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Abstract

Manipulation is an important area in the robotic field since it is
employed in many applications. An increasing number of activi-
ties requires the support of robots to humans in order to guarantee
safety or to improve the performance, above all in demanding chal-
lenges typical of space research, humanoid development and health-
care assistance. Therefore many efforts have been concentrated on
developing new control strategies to deal with the interaction with
different environments. In this context, the impedance control in
its two typical implementations, known as "Admittance Control"
and "Impedance Control", has been widely used since it is capable
of taking into account the dynamic coupling between the robot and
the environment. Admittance and Impedance Control show differ-
ent stability requirements and for this reason they are employed in
different scenarios. In the present work a new impedance control al-
gorithm is proposed aimed at unifying these two formulations. It is
an Adaptive Hybrid System that interpolates the features between
Admittance and Impedance Control by rapidly switching between
them. Acting on the duty cycle of the switching system, it is able to
guarantee good performance and robustness in unknown environ-
ment, even time variant. The adaptive component is realized with
a Multilayer Feedforward Neural Network that receives the states
of the system and the interaction force as inputs and gives a proper
duty cycle as output. The proposed new controller is developed
for 1 d.o.f. and 2 d.o.f.s systems. The performance and robustness
to uncompensated friction, delay and uncertainties are proved by
means of numerical simulations.

Keywords: Impedance Control, Admittance Control, switching
system, adaptive system, neural network, genetic algorithm, un-
known environment, manipulation.
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Sommario

Nel campo della robotica il problema della manipolazione è da
sempre di particolare interesse: un crescente numero di attivià
richiedono l’affiancamento di robot a operatori umani per garan-
tire la sicurezza e incrementare le performance. In ambiti quali
la ricerca spaziale, lo sviluppo di umanoidi e l’assistenza sanitaria
questo bisogno diventa più impellente per far fronte alle nuove sfide
che si impongono. Per questo motivo molti sforzi sono stati fatti per
sviluppare nuove strategie di controllo volte a gestire l’interazione
tra l’automa e l’oggetto manipolato. In questo contesto il controllo
di impedenza nelle sue due formulazioni, note come "Controllo di
Ammettenza" e "Controllo di Impedenza", è stato largamente uti-
lizzato in quanto capace di gestire l’accoppiamento dinamico tra
robot e ambiente interagente. Il Controllo di Ammettenza e il Con-
trollo di Impedenza mostrano requisiti di stabilità opposti, di con-
seguenza viene usato rispettivamente uno o l’altro a seconda dello
scenario in cui ci si trova ad operare. Nel presente lavoro è pro-
posto un nuovo algoritmo per il controllo di impedenza che ha lo
scopo di unificare le due differenti implementazioni. Il sistema ib-
rido adattativo è in grado di interpolare le caratteristiche del Con-
trollo di Ammettenza e di Impedenza commutando rapidamente
tra i due. Agendo sul duty cycle dello switch, il sistema è in grado
di garantire ottime performance e un alto livello di robustezza du-
rante l’interazione con ambienti sconosciuti, anche tempo-varianti.
La componente adattativa è realizzata sfruttando una rete neurale
feedforward che riceve gli stati del sistema e la forza di interazione
come ingressi e fornisce un adeguato duty cycle come output. La
strategia di controllo presentata è sviluppata su sistemi ad uno e
due gradi di libertà. Le performance e la robustezza sono provate
attraverso simulazioni numeriche.

Parole chiave: Controllo di Impedenza, Controllo di Ammettenza,
switch, sistema adattativo, reti neurali, algoritmo genetico, ambi-
ente sconosciuto, manipolazione, manipolatori.
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Chapter 1

Introduction

In the last 40 years, impact of robots in human life has increased signifi-
cantly. Advances in mechatronics and robotics have enabled the develop-
ment of many machines capable of supporting human beings in a growing
number of activities.
Robotic capabilities have moved from simple operations to more advanced
and difficult tasks carrying considerable improvements in many different
fields, such as industrial manufacturing, commercial services, space explo-
ration, medical and military applications.

Nowadays many efforts are focused on manipulation tasks involving
dynamic interaction between robot and environment, since they would
open to new and fascinating perspectives.
The dynamic coupling between manipulator and environment generates
reaction forces that must be handled properly to avoid undesired effects.
Pure position control fails in this situation. Contact forces cause devi-
ations from the desired trajectory that the control system tries to com-
pensate. This leads to a build-up of that forces, until breakage of robot
hardware or manipulated object.
This is a crucial aspect in many applications from the industrial ones to
more demanding challenges typical of space operations, health applica-
tions and humanoids development.
Today space research efforts are concentrated on topics like On Orbit Ser-
vicing (OOS) [31, 32] and assistance to astronauts for intra-vehicular and
extra-vehicular activities [33] where many robotic devices are exploited.
They have to be able to manipulate objects with different features and
conditions, often unknown a priori for the OOS.
As regards healthcare, exoskeletons and manipulators require control ap-
proaches capable of guaranteeing appropriate and safe dynamic interaction
between human and robot.
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1 Introduction

The work here presented is a new controller that wants to respond to
these needs. It is a new way to deal with the interaction between robots
and unknown environment. It unifies in a single framework two impedance
control implementations having opposite features. Thanks to this hybrid
nature it can work properly in different scenarios. Moreover the adaptivity
of this system makes it capable of guaranteeing good performance even in
situations where informations about the manipulated object are poor.

Historically two fundamentals control methodologies have been pro-
posed to deal with the manipulation issue.
The first strategy is known as "Hybrid Position and Force Control", it
was proposed by Raibert and Craig [1] and then developed by Mason [2].
It is based on formal models of the manipulator and the task geometry.
Since it is not possible to control both position and force along the same
d.o.f., in this approach the task space is split into two domains, the posi-
tion and the force subspaces. The reaction force is controlled in the force
subspace and the position of the end effector is controlled in the position
subspace. The main drawback of this approach is its failure to recognize
the importance of the manipulator impedance, i.e. it does not consider
the dynamic coupling between robot and environment.

On the other hand, Hogan [3, 4, 5] suggested a method to face this
dynamic issue. It is based on the control of the relation between position
and force and it is known as "Impedance Control". He started from the
observation that two interacting physical systems must be physically com-
plementary. Since the environment typically behaves like an admittance,
i.e. it receives forces as input and it gives displacements as output, the
controller must be an impedance, which accepts motion inputs and yields
force outputs. This approach aims to regulate mechanical impedance of
the manipulator.
Hogan [6] observed that actually any control algorithm implements a re-
lation between measured quantities and actuator forces. This produces
a change in robot dynamic behavior, i.e. at the end effector the output
impedance is modified. Therefore it makes sense to design the controller
to do what it naturally does.
Impedance control can be realized in two different ways depending on the
causality of the controller. They are known as "Impedance Control" and
"Admittance Control".
In Impedance Control the controller is an impedance and consequently the
controlled plant is treated as an admittance. Conversely in Admittance
Control the plant is position-controlled so it behaves as impedance and
hence the controller must be an admittance.

16



Some hybrid systems were introduced in order to combine qualities of
the Hogan and Raibert and Craig methodologies. Anderson and Spong [7]
pointed out the force control inability of handling unmodeled dynamics
due to coupling and impedance control inadequacy in following a com-
manded force trajectory. Therefore their solution is based on an inner
feedback linearization loop with force cancelation and an outer loop which
joins Impedance and Hybrid Force\Position Control in one strategy. Sim-
ilarly to Craig and Raibert, they divided the task space in two; in the
position subspace they adopted impedance control, whereas in force sub-
space they used a force control.

Liu and Goldenberg [8] pushed forward the idea of Anderson and
Spong. They proposed to add desired inertia and damping terms in force
control subspace in order to improve the dynamic behavior, in addition
they introduced a PI controller to takle the uncertainties of the manipu-
lator dynamic model. These approaches start with the assumption that
the environment features are known, therefore they could be inefficient in
case of lack of informations about the environment.

Recently Ott, Nakamura and Mukherjee [9, 10] have developed a new
way to implement impedance control. They proposed a control strategy
that is an hybrid between Impedance and Admittance Control and it aims
to combine the advantages of the two solutions rapidly switching between
them.
Indeed the two strategies have complementary performances, as shown by
Lawrence [11], who investigated their stability properties in the presence of
non ideal effects, such as time delay. Starting from Eppinger and Seering
observations [12] about the effects of high feedback gains on stability, he
pointed out opposite requirements for Impedance and Admittance control.
For Admittance Control, low values of stiffness and damping produce high
feedback gains, therefore it suffers the inability to provide soft impedance,
giving as a result instability during interaction with stiff environment.
As concern Impedance Control, high feedback gains are consequences of
high values of stiffness and damping, and so it is difficult to provide large
stiffness, causing poor accuracy in soft environment and free motion.

Many efforts have been made in order to improve performances of both
Impedance and Admittance Control. Impedance Control has been imple-
mented in DLR’s light-weight robot [13] and ATR’s Humanoid built by
Sarcos [14], by adding an inner force loop that allows to decrease unde-
sired effects due to friction and unmodeled dynamics. Another possibility
is hardware modification such as low friction joints or direct drive actu-
ators. Regarding Admittance Control the problem of instability during
the interaction with stiff environment can be eliminated using series elas-
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1 Introduction

tic actuation or compliant end effectors, but this also causes decrease in
performances.

