
Beta(1,M) random variable scaled to the length of the remainder of the stick.

From this construction it is clear that the Dirichlet process has discrete trajectories
even if P0 is continuous, i.e. if P ∼ DP(MP0), then P({ω : P (ω) is discrete}) = 1.
Moreover, this useful construction also allows an easy visualisation of the trajectories of
a Dirichlet process, as seen in Figure 1.1.

Let E be the support of the finite measure P0 on R. Then it can be shown that the
weak support of the Dirichlet process is supp(DP(MP0)) = {P ∈ P : supp(P ) ⊂ E}, i.e.
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(a) M=1 (b) M=10 (c) M=100

Figure 1.1: Plots of 25 samples from a DP(MP0), with P0 = N (0, 1) for three different values
of M . P0 is overlaid with a red line.

the set of all the probability distributions with support contained in the support of the
measure P0 is the weak support of DP(MP0). In particular, if we assume that E = R
(for example a Gaussian distribution), then the Dirichlet process has full support, i.e.
supp(DP(MP0)) = P(R).

1.2.3 Data clustering and density estimation

If we consider a sample (X1, X2, . . . , Xn) from a Dirichlet process P , where P ∼ DP(MP0),
we saw in formula (1.1) that some values are coincident with positive probability. Thus,
a partition of the indexes {1, 2, . . . , n}, denoted with ρn = {S1, . . . , Sk}, and therefore
a clustering structure are induced by the ties in the sample, where k is the number of
unique values in the sample and Sj = {i ∈ {1, . . . , n} s.t. Xi = Xj} are the indexes of the
jth group. Let us denote with n = (n1, . . . , nk) the cluster sizes for a partition of n ob-
servations into clusters S1, . . . , Sk. The prior distribution induced on ρn by (X1, . . . , Xn)

is in this case

π(ρn; , n1, . . . , nk) =
Γ(M)

Γ(M + n)
Mk

k∏
j=1

Γ(nj),

where n is such that
∑k

i=1 ni = n and k = 1, 2, . . . , n. From this prior distribution, also
known as exchangeable product partition function (EPPF), Antoniak (1974) proved that
the marginal law of the prior number of clusters is

π(Kn = k) = |S1(n, k)|Mk Γ(M)

Γ(M + n)
, (1.3)

where S1(n, k) is the Stirling number of the first kind, which can be tabulated or com-
puted by a software. From (1.3) one can remark the influence of the mass parameter M
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on the number of clusters: a larger value of M gives rise to a higher prior number of
components.

The DP model presented above, albeit useful for clustering purposes, has a serious
limitation if used in order to estimate the density of a population, which is one of the
main goals of Bayesian nonparametrics. In fact, it can be shown that

E[P |X1, . . . , Xn] = L(Xn+1|Xn, . . . , X1),

and therefore there are ties in the posterior distribution P , which is nonsense when
estimating continuous distributions.

1.3 Dirichlet Process Mixture

The most popular r.p.m.s in literature are Dirichlet Processes and Polya Trees. See
Müller et al. (2015) for a recent review of the main r.p.m. classes. The purpose of
this section is to present the DPM model, which is useful for our purposes of density
estimation and regression.

1.3.1 The model

As mentioned before, the discrete nature of the DP random measure is awkward when
the unknown distribution is known to be continuous. One way to fix this limitation of
the DP model is to consider instead a mixture of a continuous kernel with respect to the
discrete distribution P . This approach has been widely studied by Escobar and West
(1995).

Let Θ be a finite dimensional parameter space, and let {k(x; θ), θ ∈ Θ} be a family
of parametric probability distributions, i.e.

x 7→ k(x; θ) is a density ∀θ ∈ Θ

θ 7→ k(x; θ) is a measurable function ∀x ∈ R.

We say that X1, . . . , Xn is a sample from the Dirichlet Process Mixture model (DPM)
when

Xi|P
iid∼ f(x) =

∫
Θ
k(x; θ)P (dθ),

P ∼ DP(MP0).

(1.4)

Note that f(x) in (1.4) is a random density, because P is a random probability measure,
i.e. f(x;ω) =

∫
Θ k(x; θ)P (dθ;ω).
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By exploiting Sethuraman’s construction (1.2) of the mixing r.p.m. and plugging it
in (1.4) we easily obtain

Xi|P
iid∼ f(x)(ω) =

∫
Θ
k(x; θ)

∞∑
j=1

wj(ω)δθj(ω)(dθ)

=

∞∑
j=1

wj(ω)k(x; θj(ω)).

Therefore, the population density f(x)(ω) is the mixture of infinitely many parametric
distributions, where the DP random measure is the mixing measure.

The mixture model (1.4) can equivalently be written as a hierarchical model as follows

Xi|θi
ind∼ k(·; θi) i = 1, . . . , n

θi|P
iid∼ P i = 1, . . . , n

P ∼ DP(MP0).

(1.5)

The representation in (1.5) is more useful for our purposes: the parameters θi are a
sample from a DP, therefore some of them are coincident with positive probability. Since
each observation Xi is associated to a latent parameter θi, the clustering structure will
be based on the ties in the sample of the θi’s.

Under this hierarchical model, the posterior distribution on P is itself a mixture of
DP, i.e.

L(P |x1, . . . , xn) ∼
∫

Θn
DP(MP0 +

n∑
i=1

δθi)H(dθ1, . . . , dθn|x1, . . . , xn).

However, unless the model is conjugate, there is no simple strategy in order to sample
from the posterior distribution of the latent parameters H(dθ|X). The main algorithms
present in literature are reviewed in Section 1.3.2.

1.3.2 Algorithms

The aim of this section is to present a review of the MCMC algorithms for fitting models
with DP priors. For a full and exhaustive dissertation on the algorithms and on their
implementation schemes, see Neal (2000).

The models we deal with, in the most frequent cases, do not admit conjugate priors
and can have a very complicated structure. In such cases, the calculation of the posterior
distribution of the parameters is not straightforward. When the posterior distribution
is not exploitable in an easy way, we recur to numerical simulation. Markov Chain
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Monte Carlo (MCMC) methods are techniques which allow the numerical evaluation of
the posterior density even when one cannot find a closed form for it.

We are typically interested in the expected value of a function of the unknown pa-
rameter θ, say h(θ), i.e.

Eπ[h(θ)|data] =

∫
Θ
h(θ)π(dθ|data).

The strong law of large numbers states that, given {θ(g)}Gg=1 sequence of independent
draws from the density π(dθ|data), then

Eπ[h(θ)|data] =
1

G

G∑
i=1

h(θ(i)). (1.6)

This results holds even in the case we relax the assumption of independent draws. In
particular, let us suppose we can sample a Markov Chain with values in Θ that satisfies
some properties (Harris-recurrence and irreducibility), such that its limit distribution is
the target distribution π(θ|data). Then one can estimate the function h(θ) of the un-
known parameter as in (1.6). From a practical point of view, then, the only problem
is to generate a sample of autocorrelated values (i.e. a Markov Chain) whose invariant
distribution is π(θ|data). Gibbs Sampler and Metropolis-Hastings are algorithms that
will be useful for this purpose. For more details about Markov Chains, see Jackman
(2009).

In the case of models with DP priors, the algorithms are divided into two main classes,
according to their computational strategy: the first group consists of schemes marginalis-
ing out the random probability measure P (collapsed Gibbs Samplers); the second group
of all the algorithms which impute the Dirichlet process and update it as a component
of the Gibbs sampler (conditional methods). In the latter group, some algorithms ex-
ploit the stick breaking representation of P (blocked Gibbs Samplers), see Ishwaran and
James (2001), whereas others rely on the technique of retrospective sampling, see Pa-
paspiliopoulos and Roberts (2008). In this work, a particular case of collapsed Gibbs
Sampler will be presented and used.

Collapsed Gibbs Samplers

For this kind of algorithms, the Polya urn representation of the predictive distribution of
a sample from a DP prior is the fundamental ingredient. In fact, let us suppose we have

13



a model as in (1.5); then one can prove (see Escobar and West, 1995) that

L(Xn+1|Xn, . . . , X1) =

∫
P(R)
L(Xn+1, dP |X1, . . . , Xn)

=

∫
Θn

 M

M + n
q0(x) +

1

M + n

n∑
j=1

k(x; θj)

H(dθ1, . . . , dθn|X),

where
q0(x) =

∫
Θ
k(x; θn+1)P0(dθn+1) (1.7)

admits a simple form only if the model is conjugate. In this latter case, it is not hard
to write the full conditionals of a Gibbs sampler for the posterior distribution of the
latent parameters θ1, . . . , θn. Therefore, given a posterior sample θ(1), . . . ,θ(G), one can
compute the density

f(x|X) =
M

M + n
q0(x) +

1

M + n

 1

G

G∑
g=1

k(x; θ
(g)
j )

 .
The first strategy to sample from the posterior of the latent variables θi was proposed

by Escobar and West (1995). This version of the algorithm is based on transition prob-
abilities that update θi by draws from the complete conditional posterior L(θi|X,θ−i).
However, this Gibbs sampler suffers from a slowly mixing. Therefore we directly present
here a variation of this algorithm, first presented by Bush and MacEachern (1996), which
introduces an acceleration step.

Two vectorial quantities are introduced: θ∗ = (θ∗1, . . . , θ
∗
k) is the vector of distinct

entries in θ; S = (s1, . . . , sn) is the vector of labels associated to each observation, i.e.
si = j ⇔ θi = θ∗j . Therefore, the information provided by θ is the same conveyed
in the joint vector (θ∗,S). Two transition probabilities are needed in order to update
both. One updates si by draws from the complete conditional posterior probability
L(si|s−i,X), after marginalizing with respect to θ (we denoted with the subscript −i
the vector without the element i). The other type of transition probability samples from
L(θ∗j |s,X).

The probabilities L(si|s−i,X) are derived as follows. Let us first consider L(θi|θ−i),
which is the predictive distribution of a sample from a DP prior. As we have seen in
(1.1), this expression is equivalent to

θi|θ−i ∼
M

M + n− 1
P0 +

n− 1

M + n− 1

∑n−1
j=1,j 6=i δθj
n− 1

. (1.8)

Recall that θ∗(−i)j denotes the k(−i) unique values among θ−i, and n
(−i)
j the cluster sizes

in the vector θ−i. By multiplying equation (1.8) by the sampling distribution L(X|θ),
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after normalisation we obtain

L(dθi|θ−i,X) =
Mk(xi; θi)P0(dθi)

Mq0(xi) +
∑

j∈s−i
n

(−i)
j k(xi; θ

∗(−i)
j )

+

∑
j∈s−i

n
(−i)
j k(xi; θ

∗(−i)
j )δ

θ
∗(−i)
j

(dθi)

Mq0(xi) +
∑

j∈s−i
n

(−i)
j k(xi; θ

∗(−i)
j )

,

where q0(·) is defined in (1.7). This expression can be rewritten as the distribution of
(θi, si) by simply remarking that θi = θ

∗(−i)
j implies si = j. Therefore, after marginalising

with respect to θ, we get the desired full conditional.
As far as the probability L(θ∗j |s,X) is concerned, we update the cluster specific

parameters conditioning on the imputed partition s using

L(θ∗j |s,X) ∝ P0(θ∗j )
∏
i:si=j

k(xi; θ
∗
j ). (1.9)

In this work a different approach will be used. Since the algorithm presented above
is only feasible when conjugate prior P0 are used (otherwise the exact computation of
q0(·) is not analytically tractable), we need a more general framework to set our model.

Neal’s Algorithm 8

MacEachern and Müller (1998) propose the “no-gaps” algorithm, that does allow auxiliary
values for θ drawn from P0 to be used to define a valid Markov chain sampler. As noted
by Neal (2000), however, this algorithm is inefficient when creating new clusters and
when assigning an observation to a newly created mixture component. The probability
of such a change, indeed, is reduced from what one might expect by a factor of k(−i)− 1.

We here discuss a variation of this algorithm, Algorithm 8 in Neal (2000), which
overcomes this issue. Moreover, this latter version introduces auxiliary variables in the
MCMC scheme in order to evaluate via Monte Carlo the integral involved in the calcu-
lation of the marginal q0(·). The data augmentation consists in substituting the base
measure P0 with the empirical distribution of a random sample of size m from P0 itself.

Let ψ(i) = (ψ
(i)
1 , . . . , ψ

(i)
m ) ∀i = 1, . . . , n an i.i.d. sample of size m from P0. Then

L(dθ1|ψ(1)) ∼ 1

m

m∑
j=1

δ
ψ
(1)
j

(dθ1)

L(dθi|θ1, . . . , θi−1,ψ
(i)) ∼ M/m

M + i− 1

m∑
j=1

δ
ψ
(i)
j

(dθi) +
i− 1

M + i− 1

∑
h<i

δθh(dθi), ∀i = 2, . . . , n,

which is the Polya urn scheme (1.1) where we have replaced a single value sampled from
P0 with a value chosen at random from a sample of size m of P0.
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In analogy with Argiento et al. (2009), the augmenting variables are not discarded at
each iteration but they reside in the state space (θ, s,ψ(1), . . . ,ψ(n)). The Gibbs sampler
is organised in a sequential fashion: first, the labels are updated and the corresponding
θ parameters are exchanged, i.e. the vector (θi, si) is updated; second, the unique θ∗

parameters are updated using the information given by the observations in each cluster.
The full conditionals of the first transition kernel are the following:

P(s
′
i = j|s−i,θ,ψ(1), . . . ,ψ(n), data) ∝

k(xi; θ
∗
j )n

(−i)
j for j ∈ s−i

M
m

∑m
h=1 k(xi;ψ

(i)
h ) for j = knew

P(dθ
′
i|s
′
,θ−i,ψ

(1), . . . ,ψ(n), data) ∝


δθ∗
s
′
i

(dθ
′
i) if s′i ∈ s−i∑m

h=1 k(xi;ψ
(i)
h )δ

ψ
(i)
h

(dθ
′
i) if s′i = knew

P(dψ(i)|s′ ,θ′ , data) =


∏m
h=1 P0(dψ

(i)
h ) if s′i ∈ s−i

δ
θ
′
i
(dψ

(i)

h
)
∏
h6=h P0(dψ

(i)
h ) if s′i = knew,

where ψ(i)

h
is the element of ψ(i) that was assigned to θ′i. The unique θ∗ parameters are

updated according to (1.9), and in this case a step of Metropolis within Gibbs is required.
For further details about the algorithm and its implementation, see Appendix B.
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Chapter 2

Event histories and recurrent events

Inference for survival analysis is one of the traditional applications of non-parametric
Bayesian inference. In this chapter, event time data are presented and non-parametric
approaches applied to recurrent events are discussed.

