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Abstract

This work concerns the linear stability analysis of the flow in a channel with a grooved wall.
The geometry of the grooves is designed in order to combine the drag reduction effects of
riblets and SH surfaces. The incompressible Navier-Stokes equations, used to model the
fluid, have been simplified exploiting the streamwise invariance of the problem and then
linearized around the base flow solution. The system representing the eigenvalue problem
has been obtained by introducing into the equations wavelike disturbances of the velocity
and pressure fields. The discretization of the problem with the Finite Element Method has
been performed using the FEniCS package, while the ARPACK library has been exploited
to compute the eigensolutions. The results have been validated by comparison with the
solution of the Orr-Sommerfeld equation. The critical Reynolds number of the flow in a
channel with rectangular and triangular grooves of different amplitude and wavelength
has been identified. It has been found that both geometries promote instability with
greater intensity as the wall roughness increases. Approximate neutral curves have been
drawn for the least stable mode. A qualitative analysis of the base flow over a fully SH
surface has also been performed. The interface between the two fluids, air and water,
has been modelled with the Young-Laplace equation, which has been solved numerically
combining a shooting method with a Newton iterative method.

Keywords: linear stability analysis, hydrodynamic instability, channel flow, Navier-
Stokes, Young-Laplace, superhydrophobic surfaces, riblets, grooves, FEniCS





Sommario

Questo lavoro riguarda l’analisi di stabilità lineare della corrente in un canale con una
parete scanalata. La geometria delle scanalature è definita in modo da combinare gli
effetti di riduzione di resistenza delle riblets e delle superfici SH. Le equazioni di Navier-
Stokes incomprimibili, utilizzate per modellare il fluido, sono state semplificate sfruttando
l’invarianza del problema nella direzione lungo la corrente e successivamente linearizzate
attorno alla soluzione del flusso base. Si è ricavato il sistema che rappresenta il problema
agli autovalori inserendo nelle equazioni perturbazioni ondulatorie dei campi di velocità e
pressione. Il problema è stato poi discretizzato con il metodo degli Elementi Finiti utiliz-
zando il pacchetto FEniCS e le autosoluzioni sono state calcolate sfruttando le funzionalità
della libreria ARPACK. La soluzione dell’equazione di Orr-Sommerfeld ha costituito il ri-
ferimento per la validazione del programma. Si è calcolato il numero di Reynolds critico
della corrente in un canale con scanalature rettangolari e triangolari di diversa ampiez-
za e lunghezza d’onda osservando che entrambe le geometrie favoriscono l’instabilità, in
misura maggiore all’aumentare della rugosità della parete. Sono state anche tracciate
le curve neutre approssimate per il modo meno stabile. Si è inoltre portata a termine
un’analisi qualitativa del flusso base sopra una parete completamente SH. L’interfaccia
tra i due fluidi, aria e acqua, è stata modellata con l’equazione di Young-Laplace, risolta
numericamente combinando un metodo di shooting con un metodo iterativo di Newton.

Parole chiave: analisi di stabilità lineare, instabilità idrodinamica, corrente nel canale,
Navier-Stokes, Young-Laplace, superfici superidrofobiche, riblets, scanalature, FEniCS
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d = 0.01 and λ = 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8



LIST OF FIGURES

5.14 Magnitude of the normalized eigenfunction ūr. Rectangular grooves with
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Chapter 1

Introduction

A tremendous amount of fuel is consumed each year by both air and water vehicles and
gas and liquid transmission through pipelines in order to overcome drag. This is the main
reason why drag reduction is today one of the most important field of research in fluid-
dynamics engineering. Even a slight decrease in drag could lead to remarkable economical
returns, due to lower operational costs of pipelines and vehicles, and also to environmental
benefits, due to the reduced quantity of burned fuel and emitted greenhouse gases.

(a) Submarine

(b) Pipeline

Figure 1.1: Examples of drag reduction applications.

Drag is the force produced by a fluid that counteracts the relative motion of a solid
and can be divided into two main categories: pressure drag, mainly due to the body
shape and relative position to the incoming flow, and skin-friction drag. In the last few
years the exploitation of superhydrophobic surfaces (SH) to reduce the latter has gained
increasing attention. Superhydrophobicity is obtained reducing the liquid-solid contact
area by trapping gas bubbles in the blemishes of the surface roughness. The result is a
composite liquid-gas-solid interface which produces lower shear stress thus reducing skin
friction drag. Macroscopically, the composite interface can be described by the slippage
of the flow on wall surfaces which is quantified by the slip length l: a higher slip length
leads to higher slip and therefore lower shear stress. Besides skin-friction drag reduction,
man-made SH surfaces have aroused interest also for various other potential applications,
such as anti-icing, self-cleaning and anti-fouling.

13



The exploitation of SH surfaces has been inspired by nature, as often happens for
technological innovations. The work of Barthlott and Neinhuis [1] explains the peculiar
properties of the surface of the lotus leaf. The epidermal cells of the lotus leaf form
papillae that act as a micro-structured roughness. On such papillae a very dense layer
of epicuticular waxes acting as a nano-structured roughness is superimposed. By virtue
of this double-hierarchical roughness, the contact angle between water droplets and the
leaf is very high. If the surface is tilted, even with a slight angle, water droplets begin
to roll off the leaves, and so collect and remove dirt from the surface demonstrating the
self-cleaning effect. Due to this property, the lotus is considered a symbol of purity in
some Asian religions. Therefore the non-sticking properties of SH surfaces have been
called Lotus effect.

The relation between the roughness structure of the surface and its self-cleaning and
water-repellency properties is confirmed by the other examples provided to us by nature.
The legs of the water strider, Gerris remigis, have been studied with SEM techniques
[18]: they are covered by numerous oriented needle-shaped setae and on each of them
nanoscale grooves are evident. As a consequence of this dual-scale roughness the contact
angle is very high and the leg does not pierce the water until a dimple of depth is formed
allowing this insect to walk on the water surface.

Investigations on the gecko, Lucasium steindachneri, revealed that the particular struc-
ture of its skin has self-cleaning properties which helps with the contamination conditions
that the gecko will typically encounter in its semi-arid habitat, such as cyclic exposure to
soil particles, bacteria and fungi [48].

Figure 1.2: Water droplets on lotus leaf.

Mimicking the lotus leaf, further studies have demonstrated that the best water-
repellent properties of the SH surfaces are obtained in the Cassie state of wetting [34].
The metastability of this wetting state increases the complexity of the problem [29] and
raises the necessity of fluid-dynamics stability studies to investigate different scenarios.

One of this scenarios is the enhancement of the drag reduction effects of riblets. Ri-
blets are longitudinal grooves on the bounding surfaces of the flow. Various studies and
experiments, such as the ones performed by García-Mayoral and Jimémez [19, 20], have
demonstrated beyond doubt the existence of an appreciable overall drag reduction. If we
add a nano-structured roughness and fill the grooves with air, the riblets can be trans-
formed in a SH surface, consequently improving their performance in drag reduction.
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CHAPTER 1. INTRODUCTION

However, the development of this concept requires a preliminary in-depth study of the
stability of the flow above longitudinal grooves.

This introduction is dedicated to the description of wetting dynamics of SH surfaces,
well explained in reviews [2] and [38], and possible applications. Furthermore, a brief
description of the available results on the stability of flow over riblets is given.

1.1 Wetting dynamics of superhydrophobic surfaces
When a drop of water is placed on a solid surface, a sessile drop forms in a shape similar

to a sphere sectioned by the solid wall. The process of wetting is the spreading of liquid
onto the solid surface: its dynamics is determined by all three materials involved, i.e. the
solid, the liquid and the gas. The contact angle θ is defined as the angle between the solid-
liquid and the liquid-gas interfaces, measured in the liquid. It is the main parameter used
to describe wetting properties of a system. The surface is considered superhydrophobic if
θ > 150◦, otherwise is considered hydrophobic only if θ > 90◦ and hydrophilic if θ < 90◦.

The contact angle is determined by the balance of the forces acting on the three-phase
contact line, that can be macroscopically considered the region including molecules of all
three phases. It is important to underline that the following considerations are valid only
in the static situation, that is when the spreading of the liquid has reached an equilibrium
state. The description of the dynamic problem is much more complex and requires the
introduction of a specific mathematical model, as well explained by Shikhmurzaev [43].

In the static situation, the forces acting on the three-phase contact line are the surface
tensions associated with the three interfaces of the problem, that is solid-liquid, solid-gas
and liquid-gas. Surface tension can be interpreted as a two-dimensional equivalent of
pressure that acts to contract the interface. The surface tension coefficient γ represents
the magnitude of the force per unit length acting on a line. Introducing γSG, γLG and γSL,
the three surface tensions, the static contact angle is determined by the Young equation:

γSG = γLG cos θ + γSL. (1.1)

Gao and McCarthy [17] stress the fact that surface tension is often confused with the
surface free energy, which can be considered the work required to increase the surface
area. In an equilibrium state these two quantities are mathematically equivalent but they
must not be thought as interchangeable.

The definition of superhydrophobicity based only on the static contact angle is not
sufficient to identify the surfaces of interest for the present research. In particular, we are
interested in those surfaces capable, like the lotus leaf, of lowering the ability of drops to
stick to surface itself and therefore causing their rolling off even with a slight inclination.

The non-sticking properties of the surface depend strongly on the roughness morphol-
ogy and can be observed through the contact angle hysteresis. When a solid surface is
tilted, a liquid drop on it starts to move, with an advancing contact line (downhill) and a
receding contact line (uphill) at the same time. Before the actual rolling over begins, the
shape of the drop is deformed: on the downhill side the maximum contact angle is reached
while on the uphill side the contact angle tends to its minimum value [16]. The contact
angle hysteresis is the difference between the maximum contact angle, or advancing con-
tact angle, and the minimum contact angle, or receding contact angle. Non-adhesiveness
of the surface is associated with low contact angle hysteresis.
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1.1. WETTING DYNAMICS OF SUPERHYDROPHOBIC SURFACES

Figure 1.3: Contact angle for different surfaces. Hydrophobic surface θ > 90◦, hydrophilic
surface θ < 90◦.

Figure 1.4: Wenzel (a) and Cassie (b) wetting states. Figure taken from Latthe et al.
[25].
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CHAPTER 1. INTRODUCTION

There are two wetting states water drops can assume on SH surfaces. In the Wenzel
state, the surface is completely wetted and the droplet pins to the surface, whereas in the
Cassie state, the droplet wets the surface only partially and air pockets form between the
surface and the water droplet.

It has been demonstrated that the desired non-sticking properties of SH surfaces ap-
pear in the Cassie state of wetting, which can be obtained by replicating the structure of
the lotus leaf with a double-hierarchical roughness [34]. The micro-structured roughness
is required to trap air bubbles, on the other hand the nano-structured roughness enhances
the static contact angle and reduces its hysteresis [26].

Unfortunately, the Cassie state of wetting on SH surfaces is metastable [29], therefore
it exists a critical pressure for which there is a forced irreversible transition to the Wenzel
state. Sheng and Zhang [42] examined the transition of the air layer on an immersed
lotus surface. The hydraulic pressure must be kept under the critical value to guarantee
the low-friction properties of SH surfaces immersed in water. The main function of the
double-hierarchical roughness is increasing the energy barrier between these two states,
therefore increasing the stability of the Cassie state [49].

The main difficulty to transfer these results into engineering applications relies in the
present lack of efficient fabrication methods for superhydrophobic surfaces with a stable
Cassie state of wetting.

1.2 Possible applications of SH surfaces
Inspired by the lotus-leaf structure, many fabrication methods for SH surfaces have

been developed during the last few years. However, although effective in enhancing the
rolling motion of the droplets, they were not properly designed to increase the effective slip
of liquids flowing on the surface. Lee and Kim [26] explained that every manufacturing
method aimed at the production of SH surfaces with low skin-friction drag must satisfy
two requirements. First, nano-structures must be imposed into the micro-structures.
Second, nano-structures must not affect geometrical parameters other than increasing the
contact angle. Lee and Kim were successful in achieving the objectives about slip length
and contact angle maintaining a stable condition by generating nano-structures only on
the sidewalls, thus preserving the geometrical parameters of the micro-structure.

SH surfaces have seen growing interests in the last few years mainly for their potential
application in aeronautical and naval industries for drag reduction. Zhang et al. [51]
carried out an interesting experiment where they compared the underwater speed of two
types of submarine models, normal and treated with a superhydrophobic coating. For
the same power supply, the average velocities of the superhydrophobic submarine were
always higher.

In addition to drag reduction, in naval industry, SH surfaces could be exploited for solv-
ing the biofouling phenomena, which is a problem of significant importance. Biofouling is
the bio-accumulation of marine organisms on the surface of submerged or semi-submerged
objects, both artificial and natural. It is inevitable because the marine environment has a
unique bio-diversity. The process can be divided into different stages, from accumulation
of dissolved organic materials to the growth of macro-algal and animal fouling [24]. As
a consequence of biofouling, the shaft power required to push a ship at a certain speed
increases with respect to the clean configuration or, on the other hand, for the same power
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the speed that can be reached is lower. With his experiments, Schultz [41] found that the
resistance penalty increases with the severity of fouling up to 89% for heavy calcareous
fouling compared to a smooth hull. The application of anti-fouling (AF) is therefore a
necessity and maintenance is required since a deteriorated coating can also induce resis-
tance penalty. In the 1960s the self-polishing copolymer tributyl tin (TBT) paints were
introduced and they have been used until the 2000s due to their perfect anti-fouling ability
and their durability. However TBT paints have been discovered to be highly toxic even in
low concentrations and to be persistent in the marine environment. Eventually TBT have
received a worldwide ban on their application on ship hulls in 2003. This is the reason
why alternative, environmental-friendly, effective anti-fouling systems are being sought
for the last few years. SH surfaces may represent an appealing solution to this problem.