Overcoming of the two control laws limitations has been investigated
through the application of adaptive strategies to either Impedance or Ad-
mittance Control. Slotine and Li [15], Lu and Meng [16] proposed the
adaptation of unknown parameters in robot and payload models in order
to mitigate the effects of uncertainties on the Impedance Control. Singh
and Popa [17] exploited a Model Reference Adaptive Control (MRAC)
applied to Impedance Control and combined impedance and force control.
The idea is to adapt an input parameter in order to minimize the error
between the actual and the reference model. As concern the combined
impedance and force control it is required the knowledge of the environ-
ment stiffness that is estimated online, thanks to the measurement of the
interaction force. Since the robot and the environment are dynamically
coupled, this estimation can improve the overall system performances.
In the same direction, Book and Love [18] suggested the adaptation of
impedance parameters based on an estimation of the environment stiff-
ness, since it affects the natural frequencies and damping ratio of the
coupled system. The identification is performed with a Recursive Least
Square method (RLS). On the other hand Seraji [19] applied adaptive PID
and PD controllers to Admittance Control in an unknown environment.

Contrary to the previous studies, the aim of the strategy proposed by
Ott, Nakamura and Mukherjee is not to improve the performances of ei-
ther Impedance or Admittance Controls; in fact the system is a unified
framework for Impedance and Admittance Controls that can take advan-
tage of advanced implementations of each of the two controllers.
Nowadays systems that switch between different control laws are not
widespread in industrial applications, since they appear more complex
and less reliable than common regulators. However the Hybrid System
could lead to improvements in performances and to an high versatility,
i.e. a new class of robots that can be suitable for different manipulatory
tasks. Needless to say, a system capable of adapting itself to unknown and
variable environments would be a great advancement in this direction.

The following study proposes a way to accomplish this goal. The duty
cycle of the switching system is selected as adaptive parameter since it de-
termines how much Impedance and Admittance Control are used. Hence,
varying this parameter, it is possible to modify the controller features
exploiting more a control law with respect to the other one in order to
provide certain performance in different environments.

It should be noted that this parameter is embedded in the system and it
does not show any explicit relation with the states and the control action.
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Moreover the system is highly nonlinear due to its switching nature. For
these reasons classical approaches for adaptive problems that require the
knowledge of the dependance of the control force or the states on the
adaptive parameter fail. Even solutions exploiting tools like maximum
principle or Bellman equation are not adequate since the resulting problem
would be extremely hard if not impossible to be solved. These facts led to
the decision of exploiting a feedforward artificial neural network (ANN)
to achieve the desired result.

ANNs are a powerful tools inspired by the human brain structure and
functionality. They are particularly suitable to deal with very highly non-
linear systems; indeed they are capable of approximating any function
with a desired accuracy, as proved by Cybenko [20] and Hornik and al.
[21]. For this reason they are extensively used in the identification or
in input-output mapping of complex systems [22, 23, 24]. In a control
problem scenario, they can be exploited directly as controllers [25, 26],
indirectly to set properly some parameters, i.e. realizing an adaptive sys-
tem [27, 23, 24] or even to solve non-linear optimal problem i.e. dynamic
programming [23, 28, 29, 30]. Their strength lies in the fact that their ap-
plication does not require high-level knowledge of the system and they can
guarantee good performances when the surrounding environment changes.
The constitutive element of a ANN is the neuron, which is a simple pro-
cessing unit. Neurons are organized in layers and they are linked each
other through weighted connections, creating a net. The weights are se-
lected in order to minimize a desired cost function; this operation can be
performed online or offline and it is called respectively learning or train-
ing. Many different algorithms can be used to minimize the cost function,
the solution here proposed exploits a genetic algorithm (GA).

The designed ANN accepts as input from the system the measurements
of the states and interaction force and it returns as output the design
parameter at each sample time. In this way the adaptive system can
promptly react to deviations from the desired behavior, also in unknown
and time varying external environment.

Firstly the Adaptive Hybrid System is developed for a single d.o.f.
system in order to highlight the main issues and explain how to overcome
them. Afterwards the same concepts are extended to a 2 d.o.f.s system.

The current work is organized in the following way: in chapter 2 what
was already done in the development of the Hybrid System is reported and
then in chapter 3 the 2 d.o.f.s model is presented. In chapter 4 the prob-
lem of making the hybrid system adaptive is introduced. The proposed
solution is discussed in chapter 5. Finally the results are shown in chapter
6 and in chapter 7 the main conclusions of the work are summarized.
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Chapter 2

Background

In this chapter the basic concepts of Impedance and Admittance Control
and the way they are implemented in this work, are presented. Afterwards
an overview of the hybrid system is given togheter with a discussion of its
performances with respect to the first two controllers, as motivation for
the new framework.

2.1 Impedance control framework

The manipulation problem typically involves a mechanical interaction be-
tween the robot and the manipulated object resulting in an energy ex-
change between the two sides.
In two particular cases this work is or tends to zero, i.e. when the inter-
action force or the displacement are absent or negligible.
When the first condition occurs the manipulator behaves as an isolated
system, so the suggested controlled variable(s) is the motion. This solu-
tion has been widely utilized in industrial applications where an accurate
positioning is required.
On the other hand, in the second situation, the robot encounters physi-
cal constraints involving the generation of forces and a limitation for the
motion. The system results kinematically coupled to the environment,
but not dynamically. Along the constrained d.o.f. a force control is used,
whereas along the free ones, again, a position control is preferred.

However the most general operative framework, that includes the pre-
vious cases, involves a dynamic coupling and a not null energy exchange
as a consequence. The manipulator can not be treated as an isolated sys-
tem anymore and solutions aiming to control only position or force are
inadequate to handle the work exchanged.
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2 Background

The impedance control is an extension of the conventional position con-
trol directed to manage the force/motion relation overcoming the above-
mentioned issue.
The concept is based on the fact that a physical system can be described
as an impedance or an admittance. The former accepts flow inputs and
yields effort outputs, the latter behaves in the opposite way. In a linear
system these two representations can be interchanged, but this is not true
in the general case of a nonlinear system. Therefore the distinction be-
tween the two causalities is fundamental since a system can be usually
described in only one of the two ways.
Another important aspect, that must be taken into account, regards the
fact that two interacting systems must be complementary; therefore along
any d.o.f. if one behaves as an impedance the other one must be an ad-
mittance. Since the environment is properly described as an admittance,
the controller must work as an impedance.
Typically impedance control can be implemented in two ways, commonly
known as Impedance and Admittance Control. They are presented in the
next sections.

2.2 Problem statement
Before introducing Impedance and Admittance Control the considered
system is presented. The system is a single d.o.f. mass interacting with
the environment; it is governed by the equation of motion 2.1.

mẍ = F + Fext (2.1)

Where x is the mass position, F is the control action and Fext is the
interaction force with the environment.

Both the controllers should provide an action force such that it satisfies
the relation 2.2 between external force and the system dynamic quantities.

Fext = Mdë+Ddė+Kde (2.2)

with:

e = x− x0 (2.3)

Md, Dd and Kd are positive constants representing the desired inertia,
damping and stiffness of the system, while x0 is the commanded virtual
position. The command position represents nominal equilibrium position
at steady state in absence of external forces, however in contact situations
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2.3 Impedance Control

it may go to positions beyond the reachable workspace and therefore it is
called virtual.

2.3 Impedance Control
In the Impedance Control the plant is an admittance, i.e. it receives force
as input and gives position as output, on the other hand the controller
behaves as an impedance. The expression of the desired control force can
be derived from equations 2.1 and 2.2.

F = (m−Md)ẍ+ (Mdẍ0 −Ddė−Kde) (2.4)

Since from a practical point of view measurements of position, velocity
and interaction force are more advisable than acceleration, taking into
account the equation of motion, the control force can be rewritten as in
2.5.

F =

(
m

Md

− 1

)
Fext +mẍ0 −

m

Md

(Ddė+Kde) (2.5)

In an ideal case, without friction, uncertainties and measurement de-
lays the controlled system satisfies exactly the desired impedance relation
2.2.

Figure 2.1: Impedance Control system structure

2.4 Admittance Control
In the Admittance Control the motion control problem and the impedance
control problem are separated. One controller generates a motion trajec-
tory from the interaction force measurement, guaranteeing the desired
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2 Background

dynamic behavior 2.2. A second controller receives that trajectory and
provides the related control force to the plant.

Different kind of control law can be implemented to realize the position
controller. In this case it is used a simple PD regulator of the form:

F = kp(xd − x)− kvẋ (2.6)

where kp and kd are the proportional and derivative coefficients of the
controller, xd represents the desired trajectory and it is the input of the
controller.

Combining the dynamic equation 2.1, the impedance relation 2.2 and
the equation 2.6 it is possible to derive the complete system dynamics.

mẍ+ kvẋ+ kp(x− xd) = Fext (2.7)

Md(ẍd − ẍ) +Dd(ẋd − ẋ) +Kd(xd − x) = Fext (2.8)

As it can be noticed from equations 2.7 and 2.8, two additional states
xd and ẋd are introduced with respect to the Impedance Control formula-
tion due to the inner position control loop.

Figure 2.2: Admittance Control system structure

2.5 Comparison of Impedance and Admittance
Control

Impedance and Admittance Control have different stability and perfor-
mance charateristics due to their different implementations and causalities
[11].

The main limitation in Impedance Control concerns the impossibility
of providing stiff behaviour, i.e. large values of Kd, and/or large inertia
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2.5 Comparison of Impedance and Admittance Control

rescaling m/Md. They would lead to an increase of the feedback gains
that can amplify noise causing instabilities. Moreover in systems where
significant uncompensated friction is present, position accuracy is greatly
affected by the desired stiffness and damping that should be high[34]. Con-
sequently, Impedance Control, with its low Kd, results in poor positioning
performance in soft environment or in free motion.
Conversely it is robust to uncertainties in model parameters and can
guarantee very good performance and stability in very stiff environments
thanks to its soft behaviour that can limit the interaction forces.

