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Abstract

Nowadays computing platforms are available to many companies and individ-
uals wanting to process vast amounts of data sets. With the term Big Data we
refer to the analysis of huge datasets, allowing the extraction of information of
utmost importance for business purposes. The focus of Big Data community
has turned to providing high performance over the cluster of computing re-
sources that was previously used only for data-intensive computations. A newly
developed technology, Apache Spark, with its characteristic property of execut-
ing computation and data-processing in main memory, unconsciously allowed
users to execute computationally-intensive algorithms in a distributed fashion.
For solution quality considerations, a common approach entails instantiating
multiple parallel user algorithms, as long as the computational time overhead
does not surpass the allowed time limit. Such a common technique should pro-
vide every user a way to build and run custom algorithms in parallel, at the
same time ensuring fault tolerance and out of the box scalability.

In this work we describe HyperSpark - a general, extensible and portable
framework for scalable execution of user-defined, computationally-intensive al-
gorithms over the cluster of commodity hardware. Our goal is the utilisation of
computing resources of the whole cluster in order to deliver high-performance
(i.e., solution quality) in a limited amount of computational time. The paral-
lel algorithm execution, fault-tolerance, data distribution, cooperation between
algorithms and results aggregation are provided by the underlying technology
and the framework in a very transparent way to the user. The ground case
for the conducted experiments is Permutation Flow Shop Problem (PFSP), an
extremely hard optimisation problem from scheduling theory that can not be
solved optimally with conventional methods when limited time is provided.
Together with the framework we provide a library for distributed solving of
PFSP, that contains many efficient approximate algorithms, known as (meta-
)heuristics. The preliminary tests show the encouraging results. Further im-
provements could be gained by taking into account an asynchronous communi-
cation between algorithms, which can greatly decrease the computational time
overhead caused by the introduction of unnecessary synchronisation points.
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misation, scheduling, local search, Scala, Spark, Big Data.
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Sommario

Al giorno d’oggi molte compagnie e singoli professionisti hanno a disposizio-
ne piattaforme di calcolo per il processamento di grandi quantità di dati. Con
il termine Big Data si intende l’insieme di processi e strumenti che permetto-
no l’analisi di basi di dati di grandissime dimensioni; l’obiettivo finale consi-
ste nell’estrazione di informazioni di grande importanza (business, sicurezza,
ecc.). L’interesse della comunità di Big Data si è concentrato negli ultimi anni
nell’offrire agli utenti piattaforme non sono dedicate all’analisi di date ma che
forniscano allo stesso tempo alte prestazioni di calcolo. Tra le nuovo proposte
tecnologiche in quest’ambito, Apache Spark è una delle più promettanti; questo
strumento permette agli utenti di usufruire un paradigma di programmazione
più completo e di un set di strutture distribuite efficienti, tale da poter permet-
tere la realizzazione e l’esecuzione di applicazioni distribuite sia per l’analisi di
dati sia per il calcolo distribuito. Per quanto riguarda il calcolo distribuito, in
questa tesi abbiamo utilizzato Spark per realizzare un framework in cui molti
algoritmi di ottimizzazione (CPU intensive) possano essere eseguiti in paralle-
lo e sincronizzati per poter affrontare con successo problemi di ottimizzazione
complessi. Spark permette in maniera trasparente il deployment degli esecuto-
ri e la loro comunicazione, inoltre siccome per la particolare categoria di algo-
ritmi considerati i dati da gestire sono di piccole dimensioni e possono essere
distribuiti con il codice, Spark permette anche una scalabilità praticamente illi-
mitata degli algorimi. L’altra faccia della medagglia è sicuramente l’altro costo,
in termini di tempo, che è richiesto dal framework per poter garantire i suoi
servizi.

In questa tesi, presentiamo HyperSpark, un framework generale ed estendi-
bile che permette di realizzare ed eseguire algorimi paralleli ed estremamente
scalabili su cluster di hardware non specializzato. Il framwork è stato pensato,
in particolare, per permettere l’esecuzione parallela e la comunizazione all’in-
terno di un’applicazione distribuita per l’ottimizzazione. L’obiettivo è quello
di realizzare uno strumento flessibile ed indipendente dal harwdare a disposi-
zione e dalla sua configurazione per realizzare applicazioni distribuite ad alte
prestazioni. HyperSpark si basa su Spark per la (trasparente all’utente) distri-
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List of Tables

buzione del codice eseguibile tra i nodi, per la relativa esecuzione, la distri-
buzione dei dati, la fault-tolerance, la cooperazione fra i nodi e l’aggregazione
dei risultati. HyperSpark è stato quindi utilizzato per realizzare una libreria
di algoritmi euristici e metaeuristici dedicati all’ottimizzazione del problema
di Permutation Flow Shop (PFSP), un problema NP -hard per il quale un ap-
proccio esatto non è possibile se non per casi molto piccoli. All’interno di tale
libreria sono presenti alcuni dei più conosciuti algoritmi per il PFSP.

Una campagna preliminare di test è stata realizzata allo scopo di verificare la
validità dell’approccio incarnato in HyperSpark sia in termini di overhead che
come strumento per realizzare algoritmi competitivi rispetto allo stato dell’ar-
te. I risultati di tali esperimenti sono incoraggianti sebbene il paradigma basato
sulla sincronizzazione, imposto dalla attuale versione di Spark è evidente fon-
te di overhead. Recentemente però, sono apparse in letteratura delle soluzioni
che permettono di implementare un livello di comunicazione asincrona tra gli
esecutori in Spark. HyperSpark potrebbe in futuro adottare un approccio simi-
le riducendo il punti di sincronizzazione al fine di ottenere un miglioramento
globale delle prestazioni.
Parole chiave: meta-euristiche parallele, algoritmi distribuiti, Permutation Flow
Shop, ottimizzazione combinatoria, programmazione, ricerche locali, Scala, Spark,
Big Data.
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CHAPTER 1
Introduction

The approach to problem solving has changed during the last 30 years, together
with the evolution of software technologies. In fact, new emerging technolo-
gies have influenced greatly on the way the problems are addressed. For ex-
tremely hard optimisation problems more and more computing resources are
introduced, together with the emerging need to have an overlay software man-
agement tool for running user algorithms and analysing the data.

Until 1980s, the exact algorithms were the most commonly used methods
to solve the optimisation problems. Exact algorithms always solve an optimisa-
tion problem to optimality, but sometimes are not applicable because they do
not scale with the size of the problem. Some exact algorithms perform an ex-
haustive search over the solution space (set of all possible solutions), and with
a limited amount of computing resources, they may require weeks, months or
years of computation [31]. That led to creation of heuristics - approximate al-
gorithms that efficiently explore the solution space in order to find the near-
optimal solution in a bounded time. Although they may solve one optimisa-
tion problem efficiently, when employed on another problem of the same type
they would yield poor results. In order to solve this drawback, meta-heuristics
(or meta-heuristic algorithms) appeared as a significant advance [21]; they are
problem-agnostic algorithms that can be adapted to incorporate the problem-
specific knowledge.

Although the use of meta-heuristics allows to significantly reduce the com-
putational complexity of the solution retrieval process, they are still time con-
suming for many problems in diverse domains of application. This can be due
to the complex objective functions or constraints associated with the problem
or perhaps the large size of the solution space. Additionally, more and more
complex and resource-intensive meta-heuristics are developed even for simple

5



1. Introduction

problems in order to obtain high-fidelity solutions. The introduction of multi-
core architectures paved the way for research in parallel meta-heuristics, which
take advantage of parallelism to reduce the computation time and increase the
solution quality. Increasing memory capacity or CPU power of a single ma-
chine became a trend that lasted for a couple of years. This practice created
a new paradigm, High Performance Computing (HPC), that aimed to deliver
higher performance than once could possibly get out of a typical desktop com-
puter or workstation in order to solve large problems in mathematics, physics,
genetics... As such, HPC was specifically convenient for CPU-intensive appli-
cations. However, this approach was quickly abandoned because the increase
of computing power did not scale linearly with the cost and solution quality.

In 2006, Apache Hadoop [23] emerged as the first open source framework
for large-scale parallel/distributed computation using a cluster of intercon-
nected machines (or nodes). Using Hadoop is much more cost effective than
the HPC solution because cluster nodes can be simple commodity hardware.
Adding more computing nodes to the cluster does not only increase the qual-
ity of solutions [71], but it might also decrease the total computational time,
sometimes enough to produce real time business decisions. Hadoop became a
base for many commercial and scientific applications, and until 2014th it was
the only fault-tolerant platform that supports large-scale data-intensive com-
putations. Despite its success in the industry, for complex problems Hadoop
is still inconvenient, because it uses many input/output disk operations during
the computation. Apache Spark [3] alleviates this issue by providing support
for in-memory computations and opens the possibility to execute both data-
intensive and CPU-intensive applications, at the same time considering relia-
bility, availability and fault-tolerance.

The evolution of CPU-intensive and data-intensive computations brought to
a convergence in the same point - data-intensive computing platforms started
being used for CPU-intensive computations and HPC systems started execut-
ing more parallel data-intensive tasks. This technological trend has fostered
a new computing paradigm called Big Calculations, which tries to exploit the
current data-intensive platforms (not only a single powerful machine) for high-
performance decision making [6]. The goal of this new paradigm is to obtain
fast and efficient results using the knowledge of time provided and computing
resources at our disposal.

Problem statement

The ideas of Big Calculations paradigm motivated us to explore the potential of
large-scale data-intensive computing platforms and their suitability for CPU-
intensive applications. According to a recent survey on meta-heuristics frame-
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works [45], most of them do not support the execution of parallel and dis-
tributed meta-heuristics. The study identified only the following parallel (and
distributed) meta-heuristic frameworks: ECJ [16], ParadisEO [44], EvA2 [33],
and MALLBA [1]. The main drawbacks of the above-mentioned frameworks are
that (1) they assume deep knowledge of the underlying parallelisation technol-
ogy, they are (2) not designed to be extensible in order to accommodate different
applications. Furthermore, the engineering issues of (3) portability and (4) code
reuse have not been properly addressed in any of the frameworks. Finally, none
of the frameworks allow the user to (5) define particular parallelisation strategy
nor (6) the particular aggregation of results of the parallel algorithm instances.
This thesis intends to address these drawbacks, as stated with the following
overall research goal:

"To study the feasibility and challenges of using a distributed com-
puting platform for CPU-intensive computations and to develop a
framework for parallel and distributed execution of meta-heuristic al-
gorithms."

Contributions

This thesis presents HyperSpark, a general, extensible and portable framework
which enables scalable execution of CPU-intensive algorithms over a cluster of
commodity hardware. HyperSpark is implemented in Scala and uses Spark to
enable the execution of parallel meta-heuristics to solve custom-defined prob-
lems. The framework is designed following the well-known convention over
configuration approach, therefore its setup is almost minimal. The underlying
platform and the developed framework transparently manage the scaling of al-
gorithms over the cluster, distribution of data, execution flow, cooperation be-
tween algorithms, aggregation of results. The users can develop their own data-
distribution and aggregation strategy in order to solve the problem. Through a
series of user-defined number of computing iterations the results are communi-
cated between the algorithm instances and improved during the execution. The
number of instantiated algorithms and execution time are also adjustable. The
following lists the main features of HyperSpark:

• Ease-of-use - the framework is designed using Spark to handle distribu-
tion and parallelisation in a transparent way to the user;

• Portability - the framework is implemented in Scala that inherits Java
portability;

• Uniformity - the framework provides an uniform representation of prob-
lems, algorithms and solutions;
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• Extensibility - the framework is developed such that through Scala mech-
anisms like inheritance, mixins, implicits and late binding one can easily
extend metaheuristic algorithms;

• Reuse - the object-oriented features of Scala facilitate the code-reuse;

• Loose coupling - the framework is designed to decouple particular meta-
heuristic algorithms from the parallelisation technology;

• Flexibility - the framework allows users to define arbitrary paralleliza-
tion strategies, run different metaheuristic algorithms and define how dif-
ferent solutions can be aggregated;

• Cooperation - framework allows for synchronous communication among
parallel instances of the algorithm and therefore supports a large class of
cooperative parallel metaheuristic algorithms;

The rest of the thesis is organized as follows. Chapter 2 discusses the state
of the art, giving an overview of the technologies dealing with large-scale data-
intensive computations, and describing their evolution towards high-performing
cluster systems. Next, Chapter 3 presents the fundamental concepts of problem
solving, the developed HyperSpark framework and its comprising elements.
Chapter 4 describes a library based on HyperSpark framework, developed to
solve Permutation Flow Shop Problem (PFSP), a popular optimisation problem
from scheduling theory. Then, in Chapter 5, we present the results of conducted
experiments, where we carry out a thorough analysis of the optimal setup of the
proposed framework. In the end, Chapter 6 wraps up this work and draws con-
clusions on the outcomes. Furthermore, it points out relevant issues that remain
open and will be the focus of future work.
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CHAPTER 2
State of the Art

This chapter is devoted to the exploration of the state of the art in the fields of
interest for the thesis. The discussion in this chapter will follow two paths. The
first path, covering Section 2.1 and Section 2.2, will present Big Data concept,
its related challenges, data parallelism and large-scale data-intensive compu-
tations. The second path (Section 2.3 and Section 2.4), describes the MapRe-
duce programming model, focusing on its benefits for large-scale data-intensive
computing. Within this path, technologies relying on MapReduce model and
their internal structures and paradigms are being explained. In the end, there is
a convergence of both paths in (Section 2.5), which introduces a new paradigm,
called Big Calculations, and it tries to encompass all the requirements posed by
modern big data and high-performance computing communities.

2.1 Big Data

Let us start with a story how the data became big, before the phrase Big data
started being used in everyday life. Around seventy years ago people tried to
quantify the growth rate in the volume of data or what has popularly been
known as the “information explosion” (a term first used in 1941, according to
the Oxford English Dictionary). Later on, data sets kept increasing creating the
problem of overcoming the capacities of main memory, local disk, and even
remote disk. We call this problem the problem of big data. Big data is being
generated by multiple sources around us at all times. Every digital process and
social media exchange produces it. Big data is arriving from multiple sources
at an alarming velocity, volume and variety. In general, Big data refers to the
data space so big that it can not be processed so easily. Hence, the demand for
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computing power and efficient exploration procedures has been increasing over
the last half of the century.

Handling workloads of great diversity and enormous scale is necessary in
almost all significant fields of today’s society, due to the penetration of Infor-
mation and Communication Technology (ICT) in our daily interactions with
the world both at personal and community levels, encompassing business, com-
merce, education, manufacturing, and communication services. With the rapid
development of processing and storage technologies, and with the success of the
Internet, computing resources have become cheaper, more powerful and more
universally available than ever before. In such a setting, dynamic systems are
required to provide services and applications that are more competitive, more
scalable, and more responsive with respect to classical systems. This techno-
logical trend has fostered a new computing paradigm called Cloud Computing,
in which resources (e.g., CPU and storage) are provided as general utilities that
can be leased and released by users through the Internet in an on demand fash-
ion.

2.1.1 Big data challenges

Big data technologies are maturing to a point in which more organizations
are prepared to pilot and adopt big data as a core component of the informa-
tion management and analytics infrastructure. Big data, as a compendium of
emerging disruptive tools and technologies, is positioned as the next great step
in enabling integrated analytics in many common business scenarios. As big
data wends its inextricable way into the enterprise, information technology (IT)
practitioners and business sponsors alike will face a number of challenges that
must be addressed before any big data program can be successful. Some of
those challenges are:

• The Choice and Configuration of the Computing Infrastructure – Se-
lecting the physical components for the computing infrastructure and
their configuration based on a level of computing demands of desired
application can be hard. The reason is that this choice requires some ef-
fort, higher technical expertise and later management of hardware fail-
ures. Therefore, many parties choose to rent the existing resources from
big data centers. Big data applications are deployed over the Internet con-
nection, to the "cloud" platform.

• The Choice of the Data Management Technology – There are many com-
peting technologies, and within each technical area there are numerous ri-
vals. Making the best choices while not introducing additional unknowns
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and risk to big data adoption is one of the challenges that big data practi-
tioners need to face in the setup phase.

• The Lack of Big Data Experts – The excitement around big data applica-
tions seems to imply that there is a broad community of experts available
to help in implementation. However, this is not yet the case, and finding
right people to solve the problem poses an additional challenge.

• Importing Data into the Big Data Platform – The scale and variety of
data to be absorbed into a big data environment can overwhelm the un-
prepared data practitioner, making data accessibility and integration an-
other challenge.

• The Choice of Data Processing Procedures - The quality of final appli-
cation result(s) greatly depends on the procedures and algorithms for ex-
ploring and processing Big Data.

• Synchronization Across the Data Sources – As more data sets from di-
verse sources are incorporated into a computing platform, the probabil-
ity of data transfer impact on a computation environment performance
grows higher. Also, the amount of data that needs to be transferred in-
fluence the performance. Hence, after the hardware and software setup,
data synchronization might represent the most concerning challenge.

• Getting Useful Information out of the Big Data Platform – Lastly, using
big data for different purposes ranging from simple data post-processing
to enabling high-performance analytics is obstructed if the information
cannot be adequately provisioned back within the other components of
the enterprise information architecture, making big data syndication our
next challenge.

2.2 Data Parallelism

Computer system architectures which can support data parallel applications
were promoted in the early 2000s for large-scale data processing requirements
of data-intensive computing [50]. Earlier practice of using the full capacity of
one powerful machine (also known as CPU intensive paradigm) was quickly
abandoned since it was not scalable in terms of cost and performance. The un-
derlying idea behind data parallelism is that if the data computation is applied
independently and in parallel to each data item of a set of data, the degree of
parallelism becomes scalable with the volume of data. The possibility to scale
the computation over the data has an implication of scaling the performance
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of our application, leading to a decrease of several orders of magnitude of to-
tal computing time required or to highly improved quality of solution obtained
when the same computing time is provided. These implications are the drivers
for developing data-parallel applications.

The key issues with developing applications using data-parallelism are the
choice of the algorithm, the strategy for data decomposition, load balancing
on processing nodes, message passing communications between nodes, and the
overall accuracy of the results [55]. The development of a data parallel appli-
cation can involve substantial programming complexity to define the problem
in the context of available programming tools, and to address limitations of the
target architecture. Any scientific field like astronomy, atmospheric science,
medicine, genomics, biologic, biogeochemistry, or a research areas like social
network analysis, recommender systems, prediction markets that use data ex-
ploration, information extraction, data aggregation and data analysis may de-
rive significant performance benefits from data parallel implementations since
parallel operations are their intrinsic property.

The US National Science Foundation (NSF) [42] funded a research program
from 2009 through 2010. Areas of focus were:

• Approaches to parallel programming to address the parallel processing of
data on data-intensive systems

• Programming abstractions including models, languages, and algorithms
which allow a natural expression of parallel processing of data

• Design of data-intensive computing platforms to provide high levels of
reliability, efficiency, availability, and scalability.

• Identifying applications that can exploit this computing paradigm and
determining how it should evolve to support emerging data-intensive ap-
plications.

2.2.1 Data-intensive Computing

The broad availability of data coupled with a trend of decreased hardware
prices and increased computing power has given us possibility to solve the
problems that were previously impossible to solve or impractical to implement
because of the time required to perform computing process. Data volume and
complexity are increasing fast. Despite the technological advances and decreas-
ing costs of computing and storage solutions, the increase in data volumes in-
troduces a storage issue, but too much data also introduces a massive analysis
issue. Hence, it requires more effort to process and store data. Therefore, big
data practitioners have to think how to store, retrieve, explore, analyse, and
communicate this pile of data.
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Figure 2.1 – Traditional Data-intensive Application Storage

These technical and social drivers have increased the urgent need to support
computation on data of far larger scales than ever previously contemplated.
Large-scale commercial data processing is required by the industry, and, there-
fore, the industry is investing in data-centers to support such a need. The data-
centers are comprised of countless number of servers storing petabytes of data
to support their business objectives and to provide services at Internet-scale.
Such data centers are instances of data-intensive computing environments, the
target of this request. For data-intensive computing, massive data is the domi-
nant issue with emphasis placed on the data-intensive nature of the computa-
tion. Handling diverse hardware infrastructure issues, software setup, main-
tenance and many other aspects might cost a lot and require a lot of effort.
Hence, many non-IT organizations will often turn to big data companies which
are offering variety of services and accompanying pricing models deployed in
the “Cloud”.

2.2.2 From Traditional to Modern Approach to Data
Management

The modern way of handling big data differs from traditional way in using the
data locality principle.
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Figure 2.2 – Modern Data-intensive Application Storage

Traditionally parallel application (shown in Figure 2.1) required from a mas-
ter parallel worker to read the input data from disk (green arrow), split the in-
put data into chunks and send partial data to each of the other workers (red
arrows). Later on, the workers that received the partial data would continue
executing their computation in parallel. Upon completion, they communicate
their results with each other, then continue the next iteration of the computa-
tion.

There is a serious issue of scalability present in Figure 2.1. The process of
reading the input data (green arrow) is performed serially. Even if we can use
some parallel File System (e.g. MPI-IO) to obtain, import and process the data
in parallel, the data is separated from the tasks (computing resources) by some
channel through which data can flow at some finite rate. While it is possible to
increase the speed of this connection between the data and compute resources
by introducing faster storage mediums or faster storage networking, the cost of
doing it does not scale linearly.

The difference between data intensive computing and mainstream comput-
ing lies in a fact that previous one admits to large-scale parallelism over the
data, and it is more suitable to environments in which the user performs opera-
tions via high-level programming primitives and the run-time system manages
parallelism, data access and (optionally) fault tolerance. With the advent of
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cheap and capacious storage devices the role that storage played in large-scale
computing systems changed to support parallelism even more.

While traditional parallelism brings the data to the compute, modern ap-
proach does the opposite – it brings the compute to the data (Figure 2.2). The
input data is not stored on a separate, high-capacity storage system. Rather, the
data is already pre-divided and exists in the form of little pieces stored on com-
puting nodes. The benefit of it is that there is no need to move any data since it
is pre-divided and already exists on nodes capable of acting as computing ele-
ments. Only compute functions are sent to parallel workers which are running
on the nodes where their respective pieces of the input data reside. Parallel
workers perform their calculations and communicate results with each other,
move data if necessary, then continue the next step of the calculation. Thus, the
only time data needs to be moved (not necessarily) is when all of the parallel
workers are communicating their results with each other. It might happen that
parallel workers are completely independent and do not need to communicate
with each other, in which case there is also present a saving of time spent on
network bandwidth. Since the data already exists on the computing resources
there is no more serial step of loading data from a storage device before being
distributed to the computing resources. There is only one precondition for the
computing elements to be able to do their calculations on these chunks of input
data - both calculations and data must be completely independent from the in-
put data on other computing elements. This is the main constraint for modern
data-intensive applications: they are ideally suited for trivially parallel calcu-
lations on large quantities of data, but if each worker’s calculations depend on
data that resides on other nodes, side-effects and decrease in performance will
occur.

Large-scale data-intensive computations often require high degree of fault
tolerance, availability and reliability. Support of these requirements is depen-
dent on a specific implementation of big data computing system. Examples
of such systems are OpenMPI, Hadoop and Spark. OpenMPI started support-
ing fault tolerance from version 1.3 (year 2007), while Hadoop had it almost
since the beginning of framework development, but it appeared later (version
0.21 supporting fault tolerance was released in 2010). As a new technology,
initial version of Spark (year 2014) had all required computing nodes manage-
ment demands supported. Data intensive applications might also often require
real-time responsiveness and support heterogeneous data types. Uncertainty
in the data might also be present. Scale impacts computing system’s ability to
retrieve computational results and to provide, if required, integrity and avail-
ability functionalities in various levels of uncertainty. A common practice is to
include such levels in different pricing models of cloud services.
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The Data intensive Computing paradigm seeks to increase our understand-
ing of the capabilities and limitations of data-intensive computing. When a
data-intensive computing platforms is used a couple of questions arise. Those
are:

• How can large-scale parallelism be expressed in natural way for the user
of computing platform?