2.1 Survival analysis

In this section we consider the analysis of time-to-event data. We mention Christensen
et al. (2011) for a comprehensive presentation of the main models and methods.

Survival analysis is the term used to describe the analysis of time-to-event data in
biological and medical contexts. Reliability analysis is often used for non-biological ap-
plications. Examples of this kind of data include: (i) the time until death after diagnosis
with leukaemia; (ii) the time it takes to get sick after infection with a virus; (iii) the time
until a machine breaks down after being installed.

The most common goal of survival analysis is to compare survival prospects among
different populations. Let T denote the random variable representing the survival times
of individuals in some population. Time-to-event data are distinguished by two features:

• they are positive, i.e. T is a non-negative random variable. Moreover, time-to-
event data are often skewed so we would need to take a log transformation before
analysing them;

• they are often censored (i.e. partially observed). We often know that a unit (a
person, a machine) was operative (alive, working) up to a certain time but do not
know exactly when it failed or would fail.

In this work, we consider time-to-event data as continuous random variables.
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Let f(t) denote the probability density function (p.d.f.) of T and let F (t) = P(T ≤ t)
be the cumulative distribution function of T . With time-to-event data, the primary
object of analysis is the survival function S(t), defined as S(t) = 1− F (t) = P(T > t).

The hazard function h(t) is the instantaneous rate of failure at time t and is defined
by

h(t) = lim
∆t→0

P(t ≤ T ≤ t+ ∆t|T > t)

∆t
=

f(t)

1− F (t)
=
f(t)

S(t)
.

In particular, h(t)∆t is the approximate probability of failure in (t, t+∆t) given survival
up to time t.

The functions f(t), F (t), S(t), and h(t) give mathematically equivalent specifications
of the distribution of T . In particular, one can prove that

S(t) = exp

(
−
∫ t

0
h(u)du

)
.

As previously mentioned, data are not always completely observable. For example,
when executing life tests, one cannot wait for all units to break down. For some units,
only the survival up to time t∗ is observed; this mechanism is called right censoring, i.e.
we may only know that the event will happen later than t∗. Let C be a random variable
that denotes the time at which a censoring mechanism kicks in. What we actually observe
in time-to-event studies is either the event time T or the censoring time C, whichever is
smaller. The observed data for each sample unit are

y = min{T ;C}

and

δ =

1 if T ≤ C

0 if T > C.

To simplify the study, two assumptions are necessary:

• T and C are independent;

• the censoring distribution, say G(c) = P(C ≤ c), does not depend on any of the
same parameters as S(t) (uninformative censoring).

In this case, if we also have independent observations (yi, δi) i = 1, . . . , n, the likelihood
of the data can be expressed simply as the product of the densities for all of the ac-
tual observed survival times multiplied by the product of the probabilities for all of the
censored observations, i.e.

L(θ; data) ∝
n∏
i=1

[fi(yi|θ)]δi [Si(yi|θ)]1−δi ,
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which can be rewritten, in terms of the hazard function, as

L(θ; data) ∝
n∏
i=1

[hi(yi|θ)]δi [Si(yi|θ)].

In practice, the survival distribution and the density are unknown and we need to
estimate them from data. We can either assume that the survival distribution belongs to
a parametric family, e.g., log-normal, Exponential, Weibull, or Gamma, or we can take a
non-parametric approach to estimate the survival curve. If covariates are available in the
study, time-to-event analysis can be generalised via, for example, the accelerated failure
time (AFT) model or the proportional hazards (PH) model. These two popular models
rely on different hypothesis. Moreover, the first is fully parametric, whereas the latter
can be specified in a semiparametric fashion and is therefore more useful when dealing
with multimodal distributions.

For the purposes of this work, it is necessary to introduce also some techniques that
enhance the analysis of data with more than one event per unit.

2.2 Recurrent events and gap times

As we discussed, in classical survival analysis one focuses on a single event for each
individual, describing the occurrence of the event by means of survival curves or hazard
rates and analysing the dependence on covariates by means of regression models. The
connection of several events (of the same kind) for an individual as they occur over time
yields to the main subject of this chapter, i.e. event histories.

Processes that generate events repeatedly over time are referred to as recurrent event
processes and the data they provide are called recurrent event data. Data may be avail-
able for a large number of processes (patients) exhibiting a relatively small number of
recurrent events. These types of processes arise frequently in medical studies, where in-
formation is often available on many individuals, each of whom may experience transient
clinical events repeatedly over a period of observation. Examples include myocardial
infarctions, seizures in epileptic patients, and successive tumours in cancer studies.

For a single recurrent event process, which is a point process, starting for simplicity at
t = 0, let 0 ≤ T1 < T2 < . . . denote the event times, where Tk is the time of the kth event.
The associated counting process {N(t), 0 ≤ t} records the cumulative number of events
generated by the process; specifically, N(t) =

∑∞
k=1 I{Tk≤t} is the number of events

occurring over the time interval [0, t]. More generally, N(s, t) = N(t)−N(s) represents
the number of events occurring over the interval (s, t]. As defined here, counting processes
are right-continuous, that is, N(t) = N(t+).
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There exist two different approaches to event occurrences: event counts or gap times
between successive events.

The first approach uses results from stochastic calculus and point processes. Methods
based on counts are often useful when individuals frequently experience the events of
interest, and the events are “incidental” in the sense that their occurrence does not
materially alter the process itself. Models of this kind can be specified very generally by
considering the probability distribution for the number of events in short intervals [t, t+

∆t). For events occurring in continuous time we make the mathematically convenient
assumption that two events cannot occur simultaneously. Then, the intensity process
λ(t) is defined as the conditional probability that an event occurs in [t, t+ ∆t), given all
that has been observed prior to this interval, divided by the length of the interval. More
formally

λ(t|H(t)) = lim
∆t→0

P(∆N(t) = 1|H(t))

∆t
,

where ∆N(t) = N(t+∆t−)−N(t−) denotes the number of events in the interval [t, t+∆t),
and H(t) = {N(s) : 0 ≤ s < t} denotes the history of the process at time t. For a full
review of this class of methods, see Aalen et al. (2008).

In this work the second approach to recurrent events is used, i.e. modelling gap times
between successive events. Analyses based on waiting times are often useful when events
are relatively infrequent, when some type of individual renewal occurs after an event, or
when prediction of the time to the next event is of interest. We follow here the notation
and the general framework of Cook and Lawless (2007).

Figure 2.1: Representation of recurrent events for a generic observation. We denote with δi

the censoring indicator, with ni the total number of recurrent events and with n∗i the number of
observed recurrent events (without censoring).
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Let Wij , j = 1, . . . , ni denote waiting times (or gap times) between the (j − 1)st and
jth event of patient i. Let us assume that t = 0 corresponds at the start of each event
process and that individual i is observed over the time interval [0, τi]. By xij we denote
a vector of possibly time-varying covariates at time j. If ni events are observed at times
0 < ti1 < · · · < tini ≤ τi, let wij = tij − tij−1 for j = 1, . . . , ni and wi,ni+1 = τi − tini
where ti0 = 0. These are the observed gap times for individual i with the final time being
possibly censored. Let J denote the maximum number of observed repeated events, i.e.
J = maxi=1,...,n ni. A visual representation of such kind of data is illustrated in Figure
2.1.

We here model the joint distribution (Wi1, . . . ,Wini) through the specification of the
conditional laws L(Wij |xij ,Wi1, . . . ,Wij−1).

2.2.1 Renewal Processes

Renewal processes are the canonical models for waiting times and are defined as processes
for which the gap times of each patient Wij , j = 1, . . . , ni are i.i.d, conditionally to
covariates and parameters. In other words, the intensity function is equal to the hazard
rate, i.e. λ(t|H(t)) = h(t−TN(t−)). This strong assumption corresponds to the setting in
which individuals are restored to the original physical state after each event. This makes
no sense in our investigation, which aims at discovering the influence of past events on
patients. However, by extending renewal processes in various ways one can obtain other
flexible models.

The likelihood function from n independent individuals is of the form

L =
n∏
i=1

 ni∏
j=1

f(wij |xij)

S(wi,ni+1|xi,ni+1).

2.2.2 Extensions and generalisations

In a more general case, when the assumption of independent gap times is unrealistic, mod-
els can be formulated through the sequence of conditional laws L(Wij |xij ,Wi1, . . . ,Wij−1),
j = 1, 2, . . . , ni. In this case, the cumulative distribution functions

Fj(w|xij , w(j−1)
i ) = P(Wij ≤ w|xij , w(j−1)

i )

where w(j−1)
i = (wi1, . . . , wij−1)

′ , can change at each gap time. This format allows various
types of dependence on previous event history to be considered, including elapsed time
wi1 + · · ·+ wij−1 up to (j − 1)st event.
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The two dominant families of models in this framework are AFT and PH regressions.
For parametric models, the likelihood function from a set of n independent processes is

L =
n∏
i=1

 ni∏
j=1

fj(wij |zij)

Sni+1(wi,ni+1|zi,ni+1),

where zij is a vector that models the dependence of Wij on xij and w(j−1)
i . Studies of

this kind have already been proposed in a classical framework. Prentice et al. (1981)
propose a PH model for recurrent events. This semiparametric model is obtained by
specifying the intensity function as one of the following

λ(t|N(t), X(t)) = λ0s(t) exp(x(t)βs)

λ(t|N(t), X(t)) = λ0s(t− tn(t)) exp(x(t)βs)

where tn(t) is the time of the preceding event. These two choices correspond to the
natural time scales for the baseline hazard function: one is the time t from the beginning
of the study and the other is t− tn(t), the time elapsed since the immediately preceding
event. Moreover, the index s allows the baseline hazard to be stratum-specific. This is
a more general case, as if one chooses λ0s(·) = λ0(·) ∀s = 1, . . . , J the case of a simple
renewal process is obtained.

Chang and Wang (1999) propose a slightly different model by incorporating two kinds
of covariates: some structural covariates (fixed) and some episode-specific covariates. For
example, in a study of schizophrenia, gender and marital status may have the same effect
for different episodes, but the age of disease onset may have distinct effects over different
episodes. Moreover, the authors propose a strategy to maximise the partial likelihood.

The aim of this work, however, is to model distributions in the most flexible way.
Therefore, the natural framework is Bayesian nonparametrics, which allows us to specify
a non-parametric form for the laws of the gap times between recurrent events.
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Chapter 3

A BNP model for recurrent events

In this chapter, the main goal is to present the Bayesian semiparametric model used in
this work to represent gap times between recurrent events. After describing the model,
the calculation of the full conditionals and the sampling scheme are illustrated. The
corresponding MCMC algorithm to compute posterior inference will be tested on two
simulated datasets in order to assess its functioning.

3.1 The model

Recalling the notation of the previous chapter, based on Cook and Lawless (2007), let
Wij , j = 1, . . . , ni denote the gap times between the (j − 1)th and jth event of patient i,
i = 1, . . . , n. Each individual is observed over the time interval [0, τi], and t = 0 corre-
sponds at the first event. By xij we denote a vector of p covariates for patient i at time j.
If ni + 1 events are observed at times 0 =: ti0 < ti1 < · · · < tini ≤ τi, let wij = tij − tij−1

for j = 1, . . . , ni and wi,ni+1 = τi − tini . These are the observed gap times for individual
i with the final time being possibly censored. Let J denote the maximum number of
observed repeated events, i.e. J = max

i=1,...,n
ni.

First of all, let us transform the data with a log-function: Yij = log(Wij), i = 1, . . . , n,
j = 1, . . . , ni. In this model we describe the joint distribution (Yi1, . . . , Yini) through the
specification of the conditional laws L(Yij |xij , Yi1, . . . , Yij−1). In particular, we assume
a dependence structure similar to an AR(1) model (cfr. Di Lucca et al., 2013). However,
in this work the random intercepts and the coefficient parameters are free to vary for
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each gap time. The model can be written as

Yi1 = xTi1β1 + αi12 + σεi1

Yi2 = xTi2β2 + αi21Yi1 + αi22 + σεi2

Yi3 = xTi3β3 + αi31Yi2 + αi32 + σεi3

. . .

Yini = xTiniβni + αini1Yini−1 + αini2 + σεini

(3.1)

where

εij
iid∼ N (0, 1).

Let us remark that each βj , as well as xij ∀j = 1, . . . , J, i = 1, . . . , n are vectors of
length p (the number of available covariates), and thatαi = (αi11, αi21, αi22, . . . , αiJ1, αiJ2)

∀i = 1, . . . , n is a vector with length 2J − 1.

Conditionally to the parameter vector (β1, . . . ,βJ ,αi, σ
2), we assume that the ob-

servations Yi = (Yi1, . . . , Yini) are independent. Therefore, this model is equivalent to

Yi1|xi1,β1,αi, σ
2 ∼ N (xTi1β1 + αi12, σ

2)

Yij |Yij−1,xij ,βj ,αi, σ
2 ∼ N (xTijβj + αij1Yij−1 + αij2, σ

2) ∀j = 2, . . . , ni.

We now discuss the specification of the αi parameters. In order to model flexible
distributions for the gap times, we assume that these parameters are a sample from a
Dirichlet process, i.e.