Figure 2.3: Concept of Impedance Control

Regarding the Admittance Control, it is made up of two control loops,
as already shown.
The inner one is a position controller that accomplishes the task of com-
pensating unmodeled frictions and for this reason it presents high gains
lending the system a stiff behavior.
On the other hand the second one "soften" the overall system. However
this action is limited by its stability constraints. Indeed, compliant be-
havior is difficult to provide because it brings to an high feedback gains,
as it can be deduced from figure 2.4, and the result would be persistent
oscillations in the response.
As a direct consequence, Admittance Control can assure better perfor-
mances in the interaction with soft environments; in fact in this situation
stiff features are preferable.
The impedance loop works also as a filter for the force feedback noise lim-
iting its influence on the system.
Finally it must be noted that the quality of the position controller largely
affects the overall Admittance performance and stability charateristics as
shown by Pelletier and Doyon [35].
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Figure 2.4: Concept of Admittance Control

2.6 Hybrid system

2.6.1 Motivations

The two control laws described so far have as main constraint their fixed
causality. This fact implies their incapability of providing good perfor-
mances in a large spectrum of environment stiffnesses as illustrated in
figure 2.5. An ideal controller should provide consistently good perfor-
mance, independent of the environment stiffness. The Hybrid Control
wants to accomplish this task by rapidly switching between Impedance
and Admittance Control. In this way the fixed causality is overcome and
the benefits from both the controller are united in one single framework.

Figure 2.5: Qualitative illustration of the performance of Impedance Con-
trol and Admittance Control for different environment stiffness

It should be noticed that the switching approach is different from using
averaged control effort, like F = (1−n)Fimp +nFadm, with Fimp and Fadm
the control input from Impedance and Admittance Control respectively.

26



2.6 Hybrid system

Indeed Ott and al. [9] showed that this kind of control does not provide
good results. They observed that in the averaged control the impedance
controller, with its low gain, works as a disturbance to the admittance
controller that presents high gains. This fact leads to a depletion of the
stability with respect to the pure admittance controller.

2.6.2 Structure

The figure 2.6 shows the scheme of the proposed controller.

Figure 2.6: Concept of Hybrid Control

The hybrid system switches between Impedance and Admittance Con-
trol providing the control action F as shown in equation 2.9.

F =

{
Fimp : t0 + kδ ≤ t ≤ t0 + (k + 1− n)δ

Fadm : t0 + (k + 1− n)δ ≤ t ≤ t0 + (k + 1)δ
(2.9)

Where Fimp and Fadm are the control forces provided respectively by
Impedance and Admittance Control, t0 is the initial time, δ is the switch-
ing period, n ∈ [0, 1] is the duty cycle and k is an integer that takes on
values 0, 1, .... Therefore the controlled dynamics can be described by the
system 2.10.

Ẋi = AiXi +Biu :t0 + kδ ≤ t ≤ t0 + (k + 1− n)δ

Ẋa = AaXa +Bau :t0 + (k + 1− n)δ ≤ t ≤ t0 + (k + 1)δ (2.10)

with:

Xi =

[
x
ẋ

]
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Xa =


x
ẋ
xd
ẋd


Ai =

[
0 1

−Kd+ke
Md

−Dd

Md

]
, Bi =

[
0
Kd

]

Aa =


0 1 0 0

−kp+ke
m

−kv
m

kp
m

0
0 0 0 1
− ke
Md

0 −Kd

Md
−Dd

Md

 , Ba =


0
0
0
Kd


and u = x0.
The equations are derived considering the environment modeled as a

linear spring with stiffness ke and setting ẋ0 = ẍ0 = 0. The external force
results:

Fext = −ke(x− xe) (2.11)

Without loss of generality xe can be imposed equal to zero, i.e. the
environment is at rest at x = 0.

In the transition from Impedance to Admittance Control the additional
states introduced with the latter can be chosen in order to maintain the
continuity in the control force F and its derivative. Equation 2.6 can be
written as follows

xd = x+
1

kp
(F + kvẋ) (2.12)

with derivative:

ẋd = ẋ+
1

kp
(Ḟ + kvẍ) = ẋ+

1

kp

[
Ḟ +

kv
m

(F + Fext))

]
(2.13)

Substituting the control force from equation 2.5 in 2.13 it is possible
to derive the relation between Xa and Xi:

Xa = SaiXi, Sai =

[
I
S

]
(2.14)

I is the identity matrix and S is a 2 x 2 matrix the elements of which
have the following expressions.
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s11 = 1− ke
kp

(
m

Md

− 1

)
− Kd

kp

m

Md

s12 =
kv
kp
− Dd

kp

m

Md

s21 = − m

Md

(Kd + ke)

kp

(
kv
m
− Dd

Md

)
s22 = 1− ke

kp

(
m

Md

− 1

)
− Dd

Md

(
kv
kp
− Dd

kp

m

Md

)
− Kd

kp

m

Md

(2.15)

On the other hand, the map of the state variables from Admittance to
Impedance Control can be obtained with the relation:

Xi = SiaXa, Sia =
[
I O

]
(2.16)

where O is a 2 x 2 zero matrix.
The stability analysis of the presented controller is discussed in [9].

The stability region of the system decreases as the switching period δ
increases. Moreover instabilities can occur in very stiff environment with
n close to one. This fact was expected since the well known Admittance
Control characteristics.
Finally it should be noted that with n = 1 the hybrid system behaves like
an Admittance Control with a resetting action that improves the stability
with respect to the pure one. In fact the control force of the hybrid control
in this case differs from the pure admittance one because every δ period
the Impedance Control law is used for a time istant.

2.7 Simulation examples

In order to illustrate the performances of the three controllers presented
so far, simulation results are shown in this section.
The single d.o.f. system described in section 2.2 is considered; friction,
model uncertainties, time delays and noise are introduced. Therefore the
equation of motion becomes:

mẍ = F + Fext + Ff (2.17)

with the unmodelled friction term:

Ff = −sign(ẋ)(cv|ẋ|+ Fc) (2.18)
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where cv and Fc represent respectively the viscous coefficient and the
Coulomb friction.

The parameter values used in the simulation are as follows:

m = 1.0kg, m̂ = 0.8kg

cv = 1.0Ns/m, Fc = 3.0N

kp = 106N/m, kv = 2 · 0.7
√
kpmNs/m

Md = 0.8kg, Kd = 100N/m

Dd = 2 · 0.7
√
KdMdNs/m

m̂ is the estimated mass introduced in both impedance and admittance
implementations.
The PD gains are set to high values as it is common practice, the uncer-
tainty of m is not considered since the position controller is supposed to
be tuned indipendently.
The time delays considered are 2ms and the noise on the external force
measurement is Gaussian with zero mean and unity variance. Taking into
account the stability analysis results, the selected value for δ is 20ms.

Figure 2.7: Single degree-of-freedom system interacting with an environ-
ment

At the initial time instant the mass is considered to be already in
contact with the environment. The environment stiffnesses chosen are
10N/m, 1300N/m and 3200N/m, in order to represent respectively a soft,
an intermediate and a stiff environment.

The responses of all controllers are compared with the ideal behaviour
of the closed loop system xref , derived from equation 2.19 and shown in
figure 2.8.

Mdë+Ddė+Kd = −kex
Mdẍref +Ddẋref + (Kd + ke)xref = Kdx0 (2.19)
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Figure 2.8: Re-scaled ideal trajectories of the single d.o.f. system for a step
change in the virtual equilibrium position for a soft and a stiff environment

Figure 2.9 shows the deviation from the ideal trajectory in a soft envi-
ronment. It can be noticed that the Admittance Control presents better
performances than Impedance Control; indeed in the latter case unmod-
eled friction effect produces a tracking and steady state error. Actually
the error for the Impedance Control goes to zero too, but in a very large
time window.

On the other hand when the stiffness increases Admittance Control
performances deteriorates resulting in large oscillations as represented in
firgure 2.10. This fact can be attributed to the high feedback gains of
the position controller and the time delay of the force feedback. However
there is not steady state error thanks to the compensating action of the
PD controller. In this case Impedance Control guarantees well damped
oscillations and negligible steady state error.

As concern the hybrid system, it can be observed that it can inter-
polate between the responses of Admittance and Impedance Control by
properly selecting the value of n. As expected in a soft environment the
performances improve as n tends to 1, on the contrary as ke increases
the best n decreases. This results are in accordance with what stated in
section 2.5. Figures 2.9 and 2.10 also confirm the enhancement of the
stability of the admittance controller in the hybrid framework thanks to
the resetting action (see section 2.6.2).

One can easily imagine that for intermediate values of environment
stiffness an appropriate choice of n can provide the best performances, as
exemplified in figure 2.11 where an intermediate stiffness of 1300N/m is
assumed.
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Figure 2.9: Deviation from the ideal trajectory for Impedance, Admittance
and Hybrid Control for the soft environment ke = 10N/m
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Figure 2.10: Deviation from the ideal trajectory for Impedance, Admit-
tance and Hybrid Control for the stiff environment ke = 3200N/m
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Figure 2.11: Deviation from the ideal trajectory for Impedance, Admit-
tance and Hybrid Control for intermediate environment ke = 1300N/m
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Chapter 3

Hybrid System Framework in
the 2 d.o.f.s case

In this chapter the Hybrid System Framework for unified Impedance and
Admittance Control is applied to a 2 d.o.f.s system. A manipulator made
up of 2 rigid joints connected by as much rigid links is considered. It
interacts with an environment that is modeled as an inclined frictionless
wall with a certain stiffness ke. Figure 3.1 represents the system under
analysis.
As for the 1 d.o.f. case, a comparison with Impedance and Admittance
Control with different environment stiffness is shown.