SH surfaces could be exploited also in another important problem affecting the aero-
nautical and naval transportation, that is icing. Icing is caused by the impact of super-
cooled water droplets onto a solid surface and it is notorious for the rupture of power
lines and the stall of aircraft wings. Until now the research on anti-icing systems focused
on the removal of already formed ice. Indeed, currently used ice removal techniques are
effective but require a power supply. The experiments of Cao et al [8] demonstrated that
SH surfaces could be used as a passive anti-icing device by reducing or eliminating water
accumulation on the solid surface before water freezes. Further studies have been carried
out by Boinovich and Emelyanenko [5] which focused on the delay of frost formation on
SH surfaces and on the durability of the icephobic properties of SH coatings. However, all
these researches have been carried out under natural freezing environments or in climate-
controlled rooms. In their experiments, Wang et al [46] added an important factor present
in the actual freezing weather conditions of operating aircraft or power lines during rain-
storms: the wind action. The SH coating showed anti-icing properties depending on the
temperature and the wind velocity. The studies on anti-icing properties of SH surfaces
seem promising, nevertheless Farhadi et al [13] observed significant limitations about the
durability and their performance in humid conditions. After many icing/de-icing cycles,
the anti-ice performance of the coatings deteriorates and when water condenses on surface
roughness, SH surfaces lose their ice-repellency. Given all these considerations, further
research is required before SH surfaces can be considered valuable candidate to develop
passive anti-icing systems.

Apart from these problems in the transportation industry, SH surfaces have the chance
to be employed in diverse, but not less worthy of attention, projects. Yan et al [50]
successfully developed a miniature water-walking robot mimicking the locomotion system
of the water strider. The tested prototype was able to stably walk quickly and make
turns at different gaits on the water surface justifying the recent interest in the design of
micro/miniature water-walking robots and their potential to carry out different aquatic
tasks such as water quality monitoring or aquatic search and rescue.

All the possible applications described so far focus on the exploitation of the water-
repellency aspect of SH surfaces. It is also interesting to investigate the possible ap-
plications derived from the self-cleaning aspect of man-made surfaces which mimic the
lotus leaf [3]. In biotechnology, one is interested in controlling droplets containing biologi-
cally relevant molecules; because droplets on SH surfaces have very low contact area they
can easily be moved with an external field, for example electrical, thus making possible
the development of droplet-based actuation mechanisms. Other more practical applica-
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tions take place in the household-commodity sector introducing self-cleaning windows or
graffiti-resistant house walls. The main problem yet to be overcome is the durability: in
outdoor applications the surfaces lose their self-cleaning properties too rapidly to justify
the higher initial investment.

1.3 Stability of the flow over riblets
The drag reducing properties of riblets are nowadays clear and indisputable. The

overall effect of the riblets is the result of two contrasting actions: a linear mechanism of
drag reduction due to the different response of the grooved surface to a viscous flow and a
nonlinear mechanism of drag increase mediated by a growth of the characteristic scale of
turbulence. While the first effect is quantitatively predictable on a theoretical basis, the
second effect is more complicated to predict due to insufficient knowledge on how riblets
influence flow stability and transition.

Luchini and Trombetta [28] discovered that the effect of the grooves upon a two-
dimensional instability can be represented by boundary conditions of the inner problem
applied in the equivalent origin of the y-axis. The evolution of the Tollmien-Schlichting
waves can still be described through the standard Orr-Sommerfeld equation, with modified
boundary conditions and modified velocity profile. The effect of the riblets is a reduction
of both critical and transition Reynolds number, therefore the instability is promoted and
not retarded. The drag reduction cannot be attributed to retardation of transition but
rather do a direct effect on the developed turbulent flow. Luchini and Trombetta also tried
to understand if the evolution of the instability waves is exerted by the modification of
the mean flow or by effect of the modified boundary condition. They discovered that the
effect of the boundary condition produces critical Reynolds numbers similar to the total
ones and that the effect of the mean flow is smaller and of the opposite sign. Therefore
the slight increase of instability can be ascribed to a balance of the destabilizing effect of
the excess flow rate and stabilizing effect of the changed mean flow profile.

Following the studies of Luchini and Trombetta, Ehrenstein [12] investigated the sta-
bility of the flow over semicircular riblets and confirmed that the laminar channel flow over
riblets is more unstable than the Poiseuille profile with smooth walls. Using a Chebyshev
collocation to discretize the linearized Navier-Stokes equations and the Arnoldi’s method
to compute the eigenvalues, he found that the deepest riblets have the most unstable
eigenvalues. Even though the spanwise component of the perturbation is very small,
it is not negligible inside the grooves and hence the primary instability mechanism is
responsible for the appearance of spanwise periodic patterns.

The study of Moradi and Floryan [32] confirmed Ehrenstein results and showed that
the role of the grooves in the instability process depends on their shape and amplitude. In
particular, studying sinusoidal grooves, they found that the grooves may either stabilize
or destabilize the flow depending on the groove wavenumber, with transition occurring at
β ≈ 4.22 and being independent on the groove amplitude.

The geometry of the grooves and the disturbances superposed on the base flow have
been expressed in terms of Fourier series, therefore an analysis of how many Fourier modes
needed in the numerical solution was necessary. The eigenvalue problem has been solved
with various techniques.

All the results described above were obtained with the disturbance wavenumber δ =
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Figure 1.5: Variation of the growth rate of disturbances as function of the grooves am-
plitude SL, disturbance streamwise wavenumber δ = 1.02 and Re = 6500. Figure taken
from Moradi and Floryan [32].

Figure 1.6: Neutral curves in the (Re− δ) plane. Groove wavenumbers β = 0.2, 4.22, 10
respectively. Figure taken from Moradi and Floryan [32].
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1.02 (denoted κ in the present work), which is the critical wavenumber in a plane chan-
nel. Mohammadi et al. [31] discovered a new instability mode for the grooved channel,
triggered with disturbances of wavenumber δ = 0.3. With disturbances of this kind, the
most unstable eigenvalue moves from the A branch to the P branch of the spectrum.
Moreover, its location is strongly affected by the groove amplitude. It has been demon-
strated that the growth rate becomes independent from the Reynolds number, once Re
is large enough, therefore this instability mode must be driven by an inviscid mechanism.
The velocity field corresponding to this mode is made up of rows of counter-rotating rolls
oriented across the channel and propagating streamwise.

1.4 The present work
The present work is aimed to investigate the influence of longitudinal grooves on

the development of hydrodynamic linear instabilities in the flow in a plane channel. The
motivation lies in the effort of designing a surface that combines the drag reduction effects
of riblets and SH surfaces. To this end, grooves of different shapes have been taken into
consideration. The rectangular grooves represent the geometry typical of SH surfaces while
the riblets are usually made of triangular grooves. Their dimension has been chosen so that
they are able to trap an air bubble with high contact angles θ. A linear stability analysis
of the single-phase problem with only water has been carried out. We mainly focused
on locating the critical Reynolds number for grooves of different shape and dimension
and on investigating how the amplitude of the grooves affects the growth rate of the
dominant eigenvalue. In addition, for some of the geometries considered, the approximate
neutral curve in the (Re − κ) has been drawn. The analysis has been completed with
the visualization of the normalized eigenfunctions. The results obtained constitute a
solid knowledge base to interpret the results for the complete multi-phase problem with
air bubbles. Moreover, a qualitative analysis of the base flow for the complete problem
has also been performed, even though the present work mainly concerns the single-phase
problem.

The flow has been described with the incompressible Navier-Stokes equations, com-
pleted with appropriate boundary conditions for the considered geometries. The con-
figuration of the interface between water and air is determined by the Young-Laplace
equation, which has been solved numerically. The discretization of the linearized Navier-
Stokes equations is achieved by the application of the Finite Element Method (FEM)
which, with appropriate refinement of the mesh, guarantees an adequate accuracy of the
results. The boundary conditions have been imposed directly in the construction of the
matrices of the linear system representing the eigenvalue problem. The code is written in
mixed C++/Fortran90 language and exploits the features of the FEniCS [39] package for
the finite element discretization and of the ARPACK [27] library to solve the eigenvalue
problem.
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Chapter 2

Mathematical formulation

In this chapter the equations governing the flow inside a grooved channel are pre-
sented. The simplifications allowed by the problem geometry have been applied to the
dimensionless Navier-Stokes equation to obtain the system of partial differential equa-
tions describing the base flow. Particular attention has been made on the definition of
the boundary conditions, considering the potential presence of an air bubble pinned in-
side the grooves. The Navier-Stokes have then been linearized around the base flow and,
inserting the disturbance in the form of wavelike solutions, the system representing the
eigenvalue problem to be solved to study the linear stability of the flow has been ob-
tained. To complete the description of the boundary conditions, the shape of the bubble
interface has been described with the Young-Laplace equation, firstly without considering
the gravity and then introducing the hydrostatic term. The mathematical formulation
of the problem is concluded by the definition of the involved physical parameters and a
dimensional analysis with the Buckingham theorem.

2.1 Navier-Stokes equations
The dynamics of Newtonian fluids, such as air and water, at low Mach numbers is

accurately described by the incompressible Navier-Stokes equations
∂u

∂t
+ (u · ∇)u− ν∇2u +

∇P
ρ

= g,

∇ · u = 0,

(2.1)

where u, ρ and P are the fluid velocity, density and pressure respectively; g is an external
force field, for example gravity, and t is time.

For our purposes, it is more useful to treat these equations in their dimensionless form.
Choosing appropriate length and speed scales, the system (2.1) becomes

∂u

∂t
+ (u · ∇)u− 1

Re
∇2u +∇P = g,

∇ · u = 0,

(2.2)

where, with a slight notation abuse, u, P and g are now the dimensionless velocity,
pressure and external force field respectively. The equivalence of the dimensionless results
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obtained for two problems with the same geometry and different scales, is the matching
of the non-dimensional quantity Re, the Reynolds number. The Reynolds number can
be thought of as the ratio between the inertial forces and the viscous forces acting in the
fluid, and is expressed by

Re =
UL

ν
, (2.3)

where U , L are respectively the speed and length scales used to obtain the dimensionless
form of the Navier-Stokes equations and ν = µ

ρ
is the kinematic viscosity of the fluid.

2.1.1 Boundary conditions

The system of PDEs must be completed with appropriate boundary conditions. In
the present case the flow geometry is shown in figure 2.1.

For water we must impose the no-slip condition on both Γup and Γdown delimiting the
channel while for air the same no-slip condition must be imposed for Γgroove, that is the
wall of the groove. The dashed lines mean that this geometry is repeated in the xy plane,
therefore we must impose the periodicity condition on the velocity field, u|Γleft = u|Γright .
On the interface between the fluids we impose the equality of the velocities of the two
fluids, the equality of the stresses along the two tangential directions and the Young-
Laplace equation for the stress normal to the surface, which will be described in detail in
Section 2.3. Summarizing, all the boundary conditions are:

u|Γleft = u|Γright ,
uw = 0 x ∈ Γup ∪ Γdown,

ua = 0 x ∈ Γgroove,

uw = ua x ∈ Γbubble,

σw
txy = σa

txy x ∈ Γbubble,

σw
tz = σa

tz x ∈ Γbubble,

σw
n − σa

n =
γ

r
x ∈ Γbubble.

(2.4)

The superscript w refers to water and the superscript a to air. n represents the vector
normal to the interface between the fluids and it lies on the xy plane. txy represents the
tangential vector that lies on the same plane as n while tz is the second tangential vector,
perpendicular to the xy plane.

2.1.2 Base flow

The base flow considered for the problem shown in figure 2.1 is a steady flow with a
single non-zero component, the z-component. Furthermore, the flow must be invariant
in the z direction so that the section xy can be chosen arbitrarily. According to these
considerations, the velocity field of both air and water can be written in the form u(x, y) =
w(x, y)ẑ.

To better understand the simplifications that a flow of this form introduces in the
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Γup

Γdown

Γbubble

Γgroove

Γright

Γleft

Figure 2.1: Geometry of the problem and reference system.

Navier-Stokes equations (2.2), it is better to rewrite them for each velocity component

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− 1

Re

(∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+
∂P

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
− 1

Re

(∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+
∂P

∂y
= gy,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− 1

Re

(∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+
∂P

∂z
= 0,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.

(2.5)

The base flow discussed above allows us to impose that u, v = 0 and to assume that
all the derivatives with respect to t and to z are null since the base flow is independent
on time and on the z coordinate. The equations are therefore considerably simplified and
become 

∂P

∂x
= 0,

∂P

∂y
= gy,

∂P

∂z
=

1

Re

(∂2w

∂x2
+
∂2w

∂y2

)
.

(2.6)

The incompressibility constraint is identically satisfied. From equations (2.6) we ob-
serve that, for the base flow, there is no pressure gradient along the x direction and the
pressure gradient along the y direction is only determined by the gravitational field.

2.1.3 Linearization of the Navier-Stokes equations

Once the base flow has been computed, we can analyse the behaviour of the system
if a small perturbation is applied, in particular we are interested in discovering how the
contact surface between air and water is deformed.
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The Navier-Stokes equations (2.2) must be linearized around the base-flow solution.
The velocity and pressure field are rewritten as the sum of the base flow and a perturba-
tion, that is u = U + ũ and P = p+ p̃.

∂(U + ũ)

∂t
+ ((U + ũ) · ∇)(U + ũ)− 1

Re
∇2(U + ũ) +∇(p+ p̃) = g,

∇ · (U + ũ) = 0.

(2.7)

By dropping the second order terms in the previous equation and using the equation
for the base flow, we finally obtain the final form of the linearized Navier-Stokes equations

∂ũ

∂t
+ (ũ · ∇)U + (U · ∇)ũ− 1

Re
∇2ũ +∇p̃ = 0,

∇ · ũ = 0.