• What are the programming abstractions (models, languages, algorithms,
etcetera) needed to support fundamental requirements?

• What if the volume of data surpasses the capabilities of computing and
storage devices? Is the platform still in consideration for usage?

• Is the computing platform suitable for the domain of problems that we
want to solve?

• How to exploit multiple computing nodes for specific application?

• Does introducing parallelism reduces computation time with respect to
acceptable ratio?

• What is the overhead of managing multiple computing instances during
computation? Is it acceptable?

• Is the quality of results improved by providing the same computation time
to multiple computing elements as when provided to single computing
element?

These are fundamental questions that every scientist should ask him/herself
before diving into the world of data-intensive implementations. They should
all be treated with special care, otherwise the spent time on specific application
might be pointless.

2.3 MapReduce and Hadoop

MapReduce is a general algorithm supporting the concepts of map and reduce
functions, named after the first commercial implementation by Google [12],
which allows for handling huge datasets in a distributed, fault-tolerant frame-
work. The most widespread open source implementation of this programming
paradigm is Apache Hadoop [23].

The root of Hadoop lies in Apache Lucene, the open source API for infor-
mation retrieval, specifically in one of its sub-projects: the web search engine
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Figure 2.3 – Hadoop MapReduce v1 architecture

Apache Nutch, born in 2002. In 2003 Google made public the architecture of its
distributed file system GFS and the next year also a paper explaining the Map-
Reduce paradigm [12], providing in such a way two important technologies to
overcome the scalability limits of the Nutch project. In 2006 Hadoop became
an independent sub-project of Lucene and a top level Apache project in 2008.

The first version of Hadoop aimed just at providing a framework for the
MapReduce programming model: every application that could be rewritten in
terms of map and reduce tasks could take advantage of Hadoop distributed
computation capabilities. As seen in Figure 2.3, Hadoop uses the Hadoop Dis-
tributed File System (HDFS) and its related service as a storage layer, while the
MapReduce framework enables users to submit their own applications as Map-
Reduce jobs. Furthermore, applications like Hive and Pig have been developed
on top of Hadoop to hide the underlying MapReduce engine, providing the ca-
pability of using high level query languages to operate on the data.

2.3.1 MapReduce Applications

A MapReduce application, or job, comprises input data (typically stored in
HDFS) and user code defining the logic of map and reduce operations. The job
execution can be seen as split into a map phase, a shuffle phase, and a reduce
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phase.
In the map phase input data splits are fetched by a map task each, making

the number of map tasks data dependent. For performance reasons the inter-
mediate map output data are saved in the local file system of the worker, since
the replication would be time consuming and keep the network busy, whilst
redundancy is not required for this kind of information.

In the shuffle phase key-value pairs from all the mappers are fetched in paral-
lel by some dedicated threads at the reducers, then the obtained files are sorted.
This phase begins as soon as the first map task finishes, making the first data
available for the reducers. The number of reducers is not data dependent, but
can be manually set. Also, the set of keys is hash-partitioned so that each key
will be fetched by one and only one reduce task.

The reduce phase is the execution of the reduce logic on the intermediate
data. The persistent output will be written in the output file system, typically
HDFS.

It is important to notice that since reducers do not focus on a specific source
to collect their key-value pairs, data locality has less importance here, while a
map task is instead executed as close as possible to the chunk of data it was
assigned to. Since the bandwidth usage optimization is a crucial element in the
performance of a MapReduce job, it is convenient to limit the amount of data
transferred from the map tasks to a single reducer. By means of a so called
combiner function it is often possible to execute an aggregation of the output
data of a map task on the physical node where it was executed, still keeping
them in the form of a valid input for the subsequent reduce task.

2.3.2 HDFS

The Hadoop Distributed File System has its origin in the Nutch Distributed File
System (NDFS), developed to specifically overcome the lack of a distributed file
system to handle big sized files with a cluster of barebones commodity hard-
ware. This kind of file system already had most of the features and concepts
that we find in HDFS, except for the lack of a user permission system, absence
of quotas, and a much shorter set of configurable settings.

In a Hadoop cluster we typically find a master node running the NameN-
ode service for HDFS: it is responsible for maintaining a file system tree with
the location and properties of files in the so called FsImage file and metadata
changes into a transaction log, the EditLog. Both the FsImage and the EditLog
are stored in the local OS file system. Another relevant process in the HDFS
infrastructure is the DataNode, running on every node and physically storing
the data, as can be seen in Figure 2.4. This last process is resident on every node

18



2.3. MapReduce and Hadoop

Blocks

Client

Client

NameNode

Rack 1 Rack 2

DataNodesRead

Metadata ops

Block ops

Write

replication

DataNodes

Figure 2.4 – HDFS architecture

hosting part of the HDFS file system and handles the requests coming from the
NameNode about physical operations on the files.

HDFS enables the MapReduce framework to operate over huge-sized files
(typically at tera or petabyte scale) by organizing them in blocks of fixed size
and replicating them among different nodes. There is a default replication fac-
tor of three and, in order to provide data availability and reliability even upon
different degrees of system failure, while reducing network bandwidth utiliza-
tion, two replicas are, possibly, kept on different nodes of the same rack, and one
replica on another rack. The replication of data takes place in a pipelined fash-
ion: broadcasting the file from a unique source to the destination nodes would
take up too much of the local network resources, so when the first DataNode
starts receiving and writing the data from the client, it forwards them to the
second DataNode, and so does the second, until all the DataNodes have their
replica of the file. In such a way the client has to forward the data just once,
spreading the workload farther. In case of node failures, or upon changes in the
data, the DataNodes communicate among themselves, without the intervention
of the central NameNode, to keep the file system in a coherent state, as shown
in Figure 2.4.

HDFS has been specifically developed to store files of huge size and provide
a high throughput, for this reason the data are expected not to change, main-
taining a write-once-read-many access model. This is especially important if we
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consider the relevant amount of network traffic that would be generated by a
change in the data content, caused by the update of every replica of every block
where the modification occurred.

Client applications cannot directly write a file in HDFS: first the data has to
be written in a temporary file on the OS file system, once the file reaches the size
of a HDFS data block, a request is sent to the NameNode, which will record the
change in the file system structure and send back the location of the DataNode
where the new data will be physically stored. Only upon the closure of the file
the NameNode will commit the file creation operation to the persistent log. A
user can interact with the file system at the NameNode with a pseudo-POSIX
interface, hiding the underlying NameNodes and DataNodes structure.

In the first version of HDFS the NameNode was a single point of failure. In
order to provide high availability two redundant NameNodes are instantiated
on different machines of the same cluster. At any point in time one is in an ac-
tive state (Active node), the other is kept in a hot standby state (Passive node) to
provide an automated failover in case of necessity. The standby node can keep
its state synchronized with the active one in two ways: either by communicat-
ing the changes through a shared common storage device, or through a group
of separate daemons, called Journal Nodes (JNs), on which the Active node can
communicate the applied changes and from which the Passive can read them.

In case of user errors or situations when a disaster recovery is needed, HDFS
now provides snapshots of the file system. Snapshots are instantaneous and just
record the block list and the file size of a sub-tree of the file system or the entire
file system, so they do not replicate the actual data. Upon accidental deletion of
a file, the related blocks are “protected” by the snapshot and just its metadata
are deleted: in such a way, by restoring the snapshot it is possible to recover the
previous state of the file system for that directory.

Another feature introduced with HDFS 2 is HDFS Federation. In the previ-
ous version of the file system a single NameNode and a single namespace were
allowed, now this limit is overcome with multiple and independent (federated)
NameNodes and namespaces. In this way the horizontal scalability of the stor-
age is supported by an horizontal scalability of the namespace, in addition to
isolation and a throughput improvement.

2.3.3 Hadoop YARN

Hadoop Yet Another Resource Negotiator (YARN) was designed to address the
unsolved issues typical of the previous versions, while maintaining a backward
compatibility with legacy MapReduce applications. Instead of just trying to
rewrite the JobTracker, a radical change in the architecture has been made,
with the main effects of obtaining a framework decoupled from the MapReduce
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Figure 2.5 – Hadoop YARN architecture

paradigm and moving the management of the application layer away from the
system daemons.

While initially Hadoop had the MapReduce engine as the only framework
available to developers, now this layer is just one of the possible application
running on YARN, as shown in Figure 2.5. For example, YARN allows the user
to execute Distributed-Shell applications on multiple worker nodes in the clus-
ter. The system is still taking advantage of HDFS, but as we leave the storage
layer we face important changes in the Hadoop architecture.

Since applications are not necessarily MapReduce jobs, it becomes too sim-
plistic to organize the resources of nodes in terms of fixed map and reduce
slots: the cluster is now seen as a resource pool and requests are now satisfied
by assigning containers, providing a multiple of fixed minimum amounts of
memory, disk, network, and CPU resources to the running user code. In this
way, applications can request and release resources according to their needs,
gaining a high flexibility for the YARN resource model.

The JobTracker disappears and the resource management is now accom-
plished by a Resource Manager (RM), that still resides on the master node and
takes care of assigning containers to the requesting applications. Since the op-
timality of scheduling policies is strictly dependent on the kind of applications
that are going to be run on the system, the ResourceManager works with a plug-
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gable scheduler, allowing users to implement their own. By default we find the
Capacity scheduler with the chance to replace it with the Fair scheduler or the
old FIFO scheduler. This last choice might have a sense only in very small clus-
ter with a limited workload, since the lack of job priority awareness and other
advanced features makes it unsuitable for large shared cluster.

The other feature of the JobTracker, the job scheduling and monitoring, is
now accomplished by Application Masters (AMs), per-application framework
instances operating decoupled from the central system, typically on a slave
node. When an application has to start, the respective AM is the application-
specific first component deployed in a dedicated container. It then negotiates
more containers with the RM on behalf of the single instances of that appli-
cation, coordinates their execution, and monitors their resource consumption
interacting with the NodeManager. This change is not trivial, since the scala-
bility is no more limited by the capacity of the JobTracker and the sole role of
the ResourceManager at the master node is just to schedule the resources.

The NodeManager is a per-node process and can be seen as the evolution of
the TaskTracker. It receives container requests from the AM, runs and possibly
kills them, monitors the resources in use, manages logs and distributed caches,
and periodically sends heartbeats to the RM about the health and resource uti-
lization of its node.

2.3.4 From FIFO to Capacity and Fair Schedulers

Before the shared cluster era, every job was scheduled in a FIFO order, thus po-
tentially taking advantage of all the cluster resources once running. In newer
versions of Hadoop, where jobs were coming from different users, such a sched-
uler had clearly to be replaced.

Yahoo! proposed the Capacity scheduler [8]: the general principle behind
it was to guarantee a minimum capacity to every organization submitting jobs
to the cluster. A hierarchical structure of queues is exploited, where we find
parent queues and leaf queues. The former can contain other parent queues
or leaf queues, the latter actually contain jobs. The root queue represent the
whole cluster and its total capacity is statically divided among the first sub-
queues according to the administrator’s preferences. Each of these queues will
then statically assign the obtained capacity among their children, and so on
until the leaf queues are reached.

In order to achieve a better throughput, within a leaf queue jobs are sched-
uled in a FIFO order (according to the application submission time), with the
chance to set upper and lower bounds to the capacity that users or AMs in a spe-
cific queue can obtain, preventing greedy or malevolent agents from occupying
all the available resources. At any level, available resources are first provided to
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those queues with the most underserved capacity, where the capacity of a par-
ent queue is the aggregation of the sum of its children capacities, in a recursive
fashion.

The Capacity scheduler tries to maximize cluster utilization by assigning
also idle resources, even when this takes a user or a queue beyond the imposed
limits. As of today the default behavior allows a queue to take up to the to-
tal cluster resources when they are idle, but a single user cannot take up more
than the queue’s configured capacity, even if a proper setting of the configura-
tion properties can allow this. If a queue has obtained more resources than its
limit and new users from other queues submit new applications, the scheduler
will prioritize those users and queues until they meet their granted capacity
requirements. The behaviour with respect to the extra capacity holders is de-
fined by the administrator: newcomers may just wait for resources to be made
available again, or a preemption mechanism can force extra resources to be re-
leased by the holders. Currently the Capacity scheduler lets application submit
resource requests in terms of CPU and memory; since this is connected to the
current limits of the YARN resource model, it is expected in the future to be able
to specify also resources in terms of disk, GPU or bandwidth requirements.

The Fair scheduler is similar to the Capacity scheduler, but embraces a dif-
ferent philosophy: it will try to assign to different applications an equal amount
of resources over time, in terms of memory and optionally also CPU resources.
A single running application is entitled to possibly obtain the entire cluster
and, as others arrive, free resources are allocated to grant fairness, again with
the chance to force the migration with preemption. Small application can fin-
ish in reasonable time, without incurring in starvation due to longer ones using
large amounts of computational resources. Weights can be set to balance the re-
source assignment in favour of specific applications. Similarly to the Capacity
scheduler, applications can be organized into queues and minimum resources
guarantees can be set on them, again trying to assign also the idle capacity to
obtain high cluster utilization. Within the single queues FIFO scheduling is not
the default choice (but still configurable, as well as multi-resource with Domi-
nant Resource Fairness), instead a memory-based fair sharing is adopted.

2.4 Spark

In recent years we witnessed the rise and consolidation of Cloud systems as a
new powerful ICT paradigm and, consequently, a remarkable increase in their
applications in many fields. As a consequence, there are many frameworks be-
ing developed to provide simple and effective way to process Big Data. Apache
SparkTM [3] appeared in May 2014 as an open source cluster computing frame-
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work and quickly rose to the title of one of the most active Big Data projects, not
only in Apache Software Foundation, but also in the open source community
in general. Its main characteristic - in memory computation, and its promise
“"Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x
faster on disk."” [3] motivated us to examine its suitability for Data/CPU inten-
sive applications.
This section is organized as follows. Subsection 2.4.1 provides a high-level
overview of Spark framework and its components. Subsection 2.4.2 and Subsec-
tion 2.4.3 describe the Spark environment initialisation and application archi-
tecture, respectively. Subsection 2.4.4 provides details on task and application
scheduling within the cluster. Finally, in Subsection 2.4.5, Spark framework
deployment-to-cluster possibilities are enumerated.

2.4.1 Overview

In a very short time, Apache Spark has emerged as the next
generation big data processing engine, and is being applied
throughout the industry faster than ever. Spark improves over
Hadoop MapReduce, which helped ignite the big data revolution, in
several key dimensions: it is much faster, much easier to use due to
its rich APIs, and it goes far beyond batch applications to support a
variety of workloads, including interactive queries, streaming,
machine learning, and graph processing.

Ion Stoica, CEO of Databricks and Co-director, AMPlab, UC Berkeley

Apache Spark is a cluster computing platform designed to be fast and gen-
eral purpose [24]. Its speed is based on an in-memory computation, but it is
also more efficient than MapReduce for complex applications running on disk.
Spark integrates popular MapReduce model to support many types of compu-
tations, such as interactive queries and stream processing. It avoids unneces-
sary disk I/O operations and uses main memory and caching in order to be
more time efficient. These characteristics are crucial and particularly notice-
able when big data sets are processed. Therefore, Spark reduces waiting time
necessary for processing and provides a way to explore data interactively. Since
data are pre-divided some partial results may be obtained at any time.

Spark unites several closely integrated components for managing workloads
that previously had to be used as separate engines, batch applications, algo-
rithms, distributed systems, interactive queries, streaming, etc. Unlike Hadoop
MapReduce, Spark can combine SQL, streaming, and graph analytics within
cloud analytics applications. A visualisation of Spark components stack is shown
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Figure 2.6 – Unified stack of Spark components

in Figure 2.6. Further, Spark tries to make framework usage as simple and more
general as possible. Hence the management of such sub-elements is done com-
pletely by Spark, reducing the user’s necessary expertise for their maintenance.
Also, Spark provides APIs in different programming languages like Python,
Java, Scala, R and SQL, making it highly accessible for different IT industry
sectors. It also integrates closely with other Big Data tools [24]. It is specially
focused on supporting popular cluster management engines like Hadoop YARN
and Amazon EC2, but also supporting different data sources, including Hadoop
data sources, Cassandra databases, JSON, MySQL etc.

Spark core is responsible for scheduling, distributing and monitoring the
applications submitted by the end user [24]. Those applications might consist
of several computational tasks that have to be processed by computing nodes of
the cluster. Spark uses multiple higher-level components specialised for vari-
ous workloads, such as SQL or machine learning. Those components are repre-
sented as libraries in a software project and can be combined in order to build
powerful applications. For example, an application might classify real time
data (e.g. social network news feed), using machine learning algorithms from
MLLib library and streaming library at the same time.

25



2. State of the Art

2.4.2 Starting Spark Environment

Each Spark application needs to invoke a start hook of the Spark environment.
That is achieved by creating a SparkContext object inside the user application
(Figure 2.9), and invoking some function on it. Each Spark application is an
instance of SparkContext, meaning that only one instance of SparkContext may
be running during the lifetime of the application. Before initialising Spark-
Context Spark configuration should be set by specifying command line options
when submitting a packaged application to bin/spark-submit script, or by set-
ting spark configuration within the application. SparkContext constructor ac-
cepts SparkConf object where all Spark-related settings should be set before ini-
tialising SparkContext. In both cases, properties inside bin/spark-defaults.conf
are overriden by user-specified options. The minimum requirements for a user
are to set cluster (master) URL and application name.

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

object MyApp {

def main(args: Array[String]) {

val conf = new SparkConf()

.setMaster("local")

.setAppName("MyApp")

val sc = new SparkContext(conf)

//application code goes here

}

Figure 2.7 – A simple Spark application

2.4.3 Spark Application Architecture

Each Spark application represents a driver program that distributes comput-
ing operations over the cluster. The entry point of the driver is application’s
main function, and SparkContext object represents a connection to a computing
cluster. The driver program is responsible for establishing a connection to the
cluster (by creating SparkContext object), serialisation of tasks and data, their
distribution to each of the parallel workers (Figure 2.8), and results collection
and aggregation.
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Figure 2.8 – Spark Application Components

2.4.3.1 Resilient Distributed Dataset (RDD)

Usually, instead of manually pre-dividing big data and putting parts on each
of the phisical computing nodes, user instructs Driver program to do it for
him/her. That is done by invoking SparkContext.parallelize(...) function over
desired data collection:

val data = Array(1, 2, 3, 4, 5, 6)

val distData = sc.parallelize(data)

Figure 2.9 – Creation of distributed data set

There are two ways to specify parallelize function parameters using its sig-
nature:

def parallelize[T: ClassTag](

seq: Seq[T],

numSlices: Int = defaultParallelism

): RDD[T]
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The first way is to specify data collection and the number of partitions of the
provided data collection. The second parameter is very important, as it states
how many distributable units of data are going to be created. For example, if
we specified that number to be 3 in Figure 2.9 the output would result in three
partition objects, e.g. (1,2), (3,4), (5,6). The second way of partitioning a data
collection is by not specifying numSlices parameter and let Spark automatically
find the optimal number of partitions considering the number of CPUs inside
the cluster. Usually, that number will be 2-4 partitions per each CPU in the
cluster.

What is important to note here is that the number of partitions has a one-
to-one mapping with the number of parallel tasks that will be run during the
computation. More about the tasks will follow later in the chapter.

Figure 2.10 – Creation of Resilient Distributed Dataset

The output of parallelize function represent an immutable distributed dataset
called Resilient Distributed Dataset (RDD), on which various parallel opera-
tions might be invoked: apply a transformation on each of the elements in col-
lection, filter or count the elements, etc. There are even operations defined
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between multiple RDDs, like union, join, cartesian product... In Spark, all par-
allel operations are expressed using creation, transformation and processing of
RDDs. RDD may contain any basic class type, but also user-defined classes.
The only condition is that all elements of one RDD need to be of the same
type. RDD is actually an array containing the references to the Partition objects
(Figure 2.10), which are created by the driver program when parallelize is in-
voked on SparkContext and are sent to worker nodes on which they are stored
in main memory (RAM). During the execution, the driver program will send
necessary parallel operations to each of the workers, and each worker will per-
form one parallel task for each partition. The Partial Objects will stay on the
same Worker node as much as possible to avoid unnecessary sending of data
over the network.

2.4.3.2 Basic RDD Operations

RDD operations are divided in two groups: transformations and actions. The
difference between those two is that transformations are lazily evaluated when
actions are called, not before. Further, transformations construct a new RDD
from previous one, while actions compute a result using existing RDD and send
it to the driver program or save it to some storage system (typically HDFS) [24].
What Spark does, when it receives driver instructions consisting of transforma-
tions and actions over RDD, is creating a Directed Acyclic Graph (DAG) using
its internal class named DAGScheduler, which is also used for scheduling of
parallel operations. An example of such a graph is shown in Figure 2.11.

Lazy evaluation has the goal of decreasing the number of MapReduce op-
erations that need to be performed during the application life-cycle. Spark
internally records meta-informations about data collection that needs to be
loaded from file system and operations that need to be performed on RDDs.
DAGScheduler will perform topological sort of requested transformations pro-
ducing an execution sequence (a DAG), and once an action (e.g. count(), re-
duce(), take(), collect()) is encountered Spark driver program will ship the ex-
ecution sequence and source code to worker nodes, which will lazily load the
data (if not already in memory) and perform all transformations included in
execution sequence.

There are two kinds of transformations:

• Narrow transformations - All partitions from a parent RDD will be in-
cluded in a single child RDD. This kind of transformation does not require
any network shuffling of the data. Examples are map, flatMap, filter, sam-
ple, etc.
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Figure 2.11 – Creation of Directed Acyclic Graph [51]

• Wide transformations - Partitions from one or multiple parent RDDs
might finish in different child RDDs, depending on a value of the partition
object (e.g. a key for key-value pairs). Since the value-based transforma-
tion might require from a partition object to go to different RDD slot than
the one it was previously placed in, this kind of transformation might re-
quire sending partition objects to different machines over the network.
Examples are reduceByKey, groupByKey, repartition, etc.

For more details about specific transformations the reader is advised to read
[52].
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2.4.4 Execution Scheduling Within an Application

In order to explain how the scheduling is performed, we need to provide an
existing terminology adopted in Spark environment:

• Job - Each Spark application (SparkContext instance) might consist of sev-
eral jobs, where each job represents an execution plan (a DAG) submitted
by one application thread. Hence, a job corresponds to previously de-
scribed concept of DAG. If multiple parallel jobs need to be started they
must be submitted by multiple application threads. Starting several con-
secutive jobs is achieved by submitting multiple consecutive execution
plans by the same thread.

• Stage - Starting from a terminal node in DAG (which is an action), Spark
tracks back all transformation needed to execute the DAG and, in order to
minimize data shuffling, it groups all subsequent narrow transformations
in a stage (Figure 2.12). For example, many map(..) transformations can
be grouped in one stage. Transformations inside a stage do not require any
data shuffling since they are performed within the partition. Stages are
classified as a "Map" or "Reduce" stages (concept adopted from traditional
Hadoop MapReduce model). Compared to Hadoop’s execution model, the
execution model of Spark allows one job to contain more than two phases.
DAGScheduler is responsible for creation of DAG, analysing it and passing
a set of stages to TaskManager.

• Task - Each stage is executed as a series of parallel tasks. The term task is
a synonym for basic RDD operation and therefore it represents a funda-
mental computing unit of Spark environment. A task is created for each
partition in an RDD. Basically, when an RDD operation is executed - a set
of parallel tasks, performing the same operation, run in parallel on each
partition of RDD on their assigned executor (worker node process).

• Master - A computing node within the cluster on which a Driver program
is executed.

• Driver - A program containing users instructions, usually placed on sep-
arate computing node inside the cluster.