α1, . . . ,αn|G
iid∼ G

G ∼ DP(MG0)

In such case, the model can be rewritten as a DPM model:

Yi|αi,β1, . . . ,βJ ,xi, σ
2 ind∼ k(y;αi,β1, . . . ,βJ ,xi, σ

2) = NJ(µi,Σi)

σ2 ∼ inv-gamma
(
ν0

2
,
ν0σ

2
0

2

)
β1, . . . ,βJ

iid∼ Np(0, β2
0Ip)

α1, . . . ,αn|G
iid∼ G

G ∼ DP(MG0)

(3.2)

This model implies that the data are distributed according to a mixture of kernels
k(y;αi,β1, . . . ,βJ ,xi, σ

2) where the mixing probability integrates with respect to the
α parameters. In the most common case (see Müller et al., 1996, for details) the mean
and the covariance matrix of the kernel are directly sampled from the Dirichlet process.
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In this case, however, the dependency of the moments of k(·) on the DP sample is more
complicated.

One can easily prove (see Appendix A) that, given the model specified in (3.1), the
mean vector and the covariance matrix of each gap time, given the parameters, are
respectively

µi =


E[Yi1|xi1,β1,αi, σ]

E[Yi2|xi2,β2,αi, σ]
...
E[YiJ |xiJ ,βJ ,αi, σ]

 =


xTi1β1 + αi12

xTi2β2 + αi21(xTi1β1 + αi12) + αi22

...
xTiJβJ + αiJ1E[YiJ−1| . . . ] + αiJ2

 ,

and

Σi =


Var[Yi1| . . . ] Cov(Yi1, Yi2) Cov(Yi1, Yi3) . . .

Var[Yi2| . . . ] Cov(Yi2, Yi3) . . .

Var[Yi3| . . . ]
. . .



= σ2


1 αi21 αi31αi21 . . .

1 + α2
i21 αi31(1 + α2

i21) . . .

1 + α2
i31 + α2

i31α
2
i21

. . .

 .

Moreover, some preliminary comments are also necessary:

• The double indexing of xij denotes an implicit time-dependence of the covariates
xij(t).

• Even if the covariates are fixed, we here allow for the covariate parameters β1, . . . ,βJ

to change for each gap time. In other words, we assume for a stratum-specific effect
of the covariates.

• DP denotes a multivariate DP for the entire vector αi. The ties in the αi’s will
induce a clustering of observations according to their entire trajectories.

• There are missing gap times for some individuals. Even if one observes only ni gap
times, the entire trajectories of length J have to be imputed, coherently with the
Bayesian framework.

The base measure of the DP prior of the model (3.2) is

G0 = W1 ⊗ Z2 ⊗W2 ⊗ · · · ⊗ ZJ ⊗WJ ,

W1, . . .WJ
iid∼ N (0, σ2

W ),

Z2, . . . ZJ
iid∼ Uniform(aZ , bZ),

(3.3)
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where the components of the centering measure G0 are the two families of independent
r.v. {Wi}i≥1 ⊥ {Zj}j≥2, and σ2

W is a large variance parameter. We denote with Wi

the components relative to the random intercepts (α12, α22, . . . , αJ2) and with Zi the
components relative to the terms multiplying the previous gap times (α21, α31, . . . , αJ1).
Let us point out that we will choose aZ = −1 and bZ = 1, so that the support of the
prior distribution on these latter parameters is (−1, 1). Otherwise, the process would be
non-stationary because its variance would asymptotically approach infinity.

The total number of parameters is J(2+p). In fact, the dimension of α is 2J−1; each
of the J covariate parameters β1, . . . ,βJ has dimension p (the number of covariates); the
last parameter of interest is the variance of the process σ2.

It is well-known that non-parametric models suffer from the high sensitivity with
respect to the choice of the base measure G0. Therefore, it is advisable to carry out a
robustness analysis for the prior specification. This issue will be tackled in Section 4.5.

3.2 Computational strategy

In this section, the MCMC strategy used to sample from the posterior distribution of the
parameters is illustrated. We refer in the following to the model (3.2), together with the
prior distributions (3.3).

3.2.1 Handling the non-conjugacy

As already discussed in Section 1.3.2, the aim of this work is to determine a Polya scheme
in order to fit the model with the DP prior. The main ideas are based on Algorithm 8
in Neal (2000) and its adaptation in Argiento et al. (2009).

Since the dependence of the kernels k(y;α, . . . ) on the α parameters is complex, there
does not exist a conjugate prior with respect to the base measure G0. Therefore, when
looking for a sampling strategy, one has to tackle the issue of calculating the marginal of
the data

q0(y) =

∫
k(y;α)G0(dα) (3.4)

in the label update step

P(s
′
i = j|s−i,yi,αi, . . . ) =



k(yi;α
∗
j )d

(−i)
j

Mq0(yi) +
∑

h∈s−i k(yi;α∗h)d
(−i)
h

for j ∈ s−i

Mq0(yi)

Mq0(yi) +
∑

h∈s−i k(yi;α∗h)d
(−i)
h

for j = knew,

(3.5)
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where d(−i)
j denotes the size of the jth cluster, discarding the ith observation.

For these reasons, another strategy has been implemented. Using the same idea of Al-
gorithm 8 in Neal (2000), which has been presented in Section 1.3.2, we approximate the
marginal distribution q0(·) using a Monte Carlo strategy. Accordingly, auxiliary variables
are introduced in the MCMC scheme in order to evaluate via Monte Carlo the integral
(3.4). The data augmentation consists in substituting, for each observation, the base mea-
sure G0 with the auxiliary variables φ(1), . . . , φ(n), where each φ(i) = (φ

(i)
1 ,φ

(i)
2 , . . . ,φ

(i)
m )

is a sample from G0 of size m (φ(i) is a m× (2J − 1) matrix).

The choice ofm has been discussed in Neal (2000): whenm = 1, the algorithm closely
resembles the “no-gaps” algorithm of MacEachern and Müller (1998); when m→∞ the
Monte Carlo approximation is more precise. However, the equilibrium distribution of the
Markov chain is correct for any value of m. In this work we use m = 3, which represents
a good approximation at a feasible computational time.

3.2.2 Full conditionals

We illustrate here a general scheme of the Gibbs Sampler that allows us to sample from
the posterior distribution. The details of each full conditional will be given in the sub-
sections below.

Algorithm 1 Gibbs Sampler
1: function gibbs(Y,X,n, N, burnin, thin, a,m = 3)
2: Initialise the labels s with a k-means algorithm (K = 10)
3: Initialise the parameters α∗j ∀j = 1, . . . , k randomly sampling from N (0, 10)

4: Initialise the variance σ randomly sampling from U(0, 10)

5: Initialise the parameters βj ∀j = 1, . . . , J randomly sampling from U(−10, 10)

6: for iter = 2 to N do
7: Neal’s Algorithm step: snew ← samp_conf(s, rest) using (3.6)
8: Shuffle step: αnewi ← shuffle(αi, rest) using (3.7)
9: Update clusters: knew ← uniques(αnewi )

10: Block-update step: α∗newj ← block_upd(α∗j , rest) using (3.8) and (3.9)
11: Gibbs step: σ2new ← sigma_upd(σ2, rest) using (3.10)
12: Gibbs step: βnewj ← beta_upd(βj , rest) using (3.11)

13: Discard the burnin and thin the chain
14: return s, k, α2, σ, β
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Update labels

The labels are updated using two full conditionals. The first one is

P(s
′
i = j|s−i,αi, . . . ) ∝


k(yi;α

∗
j )d

(−i)
j for j ∈ s−i,

M
m

∑m
h=1 k(yi;φ

(i)
h ) for j = knew.

(3.6)

We remark that this expression is similar to (3.5), with the only difference that here
the integral is approximated via Monte Carlo. Equation (3.6) implies that, for each
observation, the new label is, alternatively:

• sampled from one of the existing “old” labels in s−i. In this case, if the observation
was in a single cluster, the number of clusters decreases by one;

• a new value. In this case, unless the observation was in a single cluster, the number
of clusters increases by one.

The second full conditional is

P(dα
′
i|s
′
,α−i, φ

(1), . . . , φ(n), . . . ) ∝


δα∗

s
′
i

(dα
′
i) if s′i ∈ s−i

∑m
h=1 k(yi;φ

(i)
h )δ

φ
(i)
h

(dα
′
i) if s′i = knew

(3.7)

Equation (3.7), instead, is needed in order to exchange the cluster specific parameters,
once the new labels have been sampled. In particular:

• if the new label is sampled from one of the existing “old” labels in s−i, say j, the
corresponding parameter is α∗j ;

• if the new label is a new value, the new parameter is equal to the corresponding
augmented parameter φ(i)

h (sampled from G0).

Update α∗

Once the new labels have been updated and the parameters have been exchanged, it
is necessary to sample the unique cluster specific parameters α∗j from the proper full
conditional using all the observations attributed to the hth cluster, with

L(α∗h|s, . . . ) ∝ G0(α∗h)
∏
i:si=h

k(yi;α
∗
h) ∀h = 1, . . . , k.

For this purpose, since the model does not admit a conjugate prior, it is necessary to use
a Metropolis step within the Gibbs sampler.
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In light of the number of choices to be done when using a Metropolis-Hastings al-
gorithm (e.g. the choice of the proposal), we propose a convenient strategy in order to
update the parameters. Instead of performing a simultaneous update of the vectorial
quantities α∗h, one can update each component of the vector one at the time. Thus,
the proposal densities have to be chosen in one dimensional spaces and not in 2J − 1-
dimensional spaces. Moreover, for the components of α∗ relative to the intercept terms,
a conjugate form can be obtained.

Therefore, the full conditionals for the components of α∗ with support in (−1, 1)

become, ∀h = 1, . . . , k

L(dα∗newh,2 |s, . . . ) ∝ g0,2(α∗newh,2 )
∏
i:si=h

k(yi;α
∗new
h )

...

L(dα∗newh,2J−2|s, . . . ) ∝ g0,2J−2(α∗newh,2J−2)
∏
i:si=h

k(yi;α
∗new
h ),

(3.8)

where at each step the new value α∗newh differs from the old one only at the component
j ∈ {2, 4, . . . , 2J − 2} considered. For each cluster h, and for each component j of the
vector α∗h, the proposal is a univariate normal distribution N (α∗hj , [Σp]j,j), where Σp is
computed as minus the inverse of the Hessian of the log-posterior around its maximum.
Mathematically, Σp = −H−1, where

Hij =
∂ log(f(y;α))

∂αi∂αj
.

Moreover, in order to enhance the convergence of the Metropolis-within-Gibbs steps, the
normal distributions have been truncated on the domain interval (−1, 1). This leads to
a faster algorithm because it avoids the proposal of values that are successively refused
with probability 1.

As far as the other components are concerned, ∀j = 1, 3, . . . , 2J − 1, ∀h = 1, . . . , k

the framework is the following

Yij |Yij−1,xij ,βj ,αi, σ
2 ind∼ N (xTijβj + αij1Yij−1 + αij2, σ

2) ∀i s.t. si = h

αij2 ∼ N (0, σ2
W ),

and therefore the posterior is

L(αij2|rest) = N

(
σ2
W

∑
i:si=h

ŷij

σ2
Wdh + σ2

,
σ2
Wσ

2

σ2
Wdh + σ2

)
, (3.9)

where the ŷi’s are the scaled data, i.e.

Ŷi1 = Yi1 − xTi1β1

Ŷij = Yij − xTijβj − αij1Ŷij−1.
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Update σ2

As far as the update of the variance parameter is concerned, the choice of an appropriate
prior distribution allows us to find a conjugate full conditional. In fact, given the model

Yi|αi,xi,β1, . . . ,βJ , σ
2 ind∼ NJ(µi,Σi)

σ2 ∼ inv-gamma
(
ν0

2
,
ν0σ

2
0

2

)
,

it is straightforward (see Appendix A) to prove that

L(σ2|rest) = inv-gamma

ν0 + nJ

2
,

ν0σ
2
0 +

n∑
i=1

(yi − µi)T (yi − µi)

2

 . (3.10)

Update β

The part of the model involved in the update of the covariate parameters is

Yi|αi,β1, . . . ,βJ ,xi, σ
2 ind∼ NJ(µi,Σi)

β1, . . . ,βJ
iid∼ Np(0, β2

0 · Ip).

For each observation, let us define the transformed data

Ỹi1 = Yi1 − αi11

Ỹi2 = Yi2 − αi21Yi1 − αi22

...

ỸiJ = YiJ − αiJ1YiJ−1 − αiJ2

and the vectorial quantities

Ỹ1 = (Ỹ11, Ỹ21, . . . , Ỹn1)

...

Ỹj = (Ỹ1j , Ỹ2j , . . . , Ỹnj) ∀j = 2, . . . , J.

Hence we have

Ỹ1|X,β1, σ
2,α ∼ Nn(Xβ1, σ

2In)

Ỹj |Yj−1,X,βj , σ2,α ∼ Nn(Xβj , σ2In) ∀j = 2, . . . , J.
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Thus, for each gap time, we are in the case of a classical univariate linear model and
we can update each covariate parameter one at the time, i.e.Ỹ1|X,β1, σ

2,α ∼ Nn(Xβ1, σ
2In)

β1 ∼ Np(0, β2
0Ip)

⇒ β1|Ỹ1, rest ∼ Np(b1n, Bn),

Ỹj |Yj−1,X,βj , σ2,α ∼ Nn(Xβj , σ2In)

βj ∼ Np(0, β2
0Ip)

⇒ βj |Ỹj , rest ∼ Np(bjn, Bn) ∀j = 2, . . . , J,

(3.11)

where, as in the case of linear models with known variance,

Bn =

(
XTX
σ2

+
Ip
β2

0

)−1

,

bin =

(
XTX
σ2

+
Ip
β2

0

)−1(XT ỹi
σ2

)
= Bn

XT ỹi
σ2

.

3.2.3 Optimal partition

Once the MCMC chain approximating the posterior distribution is obtained, our main
goal is to attribute each observation to a cluster, i.e. to find a cluster estimate. In this
model we have already detailed a way to obtain a sample from the posterior distribution
of the labels of the data ρ(1)

n , . . . ,ρ
(Nsamp)
n , where ρ(i)

n = (s
(i)
1 , . . . , s

(i)
n ). Nevertheless,

since the support of ρn is a discrete space with large cardinality (the Bell number), the
choice of a point estimate is an issue that should not be overlooked. The posterior mode,
for example, is not an adequate solution as each support point might have a negligible
posterior probability.