(2.8)

Since the base flow is parallel, i.e. U, V = 0, the previous equation can be further
simplified. We can no longer assume that the flow is steady and invariant in the z direction
because we do not know a priori the form of the perturbation. Rewriting equations (2.8)
for each component we obtain

∂ũ

∂t
+W

∂ũ

∂z
− 1

Re

(∂2ũ

∂x2
+
∂2ũ

∂y2
+
∂2ũ

∂z2

)
+
∂p̃

∂x
= 0,

∂ṽ

∂t
+W

∂ṽ

∂z
− 1

Re

(∂2ṽ

∂x2
+
∂2ṽ

∂y2
+
∂2ṽ

∂z2

)
+
∂p̃

∂y
= 0,

∂w̃

∂t
+ ũ

∂W

∂x
+ ṽ

∂W

∂y
+W

∂w̃

∂z
− 1

Re

(∂2w̃

∂x2
+
∂2w̃

∂y2
+
∂2w̃

∂z2

)
+
∂p̃

∂z
= 0,

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0.

(2.9)

This system must be completed with appropriate boundary conditions, which are the
same as equations (2.4) but applied to the perturbation velocity field ũ(x, y, z, t) instead
of the base flow.

2.2 Linear stability analysis

The main purpose of the present work is to evaluate the stability of the flow in a
channel with longitudinal grooves. The linear stability study consists in forcing a certain
solution in the linearized Navier-Stokes equations, thus obtaining the system that must
be resolved with the finite elements method.

Taking as reference the results obtained for the Poiseuille flow in a plane channel
available in the literature [21, 40], we focus on studying the stability of the base flow to a
specific form of disturbance, that is a wavelike velocity and pressure perturbation. Such
a perturbation can be written in the form

ũ(x, y, z, t) = û(x, y)eωt+iκz p̃(x, y, z, t) = p̂(x, y)eωt+iκz, (2.10)
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with ω ∈ C and κ ∈ R. Substituting the wavelike disturbances in system (2.9) and
simplifying the exponential part of each term, one obtains:

ωû+ iκWû− 1

Re

(∂2û

∂x2
+
∂2û

∂y2
− κ2û

)
+
∂p̂

∂x
= 0,

ωv̂ + iκWv̂ − 1

Re

(∂2v̂

∂x2
+
∂2v̂

∂y2
− κ2v̂

)
+
∂p̂

∂y
= 0,

ωŵ + iκWŵ +
∂W

∂x
û+

∂W

∂y
v̂ − 1

Re

(∂2ŵ

∂x2
+
∂2ŵ

∂y2
− κ2ŵ

)
+ iκp̂ = 0,

∂û

∂x
+
∂v̂

∂y
+ iκŵ = 0.

(2.11)

The system must be completed with no-slip boundary conditions at the channel walls and
periodic conditions in the x direction.

The solution must be sought in an infinite-dimensional space, that is ũ ∈ H1(Ω). To
be solved with the finite element method, the weak formulation of system (2.11) must
be obtained and discretized into a finite-dimensional space. Our main interest lies into
solving the temporal eigenvalue problem ωj = ωj(κ) where the wavenumber κ is known:
the spatial structure of the wavelike perturbation is unchanged and the amplitude of
the wave grows or decays as time progresses, with a temporal growth rate represented
by cr =

ωj,r
κ
. Instead, ci = −ωj,i

κ
represents the phase velocity with which these freely

evolving waves travel. It is worth noticing that perturbations (2.10) are defined in the
same way as Ehrenstein [12], which is slighty different from the definition used by Schmid
and Henningson [40]. Therefore, when comparing the results, we must take into account
the following relations:

ωr = ωSHi , (2.12a)
ωi = −ωSHr . (2.12b)

where ωSH ∈ C are the eigenvalues solution of the Orr-Sommerfeld equation, described
in Appendix A, computed with the Schmid and Henningson notation.

2.3 Young-Laplace equation
The configuration of the interface between two fluids is determined by their pressure

difference in each point of the contact surface. The equation modelling the physics of this
problem is obtained studying the equilibrium of the forces acting on the surface. Figure
2.2 represent the situation, in two dimensions, of an air bubble trapped inside a solid wall
groove.

In the horizontal direction the equilibrium is identically satisfied for symmetry reasons.
In the vertical direction the pressure difference ∆P = PA−PH must be balanced by surface
tension ∫ θ

0

∆P rn̂ dθ + γ = 0,

∆P

∫ θ

0

cosθ̃ r dθ̃ + γ sin θ = 0. (2.13)
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θ
γPH

PA

Figure 2.2: Air bubble equilibrium.

Imposing force equilibrium, we obtain the Young-Laplace equation, which relates the
pressure difference between the fluids and the curvature of the contact surface. In the
two-dimensional case, the contact surface reduces to a line described by one curvature
radius r

∆P =
γ

r
. (2.14)

In this study, the unknown is the curve describing the interface, that will be needed
to compute the base flow. A plane curve can be written in the form r(x) = xi + y(x)j,
from which its curvature can be obtained

1

r
=

y′′(x)

[1 + y′(x)2]
3
2

. (2.15)

If (2.15) is substituted into (2.14) we obtain an ordinary differential equation for y(x).
This equation, being non linear and of the second order, cannot be solved in the closed
form, in general. The problem can be simplified if gravity is neglected.

2.3.1 Approximation without gravity

This approximation consists in neglecting the hydrostatic pressure gradient, therefore
the pressure difference between the two fluids is constant along the contact line. Accord-
ing to Young-Laplace equation (2.14) a constant pressure difference implies a constant
curvature radius and thus the curve y(x) representing the interface is a circumference arc.
The ODE equation to be resolved is:

∆P

γ
=

y′′(x)

[1 + y′(x)2]
3
2

. (2.16)
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By virtue of this simplification, the solution can be found analytically. For the first
integration we can use the substitution y′(x) = z(x) to obtain a first order, separable
equation and ∆P

γ
= σ to lighten the notation. By letting z(x) = y′(x) in (2.16), we obtain

dz

dx
= σ [1 + z(x)2]

3
2 . (2.17)

That can be integrated immediately to give
z√

1 + z2
= σ(x+ C). (2.18)

From (2.18) the explicit expression of y′(x) is obtained, which is another first order,
separable equation.

dy

dx
= ± σ(x+ C)√

1− σ2(x2 + 2Cx+ C2)
. (2.19)

Its solution is

y(x) = ∓
√

1− (x+ C)2 σ2

σ
+D. (2.20)

If we place the axis origin in one of the two triple points and considering s the span
of the groove, the constants of integration C and D are determined with the boundary
conditions (2.21)

y(0) = 0, y(s) = 0. (2.21)

As predicted, the final solution is a circumference arc

y(x) =
1

σ

(√
1− s2

4
σ2 −

√
1−

(
x− s

2

)2

σ2

)
. (2.22)

In equation (2.22), the first one of the two solutions (2.20) has been considered.

2.3.2 Complete equation

The gravitational field may change the solution noticeably since the pressure differ-
ence between the two fluids at the interface can no longer be considered constant; as a
consequence, the shape of the contact line is no more a circumference arc but it has a
variable curvature.

The pressure of the two fluids in each point can be calculated from Stevin’s law, known
g = 9.81m/s2 and the density of the fluids. Placing the reference system as described in
the previous paragraph:

PA = PA0 − ρAgy, (2.23a)
PH = PH0 − ρHgy. (2.23b)

Using (2.23a) and (2.23b), the Young-Laplace equation (2.14) becomes (with ∆P defined
as ∆P = PA0 − PH0 now):

∆P + (ρA − ρH)gy =
γ

r
(2.24)

We finally obtain the complete ordinary differential equation for the contact line

y′′(x)−
(

(ρA − ρH)g

γ
y(x) +

∆P

γ

)
[1 + y′(x)2]

3
2 = 0. (2.25)
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2.4 Dimensional analysis

A very important part of every engineering research is to understand which are the
physical parameters governing the phenomenon under study. In the present work we
ask ourselves on which parameters the linear stability characteristics of the flow depend.
Eventually, with the help of dimensional analysis and of the Buckingham theorem, the
physical parameters can be recast in a smaller number of dimensionless parameters, more
useful to obtain results valid at different scales.

We can divide the physical parameters that control the phenomenon in two main
groups: the geometric parameters and the fluid parameters. The first group includes all
the parameters defining the geometry of the section and of the grooves. The second group
includes the properties of the involved fluids.

s

a

L
2h

Figure 2.3: Geometric parameters of a
channel with rectangular grooves.

s

a

L
2h

Figure 2.4: Geometric parameters of a
channel with triangular grooves.

Figures 2.3 and 2.4 show the relevant dimensions defining the geometry of the channel
section representing the considered domain. We can identify five parameters:

• The span of the grooves s.

• The amplitude of the grooves a; for the triangular grooves this parameter can be
substituted with the inclination of the walls (once s is defined).

• The half-height of the main channel h.

• The span of the channel section L; it can be replaced by the number of grooves N
in the considered section. The relation between N , s and L depends on the groove
shape: it is L = 2Ns for the rectangular grooves and L = Ns for the triangular
grooves.

• The contact angle measured in the air α; it is the supplementary angle of the con-
ventional contact angle measured in the water. We can also consider this parameter
part of the fluid properties group.

The properties of the fluids include the two densities, ρH and ρA for water and air
respectively, the two dynamic viscosities, µH and µA, and the surface tension γ.

The only physical parameter that does not fall into one of the two previous categories is
the pressure gradient along the z direction Gz, which is imposed externally. The pressure
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gradient is also important to scale the Navier-Stokes equations. Another important phys-
ical parameter is the gravity g, however in this study it is not taken into consideration,
except for the calculation of the free surface with the Young-Laplace equation.

According to section 2.1, we need a reference length and a reference velocity to obtain
the dimensionless form of the equations. In literature [40], the common choices for a
parallel flow in a plane channel are the channel half-height h = H

2
and the centre-line

velocity Ucl, which is expressed by

Ucl = −Gzh
2

2µH
. (2.26)

To obtain coherent results, for this study we choose the same references. The only differ-
ence is that the centre-line velocity Ucl is not exactly the maximum velocity, as it is in the
parallel flow in a plane channel, invariant in the x and z directions. In the present study,
the flow is invariant only in the z direction, due to the cavities or riblets. Therefore Ucl
should be interpreted as the equivalent centre-line velocity of a plane channel of the same
half-height h.

From equation (2.26), it must be noticed that the centre-line velocity Ucl = Ucl(Gz)
depends on the pressure gradient, therefore it is not an independent physical parameter.
By setting the pressure gradient, and choosing the appropriate channel height, we are also
indirectly imposing the centre-line velocity.

The Buckingham theorem states that p = n − k dimensionless parameters can be
obtained in a problem featuring n physical variables and k physical dimensions. In the
present case, the physical variables are the properties of the two fluids, the dimension
defining the geometry and the pressure gradient for a total of n = 11. The fundamental
physical dimensions involved are only three (thus k = 3): length, time and mass. Accord-
ing to Buckingham’s theorem, we should be able to find p = 8 dimensionless parameters.
The first four parameters are purely geometrical and correspond to the aspect ratio of
the considered section, the dimensionless wavelength of the grooves, the ratio between
the amplitude of the grooves and the channel half-height, which can be interpreted as
the roughness of the channel wall, and the contact angle which is already a dimensionless
variable itself. We can then write:

π1 = AR =
L

h
, π2 = λ =

2s

h
, π3 = d =

a

h
, π4 = α. (2.27)

As an alternative, we can consider the groove wavenumber β = 2π
λ

instead of the groove
wavelength. The groove wavelength is defined differently depending on the shape. The
relation for λ shown in (2.27) is valid for the rectangular grooves. For the triangular ones
it is λ = s

h
. Furthermore, in all the results regarding triangular riblets, the roughness d

is actually d = 2√
3
a
h
, in order to obtain values directly comparable with the rectangular

grooves while preserving the equilateral triangle shape of their section.
The other four parameters depend on the properties of the two fluids. The most

important is the Reynolds number, essential to understand the fluid behaviour and the
flow stability. Since water is the prevalent fluid, it is natural to define the Reynolds
number based on the water properties (density and viscosity); the reference length and
velocity are h and Ucl, used to scale the Navier-Stokes equations. The problem involves the
interaction between two immiscible fluids therefore we can also define a Weber number,
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Physical parameters Dimensions Dimensionless parameters

L l

h l AR

s l λ or β
a l d

α - α

ρH ml−3

ρA ml−3 Reh

µH ml−1t−1 We

µA ml−1t−1 m

γ mt−2 η

Gz ml−2t−2

11 3 8

Table 2.1: Buckingham theorem summary.

which represents the ratio of inertial force to surface tension force. In this case it is natural
to take as reference length a parameter linked to the interface, such as the groove span s.
The final two dimensionless parameters are the ratios between the properties of the two
fluids, density and viscosity. We can then write:

π5 = Reh =
Uclh

νH
, π6 = We =

ρHU
2
cls

γ
, π7 = m =

ρA
ρH

, π8 = η =
νA
νH
. (2.28)

It could seem that the pressure gradient never appears in the definition of the dimen-
sionless parameters, but it must be taken into account that the centre-line velocity is a
function of the pressure gradient and of the channel thickness. Table 2.1 presents the sum-
mary of the dimensional analysis and the exploitation of Buckingham’s theorem. With
the definition of these dimensionless parameters, the results obtained at different scales
can be compared.

In the problem with just one fluid, that is water, we do not have to consider the vis-
cosity and density of the second fluid, the surface tension and the contact angle, therefore
the relevant physical parameters reduce to n = 7 and consequently the dimensionless
parameters reduce to p = 4. They are AR, λ, and d from (2.27) and Reh from (2.28).
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Numerical formulation

In this chapter, we describe the numerical methods used in the present work. To
solve the Young-Laplace equation, a specific software implemented with the Mathematica
interface has been developed. This software combines a soothing method to integrate the
ODE equation and a quasi-Newton iterative method to find the correct pressure-difference
value corresponding to the sought contact angle. The equations for the base flow and the
eigenvalue problem have been solved with the Finite Element Method (FEM), which is
described in detail. By applying the Galerkin method on the weak formulation of system
2.11, the structure of the matrices that constitute the algebraic system representing the
eigenvalue problem is obtained. This procedure has been implemented in the Unified
Form Language (UFL). A description of the structure of the developed software is also
provided, with particular attention on the FEniCS package [39] and the other libraries
used.