• Worker - A computing node within the cluster on which multiple Execu-
tor processes may run.
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Figure 2.12 – Analysis of DAG Operations [51]

• Executor - A process executing computing tasks sent by the driver. When
an executor is started it registers itself in driver’s executor list. The Spark
driver keeps a list of running executors and tries to assign them individual
tasks based on data locality. The executor may cache RDD data and notify
the driver program about it, in order to schedule the next tasks more effi-
ciently. Inside Spark configuration submitted with user application there
is a property which specifies how many cores of CPU will one executor oc-
cupy. Coupled with the property that allows a user to change the number
of executors instantiated, it provides him/her an easy way to set the scale
of computation in Spark environment. For instance, if executor occupies
one core (default value in Yarn deployment mode1 ), and the user sets the
number of executors to 48, the application will use 48 cores inside the
cluster.

TaskScheduler receives a set of tasks submitted by DAGScheduler for each
1Deployment modes are described in Subsection 2.4.5.
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stage, and acts as a controller over a set of active executors in the cluster. It is
responsible for sending tasks to executors, running them using data locality in
best way, retrying failed tasks and mitigate straggler tasks. It sends events back
to the DAGScheduler. The order of scheduling the tasks is "FIFO" or "FAIR",
which is read from the same property that is used to set scheduling of appli-
cations. Fair scheduler in Spark is modeled after Hadoop Fair scheduler, de-
scribed in Subsection 2.3.4. When there are multiple jobs submitted, the par-
allel tasks of each job are assigned to computing resources in a "round robin"
fashion, providing a roughly equal share of resources between the jobs.

A DAG defines a deterministic transformation steps and therefore fault re-
covery is very straightforward [51]. At the end of each stage worker node saves
results in a local file. If some of the worker crashes during the execution of
a stage, another worker node can pull files from crashed worker node and
re-execute a stage. If the file is not accessible, a parent stage needs to be re-
executed as well.

2.4.5 Execution Scheduling Across Applications

So far, we have talked about scheduling of jobs within one application. If there
are multiple users using the cluster at the same time, cluster resources need
to be managed by some higher-level software engine. That additional layer,
known as cluster manager, is shown in Figure 2.13.

Figure 2.13 – The role of Cluster Manager in Spark Application Submission

When a user submits an application to the cluster manager, an application
gets a set of executor Java Virtual Machines (JVMs) that are only running tasks
and storing application data. How the cluster resources (executor JVMs) are
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allocated and managed depends on a specific implementation of cluster man-
ager. There are three types of cluster managers supported in Spark, shown in
Figure 2.14. Note that Standalone deployment mode is a part of Spark core, but
in Figure 2.14 it is presented as a separate component for easier explanation of
concept.

Figure 2.14 – The place of Cluster Manager in Spark Components Stack

Static partitioning of cluster resources is available in all deployment modes.
When an application is submitted to the cluster manager, it gets all available re-
sources that it requested, except in a case where that number surpasses the limit
assigned. The application releases the resources upon finishing its execution.

• Standalone Deployment Mode - This is the simplest deployment mode
available, and its current version (within Spark 1.5.1.) supports only FIFO
scheduling of applications. Each application tries to statically allocate
necessary resources, and if it succeeds, it is accepted for execution. In
contrast to other two modes, here the resource management is done by
SparkCore itself.
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• Yarn Deployment Mode - provides Spark compatibility support for Hadoop
clusters on which Yarn has already been installed. As a separate com-
ponent, Yarn provides simplified deployment, provisioning, management
and monitoring of resources. Thus, it requires minimal IT involment.
Yarn also provides secure, multi-directional inter-communication between
Virtual Machines and locality-aware access to data stored in HDFS. Spark
Yarn deployment mode supports both FIFO and FAIR scheduling of appli-
cations. Yarn is for now the only Spark deployment mode which provides
dynamic scaling of cluster resources (executor JVMs) based on the amount
of workload, although there is work in progress to include it in other two
modes. There are two subtypes of Yarn deployment mode: yarn-client - in
which a client can query the application during its runtime from a local
machine, and yarn-cluster - in which the application is submitted com-
pletely to the cluster and runs on the same computing node as the master
node inside the cluster.

• Mesos Deployment Mode - Spark engine does not need to be the only
framework installed on a cluster. Beside support for multiple Spark in-
stances, Apache Mesos also supports Storm, MPI and many other prod-
ucts, which can be installed and running at the same time on a cluster.

There is also an option to debug the Spark application on a local machine.
This is called "Local" deployment mode, but is not actually a deployment to
a cluster. It serves only for testing the applications during the development
process and interactive use.

2.5 Big Calculations - Moving Beyond Big Data
Earlier in the past, many typical scientific experiments posed a limit on a vol-
ume of data that could be processed to obtain a high-quality solution for a spe-
cific problem. In Subsection 2.2.1 we explained the fact that increasing mem-
ory capacity or CPU power of a single machine does not scale linearly with the
cost and solution quality, since there exists a limit on a speed of data transfer
through physical wiring.

“High Performance Computing most generally refers to the practice
of aggregating computing power in a way that delivers much higher
performance than one could get out of a typical desktop computer or
workstation in order to solve large problems in science, engineering,
or business."

— G.Sravanthi, B.Grace and V.kamakshamma, A review of High
Performance Computing, IOSR Journal of Computer Engineering
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Although in the past there were many efforts to support and adapt to High
Performance Computing (HPC) paradigm, CPU speed of new computers was
not growing fast enough to follow the trend of increased size of data sets.

MapReduce programming model, proposed by Google and later developed
by Yahoo as an open-source project under the name of Hadoop, was designed to
support large-scale, parallel processing of big volumes of data using a cluster of
commodity hardware, enabling users to scale their calculations up to the num-
ber of computing resources available in the cluster. The trick is that the data
is already pre-divided and data and calculations on different computing nodes
are independent of each other. If that pre-condition is met, it is experimentally
proven that using more computing resources (physical machines) to increase
the scale of computations tends to increase the quality of solution introducing
minimal, in some cases insignificant, overhead for the cluster management.

In the beginning (Hadoop v1 release) Distributed File System, Resource
Manager and MapReduce model were so tightly coupled (in contrast to HPC
where the integration of components is loosely coupled) that the iterative algo-
rithms, for example from machine learning field, could not benefit from that
kind of platform [28], although Hadoop has shown convincing results in all
other applications. With the appearance of YARN (Hadoop v2) as a separate
layer in a big data stack, resource scheduling was decoupled from applica-
tion scheduling. Dr. Geoffrey Fox and his colleagues from Indiana University
pointed out the potential benefit of using HPC paradigm with existing large-
scale data-intensive computing platforms [28], and that the machine learning
field might be the one benefiting the most out of such an approach:

"Most of these algorithms are familiar to HPC because they have
linear algebra at their core. . . Solve large-scale optimization
problems like learning networks comes from a different world than
HPC but look like HPC because it’s all very large parallel jobs with
lots of optimizations for performance."

Dr. Geoffrey Charles Fox, Professor of Informatics and Computing
and Physics, Indiana University

As Cloud systems are being more and more exploited, a pile of MapReduce
applications has emerged. Adding more computing nodes to the cluster does
not only increase the quality of solutions, but it might also decrease total time
for processing big data set, sometimes enough to produce real time business
decisions. In the past HPC and data-intensive computing were two paradigms
with support of different workloads. HPC favoured high-performance comput-
ing machines, while data-intensive computing preferred cheap storage and in-
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formation retrieval. Their evolution brought to a convergence to the same point
- data-intensive computing platforms started being used for CPU-intensive com-
putations and HPC systems started executing more parallel data-intensive tasks.
Victor Allis, CEO of supply chain information system provider Quintiq, has
provided an interesting idea of exploiting current data-intensive platforms for
high-performance decision making [6]. Big data volumes are unstoppably con-
tinuing to grow, and there is not much we can do about it. Actually, so much at-
tention has been dedicated to management of data sets volumes that it dimmed
our perspective of what we really want to achieve. What we should focus on
is obtaining fast and efficient results, if possible in real-time. The goal of this
new paradigm, called Big calculations, is optimizing data-intensive computa-
tions using the knowledge of time provided and computing resources at our
disposal. Almost abandoned HPC paradigm has left the shadow in which Map-
Reduce has put it to, and started to merge with it in many terms. On the first
sight slightly different paradigm has started to give the scientists ideas how to
blend "best of the both worlds" [25]. Instead of providing high performance of
a single powerful machine, the aim of "blended world" is to manage workloads
and provide high performance over the whole cluster of machines using higher-
level abstractions, which is more challenging but still attainable goal. These
higher-level abstractions have a tendency of adding a new layer above existing
big data stack components like Distributed File System (DFS) and Resource
Management, implementing their own version of job scheduling to support
MapReduce model. Examples of such layers are MPI, Spark, Storm, etc. The
main supported features of hybrid paradigms, e.g. Big Calculations, should be
failure resistance, out-of-the-box scalability and data locality exploitation, but
also a natural way to execute cpu-intensive calculations.

In our research we have encountered many open-source projects that are
using hybrid approaches. The motivation of each research was the fact that
cloud system potential was not fully exploited by its respective research area
community. Some of the researches we analysed were:

• In [28] K-Means clustering algorithm was implemented using Hadoop,
Mahout, MPI, Python scripts, Harp and Spark, and a comparison in terms
of execution time and efficiency for the same amount of work was made.
For the biggest data set Spark framework was superior over other candi-
dates.

• Parallel implementation of Monte Carlo sampling algorithm using Scala
[38] showed the need to implement CPU-intensive algorithm, such is Monte
Carlo, using large-scale data-intensive computations platform.
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• In [26], MapReduce programming model was used to overcome the limi-
tations of Genetic Algorithm population size.

• MRPGA [29] is a MapReduce framework for automatic parallelization of
Genetic Algorithm. MPRGA showed us the benefits of using MapReduce
programming model for HPC applications, and also an urgent need for
framework over MapReduce model for CPU-intensive applications.

• MapReduce implementation of Simulated Annealing algorithm [48].

• MapReduce implementation of Large Neighbourhood Search [35].

• MapReduce implementation of Ant Colony Optimization Approach [72].

• MapReduce implementation of Max Min Ant System [64].

• MapReduce implementation of Cucko Search [14].

• Apache Spark Machine Learning Library [59].

• A Library to Run Evolutionary Algorithms in the Cloud Using MapReduce
[17].

• A Framework for Genetic Algorithms Based on Hadoop [18].

• EvoSpace-Interactive [20], an open source framework for the development
of collaborative-interactive evolutionary algorithms.

• Although common data-intensive computing algorithms require indepen-
dence between data and computing functions on different nodes, in some
cases synchronization between nodes is necessary. For instance, in swarm
environments and cooperative iterative algorithms. Usually implemen-
tation of such systems in MapReduce fashion is done using a sequence
of supersteps, at which nodes exchange messages. Some implementation
examples are Google Pregel [36] and Apache Spark Bagel [4].

• Parallel Metaheuristics: Recent advances and new trends [2]. Good anal-
ysis of parallel algorithms and communication between instances.

Cited projects and research papers (but also many more not listed) and the
results which were presented gave us a clear idea about the need for a frame-
work that combines high-performance computing algorithms with large-scale
data-intensive computing infrastructures. That kind of framework should pro-
vide users:
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• Easy deployment to a computing cluster - A framework should adapt to
computing infrastructure, requiring from the user only a minimal setup
of environment variables.

• Straightforward implementation of computing algorithms - The algo-
rithms may be light-weight or cpu-intensive, depending on desires of end
users. It is important that productivity of a developer is not influenced by
setup distractions.

• Setup of computation time limit - Sometimes people need to make a
business decision that can not wait for long time. In some cases it needs
to be provided in real time.

• Easy way to scale parallel instances of algorithms over the cluster - In-
stantiate instances in a way transparent for a user, e.g. by providing a
single parameter (an integer number) to the framework.

• A way to distribute the initial parameters to parallel instances - Initial-
isation of parallel instances might not be the same for all of the algorithms
ran, since, in many cases, it might not give enough diversity in exploration
of solutions search-space.

• A way to aggregate the results of parallel instances - Aggregation should
be provided as an operator of a framework, that user can easily set or
change. For example, to get the minimum/maximum of all parallel solu-
tions.

• A way for parallel instances to communicate their results during the
computation execution (if they require such a feature).

• No limitations on data set size

• Out-of-the-box fault tolerance support - The user might want to have
failed-computations restarts supported, but (s)he might not be an expert
in handling such situations.

• High-performance - Provide fast and efficient results. If possible, com-
putations should be executed in-memory. A user should only care about
the efficiency of his/her own algorithms. Framework should ensure that
increasing the scale of parallel computations will yield better results, if
the results were aggregated in the right way by the user.

We have analysed the requirements posed by HPC and big data communi-
ties, and implemented a framework, called HyperSpark, which tries to fulfil all
the demands stated above. The framework is presented in the following chap-
ter.
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CHAPTER 3
HyperSpark : A Framework for

Scalable Execution of
Computationally-Intensive

Algorithms over Spark

After a cautious and thorough analysis of requirements posed by High Perfor-
mance Computing (HPC) and Data-intensive computing communities (listed
at the end of Chapter 2), we developed a framework that addresses all of the
requirements and provides all the features in an extensible and composable
way. Initially the framework was conceived as a tool that combines approaches
to distributed problem solving to effectively execute user-defined algorithms.
The starting point was a concrete problem that came from a set of finite capac-
ity scheduling problems [40]. Primary objective was to provide users a simple
and natural way to implement and scale their algorithms over the cluster of
commodity hardware. During the development process we learned how to ex-
tend and make more general software structure that supports solving various
types of problems and provides the communication between the distributed al-
gorithms. Framework development posed many challenges that were resolved
with a number of design choices. This chapter motivates every such choice,
showcases the implementation of the framework and presents some usage ex-
amples.

Chapter 3 is organized as follows. Section 3.1 introduces fundamental con-
cepts necessary for problem solving using HyperSpark. Next, Section 3.2 presents
the challenges of using distributed environment addressed by the current ver-
sion of the developed framework. Section 3.3 discusses technologies considered
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for the framework implementation and related design choices. Afterwards, Sec-
tion 3.4 provides a high-level workflow of HyperSpark framework. Finally, Sec-
tion 3.5 describes the internal classes and function signatures used to support
the presented workflow.

3.1 Fundamental Concepts

This section is intended to explain and illustrate the building blocks for the
framework used to model arbitrary, distributed, computationally-intensive ap-
plications that are easily written without the prior knowledge of the underlying,
in most cases complex, distributed software environment. Therefore, in order
to form a sound foundation for the development of HyperSpark framework we
first need to define the basic concepts of distributed problem solving.

• Problem - We define a problem as a set of inputs needed to execute some
particular (user-defined) algorithm. In mathematics every problem has
to have a clear definition in terms of parameters and constraints. From
object-oriented design perspective, Problem can be defined as a class which
encapsulates all of the variables (parameters and constraints) necessary
for its solving.

• Solution and Evaluated Solution - A solution to a specific problem might
take different forms. When solving equations one needs to find the value
of a single unknown variable, or values of multiple unknown variables.
In scheduling optimization problems, like Travelling Salesman Problem
(TSP) [54], a traveller has to visit a list of provided cities, usually optimiz-
ing the total distance travelled. In TSP the solution represents the optimal
order of cities visited. Sometimes a user may be interested only in the or-
der of cities, but sometimes one might also want to know what is the cost
of such a schedule in terms of distance travelled, time, money or gasoline
spent. Therefore, we have introduced two levels of solutions that can be
obtained. Solution represents a descriptive solution, like the order of cities
in the case of the TSP. Evaluated Solution is a Solution with an additional
evaluation based on some criterion like distance travelled, time, money or
gasoline spent.

• Solution Space - In optimisation problems a solution space, search space,
candidate set or feasible region represents a set of all possible solutions
that satisfy the problem’s constraints. In TSP there is a constraint that
every city must be visited, and it must be visited only once. Therefore, a
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solution for the TSP is a permutation of cities, and its solution space is a
set of all possible permutations.

• Algorithm - A procedure or methodological approach that solves some
specific problem provided. In MapReduce paradigm, algorithms are usu-
ally simple stateless applications consisting of a sequence of map and re-
duce functions. In High Performance Computing, an algorithm is often a
resource-intensive procedure that solves particularly hard problem. Such
procedures may require to store their own state, independent from the pa-
rameters of the problem, like algorithm execution time limit, initialisation
variables, and so on. Note that, in automatically provisioned distributed
environment, an Algorithm is also considered as "data" that must be seri-
alized and distributed to the computing nodes.

• Seed - Sometimes an algorithm may require a Solution as a starting point
for executing the computation. The solution considered as a starting point
is called a seed. A seed can be provided at the initialisation phase of an al-
gorithm (a.k.a. an initial seed), or in later phases of its computation (e.g.,
for path guidance). An algorithm performs transformations on a seed, or
based on a seed, to guide the execution towards a satisfying result. An
example of a seed, in vehicle routing problems, is a position of the vehi-
cle. Based on its initial position (a starting point), the routing system will
commence the calculation of the path towards the desired end point. To
avoid collision with other vehicles/objects, the routing system can suggest
the next position to the vehicle during its movement.

A typical usage of a distributed environment for problem solving is to em-
ploy multiple parallel algorithm instances to solve the same, usually hard, prob-
lem. Big data does not always need to be represented in terms of physical files
(e.g. textual records) placed on a disk. It can also refer to a more abstract
concept of the solution space of a problem. The optimal solution(s) of some
problem might belong to an abstract solution space with an encoding reaching
terabytes of data. One idea is to use different algorithm initialisations in order
to divide solution space among the parallel algorithm instances, such that each
algorithm, during the computation, explores different solution subspaces. Dur-
ing the computation the algorithms may communicate their best results (bases
for next algorithms’ iterations) to check if they are exploring subspaces with
good candidate solutions, i.e. that its computation will provide a satisfactory
solution. If the solutions obtained in that subspace are not satisfying, the al-
gorithm can take a better result provided by some of the other algorithms to
continue its execution.
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3.2 Challenges Addressed With the Current
HyperSpark Version

Let us imagine the following situation: A user has a problem and a single-core
algorithm that solves it. There are several reasons why the user should execute
the algorithm in a distributed computing environment:

• Time efficiency - The user has to repeat an experiment (a single-core
algorithm) N times and to take the best result obtained. Multiple, se-
quential executions of an algorithm on a personal computer might take
a lot of time (N x experiment time), enough to consider renting a cloud
cluster and learning basics of some simple framework for distributed ex-
ecution. Distributed environment can turn a single-core algorithm into
a distributed one and execute it on a cluster of computers more or less
seamlessly by defining a couple of new operators and environment con-
figuration properties. The total time of N repetitions would be reduced
from N x experiment-time to 1 x experiment-time.

• Computation execution in a distributed environment provides better
results - Execution of a single-core algorithm shows satisfying results,
except in some runs of the algorithm. A small percentage of algorithm
executions provided really bad results, the effect which would be easily
removed by using aggregation of results of several independent execu-
tions.

• One machine is not enough to process big data set using user’s algo-
rithm - Even using a full capacity of a powerful multi-core machine is not
enough to perform computation over a big data set in a reasonable time.
Large data set can be split in several smaller data sets over which compu-
tations can later be performed in parallel on independent machines.

• Advanced Analytical Ability - Computation execution in a distributed
environment provides greater analytical ability, since the number of par-
allel algorithm instances can be increased to a far larger scale, comparing
to the case when a single powerful machine is used. Increasing the com-
puting power directly raises the scale for analytical computations, provid-
ing the user more possibilities for the advanced analysis.

Even though distributed environment introduces many benefits, it also in-
troduces some challenges that need to be addressed.

• Hardware failures - Due to its low cost, commodity hardware is highly
available and therefore typically used to build computing clusters. How-
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ever, they are more prone to hardware failures than some more expensive
alternatives. Hardware failures need to be handled by using computation
restarts, data replication and other fault-tolerant schemes. Handling fail-
ures is hard, and it requires a lot of time and technical knowledge. Usually
the users want to have a fault-tolerant system, but without the need to be
involved in a complex implementation. HyperSpark relies on the fault-
tolerance implemented in Spark core, engineered by Amplab in Berke-
ley and maintained by a part of the open-source community. As such, it
provides users seamless fault tolerance support, a simple programming
model, and a decreased overall complexity.

• Setup of the environment - Software setup of hardware machines often
requires high technical expertise, but also the time invested in a process.
Complex environment setup is undesirable, and therefore many non-IT
organizations often turn to big data companies which offer cluster com-
puting environments as a service, i.e., the so called cluster as a service
(CaaS). Affordable pricing models and pre-configured software environ-
ments (e.g. MapReduce paradigm support through MPI/Hadoop/Spark
with underlying Resource Manager like YARN) make CaaS an attractive
choice for overcoming this difficulty. CaaS requires only a minimal set of
configuration properties to be provided by the user. On the other hand,
there is always a possibility to manage underlying hardware infrastruc-
ture and its setup by the company itself, but this choice is typical only for
IT organizations.

• Splitting the data set - Processing data locally is a key to efficient com-
putation. In order to process the data in a distributed fashion, the data
set must be pre-divided and distributed with user algorithms to the com-
puting resources. It is desirable that the division of large data sets is
performed automatically by the framework (through native support in
Hadoop and Spark case, or software libraries like DataMPI [11] in MPI
case), with a prerequisite for the user to specify an input format that is
going to be used when splitting of the data set is performed.

• Distribution of data and compute-functions - One of the basic require-
ments of distributed environment is to have independent data and com-
pute functions collocated on computing nodes, so the locality principle is
used as much as possible. Placing all of the data and copying executables
manually on computing nodes is undesirable and usually avoided. In the
ideal case, the distribution of data and computation should be handled
by the framework. In that case, the user does not need to directly pro-
gram messages and topologies. HyperSpark uses an abstract distributed
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data wrapper to merge data and algorithms in one data structure, which is
later going to be serialized and distributed automatically by Spark, using
the concept of RDD. More on this will be said in Subsection 3.4.1.

• Aggregation of results - In order to produce meaningful output the frame-
work must provide means for collecting and combining the individual
outputs from each distributed computation. Such a process is called ag-
gregation and it is typically a problem-specific computation. Therefore, a
framework needs to allow the user to specify a custom computation to be
used as aggregation. For instance: +, -, ==, !=, >, < operators can be used
within a compute function to accumulate, compare or filter the results.

• [Cooperative computation] - Although many distributed algorithms are
independent and require only the basic data and compute distribution be-
fore running and later results aggregation, there are algorithms that use
cooperation during the execution to make a decision, change a search pro-
cedure or search direction etc.. Therefore, a framework for distributed
computation needs also to support cooperation of different algorithms
during the execution. HyperSpark is designed to support two modes of
algorithms execution, presented in Figure 3.1. For simplicity, the master
is drawn twice, but it represents the same entity. The first case, on the left,
executes the algorithms as independent parallel tasks, without the need to
cooperate (to exchange messages/solutions) with other algorithms during
the execution. Second case, presented on the right, requires cooperation
between the algorithms during their execution. Algorithms are process-
ing the data until they reach a synchronization point in which they (not
necessarily) send messages towards other parallel instances. One such a
phase is often called a superstep of execution. During the provided time
for execution of algorithms, algorithms may perform several phases of ex-
ecution. It can be deduced that a case on the left side of Figure 3.1 can
be considered as one superstep of the cooperative case on the right. There-
fore, the second model is more general and it is adopted in HyperSpark
framework.
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Figure 3.1 – Execution models: Without (on the left) and with (on the right) mes-
sages exchange

3.3 Technologies used

In the early planning phase the choice of technology to support Big Calculations
paradigm had to be made. As we mentioned in Section 2.5, Big Calculations
paradigm appeared as a need of IT society to use data-intensive computing
platforms for CPU-intensive computations and also HPC systems for execut-
ing more parallel data-intensive tasks. During the planning phase, technolo-
gies considered were MPI / OpenMP, Hadoop and Spark. Some technologies
were more suited for HPC appllications (MPI/OpenMP), and some for large-
scale data-intensive computing (Hadoop, Spark). The main differences between
those frameworks reflect in: 1)fault tolerance support, 2)data replication and
3)computational speed. These factors can not be observed separately since
they influence each other. In following, we list the advantages and disadvan-
tages of each technology and motivate our particular choice.