Figure 3.1: 2 dofs system graphic representation
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3.1 Dynamic model
The equations of motion in the joint space that govern the 2 d.o.f.s system
can be derived in different ways, like the Principle of Virtual Work (PVW)
or the Lagrange equation, and they are expressed as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + τext (3.1)

where the q, q̇ and q̈ are respectively the joints position, velocity and
acceleration vectors, τ is the control action and τext the interaction force
vector. M, C and G represent correspondingly the system inertia matrix,
the centrifugal and Coriolis matrix and the gravitational terms. With:

q =

[
q1
q2

]
, M =

[
M11 M12

M21 M22

]
, C =

[
C11 C12

C21 C22

]
, G =

[
G1

G2

]

M11 =
(
M1 +M2 +

m1

3
+m2

)
l21 +

(
M2 +

m2

3

)
l22+

+ (2M2 +m2) l1l2 cos(q2) + J1

M22 =
(
M2 +

m2

3

)
l22 + J2

M12 =
(
M2 +

m2

3

)
l22 +

(
M2 +

m2

2

)
l1l2 cos(q2)

M21 =M12

(3.2)

C11 =−
(
M2 +

m2

2

)
l1l2 sin(q2)q̇2

C12 =−
(
M2 +

m2

2

)
l1l2 sin(q2) (q̇2 + q̇1)

C21 =
(
M2 +

m2

2

)
l1l2 sin(q2)q̇1

C22 =0

(3.3)

G1 =g
[(
M1 +M2 +

m1

2
+m2

)
l1 cos(q1) +

(
M2 +

m2

2

)
l2 cos(q1 + q2)

]
G2 =g

(
M2 +

m2

2

)
l2 cos(q1 + q2)

(3.4)
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where M1 is the joint mass and M2 is the end effector one, J1 and J2
represent the motor inertia of the joints, m1, m2 are the masses of the
links of length l1 and l2. The joint coordinates are positive in clockwise
direction.

3.2 Control law

First of all it is necessary to define the impedance and admittance control
laws to be added in the hybrid framework.
The desired impedance relation is expressed as:

Md−eẍe + Dd−eẋe + Kd−e(xe − x0−e) = Fext−e (3.5)

where Md−e, Dd−e and Kd−e are respectively the desired inertia,
damping and stiffness matrices while Fext−e is the interaction force vector.
All the quantities are expressed in the environment reference frame, illus-
trated in figure 3.1. Indeed the desired impedance relation is considered
in the interaction force direction, orthogonal to the wall.

Once the quantities are rotated in the base reference frame x− y, the
desired end-effector acceleration can be computed as follows:

ẍ = M−1(−Ddẋ−Kd(x− x0) + Fext) (3.6)

Since a control action expressed in the joint space is required, the joint
acceleration can be derived from the velocities relationship encoded by the
Jacobian.

q̇ = Jẋ (3.7)

then

q̈ = J−1(ẍ− J̇q̇) (3.8)
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with:

J =

[
−l1 sin q1 − l2 sin (q1 + q2) −l2 sin (q1 + q2)
l1 cos q1 + l2 cos (q1 + q2) l2 cos (q1 + q2)

]

At this point the end-effector acceleration is substituted by the desired
one reported in equation 3.6.

q̈ = J−1M−1(−Ddẋ−Kd(x− x0) + Fext)− J−1J̇q̇ (3.9)

From the dynamics 3.1 the control torque can be derived as:

τ = M(q)q̈ + C(q, q̇)q̇ + G(q)− τext (3.10)

where:

τext = JTFext (3.11)

Combining 3.9 with 3.10 the Impedance Control torque can be ob-
tained.

τ =M(q)J−1M−1
d (−Ddẋ−Kd(x− x0) + Fext)+

−M(q)J−1J̇q̇ + C(q, q̇)q̇ + G(q)− JTFext

(3.12)

This is called computed torque control law. The C(q, q̇)q̇ and G(q)
terms are necessary in order to compensate the centrifugal, Coriolis and
gravitational effects.

As concerns the Admittance Control, the desired position transported
in the base reference can be derived from equation 3.6. Afterwards, consid-
ering the problem geometry, the desired position of the joints that realizes
the requested end-effector trajectory can be computed as follows:

q2d = atan2

[
−

√
1− x2d + y2d − l21 − l22

2l1l2
,
x2d + y2d − l21 − l22

2l1l2

]
(3.13)
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q1d = atan2
[
yd, xd

]
− atan2

[
k2, k1

]
(3.14)

where:

k1 =l1 + l2 cos q2d

k2 =l2 sin q2d
(3.15)

Finally for the position controller, again a simple PD control law is
used. In this case centrifugal, Coriolis and gravitational compensating
terms are added.

τ = kp(qd − q)− kvq̇ + C(q, q̇)q̇ + G(q) (3.16)

Once the impedance and admittance control laws are derived, the for-
mulation for the hybrid system control is the same presented in chapter
2.

τ =

{
τimp : t0 + kδ ≤ t ≤ t0 + (k + 1− n)δ

τadm : t0 + (k + 1− n)δ ≤ t ≤ t0 + (k + 1)δ
(3.17)

Where δ and n are again the period and the duty cycle of the switching
system.

3.3 Simulation results

As already done for the single d.o.f., the performances of the 2 d.o.f.s
system are here illustrated. In the simulation uncompensated friction,
model uncertainties, time delays and noise are introduced. The resulting
equation of motion is:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + τext + τf (3.18)

with the unmodelled friction term for each joint:
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3 Hybrid System Framework in the 2 d.o.f.s case

τfi = −sign(q̇i)(cv|q̇i|+ τc) (3.19)

where cv and τc represent respectively the viscous coefficient and the
Coulomb friction for ith the joint.

The parameter values used in the simulation are the following:

M1 = 1.0kg, M2 = 1.0kg

m1 = 0.8kg, m2 = 0.8kg

l1 = 0.7m, l2 = 0.5m

J1 = 0.001kgm2, J2 = 0.001kgm2

cv = 4Ns/m τc = 1N/m

α = 45deg q01 = 90deg

δ = 0.02s q02 = −120deg

q01 and q02 are the considered initial positions for the joints.
The uncertainties are simulated using the following mass and inertia

parameters in the control law:

M̂1 = M1 ∗ 0.8, M̂2 = M2 ∗ 0.8

m̂1 = m1 ∗ 0.9, m̂2 = m2 ∗ 0.9

Ĵ1 = J1 ∗ 0.8, Ĵ2 = J2 ∗ 0.8

The control coefficients are:

Md−e =

[
1 0
0 1

]
, Kd−e =

[
100 0
0 100

]
, Dd−e = 2∗0.7∗

√
Kd−e ∗Md−e

kp =

[
106 0
0 106

]
, kv =

[
500 0
0 500

]

The time delays (Td) is set to 2ms. Again the noise on the external
force measurement is Gaussian with zero mean and unity variance and the
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selected value for δ is 20ms. At the initial time the end-effector is consid-
ered in contact with the wall and the environment stiffness is expressed
with:

Ke =

[
ke 0
0 0

]

in the environment reference frame, and so:

Fext−e = −Kexe (3.20)

Figures 3.2, 3.3 and 3.4 show the Hybrid Control System performances
with different fixed n values, respectively in soft, intermediate and stiff
environments. The reported results show trends similar to the single d.o.f.
case, with better error responses for n = 1 in soft environment and for
n = 0 in stiff one. Again it can be noted that the Hybrid Control can
interpolate between the responses of Admittance and Impedance Control.
An adaptive strategy could allow to find a proper n value for different
environment stiffness leading to lower oscillations in stiff environment than
the Admittance Control and negligible overshoots and steady state errors
with respect to the Impedance Control in low ke values.
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Figure 3.2: 2 d.o.f.s system error response with Hybrid Control for the
soft environment ke = 10N/m
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Figure 3.3: 2 d.o.f.s system error response with Hybrid Control for the
intermediate environment stiffness ke = 1400N/m
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Figure 3.4: 2 d.o.f.s system error response with Hybrid Control for the
stiff environment ke = 3200N/m
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Chapter 4

Adaptive strategy: introduction
and applications

The Hybrid System presented in previous chapters (see sec. 2.6) seems to
be a promising solution capable of unifying Impedance and Admittance
Control benefits.
However some issues still remain open. How can the duty cycle n be
selected in order to guarantee the best performances? How can the envi-
ronment stiffness be dealt with? Is it possible to manage a time-variant
environment?
This chapter wants to show the potentiality and possible applications of
making the Hybrid Control adaptive, discuss the relative problematics and
propose answers to these questions. This introductive analysis is done con-
sidering the single d.o.f. system presented in 2.2, but the same conclusions
are valid for the 2 d.o.f.s one. Finally the basic concepts of Artificial Neu-
ral Networks (ANN) and Genetic Algorithm (GA) used in the proposed
solution are introduced.

4.1 Applications

Before proceeding with the analysis of the adaptivity problem, an overview
of its possible applications is presented in this section.

4.1.1 Industry

In the industrial field, robots usually work in structured environments
where unforeseen disturbances and interaction with human rarely occur,
since geometrical and physical characteristics are mostly known a priori.
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4 Adaptive strategy: introduction and applications

However they must be machines with significant features of versatility
and flexibility [36]. The hardware requirements for Impedance Control
and Admittance Control are typically different; this means that once a
control law and the associated hardware are selected the other controller
can not be used, limiting the duties carried out by a single robot. On the
other hand the Hybrid Control could lead to a class of robots capable of
accomplishing different tasks with a single custom hardware structure and
a single control system, answering to the versatility need.
Moreover the adaptive system discussed in next chapters can enhance
the duties in charge of robots, especially the ones where the environment
could change during the operations. A trivial example could be the task of
wiping a surface constrained at the boundaries; indeed the surface stiffness
in the normal direction varies moving from the center to edges.

Figure 4.1: DLR Justin humanoid cleaning a window

4.1.2 Space

As concern space activities, more and more robots are asked to assist and
in some case completely replace humans. A space robot has to facilitate
manipulation, assembling and servicing functions either inside or outside
the spacecraft.
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4.1 Applications

Figure 4.2: Artistic representation that shows an OOS mission

Nowadays space community is focusing its attention on the on-orbit ser-
vicing (OOS).