In literature, there exist many papers dealing with this problem. We refer, in partic-
ular, to Lau and Green (2007) as done in Argiento et al. (2014). This approach is the
following: a suitable loss function L(ρn, ρ̂n) is introduced, giving the cost of estimating
the “true” ρn by ρ̂n. Then, the proposed estimate is given by any partition ρ̂n which
minimises the posterior expectation of the loss function, i.e.

ρ̂n ∈ argmin
y

E[L(ρn, y)|data].

We here use Binder’s loss function (cfr. Binder, 1978, for details), assigning cost b
when two observations are wrongly clustered together and cost a when two observations
are erroneously assigned to different clusters, that is

L(ρn, ρ̂n) =
∑
i<j≤n

(
aI{si=sj ;ŝi 6=ŝj} + bI{si 6=sj ;ŝi=ŝj}

)
.
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It is not difficult to see (Lau and Green, 2007) that, taking the expected value of both
sides, one obtains

l(ρ̂n) = E[L(ρn, ρ̂n)|data] = a
∑
i<j≤n

pij − (a+ b)
∑
i<j≤n

I{ŝi=ŝj}(pij −K), (3.12)

where {pij} is the unknown matrix of the posterior incidence probabilities pij = P(si =

sj |data) and K = b/(a+ b) ∈ [0, 1]. Equation (3.12) can be rewritten as

l(ρ̂n) = a
∑
i<j≤n

pij − (a+ b)g(ρ̂n), (3.13)

highlighting the only term g(ρ̂n) that depends on the partition. Minimising l(ρ̂n) corre-
sponds to maximising g(ρ̂n), with respect to ρ̂n. However, the problem is that {pij} is
unknown.

We here propose a two-step method that allows us to estimate the matrix of the
posterior incidence probabilities and then to choose the optimal partition:

1. half of the MCMC chain (which has a total length of Nsamp) is used in order to

estimate the probabilities p̂ij =
#{si = sj}
Nsamp/2

;

2. for every partition ρ̂n in the second half of the chain, we calculate the values
g(ρ̂n) =

∑
i<j≤n I{ŝi=ŝj}(p̂ij−K); the optimal partition is the one that realises the

maximum.

In the following, we choose K = 0.5, which corresponds to the assumption that the
two misclassification costs are equal.

3.2.4 Implementation in the Julia language

We here justify the choice of the programming language used in this work. The R
software is the classical tool when dealing with statistical analysis, as it provides user-
submitted packages for specific functions or specific areas of study. However, Bayesian
non-parametric models are often computationally infeasible for such a high-level lan-
guage. R programming routines encourage operating on whole objects (i.e. vectorised
code) because while and for loops are notoriously slow. Nevertheless, MCMC are not
easily vectorised as every iteration depends on the previous one. Therefore, it would be
advisable to carry out all the simulations in a lower-level programming language such as
C or C++, or in any other language that has efficient loop structures.

Julia is a high-performance dynamic programming language for technical comput-
ing, with syntax that is familiar to users of other technical computing environments.
The Julia language manages to combine computational efficiency with the easy scripting
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and interpretation typical of any other high-level programming language. It provides a
sophisticated compiler, distributed parallel execution, numerical accuracy, and an exten-
sive mathematical function library (among the others, linear algebra and random number
generator libraries are used in order to carry out a Bayesian analysis). For further details,
see Bezanson et al. (2014).

Apart from its computational efficiency, another advantage of Julia over R is that
objects are passed to functions by reference and not by copy. This issue, that may seem
negligible at a first glance, is crucial in MCMC simulations which deal with many param-
eters, since high-dimensional matrices have to be handled at every iteration. Therefore,
passing the memory address of such large objects instead of copying them in every func-
tion environment allows the algorithm to reduce the memory usage.
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3.3 Simulated dataset 1

In order to check the validity of the model and algorithm proposed in the previous section,
two different simulated datasets have been fitted to the model (3.2) - (3.3). In the first
setting n = 200 data, with exactly J = 3 recurrent events, were generated from (3.1)
each one with one of the three parameters (α1,α2,α3) with probability (1/3, 1/3, 1/3).
The complete parameter setting is:

α1 = (

α2 = (

α3 = (

3.0 0.6 2.2 0.4 1.5

−3.0 −0.1 −1.5 −0.9 −2.0

6.0 −0.9 4.2 0 4.5

)

)

)

σ = 1.5

β1 = · · · = βJ = 0,

where we denoted with αk = (αk12, α
k
21, α

k
22, . . . , α

k
J1, α

k
J2) the kth possible value for α.

Figure 3.1: First simulated dataset in the space R3 of the 3 gap times.

In this first case, no covariates are available and therefore this represents a simplifica-
tion of the complete model presented in (3.2). Since the value of J = 3 was chosen, the
data yi can be represented in a three-dimensional space where each component is one of
the three gap times (see Figure 3.1).
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The hyperparameters are

β0 = 10;

ν0 = 2; σ0 = 1;

M = 1;

σ2
W = 100; aZ = −1; bZ = 1.

This choice is made in order to specify vague prior distributions. For example, the total
mass parameter is M = 1 which, as illustrated in Figure 1.1, corresponds to a weak
degree of belief in the base measure G0. Furthermore, even the marginal components of
G0 are non-informative: the normal distributions Wi have large variances, and the Zi’s
are uniform distributions over the interval (−1, 1).

Posterior estimates are computed via the Gibbs sampler algorithm presented in Sec-
tion 3.2.2. We run the algorithm in Julia for 70, 000 iterations, while the first 20, 000

iterations were discarded and we used a thinning of 10 to reduce the autocorrelation of
the Markov chain. The final sample size is then 5000. Diagnostic convergence tests were
done.

(a) Traceplot of σ. (b) Autocorrelation function of σ.

Figure 3.2: Output analysis used for a convergence check of the MCMC chain.

We report in Figure 3.2 traceplots and estimated autocorrelation functions of σ. As
one can see, the chain seems to be stationary, as the traceplot is thick and the correlation
between successive values of the sample is negligible.

We do not show here the same output analysis concerning the α parameters, as the
traceplots are severely affected by the label switching problem (see Jasra et al., 2005,
for further details). For this reason, inference on those parameters is displayed via the
predictive distribution. Once the MCMC chain has been sampled, for each iteration one
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(a) Predictive density of α12.

(b) Predictive density of α21. (c) Predictive density of α22.

(d) Predictive density of α31. (e) Predictive density of α32.

Figure 3.3: In black solid line, kernel density estimates of the predictive distributions of the
α parameters. In red vertical lines, the true values. The red ticks on the x-axis represent the
sampled values.

value of α is obtained via

αnew(g)|α(g)
1 , . . . ,α(g)

n ∼
M

M + n
G0 +

∑n
i=1 δα(g)

i

M + n
∀g = 1, . . . , N, (3.14)

where αnew = (αnew12 , αnew21 , αnew22 , . . . , αnewJ1 , αnewJ2 ) and the superscript (g) denotes the
current iteration of the chain.

The results of this procedure are displayed in Figure 3.3. The three components
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of the mixture are clearly visible for each component of αnew. The sampled values of
the predictive distributions are located around the true parameters. Furthermore, the
predictive distributions are clearly different from the prior distribution of the parameters.
In fact we supposed that, a priori, the components of α relative to the intercept terms
were univariate normal distributions centred in 0 and with variance equal to 100. As far
as the components with support in (−1, 1) are concerned, the uniform distribution that
was used represents a non-informative prior.

Figure 3.4: Prior and posterior number of clusters, i.e. of the number of unique values in the
αi’s.

In Figure 3.4, the posterior of the number of clusters is displayed. As one can see, the
model provides a good estimate of the number of groups in the trajectories of the patients,
that is 3. As it is documented in literature, this kind of models slightly overestimates
the number of clusters. However, the posterior mode is located in 3 with a probability
of around 0.7, which can be considered a very precise result.

The posterior distribution of σ, along with the 95% credible intervals shown in 3.5,
is centred around the true value.

We now discuss the results of the method proposed in Section 3.2.3 that was used in
order to estimate the optimal partition. In Figure 3.6 the six most recurrent partitions
are displayed.

The first one, which is the posterior mode of the labels, has a posterior probability of
0.0044, which means that it appears 22 times out of the sample of size 5000. It is clear
that this probability is too low to represent a good estimate for the optimal partition.
For this reason, another approach has been used. Introducing Binder’s loss function and
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Figure 3.5: In blue solid line, the posterior distribution of the parameter σ, whose true value is
1.5. A point estimate (the posterior median) and the 95% credible bounds are overlaid in red.

Figure 3.6: First six most recurrent partitions (most probable partitions), whose probabilities of
occurrence are indicated above. The top-left figure is the posterior mode of the partitions ρn.
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evaluating it on the posterior sample, we estimated the optimal partition according to
this criterion.

In Figure 3.7a and 3.7b, two partitions are compared: the first one is the Bayesian
estimate as described above, while the other is obtained by the k-means algorithm. On
the simulated dataset, as expected, our clustering method provides better results. Since
the true partition is known, we can calculate the number of correctly classified data
(i.e. the precision). Our method, with a precision of 98.0%, outperforms the k-means
algorithm which classifies correctly 184 observations out of 200.

(a) Binder’s loss function criterion. In this
case, the percentage of correctly clustered data
is 98.0%.

(b) K-means algorithm criterion. In this case,
the percentage of correctly clustered data is
92.0%.

Figure 3.7: Comparision between the optimal partition according to Binder’s loss function crite-
rion and to a frequentist method.

Let us also remark that the optimal partition according to Binder’s loss function does
not necessarily correspond to the posterior mode of the parameters, nor to any of the
partitions displayed in Figure 3.6. The reason is that the support of ρn is a discrete
space with such a large cardinality that the state corresponding to the optimal partition
could be rarely “reached” by the algorithm.
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3.4 Simulated dataset 2

The second simulated dataset is more complex than the previous one. In fact, here
covariates xij of length p = 3 are introduced in the model, and the number of gap times
is allowed to be different for each observation. We generate n = 200 data from (3.1), each
with ni recurrent events and with one of the two parameters (α1,α2) with probability
(1/2, 1/2). The complete parameter setting is:

α1 = (

α2 = (

3.0 0.6 2.2 0.3 1.5 0 3.0 0.95 −1.0

−3.0 −0.1 −1.5 −0.2 −2.0 −0.95 0 0 2.0

)

)

σ = 1.0

β1 = (

β2 = (

β3 = (

β4 = (

β5 = (

−2.0 −1.5 −1.0

0 −0.2 0.2

2.0 1.3 1.0

1.0 0 −1.0

4.0 −1.0 −2.0

)

)

)

)

)

Let us remark here that the covariate parameters β1, . . . ,βJ are allowed to change
for every gap time, even if the covariates are fixed. In other words, we are assuming
that the effect of the same covariate can change over time. Moreover, the covariates are
generated according to

xij,1
iid∼ N (0, 2)

xij,2
iid∼ Ber(0.5)

xij,3
iid∼ Ber(0.2).

We notice here that the second and the third covariate were sampled by two Bernoulli
distributions with different parameters, in the attempt of simulating the behaviour of a
categorical variable.

j 1 2 3 4 5

nj 27 55 77 31 10

Table 3.1: Numer of observations with exactly j gap times, j = 1, . . . , J .

The number of gap times for each observation was sampled by a discrete distribution
with values in {1, 2, 3, 4, 5}. In Table 3.1, the number of observations with at least j gap
times is represented. We notice that most of the observations experience j = 3 recurrent
events, as in the previous setting. However, since J = max

i=1,...,n
ni = 5, the number of
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(a) Predictive density of α12.

(b) Predictive density of α21. (c) Predictive density of α22.

(d) Predictive density of α31. (e) Predictive density of α32.

(f) Predictive density of α41. (g) Predictive density of α42.
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(h) Predictive density of α51. (i) Predictive density of α52.

Figure 3.8: In black solid line, kernel density estimates of the predictive distributions of the
α parameters. In red vertical lines, the true values. The red ticks on the x-axis represent the
sampled values.

cluster specific parameters to estimate is now 2J − 1 = 9. In fact, missing data are
imputed, coherently with the Bayesian framework, as described in Section 4.2.1.

Posterior estimates are computed in Julia via the Gibbs sampler algorithm presented
in Section 3.2.2. We run the algorithm for 140, 000 iterations, while the first 40, 000

iterations were discarded and we used a thinning of 20 to reduce the autocorrelation of
the Markov chain. The final sample size is then 5000. Some diagnostic convergence tests
were done.

In Figure 3.8 the predictive distributions of the parameters, obtained via (3.14), are
displayed. Let us do some remarks about the results. As one can expect, the precision
of the first components of the parameter α is greater than the precision of the last ones.
In fact, for those first components all the observations are used in the Metropolis-within-
Gibbs update. Instead, α51 and α52 are not centred around the true values. Looking
again at Table 3.1, we notice that only 10 observations are used in the update of those
parameters, as the others are missing and are imputed by the model.

In Figure 3.9, the posterior of the number of clusters is displayed. As one can see,
the model provides a good estimate of the number of groups in the trajectories of the
patients. The posterior mode, indeed, is located at 2 with a probability greater than 0.8,
which can be considered a very precise result.

The posterior distribution of σ, along with the 95% credible intervals, is shown in
Figure 3.10. We see that the true σ = 1.0 is contained in the credible intervals and
therefore the result is acceptable.

Let us now focus on the primary parameters of interest when dealing with a regression
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Figure 3.9: Prior and posterior number of clusters, i.e. of the number of unique values in the
αi’s.

Figure 3.10: In blue solid line, the posterior distribution of the parameter σ, whose true value is
1.0. A point estimate (the posterior median) and the 95% credible bounds are overlaid in red.

model, i.e. the covariate parameters β1, . . . ,βJ . In Figure 3.11 the traceplots and the
density estimates of those parameters are reported. First of all, from the traceplots we
cannot exclude that the MCMC chain has reached its stationary distribution. Moreover,
as one can see, the estimates are correct.