3.1 Solution of the Young-Laplace equation
As mentioned in Section 2.3, this equation cannot be resolved in closed form due to

the non-linearity. To find the solution y(x), a numerical integration of the equation is
needed. Moreover, there is a further complication: the heavier fluid, water, is above the
lighter fluid, air. For this configuration, unlike the opposite situation with water below
air, not all the pressure-difference values are possible. If the pressure difference is too high
the water occupies the groove moving away the trapped air and the equilibrium cannot
exist. In particular, the solution for a specific contact angle is sought, therefore the
numerical integration must be connected with a quasi-Newton iterative method to solve
the nonlinear relation σ = σ(α), where σ = ∆P

γ
, and obtain the correct pressure-difference

value to be put into equation (2.25).
An effective way to solve this equation is to split the domain of integration. For

symmetry reasons we can focus on just half of the groove span and use a shooting method
to solve the boundary-value problem reducing it to an initial-value problem. Instead of
imposing the values at the extremes of the groove, we impose

y(0) = 0, y′(0) = 0. (3.1)

Conditions (3.1) mean that the lowest point of the interface, which is the middle one, is
taken as y = 0 and that in this point the tangent line to the curve is horizontal. Equation
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(2.25) is then numerically solved in its dimensionless form using the groove half-span as
reference length. The solution is then computed for 0 < x < 1.

A software to solve the Young-Laplace equation for a specific angle of attack has been
developed with the Mathematica package. For each iteration, the software integrates the
ODE equation and corrects the pressure term with Newton’s method. Since the initial
guess on the pressure term could correspond to a contact angle very far from the target,
the convergence is facilitated with a continuation. As input, the user provides the final
target αt and an intermediate target ᾱt. The software moves to a second intermediate
target only upon reaching the first one and so on until convergence. The algorithm of
the Mathematica software is reported in Algorithm 1. With a slight notation abuse, σ
represents now the dimensionless pressure term and ĝ is the dimensionless hydrostatic
term. They read

σ = s̄
∆P

γ
ĝ = s̄2 (ρA − ρH)g

γ
(3.2)

where s̄ is the groove half-span s̄ = s
2
.

Algorithm 1 Newton’s method for the Young-Laplace equation
1: Provide initial data dσ, ĝ, ᾱt, dᾱt
2: Provide initial guess σ and αt
3: while |ᾱt − αt| > tolltarget do . Needed to obtain convergence
4: ᾱt ← ᾱt − dᾱt
5: while |α− αt| > tollnewton do
6: 1st numerical integration: computed solution y(x)
7: σ̄ = σ + dσ
8: 2nd numerical integration: computed solution yσ̄(x)
9: α = 90− 180 arctan( dy

dx
)

10: ασ̄ = 90− 180 arctan(dyσ̄(x)
dx

) . dα = ασ̄ − α
11: σ ← σ − dσ

dα
(α− αt) . Newton’s iteration for σ = σ(α)

12: end while
13: end while

Figure 3.1 shows the solution obtained: the convergence to the sought contact angle
α = 10◦ has been obtained. The data is re-elaborated with Matlab: the solution is re-
scaled and mirrored to cover the whole groove span. This procedure works for every
groove span and it has been used to produce the curves used in the construction of the
meshes for the numerical simulations. In figure 3.2, the bubble interface in a groove of
unitary length is shown.
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Figure 3.1: Solution for half of the groove obtained with the Mathematica software.

Figure 3.2: Bubble interface visualized inside a groove of unitary span.
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3.2 Finite Element Method

The Finite Element Method (or FEM) is a numerical method for the solution of partial
differential equations. The success of this method can be attributed to its generality and
its flexibility. A prototypical application of the FEM is the Poisson equation, which is
a second-order partial differential equation. In the present work the equation for the
base flow (2.6), both single-phase and multi-phase, corresponds to a Poisson equation.
Rewritten in a more compact form, it becomes:

−∇2w = f in Ω. (3.3)

Equation (3.3) is completed with homogeneous boundary conditions w = 0 on the channel
walls, corresponding to the no-slip condition, and periodicity condition on the lateral sides
of the domain. The right-hand side f is a given function, f = −Re∂P

∂z
in the present case.

The domain Ω is the cross section of the considered channel and we denote by ∂ΩD the
Dirichlet boundary, that is the boundaries where the no-slip condition is applied.

To apply the Finite Element Method, the weak formulation of equation (3.3) must first
be obtained. In the weak formulation, the PDE in no longer required to hold pointwise
but its projection on the test functions is imposed instead. Indeed, the weak formulation
of a PDE such as (3.3) is obtained by multiplying the equation by a test function φ and
integrating over the domain Ω

−
∫

Ω

(∇2w)φ dx =

∫
Ω

fφ dx. (3.4)

This operation corresponds to an inner product. The term with the second-order deriva-
tive can be integrated by parts, thus transferring one derivative on the test function and
decreasing the regularity required for the solution

−
∫

Ω

(∇2w)φ dx =

∫
Ω

∇w∇φ dx−
∫
∂Ω

∂w

∂n
φ ds. (3.5)

Since we chose a test function which vanishes on the boundary, that is φ = 0 on ∂Ω,
or by virtue of the periodicity conditions, the last term simplifies, therefore the weak
formulation of equation (3.3) becomes:

Find w ∈ H1
D(Ω) such that:∫

Ω

∇w∇φ dx =

∫
Ω

fφ dx ∀ φ ∈ H1
D(Ω). (3.6)

where f ∈ L2(Ω) and H1
D(Ω) = {φ ∈ H1

D(Ω) : φ = 0 on ∂ΩD}.
Now the problem (3.6) can be discretized, thus looking for an approximation of the

solution in a finite-dimensional subspace of the functional space chosen for the test φ and
trial w functions. The approximate solution is wh ∈ H1

h(Ω), where H1
h(Ω) ⊆ H1

D(Ω) is
a finite-dimensional functional space. The domain Ω is partitioned into cells, which are
usually triangles in a two-dimensional problem. With each triangle Ki, we associate a
polynomial space PK and a number of degrees of freedom L. The triplet (Ki, PK , L)
defines a finite element. To compute the solution to the Poisson problem for the base
flow, second order Lagrange polynomials P2 have been used.
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Choosing the basis for the finite-dimensional functional spaces as {φj}Nj=1, where N is
the dimension of the space, it follows that

wh =
N∑
j=1

wjφj. (3.7)

Substituting the approximation (3.7) into (3.6), and taking the test function φ = φi for
i = 1, 2, ..., N , we obtain the final finite-dimensional form of the problem

N∑
j=1

wj

∫
Ω

∇φj∇φi dx =

∫
Ω

fφi dx. (3.8)

The finite element solution wh can be now computed solving the linear system Aw = b,
where

Aij =

∫
Ω

∇φj∇φi dx, bi =

∫
Ω

fφi dx. (3.9)

The procedure for the computation of the base flow with two fluids is exactly the same,
with the exception that now the domain Ω is divided into two subdomains, Ωc for the
channel and Ωb for the air bubble. Each subdomain has his own Poisson problem, but we
can consider the same unknown, the velocity of the fluid, in a single domain. The right
hand side will be discontinuous since the two Reynolds numbers are different an thus the
given function changes. Without any particular complication, equation (3.6) becomes∫

Ωc

∇w∇φ dx+

∫
Ωb

∇w∇φ dx =

∫
Ωc

fwφ dx+

∫
Ωb

faφ dx ∀ φ ∈ H1
D(Ω). (3.10)

where fw = −Rew ∂P∂z and fa = −Rea ∂P∂z . Introducing the discrete spaces, the linear
system to be solved is obtained. The solution corresponds to the velocity of water in Ωc

and the velocity of air in Ωb. The continuity of the tangential velocities at the interface
is automatically considered during the computation process.

Problem (3.10) can alternatively be considered a unique Poisson equation, defined on
the whole domain Ω, with a discontinuous known function f . This is the approach used
during the development of the code. A totally equivalent formulation of (3.10) is then∫

Ω

∇w∇φ dx =

∫
Ω

fφ dx ∀ φ ∈ H1
D(Ω). (3.11)

with f defined as follows: 
f = −Rew

∂P

∂z
in Ωc,

f = −Rea
∂P

∂z
in Ωb.

(3.12)
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3.3 Eigenvalue problem for the water flow
The study of the linear stability of the flow to a wavelike perturbation requires solving

system (2.11). This is achieved by applying the Galerkin method and exploiting the finite
element method to obtain the eigenvalues ωi = ωi(κ) and the corresponding eigenfunc-
tions. The procedure is similar to the previous one presented for the Poisson problem,
with the complication that now the trial function is a vector and not a scalar function.
To obtain the weak formulation of system (2.11), a vector test function must be chosen.
Using Φ = {φx, φy, φz, ψ} as test function, the weak formulation reads:

Find û ∈ H1(Ω) and p̂ ∈ L2(Ω) such that:

∫
Ω

φxωû+

∫
Ω

φxiκWû+
1

Re

∫
Ω

∇xyφ
x · ∇xyû+

1

Re

∫
Ω

φxκ2û−
∫

Ω

p̂
∂φx

∂x
= 0,∫

Ω

φyωv̂ +

∫
Ω

φyiκWv̂ +
1

Re

∫
Ω

∇xyφ
y · ∇xyv̂ +

1

Re

∫
Ω

φyκ2v̂ −
∫

Ω

p̂
∂φy

∂y
= 0,∫

Ω

φzωŵ +

∫
Ω

φziκWŵ +

∫
Ω

∂W

∂x
φzû+

∫
Ω

∂W

∂y
φzv̂ +

1

Re

∫
Ω

∇xyφ
z · ∇xyŵ

+
1

Re

∫
Ω

φzκ2ŵ +

∫
Ω

φziκp̂ = 0,

−
∫

Ω

ψ
∂û

∂x
−
∫

Ω

ψ
∂v̂

∂y
−
∫

Ω

ψiκŵ = 0.

(3.13)

The pressure term has been integrated by parts to transfer the derivative on the test
function. This expedient is not strictly necessary but, along with the change of the sign
in the last equation, it helps obtain a final stiffness matrix with symmetric real part,
but for the convection terms. To lighten the notation, all the differentials dΩ have been
omitted and ∇xy indicates the two-dimensional gradient operator (with respect to x and
y).

Similarly to what done for the Poisson problem, we introduce now the finite-dimensional
approximation of the solution {ûh, v̂h, ŵh, p̂h} ∈ H1

h(Ω), namely

ûh =
N∑
j=1

ûjφ
x
j , v̂h =

N∑
j=1

v̂jφ
y
j , ŵh =

N∑
j=1

ŵjφ
z
j , p̂h =

N∑
j=1

p̂jψj. (3.14)

Substituting (3.14) into (3.13), we obtain the linear system corresponding to the temporal
eigenvalue problem, which is of the form:

A(κ)Θ = ω(κ)MΘ, (3.15)

where Θ is the eigenvector, Θ = {û1, · · · , ûN , v̂1, · · · , v̂N , ŵ1, · · · , ŵN , p̂1, · · · , p̂N}, M is
the mass matrix and A is the Jacobian matrix. These two matrices have the following
structure:

M =


Mx 0 0 0

0 My 0 0

0 0 M z 0

0 0 0 0

 , A = −


Ax 0 0 P x

0 Ay 0 P y

Cu Cv Az −P z

P x T P y T P z T 0

 . (3.16)
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The mass matrix is Hermitian but the Jacobian matrix is not, due to the convection terms
and the imaginary part. The elements of the matrix blocks read as follows:

Mx
ij =

∫
Ω

φxi φ
x
j , My

ij =

∫
Ω

φyi φ
y
j , M z

ij =

∫
Ω

φziφ
z
j , (3.17)

Axij =

∫
Ω

φxi φ
x
j iκW +

1

Re

∫
Ω

φxi φ
x
jκ

2 +
1

Re

∫
Ω

∇xyφ
x
i · ∇xyφ

x
j

Ayij =

∫
Ω

φyi φ
y
j iκW +

1

Re

∫
Ω

φyi φ
y
jκ

2 +
1

Re

∫
Ω

∇xyφ
y
i · ∇xyφ

y
j

Azij =

∫
Ω

φziφ
z
j iκW +

1

Re

∫
Ω

φziφ
z
jκ

2 +
1

Re

∫
Ω

∇xyφ
z
i · ∇xyφ

z
j (3.18)

P x
ij = −

∫
Ω

ψj
∂φxi
∂x

, P y
ij = −

∫
Ω

ψj
∂φyi
∂y

, P z
ij = −

∫
Ω

iκψjφ
z
i , (3.19)

Cu
ij =

∫
Ω

∂W

∂x
φziφ

x
j , Cv

ij =

∫
Ω

∂W

∂y
φziφ

y
j . (3.20)

3.4 Software architecture
The final software developed to solve the complex eigenvalue problem has a quite

complicate structure, result of the mixed programming with C++ and Fortran90. The
numerical solution of the base flow and the assembly of the matrices has been performed
with the FEniCS library. Instead, to solve the eigenvalue problem, an already available
eigenvalue solver implemented in Fortran90 has been used. The solver has been integrated
in the Fortran90 module which builds the complex jacobian matrix and that is interfaced
with the C++ code. Hereafter, a brief description of all the components of the software
is provided.

3.4.1 FEniCS library

The FEniCS library is a C++ and Python package for the automated solution of par-
tial differential equation using the finite element method [39]. By virtue of its components
it allows one to write the variational form of a PDE equation in high-level mathematical
description and to discretize it with different kinds of finite elements.