MPI/OpenMP efficiently exploits multi-core cluster architecture and shared
memory multiprocessing [56], probably most effectively out of all three tech-
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nologies. It is oriented towards High Performance Computing (HPC) applica-
tions, but it has a couple of significant disadvantages. First, it does not support
fault tolerance, meaning that if a computing node fails the partial results will
be lost indefinitely, leading to incorrect solutions, or not providing solutions at
all. This is unacceptable, especially in the case where the cluster used consists
of commodity hardware and each component has a relatively high probability
of failing. The second disadvantage is a lack of support for data replication.
Even if some computing nodes fail, the nodes containing replicated data will
continue their execution and the aggregated results will still be accurate. Al-
though there were successful attempts made by third-parties to support these
two factors [68] [70], MPI/OpenMP core still does not provide that kind of sup-
port. Also, in MPI/OpenMP the computing nodes involved in data distribution
(MPI_Bcast, MPI_Send primitives) and data aggregation (MPI_Recv) need to be
stated as participants of a communication group, and to be addressed explic-
itly through MPI primitives every time when a communication is employed,
making the development harder than usual.

Apache Hadoop and Apache Spark are both suitable for large-scale data-
intensive computing, while for high-performance applications they are still in
the research phase. It can be said that their performance depends on the spe-
cific HPC application. They provide remarkable support for fault tolerance
and data replication, and everything is done in a transparent way for a user.
The ease of use comes at some performance cost incurred by automatic parallel
task scheduling, data replication distribution and aggregation, failure recov-
ery... Hadoop is good for batch applications and offline data analysis since its
interaction with data is constrained to use persistent storage. Spark, on the
other hand, offers in-memory data processing that minimises the interaction
with the persistent storage. Spark uses persistent storage during the initial
reading of the data and if data volume is larger than the available memory of
the cluster. In other words, Spark keeps a part the data set necessary for the
current computation in the memory, while any data that could not fit is kept in
the persistent storage. Somewhat similar to the virtual memory paging, Spark
materializes data from the persistent storage when needed by the computation.
The primary objective of HPC applications is to provide high performance, but
they may not require handling extremely large amount of data. Given these
advantages, it can be concluded that Spark is a better fit for executing HPC ap-
plications than Hadoop. As it is stated on its official website: Spark performs
from 10 to 100 times better than Hadoop for specific applications. Another
advantage is that data distribution and aggregation are done automatically by
both frameworks, and can be partly manipulated by technology’s internals.

After taking all three previously mentioned factors into considerations, we
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decided to adopt Spark as a development technology. We were interested in a
simple and fast programming model, which supports fault tolerance and data
replication, and which automatically distributes calculation without requiring
direct programming of communication messages and topologies. At the same
time we wanted to investigate what is the exact performance overhead that
these features will introduce. As the computation is done in memory, there
is definitely a possibility for high performance execution, and the management
overhead of parallel tasks is insignificant for long-running jobs.

Spark offers support for three programming languages: Python, Java and
Scala. Therefore, we needed to choose one particular programming language to
develop a Spark-based framework. Among the candidates, Scala dominated for
several reasons:

• Spark is developed in Scala, and it’s the main language used at the Berke-
ley AMPLab. To understand what happens internally in Spark during the
execution, the user needs to understand Scala principles.

• Scala adopts object-oriented and functional paradigms which allows very
efficient and concise implementation.

• Scala is a popular, new, emerging programming language with a large
community support.

• Scala inherits Java portability due to the JVM-based runtime.
• Scala outperforms Java in execution time, conciseness and memory foot-

print [27].
• Scala outperforms Python, based on the comparison of the fastest bench-

marks [47].

As Scala is proven as more efficient than the other two candidates, we decided to
develop HyperSpark framework using a Scala/Spark technologies combination.

3.4 Architecture

Apache Spark is started and initialised by passing a SparkConf configuration
object to SparkContext. In Spark transformations do not trigger any execution
until an action is called. Similar model is adopted in HyperSpark architecture -
there is a FrameworkConf object responsible for Framework setup. Framework
execution is not started until a run function is called, with attached configura-
tion object. The workflow of HyperSpark is presented in Figure 3.2.
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Figure 3.2 – Workflow of HyperSpark Framework
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3.4.1 Framework

Framework is the main figure in this work. It represents a joint of problem
solving ability and Spark’s ability to execute any action in a distributed manner
- it is a starter of distributed problem solving engine. In HyperSpark project the
Framework is implemented as a Scala object, which is similar to the singleton
design pattern in object-oriented design. It means that only one instance of the
Framework class can be created.

There are two types of run methods exposed by the Framework, used to
trigger the execution of parallel computation:

• run and
• multipleRuns.

Since the limitation of Spark is to use only one instance of SparkContext
during the runtime of application, the user should tell HyperSpark whether
(s)he wants one run or multiple runs of the framework. When a run method is
invoked Spark environment is initialized (SparkContext is created), and initial-
isation might last some time {details on the performance are given in Chapter 5.
Upon the end of computation Spark environment is stopped (SparkContext is
destroyed). If a user wants to run the same experiment several times (to ob-
tain multiple results), (s)he might not like the fact that there is a long waiting
time present between different runs, since it would require to re-initialize the
Spark environment. That is why multipleRuns function is provided. When mul-
tipleRuns is called, Spark environment is started, multiple runs of an experi-
ment conducted, and finally Spark evironment is terminated.

def run(conf:FrameworkConf): EvaluatedSolution

def multipleRuns(conf:FrameworkConf, runs:Int): Array[EvaluatedSolution]

Figure 3.3 – Triggers for Framework Execution

To call one of the run methods declared in Figure 3.3, a user has to provide
a framework configuration represented by a FrameworkConf object. When a
user calls a run method of the framework, the Framework is initialised with
parameters present in FrameworkConf. After that, the Framework enters the
loop of execution presented in Figure 3.2.
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DistributedDatum is an abstraction which contains an algorithm and the data
necessary for its execution. In each loop iteration we form an RDD of Dis-
tributedDatums to distribute the data and computation towards computing re-
sources. We provide more details on the DistributedDatum data structure in
Section 3.5 - Framework Internals. The loop presented in Figure 3.2 is named
hyperLoop, and one its iteration consists of the following phases:

• hyperMap is similar to map transformation used on Spark RDDs. It trans-
forms the RDD of DistributedDatum objects into an RDD of objects repre-
senting evaluated solutions. Each evaluated solution is obtained as a re-
sult of running an algorithm from an appropriate DistributedDatum. Being
a collection of Spark transformations itself, hyperMap phase is executed
in a lazy fashion, i.e., algorithms are not actually executed at the moment
of invocation. Instead, the execution plan ((Directed Acyclic Graph) is
updated in the anticipation of a Spark action.

• hyperReduce - is similar to reduce action used on Spark RDDs. It is
used as an aggregation operator for combining multiple evaluated solu-
tions obtained from the parallel algorithm execution. How the reduction
(aggregation) is performed depends on a user specific implementation,
or default behaviour (minimisation) in the case it is not overriden. Ev-
ery maximisation problem can be converted to a minimisation problem,
and vice versa. We adopted minimisation as an equally general operator.
hyperMap and hyperReduce form an execution plan, shown in Figure 3.4,
which is lazily evaluated when hyperReduce method is invoked.

• Solution distribution - Once hyperReduce returns an EvaluatedSolution,
whether it is going to be provided to the user or used to run another itera-
tion (consisting of hyperMap and hyperReduce) depends on a run method
used to start the Framework. If a run method is called, the solution is go-
ing to be provided to the user and the system will shut down the Spark en-
vironment. On the other hand, if multiple runs are requested, the Frame-
work needs to distribute the aggregated EvaluatedSolution from current
run execution to multiple parallel computing resources in order to start
the execution of the next parallel run. Hence, it needs to create an RDD of
EvaluatedSolutions based on one EvaluatedSolution provided. A user may
want to use different strategies, as sending the same evaluated solution (a
seed) to all of the parallel algorithm instances, or to use some transfor-
mation on the solution to obtain multiple different solutions - employing
the parallel algorithms to explore different solution subspaces. Later on
in this chapter we refer to solution distribution strategy under the name
SeedingStrategy.
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Figure 3.4 – Directed Acyclic Graph of hyperMap’s and hyperReduce’s Default Be-
haviour

By considering the flow of execution in hyperLoop, we might say that one
hyperLoop iteration (consisting of hyperMap and hyperReduce) represents a su-
perstep of the computation 1, and that a SeedingStrategy implements communi-
cation among parallel algorithms which enables cooperation.

3.4.2 Framework Configuration

Framework configuration presented in Figure 3.2 consists of several parameters
that need to be defined before the Framework can be executed.

• Problem - A problem that needs to be solved by the framework. It has to
have a clear definition in terms of parameters and constraints. In Hyper-

1superstep concept was introduced in Section 3.2, in the part Distribution of data and
compute-functions

53



3. HyperSpark - A Framework for Scalable Execution

Spark a Problem is an abstract class which should encapsulate all of the
variables - parameters and constraints, necessary for its solving. An ab-
stract class enables extensibility for future usages. We provide a concrete
implementation of one specific problem, and a set of algorithms that solve
it. The details about Framework internals can be found in Section 3.5.

• Algorithms - An array of algorithms that are going to run in parallel to
solve provided problem. The size of this array determines the level of par-
allelism to be set inside of HyperSpark framework (e.g., 4 algorithms map
to 4 parallel computing instances). Algorithms do not necessarily need to
be of the same type, meaning that one may choose different algorithms to
solve the same problem and instruct the framework to take the best result
accomplished.

• Stopping Condition - This is the stopping condition (e.g., execution time)
that is going to be provided to each instance of algorithm, and it is the
same for each parallel instance. Different algorithms’ stopping condition
introduce higher deviations of the result and large synchronization times,
since aggregation cannot be performed until the last algorithm finishes
its execution. We implement the stopping condition as an abstract class
named StoppingCondition and provide a concrete implementation of time-
based stopping condition, named TimeExpired.

• Number of Iterations - Setting this parameter is optional, and its default
value is one. One iteration of HyperSpark framework corresponds to a
parallel, independent execution of the encapsulated algorithms. When
the algorithms require cooperation, the number of iterations needs to be
set to a value greater than one. The communication (solution exchange)
is performed through a series of synchronisation points defined by the
number of computational supersteps, i.e., iterations. When the stopping
condition is time-based the total algorithm execution time corresponds to
the multiplication of the execution time for one iteration with the Number
of Iterations.

• Initial Seeds - An array of optional initial solutions provided to each in-
stance of algorithm at the start of parallel execution. Some algorithms
may require an inital solution (starting point or a seed) to base the execu-
tion on. In combinatorial optimisation, the seed has a purpose of guiding
the algorithm exploration towards a biased direction in a solution space.
Initial Seeds parameter separates initial seeds from the seeds exchanged
after the synchronisation (at the end of each superstep, when the com-
munication between the algorithms is performed). The reason for intro-
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ducing an additional parameter is that some algorithms may require an
initial solution (a seed), but not cooperation afterwards. This feature is
also convenient when the user wants to provide an initial solution to each
algorithm, but later (s)he expects from the framework to automatically
manage the solution exchange between algorithms (see SeedingStrategy
below). If not required, the initial seeds can be omitted.

• Spark Properties - A simple associative array of (key,value) pairs passed
to Spark environment. There are plenty of properties provided by Spark
[60], but the basic ones that need to be set are cluster URL (also called
master URL) and application name. A full list of Spark properties used
by HyperSpark is given in the appendix.[link here]

• MapReduceHandler - As stated earlier, each iteration of the HyperSpark
framework performs computation in two phases. Once hyperReduce is
triggered, the framework performs hyperMap transformation over pro-
vided RDD of DistributedDatum and produces an RDD of EvaluatedSolu-
tions. Afterwards, hyperReduce aggregates produced results. By default,
in hyperMap phase the Framework starts the parallel execution of algo-
rithms over a provided problem, and in hyperReduce phase it takes the
EvaluatedSolution with minimal value. This behaviour can be overriden
by setting a custom MapReduceHandler.

• Seeding Strategy - Once the result from one HyperSpark iteration is ob-
tained, how this result (EvaluatedSolution) is distributed towards multi-
ple parallel algorithm instances is determined by a Seeding Strategy set
in FrameworkConf. Therefore, a SeedingStrategy generates multiple solu-
tions based on a single solution provided. Being the most general strategy
for seeding, sending the same solution to all of the parallel algorithm in-
stances is adopted as the default behaviour of HyperSpark framework.
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3.5 Framework Internals

Up to now, all high-level concepts necessary for understanding HyperSpark’s
workflow were explained in a very abstract way. Now, it should be easy to
understand low-level details of implementation.

3.5.1 Problem

abstract class Problem() extends Serializable

{

def evaluate(s: Solution): EvaluatedSolution

}

Figure 3.5 – Problem Class

Problem class (Figure 3.5) should contain all parameters and constraints neces-
sary for its solving. The main method in this class is evaluate, which accepts a
Solution, evaluates it and returns the EvaluatedSolution. We already mentioned
that in scheduling problems the solution may have a value accompanied to it,
e.g. the distance travelled next to the order of cities visited. The solution evalu-
ation procedure of a particular problem does not depend on the algorithm that
solves it. Rather, it is a problem-specific characteristic. Therefore, it is placed
inside the Problem class.

3.5.2 Solution

As we discussed in Section 3.1, Solution a descriptive solution of a particular
Problem. The descriptive representation is especially convenient in scheduling
problems, where there is an ordered sequence present as a solution (e.g. the
order of cities visited in TSP). Solution is an abstract class (Figure 3.6) which
has a method for evaluation with a default implementation that calls the evalu-
ate method from the Problem class in a Visitor-like fashion. An implementing
class should only provide a class a concrete representation of the solution (e.g.,
citiesVisited = Array[Int] for the TSP).
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abstract class Solution extends Serializable {

def evaluate(p:Problem):EvaluatedSolution = {

p.evaluate(this)

}

override def toString = "abstract solution"

}

Figure 3.6 – Solution Class

3.5.3 EvaluatedSolution

EvaluatedSolution class (Figure 3.7) adds a value to the solution once it is evalu-
ated. Because EvaluatedSolution already contains a value, it overrides evaluate
function to return itself and prevent unnecessary computation over the solu-
tion.

abstract class EvaluatedSolution(

val value: AnyVal,

val solution: Solution)

extends Solution with Ordered[EvaluatedSolution] {

override def evaluate(problem: Problem): EvaluatedSolution = this

override def toString = {

val solString = solution.toString()

val str = "EvaluatedSolution(value:" + value + ", solution:" + solString

+ ")"

str

}

}

Figure 3.7 – EvaluatedSolution Class

EvaluatedSolution also implements Ordered trait (interface) and overrides
its compare function. This allows a user to use comparison functions like max,
min, and so on. For instance:

List(evaluatedSolution1, evaluatedSolution2).min
Method min can be invoked on the list of evaluated solutions and it will use

the custom compare function specified by the user.
Parameter value within EvaluatedSolution is of Scala type AnyVal, which is a
base class for predefined value classes Byte, Short, Int, Long, Float, Double,
Char, Boolean and Unit. Therefore, in a concrete implementation of Evaluated-
Solution a user is free to use any of the mentioned subclasses.
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3.5.4 Algorithm

Algorithm trait, presented in Figure 3.9, is a starting point for implementing
custom user algorithms. Every algorithm that is going to be executed in parallel
needs to extend it. Algorithm trait contains four evaluate function signatures
(Figure 3.8) which are used to start the execution of algorithm in order to solve
a specific problem.

evaluate(p:Problem)

evaluate(p:Problem, s:StoppingCondition)

evaluate(p:Problem, seedSol:Option[Solution], stopCond:StoppingCondition)

evaluate(p:Problem, seedSol:Option[Solution], stopCond:StoppingCondition,

run:Int)

Figure 3.8 – Algorithm’s Evaluate Function Signatures

trait Algorithm extends Serializable {

protected var seed: Option[Solution] = None

protected var runNo: Int = 1

protected var random: Random = new Random(runNo)

def evaluate(p:Problem): EvaluatedSolution

def evaluate(p:Problem, stopCond:StoppingCondition): EvaluatedSolution

def evaluate(p:Problem, seedSol:Option[Solution],

stopCond:StoppingCondition): EvaluatedSolution = {

seed = seedSol

evaluate(p, stopCond)

}

def evaluate(p:Problem, seedSol:Option[Solution],

stopCond:StoppingCondition, runNo:Int): EvaluatedSolution = {

seed = seedSol

this.runNo = runNo

random = new Random(runNo)

evaluate(p, stopCond)

}

def name = this.getClass.getSimpleName

}

Figure 3.9 – Algorithm Trait

The full source code of this trait is provided in Figure 3.9. The user is re-
quired to override first two evaluate methods, while the third and fourth are al-
ready implemented. Algorithm evaluates (solves) the Problem and returns Eval-
uatedSolution. Second signature sets limitation on algorithm’s execution time
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by introducing a stopping condition. Additional parameters in next signatures
are an optional initial solution (a seed) and a parameter "runNo" used to set the
random initialisation of Java’s Random class. Algorithm class provides the Java
Random object named random to the user who wants to implement an algorithm
that has a random behaviour. If the user wants a finer control over the seeding
of the random object the third and fourth method must be also overriden. An
example of such situation follows.

A user executed an experiment and obtained the optimal solution, but there
is no way to repeat the execution in the same way because the algorithm has a
random behaviour. (S)he cannot prove that the new optimal result is found.

Java’s Random class has a deterministic procedure for generating random
numbers, and using the same parameter provided to it the random behaviour
can be repeated.

3.5.5 StoppingCondition

The stopping condition, termination criterion or stop rule is needed to tell the
algorithm when to stop its execution. Once started, an algorithm continues its
execution until the stopping criterion is satisfied. Therefore, StoppingCondition
presented in Figure 3.10 has only one method, isSatisfied(), which has to be
implemented by the user.

abstract class StoppingCondition extends Serializable {

def isSatisfied(): Boolean

def isNotSatisfied(): Boolean = { ! isSatisfied() }

}

Figure 3.10 – Stopping Condition class

Execution time, number of iterations and solution fitness are only a few ex-
amples of stopping conditions that are used the most in practice. For the pur-
poses of the use case presented in Chapter 4, we developed a stopping condi-
tion TimeExpired which is used to measure algorithm’s execution time. Its im-
plementation is presented in Figure 3.11. The method getThreadTime() returns
the thread time - a CPU usage time of the calling thread. initialiseLimit() adds
the time limit provided to the constructor and the thread time and saves the
result in the variable internalLimit. The overridden method isSatisfied(), when
invoked, checks if the current thread time has reached the internal limit saved.
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class TimeExpired(timeLimitMillis: Double) extends StoppingCondition {

private var internalLimit: Double = 9999999999999999.0

private def getThreadTime(): Long = {

val threadTimeNanos = ManagementFactory.getThreadMXBean()

.getThreadCpuTime(Thread.currentThread().getId());

val threadTimeMillis = threadTimeNanos / 1000000

threadTimeMillis

}

def initialiseLimit() = {

val threadTimeMillis = getThreadTime()

val expireTimeMillis = threadTimeMillis + timeLimitMillis

internalLimit = expireTimeMillis

this

}

override def isSatisfied(): Boolean = {

val threadTimeMillis = getThreadTime()

if (threadTimeMillis > internalLimit) true

else false

}

def getLimit(): Double = { timeLimitMillis }

}

Figure 3.11 – TimeExpired class

3.5.6 DistributedDatum

As we mentioned in Subsection 3.4.2, the user needs to set the problem, the
algorithms array, the stopping condition and the array of seeds in the frame-
work configuration object before running the framework. When (s)he runs the
Framework, it will take all objects present in FrameworkConf and initialise it-
self. Since the elements that are going to be used for parallel execution within
an Executor need to be serialised in order to be sent over the network, there is
a need to introduce some kind of abstraction that supports serialisation. Ab-
straction introduced is named "DistributedDatum" and its form is presented
in Figure 3.12. DistributedDatum is a serialisable, container class used to store
all the necessary data needed to run a single algorithm on a distributed node.
In framework initialisation phase, for every algorithm supplied by the user to
framework configuration one distributed datum is created. Together with the
algorithm, a distributed datum wraps an id, an optional initial solution (a seed),
and a stopping condition for algorithm’s execution.

Why do we wrap an algorithm, a seed, and a stopping condition into a Dis-
tributedDatum and then operate with an RDD of DistributedDatums? In Spark
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class DistributedDatum(ind: Int,

alg: Algorithm,

seedOption: Option[Solution],

stopCond: StoppingCondition) extends Serializable {

def id = ind

def algorithm = alg

def seed = seedOption

def stoppingCondition = stopCond

}

object DistributedDatum {

def apply(id: Int, algorithm:Algorithm, seed:Option[Solution],

stopCond:StoppingCondition)= {

new DistributedDatum(id, algorithm, seed, stopCond)

}

}

Figure 3.12 – DistributedDatum - Distributed Data Abstraction

a common practice is to make an RDD of simple types (Int, Double, etc.) and
then invoke transformations and actions on the RDD. By using classes inside
an RDD a few extraordinary benefits are introduced. Using standard MapRe-
duce approach (Hadoop or Spark) a compute function (an algorithm) sent to
the computing resources (Executors) is the same for all parallel tasks running
inside the computing resources. Also, the compute function is stateless. Object-
oriented paradigm allows us to extend Algorithm trait and implement several
different algorithms that solve the same problem. DistributedDatum will ac-
cept any algorithm which extends the Algorithm trait. An algorithm can keep
its state within the encapsulated variables. When run or multipleRuns method
of the framework is invoked, the application master tries to parallelize the pro-
vided array of DistributedDatums. All fields of DistributedDatum abstraction
are serialisable, which allows the master node to serialise every DistributedDa-
tum and create an RDD of DistributedDatums. Finally, aplication master sends
DDs to the slave computing resources (Executors) in the cluster. The intro-
duction of DistributedDatum wrapper class enables placing of various, stateful
compute functions (algorithms) on different computing resources which are go-
ing to perform computation in parallel, and try to solve the problem provided
by the master node.

Creating an array of DistributedDatums from an array of Algorithms, an ar-
ray of seeds and a stopping condition is done inside the DistributedDataset Scala
object (Figure 3.13). DistributedDataset takes previously mentioned parame-
ters and creates an array of DistributedDatums. Spark needs to parallelise a col-
lection of data elements of the same type, and DistributedDataset creates such a
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object DistributedDataset {

def apply(numOfNodes:Int, algorithms:Array[Algorithm],

seeds:Array[Option[Solution]], stopCond:StoppingCondition) = {

var array: Array[DistributedDatum] = Array()

for(i <- 0 until numOfNodes) {

val datum = DistributedDatum(i, algorithms(i), seeds(i), stopCond)

array :+= datum

}

array

}

}

Figure 3.13 – Distributed Dataset

collection (Array[DistributedDatum]) using parameters provided. An example
is shown in Figure 3.14.

1 val algorithms = conf.getAlgorithms()

2 val seeds = conf.getInitialSeeds()

3 val stopCond = conf.getStoppingCondition()

4 //algorithms array size will map to the number of parallel tasks

5 val numOfTasks = algorithms.size

6 //...

7 val dataset = DistributedDataset(numOfTasks, algorithms, seeds, stopCond)

8 //...

9 val rdd = sc.parallelize(dataset, numOfTasks).cache

Figure 3.14 – Partitioning of Data Collection

As it is stressed in Spark section, second parameter provided to parallelize
function (line 9 from Figure 3.14) is very important, since it instructs Spark en-
vironment how many partitions to produce, and therefore, how many parallel
tasks to run. Here, for each instance of DistributedDatum, one parallel task is
started, and each datum maps one-to-one with algorithm instances. Hence, one
parallel task will execute one algorithm.