Looking at the posterior distributions, one can remark that the estimates of the
covariate parameters concerning the first gap times are more precise than ones related to
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the last ones. The reason is the same as before for the α parameters: fewer observations
are involved in the update of the last parameters because we do not observe for all the
data J recurrent events.

(a) Traceplot and posterior density estimate of β1.

(b) Traceplot and posterior density estimate of β2.
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(c) Traceplot and posterior density estimate of β3.

(d) Traceplot and posterior density estimate of β4.
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(e) Traceplot and posterior density estimate of β5.

Figure 3.11: Traceplot and posterior density estimates of the covariate parameters βi. The green
shadowed area represents the 95% credible interval, and the vertical black solid line the posterior
median. The vertical red solid lines are the true values from which the data have been generated.
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3.5 Possible extensions and modifications

The first extension of the model proposed in this chapter is the introduction of censored
data. The missing observation of the last gap time has to be imputed, and its contribution
to the total likelihood has to be included in the model, as done in Section 4.2.1.

Furthermore, another level of hierarchy can be added in order to infer on the total
mass parameter M and to make the model less sensitive with respect to its choice.

A second idea is to provide a time-dependent clustering structure for the observations.
In our model, a global clustering is obtained, i.e. we get the same clustering structure and
number of clusters at each time interval because the entire trajectories are considered. It
is probable that this structure leads to the creation of many clusters, especially when J
is large, as the observations are likely to have a lot of different behaviours with respect
to their entire event histories.

Therefore, accordingly to the conditional structure of our model (the joint vector of
the gap times for each observation is decomposed in the product of the conditional laws),
we could link the base measures G0j ∀j = 1, . . . , J in order to model each gap time
separately by keeping the dependence on the previous ones. Alternatively, if the base
measures are given independently, the total mass parameters can be linked in order to
let the gap times exchange some information.

If such a time-varying clustering structure is obtained, the aim of the analysis would
be to inspect the variation of the partitions in the observations. In fact, let us suppose
that, in a medical application, a patient changes cluster between the jth and the (j+1)th

event. That would mean that there is evidence for an effect of the jth event (e.g. the
hospitalisation).
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Chapter 4

Application to patients diagnosed
with colorectal cancer

In this chapter, we extend the analysis of the model proposed in Chapter 3 to a real
dataset. In particular, we use here the readmission dataset in the frailtypack package of
the statistical software R. We also compare the results with the “shared frailty model”,
which is a semiparametric method used to estimate the hazard function when the ob-
servations belong to different clusters. Since a great proportion of the observations is
censored, both models take into account the right-censoring of the data.

4.1 Introduction

4.1.1 The dataset

In this chapter we use the readmission dataset in the frailtypack package of R. This
dataset contains rehospitalisation times (in days) after surgery in patients diagnosed
with colorectal cancer.

In Figure 4.1 a preview of the data is displayed. In this dataset n = 403 patients are
available, for a total number of 861 recurrent events. Available data for each patient are:

• id : identification code of each subject.

• time: gap time since the previous event.

• event : rehospitalisation status. This variable takes the value 1 for each subject
with the exception of the last event.

• chemo: variable indicating if the patient received chemotherapy.

• sex : gender of the patients.
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• dukes: variable indicating the classification of the colorectal cancer. The cancer
is more and more severe as this variable augments: the baseline A-B denotes the
invasion of the tumour through the bowel wall penetrating the muscle layer but
not involving lymph nodes; the value C indicates the involvement of lymph nodes;
the value D implies the presence of widespread metastases.

• charlson: Charlson comorbidity index. In medicine, comorbidity describes the
effect of all other diseases an individual patient might have other than the primary
disease of interest. This index measures the ten-year mortality for a patient who
may have a range of comorbid conditions: the possible values are 0, 1-2, and 3.

• death: binary variable indicating if the patient survived or not.

Figure 4.1: Preview of the dataset: the first five observations are displayed.

The outcome variables in this study are readmission times, considering them as po-
tential recurrent events (colorectal cancer patients may have several readmissions after
first discharge). The first readmission time has been considered as the time between the
date of the surgical procedure and the first readmission to hospital related to colorectal
cancer.

j 1 2 3 4 5 6 TOT

nj 30 96 36 18 9 8 197

Table 4.1: Number of observations with exactly j gap times, j = 1, . . . , J .
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4.1.2 Descriptive analysis

First of all, patients with more than 6 events were crossed out. Thus, n = 197 observa-
tions for a total number of 495 recurrent events, were obtained.

In Table 4.1 the number of observations with exactly j gap times are shown ∀j =

1, . . . , J . Let us remark that 119 observations out of 197 are right-censored with respect
to their last gap time. Since the proportion of censored data is considerable, we have to
take them into account as a special case in the algorithm. We will detail this procedure
in Section 4.2.1.

In Table 4.2 a cross-table containing the frequency distribution of the covariates with
respect to the sex of the patients can be used to determine whether there is a relation
between sex and the other covariates.

Men Women
n (%) n (%) p-value

Dukes stage
A-B 49 (0.42%) 27 (0.38%)
C 44 (0.38%) 35 (0.48%)
D 29 (0.20%) 13 (0.14%) 0.2992

Chemotherapy
Yes 62 (0.50%) 44 (0.39%)
No 60 (0.50%) 31 (0.61%) 0.3547

Charlson Index
0 221 (0.70%) 127 (0.71%)
1-2 25 (0.08%) 6 (0.04%)
3 70 (0.22%) 46 (0.25%) 0.1095

Table 4.2: Contingency table containing the frequency distribution of the covariates with respect
to the sex of the patients. In the last column, the p-value of the χ2-test of independence is
calculated.

Pearson’s χ2-test of independence, whose results are displayed in Table 4.2, is a
classical test in the framework of count data. The p-values show that there does not
exist a statistical dependence between sex and the other covariates. In other words,
there is no evidence to suggest that men and women tend to have different values of the
other covariates.
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4.2 Application of the model

Let us now rewrite the model proposed in Chapter 3 adapting it to the readmission
dataset. The model is

Yi1 = xTi1β1 + αi12 + σεi1

Yij = xTijβj + αij1Yi,j−1 + αij2 + σεij ∀j = 2, . . . , ni

where, in this case

xTijβj = xij1βj1 + xij2βj2 + xij3βj3 + xij4βj4 + xij5βj5 + xij6βj6.

The components of each vector xj ∀j = 1, . . . , J are the following:

• xj1 is a dummy variable that is equal to 1 if the patient received chemotherapy
treatment during gap time j (baseline: not received);

• xj2 is a dummy variable denoting the sex of the patient during gap time j. It is
equal to 1 if the patient is a woman (baseline: man);

• xj3 is a dummy variable indicating the stage of the tumour, measured by Dukes
index, during gap time j. It is equal to 1 if the tumour is at stage C (baseline:
A-B);

• xj4 is a dummy variable indicating the stage of the tumour, measured by Dukes
index, during gap time j. It is equal to 1 if the tumour is at stage D (baseline:
A-B);

• xj5 is a dummy variable indicating Charlson index during gap time j. It is equal
to 1 if the index is 1− 2 (baseline: 0);

• xj6 is a dummy variable indicating Charlson index during gap time j. It is equal
to 1 if the index is 3 (baseline: 0).

Only the last two covariates, i.e. Charlson index, are time-dependent in this framework.
However, we allow each covariate to have a different effect according to the current gap
time. Therefore, the model is

Yi|αi,β1, . . . ,βJ ,xi, σ
2 ind∼ k(y;αi,β1, . . . ,βJ ,xi, σ

2) = NJ(µi,Σi)

σ2 ∼ inv-gamma
(
ν0

2
,
ν0σ

2
0

2

)
β1, . . . ,βJ

iid∼ Np(0, β2
0Ip)

α1, . . . ,αn|G
iid∼ G

G ∼ DP(MG0)
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along with the specification of the base measure

G0 = W1 ⊗ Z2 ⊗W2 ⊗ · · · ⊗ ZJ ⊗WJ ,

W1, . . .WJ
iid∼ N (0, σ2

W ),

Z2, . . . ZJ
iid∼ Uniform(aZ , bZ).

Let us recall that the quantities µi,Σi depend on both α and σ2, and are defined in
Section 3.1.

4.2.1 Introducing censored and missing data

In the following, we detail the procedure in order to include censored data and missing
data in the model. First, let us remark that right-censoring is present in the dataset only
for the last observed gap time. Therefore one knows that the nthi gap time of patient i is
larger than a certain value, i.e. Tni ≥ τi where τi is the final observation time, and this
information has to be considered in the study.

A simple strategy to deal with this complication is represented by an augmentation
of the state space that allows us to include also the “true” (and unknown) gap times.
The augmented Gibbs sampling strategy is straightforward.

Let us denote, for the sake of brevity, with θ the whole parameter vector, and with z
the vector of the unknown last gap times that are censored. It is then sufficient to add a
full conditional to the model proposed above. In fact, in order to sample from L(θ, z|y)

one can sample recursively from:

• L(θ|y, z), which is the same set of full conditionals described in Section 3.2.2, where
now the censored gap times have been replaced by the simulated “observed” gap
times;

• L(z|y,θ), which is a new full conditional.

The latter is easy to determine. In fact, if the censoring information concerning the
last gap times is to be included (i.e. if we condition also with respect to Yni), then the
gap time Zi can be sampled via

Zi|Yini , Yini−1,xini ,βni ,αi, σ
2 ∼ N (xTiniβni + αini1Yini−1 + αini2, σ

2)I(yini ,+∞), (4.1)

which is a truncated normal distribution. Let us remark here that one should impute
also the covariates at the “future” and unknown time Zi. For simplicity, we use here the
covariates at the time of the censoring, i.e. xini .

Therefore, at each iteration, we sample the last gap times corresponding to the cen-
sored observations using the current values of the MCMC chain. After that, these values
are used in order to estimate the parameters for the next iteration.
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The handling of missing gap times is equivalent: we sample, at each iteration of
the MCMC algorithm, the gap times until we obtain trajectories of length J . This is
done equivalently as in (4.1), with the only difference that the normal distribution is not
truncated since we do not have the censoring information. In this case, since some of the
covariates are time varying, we cannot use the same covariates for all the unknown gap
times. Therefore we also sample the future paths of the covariates under the hypothesis
of “missing at random”. The R package mi was used in order to sample the missing
covariates and to lead to more realistic estimates.

4.3 Posterior analysis

We now present the inference corresponding to the application of this model to the
readmission dataset.

In this section, the hyperparameters of the prior distributions are

β0 = 10;

ν0 = 4.02; σ0 = 0.7089;

M = 0.1;

σ2
W = 100; aZ = −1; bZ = 1.

The hyperparameters related to the base measure G0 of the DP prior are chosen as
non-informative as possible (normal distributions with high variance and uniform distri-
butions over the domain interval for intercept and slope terms, respectively).

As far as the choice of the hyperparameters of σ2 is concerned, the values are chosen
in order to obtain an a priori expected value of 1 and an a priori variance equal to 100.
In fact, the following equations

E[σ2] =

ν0σ2
0

2
ν0
2 − 1

=
ν0σ

2
0

ν0 − 2
= 1

Var(σ2) =

ν20σ
4
0

4

(ν02 − 1)2(ν02 − 2)
=

2ν2
0σ

4
0

(ν0 − 2)2(ν0 − 4)
= 100

lead to the values described above. Moreover, the model is robust with respect to the
specification of the hyperparameters (ν0, σ0). In another setting the values ν0 = 2, σ2

0 = 1

were tried, yielding a prior distribution with heavy tails for σ2 (neither the first nor the
second moment exist). In this latter case, the posterior inference results were the same.

Analogously, a high value for the standard deviation of the covariate parameters βj
is set. Even in this case a robustness analysis was performed, by setting a even higher
value β0 = 50. No change in the posterior results could be detected.
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Posterior estimates are computed via the collapsed Gibbs sampler algorithm presented
in Section 3.2.2. We run the algorithm in Julia for 200, 000 iteration, while the first 50, 000

iterations were discarded and we use a thinning of 30 to reduce the autocorrelation of
the Markov chain. The final sample size is then 5000.

4.3.1 Posterior inference on the number of clusters and predictive in-
ference for cluster-specific parameters

Here the inference on the parameters relative to the different clusters is illustrated. With
our model, the posterior mode of the number of clusters is 4 with a probability of around
70%, but also 5 clusters is a plausible value, as shown in Figure 4.3.

In Figure 4.2 the values of the posterior predictive distributions for each component of
the cluster specific parameter α are displayed. Let us remark that J = 6 corresponds to
a 11-dimensional α parameter. However, we here decided to illustrate only the inference
on the most significant components, i.e. from the first to the seventh component, as the
last ones are updated by a lot of imputed (non-observed) data and therefore they have
large variances.

Let us now analyse how the observations are clustered together according to their
entire trajectories. Let us recall that the optimal partition was calculated via the loss
function method presented in 3.2.3. In Figure 4.4 the trajectories and the recurrent
events of the patients are displayed, coloured according to their cluster labels.

Let us try to give a qualitative description of the clustering structures. As one can
see, the first group of patients is the largest, and it is characterised by a few recurrent
events (2 or 3). The second group mainly consists of patients having a high number of
recurrent events. The third group, instead, puts together patients with a lot of events
occurring rapidly. The last two groups exhibit different behaviours.

In Section 4.5 we provide a robustness analysis for the clustering structure with
respect to the choice of the DP prior, and we see how the optimal partition changes
accordingly.
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(a) Predictive density of α12.

(b) Predictive density of α21. (c) Predictive density of α22.

(d) Predictive density of α31. (e) Predictive density of α32.

(f) Predictive density of α41. (g) Predictive density of α42.

Figure 4.2: In black solid line, kernel density estimates of the predictive distributions of the α
parameters. The red ticks on the x-axis represent the sampled values.
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Figure 4.3: Prior and posterior number of clusters, i.e. of the number of unique values in the
αi’s.

Figure 4.4: In vertical lines, the total length of the paths for each patient. The points represent
the recurrent events, and the colours are defined by the cluster labels.
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4.3.2 Posterior inference on the regression parameters

We now discuss the inference on the regression parameters in order to understand how
covariates influence the recurrent events, regardless of the underlying structure of the
trajectories (which is captured by the cluster-specific parameters). In this section, we
denote with β̃i the vector of the parameter relative to the ith covariate for each gap
time. Remark that, on the other hand, we denoted with βi the vector of all the covariate
parameters for the ith gap time.