UFL and FFC
The Unified Form Language (UFL) is a domain specific language for the declaration of
finite element discretizations of variational form and functionals. It allows one to choose
finite element spaces and define the expression of the weak form of PDE equations in
a notation close to mathematical notation. It is also possible to define integrals over
subdomains and over external and internal boundaries (release 1.6.0). The FEniCS Form
Compiler (FFC ) generates efficient low-level C++ code from the high-level mathematical
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description in UFL and produces a C++ header containing all the information for the
finite element discretization of the form. The header must be included into the main
program. A detailed description of the UFL code concerning the present work is given in
Appendix B

Dolfin
Dolfin is the core library of the package in which a large part of the functionality of FEniCS
is implemented. The Dolfin C++ interface is designed as a standard object-oriented C++
library. It provides classes which model important concepts for finite element computing
and the routines for the sparse assembly of the forms defined in the FFC headers. It
also provides linear and nonlinear algebra tools and wrappers to external libraries such as
PETSc, which has been used in the present work. Dolfin set of input-output procedures
allows one to read complex meshes in XML format and to save functions, vector and
matrices to file.

3.4.2 Other libraries

In addition to the FEniCS package, the developed software required the use of native
functionalities of the wrapped PETSc library and the use of the subroutines provided by
the ARPACK library[27].

PETSc
The Programming Extensible Toolkit for Scientific Computation (PETSc) consist in a
variety of libraries, each one manipulating a specific class of object and related operations.
In the present work it has been used to store the matrices of the eigenvalue problem in
CRS format and to store the data saved by the Fortran90 code in order to define the
Dolfin function containing the eigenfunction associated with the dominant eigenvalue.

ARPACK
The ARnoldi PACKage (ARPACK ) is a collection of Fortran77 subroutines designed
to solve large eigenvalue problems. It is capable of solving large scale Hermitian, non-
Hermitian, standard or generalized eigenvalue problems. The software is designed to
compute k eigenvalues with user specified features, such as largest real part or largest
magnitude. In the present work the given Fortran90 module applies the requested shift
to the matrices of the generalized eigenvalue problem and then uses the ARPACK sub-
routines to compute the number of eigenvalues, and the corresponding eigenfunctions,
requested by the user from a configuration file.

40



Chapter 4

Validation of the code

This chapter provides the description of the validation process of the code developed to
study the stability of the multi-phase flow in a channel with a grooved wall. This specific
geometry has received particular attention only recently, due to the growing interest in
potential application of SH surfaces. For this reason, specific results are not available
in literature, therefore there are no reference results for the computed flow to date. The
validation process will follow a step by step procedure. First, the base flow for a simplified
version of the problem is computed, that is a water flow in a plane channel. This situation
corresponds to the well known Poiseuille flow, which can be analytically solved [36]. The
obtained solution is compared with the exact solution. The second step is to compute
the base flow for a water flow in a channel with the grooved wall. The same water flow is
then recomputed introducing the bubble interface as a fake interface between two flows
of the same fluid. This result is then compared with the previous one. Lastly, the multi-
phase, air and water, base flow is computed for an approximate combination of physical
parameters and compared to the single-phase flow.

The software developed to solve the eigenvalue problem has been validated solving the
well-studied problem of the linear stability in a plane channel [21]. The results obtained
with the developed software have been compared with the results provided by a reli-
able software that solves the Orr-Sommerfeld equation with Legendre polynomials. The
Orr-Sommerfeld equation constitutes an eigenvalue problem for the wall-normal velocity
component of a parallel flow, such as the Poiseuille flow in a plane channel. Successively,
the influence of the width of the considered portion of channel in the xy plane has been
investigated. Eventually the dependency of the growth rate and phase velocity of the dom-
inant eigenvalue on the refinement of the mesh has been examined: the same eigenvalue
problem has been solved on meshes with a different number of elements.

4.1 Poisson problem

This section is dedicated to the validation of the FEniCS/C++ code for the solution
of the Poisson problem corresponding to the base flow. The base flow solution, though
fairly simple, is necessary to assemble the matrices of the eigenvalue problem.
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Figure 4.1: Comparison of the computed flow with the analytical solution of the Poiseuille
flow.

4.1.1 Poiseuille flow

The lack of results available in literature for the problem we want to address compels
us to find an indirect way to validate the code. First of all we will ascertain that the code
works in a simplified situation which, despite not being the studied problem, can still give
reliable indications about the correctness and accuracy of the code itself.

As a first test case, we computed the single-phase, steady flow between two plane
surfaces subject to a constant pressure gradient. In fact for this flow an exact solution
of the Navier-Stokes equations exists, the renowned plane Poiseuille flow, that can be
assumed as a reference.

In the Poiseuille flow, the velocity field is parallel and invariant in the spanwise and
streamwise directions. Using the same reference system described in section 2.1, with x
as the spanwise direction and z as the streamwise direction, the Navier-Stokes equations
for the Poiseuille flow reduce to:

d2w

dy2
= Re

dP

dz
. (4.1)

Denoting the channel height by H, the equation is completed by the boundary conditions

w(0) = 0, w(H) = 0. (4.2)

Observing equation (4.1), it is immediately evident that it is quite similar to the third
equation of system (2.6). The only difference is the two-dimensional Laplacian operator
instead of the second derivative, however if we test the code on a plane channel eliminating

42



CHAPTER 4. VALIDATION OF THE CODE

the groove, the results must agree with the Poiseuille exact solution. Considering a
constant pressure gradient dP

dz
= Gz, the solution to equation (4.1) is:

w(y) = −GzReH
2

2

y

H

(
1− y

H

)
, (4.3)

where Gz is the dimensionless pressure gradient and Re the Reynolds number. Equation
(4.4) represents a parabola arc which must be reproduced by the code.

The Reynolds number has been defined on the channel half-height h = 1 and with
the centre-line velocity Ucl. The imposed dimensionless pressure gradient is Gz = − 2

Re
,

needed to obtain a centre-line velocity Ucl = 1. Equation 4.4 then becomes:

w(y) = y(2− y). (4.4)

From figure 4.1 we deduce that the computed flow and the analytical solution almost
perfectly match. The computed profile has been taken at the spanwise midline of the
rectangular section. We can assume that the code is fully capable of solving the single-
phase base flow on a simple geometry.

4.1.2 Poisson problem with two subdomains

As second step in the validation process, a channel with a grooved wall is considered.
In this case, the flow is no longer invariant in the spanwise direction. The main objective
of this section is to ascertain the capability of the code to successfully compute the base
flow, which corresponds to a Poisson equation, on two different subdomains connected by
an interface.

First, the water flow in a single domain will be computed to provide a reference for
comparison. In this case, in fact, there is no analytical solution. Nevertheless, since the
periodic boundary condition holds, we expect the computed flow to be at least symmetrical
with respect to the midspan line. The no-slip Dirichlet boundary condition is applied to
the top, bottom and groove walls. The set of parameters used in this calculation is the
same described in Section 4.1.1.

Figure 4.2 shows the computed solution. As predicted, due to the presence of the
groove, the flow is not spanwise invariant, even though, away from the groove, the solution
tends to become identical to the Poiseuille flow.

The second step is the computation of the same flow, but this time with two subdo-
mains introducing the interface between the two regions. In this case, the interface is an
artefact, since the same fluid is present on each side of the interface. The code solves two
different Poisson equations, each one applied only in its own subdomain.

Each Poisson equation has its own boundary conditions, homogeneous Dirichlet and
periodicity for the channel domain Ωc and homogeneous Dirichlet only for the bubble
domain Ωb. Considering the problem formulated as in (3.11) - (3.12), the imposition
of interface condition is not required since the continuity of the tangential velocity is
automatically obtained by the resolution process.

Figure 4.3 demonstrates that the two solutions are exactly the same, thus validating
the code for multiple domains.

To further verify the quality of the code, the comparison between the velocity profiles
at the midspan line is presented in figure 4.4. It is similar to the Poiseuille profile in the
upper part of the channel but it now has two inflection points inside the groove.
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Figure 4.2: Solution to the Poisson equation for the water flow with only one subdomain.

Figure 4.3: Solution to the Poisson equation for the water flow computed in two subdo-
mains.
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Figure 4.4: Comparison between the velocity profiles of the water flow in the grooved
channel obtained with a single or two subdomains. The black dashed line shows the fake
interface location.

Figure 4.5: Comparison between the velocity profiles of the water flow without air bubble
and with air bubble. The black dashed line shows the interface location.

45



4.2. EIGENVALUE PROBLEM

4.1.3 Test with air bubble

Since the code has already been validated, the simulation with the air bubble is just
a qualitative test. The channel section is divided into two subdomains by the interface
between the two fluids. Water occupies the channel domain Ωc and air occupies the
bubble domain Ωb. The procedure is exactly the same adopted in Section 4.1.2, however
the viscosities, and therefore the Reynolds numbers, in the two subdomains are now
different. We expect the fluid velocity inside the bubble to be lower with respect to the
previous case, due to the higher kinematic viscosity of air with respect to water. Figure
4.5 confirms the theoretical expectations.

4.2 Eigenvalue problem

This section describes the validation of the combined FEniCS/C++ and Fortran90
code dedicated to the formulation and solution of the eigenvalue problem of a mono-
phase flow. The eigenvalue solver is the most important part of the developed software,
therefore it needs accurate validation. First, we compare the results with that available in
literature. Second, we analyse how the refinement and the geometry of the mesh influences
the results.

4.2.1 Eigensolutions

The complete development of the eigenvalue solver, from the weak formulation of
the equations to saving the results, has required the testing of many pieces of code.
Particularly laborious has been the interface between the C++ code and the Fortran90
code. The main reason that lead to the choice of a mixed programming approach is the
complex nature of the jacobian matrix. FEniCS is not capable of dealing with complex
numbers, therefore the real and imaginary part of the jacobian matrix have been assembled
separately and merged with the Fortran90 code. No-slip boundary conditions have been
imposed in all matrices by annihilating the rows and columns corresponding to the nodes
on the boundary and setting the diagonal element to one.

Like in the Poisson problem, the validation of the code has been performed on a well-
known problem, that is the linear stability of a flow in a plane channel, for which plenty
of data is available in the literature. We know that this is a parallel flow that becomes
unstable to two-dimensional Tollmien-Schlichting waves with wavenumber κ = 1.02 at
Re = 5772, if the Reynolds number is based on the the channel half-height and the
centre-line velocity [31, 32].

To validate the developed software, the obtained results for the plane channel problem
have been compared with the results provided by a reliable and well-tested Fortran90
software that solves the Orr-Sommerfeld equation, described in Appendix A.

Figure 4.6 shows that the developed software computes correctly the eigenvalue spec-
trum of the linear stability problem for the Poiseuille flow in a plane channel. Even if not
all eigenvalues match, the three branches A(ci → 0), P (ci → 1), S(ci ≈ 2/3) are clearly
visible. Moreover, the dominant eigenvalue ω = −3.4020 · 10−7− 0.2692i almost perfectly
matches the reference result.
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Figure 4.6: Comparison of the eigenvalues spectrum computed with the Orr-Sommerfeld
software and the software developed for the present work.

The last step of the validation process of the eigenvalue solver is to check the shape
of the eigenfunction corresponding to the dominant eigenvalue, which belongs to the A
branch of the spectrum. The Orr-Sommerfeld software directly computes the profile of the
vertical perturbation velocity v̂. Instead, the developed software computes the complete
eigenfucntion Θ field on the whole two-dimensional domain representing the plane channel
section. To compare the results, the profile of v̂ at the channel spanwise midline has been
extracted. To make the results compatible, the real and imaginary part of the computed
eigenfunction have been switched. Moreover, both profiles have been scaled with the
respective integral evaluated with the trapezoidal rule.
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Figure 4.7: Comparison of the real part of the eigenfunction v̂ computed with the Orr-
Sommerfeld software and the software developed for the present work.

Figure 4.8: Comparison of the imaginary part of the eigenfunction v̂ computed with the
Orr-Sommerfeld software and the software developed for the present work.
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4.2.2 Sensitivity to channel width and mesh refinement

To evaluate if different sizes of the mesh may produce variations in the solution and
to evaluate their magnitude, the eigenvalue spectrum has been calculated for different
widths of the plane-channel section and three shifts, ξP = 0.01− i, ξS = −0.3− 0.67i and
ξA = 0.01−0.264i. The number of requested eigenvalues is k = 100 in all cases. This value
has been chosen to obtain meaningful results while keeping the requested CPU time and
memory affordable. From figure 4.9 we can deduce that the choice of shift strongly affects
the portion of spectrum that is computed. In all cases, not all of the original eigenvalues
of the Orr-Sommerfeld spectrum are computed because some of them are hidden by new
eigenvalues closer to the shift value. This is due to the fact that the Orr-Sommerfeld
equation is a one-dimensional problem while the developed software solves a 3D problem
on a two-dimensional domain. With a very narrow section only the instability modes
with null or very high wavenumbers are permitted. By increasing the section width, more
and more modes with low wavenumber are detected. As a consequence new eigenvalues
appear in the Orr-Sommerfeld spectrum. In particular, the new modes seem to enrich the
A branch of the spectrum and to form secondary P branches parallel to the original one.

To evaluate the dependency of the solution on the mesh refinement, the same test
case of the channel with rectangular grooves has been repeated for different meshes, listed
in Table 4.1. The results for the dominant eigenvalue are presented in figure 4.11 and
4.12. The phase velocity, that is the imaginary part of the eigenvalue, shows a decreasing
variation with increasing refinement of the mesh. The growth rate, that is the real part,
stabilizes with absolute variations of 10−7 if more than 100000 elements are used. For
these reasons, and with the aim of keeping an acceptable CPU time, all the meshes used
hereafter have a number of elements in the range 100000 - 400000. It must be remarked
that the elements are not uniformly distributed in the mesh but they are coarser in the
centre of the channel and finer near the channel walls, especially close to the groove edges
and the interface between air and water where high accuracy is required.