3.5.7 MapReduceHandler

MapReduceHandler (Figure 3.15) instructs what should be done when a parallel
task is executed over each DistributedDatum in RDD. By default, hyperMap in-
structs an algorithm to solve a problem and return EvaluatedSolution, whereas
hyperReduce uses minimisation operator in the result aggregation phase to re-
turn minimal EvaluatedSolution. The user interested in a different behaviour
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must extend the MapReduceHandler class and override hyperReduce method.
Overriding hyperMap is forbidden, because it would completely change the pur-
pose of the framework.

class MapReduceHandler {

final def hyperMap(problem: Problem, d: DistributedDatum, runNo: Int):

EvaluatedSolution = {

d.algorithm.evaluate(problem, d.seed, d.iterationTimeLimit, runNo)

}

def hyperReduce(sol1: EvaluatedSolution, sol2: EvaluatedSolution):

EvaluatedSolution = {

List(sol1, sol2).min

}

}

Figure 3.15 – MapReduceHandler

MapReduceHandler is used inside Framework’s hyperloop function. From
Figure 3.16 it can be seen that hyperMap is called inside a transformation "map"
over an rdd, and hyperReduce is called inside an action "reduce" over the same
rdd. CPU-intensive part, algorithm execution, is performed inside map action,
when reduce action is triggered. Directed Acyclic Graph (Section 2.4), automat-
ically constructed by Spark, based on this sequence is very simple, and it is the
same as the one presented earlier in Section 3.4, when a high-level overview of
the Framework has been described.

rdd

.map(datum => mrHandler.hyperMap(problem, datum, runNo))

.reduce((sol1, sol2) => mrHandler.hyperReduce(sol1, sol2))

Figure 3.16 – One Iteration of Framework’s Loop

3.5.8 SeedingStrategy

SeedingStrategy (Figure 3.17) manages the distribution of one solution to all
of the parallel tasks. It is a trait that custom implementations of data distribu-
tion need to extend. Divide function tells the framework how to distribute an
optional seed to N parallel tasks. UsesTheSeed is a simple query function that
tells if the seed is used for cooperation purposes or it is discarded.
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trait SeedingStrategy extends Serializable {

def divide(seed: Option[Solution], N: Int): Array[Option[Solution]]

def usesTheSeed(): Boolean

}

Figure 3.17 – Seeding Strategy trait

There are a couple of seeding strategies already implemented shown in Fig-
ure 3.18.

class NoStrategy extends SeedingStrategy {

override def divide(seed: Option[Solution], N: Int):

Array[Option[Solution]] = {

Array.fill(N)(None)

}

override def usesTheSeed(): Boolean = false

}

class SameSeeds extends SeedingStrategy {

override def divide(seed: Option[Solution], N: Int):

Array[Option[Solution]] = {

Array.fill(N)(seed)

}

override def usesTheSeed(): Boolean = true

}

Figure 3.18 – Seeding Strategy Implementations

NoStrategy sends "None" seeds to all of parallel instances, and it means that
initial solution (a seed) is not necessary for algorithm execution. SameSeeds
sends the same seed to all of the parallel instances, meaning that all parallel
instances are initialized with the same initial solution.

The way HyperSpark framework employs a SeedingStrategy is presented in
Figure 3.19. Framework uses the seedingStrategy obtained from Framework-
Conf configuration object to generate new seeds, and then it distributes them
to parallel algorithms. If FIFO policy of scheduling parallel tasks is set (and
it is by default), parallel algorithms will receive seeds in the order they were
generated. Note that, if, by some chance, the user’s implemented seeding strat-
egy returned an array of seeds that is smaller than the number of algorithms, a
runtime exception will interrupt the computation.
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def updateRDD(rdd: RDD[DistributedDatum], seed: EvaluatedSolution):

RDD[DistributedDatum] = {

val numOfTasks = getConf().getAlgorithms().size

val seeds = seedingStrategy.divide(Some(seed), numOfTasks)

if(seeds.size < numOfTasks)

throw new RuntimeException("Seeding strategy did not produce the correct

number of seeds.")

val updatedRDD = rdd.map(d =>

DistributedDatum(d.id, d.algorithm, seeds(d.id), d.stoppingCondition))

updatedRDD

}

Figure 3.19 – UpdateRDD before the start of subsequent iteration

hyperReduce and SeedingStrategy are powerful operators of HyperSpark frame-
work, providing users a simple, effective and flexible way to distribute and
aggregate data for their specific algorithms. There is no limit to creativity of
an individual user when it comes to problem solving. By defining a single-
threaded algorithm and a couple of new framework’s operators, as hyperReduce
and SeedingStrategy, a user can instruct HyperSpark to turn single-threaded
algorithm into a distributed one. The algorithm can be light-weight or cpu-
intensive, and can be different on each computing resource. This approach is
completely new - up to our knowledge there is not anything like it in big data
research literature. Also, in Appendix B (Users Manual) it will be shown how
simple it is to make one application using HyperSpark, almost with no setup of
Spark environment parameters.

3.5.9 Framework Execution

The source code of Framework’s run method is presented in Figure 3.20. The
Framework takes the configuration object provided and creates SparkContext,
an RDD of DistributedDatums, and starts the hyperLoop to perform the defined
number of computing iterations (supersteps).
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def run(conf: FrameworkConf): EvaluatedSolution = {

setConf(conf)

//problem specific settings

val problem = conf.getProblem()

val algorithms = conf.getAlgorithms()

val numOfTasks = algorithms.size

val seeds = conf.getInitialSeeds()

val stopCond = conf.getStoppingCondition()

val iterations = conf.getNumberOfIterations()

val dataset = DistributedDataset(numOfTasks, algorithms, seeds, stopCond)

//spark specific settings

val sparkConf = new SparkConf().setAll(conf.getProperties())

if(notStarted){//allow only one instance of SparkContext to run

sparkContext = Some(new SparkContext(sparkConf))

notStarted = false

}

val sc = getSparkContext()

val rdd = sc.parallelize(dataset, numOfTasks).cache

mrHandler = conf.getMapReduceHandler()

seedingStrategy = conf.getSeedingStrategy()

//run the hyperLoop

val solution = hyperLoop(problem, rdd, iterations, 1)

solution

}

Figure 3.20 – Framework’s Run Trigger Source Code

def multipleRuns(conf: FrameworkConf, runs: Int): Array[EvaluatedSolution] = {

//up to this point

//implementation is the same as in run method

//run the hyperLoop

var solutions: Array[EvaluatedSolution] = Array()

for(runNo <- 1 to runs) {

val solution = hyperLoop(problem, rdd, iterations, runNo)

solutions :+= solution

}

solutions

}

Figure 3.21 – Framework’s Multiple Runs Trigger Source Code

The only difference between run method and multipleRuns method is the
way the hyperLoop is employed. Multiple runs method is presented in Fig-
ure 3.21. For clarity, the source code that was the same as in run trigger was
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marked as omitted. The difference between two is only in the number of hyper-
Loop runs performed in the period between the initialisation of Spark environ-
ment and its termination.

3.5.10 hyperLoop

hyperLoop manages the flow of computation within HyperSpark framework.
Its implementation is presented in Figure 3.22. Inside hyperLoop there is a
recursive function "iterloop" present, which applies iteration of the framework,
compares a result of iteration to the best result of all previous iterations, and
updates RDD if there are subsequent iterations to be executed, otherwise it
returns the best result found.

def hyperLoop(problem: Problem, rdd: RDD[DistributedDatum], maxIter: Int,

runNo: Int):EvaluatedSolution = {

var bestSolution: EvaluatedSolution = null

def iterloop(rdd: RDD[DistributedDatum], iteration: Int): EvaluatedSolution

= {

//apply framework iteration to obtain the result

val bestIterSolution = rdd

.map(datum => mrHandler.hyperMap(problem, datum, runNo))

.reduce((sol1, sol2) => mrHandler.hyperReduce(sol1, sol2))

//compare the result with best results obtained

//during previous iterations

if(iteration == 1) bestSolution = bestIterSolution

else bestSolution = mrHandler.hyperReduce(bestIterSolution, bestSolution)

if(iteration == maxIter)//if it is last iteration

bestSolution //return best result found

else { //otherwise, update the rdd

val updatedRDD = updateRDD(rdd, bestSolution)

iterloop(updatedRDD, iteration+1)

}

}

iterloop(rdd, 1)

}

Figure 3.22 – Framework’s Loop Mechanism

The loop is initialized with an RDD of DistributedDatums and an iteration
counter equal to one, and it runs until it reaches the maximum number of it-
erations allowed (maxIter), set through configuration object. It was already
mentioned that the default value of "Number of Iterations" parameter is equal
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to one, if not changed by the user. Iteration number equal to one means that
the algorithm is distributed and executed in parallel without any form of coop-
eration.

Therefore, the difference between execution of parallel independent algo-
rithms and cooperative algorithms (algorithms that require communication)
is determined by the number of iterations performed by the framework. One
might consider one iteration of HyperSpark framework as a superstep of compu-
tation. If the number of iterations is equal to one, after one iteration hyperLoop
will provide a solution. If it is more than one, at the end of each superstep hy-
perloop will use previously provided RDD and create a new RDD with updated
seed for next iteration. The way a seed is distributed depends on a way in which
the divide function of a SeedingStrategy is implemented. Hence, SeedingStrat-
egy can be used to create a virtual topology among the algorithms. It implicitly
determines the way of communication between previous iteration algorithms
and next iteration algorithms. If, for example, only third algorithm out of four
needs to receive the message, SeedingStrategy might produce an array of op-
tional seeds in this way: Array(None, None, Some(seed), None).

3.5.11 FrameworkConf - Framework Configuration class

For the end of internals description, we provide a list (Figure 3.23) of function
definitions for problem-specific configuration of HyperSpark framework and a
list (Figure 3.24) of function definitions for Spark-specific configuration.

FrameworkConf encapsulates an array of algorithms, an array of seeds, and
other parameters like number of iterations, stopping condition, etc.. Get and set
function names are mostly self-explainable. There are few which names might
be ambiguous, and, just in case, they will be explained.

• setNAlgorithms populates the array of algorithms with N instances of the
algorithm provided in the function signature.

• setNInitialSeeds populates the array of seeds with N instances of the seed
provided in the function signature.

• setNDefaultSeeds populates the array of seeds with N instances of the
None seed. Passing a None seed to an algorithm means that the algorithm
does not require it. In the end, the seed, or initial solution, is optional.
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def setProblem(p: Problem)

def getProblem()

def setAlgorithms(algorithms: Array[Algorithm])

def setNAlgorithms(algorithm: Algorithm, N: Int)

def getAlgorithms()

def clearAlgorithms()

def setStoppingCondition(stopCond: StoppingCondition)

def getStoppingCondition()

def setNumberOfIterations(n: Int)

def getNumberOfIterations()

def setInitialSeeds(seeds: Array[Option[Solution]])

def setNInitialSeeds(seedOption: Option[EvaluatedSolution], N: Int)

def setNDefaultInitialSeeds(N: Int)

def getInitialSeeds()

def clearSeeds()

def setSeedingStrategy(strategy: SeedingStrategy)

def getSeedingStrategy()

def setMapReduceHandler(h: MapReduceHandler)

def getMapReduceHandler()

Figure 3.23 – Framework Configuration - Problem-specific Properties

def setProperty(key: String, value: String)

def getProperties()

//for a full spark properties reference visit

//http://spark.apache.org/docs/latest/configuration.html

def setAppName(name: String)

def setSparkMaster(url: String)

def getSparkMaster()

//... a complete list is present in the appendix

Figure 3.24 – Framework Configuration - Spark-specific Properties

Spark properties passed to FrameworkConf in the format of (key,value) pairs
are taken by the Framework when a run method is invoked, and forwarded
to SparkConf instance. This specific line from run method (presented in Fig-
ure 3.20) does the whole job:
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val sparkConf = new SparkConf().setAll(conf.getProperties())

Figure 3.25 – Framework Configuration - Passing Spark-specific Properties

Function signature setProperty(key: String, value: String) is the main func-
tion for setting any Spark property. All other functions presented in Figure 3.24
are just the auxiliary functions that keep the development of HyperSpark appli-
cations as simple as possible. For example, setSparkMaster (Figure 3.26) does
the following:

def setSparkMaster(url: String) = {

setProperty("spark.master", url)

this

}

Figure 3.26 – Framework Configuration - Setting Master URL

From Figure 3.26 it can be seen that setSparkMaster function (and any other
function that deals with Spark properties) internally uses setProperty function.
FrameworkConf keeps a list of (key,value) pairs set by the user in its private vari-
able. When setProperty is invoked, the private list of properties is updated and
the instance of this (FrameworkConf) object is returned - on which the function
setProperty was invoked. This approach is also adopted in implementation of
SparkConf inside the Spark environment, and it enables an easy chaining of set-
ter functions on a configuration object, e.g.

conf.setSparkMaster("local").setAppName("mySimpleApp").

Other spark-specific properties used by the framework, like the ones respon-
sible for setting the cluster deployment mode, the number of executors and so
on, are explained in Appendix A. User manual is provided in Appendix B.
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CHAPTER 4
Case Study : Permutation Flow Shop

Problem

In this chapter we propose and discuss the use of HyperSpark to solve the Per-
mutation Flow Shop Problem (PFSP). PFSP is a hard optimisation problem [32]
and therefore there are no efficient exact methods to solve it. Most of the re-
search efforts were focused on the optimisation of single-threaded heuristic
and meta-heuristic algorithms for PFSP. HyperSpark framework, presented in
Chapter 3 aims at being a general, distributed tool, well suited for execution
of long-running, CPU-intensive algorithms. Therefore, we decided to use Hy-
perSpark as a base for examining the performance of distributed computation
when applied to the PFSP.

This chapter is organized as follows. We start with the problem statement
in Section 4.1. Next, Section 4.2 shows the computational complexity of PFSP
problem. Further, Section 4.3 presents an overview of the most representa-
tive algorithms and enumerates the implemented ones. In the end, Section 4.4
describes the concrete implementations developed in order to solve the PFSP
problem.
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4.1 Problem Statement and Design Assumptions

In Permutation Flow Shop Problem (PFSP) scheduling there are m machines
and n jobs, and the imposed assumption is that each job Ji (i=1, 2, ..., n) has
to be processed on m machines Mj (j = 1, ..., m), following the same order in
all machines. Also, every job has to be processed on the machines in the same
order (1, ..., m) [32]. Parameters given for this problem are the number of jobs
n, the number of machines m, and the processing times of job ji on machine Mj
is pij. To solve PFSP, we have to consider the following constraints:

• All jobs are ready for processing at time zero.
• The machines are continuously available from time zero onwards.
• At any time, each machine can process at most one job and each job can

be processed on at most one machine.
• Once the processing of a job on a machine has started, it must be com-

pleted without interruption.
• Only permutation schedules are allowed (i.e. all jobs have the same order-

ing sequence on all machines).

Statement 1: Each job has to be processed by all machines and in the same
scheduled order (permutation schedule). This constraint is common in real-
life production environments. For example, consider a factory that produces
fruit yoghurts. Engineers found a special recipe (a schedule) that improves the
quality fo the final product. Each production batch (job) has to be produced on
each machine by following the same addition order of ingredients (schedule)
in order to get the desired quality. In general however, there are specific pro-
duction constraints as the lack of interstage handling systems that impose the
sequential production.

The final goal is to find a permutation of jobs that minimises (or maximise)
one or more objectives. For PFSP there are many objectives proposed in liter-
ature: makespan, total flow-time, maximum tardiness, total tardiness, etc. As
far as PFSP is concerned, the optimisation of one objective is far more com-
mon than the optimisation of several goals at the same time. We chose the
makespan because it is by far the most common and it has an important mean-
ing in industrial setting. As a matter of fact, the minimisation of this criterion
is directly related with the maximisation of machines utilisation and reduction
of the work-in-progress. In a nutshell, in PFSP processing starts from the first
job (in a permutation schedule) on a first machine, and it ends with the last job
on the last machine. Makespan is the completion time of last job on last ma-
chine. An example of a problem consisting of 5 jobs and 4 machines, with jobs
permutation schedule (1, 2, 3, 4, 5) is given in Table 4.1.
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Table 4.1

Execution time for each job (shown in columns) on each machine (shown in rows)

Times\Jobs J1 J2 J3 J4 J5

p1Ji 5 5 3 6 3
p2Ji 4 4 2 4 4
p3Ji 4 4 3 4 1
p4Ji 3 6 3 2 5

Statement 2: Every job has to be processed on all machines in the same
order (1, . . . , m). This means that machine 2 cannot start the processing of job
until machine 1 finishes with it. Similarly, machine 3 cannot start processing
of job until its processing on machine 2 is finished, and so on. Processing of
particular job has different duration on every machine. In Table 4.1, processing
times for the permutation schedule {J1, J2, J3, J4, J5} are shown. pj, Ji (j = 1, ...,
m; i = 1, 2, ..., n) denotes the time necessary to process i-th job in the schedule,
Ji, on machine j. For instance, the processing time of the 2nd job in the schedule
(J2) on machine 4, p4,2, is equal to 6.

A graphical representation of this problem is shown in Figure 4.1 [46]. State-
ment 1 and Statement 2 are responsible for creating the dependency grid consti-
tuted of nodes and arrows. Processing starts from the job in the first position of
a schedule (Job 1) on the first machine, and it ends with the completion of the
last job (Job 5) on the last machine.

Definition 4.1.1. Let π = ( π(1), π(2), ..., π(n) ) be a permutation of jobs and Π be
the set of all permutations. Each permutation π ∈Π defines a processing order of jobs
on each machine. We can define the PFSP as the problem of finding a permutation
π∗ ∈Π such that:

Cmax(π
∗) = min

π
Cmax(π) (4.1)

i.e., the permutation that minimises the makespan.

The makespan Cmax(π) can be calculated as follows:

Ckπ(j)(π) =max { Ckπ(j−1) , Ck−1π(j) }+ pkπ(j) (4.2)

under the following conditions:

(1) π(0) = 0,
(2) Ck0 = 0, k = 1,2, ...,m,
(3) C0j = 0, j = 1,2, ...,n.

(4) Cmax(π) = Cmπ(n)(π)
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In simple words, the goal is to find a job schedule, i.e. a permutation of jobs,
that minimizes the maximum completion time of all the jobs in the schedule.
The completion time can be efficiently calculated using the recursive formula
shown in Equation 4.2. It is not the only way but the formula presented above
fits naturally into Spark/Scala paradigm.

Equation 4.2 calculates the completion time as a maximum completion time
of the previous job on the same machine Ckπ(j−1) and of the same job on the
previous machine Ck−1π(j), plus processing time of the considered job pkπ(j).

Figure 4.1 – Graphical representation of a PFSP example

In Figure 4.1, the execution times for each job on each machine (marked in
red) is calculated using the Equation 4.2. Note that, conditions Equation 4.2
(1-4) are used to produce the boundary values.

Condition 4 allow to calculate the makespan value from the execution times
matrix; it is the value placed in the bottom right corner of the matrix, and it
corresponds to n-th job and m-th machine. Hence, makespan represents the
completion time of the last job on last machine. In the example from Figure 4.1
it is equal to 34.

Figure 4.2 [46] presents the Gantt chart of the same example, which proba-
bly better depicts the problem of permutation flow shop scheduling. The gaps
between two jobs on the same machine represent its idle times (when machine is
not processing anything). The goal is to find the permutation of jobs that min-
imises the makespan, i.e., the completion time of the last job of the schedule
and on the last machine. Minimisation of gaps decreases the makespan value,
and therefore, maximises the machine utilisation.
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Figure 4.2 – Gant Chart of a PFSP example

4.2 Computational Complexity

Let n be the size of the set of jobs to be schedulated, n! are the possible permu-
tations to evaluate for a Permutation Flow Shop Problem consisting of n jobs.
That makes PFSP a combinatorial optimisation problem with a very large solu-
tion space; furthermore it belongs to a class ofNP -Complete (NPC) problems
as demonstrated in [65]. NPC means that the time necessary to solve it is very
likely to be Non-Polinomial (unless P =NP ), despite the fact that every given
solution (a permutation in this case) can be verified in polynomial time [10].

As a consequence, the solution space grows very fast with the problem size
(the number of jobs), and the problem soon becomes soon intractable. In other
words, the time necessary for examining all possible job permutations rises ex-
ponentially with the number of jobs. Up to date there are no efficient exact
algorithms that yield an optimal solution for large-size Permutation Flow Shop
Problem (PFSP) problem in a reasonable time.

4.3 Common approaches

Based on the approach to problem solving, the methods presented in literature
can be classified in the following groups:
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1. Exact algorithms - An exact algorithm is a solution techniques aiming at
solving the problem guaranteeing the optimality of the solution found [19].
For some problems exact algorithms are not suitable because they perform
an often too large (but optimised) search over the solution space using a
limited amount of computing resources, and therefore may require weeks,
months or years of computation [31]. For the NP -Hard problems like
PFSP, where the solution space grows super-exponentially with the prob-
lem size, exact algorithms are applicable only to small-sized problems.
A good representative of this group is Branch and Bound algorithm [9],
which uses speculation to prioritise the evaluation of solution subspaces
that will possibly return the optimised solution.

2. Heuristics - Exact algorithms are meant to solve a problem to optimal-
ity, however, for the resolution of NP -Hard problems, they may require
an exponential time. Because of that, many approximate algorithms were
developed to efficiently explore the solution space and localise a feasible
and satisfactory solution to a problem. Such techniques are often referred
to as heuristics. Heuristics use some previous knowledge on the problem
to improve the search procedure and terminate in a reasonable and useful
time. They bring a tool to balance between solution quality and affordable
time and cost. Examples of heuristics are Polynomial-Time Approxima-
tion Schemes (PTAS), Greedy algorithms, Construction heuristics, rule-
based heuristics, etc. Construction algorithms start from an empty initial
permutation, and iteratively add solution components based on some cri-
terion (e.g. minimize makespan) until a complete solution is obtained.
A common application of construction algorithms is to find an initial so-
lution that is going to be a starting point for the advanced local-search
procedures.

3. "Meta-heuristics are higher-level stochastic optimization methods designed
to find, generate or select a lower-level heuristic or a method that will pro-
vide a sufficiently good solution to an optimization problem" [5]. They are
capable to sub-optimally solve the whole class of previously unseen prob-
lem instances. Techniques which constitute meta-heuristic algorithms
range from simple local search procedures to a complex learning pro-
cesses. Local Search algorithms start from a complete initial solution and,
by small modifications (also called moves) on it, explore the solutions that
are in the "neighbourhood" of the current solution. Hence, they explore
solutions space around a current solution. The initial solution is com-
monly generated randomly or using an heuristic approach. Some of the
most popular meta-heuristics are Hill Climbing [58], Iterated Greedy [57],
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Ant Colony Optimization (MMAS, mMMAS, PACO) [13][61][49], Evolu-
tionary Computation [53], Simulated Annealing [43], Tabu Search [62] [41],
Particle Swarm Optimization [30], Cuckoo Search [74].

4. Hyper-heuristics - Compared to meta-heuristics, which are customised
for solving one class of problems, hyper-heuristics are able to handle a
wide range of problem domains [7]. They are even more general systems
than meta-heuristics, trying to automate the process of selecting, combin-
ing, or adapting several simpler (meta-)heuristics to solve a problem.

The literature dealing with PFSP is extremely vast. With the standardisation
of Objected-Oriented software design, meta-heuristics became easy to adapt to
the specific problem to solve. That led to creation of techniques, platforms and
languages that are jointly referred to as Meta-heuristics Optimisation Frame-
works (MOFs) [45]. Following the extendible and easy-to-use meta-heuristics
tools, and due to the increased computing power and the decreased price of
computing resources, parallel and distributed versions of popular algorithms
appeared in the research community. The focus of MOFs has turned to the
utilisation of computing environment resources for the sake of the optimisa-
tion techniques. The property by which the MOFs are distinguished the most
is whether they use the cooperation or not between the parallel algorithm in-
stances in order to find a solution. This property divided the existing meta-
heuristics into two groups: non-cooperative and cooperative. Non- coopera-
tive meta-heuristics concentrate on the exploration of neighbourhood around
a unique point in the solution space at a given time. Each algorithm instance
performs an independent computation, and at the end of the process, the best
solution found is returned as a final solution. Cooperative meta-heuristics
rely on a parallel exploration of the solution space, where each parallel algo-
rithm cooperates with the others by information exchange in order to select new
promising potential solutions [15]. The information exchange can be performed
synchronously or asynchronously, and the topology over which the communi-
cation takes place can assume fully-connected star-like shape, a ring shape, etc..
One of the most popular topologies is the Island Model [69], where, at each syn-
chronisation point, or in the particular time instant when an event happened, a
certain percentage of the island population (a group of solutions) is being sent
to other islands.