First of all, the convergence of the chain is checked via Geweke’s statistics. The idea
behind this test is simple: it is analogous to a test for the equality of the means of the
first and last part of a Markov chain (by default the first 10% and the last 50%). If the
samples are drawn from the stationary distribution of the chain, the two means are equal
and Geweke’s statistic has an asymptotically standard normal distribution. In Figure 4.5
the test statistics are displayed. Since the values in the interval [−2, 2] in the majority
of cases, we can conclude that the MCMC chain is stationary.

Figure 4.5: Geweke’s diagnostic of convergence for β̃4.

Let us focus on the influence that each covariate has on the outcome variable. By
analysing Figure 4.6, which shows the 95% credible intervals for the posterior marginals
of the regression parameters, one can deduce the following considerations.

◦ β̃1, which captures the effect of the chemotherapy on the gap times, does not seem
to be significant for the first gap times. However, at the fourth gap time the CI
for β14 is concentrated on negative values, which means that chemotherapy reduces
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(a) Posterior 95% CI for β̃1. (b) Posterior 95% CI for β̃2.

(c) Posterior 95% CI for β̃3. (d) Posterior 95% CI for β̃4.

(e) Posterior 95% CI for β̃5. (f) Posterior 95% CI for β̃6.

Figure 4.6: Posterior 95% credible bounds for each covariate β1, . . . ,βp as a function of the gap
times.

the fourth waiting time between hospitalisations, i.e. the time elapsed between the
fourth and the fifth recurrent events. In general, however, there does not seem to
be an effect of chemotherapy on the outcome.

◦ β̃2, which measures the effect of sex on the gap times, indicates that women have
mainly larger waiting times. This is more evident for the second and the fourth
component, but a trend is visible at each recurrent event. This result is not sur-
prising: in fact, this dataset has been originally used in order to find evidence of a
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disparity of treatment between women and men.

◦ β̃3, the first dummy variable relative to the Dukes stage of the tumour (stage C
versus the baseline stage A-B), is never significantly different from 0.

◦ β̃4, the second dummy variable relative to the Dukes stage of the tumour (stage D
versus the baseline stage A-B), is negative for the gap times from 1 to 3 and positive
for the two last gap times. Therefore, seriously ill patients (stage D represents the
most advanced stage of the tumour) present early and frequent hospitalisations at
the beginning of the study, followed by an opposite effect (delayed hospitalisations).

◦ β̃5, the first dummy variable relative to the Charlson Index of the patient (index
1-2 versus the baseline index 0), has negative medians, apart from the last gap time,
which is updated by a few data as one can see in Table 4.3. Therefore patients
with index 1-2 will experience more frequent recurrent events with respect to the
ones with index 0.

◦ β̃6, the second dummy variable relative to the Charlson Index of the patient (index
3 versus the baseline index 0), is mostly negative (significantly at gap times 2 and
4). Therefore patients with index 3 will have shorter gap times with respect to the
ones with index 0.

Let us remark that, in general, credibility intervals are larger for the last gap times.
In fact, the variance of the Gibbs step is increased by the presence of more and more
missing gap times.

4.4 Comparison with existing models

Our model is now compared to one of the most popular models in literature: the shared
frailty model. This model is usually used as a tool for handling multivariate data in
the presence of censoring. Basically, frailty models in this context are random effects
models, analogous to those well known from linear normal model theory. However, the
frailty models are better adapted to handle censored data than the normal models. The
dependence is modelled through a frailty variable, such that all gap times that are related
to each other in the same observation have the same level of frailty attached to them.

Let us denote with Wij the recurrent events, with Cij the right-censored times and
with Lij the left-censoring times. Let us define the observations Yij = min{Wij , Cij} and
the censoring indicators δij = I{Yij=Cij}.
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Number of readmissions
1 2 3 4 5 6

Sex
Male 122 103 49 24 12 6
Female 75 64 22 11 5 2

Chemotherapy
Yes 91 77 29 13 10 5
No 106 90 42 22 7 3

Dukes Stage
A-B 76 67 28 12 5 1
C 79 70 30 15 8 6
D 42 30 13 8 4 1

Charlson Index
0 136 117 54 27 11 3
1-2 14 10 3 1 2 1
3 47 40 14 7 4 4

Table 4.3: Contingency table containing the frequency distribution and of the covariates with
respect to the number of hospital readmissions.

The hazard function, conditional on the frailty term ωi, of a shared gamma frailty
model for the jth gap time (j = 1, . . . , ni) in the ith observation (i = 1, . . . , n) is

λij(t|ωi) = λ0(t)ωie
βTxij

ωi
iid∼ Γ

(
1

θ
,
1

θ

)
E(ωi) = 1; Var(ωi) = θ

where λ0(t) is the baseline hazard function, β the vector of the regression coefficient
associated to the covariate vector xij for the jth gap time in the ith observation.

From a frequentist perspective, this model usually uses a semi-parametric penal-
ized likelihood estimation of the hazard function. The analytical expression of the log-
likelihood is

l(h0,β, θ) =

n∑
i=1

 ni∑
j=1

δij ln(hij(Yij))

− (1

θ
+ ni

)
ln

1 + θ

ni∑
j=1

Hij(Yij)


+

1

θ
ln

1 + θ

ni∑
j=1

Hij(Lij)

+ I{ni 6=0}

ni∑
j=1

ln [1 + θ(ni − k)] ,
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where H0(t) is the cumulative baseline hazard function and ni is the number of recurrent
events.

The package readmission provides an estimate of the hazard function of such a model.
In particular, we obtain the results displayed in Listing 4.1.

1 frailtyPenal(formula = Surv(time, event) ~ cluster(id) + dukes +

2 charlson + sex + chemo, data = readmission, cross.validation = TRUE,

3 n.knots = 10, kappa = 1, Frailty = TRUE)

4
5 Shared Gamma Frailty model parameter estimates

6 using a Penalized Likelihood on the hazard function

7
8 coef exp(coef) SE coef (H) SE coef (HIH) z p

9 chemoTreated 0.189774 1.208976 0.109905 0.109905 1.72671 8.4220e-02 *
10 sexFemale -0.306604 0.735942 0.109955 0.109955 -2.78845 5.2961e-03 ***
11 dukesC 0.147713 1.159180 0.124164 0.124164 1.18966 2.3418e-01

12 dukesD 0.436850 1.547824 0.154300 0.154300 2.83117 4.6378e-03 ***
13 charlson1-2 0.536444 1.709916 0.203579 0.203579 2.63507 8.4119e-03 ***
14 charlson3 0.581047 1.787910 0.129561 0.129561 4.48473 7.3005e-06 ***
15
16 chisq df global p

17 dukes 30.0903 2 2.92e-07 ***
18 charlson 10.9222 2 4.25e-03 ***
19
20 Frailty parameter, Theta: 0.660083 (SE (H): 0.141426 ) p = 1.5256e-06

21
22 penalized marginal log-likelihood = -3243.13

Listing 4.1: R output of the frailty model

First of all, let us remark that θ, i.e. the variance of the frailty parameters, is
significantly different from 0, which can be shown with a Wald test whose p-value is
1.52 · 10−6. Thus, the observations are heterogeneous and our clustering analysis is
meaningful.

Moreover, the significant covariates are, according to this model, (β2, β4, β5, β6). Re-
mark that a negative coefficient in this hazard model corresponds to a positive coefficient
in our model. When β ≤ 0 the hazard function is smaller, which means that the next
recurrent event does not happen soon (i.e. the gap time is greater). Therefore the results
of the shared frailty model are in agreement with the ones provided by our model. First
of all, female patients experience greater gap times. Furthermore, patients more seriously
ill (as indicated by high values of Dukes Stage or Charlson Index) have smaller gap times
and therefore more recurrent events.
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In conclusion, the results of the model proposed in this work agree with existing
models in survival analysis. However, specifying a Bayesian non-parametric model pro-
vides with a more flexible estimation of the dependence that each hospitalisation has on
the following ones. In particular, our model allows us to specify time-specific regression
parameters and to inspect the influence of the covariates at each gap time. Moreover,
our model provides with a clustering structure by grouping patients that share similar
patterns in their trajectories. Furthermore, by modelling the gap times directly (and not
by means of the hazard function), the prediction is straightforward and more precise.

4.5 Robustness analysis for the DP prior

In this section a robustness analysis with respect to the choice of the DP prior is carried
out. In fact, it is well-known that non-parametric models suffer from the high sensitivity
with respect, in particular, to the choice of the base measure G0.

Test Case M Distribution of Zi’s Distribution of Wi’s

A 0.1 Uniform(−1, 1) N (0, 10)

B 1 Uniform(−1, 1) N (0, 10)

C 3 Uniform(−1, 1) N (0, 10)

D 0.1 Uniform(−1, 1) N (0, 4)

E 1 Uniform(−1, 1) N (0, 4)

F 3 Uniform(−1, 1) N (0, 4)

G 0.1 2 · Beta(0.5, 0.5)− 1 N (0, 10)

H 1 2 · Beta(0.5, 0.5)− 1 N (0, 10)

I 3 2 · Beta(0.5, 0.5)− 1 N (0, 10)

Table 4.4: Different settings of hyperparameters of the prior tested for the robustness analysis.

For this reason, we test the model in 9 different configurations of the prior hyperpa-
rameters. Both the total mass parameter M and the components of the base measure,
i.e. the random variables Zi’s and Wi’s, vary in the test cases from A to I. In particular,
the total mass parameter M varies from 0.1 to 3, causing a shift in the prior distribu-
tion for the number of clusters. The components of G0, instead, are chosen to be as
non-informative as possible in cases A - C. They are successively localised in cases D -
F (lower variance for the components Wi’s) and in cases G - I (scaled Beta distribution
giving high mass to the extremes of the domain for the components Zi’s).

Note that in experiments A, D and G we fixed M = 0.1 so that E[Kn] = 1.568; in
cases B, E and H we set M = 1 so that E[Kn] = 5.841; in experiments C, F and I we
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chose M = 3 so that E[Kn] = 13.149.

Figure 4.7: Prior distributions of the variable Kn denoting the number of clusters, in cases
M = 0.1, M = 1, and M = 3.

Let us also remark that the Dirichlet process induces a prior on the number of clusters
which has only one degree of freedom, i.e. the parameter M . Therefore, when increasing
the value of M , a double effect is obtained. The prior mode shifts to the right, and the
variance increases as well, yielding a flatter distribution, as one can see in Figure 4.7.

Before presenting the results of the robustness analysis, an index for the goodness-
of-fit of the model has to be introduced. In this framework, we choose the Log Pseudo
Marginal Likelihood (LPML) in order to evaluate the performances of the model and to
compare the results obtained with different sets of parameters. The LPML is defined
as the sum of the logarithms of the Conditional Predictive Ordinates (CPO) for each
observation, i.e.

LPML =

n∑
i=1

log(CPOi).

CPOi is the value of the predictive distribution evaluated at yi, conditioning on the
training sample not containing the ith observation, denoted with y(−i). This approach is
very common in cross validation techniques, when the data matrix is partitioned in two
parts: one is used to estimate the parameters, and the other to measure the goodness of
fit. Obviously, the larger the values of the CPO (and, subsequently, of the LPML) the
better the model fits the data.
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The calculation of LPML consists in the evaluation of n predictive distributions,
which can be computationally intense. However, an alternative formula can be proved
for CPOi = fi(yi|y(−i)). In fact,

CPOi = fi(yi|y(−i)) =

∫
Θ
fi(yi|θ)L(dθ|y(−i))

=

∫
Θ
fi(yi|θ)

∏
j 6=i fj(yj |θ)L(dθ)∫

Θ

∏
j 6=i fj(yj |θ)Li(dθ)

,

where we used Bayes’ theorem. Therefore

CPO−1
i =

∫
Θ

∏
j 6=i fj(yj |θ)L(dθ)∫

Θ

∏n
i=1 fj(yj |θ)L(dθ)

=

∫
Θ

1

fi(yi|θ)

∏n
i=1 fi(yi|θ)L(θ)dθ∫

Θ

∏n
i=1 fj(yj |θ)L(dθ)

=

∫
Θ

1

fi(yi|θ)
L(dθ|y) ' 1

G

G∑
g=1

1

fi(yi|θ(g))
,

where G is the number of iterations and θ(g) is the value of the chain at iteration g.
In Table 4.5, values of the LPML index for every test are listed.

Test Case LPML

A −775.34

B −762.03

C −748.30

D −764.18

E −747.32

F −745.64

G −754.30

H −752.02

I −745.92

Table 4.5: LPML values in each test case.

Observe that a more complex model will usually be able to better explain the data,
and subsequently it will produce a higher value of LPML. In fact, it is clear from Table
4.5 that this index depends on the choice of M : in the test cases when more clusters are
provided, the values of LPML are higher.
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Figure 4.8: Trajectories of the clustered data for test case A. Lines represent the observations with
more than one gap time. Points represent the observations with only one event. The incidence
matrix is represented in the bottom-right box.

Figure 4.9: Trajectories of the clustered data for test case B. Lines represent the observations with
more than one gap time. Points represent the observations with only one event. The incidence
matrix is represented in the bottom-right box.
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Figure 4.10: Trajectories of the clustered data for test case C. Lines represent the observations
with more than one gap time. Points represent the observations with only one event. The
incidence matrix is represented in the bottom-right box.
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Figure 4.11: Trajectories of the clustered data for test case D. Lines represent the observations
with more than one gap time. Points represent the observations with only one event. The
incidence matrix is represented in the bottom-right box.

Figure 4.12: Trajectories of the clustered data for test case E. Lines represent the observations
with more than one gap time. Points represent the observations with only one event. The
incidence matrix is represented in the bottom-right box.
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Figure 4.13: Trajectories of the clustered data for test case F. Lines represent the observations
with more than one gap time. Points represent the observations with only one event. The
incidence matrix is represented in the bottom-right box.
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Figure 4.14: Trajectories of the clustered data for test case G. Lines represent the observations
with more than one gap time. Points represent the observations with only one event. The
incidence matrix is represented in the bottom-right box.