In this scenario the interaction with non-cooperative satellites is highly
challenging. It is already shown [31, 32] that impedance control is particu-
larly suitable in the contact phase. In fact during the contact between the
end effector and the grasping point there is the risk that the target and the
robot can be pushed away from each other. This issue can be overcome
if the chaser’s hand is controlled to have impedance that is equivalent or
smaller than the target mass. In this context future development of the
Adaptive Hybrid Control, able to handle collision phenomena, could im-
prove the performances since it could adapt itself to abrupt changes in the
external force.

Figure 4.3: Manipulation task representation
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4 Adaptive strategy: introduction and applications

Anyway the most common risks in autonomous OOS can occur when
the two spacecrafts come together, unpredictable conditions of the target
could lead to off-design situations with the possibility of damaging expen-
sive space assets [32]. Therefore it is clear that this task requires a control
system that can remain stable and guarantee good response in these un-
known environments.
Another important application regards the human support in vehicular
activities, where manipulation plays a key role. The robot has to be able
to work with many different objects with wide variety of physical char-
acteristics. An example is Robonaut [33] that is designed to accomplish
all these requirements. It could be thought to exploit also the flexibil-
ity of Adaptive Hybrid Control to create suitable controllers for space
humanoids.

4.1.3 Healthcare

A further field where this control law could be applied is physical therapy.
Robotic appliances are used for rehabilitation purposes to help people re-
covering from limbs movement disorders or injuries. For instance active
devices are exploited to re-educate muscles and articulations to perform
common movements. This activity is typically called passive exercise since
it is not required active work of the patient, indeed the machine guides the
motion of the limb in a proper way. This means that it is necessary to con-
sider robot and patient as a coupled mechanical system. The application
of force or position control is not enough to ensure appropriate and safe
dynamic interaction between human and manipulator. Impedance and
Admittance Control are usually implemented to accomplish these kind
of tasks [37], the Adaptive Hybrid System could combine together these

Figure 4.4: Rehabilitation device representation
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approaches in a single controller capable of facing variable interaction con-
ditions and guaranteeing the safety of the person.

4.2 Problem overview

As already explained, the idea behind the design of the Hybrid System
is the development of a general framework capable of unifying Impedance
and Admittance Control. This means that, in order to reach the de-
sired impedance relation, potentially, every already existent Impedance
or Admittance Control formulation can be added to the hybrid system,
depending on the application. Therefore this analysis considers two basic
and fixed controllers aiming to provide a prescribed force/motion behavior
characterized by opposite causality. The whole study wants to achieve the
best possible interpolation of the two control algorithms through a proper
command of the switching signal.
The two quantities that govern the switching system are the switching
period δ and the duty cycle n.
The selection of the former directly influences the stability region of the
system and it must be chosen depending on the expected stiffness range
of operations. Instead the latter, as figure 4.5 shows, plays the role of
deciding the contribution of each control law in the δ period and so it
represents the design parameter to be adapted.

Figure 4.5: Switching concept

In order to make a system adaptive it is necessary to identify a quantity
to be minimized, i.e. setting an optimal problem. Since it is required that
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4 Adaptive strategy: introduction and applications

the control system follows a prescribed behavior, it is straightforward to
consider the deviation from its reference trajectory in the definition of that
quantity. Once the desired impedance parameters are defined, the ideal
response of the system is described by equation 2.19. As a consequence
the error to be minimized can be defined as the difference between the
actual position and the reference one. Hence a quadratic cost function is
chosen as follows:

J =
1

2

∫ tf

t0

(x− xref )2dτ (4.1)

Afterwards a relation that links the defined cost function to the chosen
design parameter must be identified.
In chapters 2-3 it is highlighted that in soft environments the error re-
sponse with n close to zero presents a large overshoot and steady state
error, whereas in stiff environments when n is set near to 1 underdamped
oscillations can be observed.
Even though the effects of varying the duty cycle n in different environ-
ments are clear, it should be noted that it is embedded in the system
and explicit expressions that relate n to the force input or the continuous
states of the system can not be found.
The only analytical relation which can be derived regards a discretization
of the system; indeed, knowing the states of the system at t = t0 + kδ,
the states at time t = t0 + (k + 1)δ, with k = 0, 1, 2, ..., can be obtained
exploiting equations 2.10, 2.14 and 2.16.

xi(t0 + (k + 1− n)δ) =eAi(1−n)δxi(t0 + kδ)+

+

∫ t0+(k+1−n)δ

t0+kδ

eAi(t0+(k+1−n)δ−τ)BiKdx0dτ (4.2)

xa(t0 + (k + 1)δ) =eAanδxa(t0 + (k + 1− n)δ)+

+

∫ t0+(k+1)δ

t0+(k+1−n)δ
eAa(t0+(k+1)δ−τ)BaKdx0dτ (4.3)

xa(t0 + (k + 1− n)δ) = Saixi(t0 + (k + 1− n)δ) (4.4)

xi(t0 + (k + 1)δ) = Siaxa(t0 + (k + 1)δ) (4.5)
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Assumed a constant equilibrium position x0 = x̄0, the discrete dynamic
of the system becomes:

xk+1 =Sia

{
eAanδSai

[
eAi(1−n)δxk+

+

∫ t0+(k+1−n)δ

t0+kδ

eAi(t0+(k+1−n)δ−τ)BiKdx0dτ

]
+

+

∫ t0+(k+1)δ

t0+(k+1−n)δ
eAa(t0+(k+1)δ−τ)BaKdx0dτ

}
(4.6)

and so:

xk+1 = f(xk,uk) (4.7)

Integral terms could be approximated and discretized, for example
using the trapezoidal rule. In this way it would be possible to have a
complete discrete representation of the system.
In any case it can be easily seen that f is a nonlinear system in the n
parameter. Moreover an adaptive solution could take into account the
possibility of changing n continuously in time, making the whole problem
more complex.
It could be thought to consider the problem as a control one where the
system gives the states as output and receives the duty cycle as input.
However it would be a non-affine system, nonlinear in n and for this rea-
son really hard to manage.
In addition, as already observed in sec. 2.3, Impedance Control can guar-
antee exactly the behavior described by equation 2.19 in absence of uncer-
tainties, delay and uncompensated friction, as shown in figure 4.6. This
is true in any environment, with any stiffness. Therefore the already-
complex model should include at least a good estimations of the delay in
the measurements and the possible friction.
At this point it should be clear that exploiting adaptive solutions that re-
quire precise analytical relations could be extremely demanding to handle.

4.3 Possible solutions and limitations
Approaching the problem the very first idea that could come to mind is to
consider a constant duty cycle for the Hybrid System and a time-invariant
stiffness of the environment.
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Figure 4.6: Deviation from the reference response with ke = 10N/m con-
sidering models with and without uncertainties, delays and uncompen-
sated friction.

Once the range of operative stiffnesses is defined it can be discretized and
the cost function 4.1 can be evaluated by means of simulations varying n
in any situation.
Figure 4.7 shows a possible mapping between stiffnesses and design pa-
rameter n. The switching period is set to 20ms and so the value of n
is discretized with step size of 0.05, whereas ke can assume values from
10N/m to 3210N/m. Considering the same stiffness range it should be
noted that the mapping can vary if different δ periods are chosen.

The optimal response obtained by the cost function 4.1 are character-
ized by small overshoots, damped behavior and short transient periods.
This results underline the fact that the Hybrid System can combine the
robustness properties of Impedance Control in stiff environments with the
accuracy of Admittance Control in soft contact, as it is shown in figures
4.8, 4.9 and 4.10.

In particular the case with ke = 10N/m (see fig. 4.8) exemplifies
this property; indeed the resetting action of the states every 20ms given
by switching action from Admittance to Impedance improves the perfor-
mances of the pure Admittance Control.

Once this mapping is defined, if the environment stiffness is known
a-priori it is possible to select the duty cycle accordingly, however in the
most typical situations this information is not available or not accurate.
Therefore it would be necessary to estimate the stiffness online and con-
sequently select the n from an embedded database built up offline with
the already explained procedure.
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Figure 4.7: Mapping noptimal − ke

There are different ways to obtain informations about the environment
from the measurements of the states of the system and the interaction
force.
Book and Love [18] estimated the environment stiffness using a Recursive
Least-Square algorithm. They discretized the robot workspace and mea-
sured the tip force and position each sample period of the controller. The
output vector of the RLS algorithm is built up with the force measure-
ments, whereas the regression vector is based on the position ones. Three
different time instants are considered for the estimation process. After-
wards the parameter computed is scaled and averaged with the previous
estimations exploiting some weights.
RLS method can be used also with more complex environment models
as shown in [38]. The environment is represented with a nonlinear func-
tion that relates force and system states by means of three parameters.
These parameters are computed with two RLS estimators interconnected
via feedback. A persistent excitation of the environment is suggested in
order to have the best accuracy in the estimation.
Another possible solution is the use of an extended Kalman filter [39]. The
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Figure 4.8: Comparison between Impedance, Admittance and Hybrid
Control with optimal n for environment stiffness ke = 10N/m
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Figure 4.10: Comparison between Impedance, Admittance and Hybrid
Control with optimal n for environment stiffness ke = 3200N/m

robot-environment interaction is defined by the filter states augmented
with environment properties. A spring-damper model is considered and
the stiffness and damping parameters are estimated.
A completely different approach is the exploitation of a neural network in
order to create a linear mapping from position and velocity to force [40].
The authors proposed a neural network, with the states of the system as
input and a force as output. It is trained online using a sliding mode learn-
ing algorithm that exploits the error between the output of the network
and the measured environmental reaction force. Then the environment
stiffness is estimated as the partial derivative of the network output with
respect to the position.