According to a recent survey on meta-heuristics frameworks [45] (33 frame-
works were analysed), in almost all the MOFs there is a significant lack of sup-
port for hyper-heuristics, and parallel and distributed computing capabilities.
Also, many of them are really complex and require a lot of technical expertise
to be used. That is the reason why HyperSpark framework presented in Chap-
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ter 3 was developed in the first place. Many of the previously referenced meta-
heuristics in this section have been implemented for the Permutation Flow Shop
Problem (PFSP) as a library of HyperSpark discussed in Subsection 4.4.6.

4.4 HyperSpark-PFSP Library

This section presents the software implementations created to tackle the Per-
mutation Flow Shop Problem (PFSP) using HyperSpark framework. It is orga-
nized as follows. First, Subsection 4.4.1 describes the representation of permu-
tation schedule. Afterwards, subsections 4.4.2, 4.4.3 and 4.4.4 deal with the
object-oriented implementations of Solution and EvaluatedSolution in the con-
text of PFSP. Next, Subsection 4.4.5 describes the Problem class. Further, in Sub-
section 4.4.6 we list the PFSP algorithms implemented in HyperSpark. Subsec-
tion 4.4.7 and Subsection 4.4.8 demonstrate the implementation of a few algo-
rithms (among those available in the library) that showed the best results during
the testing phase. In Subsection 4.4.9 some more advanced techniques devel-
oped for solution space splitting are explained. Finally, in Subsection 4.4.10, a
HyperSpark application that uses the presented components is described.

4.4.1 Permutation

Before the description of Solution and EvaluatedSolution classes proposed in the
context of PFSPs, we introduce one Scala type abbreviation. In Scala, type ab-
breviations provide clarity of the source code, and have the purpose of giving
meaning to a specific object type in the context of usage. Therefore, we used
one abbreviation to express the Permutation type.

package it.polimi.hyperh.types

object Types {

type Permutation = Array[Int]

def Permutation(x: Int, xs: Int*): Permutation = {

// the omitted code will create a new array

//place integer elements in it

//and return the array back

}

}

Figure 4.3 – Permutation Type
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The jobs involved in the permutation schedule can be safely mapped (one-
to-one) onto the sequence of integer numbers. Every possible permutation of
integer numbers represents a valid (feasible) solution to PFSP. In HyperSpark-
PFSP library, Permutation is just an abbreviation for an array of integers (the
jobs). For example, from Figure 4.4 it can be seen that Permutation(5,2,3,1,4) is
equivalent to Array(5,2,3,1,4). But, by writing Permutation we make the code
much easier to understand and maintain.

//instead of

val permutation1: Array[Int] = Array(5,2,3,1,4)

//we can now write

val permutation2: Permutation = Permutation(5,2,3,1,4)

Figure 4.4 – Scala Type Abbreviation - Usage Example

4.4.2 PfsSolution

PfsSolution class extends Solution abstract class described in Subsection 3.5.2.
The purpose of this class is to encapsulate the solution representation, that is,
a permutation of integers in this case. Its full source code is presented in Fig-
ure 4.5.

class PfsSolution(val permutation:Permutation) extends Solution {

def asString() = "Array(" + permutation.mkString(", ")+")"

override def toString = {

val permString = asString()

val str = "PfsSolution(permutation:" + permString+")"

str

}

def toList = permutation.toList

}

Figure 4.5 – PfsSolution class

PfsSolution encapsulates a permutation variable, which contains a permu-
tation of jobs. Therefore, this class represents a description of the solution
structure for a PFSP problem. To make the library extensible, and also, to con-
sider different objective functions, PfsSolution does not contain any information
about the criterion to optimise.
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4.4.3 PfsEvaluatedSolution

PfsEvaluatedSolution class (Figure 4.6) is a concrete implementation of Evaluat-
edSolution abstract class described in Subsection 3.5.3. It encapsulates both the
solution (permutation of jobs) and the value associated to it. In the context of
our case study, value represents the makespan, but, in general, it can be any cri-
terion like the tardiness, the flow time, etc. When problem.evaluate(pfsSolution)
is invoked the makespan of a solution is calculated and PfsEvaluatedSolution,
containing both the schedule and the makespan value, is returned as a result.
Makespan calculation is presented in Subsection 4.4.5.

class PfsEvaluatedSolution(override val value: Int,

override val solution: PfsSolution)

extends EvaluatedSolution(value, solution)

{

//Alternative constructor

def this(value: Int, permutation: Permutation) = this(value,

PfsSolution(permutation))

override def toString = {

val permString = solution.asString()

val str = "PfsEvaluatedSolution(value:" + value + ", solution:" +

permString + ")"

str

}

def compare(that: EvaluatedSolution) = this.value -

that.asInstanceOf[PfsEvaluatedSolution].value

def compare(that: PfsEvaluatedSolution) = this.value - that.value

def permutation = solution.permutation

}

Figure 4.6 – PfsEvaluatedSolution Class

4.4.4 NaivePfsEvaluatedSolution

Some algorithms may require a complete initial solution to start the execution.
At each iteration they compare the makespans of newly evaluated permuta-
tion and best permutation found during the execution. At their initialisation
phase the algorithms need initial/best EvaluatedSolution. NaivePfsEvalutedSo-
lution object produces PfsEvaluatedSolution instances with the makespan value
equal to the maximum number in Scala Int range (999999999), and copies the
jobs sequence (1,..., numOfJobs) as a permutation.
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object NaivePfsEvaluatedSolution {

def apply(problem: PfsProblem) = new PfsEvaluatedSolution(999999999,

problem.jobs)

}

Figure 4.7 – PfsEvaluatedSolution Factory

4.4.5 PfsProblem

To avoid the detailed explanation of Scala terminology, in Figure 4.8 we have
presented only the skeleton of PfsProblem class. PfsProblem constructor accepts
the number of jobs numOfJobs, the number of machines numOfMachines, and a
matrix of processing times named jobTimesMatrix.

Table 4.2

Processing times

Times\Jobs J1 J2 J3 J4 J5
p1,Ji 5 5 3 6 3
p2,Ji 4 4 2 4 4
p3,Ji 4 4 3 4 1
p4,Ji 3 6 3 2 5

The most important function signatures are:
• jobsInitialTimes - A function that calculates the completion times for all

the jobs, as they were the first in the permutation schedule. Once the
problem is instantiated, the aggregated sum of processing times is pre-
calculated for each job (line 9 in Figure 4.8). E.g., for job J5 from Table 4.2
the aggregated sum of Array(3, 4, 1, 5) is Array(3, 7, 8, 13). These arrays
are saved as columns inside initEndTimesMatrix variable (see Table 4.3).
Later on, when a new permutation is evaluated, the whole completion
times matrix needs to be calculated. The first job from new permuta-
tion schedule tells us which column to take from initEndTimesMatrix and
place it as a first column in completion time matrix table (line 18 from
Figure 4.8). This optimisation might not look that significant, but it saves
an important amount of time in solution evaluation, especially with big
problem instances.
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Table 4.3

Completion time calculation for the first job in the schedule

Times\Jobs J1 J2 J3 J4 J5
ct1,Ji 5 5 3 6 3
ct2,Ji 9 9 5 10 7
ct3,Ji 13 13 8 14 8
ct4,Ji 16 18 11 16 13

• evaluatePartialSolution - calculates the completion times matrix for all
jobs present in the schedule on each machine (based on the recursive for-
mula, Equation 4.2, presented in Section 4.1), finds the makespan (the
completion time of last job on last machine) and encapsulates it within
the returned PfsEvaluatedSolution. For instance, consider the Permuta-
tion(5,1,3). The first column of the completion time matrix table is taken
from pre-calculated initEndTimesMatrix (line 18 from Figure 4.8, J5 col-
umn from Table 4.3). Later on, the subsequent columns are calculated by
applying Equation 4.2 to the extracted processing times for subsequent
jobs in the schedule (lines 20-25 from Figure 4.8, J1, J3 from Table 4.4).

Table 4.4

Processing times extraction for a partial solution

Times\Jobs J5 J1 J3
p1,Ji 3 5 3
p2,Ji 4 4 2
p3,Ji 1 4 3
p4,Ji 5 3 3

Table 4.5

Completion times matrix for a partial solution

Times\Jobs J5 J1 J3
p1,Ji 5 10 13
p2,Ji 9 14 15
p3,Ji 13 18 21
p4,Ji 16 21 24
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• evaluate - Basically, evaluating the whole solution is a special case of par-
tial solution evaluation. When partial solution is employed, evaluatePar-
tialSolution continues the calculation up to the last job present in permu-
tation. Since the full solution (a complete permutation) is provided, the
former will calculate the whole completion time matrix and provide the
makespan of respective permutation. The returned object will be PfsEval-
uatedSolution containing makespan and jobs permutation.

• getExecutionTime - returns the default execution time calculated based
on the problem size (the number of jobs and machines). The formula
is: problem.numOfMachines*(problem.numOfJobs/2.0)*60 milliseconds, as
in Vallada and Ruiz’s experiments [67].
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1 class PfsProblem(

2 val numOfJobs: Int,

3 val numOfMachines: Int,

4 val jobTimesMatrix: Array[Array[Int]] // processing times

5 ) extends Problem {

6

7 //calculate aggregated sums for all the jobs

8 def jobsInitialTimes(): Array[Array[Int]] = {...}

9 val initEndTimesMatrix = jobsInitialTimes()

10

11 def evaluatePartialSolution(jobsPermutation: Permutation):

PfsEvaluatedSolution = {

12 val numOfPartJobs = jobsPermutation.length

13 val numOfMachines = jobTimesMatrix.size

14 //table represents completion time matrix

15 val table = Array.ofDim[Int](numOfMachines, numOfPartJobs)

16 //first column is taken from initEndTimesMatrix

17 for (mInd <- 0 until numOfMachines)

18 table(mInd)(0) = initEndTimesMatrix(mInd)(jobsPermutation(0) - 1)

19 //calculate the rest of completion time matrix

20 for (jInd <- 1 until numOfPartJobs; mInd <- 0 until numOfMachines) {

21 if (mInd > 0)

22 table(mInd)(jInd) = Math.max(table(mInd-1)(jInd), table(mInd)(jInd-1))

+ jobTimesMatrix(mInd)(jobsPermutation(jInd)-1)

23 else

24 table(mInd)(jInd) = table(mInd)(jInd-1) +

jobTimesMatrix(mInd)(jobsPermutation(jInd)-1)

25 }

26 val makespan = table(table.size-1).max

27 new PfsEvaluatedSolution(makespan, jobsPermutation)

28 }

29 def evaluate(s: Solution): EvaluatedSolution = {

30 val solution = s.asInstanceOf[PfsSolution]

31 evaluatePartialSolution(solution.permutation.toList)

32 }

33

34 def getExecutionTime(): Double = {

35 numOfMachines * (numOfJobs / 2.0) * 60 //time limit

36 }

37 }

Figure 4.8 – PfsProblem class
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4.4.6 Algorithms Implemented and Imposed Constraints

Algorithms implemented for the purposes of this thesis are listed below:

Table 4.6

Algorithms implemented

Name Type Authors Year Ref. Class
NEH Construction Nawaz,

Enscore and
Ham

1983 [39] NEHAlgorithm

Iterated Greedy Local Search Ruiz and Stüt-
zle

2007 [57] IGAlgorithm

Genetic Algorithm Local Search Reeves 1995 [53] GAAlgorithm
Hybrid Genetic
Algorithm

Local Search Ruiz and Stüt-
zle

2007 [75] HGAAlgorithm

Simulated
Annealing

Local Search Osman
and Potts’s
adaption for
PFSP

1989 [43] SAAlgorithm

Improved Simu-
lated Annealing

Local Search Xu and Oja 1990 [73] ISAAlgorithm

Taboo Search Local Search Taillard 1989 [62] TSAlgorithm
Taboo Search with
backjump tracking

Local Search Novicki and
Smutnicki

1994 [41] TSABAlgorithm

Ant Colony
Optimization

Local Search Dorigo and
Stützle

2009 [13] ACOAlgorithm

Max Min Ant Sys-
tem

Local Search Stützle 1997 [61] MMASAlgorithm

mMMAS Local Search Rajendran and
Ziegler

2002 [49] MMMASAlgorithm

PACO Local Search Rajendran and
Ziegler

2002 [49] PACOAlgorithm

All of the algorithms listed are single-thread algorithms1, and they have
been implemented as such. However, they are used as the basic elements by
HyperSpark framework in order to create a parallel metaheuristic. This is true
given that the user provides also a seeding/messaging mechanism (SeedingStrat-
egy) and a reduce/selection mechanism (MapReduceHandler) too.

HyperSpark-PFSP library currently implements 12 methods. NEH is the
only construction algorithm implemented, since it is dominant in its category,
and therefore many of the algorithms listed use NEH to build an initial solu-
tion. Even though we have implemented many of them, in the experimental

1exception is maybe Hybrid GA, which can easily made multi-threaded
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campaign presented in Chapter 5 we considered only two algorithms, that is,
those that showed the best performance during preliminary tests. For the sake
of completeness the selected methods are described in detail in the next sec-
tions.

4.4.7 Iterated Greedy Algorithm

Iterated Greedy (IG) algorithm [57] belongs to a group of local search algo-
rithms, meaning that it uses an initial solution as a base for finding a better
neighbouring solution in the solution space. IG iteratively improves the current
solution by performing a local search procedure on it. Local search procedure
could range from swapping two elements at random positions to a complex
learning process in which a more convenient (job, position) pair accumulates
the reward during the time.

The source code of IG algorithm is presented in Figure 4.9. IGAlgorithm
extends the Algorithm trait, which demands the implementation of evaluate(
p:Problem) and evaluate(p:Problem, stopCond:StoppingCondition) functions. The
first evaluate function (lines 10-15 from Figure 4.9), when the stopping condi-
tion is not provided by the user, suggests to the algorithm to use the default
stopping condition - execution time limit described in Subsection 4.4.6. At the
start of the second evaluate function time limit is initialised (line 18 from Fig-
ure 4.9), and later the iterative loop is defined (lines 21-41) and started (line
44).

In the loop, before the start of any iteration, it is checked if the stopping con-
dition is not satisfied (the time limit is not reached) (line 22 from Figure 4.9),
and if that is not the case the best solution found is returned (line 42). The algo-
rithm starts with an initial solution (line 27) and improves it by local search in
its neighbourhood. Variable currentSolution is initialised using NEH construc-
tion algorithm [39] if a seed is not provided (lines 4-9). Later, in the destruction
phase (line 33) it splits the current solution into two lists - by removing d jobs
from the current solution. E.g. it removes 2 jobs out of 20 present in current
solution, and makes a list of 18 jobs and a list of 2 jobs. In the construction
phase (line 34) the removed jobs are reinserted again by considering different
positions for insertion. A completely constructed solution is evaluated and im-
proved by a local search (lines 35-37). Current solution is updated and the
process is repeated as long as the stopping condition is not satisfied. For de-
tails on destruction, construction and localSearch please refer to the original
work [57].
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1 class IGAlgorithm(val d:Int,val T:Double, seedOption: Option[PfsSolution])

extends Algorithm {

2 seed = seedOption

3

4 def initialSolution(p: Problem): EvaluatedSolution = {

5 seed match {

6 case Some(seed) => seed.evaluate(p).asInstanceOf[PfsEvaluatedSolution]

7 case None => new

NEHAlgorithm().evaluate(p).asInstanceOf[PfsEvaluatedSolution]

8 }

9 }

10 override def evaluate(problem:Problem):EvaluatedSolution = {

11 val p = problem.asInstanceOf[PfsProblem]

12 val timeLimit = p.getExecutionTime()

13 val stopCond = new TimeExpired(timeLimit)

14 evaluate(p, stopCond)

15 }

16 override def evaluate(problem:Problem, stopCond:StoppingCondition):

EvaluatedSolution = {

17 val p = problem.asInstanceOf[PfsProblem]

18 val stop = stopCond.asInstanceOf[TimeExpired].initialiseLimit()

19 val dummySol = NaivePfsEvaluatedSolution(p)

20

21 def loop(currentSol:PfsEvaluatedSolution, bestSol:PfsEvaluatedSolution,

iter:Int): PfsEvaluatedSolution = {

22 if(stop.isNotSatisfied()) {

23 var currentSolution = currentSol

24 var bestSolution = bestSol

25 //INITIALISATION PHASE

26 if(iter == 1){

27 currentSolution = initialSolution(p)

28 //IMPROVE IT BY LOCAL SEARCH

29 currentSolution = localSearch(currentSolution.permutation,p)

30 bestSolution = currentSolution

31 }

32 //IN EACH ITERATION DO

33 val pair = destruction(currentSolution.permutation, d)

34 val bestPermutation = construction(pair._1, pair._2,p)

35 bestSolution = p.evaluate(PfsSolution(bestPermutation))

36 .asInstanceOf[PfsEvaluatedSolution]

37 val improvedSolution = localSearch(bestPermutation,p)

38 //solution update omitted for clarity

39 //RECURSIVE CALL

40 loop(currentSolution, bestSolution, iter+1)

41 }

42 else bestSol

43 }

44 loop(dummySol, dummySol, 1)

45 }

Figure 4.9 – Iterated Greedy Algorithm class 87
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4.4.8 Hybrid Gentic Algorithm

Hybrid Genetic (HG) algorithm [75] is a population-based meta-heuristic opti-
mization algorithm, whose sub-procedures mirror the processes in the genetic
evolution. HGAlgorithm initialises the population of N-1 random permutations
and one sub-optimal solution (a seed or NEH solution) (line 14 in Figure 4.11).
In the while loop, the following process is repeated until the stopping condition
is satisfied.

First, the population is divided into four parts (lines 22-27), and on each
part a different crossover operator is applied (lines 28-32). The use of multi-
variant crossover operators contributes to the diversity in the set of obtained
solutions. Afterwards, the population is updated, and the solution with min-
imum makespan is taken as bestSolution (line 35). Later on, the population
is improved by metropolis sampling and the global best solution is saved (lines
37-38). Metropolis sampling, commonly used in Simulated Annealing type of
algorithms, replaced the mutation phase of this genetic algorithm. It allows the
algorithm to escape from local optima, by accepting a slightly worse solution
over the best one during the search procedure (see Figure 4.10). This approach
sometimes favours the exploration of the solution space over the constant im-
provement, and has shown good results in practice. For additional details on
crossover and metropolis please refer to the original work [75].

Figure 4.10 – Metropolis sampling
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1 class HGAAlgorithm(

2 p:PfsProblem, popSize:Int, prob:Double, coolingRate:Double,

seedOption:Option[PfsSolution]) extends GAAlgorithm(popSize,

seedOption) {

3 var temperatureUB:Double = 2000.0 //dummy initialisation

4 seed = seedOption

5 override def evaluate(problem: Problem): EvaluatedSolution = {

6 val p = problem.asInstanceOf[PfsProblem]

7 val timeLimit = p.getExecutionTime()

8 val stopCond = new TimeExpired(timeLimit)

9 evaluate(p, stopCond)

10 }

11 override def evaluate(problem:Problem, stopCond:StoppingCondition):

EvaluatedSolution = {

12 val p = problem.asInstanceOf[PfsProblem]

13 //INITIALIZE POPULATION

14 var population = initSeedPlusRandom(p, popSize)

15 var bestSolution = population.minBy(_.value)

16 var worstSolution = population.maxBy(_.value)

17 val delta = worstSolution.value - bestSolution.value

18 temperatureUB = -delta / scala.math.log(prob)

19 val stop = stopCond.asInstanceOf[TimeExpired].initialiseLimit()

20

21 while (stop.isNotSatisfied()) {

22 //DIVIDE POPULATION IN 4 SUBPOPULATION

23 val subPopSize = popSize / 4

24 var subpop1 = population.take(subPopSize)

25 var subpop2 = population.drop(subPopSize).take(subPopSize)

26 var subpop3 = population.drop(2*subPopSize).take(subPopSize)

27 var subpop4 = population.drop(3*subPopSize).take(subPopSize)

28 //CROSSOVER

29 subpop1 = crossover(p, subpop1, bestSolution, crossoverLOX, stop)

30 subpop2 = crossover(p, subpop2, bestSolution, crossoverPMX, stop)

31 subpop3 = crossover(p, subpop3, bestSolution, crossoverC1, stop)

32 subpop4 = crossover(p, subpop4, bestSolution, crossoverNABEL, stop)

33 //UPDATE POPULATION

34 population = subpop1 ++ subpop2 ++ subpop3 ++ subpop4

35 bestSolution = List(population.minBy(_.value),

bestSolution).minBy(_.value)

36 //METROPOLIS MUTATION

37 population = metropolis(p, population, stop)

38 bestSolution = List(population.minBy(_.value),

bestSolution).minBy(_.value)

39 }

40 bestSolution

41 }

Figure 4.11 – Hybrid Genetic Algorithm class
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4.4.9 Seeding Strategies

HyperSpark provides a simple strategy called SameSeeds (sends the same solu-
tion to all parallel algorithm instances), presented in Subsection 3.5.8. How-
ever, as demonstrated in experimental Section 5.5, the impact of this compo-
nent on the overall performance showed by the algorithms is quite important.
For this reason we devised and implemented four permutation-specific seeding
strategies.

Figure 4.12 – SlidingWindow Seeding Strategy

SlidingWindow strategy (Figure 4.12) has the goal to explore the solution
space in more effective way, by providing different initial solutions to different
parallel algorithms. Assuming that the initial solution is a permutation, Slid-
ingWindow slides the window of provided size on the solution at hand, keeps
the elements contained in a window, and randomly permutes the elements out-
side the sliding window. The window starts from first element and slides one
position to the right until it reaches the end of solution, if possible generating
as many new solutions as there are parallel algorithms. If the solution is a green
circle in Figure 4.12, by keeping a part of initial solution (which is considered
as best solution of previous framework iteration) in newly generated solutions
(red circles), new solutions will hopefully stay in the neighbourhood of the ini-
tial solution. How distant the new solutions will be from the initial one in the
(abstract) solution space depends on a chosen window size, or to express it dif-
ferently, it depends on a size of the reused sequence of elements from initial
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solution. For instance, consider the Permutation(1,2,3,4,5,6,7,8,9,10) from Fig-
ure 4.12 as the initial solution. By applying the SlidingWindow of size 8 we will
obtain three permutations, e.g.: (1,2,3,4,5,6,7,8,10,9), (10,2,3,4,5,6,7,8,9,1) and
(2,1,3,4,5,6,7,8,9,10), that are very close to the initial solution in the solution
space. As the window size decreases the new solutions become less biassed to
the initial one, implying the longer distance in the solution space.

SeedPlusSlidingWindow strategy is similar to SlidingWindow in a way it
generates new solutions. It differs in that it keeps the old solution (seed) for
next iterations. If there are N parallel algorithms, it will generate N-1 solutions
by using sliding window, and one (old solution) will be prepended to solutions
generated.

FixedWindow strategy is similar to SlidingWindow in a way it generates
new solutions, but it differs in window placement procedure. In SlidingWin-
dow strategy the window is moved from left to right, but here the window po-
sition is randomly generated for each newly produced seed. After the window
has been fixed, the seeds are produced in the same way as in SlidingWindow:
the jobs within the window are kept in the same order, while the jobs outside
of it are randomly permuted. The difference between SlidingWindow and Fixed-
Window strategies is expressed when there is a limit for the number of gener-
ated solutions. If the limit has a low value (e.g., the limit is 10 solutions, the
number of solutions possible to generate is 100), SlidingWindow strategy will
generate the solutions using only the first part of the solution at hand. With
FixedWindows the sampling over the initial solution should be fairer.