Figure 4.15: Trajectories of the clustered data for test case H. Lines represent the observations
with more than one gap time. Points represent the observations with only one event. The
incidence matrix is represented in the bottom-right box.
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Figure 4.16: Trajectories of the clustered data for test case I. Lines represent the observations
with more than one gap time. Points represent the observations with only one event. The
incidence matrix is represented in the bottom-right box.
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From Figure 4.8 to Figure 4.16 the trajectories of the data for each cluster are dis-
played, according to the prior settings specified in Table 4.4. Again, it is evident that
the choice of M strongly influences the posterior number of clusters and, subsequently,
the optimal partition. Moreover, let us remark that a value of M = 3 is likely to overfit
the model by splitting the data in a too large number of clusters. This is evident in
Figure 4.10, in Figure 4.13 and in Figure 4.16. By visual inspection, it is clear that 3 or 4

clusters represent well the data. Additional clusters include only few data and therefore
are redundant.

Let us analyse the behaviour of the data in the most representative clusters. In Figure
4.9 one can see that the yellow cluster contains data with few recurrent events, which
are characterised by an increasing trend. In the orange cluster, longer trajectories are
included, and their similar pattern is evident by the lowest peak at the third gap time.
In the red cluster, an oscillating behaviour is observable. As far as the violet cluster
is concerned, recurrent events with a lowest peak at the second gap time are grouped.
These patterns can be found also in Figure 4.9 and in Figure 4.15 (apart from the label
switching that causes a colour change), thus confirming that the optimal partition is
robust with respect to the prior specification of the base measure G0.

In order to be even more general with respect to the DP prior specification, one could
introduce a prior distribution for M . In the classical framework (see Escobar and West,
1995) a Gamma distribution forM is used, which leads to a conjugate model. If no prior
information is available, this choice allows to specify a vague prior distribution that will
further be localised by the data. Alternatively, one can exploit a prior belief on M and
include it in the prior distribution for M .

All the other parameters, i.e. σ2 and the regression coefficients β1, . . . ,βJ are ro-
bust with respect to the prior specification of the Dirichlet process and therefore their
inferences are not reported here.
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Conclusions and further
developments

This work has proposed a new Bayesian semiparametric model to study recurrent event
times. In particular, time-dependency among waiting times is taken into account through
an autoregressive model, whose parameters are a sample from a Dirichlet process. There-
fore, a clustering model on the items in the sample is induced by the model via the min-
imisation of a suitable loss function. In particular, clusters are created according to the
entire trajectories of the event counts over the period of observation, i.e. observations are
assumed to have the same number of recurrent events. Both fixed and time-dependent
covariates may be included in this framework. Thus, this model can be useful for the
management of health care services, whose interest is the prediction of the next hospi-
talisation in order to plan the resources appropriately.

A remarkable achievement is that this model is pretty robust with respect to the
prior specification, which is a non-trivial issue in Bayesian nonparametrics. The cluster-
ing structure is, as expected, sensitive with respect to the total mass parameter of the
DP prior. However, the choice of the other hyperparameters does not alter the results.
Moreover, the Polya scheme adopted is, in the class of the Dirichlet Process Mixture
models, very flexible because it allows to specify any kind of non-conjugate prior as the
base measure of the Dirichlet Process. Given the complexity of the model, an efficient im-
plementation was needed. Thus, the computational burden of this algorithm was reduced
through the use of the Julia language, whose computational execution outperformed the
one given by the R software.

As far as the drawbacks are concerned, this work needs a further generalisation in or-
der to be completed. In fact, albeit already useful for hospital planning, the introduction
of the eventual death of the patients would allow to use this model for medical purposes,
too. In fact, until now we assumed that each patient experiences the same number of
recurrent events before leaving the study. The joint modelling of the two processes, i.e.
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gap times and survival, is the most intuitive continuation of this work. A survival model
can be specified for the time-to-event (i.e. death) and an autoregressive model can be
used for gap times.

Apart from the generalisation already discussed, other future developments are con-
ceivable using this work as a starting point. For example, as a classical refinement of
Bayesian non-parametric models, another level of hierarchy can be added in order to in-
fer on the total mass parameter and to make the model less sensitive with respect to its
choice. Moreover, the variance of the data density could be included in the DP sample.
This latter choice would make the model more flexible, leading to heteroscedasticity in
the groups of items.
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Appendix A

Full conditionals and other
calculations

A.1 Moments of the density of the data

The expected value of the observations Yi, conditionally to the parameters, is

µi =


E[Yi1|xi1,β1,αi, σ]

E[Yi2|xi2,β2,αi, σ]
...
E[YiJ |xiJ ,βJ ,αi, σ]


where

E[Yi1|param] = xTi1β1 + αi12

E[Yi2|param] = E [E[Yi2|Yi1, param]|param] = xTi2β2 + αi21(xTi1β1 + αi12) + αi22.

The following recursive formula is then deduced:

E[Yij |param] = xTijβj + αij1E[Yij−1|param] + αij2.

As far as the covariance matrix Σi is concerned, conditionally to all the other param-
eters, we have

Σi =


Var(Yi1) Cov(Yi1, Yi2) Cov(Yi1, Yi3)

Var(Yi2) Cov(Yi2, Yi3)

Var(Yi3)
. . .

 .
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We report here the calculation of the variances:

Var(Yi1) = σ2

Var(Yi2) = E[Var(Yi2|Yi1)] + Var(E[Yi2|Yi1])

= σ2 + Var(αi21Yi1 + αi22) = σ2(1 + α2
i21)

Var(Yi3) = . . .

= σ2 + α2
i31Var(Yi2) = σ2(1 + α2

i31 + α2
i31α

2
i21).

The following recursive formula is then deduced:

Var(Yij) = σ2 + α2
ij1Var(Yij−1).

One can also calculate the covariances

Cov(Yi1, Yi2) = E[Yi1Yi2]− E[Yi1]E[Yi2] = E [Yi1E[Yi2|Yi1]]− E[Yi1]E[Yi2]

= (xTi2β2 + αi22)E[Yi1] + αi21E[Y 2
i1]− (xTi2β2 + αi22)E[Yi1]− αi21

(
E[Y 2

i1]
)

= αi21σ
2

where we exploited the fact that

E[Y 2
i1] = Var(Yi1) + (E[Yi1])2 .

Analogously, one can write the recursive formula

Cov(Yi1, Yij) = αij1αij−11 . . . αi21σ
2.

Therefore, the covariance matrix is filled with the following values

Σi = σ2


1 αi21 αi31αi21 αi41αi31αi21

1 + α2
i21 αi31(1 + α2

i21) αi41αi31(1 + α2
i21)

1 + α2
i31 + α2

i31α
2
i21 αi41(1 + α2

i31 + α2
i31α

2
i21)

. . .

 .

A.2 Full conditional for σ2

Given the model

Yi|αi,xi,β1, . . . ,βni , σ
ind∼ Nni(µi,Σi)

σ2 ∼ inv-gamma
(
ν0

2
,
ν0σ

2
0

2

)
,
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we find a simple expression for the posterior distribution. In fact, recalling the alternative
parametrisation of the density of the data k(y;αi,β1, . . . ,βni ,xi, σ) as a function of the
previous gap times, one can write

L(σ2|Y, rest) ∝ L(Y;σ2, rest)L(σ2)

=

n∏
i=1

[(
1

(2π)ni det(σ2Ini)

) 1
2

e−
1
2

(yi−µi)T (σ2Ini )
−1(yi−µi)

]

·

(
ν0σ2

0
2

) ν0
2

Γ
(
ν0
2

) (
1

σ2

) ν0
2

+1

e−
ν0σ

2
0

2
1
σ2

∝
n∏
i=1

[(
1

σ2

)ni
2

e−
1

2σ2
(yi−µi)T (yi−µi)

]

·
(

1

σ2

) ν0
2

+1

e−
ν0σ

2
0

2
1
σ2

∝
(

1

σ2

) ν0+
∑n
i=1 ni
2

+1

e−
1

2σ2
(ν0σ2

0+
∑n
i=1(yi−µi)T (yi−µi)).

Hence we have

σ2|Y, rest ∼ inv-gamma
(
ν0 +

∑n
i=1 ni

2
,
ν0σ

2
0 +

∑n
i=1(yi − µi)T (yi − µi)

2

)
,

which, in the case of trajectories of length J , i.e. when
∑n

i=1 ni = nJ , is the same
expression of (3.10).

A.3 Full conditionals for βj

Given the model

Yi|αi,β1, . . . ,βJ ,xi, σ
ind∼ NJ(µi,Σi)

β1, . . . ,βJ
iid∼ Np(0, β2

0 · Ip).

we want here to write the full conditionals for the update of β1, . . . ,βJ .

For each observation, let us define the transformed data

Ỹi1 = Yi1 − αi11

Ỹi2 = Yi2 − αi21Yi1 − αi22

...

ỸiJ = Yini − αini1YiJ−1 − αiJ2
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and the vectorial quantities

Ỹ1 = (Ỹ11, Ỹ21, . . . , Ỹn1)

...

Ỹj = (Ỹ1j , Ỹ2j , . . . , Ỹnj) ∀j = 2, . . . , J.

Therefore we can update the βj ’s one at the time. In fact, for each gap time the
framework is the following (we write here the first gap time, but the full conditionals are
the same ∀j = 1, . . . , J): Ỹ1|X,β1, σ,α ∼ Nn(Xβ1, σ

2In)

β1 ∼ Np(0, β2
0 · Ip).

The posterior density is then

L(β1|Ỹ1, rest) ∝ L(Ỹ1;β1, rest)L(β1)

=

(
1

2πσ2

)n
2

e−
1

2σ2
(ỹ1−Xβ1)T (ỹ1−Xβ1)

(
1

2πβ2
0

) p
2

e
− 1

2β20
βT1 Ipβ1

.
(A.1)

Let us reparametrise the exponentiated quantity

(ỹ1 − Xβ1)T (ỹ1 − Xβ1) = (ỹT1 − βT1 XT )(ỹ1 − Xβ1)

= ỹT1 ỹ1 − 2βT1 XT ỹ1 + βT1 XTXβ1

by adding and substituting the same quantity

S = (ỹ1 − Xβ̂1)T (ỹ1 − Xβ̂1) = ỹT1 ỹ1 − 2β̂T1 XT ỹ1 + β̂T1 XTXβ̂1,

where
β̂1 = (XTX)−1XT ỹ1.

We then get

(ỹ1 − Xβ1)T (ỹ1 − Xβ1) = βT1 XTXβ1 + 2β̂T1 XT ỹ1 − 2βT1 XT ỹ1 − β̂T1 XTXβ̂1 + S

= βT1 XTXβ1 + 2(β̂T1 − βT1 )XTX(XTX)−1XT ỹ1 − β̂T1 XTXβ̂1 + S

= βT1 XTXβ1 + 2β̂T1 XTXβ̂1 − 2βT1 XTXβ̂1 − β̂T1 XTXβ̂1 + S

= βT1 XTXβ1 + β̂T1 XTXβ̂1 − 2βT1 XTXβ̂1 + S

= (β1 − β̂1)TXTX(β1 − β̂1) + S.

By plugging this quantity in (A.1) one obtains

L(β1|Ỹ1, rest) ∝ e−
1

2σ2
(β1−β̂1)TXTX(β1−β̂1)e

− 1

2β20
βT1 Ipβ1

.
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Let us now rewrite the exponential in terms of a quadratic form in β1:

− 1

2σ2
(β1 − β̂1)TXTX(β1 − β̂1)− 1

2β2
0

βT1 Ipβ1

=− 1

2

[
(β1 − β̂1)T

XTX
σ2

(β1 − β̂1) + βT1
Ip
β2

0

β1

]
=− 1

2

[
βT1

XTX
σ2

β1 − 2βT1
XTX
σ2

β̂1 + β̂T1
XTX
σ2

β̂1 + βT1
Ip
β2

0

β1

]
.

By defining the quantities

Bn =

(
XTX
σ2

+
Ip
β2

0

)−1

,

b1n =

(
XTX
σ2

+
Ip
β2

0

)−1
(
XTXβ̂1

σ2

)
= Bn

XT ỹi
σ2

,

and noticing that

B−1
n b1n =

XTXβ̂1

σ2
=

XT ỹi
σ2

,

we rewrite

− 1

2σ2
(β1 − β̂1)TXTX(β1 − β̂1)− 1

2β2
0

βT1 Ipβ1

=− 1

2σ2

[
βT1 B

−1
n β1 − 2βT1 B

−1
n b1n + β̂T1 B

−1
n b1n

]
=− 1

2σ2

[
βT1 B

−1
n β1 − 2βT1 B

−1
n b1n + bT1nB

−1
n b1n − bT1nB−1

n b1n + β̂T1 B
−1
n b1n

]
=− 1

2σ2

[
(β1 − b1n)TB−1

n (β1 − b1n)T − bT1nB−1
n b1n + β̂T1 B

−1
n b1n

]
.

Therefore the posterior density is

L(β1|Ỹ1, rest) ∝ e−
1

2σ2
(β1−b1n)TB−1

n (β1−b1n)T ,

and a Gibbs sampling scheme can be adopted using

β1|Ỹ1, rest ∼ Np(b1n, Bn).

The same strategy can be adopted for each of the successive gap timesỸj |Yj−1,X,βj , σ,α ∼ Nn(Xβj , σ2In)

βj ∼ Np(0, β2
0Ip)

⇒ βj |Ỹj , rest ∼ Np(bjn, Bn) ∀j = 2, . . . , J.
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Appendix B

Implementation in Julia

In this appendix, the implementation in Julia language is presented.

First of all, a function that calculates the mean vector and the covariance of the
density kernel k(y;αi,β1, . . . ,βJ ,xi, σ), given the data, is needed. Straightforward it
is implementable another function that calculates the density of the J-variate normal,
given the data and the parameters.