Mesh nnodes nelements uelements pelements tCPU [s]

M50 24362 48750 P2 P1 476.31

M100 56520 113066 P2 P1 1209.49

M200 95490 191006 P2 P1 2178.40

M250 137618 275262 P2 P1 3151.96

Table 4.1: Characteristics of the meshes used to test the convergence of the leading
eigenvalue. CPU time refers only to the eigenvalue solver and it does not take into
account the CPU time needed for the base-flow computation and matrix assembly.
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Figure 4.9: Eigenvalue spectra computed with different channel-section widths. Shift ξA
and k = 100.

Figure 4.10: Eigenvalue spectra computed with different shifts. Channel with L = 0.5
and k = 100.
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Figure 4.11: Value of the growth rate of the dominant eigenvalue computed with different
meshes.

Figure 4.12: Value of the phase velocity of the dominant eigenvalue computed with dif-
ferent meshes.
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Chapter 5

Results

This chapter presents all the results of the linear stability analysis. Firstly, we in-
vestigated how the amplitude of the grooves affects the flow stability by tracking the
dominant eigenvalue for different low values of wall roughness, but imposed groove wave-
length. Then, we located the critical Reynolds of the flow in a channel with grooves of
different dimension and shape, namely rectangular and triangular grooves and wall rough-
ness d = 0.01, d = 0.02, d = 0.05, d = 0.1. These values have been chosen by establishing
an analogy with the Blasius boundary layer flow, which could represent realistic scenarios
of possible applications of riblets and SH surfaces. In addition, the approximate neutral
curves for d = 0.02 and d = 0.05 have been drawn from the essential sample points. The
analysis of the real part of the normalized eigenfunction in the xy plane has also been
carried out. Lastly, as a preparatory phase for the investigation of the complete problem,
the velocity profiles of the multi-phase base flow have been obtained.

5.1 Eigenvalue tracking

An interesting analysis is the eigenvalue tracking for different values of wall roughness
d. The main objective is to understand how the groove amplitude affects the stability
of the flow. The eigenvalue spectrum has been computed for increasing roughness values
and an imposed wavelength, λ = 0.02 for the rectangular grooves and λ = 0.01 for the
triangular grooves. In this way the section increase of the overall channel due to the
grooves is comparable for both geometries and so it is the increase of the flow rate. To
examine the fluid behaviour for the same critical parameters of a plane channel, the
Reynolds number is Re = 5772 and the disturbance streamwise wavenumber is κ = 1.02.

Figure 5.1 and 5.2 show the position of the dominant eigenvalue in the (cr− ci) plane,
for the rectangular and the triangular grooves, respectively. In both cases, the grooves
have a similar unstabilizing effect on the channel flow. These results are compatible with
those obtained by Moradi and Floryan [32] and Ehrenstein [12]. The wavelengths λ = 0.02
and λ = 0.01 correspond to groove wavenumbers β = 314 and β = 628 respectively, which
are both abundantly above the transition wavenumber βtrans = 4.22. However, this value
is purely a qualitative reference, since it is relative to sinusoidal grooves. Even though
the flow is destabilized, the increase in growth rate cr is very small, due to the fact that
the considered roughness values are also very small, with the limit case of cr ≈ 0 for
d = 0.0002, that is almost a plane channel.
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Figure 5.1: Dominant eigenvalue for rectangular grooves of different amplitude and λ =
0.02. Re = 5772 and κ = 1.02.

Figure 5.2: Dominant eigenvalue for triangular grooves of different amplitude and λ =
0.01. Re = 5772 and κ = 1.02.
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Figure 5.3: Growth rate of the dominant eigenvalue as a function of the wall roughness.
Re = 5772 and κ = 1.02.

Figure 5.4: Phase speed of the dominant eigenvalue as a function of the wall roughness.
Re = 5772 and κ = 1.02.
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The roughness of the channel wall and the growth rate of the dominant eigenvalue are
almost linearly proportional, as we can see in figure 5.3. The destabilization rate is slightly
greater for the rectangular grooves. On the other hand, the phase velocity increases more
rapidly for the triangular grooves, and not in a linear way (figure 5.4). From the available
data it seems that it tends to a constant value as the roughness increases. This result
must be interpreted as a trend, since the slightly different number of elements in the mesh
can also play a role, as we have already seen in figure 4.12

We can conclude that the results of Moradi and Floryan obtained for sinusoidal grooves
can be extended to rectangular and triangular grooves.

5.2 Flow in a channel with SH geometry

This section is dedicated to investigate the stability of the flow in a channel with
longitudinal grooves similar to those which characterize SH surfaces, neglecting the nano-
structured roughness and the air bubble. The problem is strongly simplified with respect
to the multi-phase problem. Nonetheless, the results presented in this section constitute
a solid knowledge base necessary to interpret the results for the complete problem with
the air bubble.

5.2.1 Boundary layer analogy

The control parameters must be chosen wisely, for the results to be meaningful for
possible applications. To this end, we could establish an analogy between the channel flow
and the boundary layer flow around a flat plate aligned with the stream. Even though the
behaviour of these flows is substantially different and the boundary layer problem better
represents possible applications of regular riblets and SH surfaces, the channel flow is by
far simpler and it is therefore adopted in this work. The conventional reference length
for the boundary layer is the displacement thickness δ∗ and the free-stream speed U∞ is
the reference velocity. Unlike the channel flow, which is driven by the pressure gradient,
the Blasius boundary layer flow is driven by the free-stream speed of the external flow.
Moreover, the disturbances are not spatially confined by the channel walls and they can
propagate more freely. For these reasons, the critical Reynolds number Reδ∗ = 519 and
disturbance wavenumber κδ∗ = 0.3 [40], based on U∞ and δ∗, are quite different from the
ones for channel flow, ReCHh = 5772 and κCHh = 1.02.

Despite the abovementioned caveats, the analogy is useful to obtain reasonable orders
of magnitude for the control parameters, in particular the roughness d and therefore the
channel half-height h. If we consider a solid body moving through water, for example a
ship hull, the boundary layer becomes thicker as the water flows from bow to stern. The
grooves have constant amplitude and span, therefore the thicker the boundary layer the
smaller the roughness with respect to it: once the size of the grooves is fixed, different
values of roughness represent different streamwise stations on the solid body. If we impose
the free-stream speed, we can evaluate the displacement thickness of the boundary layer
corresponding to the critical Reynolds number and therefore the associated roughness
value. However, this value must be then adjusted to evaluate its equivalent for the plane
channel.
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average speed dBL d
kn m/s - -

cruiser ship 20 10.19 0.28 0.09

oil tanker 13 6.69 0.18 0.06

container ship 25 12.86 0.25 0.08

icebreaker 18 9.26 0.35 0.11

patrol boat 23 11.83 0.31 0.10

air carrier 30 15.43 0.42 0.13

submarine 35 18.01 0.50 0.16

white shark - 10.00 0.28 0.09

Table 5.1: Average speed for different ship types and the white shark with the correspond-
ing channel roughness.

Firstly we estimated the ratio between the two reference lengths δ∗ and h by comparing
a Poiseuille parabolic profile and a Blasius profile with the same reference speed Ucl =
U∞ and the same wall stress τw = µH

∂w
∂y

∣∣
y=0

. Then, the critical Reynolds number and
disturbance wavenumber of the Blasius flow have been rescaled with the ratio h

δ∗
≈ 3.5,

obtaining
ReBLh = 1818 κBLh = 1.06. (5.1)

We observe that the critical disturbance wavenumbers of the channel flow and the bound-
ary layer flow are approximately the same κCHh ≈ κBLh , but the critical Reynolds numbers
are still quite different. For this reason, to compare two flows in the same quasi-unstable
conditions and with the same reference speed, the value of the reference length h must
be different. Considering the average speed of different types of ships, we computed the
half-height hBL and the roughness dBL corresponding to ReBLh . Then, we corrected the
obtained values with the ratio ReBLh

ReCHh
= 0.31 to estimate a suitable roughness d for the

channel flow. Table 5.1 presents a brief summary. The swimming speed of the white
shark has also been considered.

Instead, table 5.2 is a summary of the parameters used to obtain the present results.
The pressure gradient and the centre-line velocity have been calculated with the kinematic
viscosity of the water νH = 10−6 m2/s and with Re = 5772.

5.2.2 Rectangular grooves

The results obtained are, once again, compatible with the researches of Moradi and
Floryan [32] and Ehrenstein [12]. The longitudinal grooves cause a destabilization of the
flow in the channel, reducing the critical Reynolds number. The destabilization effect is
more significant as the dimension of the grooves increases, that is for greater roughness
values and groove wavelengths. The critical Reynolds number for d = 0.01 and d = 0.02
is slightly lower with respect to the plane channel, however, for d = 0.05, it drops to
Re ≈ 5000 and to Re < 4500 for d = 0.1 (see figure 5.7).
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In figure 5.5 we see the eigenvalue spectra. It is clearly visible the dependency of the
eigenvalues distribution on the size of the mesh, especially the section width L, as already
discussed in Section 4.2.2. In the dimensionless problem, the channel half-height is fixed,
therefore if the groove dimension varies, the section width L must also vary to consider
the same number of grooves. However, even with the introduction of new modes, the
shift ξA = 0.01 − 0.264i guarantees that the dominant eigenvalue is always among the
calculated eigenvalues.

5.2.3 Triangular grooves

The results obtained for the triangular grooves are almost the same as for the rect-
angular ones. The channel flow is destabilized by the longitudinal grooves, however the
critical Reynolds number decrease seems to be less significant than for the rectangular
grooves. While it is similar for the roughness values d = 0.01 and d = 0.02, for d = 0.05
it is around Re ≈ 5250 and for d = 0.1 it drops to Re ≈ 4500 (see figure 5.8).

From figure 5.6 we notice that the deformation of the spectrum is less evident than that
for the rectangular grooves with the same roughness. This is just because the triangular
grooves have half the wavelength of the rectangular ones for fixed d and therefore the
considered section has also half width. This fact is also highlighted by figure 5.5a and
figure 5.6b, where the superposition of the original S and A branches by new modes is
almost the same.

5.3 Neutral curve
The results presented in Section 5.2 are enriched by drawing the approximate neutral

curves in the (Re− κ) plane. Each curve has been linearly interpolated from five sample
points, with the exception of the curve for the rectangular grooves of roughness d = 0.05
for which seven sample points have been used. The linear interpolation is the less accurate,
but it has been chosen to underline the fact that these are just approximated curves, due
to the large amount of calculations required to increase the resolution and the accuracy.

For Reynolds numbers greater than the critical value, there are two points in the
(Re− κ) plane which lie on the neutral curve. For some Reynolds numbers these points
have been located by approximating the function ωr = ωr(κ)|Re=const from three samples
computed for κ1 > 1.02 and κ2 < 1.02 in the stable zone and κ3 = 1.02 in the unstable
zone. This choice has been made to ensure that the two points of the neutral curve
ωr(κ)|Re=const = 0 belonged to the considered κ interval. Instead, the critical Reynolds
number for κ = 1.02 has been evaluated from the results presented in Section 5.2.

The neutral curves are fairly similar to the analogous curves for the plane channel.
The critical Reynolds number decreases as the roughness d and the groove wavelength λ
increase. Furthermore, for a given Reynolds number, the range of disturbance wavenumber
κ in the unstable zone is wider for higher roughness. As we already observed from the
results presented in Section 5.2, the difference in critical Reynolds number between the
rectangular grooves and the triangular grooves is more evident for d = 0.05 than d = 0.02.
Moreover, the approximate slope of the neutral curve for the rectangular grooves is slightly
higher than for the triangular ones.
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(a) Eigenvalue spectrum for d = 0.01 and
λ = 0.02.

(b) Eigenvalue spectrum for d = 0.02 and
λ = 0.04.

(c) Eigenvalue spectrum for d = 0.05 and
λ = 0.1.

(d) Eigenvalue spectrum for d = 0.1 and
λ = 0.2.

Figure 5.5: Eigenvalue spectra for the channel flow with longitudinal rectangular grooves
for different roughness values.
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(a) Eigenvalue spectrum for d = 0.01 and
λ = 0.01.

(b) Eigenvalue spectrum for d = 0.02 and
λ = 0.02.

(c) Eigenvalue spectrum for d = 0.05 and
λ = 0.05.

(d) Eigenvalue spectrum for d = 0.1 and
λ = 0.1.

Figure 5.6: Eigenvalue spectra for the channel flow with longitudinal triangular grooves
for different roughness values
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Figure 5.7: Growth rate of the most unstable eigenvalue as a function of the Reynolds
number for several roughness values. Rectangular grooves. κ = 1.02.

Figure 5.8: Growth rate of the most unstable eigenvalue as a function of the Reynolds
number for several roughness values. Triangular grooves. κ = 1.02.
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Figure 5.9: Neutral curve in the (Re − κ) plane for rectangular grooves of roughness
d = 0.02 and d = 0.05. The black dashed line represents the approximate neutral curve
of the channel with smooth walls.

Figure 5.10: Neutral curve in the (Re − κ) plane for triangular grooves of roughness
d = 0.02 and d = 0.05. The black dashed line represents the approximate neutral curve
of the channel with smooth walls.
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5.4 Eigenfunctions
This section is dedicated to the analysis of the dominant eigenfunction. To carry

out a meaningful comparison of the results obtained with different geometries, the three
components of the eigenfunction have been normalized, in fact they are defined up to a
complex multiplicative constant. The most convenient choice is the integral mean of the
wall-normal component v̂, whose real and imaginary part read

Ir =
1

Ω

∫
Ω

v̂r, Ii =
1

Ω

∫
Ω

v̂i, (5.2)

where Ω is the two-dimensional domain corresponding to the channel section. With
equations (5.2) we can then write

ū = ūr + iūi =
ûr + iûi

Ir + iIi
, (5.3)

where ûr and ûbi represent the real and imaginary part of the unnormalized eigenfunction.
By multiplying and dividing by the complex conjugate of the normalization coefficient,
we can separate the real and imaginary part obtaining

ūr + iūi =
ûrIr + ûiIi
I2
r + I2

i

+ i
ûiIr − ûrIi
I2
r + I2

i

. (5.4)

The results presented in this section regard only the real part ūr of the normalized eigen-
function. Even if the perturbation of the flow is three-dimensional, we limit our analysis
to the xy plane, that is the domain on which the results have been obtained.