SeedPlusFixedWindow strategy, besides applying FixedWindow, also keeps
the provided solution (seed) for the next framework iteration.

4.4.10 HyperSpark Application

For the end of this chapter, and in order to have a clear idea of how the men-
tioned concepts can be used in practice, we present a simple HyperSpark ap-
plication in Figure 4.13. As it can be seen, the application starts the execution
of twenty IG algorithms in parallel using the HyperSpark framework. Each of
them will have a fixed amount of time set for the execution, and a fixed number
of iterations. Each framework iteration will consume totalTime/numOfIterations
of time for the execution. The best solution in each framework iteration will be
distributed using SeedPlusFixedWindow strategy, having window size equal to
the square root of the number of jobs.

Although IGAlgorithm presented in Figure 4.9 is a CPU-intensive single-
thread procedure and the solution space for the problem inst_ta094 of 200 jobs
contains 200! = 7.88 x 10374 solutions, HyperSpark returned a makespan that
is only 0.23 percents higher than the best solution ever found.
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object SimpleApp {

def main(args: Array[String]) {

val problem = PfsProblem.fromResources("inst_ta094.txt")

val algorithm = new IGAlgorithm()

val numOfAlgorithms = 20

val totalTime = problem.getExecutionTime()

val numOfIterations = 10

val iterTimeLimit = totalTime / numOfIterations

val stopCond = new TimeExpired(iterTimeLimit)

val windowSize: Int = scala.math.sqrt(problem.numOfJobs).toInt

val strategy = new SeedPlusFixedWindow(windowSize)

val conf = new FrameworkConf()

.setSparkMaster("spark://master:7077")

.setProblem(problem)

.setNAlgorithms(algorithm, numOfAlgorithms)

.setNDefaultInitialSeeds(numOfAlgorithms)

.setNumberOfIterations(numOfIterations)

.setStoppingCondition(stopCond)

.setSeedingStrategy(strategy)

val solution = Framework.run(conf)

println(solution)

}

}

Figure 4.13 – HyperSpark Application
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CHAPTER 5
Experimental Results

In this chapter we present and examine some experimental results obtained
from an experimental campaign in which we extensively tested the major solu-
tions developed in Chapter 4 (namely HyperSpark-PFSP library), which rely on
the HyperSpark framework discussed in Chapter 3. Until now, we did not spec-
ify any measurements of incurred time overhead nor attained solution quality.
Therefore, in this chapter we will pose reasonable questions about performance
and provide the answers supported by sound experimental results. The main
research questions are:

1. How much time overhead does HyperSpark introduce? Is it acceptable in
the context of parallel and cooperative optimization?

2. Are the algorithms implemented using HyperSpark competitive with re-
spect to state-of-the-art?

These questions are mirrored in the structure for this chapter. Each ques-
tion will be treated as a separate experiment, that is, a section in the con-
text of this document. First of all, in Section 5.1 we briefly explain the ex-
perimental environment on which the experiments were conducted. Then, in
Section 5.2, the general experimental conditions imposed are presented. Sec-
tion 5.3 presents the benchmarks used to analyse the cost and the efficiency of
HyperSpark framework. Section 5.4 describes the first experiment, which rep-
resents a preliminary analysis aiming at measuring the overhead introduced
by HyperSpark under different conditions. In Section 5.5 we execute two al-
gorithms with three seeding strategies on the set of Taillard instances in order
to analyse the impact of different set ups on the quality of solutions. Finally,
in Section 5.6 we employ the best hardware configuration, algorithm and seed-
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ing strategy to try to find the best solution ever found for some of the PFSP
instances.

5.1 Experimental environment

The experimental environment consists of 10 virtual machines, each having 8
CPU cores running at 2.4 GHz and 15 GB of RAM at their disposal. Hence,
there are 80 CPU cores and 150 GB in total available for the computations. On
top of this physical infrastructure, Spark environment (version 1.5) is installed
in Standalone mode, meaning that it manages both application scheduling and
provisioning of hardware resources on its own. Having Spark installed allowed
us to control the exact number of cores and the amount of RAM used for the
purposes of specific experiments.

5.2 Experimental conditions

In order to have a fair comparison between the algorithms and to support co-
operation between them in the most efficient way we imposed three constraints
on the algorithm execution:

• the same solution evaluation procedure, i.e., makespan calculation. All
solutions are evaluated using problem.evaluate(s:Solution), a function call
that implements makespan calculation described in Section 4.1.

• stopping condition - for all parallel algorithm instances the same stop-
ping condition is set. It is the total time provided for algorithm execution,
and it is equal to problem.numOfMachines*(problem.numOfJobs/2.0)*60 mil-
liseconds, as in Vallada and Ruiz’s experiments [67]. If the algorithm re-
quires cooperation, the time provided for each superstep is equal to: total
time divided by the number of supersteps (framework iterations). Ex-
ecution time is measured using TimeExpired class, described in Subsec-
tion 3.5.5.

• initialisation - if there is an intial solution (a seed) provided to the algo-
rithm by the user or by the framework, the algorithm will use it. Other-
wise, the algorithm will use its own custom initialisation. For example,
NEH constructed solution. This feature is especially convenient for coop-
erative algorithms, which exchange the seeds after each superstep.

• number of runs - Since we are considering randomised algorithms each
experiment must be repeated a suitable number of times in order to have
sound results. For each benchmark the experiment is repeated 5 or 10
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times, depending on the estimated variability in the output. The final
result is recorded as an average over all repetitions.

5.3 Benchmarks

The benchmarks used to demonstrate results are the well-known Taillard in-
stances [63] for Flow Shop scheduling. There are 120 problem instances, rang-
ing from 20 to 500 jobs. All instances and their respective best found solutions
have been considered for the experiments with HyperSpark-PFSP library.

Table 5.1

Benchmarks - 120 PFSP instances

instance jobs machines execution time (s)
inst_ta{001-010} 20 5 3.0
inst_ta{011-020} 20 10 6.0
inst_ta{021-030} 20 20 12.0
inst_ta{031-040} 50 5 7.5
inst_ta{041-050} 50 10 15.0
inst_ta{051-060} 50 20 30.0
inst_ta{061-070} 100 5 15.0
inst_ta{071-080} 100 10 30.0
inst_ta{081-090} 100 20 60.0
inst_ta{091-100} 200 10 60.0
inst_ta{101-110} 200 20 120.0
inst_ta{110-120} 500 20 300.0

5.4 Experiment 1 - Overhead estimation

Initialisation of Spark Context, compute function and data distribution to the
nodes, collection and aggregation of results, and the termination of Spark Con-
text accounts for some time overhead. In general, we wanted to know what is
the computation time overhead for running the simplest HyperSpark applica-
tion in Spark environment. By the simplest HyperSpark application, we mean
that the application executes independently its algorithm instances without any
kind of cooperation between them. In HyperSpark terminology, that means that
the number of stages used for the computation is equal to one.

We chose one PFSP instance of size 20, 50, 100, 200 and 500 jobs, and for
each of them we gradually increased the number of cores, that is, the number
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of algorithms used from the set {1, 8, 16, 24, 32, 40}. For each instance, and
for each number of cores the execution was repeated 5 times. Each time the
Spark Context was initialised, the application was executed, and the context
was terminated. To be more formal, we define below the input and output
considered in this experiment.

5.4.1 Input parameters

The input parameters are: number of stages, number of CPU cores, algorithm
execution time, algorithm and seeding strategy. The description of each input
parameter follows.

• Number of stages - fixed to 1. As we mentioned, we want to test the most
simplest case, when there is no cooperation between algorithms. Cooper-
ation, in fact, would introduce times that are cannot be easily classified as
overhead.

• Number of CPU cores - Chosen from the set {1, 8, 16, 24, 32, 40}. In this
experiment the number of CPU cores is increased almost linearly. Having
more algorithm instances demands more memory space and a higher net-
work bandwidth for the distribution and aggregation of data. Therefore,
it is necessary to know up to which point one can increase the number of
cores. Using a big number of cores may introduce a time overhead which
is not acceptable by project’s specifications.

• Algorithm execution time - This time is provided to algorithm for its exe-
cution, and it does not depend on Spark environment. In the case of PFSP
instances, it is calculated based on a number of jobs and a number of ma-
chines, as mentioned in Section 5.2. Since this parameter directly depends
on the PFSP instance, in the table below we will provide the properties of
used instances.

96



5.4. Experiment 1 - Overhead estimation

Table 5.2

Experiment 1 - Problem instances

instance jobs machines
execution
time (s)

inst_ta001 20 5 3.0
inst_ta031 50 5 7.5
inst_ta061 100 5 15.0
inst_ta091 200 10 60.0
inst_ta111 500 20 300.0

• Algorithm - In this experiment, any algorithm implemented in HyperSpark-
PFSP library can be arbitrarily. We selected the state-of-the-art algorithm
IGAlgorithm.

• Seeding Strategy - In this experiment, any seeding strategy can be ar-
bitrarily chosen as it does not affect the framework overhead. Since the
number of stages is fixed to 1, the value of this parameter does not play a
role in the output generation. The default value, SameSeeds, is used.

5.4.2 Output

The collected outputs are: environment initialisation time, stage_0 time and
environment closing time. The description of each output follows.

• Initialisation time - Time spent from the moment in which SparkContext
has been started to the moment in which the job (i.e., the application) is
ready to start its computation. During this time, executors are created and
the communication layer is established.

• Stage_0 time - Since there is only one stage in this experiment, the total
execution time provided for the algorithm execution will be completely
used by the first stage - stage_0. This output, besides the algorithm’sxecution
time, includes the time necessary for creating memory managers, adding
RDD partitions to memory, starting parallel computing tasks and aggre-
gating the results.

• Overhead - Computation time overhead incurred by Spark environment.
This value is obtained by deducting the algorithm execution time from
stage_0 time.

• Closing time - The time necessary for releasing of allocated memory and
terminating SparkContext.

97



5. Experimental Results

5.4.3 Results

In Table 5.3 there is a summary of collected outputs. As aforementioned, for
each instance and for each number of cores, the execution is repeated 5 times.
For clarity, the averaged values are presented .

A couple of interesting remarks can be concluded based on the results from
Table 5.3:

• By increasing the problem size, i.e. changing to an instance with a higher
number of jobs, the overhead percentage decreases to an acceptable:
5-10 % (31.9/330.24 seconds on average) for the instance with 500 jobs.
From this, we can conclude that HyperSpark is particularly suitable for
the optimisation of large problems.

• Increasing the number of cores increases the time overhead, up to 30% for
the smallest instance, and up to 8% for the biggest instance tested. This
is an expected result. The higher the level of parallelism the higher the
setup and synchronisation overhead.

• Increasing the number of cores increases the initialisation time, from 5
to 13 seconds approximatively on the considered environment, no mat-
ter what the problem size is. This time can be considered acceptable for
problems that requires several minutes to be solved.

• Closing time is constant in the interval of 0-1 second. However, as for
the setup time this time is attributable to Spark framework rather than to
HyperSpark.

As the problem size increases, the total overhead percentage decreases. There-
fore, to benefit from a distributed environment and support higher solution di-
versity we must make a trade-off between the number of cores used and the time
overhead percentage. Typically, distributed environments are employed when
there is a hard problem. In our case that refers to the solution space size, which
is directly determined by the problem instance size. Therefore, when choosing
the suitable number of cores we will consider only the results obtained for 200
and 500 jobs (inst_ta091 and inst_ta111). The acceptable overhead percentage
lies in the range which corresponds to a range between 16 and 24 cores, and,
therefore, for our future experiments, we will fix that number to 20.
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Table 5.3

Experiment 1 - Time overhead

instance cores stage_0 (s) overhead (s) ovr (%) init (s) close (s)
inst_ta001 1 5.80 2.8 46.69 5.80 0.60
inst_ta001 8 5.91 2.91 49.00 7.20 0.20
inst_ta001 16 7.68 4.68 60.79 7.60 0.60
inst_ta001 24 9.54 6.54 68.50 9.40 0.40
inst_ta001 32 10.76 7.76 71.94 11.80 0.60
inst_ta001 40 13.26 10.26 77.33 12.80 0.60
inst_ta031 1 10.13 2.63 25.75 8.20 0.40
inst_ta031 8 10.56 3.06 28.91 7.60 0.20
inst_ta031 16 12.38 4.88 39.43 7.60 0.40
inst_ta031 24 14.29 6.79 47.47 10.80 0.40
inst_ta031 32 15.84 8.34 52.66 12.00 0.20
inst_ta031 40 18.26 10.76 58.89 13.60 0.20
inst_ta061 1 17.37 2.37 13.66 6.40 0.00
inst_ta061 8 18.22 3.22 17.63 7.60 0.20
inst_ta061 16 20.14 5.14 25.35 9.00 0.20
inst_ta061 24 22.21 7.21 32.38 9.20 0.60
inst_ta061 32 23.47 8.47 36.08 12.60 0.40
inst_ta061 40 25.89 10.89 42.02 12.80 1.00
inst_ta091 1 63.70 3.70 5.77 6.60 0.00
inst_ta091 8 66.61 6.61 9.91 4.60 0.40
inst_ta091 16 69.46 9.46 13.62 4.40 0.20
inst_ta091 24 70.16 10.16 14.47 7.60 0.20
inst_ta091 32 73.28 13.28 18.12 7.40 0.40
inst_ta091 40 76.97 16.97 22.04 8.00 0.80
inst_ta111 1 318.05 18.05 5.68 5.20 0.20
inst_ta111 8 320.89 20.89 6.51 4.40 0.20
inst_ta111 16 326.35 36.35 8.07 4.80 0.40
inst_ta111 24 332.56 32.56 9.79 6.20 0.40
inst_ta111 32 337.27 37.27 11.05 7.20 0.60
inst_ta111 40 346.33 46.33 13.38 11.80 0.80

5.5 Experiment 2 - Solution quality analysis

Now that there is a precise measurement of time overhead, and the number
of cores is set to 20 (as prescribed in Experiment 1) we focus on examining the
solution quality. In order to obtain the best performance, we will include the co-
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operation between algorithms in this experiment. The number of HyperSpark
iterations (stages) will be fixed to 10. For each of the 80 Taillard’s problem in-
stances (ranging from 50 to 200 jobs) 20 algorithms of the same type will run
10 times with a pre-determined seeding strategy. Two different algorithms and
three different strategies will be employed, and at the end of the test the best
(algorithm, seeding strategy) combination will be chosen. During the experi-
ment, we also measured the distribution of computation time between stages.
Some interesting remarks will be presented together with the results.

5.5.1 Input parameters

The considered input parameters are essentially the same of Experiment 1; the
rangvaluesome of them have been restricted, thoughis changeddescription of
input parameters follows:

• Number of stages - fixed to 10. There is a cooperation between algo-
rithms, and it is determined by a seeding strategy.

• Number of CPU cores - Fixed to 20, as prescribed in Experiment 1. The
PFSP instances used for the experiments are of a large size. Thus, we con-
sider the time overhead of 10 % (corresponds to 20 cores) as an acceptable
cost.

• Algorithm execution time - As mentioned in Experiment 1, this param-
eter directly depends on the PFSP instance. The execution times of test
data are given in the table Table 5.4. Notice that, this time is divided by
the number of iterations (stages). Therefore, the computation time pro-
vided to a HyperSpark iteration, in the current experiment, will be the
execution time given in Table 5.4 divided by 10.

• Algorithm - Chosen from a set {IGAlgorithm, HGAlgorithm}. Iterated Greedy
algorithm and Hybrid Genetic algorithm, described in Chapter 4, are the
two best performing algorithms out of 10 implemented. The selection was
made based on the results they had demonstrated during the Framework
development phase.

• Seeding Strategy - Chosen from a set {SameSeeds, SeedPlusSlidingWin-
dow, SeedPlusFixedWindow}. Here, we want to test two extremes: the most
naive strategy and the advanced ones. The aim is to measure the impact
of a greater diversity on the quality of final solutions. We decided, how-
ever, to preserve the best solution found during the iterations, and that
is why we chose SeedPlusSlidingWindow and SeedPlusFixedWindow. For
additional details, the reader can refer Subsection 4.4.9.
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Table 5.4

Experiment 2 - Problem instances

instance jobs machines execution time (s)
inst_ta{031-040} 50 5 7.5
inst_ta{041-050} 50 10 15.0
inst_ta{051-060} 50 20 30.0
inst_ta{061-070} 100 5 15.0
inst_ta{071-080} 100 10 30.0
inst_ta{081-090} 100 20 60.0
inst_ta{091-100} 200 10 60.0
inst_ta{101-110} 200 20 120.0

5.5.2 Output

The output values considered in this experiments are: environment initialisa-
tion time, stage_0 time, stage_0 overhead, stages_1to9 time, stages_1to9 over-
head, environment closing time, solution found.

We aimed at measuring the average, per stage, computation time. While
doing so, we noticed that stage_0 incurs much higher overhead than the suc-
ceeding stages (1 to 9). It is worth noticing that we are considering the different
compute and overhead time measures for the first and the remaining stages. A
short description of the output parameters follows.

• Stage_0 time and Stages_1to9 time - Time spent to compute the first and
succeeding nine HyperSpark iterations, respectively.

• Stage_0 overhead and Stages_1to9 overhead - Time overhead incurred
during the computation of the first and succeeding nine iterations, re-
spectively.

• Total computation time - Derived as a sum of stage_0 time and stages_1to9
time.

• Total time overhead - Derived as a difference between total computation
time and algorithm execution time.

• Solution found - Solution obtained by using HyperSpark framework.

• Relative Percentage Deviation (RPD) - Relative deviation of a solution
found with respect to the best known solution, expressed in percents.
This parameter serves to tell us how close the solution found is to the
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best known solution1. If it is negative - new best solution is found. It is
calculated as follows:

RPD =
Solutionf ound − Solutionbest

Solutionbest
∗ 100 (5.1)

5.5.3 Analysis of experimental results

Since the input parameters are the same for both overhead estimation and so-
lution quality measurement, there was no need to execute two separate experi-
ments. The respective analyses are presented in the following subsections.

5.5.3.1 Overhead estimation

In Table 5.5 we provide an analysis of time consumption by stages. In the pre-
vious experiment we saw how much time is necessary for initialisation and ter-
mination of SparkContext, how much time is spent and how big is the time over-
head for a single iteration (stage) of computation. Since there were 10 stages in
this experiment, the distribution of computation time overhead for individual
stages was unknown beforehand. The results from Table 5.5, particularly stage
0 time and stages 1to9 time columns, show that, for small instances, stage 0 con-
sumes almost as much time as other nine stages all together. In general, the
time overhead of stage 0 (stage 0 ovr column) is 3 to 30 times higher than av-
erage, per-stage time overhead for stages 1 to 9 (stages 1to9 avg ovr column).
The inspection of logs showed that during the first stage there is an additional
memory management activity: an RDD of DistributedDatums is added to the
main memory of each computing node, which, all together with computation,
incurred an overhead from 6 to 11 seconds. During the succeeding stages mem-
ory management relied on the simple modifications of already existing memory
contents. From stage 0 ovr and stages 1to9 avg ovr we can see that the difference
in time overhead per stage becomes smaller with the increase of problem size.
These results are supported by the compute ovr column, which is calculated as
follows:

compute_ovr =
stage_0_ovr + stages_1to9_ovr
stage_0_time+ stages_1to9_time

∗ 100 (5.2)

Equation 5.2 is used to calculate the computation time overhead of 10 stages
with respect to the total time spent for their computation, without the initiali-
sation and closing time included. From compute ovr column it can be seen that

1Best known solution in the literature used for comparison is the solution obtained from
Eric Taillard’s website [63] (last update: 22 of May 2015).
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the time overhead percentage decreases with the problem size. The initialisa-
tion and termination of Spark Context are independent of computations and
problem instance size, and therefore they are omitted from the equation.

Also, the grand average of initialisation and closing time is presented in
the last row of Table 5.5. Calculating the average of other columns would be
meaningless, since they directly depend on the problem size, which varies along
the table.

Table 5.5

Experiment 2 - Average Stage Time Overhead

size exec.
time

init
time

stage
0
time

stage
0
ovr

stages
1to9
time

stages
1to9
ovr

stages
1to9
avg ovr

close
time

compute
ovr (%)

50 x 5 7.5 9.64 6.73 5.98 8.94 2.19 0.24 0.48 51.19
50 x 10 15 9.84 7.50 6.00 15.87 2.37 0.26 0.49 35.25
50 x 20 30 6.78 11.41 8.41 29.52 2.52 0.28 0.65 26.55
100 x 5 15 9.06 8.05 6.55 17.04 3.54 0.39 0.48 39.62
100 x 10 30 6.70 11.35 8.35 30.96 3.96 0.44 0.40 28.91
100 x 20 60 6.43 14.63 8.63 59.52 5.52 0.61 0.54 18.91
200 x 10 60 6.24 16.37 10.37 72.56 18.56 2.06 0.62 30.19
200 x 20 120 6.42 22.63 10.63 139.09 31.09 3.45 0.72 23.75
average 7.64 0.55

5.5.3.2 Solution quality analysis

• size - A class of PFSP problem instances in the format "jobs x machines".
• "Algorithm _ SeedingStrategy" columns - The name of the column sug-

gests which algorithm and which seeding strategy were set as input pa-
rameters for this experiment. For clarity, a few abbreviations are intro-
duced.
Algorithm abbreviations: HG - Hybrid Genetic, IG - Iterated Greedy.
Seeding Strategy abbreviations: SS - SameSeeds, SPSW - SeedPlusSlid-
ingWindow, SPFW - SeedPlusFixedWindow.

For each PFSP instance the execution is repeated ten times and the RPD value is
calculated, using Equation 5.3. When we have an RPD value for each repetition,
ten in our case, we compute the average for those ten repetitions, obtaining the
average RPD for each instance. Then we calculate the average RPD for all the
instances of the same problem size, that is, instances with equal number of jobs
and machines. Derived results are presented in Table 5.6. At its bottom there
is a grand average - an average over all RPDs. Grand average tells us which one
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out of six (algorithm, seeding strategy) performs better than the others. The
smaller the number - the higher solution quality is achieved.

As a result, on average, Iterated Greedy algorithm performs better than Hy-
brid Genetic algorithm, even though for instances with 200 jobs, HG algorithm
is always slightly better. Regarding the seeding strategy, the winner is Same-
Seeds - sending the best solution towards all distributed algorithms.

Table 5.6

Experiment 2 - Average RPD

size HG_SS IG_SS HG_SPSW IG_SPSW HG_SPFW IG_SPFW
50 x 5 0.18 0.10 0.15 0.06 0.15 0.06
50 x 10 2.24 1.74 2.27 1.74 2.28 1.75
50 x 20 3.42 2.87 3.50 2.62 3.52 2.67
100 x 5 0.19 0.10 0.21 0.16 0.21 0.16
100 x 10 1.32 1.11 1.38 1.50 1.38 1.49
100 x 20 3.98 3.58 4.17 3.96 4.17 4.02
200 x 10 0.87 1.05 0.92 1.03 0.90 1.03
200 x 20 3.65 3.76 3.73 3.87 3.76 3.87
average 1.98 1.79 2.04 1.87 2.05 1.88

Regarding the solution quality, having the solution that is only 1.79% higher
than the best known solution can be considered a good result owing to the
early age of the tool. These results provide a proof that the developed frame-
work is a working tool that can be efficiently used for user-specific needs. In
our case, the framework was used for solving the PFSP problems, but it is not
limited only to them.