1 # Function that returns the mean vector and the variance matrix of the density of the

data

2 function moments(y::Vector, x::Array{Float64,2}, beta::Array{Float64,2}, alpha::Array{

Float64,2}, sig::Float64)

3
4 J = convert(Int64, (length(alpha)+1)/2)

5 media = zeros(J)

6 diagonal = zeros(J)

7 Sigma = zeros(Float64, J, J)

8
9 media[1] = dot(vec(x[1,:]),beta[:,1]) + alpha[1]

10 diagonal[1] = sig^2

11
12 if J > 1

13 for j in 2:J

14 media[j] = dot(vec(x[j,:]),beta[:,j]) + alpha[2*j-2]*y[j-1] + alpha[2*j-1]

15 diagonal[j] = sig^2

16 end

17 end

18 Sigma = diagm(diagonal)

19
20 return media, Sigma

21 end;

22
23 # Function that returns the density of the J-variate normal with given parameters, in a

specific point R^J

24 function f_dens(y::Vector, x::Array{Float64,2}, beta::Array{Float64,2}, alpha::Array{

Float64,2}, sig::Float64)
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25
26 J = convert(Int64, (length(alpha)+1)/2)

27
28 if (length(y) != J)

29 print("Dimension of Y should be equal to J")

30 return -1

31 else

32 media, Sigma = moments(y, x, beta, alpha, sig)

33 end

34
35 if J == 1

36 d1 = Normal(media[], sqrt(Sigma)[])

37 return pdf(d1, y)

38 else

39 d1 = MvNormal(media, Sigma)

40 return pdf(d1, y)

41 end

42 end;

Listing B.1: Functions used to calculate the density of the data, given a set of parameters.

Then, the part of Gibbs Sampling relative to the label update is written, according
to Algorithm 8 in Neal (2000).

1 # This function is the implementation of Algorithm 8 in Neal (2000).

2 # The input s is the configuration vector (s_i takes values in 1, ..., k, where k is

the number of rows of phi, i.e. the number of clusters).

3 # s_i is the label of the ith observation (if s_i = s_j then the observations are in

the same cluster).

4 # phi is the vector of the unique cluster specific parameters

5 # nphi denotes the size of each cluster

6 # y is the data matrix (dimension n*J)

7 # a is the total mass of the DP

8 function samp_conf(iter::Int, s::Array{Int,2}, phi::Array{Float64,2}, sig::Array{

Float64,1}, nphi::Array{Int,1}, y::Array{Float64,2}, x::Array{Float64,2}, ni::

Array{Int,1}, beta::Array{Float64,3}, a::Float64, m::Int)

9
10 n, J = size(y)

11 k = length(nphi)

12 ncov = size(x)[2]

13
14 d1 = Uniform(-1, 1)

15 d2 = Normal(0,10)

16
17 s_act = copy(s[iter-1,:])

18 phi_act = copy(phi)

19 beta_act = copy(reshape(beta[iter-1,:,:], ncov, J))

20
21 for i in 1:n

22 # actual covariate indices

23 idx_cov = copy(collect(((i-1)*J+1):(J*i)))

24
25 if nphi[s_act[i]]==1 # case when s_i is the only observation in a cluster
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26 k -= 1

27 deleteat!(nphi, s_act[i])

28 app = phi_act[s_act[i],:]

29 phi_act = phi_act[1:size(phi_act,1) .!= s_act[i],:]

30
31 # now the elements of s vary in 1, ..., k- (which is k-1)

32 ind = s_act .> s_act[i]

33 s_act[ind] -= 1

34
35 phiaug = zeros(m-1, 2*J-1)

36 for j in 1:(2*J-1)

37 if j%2 == 1

38 phiaug[:,j] = copy(rand(d2, m-1))

39 else

40 phiaug[:,j] = copy(rand(d1, m-1))

41 end

42 end

43 phiaug = vcat(app, phiaug) # augmenting vector

44
45 probold = Array(Float64, k)

46 for h in 1:k

47 probold[h] = log(nphi[h]) + log(f_dens(vec(y[i,:]), x[idx_cov,:], beta_act,

phi_act[h,:], sig[iter-1]))

48 end

49 probnew = Array(Float64, m)

50 for h in 1:m

51 probnew[h] = log(a) - log(m) + log(f_dens(vec(y[i,:]), x[idx_cov,:], beta_

act, phiaug[h,:], sig[iter-1]))

52 end

53
54 # normalisation trick with log-sum-exp

55 log_probs = copy(cat(1, probold, probnew))

56 norm_probs = copy(exp(log_probs - log(sum(exp(log_probs)))))

57
58 if isprobvec(vec(norm_probs)) # check for underflow

59 s_act[i] = rand(Categorical(vec(norm_probs)), 1)[]

60 else

61 print("WARNING: underflow \n")

62 end

63
64 if s_act[i]<=k # the new configuration is in one of the old clusters

65 nphi[s_act[i]] += 1

66 else # new cluster

67 phi_act = vcat(phi_act,phiaug[s_act[i]-k,:])

68 push!(nphi, 1)

69 s_act[i] = k+1

70 k += 1

71 end

72
73 else # case when nphi[s[i]]>1

74 nphi[s_act[i]] -= 1

75
76 phiaug = zeros(m, 2*J-1)
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77 for j in 1:(2*J-1)

78 if j%2 == 1

79 phiaug[:,j] = copy(rand(d2, m))

80 else

81 phiaug[:,j] = copy(rand(d1, m))

82 end

83 end

84
85 probold = Array(Float64, k)

86 for h in 1:k

87 probold[h] = log(nphi[h]) + log(f_dens(vec(y[i,:]), x[idx_cov,:], beta_act,

phi_act[h,:], sig[iter-1]))

88 end

89 probnew = Array(Float64, m)

90 for h in 1:m

91 probnew[h] = log(a) - log(m) + log(f_dens(vec(y[i,:]), x[idx_cov,:], beta_

act, phiaug[h,:], sig[iter-1]))

92 end

93
94 # normalisation trick with log-sum-exp

95 log_probs = copy(cat(1, probold, probnew))

96 norm_probs = copy(exp(log_probs - log(sum(exp(log_probs)))))

97
98 if isprobvec(vec(norm_probs)) # check for underflow

99 s_act[i] = rand(Categorical(vec(norm_probs)), 1)[]

100 else

101 print("WARNING: underflow \n")

102 end

103
104 if s_act[i]<=k # the new configuration is in one of the old clusters

105 nphi[s_act[i]] += 1

106 else # new cluster

107 phi_act = vcat(phi_act,phiaug[s_act[i]-k,:])

108 push!(nphi, 1)

109 s_act[i] = k+1

110 k = k+1

111 end

112 end

113 end

114
115 s[iter,:] = copy(s_act);

116
117 return(phi_act)

118 end;

Listing B.2: Implementation of Algorithm 8 in Neal (2000)

After the update of the labels, the cluster specific parameters α∗ have to be updated
with a step of Metropolis-within-Gibbs algorithm as in (3.8).

1 # Metropolis step for the update of the cluster specific parameters alpha*.

2 function block_upd(iter::Int, s::Array{Int, 2}, phi::Array{Float64,2}, sig::Array{

Float64,1}, nphi::Array{Int,1}, x::Array{Float64,2}, ni::Array{Int,1}, beta::Array
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{Float64,3}, y::Array{Float64,2})

3
4 n = size(s)[2]

5 k = length(nphi)

6 J = size(y)[2]

7 ncov = size(x)[2]

8
9 # Let us define the proposal distribution

10 sig_prop = zeros(2*J-1)

11 for i = 1:(2*J-1)

12 if i%2 ==1

13 sig_prop[i] = 0.01

14 else

15 sig_prop[i] = 0.001

16 end

17 end

18 phi_act = copy(phi)

19 beta_act = copy(reshape(beta[iter-1,:,:], ncov, J))

20
21 d1 = Uniform(-1, 1)

22 d2 = Normal(0,10)

23 sig2_alpha = 100

24 mu_alpha = 0

25
26 for h in 1:(2*J-1)

27 for i in 1:k

28 # data indices of the cluster i

29 idx = findin((vec(s[iter,:]) .== i), true)

30 # data rescaling

31 if h%2 == 1 # Gibbs sampler step

32 time = copy(convert(Int64, floor((h+2)/2)))

33 Y_tilde = zeros(nphi[i])

34 cont = 1

35 for j in idx

36 idx_cov = copy(collect(((j-1)*J+1):(J*j)))

37 if h == 1

38 Y_tilde[cont] = copy(y[j,time] - dot(vec(x[idx_cov[time],:]), beta_

act[:,time]))

39 else

40 Y_tilde[cont] = copy(y[j,time]-dot(vec(x[idx_cov[time],:]), beta_act

[:,time])-y[j,time-1]*phi_act[i,h-1])

41 end

42 cont += 1

43 end

44
45 # moments of the full conditional

46 mu_phi = copy((sig2_alpha*sum(Y_tilde)+mu_alpha*sig[iter-1]^2)/(sig2_alpha*
nphi[i]+sig[iter-1]^2))

47 sig2_phi = copy((sig[iter-1]^2*sig2_alpha)/(sig2_alpha*nphi[i]+sig[iter

-1]^2))

48
49 phi_act[i,h] = copy(rand(Normal(mu_phi, sqrt(sig2_phi)), 1)[])

50
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51 else # Metropolis-within-Gibbs step

52 # Propose a new value

53 delta = copy(rand(TruncatedNormal(phi_act[i,h], sqrt(sig_prop[h]), -1, 1),

1))

54 phi_prop = copy(phi_act[i,:])

55 phi_prop[h] = copy(delta[])

56
57 log_ker = 0

58 # log-prior

59 log_ker = copy(logpdf(d1, delta) - logpdf(d1, phi_act[i,h]))

60
61 for j in idx # update the log-likelihood

62 idx_cov = copy(collect(((j-1)*J+1):(J*j)))

63 log_ker += log(f_dens(vec(y[j,:]), x[idx_cov,:], beta_act, phi_prop, sig

[iter-1])) - log(f_dens(vec(y[j,:]), x[idx_cov,:], beta_act, phi_

act[i,:], sig[iter-1]))

64 end

65
66 # Evaluation of the acceptance rejection ratio

67 log_ker = copy(min(0.0, log_ker))

68 lgu = copy(log(rand(Uniform(0,1),1)))

69
70 if (lgu .< log_ker)[] # the value delta is accepted and the new actual

value of psi is delta

71 phi_act[i,h] = copy(phi_prop[h])

72 end

73 end

74 end

75 end

76 return (phi_act)

77 end;

Listing B.3: Metropolis-within-Gibbs for the update of the cluster-specific parameters.

We then need a Gibbs step in order to update the variance parameter σ, using the
conjugate form we found in (3.10).

1 # Gibbs Sampling for the update of sigma.

2 function sigma_upd(iter::Int, s::Array{Int, 2}, phi::Array{Float64,2}, sig::Array{

Float64,1}, nphi::Array{Int,1}, x::Array{Float64,2}, ni::Array{Int,1}, beta::Array

{Float64,3}, y::Array{Float64,2})

3
4 n = size(s)[2]

5 k = length(nphi)

6 J = size(y)[2]

7 ncov = size(x)[2]

8
9 beta_act = copy(reshape(beta[iter-1,:,:], ncov, J))

10
11 nu0 = 4.02

12 sigma0 = sqrt(2.02/4.02)

13
14 my_sum = 0
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15 for i in 1:k

16 idx = findin(s[iter,:], i)

17 for j in idx

18 idx_cov = copy(collect(((j-1)*J+1):(J*j)))

19 m_i, sig_i = moments(vec(y[j,:]),x[idx_cov,:],beta_act,phi[i,:],sig[iter-1])

20 my_sum += dot(vec(y[j,:]) - m_i, vec(y[j,:]) - m_i)

21 end

22 end

23
24 prec = rand(Gamma((n*J + nu0)/2.0, 1.0/((nu0*sigma0^2 + somma)/2)), 1)[]

25 sig[iter] = copy(1.0/sqrt(prec))

26 end;

Listing B.4: Full conditional sampling of σ.

As far as the update of the covariate parameters β1, . . . ,βJ are concerned, we need
two functions. The first one allows us to rescale the data in order to write them as a
classic linear model. The second one is the Gibbs Sampling of the posterior distribution
of β for each time, as described in (3.11)

1 # Function that rescales the data from Y to Y_tilde so that we can write the full

conditional of Beta with respect to the scaled data.

2 function scale_data(y::Array{Float64,2}, s::Array{Int,2}, phi::Array{Float64,2})

3
4 n, J = size(y)

5 k = size(phi)[1]

6 y_hat = zeros(n, J)

7
8 for h in 1:k

9 idx = findin(s, h)

10 y_hat[idx,1] = copy(y[idx,1] - phi[h,1])

11 for j in 2:J

12 y_hat[idx,j] = copy(y[idx,j] - phi[h,2*j-2]*y[idx,j-1] - phi[h,2*j-1])

13 end

14 end

15 return(y_hat)

16 end;

17
18 # Gibbs sampling steps that allow us to update the Beta parameters one at the time.

19 function beta_upd(iter::Int, s::Array{Int,2}, phi::Array{Float64,2}, sig::Array{Float64

,1}, nphi::Array{Int,1}, beta::Array{Float64,3}, x::Array{Float64,2}, y::Array{

Float64,2}, ni::Array{Int,1})

20
21 n = size(s)[2]

22 k = length(nphi)

23 J = size(y)[2]

24 ncov = size(x)[2]

25
26 beta0 = 50.0

27
28 y_hat = scale_data(y, s[iter,:], phi) # rescale the data Y to Y^tilde

29
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30 inter = copy(1:J:(n*J))

31 for i in 1:J

32 idx_cov = copy(inter + (i-1))

33 Bn = inv(x[idx_cov,:]’*x[idx_cov,:]/(sig[iter]^2) + eye(ncov)/(beta0^2))

34 bn = Bn*((x[idx_cov,:]’*y_hat[:,i])/(sig[iter]^2))

35 beta[iter,:,i] = copy(rand(MvNormal(bn, Bn), 1))

36 end

37 end;

Listing B.5: Functions used to sample from the full conditional of the covariate parameters
β1, . . . ,βJ .
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