An issue that can be immediately pointed out regarding the online
computation of the stiffness concerns the inevitable delay in the estima-
tion. A proper setting of the algorithm can minimize this phenomenon,
however it still remains and could be problematic if the environment
changes continuously in time. The described algorithms could have some
difficulties in following these continuous variations leading to bad perfor-
mances.
From what has been discussed so far, it can be noticed that the environ-
ment can be modeled in different ways depending on the application and
the desired accuracy. It is easy to imagine that the presented solution
based on stiffness estimation and mapping of the n parameter could result
more complex whenever the environment model involves more than one
parameter.
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4 Adaptive strategy: introduction and applications

Then differences in the performances of Impedance and Admittance Con-
trol are mostly caused by uncertainties, uncompensated frictions and de-
lays, as reminded in the previous section. Consequently the mapping
solution depends on the simulation of these phenomena, therefore it could
result in unrobustness to variations with respect to numerical reproduc-
tions.

It is preferable to have a robust controller that can react more promptly
to whole system state evolution adapting rapidly itself to possible environ-
ment variations. Moreover the performance can be improved if the duty
cycle is let to vary for the same environment stiffness. This means that
it is not exclusively dependent only on the value of ke, but it can follow
the system evolution and guarantee a better tracking of the reference re-
sponse.
As it will be explained in next chapters the solution proposed in this work
goes in this direction.

4.4 Neural Network adaptive solution

The Adaptive Hybrid System presented in this work exploits a Neural
Network in order to define the most suitable n evolution guaranteeing the
smallest deviations from the reference response in a prescribed operative
range of environment stiffnesses.

The network receives the measured states and interaction force as in-
puts and provides a consequent duty cycle. Then the signal is quantized
according to the selected δ period and sample time and discretized in time
in such a way to have one fixed value for each period.

The training is done offline using a Genetic Algorithm as optimization
method for the definition of the weights and biases.

In chapter 6 it will be shown that this solution is robust to uncertainties
in the model of the robot, and that it works in an unknown environment
and provides good performance even in the case of time variant stiffness.
Moreover if the environment stiffness is known a specific training of the
Neural Network system can give an improvement in the response with
respect to the optimal fixed n solution.

Before proceeding with the analysis of the proposed strategy, some ba-
sic concepts about Neural Network and the chosen optimization algorithm
are discussed in the next sections.
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4.5 Neural Network: basic concepts
Artificial Neural Network (ANN) gets inspiration from the way in which
the human brain processes the informations, that is completely different
from conventional digital computer. The brain is a highly nonlinear and
parallel system able to organize its structural constituents, neurons, in
order to perform certain computations efficiently.
It has the peculiar ability to build up its own rules of behavior through
what usually refers to as experience. It can learn and develop adapting
itself to its surrounding environment.

In a similar way, as reported in [24], a neural network is a massively
parallel distributed processor made up of simple processing units that
has a natural propensity for storing experiential knowledge and making
it available for use. The knowledge is acquired by the network from its
environment through a learning process and stored in the interneuron
connection strengths, known as synaptic weights. These latter elements
of the network are modified in such a way to obtain certain desired design
objective by means of a procedure called learning algorithm.

The strengths of the Neural Network are, first, the computation power
thanks to the massively parallel distributed structure and, second, the
generalization property derived from its ability to learn. This last feature
means that Neural Network can produce reasonable outputs for inputs
different from the ones received during the training. Thanks to these two
capabilities the Neural Network are an useful tool to find good approxi-
mate solution to complex problems that would be intractable.
In this work, the explained characteristics of the Neural Network are used
to create a link between the interaction force and the states of the sys-
tem and the design parameter, the duty cycle n. Indeed the ANN can
be trained in such a way to guarantee desired performance minimizing a
prescribed fitness function, as it will be explained in the next chapter.

The fundamental constituent of a Neural Network is the neuron which
is an information-processing unit.
It is possible to identify four basic elements in its structure, shown in
figure 4.11:

• Synapses or connecting links characterized by some weights.

• An adder for summing all the weighted inputs of the neuron.

• An activation function for limiting the output of a neuron and al-
lowing computation of non trivial problem with a small number of
nodes.
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• Bias that increases or decreases the net input of the activation func-
tion.

Figure 4.11: Structure of neuron k.

The most common activation function used in the construction of Neu-
ral Network is the sigmoid function. It is a strictly increasing function
defined as follows:

σ(x) =
1

1 + e−a(x−c)
(4.8)

where a and c are two parameters.
In this work the sigmoid function is adopted, however other functions
have been used in Neural Network such as Heaviside function, hyperbolic
tangent function, etc.

The neurons can be organized in different structures from the simpler
Single-layer Feedforward Neural Network to more complex solutions like
Multi-layers Recurrent Neural Network. For the adaptive system of the
Hybrid Control a multilayers feedforward architecture has been selected.
This class of ANN are made up of three different parts: an input layer, one
or more middle layers and an output layer. Each layer contains a certain
number of neurons depending on the task that the neural network has to
accomplish. The middle layers are called hidden layers and the computa-
tion nodes are correspondingly the hidden neurons or hidden units. They
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are named in this way because this part is not seen directly from either
input or output of the network.
The term "feedforward" refers to the fact that the neurons of a layer com-
municate only with the neurons of the next layer. The source nodes in
the input layer of the network supply elements of the activation pattern,
which represent the input signals applied to the neurons in the first hidden
layer. The output signals of the second layer are the inputs of the next
hidden layer and so on for the other layers until the output one. The set
of signals of this latter layer constitutes the overall response of the net-
work to the activation pattern supplied by the source nodes. If every node
in each layer is connected to every node of the next layer the network is
defined fully connected, otherwise it is said to be partially connected.

Figure 4.12: Multilayer feedforward architecture

As regards the training or learning phase, it can be done either online
or offline. In the former case the neural network learns how to accomplish
its task in real time, therefore it is required a certain transition time to
reach the convergence of the weights, depending on the efficiency of the
selected optimization algorithm. On the other hand in the latter situation
the training is done in a phase before the real application of the network
and after that the weights typically are fixed.
According to the needs of the designer and the nature of the problem,
different optimization algorithm can be selected and different procedures
can be followed. For the Adaptive Hybrid System, a Genetic Algorithm
is found to be suitable to achieve the goal. The manner adopted for the
training will be explained in chapter 5.
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4.6 Genetic Algorithm

A Genetic Algorithm is a stochastic global maximum (or minimum) search
method inspired by the natural biological evolution. In the natural world
the reproduction mechanism of the species allows to give birth to new gen-
erations preserving those characteristics that are suitable for the survival
to the external conditions. It results that, hopefully, for an increasing
number of generations the species tend to adapt to the environment.

The algorithm starts considering a population of potential solution,
called individuals, that are encoded as strings, called chromosomes. The
phenotype belongs to the decision variable domain in which all the geno-
types (chromosome values) are discerned. This means that the analysis
of the genotype does not give information about the fitting property of
the individual. Only the decoding of the chromosome string into its phe-
notypic value allows to understand how much the individual is suitable
as solution of the problem. Once these performance are evaluated a fit-
ting value is assign to every individual, then according to this a part of
the population is selected with a certain probability to produce the next
generation.

In order to create the next generation some genetic operators are ap-
plied to the selected solutions modifying directly the chromosomic content.
First of all the recombination operator is applied to a percentage of indi-
viduals selected with a probability depending on their fitness value. There
are different recombination operators; the simplest one is the single-point
crossover that acts on two individuals, called parents, selects a random
position i in the chromosome string and then switches the whole next
chromosomic content of the parents (see figure 4.13).
The second operator is the mutation and it is applied to the remaining
part of the population. Mutation changes the genetic content of the in-
dividual, that for example can be expressed in the binary representation,
according to some probabilistic rules.This operator is used to ensure that
the investigation covers the whole space of possible solutions and to con-
verge to the global minimum instead of a local one.
A small number of individuals can pass to the next generation without
being affected by these operators and they are called elite children.

After these operations are applied, the new generation is decoded and
fitness values are associated to each individual. Then the process restart
with the selection of those individuals which will be the parents for the
next generation. When some criteria are satisfied the GA is stopped. Since
this method is stochastic it is very difficult to define precise convergence
criteria. Commonly the search is terminated after a predefined number of
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Figure 4.13: Single-point crossover operator

generations and then the quality of the final solution is checked. A good
mark to understand if the solution has effectively reached the desired
extremum is the convergence of the value of the best individual fitness
function with the population mean value of the fitness function. In case
the performances are not satisfying the GA may be restarted modifying
some parameters.

The GA is particularly suitable in those cases in which the depen-
dence of the fitness function with respect to the parameters to be set is
unknown or if it is not regular and presents discontinuities. The main
differences between GA and traditional search and optimization methods
are represented by the facts that the GA analyzes a population of points
in parallel, not a single point, then it does not require knowledge of deriva-
tives or other auxiliary informations. Than it has to be highlighted that
it exploits probabilistic transition rules rather than deterministic and it
does not work directly on the parameter set but on an encoding of them.
The GA method can be useful also for problem that does not have one
individual solution. For these reasons it is decided to use this kind of
optimization algorithm in this work.
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Chapter 5

Adaptive system: Neural
Network model and training

In this chapter the details of the Neural Network adaptive system model
are presented, focusing firstly on the single d.o.f. problem and then on
the two d.o.f.s one.
The Neural Network structure motivations and the settings of the opti-
mization algorithm are discussed for the single d.o.f. system, presented in
chapter 2, in order to highlight the main criticalities and how they have
been taken into account. Then the same concepts are applied to the two
d.o.f.s model introduced in chapter 3 with proper modifications.