In all the examined cases, the profile of the wall-normal component v̄r is almost iden-
tical, as shown in figure 5.11, with the exception of the area near and inside the grooves.
v̄r is the predominant component in the central part of the channel. On the other hand,
we can observe from figure 5.12 that close to the channel walls the streamwise component
becomes predominant instead, especially inside the grooves. The extent of the peak of
the streamwise component w̄r depends on shape and dimension of the grooves, to the
point of becoming comparable to the maximum of the wall-normal component for rectan-
gular grooves with d = 0.1. It can be also noticed that, as the dimension of the grooves
increases, the location of the w̄r maximum moves inside the grooves themselves. For
d = 0.05 and d = 0.1, the outcome is the formation of zones inside the grooves where the
flow is practically directed in the z direction. These structures can be clearly observed in
figures 5.15b, 5.16b, 5.19b and 5.20b. For d = 0.01 and d = 0.02 instead, the streamwise
component peak is just above the groove tip and it is spanwise constant, as shown in
figures 5.13b, 5.14b, 5.17b and 5.18b.

Figure 5.21 is the representation of the three components separately for d = 0.1. The
spanwise component is null almost everywhere, except for alternate negatives and positive
peaks around the edges of the grooves. However, these peaks remain under the level of 5%
of the maximum of the wall-normal component, therefore we can assert that the spanwise
component does not contribute to the magnitude of the eigenfunction vector ūr. In figures
5.21e and 5.21f we can observe that the negative peak of the streamwise component is
still spanwise constant for the triangular grooves while it is not for the rectangular ones.
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Figure 5.11: Profile of the normalized wall-normal component v̄r taken at the midspan
line of the section. Rectangular grooves (blue) and triangular grooves (red). Roughness
d = 0.01 (dotted line), d = 0.02 (dashed line), d = 0.05 (solid line), d = 0.1 (dashed-dotted
line). The black dashed line shows the groove-tip height.

Figure 5.12: Profile of the normalized streamwise component w̄r taken at the midspan
line of the section. Rectangular grooves (blue) and triangular grooves (red). Roughness
d = 0.01 (dotted line), d = 0.02 (dashed line), d = 0.05 (solid line), d = 0.1 (dashed-dotted
line). The black dashed line shows the groove-tip height.
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(a) Complete domain.

(b) Magnification near the grooves in the
domain −d < y < 3d. The represented area
is highlighted by a rectangle in figure 5.13a.

Figure 5.13: Magnitude of the normalized eigenfunction ūr. Rectangular grooves with
d = 0.01 and λ = 0.02.

(a) Complete domain.

(b) Magnification near the grooves in the
domain −d < y < 3d. The represented area
is highlighted by a rectangle in figure 5.14a.

Figure 5.14: Magnitude of the normalized eigenfunction ūr. Rectangular grooves with
d = 0.02 and λ = 0.04.
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(a) Complete domain.

(b) Magnification near the grooves in the
domain −d < y < 3d. The represented area
is highlighted by a rectangle in figure 5.15a.

Figure 5.15: Magnitude of the normalized eigenfunction ūr. Rectangular grooves with
d = 0.05 and λ = 0.1.

(a) Complete domain.

(b) Magnification near the grooves in the
domain −d < y < 3d. The represented area
is highlighted by a rectangle in figure 5.16a.

Figure 5.16: Magnitude of the normalized eigenfunction ūr. Rectangular grooves with
d = 0.1 and λ = 0.2.
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(a) Complete domain.

(b) Magnification near the grooves in the
domain −d < y < 3d. The represented area
is highlighted by a rectangle in figure 5.17a.

Figure 5.17: Magnitude of the normalized eigenfunction ūr. Triangular grooves with
d = 0.01 and λ = 0.01.

(a) Complete domain.

(b) Magnification near the grooves in the
domain −d < y < 3d. The represented area
is highlighted by a rectangle in figure 5.18a.

Figure 5.18: Magnitude of the normalized eigenfunction ūr. Triangular grooves with
d = 0.02 and λ = 0.02.
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(a) Complete domain.

(b) Magnification near the grooves in the
domain −d < y < 3d. The represented area
is highlighted by a rectangle in figure 5.19a.

Figure 5.19: Magnitude of the normalized eigenfunction ūr. Triangular grooves with
d = 0.05 and λ = 0.05.

(a) Complete domain.

(b) Magnification near the grooves in the
domain −d < y < 3d. The represented area
is highlighted by a rectangle in figure 5.20a.

Figure 5.20: Magnitude of the normalized eigenfunction ūr. Triangular grooves with
d = 0.1 and λ = 0.1.
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(a) Spanwise component ūr. Rectangular
grooves d = 0.1.

(b) Spanwise component ūr. Triangular
grooves d = 0.1.

(c) Wall-normal component v̄r. Rectangu-
lar grooves d = 0.1.

(d) Wall-normal component v̄r. Triangular
grooves d = 0.1.

(e) Streamwise component w̄r. Rectangular
grooves d = 0.1.

(f) Streamwise component w̄r. Triangular
grooves d = 0.1.

Figure 5.21: Normalized eigenfunction components ūr, v̄r and w̄r for rectangular and
triangular grooves with d = 0.1 near the grooved wall.
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5.5 SH channel base flow
This section focuses on the analysis of the base flow in a channel with SH longitudinal

grooves, that is the longitudinal grooves filled with air bubbles. In this analysis we consider
only the micro-structured roughness and we suppose that the nano-structured roughness of
the grooves has been appropriately designed to obtain a contact angle θ = 170◦ (α = 10◦).
The analysis of the base flow is a mandatory step, before proceeding to the linear stability
analysis of the flow: modifications in the base-flow profile induced by the air bubble could
have great influence on the stability characteristics of the flow. All the results presented
in this section have been obtained with d = 0.05 and λ = 0.1 for rectangular grooves or
λ = 0.05 for triangular grooves. Figures 5.22 and 5.23 show the spanwise stations for
which the base flow profile has been examined.

V TE
H

Figure 5.22: Spanwise stations reference
used for plotting the velocity profiles for
rectangular grooves.

V T
H

Figure 5.23: Spanwise stations used for
plotting the velocity profiles for triangu-
lar grooves.

A first look of the profile on the whole channel height reveals that it is quite similar to
the parabolic Poiseuille profile. If we compare the profile corresponding to the midspan
line of a groove valley, that is station V, and the midspan line of a groove tip, that is
station T, they are practically the same, with the exception of the area around the groove.
If the grooves are small enough, the velocity profile far from them is not affected. In the
validation process 4.5, the groove dimension was exaggerated on purpose to check the
accuracy of the result, therefore the modification of the whole profile was more apparent.
These considerations are valid for both the rectangular grooves (figure 5.24) and the
triangular grooves (figure 5.25).

It is more interesting to observe more closely how the base-flow profile differs from
the Poiseuille profile in the area near the grooved wall. In figure 5.26 and 5.27 we can
see the comparison between the profiles in a channel with grooves and a single fluid and
a channel with a multi-phase flow over SH surfaces. In the case of triangular grooves
the profiles taken at different spanwise stations are practically the same. However, in the
case of rectangular grooves, the difference between the profiles is more evident, especially
inside the valley of the groove. It is also worth noticing that, at the edge of the groove
(station E), W (y) = 0 for y = 0 is reached more slowly than station T. This profile is
similar to the one for the triangular grooves, where the only point at the tip is also the
edge point.
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Figure 5.24: Velocity profiles in a channel with SH rectangular grooves. Profiles taken at
station V (blue solid line) and station T (cyan dashed line). The black dashed line shows
the grooves tip height.

Figure 5.25: Velocity profiles in a channel with SH triangular grooves. Profiles taken at
station V (blue solid line) and station T (cyan dashed line). The black dashed line shows
the grooves tip height.
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Figure 5.26: Magnification of the velocity profiles near the grooved wall (rectangular
grooves). Comparison between the single-phase flow (red) and the multi-phase flow (blue).
Profiles taken at station V (solid line), station H (dashed-dotted line), station E (dashed
line) and station T (dotted line).

Figure 5.27: Magnification of the velocity profiles near the grooved wall (triangular
grooves). Comparison between the single-phase flow (red) and the multi-phase flow (blue).
Profiles taken at station V (solid line), station E (dashed-dotted line) and station T (dot-
ted line).
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Chapter 6

Conclusions and future work

In the present work we performed a linear stability analysis of the flow in a plane
channel with a grooved wall. This study was motivated by the need of an in-depth analysis
of the stability of the flow over longitudinal grooves with the purpose of designing a surface
that combines the drag reduction properties of riblets and SH surfaces. For SH surfaces,
this property derives from a double-hierarchical roughness, which is capable of trapping
air bubbles inside the asperities of the solid wall and maintaining a stable Cassie wetting
state.

The flow dynamics has been modeled with the incompressible dimensionless Navier-
Stokes equations. The first step was to introduce into the equations the simplification
allowed by the problem geometry, thus obtaining the Poisson problem for the base flow.
Then the equations have been linearized and the eigenvalue problem has been defined.
We have then applied the Finite Element Method to the weak formulation and built the
matrices necessary to solve the eigenvalue problem. The whole procedure has been im-
plemented in a mixed C++/Fortran90 software exploiting the features of the FEniCS
package [39]. The base-flow solver has been validated on the Poiseuille flow, whose ana-
lytical solution is well known[36]. The eigenvalue solver instead has been validated with
established solutions of the Orr-Sommerfeld equation. In the multi-phase problem, the
interface between the fluids has been modelled with the Young-Laplace equation. This
equation is non-linear and required a numerical integration that combines a shooting
method and a quasi-Newton iterative method to be solved.

The present work demonstrated that the results obtained for rectangular and triangu-
lar longitudinal grooves are compatible with the results obtained for sinusoidal grooves by
Moradi and Floryan [32] and for semicircular riblets by Ehrenstein [12]. The longitudinal
grooves with reasonable amplitude and wavelength promote instability by reducing the
critical Reynolds number and by enlarging the unstable zone delimited by the neutral
curve in the (Re− κ) plane. The control parameters have been estimated by establishing
an analogy between the channel flow and the boundary layer flow. The computation of
the base flow for the multi-phase problem with the air bubbles inside the grooves revealed
that the velocity profiles are quite similar to the single-phase problem.

The results obtained in the present work represent the first phase of the study of
this complex problem and they are fundamental for the development of drag reduction
methods with SH longitudinal grooves. Hereafter, we provide a brief description of possible
extensions to the present work.
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• Linear stability analysis of the multi-phase problem. This is the clearest
extension of this work, already outlined with the computation of the base flow. The
presence of air bubbles trapped inside the grooves involves rewriting system 2.11
taking into account two different subdomains Ωc and Ωb on which two different
Reynolds numbers are defined, Rewater and Reair respectively. It must be also taken
into consideration that the interface between the two fluids, that is the internal
boundary, can distort. This can be achieved by transforming the reference frame
moving with the fluids x into a fixed reference frame x0 introducing into the equa-
tions all the required differential operators in transformed coordinates. To apply
all these considerations in the C++/Fortran90 software, the UFL file of the weak
formulation must be modified suitably. If needed, the FEniCS package includes
tools to modify already built meshes.

• Linear stability analysis of the boundary layer flow. The analysis of the
boundary layer problem is necessary to develop the SH surface concept and to
obtain enough data for practical applications in the naval or aeronautical industry.
The developed software can be adapted by modifying the UFL file and the boundary
conditions appropriately.

• Linear stability analysis of the pipe flow. This scenario involves considering
a pipe flow instead of a plane channel flow. The longitudinal grooves are no more
located on a flat surface but on a circular surface, therefore it is useful to write the
equations in cylindrical coordinates. Particularly interesting could be the analysis
of the multi-phase problem for which the main fluid is not water but oil or natural
gas.

• Space-time analysis. The flow can have three types of responses to a localized
initial disturbance. The amplitude may asymptotically decay in time in the entire
domain, the flow is then stable. The flow is linearly absolutely unstable if the dis-
turbance is amplified at the source and gradually contaminates the entire domain.
If the disturbance is advected away from the source the flow is then said to be
linearly convectively unstable. The analysis performed in the present work identi-
fies if the flow is stable or not but cannot distinguish between absolute instability
and convective instability. To make this distinction, the wavelike disturbances 2.10
must be rewritten with ω ∈ C and κ ∈ C and then the asymptotic behaviour of
the impulse response has to examined. The impulse response is dominated by the
complex absolute wavenumber κ0 and the the complex absolute frequency ω0 [21].
If the basic state in unstable (ωr,max > 0) and ω0,r < 0 the instability is convective.
If the basic state in unstable (ωr,max > 0) and ω0,r > 0 the instability is absolute.

• Drag reduction comparison between riblets and SH surfaces. The riblets
and the SH surfaces, as already mentioned, could reduce the skin-friction drag por-
tion of the total drag force. An interesting analysis could be a direct comparison
of the drag reducing effect of the riblets in a single phase problem and of the SH
grooves. To achieve this, we could evaluate the local wall viscous stress τw and
consequently the friction coefficient cf . To obtain comparable results, these values
must be integrated over a control domain.
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The described extensions demonstrate how the problem of drag reduction exploit-
ing riblets and SH surfaces, and in general the problem of hydrodynamic instability, is
still fairly unexplored and a suitable theoretical knowledge must be built before actual
technological applications can be taken into consideration.
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Appendix A

Orr-Sommerfeld equation

The Orr-Sommerfeld equation is an eigenvalue equation describing the two-dimensional
modes of disturbance in a viscous parallel flow. To be coherent with the notation of Schmid
and Henningson [40], we write this flow as U = U(y), with U the streamwise component
of the velocity. Adapting equations (2.9) to this notation, the system becomes:

∂ũ

∂t
+ U

∂ũ

∂x
+ ṽ

dU

dy
− 1

Re
∇2ũ+

∂p̃

∂x
= 0,

∂ṽ

∂t
+ U

∂ṽ

∂x
− 1

Re
∇2ṽ +

∂p̃

∂y
= 0,

∂w̃

∂t
+ U

∂w̃

∂x
− 1

Re
∇2w̃ +

∂p̃

∂z
= 0,

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0.