Obtaining better results than the ones presented in Table 5.6 requires ad-
ditional calibration and more sophisticated topologies, like the asynchronous
island model used to generate the results published in Vallada’s paper about
cooperative metaheuristics [67]. For now, we are far away from Vallada’s re-
sults 2, but the tool is still young. The framework can be competitive since
there are many places for the improvement. In our experiments the computa-
tion is performed inside a Java Virtual Machine on each computing node, while
in the mentioned paper it is computed on a bare metal. At the moment, there
are efforts to bring Apache Spark closer to the underlying hardware - through
a project named Tungsten [66]. We expect that this change will increase the

2Although in Vallada’s experiments the best solution used in RPD calculation is the best so-
lution obtained in N independent runs, not the best known solution in the literature. Therefore,
it is a relative measure.
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overall performance of HyperSpark framework. Also, Scala programming lan-
guage, being written in Java, is much slower than Delphi programming language
(which has similar performance to C++) used in Vallada’s experiment. The fu-
ture optimisations of JVM will decrease the computational time overhead of
HyperSpark.

5.6 Experiment 3 - Finding New Best Solutions

This experiment aims to find better solutions than the ones already recorded in
the technical literature. Out of 120 PFSP instances, we chose 54 for which the
optimal solution has not be found yet. As suggested by the results in Experi-
ment 2, Iterated Greedy algorithm and SameSeeds seeding strategy will be fixed
throughout the test. Also, in Experiment 2, the execution time provided was
pretty low (e.g., 2 minutes for the largest-size problem), especially when it had
to be divided by the number of computing iterations. In that kind of a setup
the algorithms did not have enough time to converge towards the best known
solutions. Therefore, in this experiment, the execution time will be extended
by multiplying the old time with 20. Unless stated differently, the input and
output parameters will be the same as in Experiment 2.

5.6.1 Input parameters

The input parameters are the same as in Experiment 2, but the value of some of
them is changed. A short description of input parameters follows:

• Number of stages - fixed to 10. There is a cooperation between algo-
rithms, and it is determined by a seeding strategy.

• Number of CPU cores - Fixed to 20, as prescribed in Experiment 1.

• Algorithm execution time - Here, the execution time is calculated as
follows: problem.numOfMachines*(problem.numOfJobs/2.0)*60*20 millisec-
onds. The execution times of test data are given in the table Table 5.7. As
in Experiment 2, this time is divided by the number of iterations (stages).

• Algorithm - Fixed to IGAlgorithm, as prescribed in Experiment 2.

• Seeding Strategy - Fixed to SameSeeds, as prescribed in Experiment 2.
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Table 5.7

Experiment 3 - Problem instances

instance jobs machines execution time
inst_ta{007} 20 5 00 h 01 m 00 s
inst_ta{041-043,047-050} 50 10 00 h 05 m 00 s
inst_ta{051-054,056-060} 50 20 00 h 10 m 00 s
inst_ta{077-079} 100 10 00 h 10 m 00 s
inst_ta{081,083-090} 100 20 00 h 20 m 00 s
inst_ta{091-094,096-098,100} 200 10 00 h 20 m 00 s
inst_ta{101-103,107-110} 200 20 00 h 40 m 00 s
inst_ta{111-120} 500 20 01 h 40 m 00 s

5.6.2 Output

Here, we are only interested in the obtained solution, not in the time measure-
ment. The output parameters are:

• Solution found - Solution obtained by using HyperSpark framework.

• Relative Percentage Deviation (RPD) - Relative deviation of a solution
found with respect to the best known solution, expressed in percents. This
parameter serves to tell us how close the solution found is to the best
known solution. If it is negative - new best solution is found.

RPD =
Solutionf ound − Solutionbest

Solutionbest
∗ 100 (5.3)

5.6.3 Results

In Table 5.8 there is a full list of collected outputs.

Table 5.8

Experiment 3 - Obtained solutions

instance found best RPD
inst_ta007 1239 1234 0.41
inst_ta041 3025 2991 1.14
inst_ta042 2894 2867 0.94
inst_ta043 2869 2839 1.06
inst_ta047 3108 3093 0.48
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inst_ta048 3042 3037 0.16
inst_ta049 2905 2897 0.28
inst_ta050 3078 3065 0.42
inst_ta051 3898 3850 1.25
inst_ta053 3710 3640 1.92
inst_ta054 3764 3723 1.10
inst_ta056 3702 3681 0.57
inst_ta057 3768 3704 1.73
inst_ta058 3762 3691 1.92
inst_ta059 3792 3743 1.31
inst_ta060 3788 3756 0.85
inst_ta077 5602 5595 0.13
inst_ta078 5650 5617 0.59
inst_ta079 5891 5871 0.34
inst_ta081 6323 6202 1.95
inst_ta083 6374 6271 1.64
inst_ta084 6366 6269 1.55
inst_ta085 6411 6314 1.54
inst_ta086 6460 6364 1.51
inst_ta087 6378 6268 1.75
inst_ta088 6507 6401 1.66
inst_ta089 6386 6275 1.77
inst_ta090 6534 6434 1.55
inst_ta091 10885 10862 0.21
inst_ta093 11017 10922 0.87
inst_ta094 10893 10889 0.04
inst_ta096 10375 10329 0.45
inst_ta097 10860 10854 0.06
inst_ta098 10753 10730 0.21
inst_ta100 10727 10675 0.49
inst_ta101 11368 11195 1.55
inst_ta102 11413 11203 1.87
inst_ta103 11539 11281 2.29
inst_ta107 11545 11360 1.63
inst_ta108 11568 11334 2.06
inst_ta109 11407 11192 1.92
inst_ta110 11521 11168 3.16
inst_ta111 26472 25931 2.09
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inst_ta112 26977 26520 1.72
inst_ta113 26724 26371 1.34
inst_ta114 26731 26456 1.04
inst_ta115 26564 26334 0.87
inst_ta116 26843 26477 1.38
inst_ta117 26619 26389 0.87
inst_ta118 26914 26560 1.33
inst_ta119 26395 26005 1.50
inst_ta120 26770 26457 1.18
average 1.19

Unfortunately, there is no occurrence of negative RPD in Table 5.8 - the best
known solution was not found for any of the tested PFSP instances. However,
compared to Experiment 2, the increased execution time enhanced the quality
of solutions. Having a solution that is 1.19 % far from best known solution is
still a very good result, especially for NP -Complete problems like PFSP [65].
An improvement could be achieved by saving the state of an algorithm in be-
tween the iterations, since each algorithm is destroyed and re-instantiated dur-
ing each synchronisation point. This has the effect of potential exploration of
already visited areas of the solution space. If an algorithm is able to remem-
ber the searched areas it can use the provided execution time more effectively.
Previously mentioned asynchronous model may be a key to solving this issue,
since the algorithm state is preserved during its run-time.

108



CHAPTER 6
Conclusions and Future Work

Throughout this thesis we investigated the challenges of using distributed com-
puting platforms. After exploring the technical aspects related to Big Data pro-
cessing and existing technologies, we analysed the advantages and drawbacks,
and chose a particular technology which fits the best in High Performance Com-
puting paradigm. The goal of this approach is to deliver high-performance
over the whole structure of computing cluster. Once the underlying technol-
ogy was determined, we focused on the development of framework that could
be exploited for distributed solving of hard optimisation problems. The frame-
work was named HyperSpark, because of the possibility to manage the scal-
able execution of meta-heuristic algorithms. We have seen that hyperReduce
and SeedingStrategy are powerful operators of HyperSpark framework, provid-
ing users a simple, effective and flexible way to distribute and aggregate data
for their specific algorithms. Algorithms injected in the framework might be
computationally-intensive or light-weight, making it attractive choice for vari-
ety of needs. Also, the synchronous communication between algorithms has
been enabled through a series of computing iterations. In Appendix B (Users
Manual) it is shown how simple it is to make one application using HyperSpark,
almost with no setup of Spark environment parameters.

The proposed framework was validated through benchmarks designed for a
specific optimisation problem from scheduling theory - Permutation Flow Shop
Problem (PFSP), for which we also developed a software library. Once the com-
putational time was analysed, the number of parallel algorithm instances for
which the percentage of time overhead is acceptable was set. Indeed, there is a
high overhead for small problem instances, but for large-sized problems it be-
comes less significant. It has been concluded that the framework is especially
suitable for executing long-running jobs. Later, we have analysed the quality of
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6. Conclusions and Future Work

obtained solutions. We employed two different algorithms and three aggrega-
tion strategies and presented the best performing configuration of the frame-
work. The results were compared with best known solutions in the technical
literature. Small deviations from best known solutions provide the evidence
to support the future use of proposed framework as a scalable and accurate
distributed tool for the PFSP.

Building upon the outcomes of this work, it is possible to investigate fur-
ther open issues and relevant research questions. An aspect that might strongly
affect performance of distributed algorithm execution in Spark clusters is asyn-
chronous communication. If the algorithms were to communicate best results
only when they found a better solution, the network time required to transfer
data between nodes would not add to the job completion time. However, when
it comes to asynchronous communication Spark lacks the transparent support.
The synchronous dataflow of Spark forced us to instantiate algorithms in every
new computing iterations, with updated best known solution. Certain algo-
rithms may require more time to converge to satisfying solution, and therefore
the time limit we set for one computing iteration was possibly not enough to
express their real potential. With asynchronous communication the algorithms
would not need to be destroyed and instantiated again. The algorithm would
simply, when convenient, query the list of received solutions and continue its
execution. Establishing the asynchronous communication in Spark is still pos-
sible by creating a new communication layer over the local network [22], using
Akka Actor Scala library [34]. However, that would require the work on its own.

Similarly, there is still a place for the improvement of diversity in the explo-
ration of solution space by different algorithm instances. The more diverse the
algorithms are on different computing resources, the higher is the probability
to improve the current solution. This behavior can be modeled by instantiating
different types of algorithms on the computing resources or by adding differ-
ent parameter values in initialisation phase of the algorithms, thus guiding the
algorithm exploration to a different direction in the solution space.

In the end, we should be aware that the overall performance of the frame-
work depends on the chosen inner-components and calculation procedures. For
instance, TSAB algorithm uses an optimised solution evaluation procedure that
takes less time than the simple procedure we have implemented. That could be
the reason why in our preliminary tests TSAB did not perform as in the pub-
lished paper [41]. Regarding the components selection, the overall performance
of the cluster can greatly benefit from the choice of particular algorithms, co-
operation techniques and solution space exploration strategies. At last, the
goal of Big Calculations paradigm is building scalable, resource-sharing, high-
performance systems. With HyperSpark, we hope that goal has been achieved.
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APPENDIX A
HyperSpark Project Details

Section A.1 describes the overall structure of the HyperSpark project.
Section A.2 provides a full list of FrameworkConf methods that are used to set
Spark-specific properties.
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A. HyperSpark Project Details

A.1 Packages Organization

Packages of HyperSpark project and containing classes are depicted in Fig-
ure A.1. Some of the packages contain use-case specific classes. Their descrip-
tion can be found in Chapter 4.

Figure A.1 – HyperSpark Project - Packages Organization
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A.1. Packages Organization

A brief description of each package follows.

1. it.polimi.hyperh.problem - Contains the Problem class used to define a
problem that needs to be solved by the framework. It is an abstract class
that needs to be extended in order to define a user-specific problem.

2. it.polimi.hyperh.solution - Contains Solution and EvaluatedSolution classes.
These concepts were described in Section 3.1, and their implementation
will be shown in Framework internals section (Section 3.5).

3. it.polimi.hyperh.algorithms - Contains the trait Algorithm. Each specific
algorithm needs to extend the trait Algorithm in order to be transformed
into a distributed one by the framework.

4. it.polimi.hyperh.spark - This the main package in the project, contain-
ing the core of HyperSpark framework. It consists of DistributedDataset
file, which encapsulates DistributedDatum class and an auxiliary Scala
object DistributedDataset. Already mentioned MapReduceHandler, Seed-
ingStrategy, StoppingCondition and FrameworkConf concepts are placed
in their respective classes in this package. Framework, belonging to the
same package, is a Scala object.

5. util - Contains various utility classes (FileManager, CustomLogger, Con-
solePrinter) that support input/output operations, encapsulation and print-
ing of time (TimeObject), solution quality measurement (Performance),
and so on.

6. it.polimi.hyperh.types - Types.scala file contains abbreviations/aliases for
Scala types.

7. it.polimi.hyperh.experiments - Contains the experiment we conducted
for the purpose of this thesis. Experiments will be presented in Chap-
ter 5.

8. it.polimi.hyperh.apps - Consists of the applications developed as exam-
ples of HyperSpark Framework usage.

9. pfsp.* - Packages with a prefix pfsp contain a concrete implementation
of a problem, its solution representation, algorithms that solve it, spe-
cific seeding strategies and so on. Corresponding classes are presented in
Chapter 4.

10. resources - Contains use-case specific (Taillard’s) problem instances and
their respective best-found solutions.

The first five packages comprise the core of HyperSpark Framework. Pack-
ages 6-10 are the auxiliary packages, used to provide examples, or functionali-
ties necessary for presenting the use case of Chapter 4.
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A. HyperSpark Project Details

A.2 Spark Properties used by the Framework

def setProperty(key: String, value: String)

def getProperties()

//for a full spark properties reference visit

//http://spark.apache.org/docs/latest/configuration.html

def setAppName(name: String)

def setSparkMaster(url: String)

def getSparkMaster()

def setDeploymentLocalNoParallelism()

def setDeploymentLocalMaxCores()

def setDeploymentLocalNumExecutors(numExecutors: Int)

def setDeploymentSpark(host: String, port: Int)

def setDeploymentSpark(host: String)

def setDeploymentMesos(host: String, port: Int)

def setDeploymentMesos(host: String)

def setDeploymentYarnClient()

def setDeploymentYarnCluster()

def setNumberOfExecutors(N: Int)

def setNumberOfResultingRDDPartitions(N: Int)

Figure A.2 – Framework Configuration - Spark-specific Properties

The function setNumberOfExecutors sets the parameter "spark.executor.instances"
to the number numExecutors specified in the function signature. This param-
eter is very important since it is responsible for scaling the execution of algo-
rithms. Therefore, when a user sets an array of Algorithms in FrameworkConf,
setNumberOfExecutors is internally called to change the scale of computation
- number of executors assigned for the application is passed to the Spark envi-
ronment and set before the execution of application is started.

Note: We noticed that sometimes the Spark environment does not accept to
set the number of executors to the desired number, especially when the num-
ber of executors is greater than the number of CPU cores present in the clus-
ter. Also, in the case when the number of cores in the cluster is less than the
virtual/simulated number of cores, e.g. simulate the execution of two virtual
(logical) cores on one phisical core. This is called Hyper-Threading [37]. In
those cases Spark sets the number of executors to 2 by default. The solution to
this problem is to pass the number of executors to spark-submit script directly
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A.2. Spark Properties used by the Framework

through command line arguments, when the pre-packed jar archive of his/her
application is submitted.

Setter functions for changing the deployment modes are basically inter-
nally changing the spark master URL, and their meaning was mostly explained
in Subsection 2.4.5 when there was a talk about the deployment modes. Please
refer to the mentioned section.

"Local deployment mode" has a purpose of enabling a user to run the Spark
application on a local PC. Although this is not an actual cluster deployment
mode, it is very useful for checking the correct execution of application be-
fore submitting it to the real cluster. setDeploymentLocal* function signatures
change the deployment to local and the number of executors instances. For
example:

• setDeploymentLocalNoParallelism means that the number of executors
is set to one, and therefore there is no parallelism in the execution. Only
one instance of the algorithm provided to the framework will start its ex-
ecution.

• setDeploymentLocalNumExecutors - sets local debugging mode and the
number of executors to the number specified in a function call.

• setDeploymentLocalMaxCores - sets local debugging mode and the num-
ber of executors to the maximum number of cores present in a local PC.
Therefore, this option uses all computing resources (cores) of one PC for
the computation.

setNumberOfResultingRDDPartitions function changes the parameter
"spark.default.parallelism" which determines the number of partitions of an RDD
when that number is not provided by the user, i.e., the default value of the
second parameter in parallelize function. Just in case, when user sets the number
of algorithms in FrameworkConf, besides the number of executors, we also set
the default number of RDD partitions to the algorithms array size.
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APPENDIX B
User Manual

This appendix will briefly explain how to use HyperSpark Framework for prob-
lem solving using any user-defined algorithm. For now, we have implemented
one problem type that is considered in our case study (Chapter 4), but in a
near future HyperSpark will be enriched with more diverse problems and algo-
rithms.

The structure of Appendix B is as follows.
Section B.1 explains the prerequisites for using HyperSpark framework.
Section B.2 provides guidelines for creating HyperSpark applications.
Section B.3 presents a few examples of HyperSpark applications that exem-

plify the provided guidelines.
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B. User Manual

B.1 Prerequisites

Since HyperSpark framework is a Scala-based project, it requires Java Runtime
Environment (JRE) version 1.6 or later, and Scala 2.10 or 2.11 binaries installed
on a local PC.

The framework comes pre-packed inside a jar archive. The jar is light-
weight, meaning that it relies on the dependencies installed in the environment
on which the Framework is ran on. The cluster on which we tested HyperSpark
had Scala v.2.10 and Spark v.1.3 installed. Even though it was tested on Spark
v.1.3, recommended version of Spark installation is 1.4.1 or higher, because of
the bugs present in Spark v.1.3 that were fixed in the later versions. As of Scala
concerns, versions newer than v.2.10 keep a backward-compatibility with it.

B.2 Guidelines

Usage is quite strait-forward:

1. Import HyperSpark Framework jar archive inside an existing Scala project.

2. Extend the Solution class and encapsulate solution representation within
variables.

3. Extend the EvaluatedSolution and override value and solution variable types.
For reference, take a look at pfsp.PfsEvaluatedSolution.

4. Extend the Problem class and implement the following method:
evaluate(s: Solution): EvaluatedSolution

5. Optionally, create a custom stopping condition for the algorithms by ex-
tending the StoppingCondition class, or use later the existing one TimeEx-
pired.

6. Extend the Algorithm trait and implement the following evaluate methods
inside your custom algorithm class:
evaluate(p:Problem): EvaluatedSolution
evaluate(p:Problem, stopCond:StoppingCondition): EvaluatedSolution

7. Write your own application that uses HyperSpark framework.

8. Instantiate a new problem.

9. Create an instance of a specific algorithm, implemented in step 6.

10. Create a FrameworkConf object.
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B.3. Examples

11. In FrameworkConf set a problem, algorithms array, initial solutions (seeds)
array and a stopping condition for the algorithms. Optionally, change the
default number of iterations, MapReduceHandler, or a SeedingStrategy.

12. Invoke Framework.run(conf: FrameworkConf) to obtain one EvaluatedSo-
lution, or Framework.multipleRuns(conf:FrameworkConf, runs:Int) to obtain
multiple EvaluatedSolutions.

13. If run locally - run the application as a regular Scala Application.

14. If run on a cluster - Package your application to a jar that contains all
the transitive dependencies, in order to avoid classpath problems in the
distributed environment. Use spark-submit script to submit a jar to the
cluster, e.g.:
spark-submit - -class AppClassPath JarName.jar AppParameters

B.3 Examples

it.polimi.hyperh.apps contains numerous examples of existing HyperSpark ap-
plications. We will show two simple applications: one used on a local PC and
one used on a real cluster.

The application presented in Figure B.1 shows how one can convert a single-
thread algorithm to a parallel one executed in a distributed setting, without the
need to set up the parameters of Spark environment. In this example we used
the existing IGAlgorithm, which implements two methods mentioned in step
6 of the guidelines. The problem that we want to solve is a permutation flow
shop problem (PfsProblem), and it is loaded from a textual file "inst_ta001.txt"
in resources package. The problem can be also instantiated by using "new Cus-
tomProblem(...)". Therefore, we instantiate a probem and a single-threaded al-
gorithm (in this case an IGAlgorithm). We want to have 4 parallel algorithm
instances running at the same time in our cluster, so we save that number in
a variable called numOfAlgorithms. Next, we create a framework configuration
object initialised using the builder pattern that sets number of executors, prob-
lem, algorithms, initial seeds and stopping condition, respectively. For each
algorithm instance one parallel task will be created, and when the tasks are
scheduled they will be sent to free Executors. By default, each Spark Executor
is occupying one CPU core. Therefore, each algorithm instance will be exe-
cuted on one physical core. Since we did not specify the number of iterations
(which is one) the algorithms will be executed in one iteration (superstep) of
the framework.
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B. User Manual

package it.polimi.hyperh.apps

import it.polimi.hyperh.problem.Problem

import it.polimi.hyperh.spark.Framework

import it.polimi.hyperh.spark.FrameworkConf

import it.polimi.hyperh.spark.TimeExpired

import pfsp.problem.PfsProblem

import pfsp.algorithms.IGAlgorithm

object LocalApp {

def main(args: Array[String]) {

val problem = PfsProblem.fromResources("inst_ta001.txt")

val algorithm = new IGAlgorithm()

val numOfAlgorithms = 4

val iterTimeLimit = 3000 //milliseconds

val stopCond = new TimeExpired(iterTimeLimit)

val conf = new FrameworkConf()

.setDeploymentLocalNumExecutors(numOfAlgorithms)

.setProblem(problem)

.setNAlgorithms(algorithm, numOfAlgorithms)

.setNDefaultInitialSeeds(numOfAlgorithms)

.setStoppingCondition(stopCond)

val solution = Framework.run(conf)

println(solution)

}

}

Figure B.1 – Framework Usage - Example1

In the second example, Figure B.2, we show how the same application is ex-
ecuted on a real cluster. Here, the only thing that is different is the deployment
mode set inside the configuration object. It is changed from local (debugging
mode) to Yarn Cluster mode (setDeploymentYarnCluster), meaning that the ap-
plication will be submitted to a cluster that has Spark installed and running
on top of Yarn Resource Manager. The application needs to be packed in a jar
archive, which is going to be uploaded in the file system of a cluster and sub-
mitted using the following command:

spark-submit - -class it.polimi.hyperh.apps.LocalApp hyperSpark.jar
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package it.polimi.hyperh.apps

import it.polimi.hyperh.problem.Problem

import it.polimi.hyperh.spark.Framework

import it.polimi.hyperh.spark.FrameworkConf

import it.polimi.hyperh.spark.TimeExpired

import pfsp.problem.PfsProblem

import pfsp.algorithms.IGAlgorithm

object LocalApp {

def main(args: Array[String]) {

val problem = PfsProblem.fromResources("inst_ta001.txt")

val algorithm = new IGAlgorithm()

val numOfAlgorithms = 4

val iterTimeLimit = 3000 //milliseconds

val stopCond = new TimeExpired(iterTimeLimit)

val conf = new FrameworkConf()

.setDeploymentYarnCluster()

.setProblem(problem)

.setNAlgorithms(algorithm, numOfAlgorithms)

.setNDefaultInitialSeeds(numOfAlgorithms)

.setStoppingCondition(stopCond)

val solution = Framework.run(conf)

println(solution)

}

}

Figure B.2 – Framework Usage - Example2
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Acronyms

AM Application Master. 22

API application programming interface. 16

CPU central processing unit. 6, 7, 10, 21, 23

DAG Directed Acyclic Graph. vii, 29, 30, 32, 52

FIFO First In, First Out. 22, 23

GFS Google File System. 17

GPU graphics processing unit. 23

HDFS Hadoop Distributed File System. vii, 17–21, 29

HPC High Performance Computing. 6, 35, 37, 41, 48, 109

ICT Information and Communication Technology. 10, 23

JN Journal Node. 20

JVM Java Virtual Machine. 33, 104, 105

MOF Meta-heuristics Optimisation Framework. 77

NDFS Nutch Distributed File System. 18

NSF National Science Foundation. 12

OS operating system. 18, 20
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Acronyms

PFSP Permutation Flow Shop Problem. ix, 1, 8, 71–73, 75, 76, 78, 95, 100, 104,
105, 108–110

POSIX Portable Operating System Interface. 20

RDD Resilient Distributed Dataset. iv, vii, 27–29

RM Resource Manager. 21, 22

RPD Relative Percentage Deviation. 101, 103, 106, 108

TSP Travelling Salesman Problem. 56

YARN Yet Another Resource Negotiator. vii, 20, 21, 23
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