5.1 Neural Network structure in the 1 d.o.f.
system

A multilayer feedforward network was selected for the adaptive system.
The input layer is made up of three source nodes that are the measured
position and velocity of the system and the measurement of its interaction
force with the environment.
In a first attempt the possibility of using also the control action on the sys-
tem and the virtual position x0, provided to the controller, was considered.
However this solution brings to an higher number of coefficients to be de-
termined by the optimization algorithm, resulting in longer computational
times. Moreover it does not provide improvements in the solution. Indeed
the control force does not give any additional information about the sys-
tem dynamics and the feature of the environment, that are completely
described by the states and the interaction force. On the other hand x0 is
excluded because it is preferable a system independent of the command
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position that during the operations can assume different profiles.
As concern the number of hidden layers, the selection is the result of

a trade off between simplicity and performances, in particular single and
two hidden layers solutions with comparable overall number of weights
and biases were compared. The same methodology was used for the se-
lection of the neurons number per layer. The analysis pointed out that a
good compromise is a fully connected structure with just one hidden layer
composed of four neurons. The output layer is constituted by only one
neuron that receives the hidden layer outputs as inputs and provide the
overall response of the network.
The final structure of the adopted Neural Network is shown in figure 5.1.

Figure 5.1: Neural Network adaptive system diagram

In order to simplify the optimization problem a single bias common to
all the neurons of the hidden layer was used, this consequently decreases
the number of coefficients to be evaluated. It was observed that this
operation does not deplete the performance.

The activation function adopted in all the neurons is the sigmoid func-
tion reported in equation 4.8 with coefficients a = 1 and c = 0.

In mathematical terms, the output of the kth hidden neuron can be
expressed as follows:

hk = σ(w1kx+ w2kẋ+ w3kFext + bh) (5.1)

where σ is the sigmoid function, wik are the weights and bh is the layer bias.
Then hk enters in the output neuron where again the sigmoid function is
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applied:

y = σ

(
4∑

k=1

wkhk + bo

)
(5.2)

where wk are the weights and bo is the output bias.
It should be noted that y tends asymptotically to 1 or 0 when the

argument goes respectively to +∞ or -∞. Therefore the outputs n = 0 or
n = 1 could not be reached by the network and this would mean excluding
possible solutions. For this reason an additional weight wf was added on
the output of the neural network and then the constraint on the duty cycle
n, that can vary only between 0 and 1, was recovered applying a sin2, as
expressed in equation 5.3.

n = sin2(wfy) (5.3)

Since the sample time of the simulation is T = 0.001s and the consid-
ered switching period is δ = 0.02s the minimum variation of the duty cycle
that the switching system can read is T/δ = 0.05, therefore a quantizer
was added on the output of the neural network.

Finally a sample and hold was applied in order to reproduce the cor-
rect switch mode of operation, i.e. a constant value of the duty cycle
is maintained during each δ period. Figures 5.2 and 5.3 show how each
neuron and the whole network were implemented in Simulink.

In brief, the selected structure is characterized by 3 weights for each of
the 4 neurons and a single bias for the hidden layer, then 4 weights and a
bias for the output layer and a final weight on the network output. This
means that the optimization algorithm has to define 19 coefficients.

Figure 5.2: Neuron implemented in Simulink
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Figure 5.3: Neural Network implemented in Simulink

64



5.2 Neural Network training in the 1 d.o.f. system

5.2 Neural Network training in the 1 d.o.f.
system

The Neural Network training is executed exploiting a Genetic Algorithm
as optimization method.
The method’s goal is to minimize an ad hoc fitness function derived simu-
lating the system response over a certain time interval and for a prescribed
set of fixed ke. For each ke the cost function 4.1 is evaluated and finally
all the values are used to create an appropriate fitness function.
It is necessary to pay particularly attention to the setting of some pa-
rameters, i.e. the command position for the controller and selection of
the stiffnesses set for what concerns the system simulation and the fitness
function, the weights boundaries and the population size as regards the
Genetic Algorithm.

5.2.1 Command position

In the decision of an appropriate command position for the training it
is necessary to consider that the system has to be robust to different
situations and commands.
It was found that a training performed giving a step command to the
system is the strategy that provides the best results. Indeed it provides
a good level of generalization guaranteeing a proper behavior when the
operations involve other possible command trajectories such as ramps,
triangle or trapezoidal profiles.
The first idea was training the network considering the system response to
a single step forward from a contact position x0 = 0m to x0 = 1m. This
situation leads to poor performances when the command position moves
backward. In fact the behavior of the system is slightly different in the
two cases and the Neural Network has to learn the two evolutions of states
and interaction force to be able to react properly.
As a consequence the step backward circumstance should be added in the
training phase. This could be done in two different ways: either with
two consecutive steps (fig. 5.4) or with two separated steps, i.e. two
simulations (fig. 5.5).

In the former case the genetic algorithm fails in converging to a good
solution. Indeed it is possible to find three classes of solutions, i.e. different
sets of weights and biases, with comparable fitness functions but that lead
the system to behave in different ways.

With two of these classes the system response is underdamped in cor-
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Figure 5.4: Double step in a single command trajectory

Figure 5.5: Two separate step command trajectories

Figure 5.6: Two separate step command trajectories: one positive and one
negative
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Figure 5.7: Responses of the solutions of two different classes trained
with the same command position trajectory x0

respondence of respectively the first and the second step, as illustrated in
figure 5.7.

The third class instead is middle way between the two. Theoretically
it could be a good solution but the main problem is the fact that it re-
mains difficult to be individuated since the algorithm can give one of the
three kind of solutions with the same probability, so it would be necessary
many attempts to find it. Moreover it should be noted that the result
of the research is affected by the fact that in each simulation the system
response to the second step has different initial conditions influenced by
the response to the first step.
Hence the most suitable strategy is training the network considering two
separated steps.

It was decided to consider a positive command and a negative one (fig
5.6). This choice is motivated by the fact that if the control system is
a joint it can move in both direction so the Neural Network has to be
able to manage this situation. Even if the commanded position is the end
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effector one, the considered situation results more general, including both
circumstances where the interaction force is positive or negative.
As regards the position to be reached, it was decided to use a step forward
from x0 = 0m to x0 = 0.5m and a step backward from x0 = 0m to
x0 = −0.5m. Needless to say that in operative situation this decision has
to take into account the positions that the system has to reach. However
it will be shown in next chapter that, even if the command position is
not included in the selected training range, the Adaptive Hybrid System
can guarantee good performance. Of course if the profile of the command
signal is always the same in the operation, it can be used during the
training instead of the step.

5.2.2 Stiffness set selection

For the training, first of all an operative range has to be selected. In this
case it was decided to consider it from 10N/m to 3210N/m in continuity
with the previous work on the Hybrid System by Ott, Nakamura, Mukher-
jee [10]. However this decision is not binding, indeed it can be modified
depending on the application needs.
The stiffness set was created discretizing the range with a step of 200N/m
as a trade off between the necessity of training the network on a sufficiently
wide number of stiffnesses, in which different n trends are required, and
the need of reasonable training time.

Figure 5.8 shows that the time invariant optimal n distribution relative
to the chosen discretization is quite uniform. It can be imagined that this
fact can be useful for the Neural Network training since it is facilitated to
understand better the relation between the stiffness and the duty cycle.
The time invariant optimal n is derived as already explained in section
4.3.

5.2.3 Fitness function

It is now clear that, for the training phase, two simulations for each ke
value in the selected set are necessary. The time simulation Tsim is 1s. This
choice was made because in this time interval all the main characteristics
of the response can be recognized, i.e. it takes into account both the whole
transient period and the possible steady state error.
The fitness function for the Genetic Algorithm has to be defined in order
to achieve the goal of minimizing over the entire range of stiffnesses the
cost function defined in section 4.2 and reported here for simplicity:
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Figure 5.8: Optimal time invariat n relative to the selected ke discretiza-
tion

J =
1

2

∫ Tsim

0

(x− xref )2dτ (5.4)

where x is the actual position of the system and xref is the reference one
derived from the desired impedance relation 5.5.

Mdẍref +Ddẋref +Kd(xref − x0) = Fext (5.5)

Then a natural consequence is to base the fitness function on the sum-
mations of all cost functions evaluated for each system response simulation
with the step in both directions.
Therefore, for the step forward, the summation results in the reward func-
tion:

Rforward =
N∑
i=1

Jfi (5.6)

where N is the number of stiffnesses belonging to the selected set, Jfi is
the cost function evaluated for the response with the step forward in the
environment characterized by the ith stiffness.
In the same way for the step backward:
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Rbackward =
N∑
i=1

Jbi (5.7)

The resulting fitness function for the Genetic Algorithm is defined as
follows:

F = max(Rforward, Rbackward) (5.8)

In this way the algorithm looks for a solution that at each genera-
tion minimizes the worst reward function keeping the other one bounded.
Moreover another advantage of this formulation consists in the fact that
the two rewards functions tend to assume similar values leading to anal-
ogous dynamic behaviors of the controlled system either for command in
the forward or backward direction.

One could think to set a multi-objective minimization problem and
exploit the Pareto solution using the two reward functions as objectives.
However this strategy is more demanding from computational and time
point of view and it does not provide better solutions. In addition it results
more difficult to establish wether the convergence is reached or not.

5.2.4 Population size and weights boundaries

The Genetic Algorithm also requires a correct setting of the population
size and the weights and biases boundaries to assure the solution con-
vergency. These two parameters are strictly correlated; indeed the wider
the boundaries are the more numerous the population has to be in order
to guarantee a certain density of individuals in the range. As one can
easily imagine, too big population threaten the velocity of the method.
Therefore it is extremely important to individuate a proper research re-
gion where the best solution could be found.
If the knowledge of the system is poor, this operation is a trial and error
procedure and it is performed analyzing the input signals nature of the
considered problem and assuming an initial guess for the boundaries to
be verified later. Then the results should be examined in order to under-
stand how the inputs are used by the network. If the weight associated to
a certain input by the Genetic Algorithm results particularly near to zero
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or to initial guessed boundaries, it can mean that this input is respectively
less or more useful to the neuron with respect to the other ones and as a
consequence a new guess for the boundaries can be done.
In the case here dealt with, since the different natures of the inputs, it is
straightforward to focus the attention on the order of magnitude of the
network inputs to set the boundaries. Indeed, since all the inputs of the
network are necessary to describe the dynamic of the interaction between
the environment and the system, it is reasonable to presume that they
all should contribute in the same way to the output of the neurons in
the first layer of the network and therefore the weights have to scale the
source nodes signal properly. Consequently initial guess is done following
this criterium. Then the algorithm results show certain weights trends
that suggest how to refine the guess. Once a good candidate solution is
individuated the boundaries can be restricted around it in order to in-
crease the accuracy of the solution.
It is opportune that the population number related to the first boundaries
guess follows the already stated rule, then as the boundaries are narrowed
it is possible to decrease it obtaining faster convergence of the algorithm.
However it is important to pay attention on guaranteeing a number of
individuals sufficiently higher than the number of coefficients to be found.
Figure 5.9 illustrates the followed procedure.