(A.1)

Taking the divergence of the linearized momentum equations and using the continuity
equation yields an equation for the perturbation pressure:

∇2p̃ = −2
dU

dy

∂ṽ

∂x
(A.2)

This equation may be used with the second equation of system (A.1), thus eliminating p̃,
to obtain an equation for the normal velocity, ṽ:[( ∂

∂t
+ U

∂

∂x

)
∇2 − d2U

dy2

∂

∂x
− 1

Re
∇4

]
ṽ = 0. (A.3)

Introducing in equation (A.3) a solution of the form

ṽ(x, y, z, t) = v̂(y)ei(αx−ωt), (A.4)

with ω ∈ C the frequency and α ∈ R the streamwise wavenumber, we obtain the following
equation for v̂: [

(−iω + iαU)(D2 − α2)− iαd
2U

dy2
− 1

Re
(D2 − α2)2

]
v̂ = 0, (A.5)
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with the boundary conditions v̂ = 0 and Dv̂ = 0 at the solid walls; D represents the
derivative with respect to the wall-normal direction y.

The equation for the normal velocity (A.5) is called Orr-Sommerfeld equation. The fre-
quency ω appears as the eigenvalue. Each eigenvalue ωj, together with the corresponding
eigenfunction v̂j, represents an Orr-Sommerfeld mode.

To solve the three-dimensional problem, equation (A.3) must be coupled with the
equation for the normal vorticity, which, with the introduction of a wavelike solution,
leads to the Squire equation. The Squire equation, differently from the Orr-Sommerfeld
equation, is non-homogeneous and is forced by the Orr-Sommerfeld solutions.
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Appendix B

UFL code

This section is dedicated to the description of the UFL code corresponding to the
weak formulation of the eigenvalue problem (3.13). To better understand how the UFL
language works and why it is so useful to express complex mathematical problems, each
section of the UFL code concerning the development of the software used in the present
work will be described in detail.

• The first operation is the definition of a mixed discrete function space V as a set of
function spaces for each variable. For programming convenience, in the present case
we chose to consider the vectorial velocity field as three separate scalar unknowns.
For each function space, we must specify the cell shape, the finite element family
and the number of degrees of freedom. The mixed function space is then defined
by the combination of three functions spaces suitable for the velocity field PU (P2

Lagrange polynomials) and one function space suitable for the pressure field PP
(P1 Lagrange polynomials).

PU = FiniteElement("Lagrange",triangle,2)
PP = FiniteElement("Lagrange",triangle,1)

V = MixedElement([PU, PU, PU, PP])

• The next step is the definition of the trial and test functions over the function space
V .

(u, v, w, p) = TrialFunctions(V)
(phix, phiy, phiz, psi) = TestFunctions(V)

The variable notation is the same used in system (3.13).

• Before writing the equations we must also define all the necessary coefficients and
constants. In the present case they are the base-flow velocity field, computed with
its own UFL form, the Reynolds number and the disturbance wavenumber. The
value of these variables must defined and assigned to the forms in the main C++
code.

W = Coefficient(PU)
Re = Constant(triangle)
kappa = Constant(triangle)
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• The UFL language is not capable of dealing with complex numbers, therefore the
real and imaginary parts of the jacobian matrix have been implemented in two
separate forms and later merged with the Fortran90 code. The mass matrix has
its own form as well. The basic algebraic operations can be used freely in UFL
expressions. Basic nonlinear functions and spatial derivatives are also available.
The integration over a domain is expressed by multiplication with a measure, and
UFL defines the measure dx for the cell integral. Many other features are available
but were not necessary in the present work [39].

A =-( 1/Re*phix.dx(0)*u.dx(0)*dx + 1/Re*phix.dx(1)*u.dx(1)*dx +
1/Re*phix*pow(kappa,2)*u*dx - p*phix.dx(0)*dx\

+ 1/Re*phiy.dx(0)*v.dx(0)*dx + 1/Re*phiy.dx(1)*v.dx(1)*dx +
1/Re*phiy*pow(kappa,2)*v*dx - p*phiy.dx(1)*dx\

+ W.dx(0)*phiz*u*dx + W.dx(1)*phiz*v*dx +
1/Re*phiz.dx(0)*w.dx(0)*dx + 1/Re*phiz.dx(1)*w.dx(1)*dx +
1/Re*phiz*pow(kappa,2)*w*dx\

- psi*u.dx(0)*dx - psi*v.dx(1)*dx)

C =-( phix*kappa*W*u*dx\
+ phiy*kappa*W*v*dx\
+ phiz*kappa*W*w*dx + phiz*kappa*p*dx\
- psi*kappa*w*dx)

M = phix*u*dx + phiy*v*dx + phiz*w*dx

In the code segment above, the lines of the form A have been split for clarity.

• The final line of the UFL file is the definition of the forms, so that the C++ header
file is produced correctly by the FFC.

forms = [A, C, M]
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Appendice C

Estratto in italiano

In questo lavoro di tesi ci si propone di effettuare un’analisi di stabilità lineare per la
corrente in un canale piano, del quale una parete possiede una geometria tipica delle su-
perfici superidrofobiche. Il crescente interesse in questo tipo di superfici è motivato dalla
loro capacità di ridurre la resistenza di attrito e dalle loro proprietà di che prevengono la
formazione di ghiaccio e che impediscono l’adesione di alghe e altri organismi acquatici,
che le rendono adatte per possibili applicazioni soprattutto nel settore navale e aeronau-
tico. Le proprietà delle superfici superidrofobiche sono dovute al mantenimento di bolle
di gas all’interno delle asperità della parete solida in modo da ridurre l’area di contatto
liquido-solido. A partire dallo studio di Barthlott e Neinhuis [1] sulla foglia di loto, si è
osservato che questo particolare stato di bagnabilità della superficie, detto stato di bagna-
bilità di Cassie, è ottenuto grazie alla sovrapposizione di una rugosità micro-strutturata
e una rugosità nano-strutturata. La rugosità microstrutturata può mimare la geometria
delle riblets, ovvero microcavità longitudinali della parete solida, per cercare di trarre
vantaggio da due meccanismi differenti di riduzione di attrito. Mentre sono già state
studiate abbastanza estensivamente le proprietà di riduzione dell’attrito turbolento delle
superfici superidrofobiche, altrettanto non si può dire per quanto riguarda i loro effetti
sulla stabilità della corrente laminare. Un tale studio deve necessariamente comprende-
re però, in via preliminare, un approfondimento dei risultati già disponibili riguardo la
stabilità delle correnti sopra scanalature longitudinali, ottenuti da Ehrenstein [12] e da
Moradi e Floryan [32]. Il principale obiettivo di questo lavoro di tesi è quindi quello di
produrre dei risultati che possano costituire una conoscenza di base per il miglioramento
delle riblets e la loro eventuale trasformazione in superfici superidrofobiche con il fine di
incrementare le loro prestazioni di riduzione di resistenza.

C.1 Formulazione matematica

La dinamica della corrente è stata modellata per mezzo delle equazioni incomprimi-
bili di Navier-Stokes. Sono state imposte le condizioni al contorno di perfetta adesione
sulle pareti del canale e delle scanalature, le condizioni di periodicità sui bordi laterali
della sezione considerata. Considerando la presenza di una bolla d’aria intrappolata nelle
cavità, sull’interfaccia tra i due fluidi sono state imposte le condizioni di continuità delle
componenti tangenziali di sforzo e velocità. La condizione sulla componente normale dello
sforzo è rappresentata dall’equazione di Young-Laplace che è stata ricavata a partire dal-
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l’equilibrio di pressione sia nel caso di approssimazione senza effetti idrostatici sia nel caso
completo. Introducendo nelle equazioni di Navier-Stokes le semplificazioni relative alla
geometria considerata, si sono ricavate le equazioni del problema di Poisson che descrive il
flusso base. Successivamente le equazioni di Navier-Stokes sono state linearizzate attorno
alla soluzione del flusso base. Introducendo nelle equazioni linearizzate delle perturbazio-
ni dei campi di velocità e pressione sotto forma di onde, si è giunti alla formulazione del
sistema costituente il problema agli autovalori che descrive le caratteristiche di stabilità
della corrente esaminata. La formulazione matematica del problema è stata completa-
ta con la definizione dei parametri fisici rilevanti e la loro trasformazione in parametri
adimensionali tramite il teorema di Buckingham.

C.2 Formulazione numerica

L’equazione di Young-Laplace è stata risolta numericamente tramite un software im-
plementato in Mathematica che combina un metodo di shoothing, che integra l’equazione
adimensionalizzata su metà della larghezza della cavità, e un metodo di Newton per
correggere il termine di pressione in modo da ottenere l’angolo di contatto ricercato. In-
nanzitutto sono state ricavate le formulazioni deboli del problema di Poisson per il flusso
base e del sistema costituente il problema agli autovalori. La loro discretizzazione è stata
quindi condotta con il metodo degli Elementi Finiti. La soluzione discreta approssimata
è cercata in uno spazio finito-dimensionale costituito da funzioni polinomiali in ciascun
sottodominio di discretizzazione. Per garantire l’adeguata precisione dei risultati, sono
stati scelti dei polinomi di Lagrange del secondo ordine per il campo di velocità e polinomi
di Lagrange del primo ordine per il campo di pressione. La procedura di discretizzazione
è stata implementata con il pacchetto FEniCS[39] che, tramite UFL (Unified Form Lan-
guage) e l’interfaccia Dolfin, permette una semplice gestione dei problemi alle derivate
parziali rendendo disponibili un’ampia gamma di tipi diversi di elementi finiti. Il proble-
ma agli autovalori è stato infine risolto con la libreria ARPACK [27]. Il programma finale
è il risultato di una programmazione mista in C++, che si interfaccia con FEniCS, e in
Fortran90, che si interfaccia con ARPACK.

C.3 Validazione

Il processo di validazione del codice sviluppato è stato suddiviso in due fasi distinte. La
prima fase è consistita nella validazione del solutore del flusso base, sia per il problema con
un singolo fluido, acqua, sia nel problema con due fluidi, acqua e aria. La soluzione è stata
calcolata per il caso classico della corrente di Poiseuille nel canale piano e confrontata con
la soluzione analitica esatta. Successivamente è stata aggiunta una cavità di dimensioni
molto grandi rispetto al canale per evidenziare meglio le modifiche del profilo di velocità.
La soluzione è stata calcolata con un singolo dominio e poi ricalcolata con due sottodomini.
L’uguaglianza delle due soluzioni ha confermato la capacità del codice di gestire due
sottodomini distinti. Infine è stato eseguito un test qualitativo con due fluidi differenti.
La seconda fase è stata la validazione del solutore del problema agli autovalori. Lo spettro
degli autovalori è stato calcolato per una sezione di un canale piano per il numero di
Reynolds Re = 5772 e il numero d’onda della perturbazione κ = 1.02, che sono i valori
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critici ben noti in letteratura. I risultati sono stati confrontati con quelli forniti da un
programma affidabile e già testato che risolve l’equazione di Orr-Sommerfeld [40]. Il
calcolo è stato poi ripetuto per diverse larghezze della sezione di canale considerata per
indagare l’effetto di quest’ultima. Infine è stata controllata la dipendenza dell’autovalore
dominante dal di elementi della mesh.

C.4 Risultati e conclusioni
La prima analisi effettuata è stata il tracciamento dell’autovalore dominante per di-

versi valori di rugosità di parete, ovvero di profondità delle scanalature, e con tutti gli
altri parametri fissati. Visualizzando l’autovalore nel piano complesso e tracciando l’an-
damento del rateo di amplificazione in funzione della rugosità si è concluso che la relazione
tra queste grandezze è approssimativamente lineare. Si è quindi proceduto all’analisi di
stabilità lineare per scanalature con sezione quadrata e triangolare equilatera. I valori per
i parametri di controllo sono stati stimati stabilendo un’analogia tra la corrente nel canale
piano e lo strato limite di Blasius sopra una lastra piana. Dal momento che l’applicazione
più probabile di queste superfici è in campo navale, lo spessore critico dello strato limite
è stato calcolato utilizzando le velocità indicative di diverse tipologie di navi. Si è os-
servato che le scanalature, sia rettangolari sia triangolari, promuovono l’instabilità della
corrente nel canale riducendo il numero di Reynolds critico a seconda della loro dimen-
sione. Inoltre si è potuta osservare l’espansione dell’area della zona instabile delimitata
dalle curve neutre nel piano (Re− κ). Le curve sono state approssimate con un’interpo-
lazione lineare a causa dell’elevato costo computazionale richiesto per ottenere i punti di
campionamento. L’analisi delle autofunzioni normalizzate ha evidenziato come i profili
della componente perpendicolare alla parete siano molto simili e la presenza di un picco
di entità crescente con la dimensione delle scanalature nel profilo della componente lungo
la corrente. Quest’ultima è la componente dominante nella zona vicino alle scanalature
dove, di conseguenza, le linee di corrente sono praticamente perpendicolari al piano della
sezione. La componente trasversale invece è nulla ovunque con l’eccezione dell’area imme-
diatamente vicina agli spigoli delle scanalature. Infine si è effettuata un’analisi qualitativa
del flusso base del problema multi-fase considerando la presenza della bolla d’aria. Si è
osservato come, per scanalature piccole rispetto al canale, il profilo di velocità non sia
modificato sensibilmente.

I risultati ottenuti costituiscono il punto di partenza per l’analisi del problema comple-
to e sono necessari per il proseguimento dello sviluppo di metodi di riduzione di resistenza
che sfruttano le proprietà di scanalature longitudinali superidrofobiche.
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