As concern the single d.o.f. problem, considering the worst combina-
tions of fixed n and ke, the system response to a unit step pointed out a
proportion among the magnitudes of position, velocity and force respec-
tively in the order of 100,10 and 1. Following the explained procedure
the boundaries giving an initial good solution were the ones reported in
table 5.1. Wherever a boundary is not specified the assumed value is the
default ones of the Matlab genetic algorithm.
The resulting coefficients found out with the search method are reported
in table 5.2.
In a second step the boundaries were restricted around this solution, as
table 5.3 shows, to improve the accuracy. The designed structure of the
adaptive system with the final weights is represented in the diagram 5.11.
Figure 5.10 shows the improvement in the system performances with the
coefficients of the final solution with respect to those of table 5.2 taking
as example an environment stiffness of 10N/m.
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Network inputs analysis

Set the initial guess for the weights boundaries
Set the initial population size

GA Weights analysis

Intermediate solution check

OK?

Narrow the boundaries around the found weights
Set a new initial population size

GA

Final solution check

OK?

END

yes

no

no

yes

Figure 5.9: Flowchart of the procedure for the weights boundaries and
population size setting
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Hidden layer Output layer
weights w1k w2k w3k bh w1 w2 w3 w4 bo wf

UB 1500 100 10 - - - - - - -
LB −1500 −100 −10 - - - - - - -

Table 5.1: Starting Upper Boundaries (UB) and Lower Boundaries (LB)
for the weights and biases

Hidden layer

Neuron 1
w11 w21 w31 bh

−1338.19 −50.85 3.08 9.94

Neuron 2
w12 w22 w32 bh

−1479.27 −33.98 −6.09 9.94

Neuron 3
w13 w23 w33 bh

1284.81 43.52 0.22 9.94

Neuron 4
w14 w24 w34 bh

412.88 40.00 0.26 9.94

Output Layer
Neuron

w1 w2 w3 w4 bo wf
1.71 −2.62 3.26 4.13 0.46 −4.37

Table 5.2: Intermediate solution for the network weights and biases
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Hidden layer
Neuron 1 Neuron 2

weights w11 w21 w31 bh w12 w22 w32 bh

UB −1100 −40 5 15 −1300 −20 0 15
LB −1500 −60 0 0 −1500 −45 −10 0

Hidden layer
Neuron 3 Neuron 4

weights w13 w23 w33 bh w14 w24 w34 bh

UB 1400 60 2 15 500 60 2 15
LB 1100 40 −1 0 350 40 −1 0

Output layer
Neuron

weights w1 w2 w3 w4 bo wf

UB 3 1 6 7 3 0
LB −1 −5 0 0 -2 -7

Table 5.3: Refined Upper Boundaries (UB) and Lower Boundaries (LB)
for the weights and biases

Figure 5.10: Comparison between the error response trends of the inter-
mediate and final sets of coefficients with ke = 10N/m
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Figure 5.11: Final network weights and biases for the single d.o.f. system
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5.3 Neural Network structure in the 2 d.o.f.s
system

As for the 1 d.o.f. case, the adopted structure is a Multilayer Feedforward
Neural Network with only one hidden layer made up of 4 neurons. The
source nodes are the position, the velocity and the interaction force of the
end-effector and the output, of course, is again the duty cycle n.

The choice of the inputs for the network is not straightforward since in
the case of the 2 d.o.f.s system many possibilities can be selected. Indeed
it can be decided to work in the base reference frame or in the joint space
or considering some measurements in the first space and the others in the
second one. This latter option could be motivated by the fact that typ-
ically the quantities related to the joints are measured whereas the force
at the wrist can be obtained in the other space. The two reference frames
are linked by nonlinear expressions. As can be easily imagined, this could
lead to a more complex structure requiring an high number of neurons in
order to manage the nonlinearity.
The decision of using the quantities in the base reference frame is mo-
tivated by three facts. First of all, it can be considered as a naturally
extension of the simpler 1 d.o.f system. Then if a more complex manip-
ulator is taken into account, the degrees of freedom related to the joint
space are more than the ones of the end-effector. This means that an
higher number of coefficients in each neuron would be necessary making
the optimization problem harder and longer to solve, even with the same
total amount of hidden neurons. Finally the objective is the control of the
position of the end-effector interacting with the environment, therefore
the Neural Network is facilitated in learning how to behave if it receives
directly the necessary informations. This can be seen observing that with
an equal structure it is easier to obtain better results with this network
than with the one in the joint space.

The followed procedure to determine the number of layers and neurons
per layer is the same already explained in section 5.1.

The proposed Neural Network is equal to the 1 d.o.f. case with a single
layer of 4 neurons and a single bias, an output layer made up of 1 neuron
and a single bias and a final weight that multiply the overall output signal.
In this situation the inputs are 6: position,velocity and force in both x-
direction and y-direction. Therefore the coefficients that the optimization
algorithm has to find become 31. The structure is reported in figure 5.12.
It can be immediately noticed that the addition of another end-effector
degree of freedom lead to an increase of the coefficients independently on
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the number of joints. For instance if a network with 4 hidden neurons
results sufficient, the total weights would be 43 either the manipulator
has 3 or 7 joints.

Figure 5.12: Neural Network adaptive system diagram in 2 d.o.f.s case

In mathematical term, the output of the network can be expressed as in
equation 5.3. wf is again the final weight and y has the same formulation
reported in 5.2. In this case hk is defined as in 5.9, whereas wk and bo are
the weights and output bias.

hk = σ(w1kx+ w2kẋ+ w3kFx + w4ky + w5kẏ + w6kFy + bh) (5.9)

σ is the sigmoid function, wik are the weights and bh is the layer bias.
For the same reasons explained for the single d.o.f. case (see sec. 5.1), the
output of the network passes through a quantizer and a sample and hold.

5.4 Neural Network training in the 2 d.o.f.s
system

The indications emerged in the single d.o.f. analysis were followed for the
training of the 2 d.o.f.s case.
Command positions for the end-effector were given in order to have two
separated step along the direction orthogonal to the wall (for the geometry

77



5 Adaptive system: Neural Network model and training

of the problem see chapter 3). The first step is from 0m to 0.5m and the
other one from 0m to −0.5m.

As regards the stiffness set selection, the attention was concentrated
on the range between 10N/m and 3210N/m in order to have a comparison
with the results of the 1 d.o.f. For the same reasons already explained in
section 5.2 the discretization was done with a step of 200N/m.

The considered fitness function was built as shown in equation 5.8.
Again two reward functions were defined based on the error with respect
to the reference trajectory, as in 5.6-5.7. In this case the impedance rela-
tion that has to be satisfied is the one reported in equation 3.5 in the en-
vironment reference frame. Since neither interaction forces or commands
are considered along the direction parallel to the wall, the error used in the
definition of the reward functions is the error in the trajectory orthogonal
to the wall.

The procedure for the definition of the coefficients boundaries is illus-
trated in 5.9. Therefore an initial magnitude analysis of the inputs was
done and it led to conclusions similar to the single d.o.f. case, i.e. a
relation between position, velocity and force in the order of 100, 10, 1.
Afterwards a further analysis suggested to enlarge a little the boundaries
for the coefficients of the position and velocity. In table 5.4 are reported
the selected boundaries. Once a solution was found, as in the single d.o.f.
case, these boundaries were narrowed around the weights set in order to
improve the quality of the result. The final weights and biases used for
the Neural Network in the 2 d.o.f.s system are reported in 5.13.

Hidden layer
weights w1k w2k w3k w4k w5k w6k bh

UB 1500 1500 1000 1000 10 10 −
LB −1500 −1500 −1000 −1000 −10 −10 −

Output layer
weights w1 w2 w3 w4 bo wf

UB − − − − − −
LB − − − − − −

Table 5.4: Starting Upper Boundaries (UB) and Lower Boundaries (LB)
for the weights and biases
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Figure 5.13: Final network weights and biases for the two d.o.f.s system
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Chapter 6

Results

The main results of the Hybrid System with the addition of the Neural
Network aimed at adaptive strategy are shown in this chapter.
It is illustrated that the proposed solution can achieve the goal of working
in an unknown environment, even if time variant. Moreover the robustness
of the Adaptive Hybrid System is presented.
The results are reported for both the 1 d.o.f and 2 d.o.f.s case.

6.1 Fixed environment stiffness

The goal of this work was the design of an adaptive system capable of
setting n in order to guarantee an error in the reference trajectory as low
as possible interpolating in a proper way between Impedance and Admit-
tance Control behaviors. Indeed different performances can be obtained
in different environments based on the value of the duty cycle n.

In this section the results of the Adaptive Hybrid System, Hybrid
System with optimal fixed n, Admittance Control and Impedance Control
are compared considering the environment stiffnesses ke = 10N/m, ke =
700N/m, ke = 2100N/m and ke = 3200N/m for both the single and two
d.o.f.s systems. For this latter the step command position is considered
in the direction orthogonal to the wall.
It is reminded that the Neural Network was trained over a stiffness range
between 10N/m and 3210N/m with a discretization of 200N/m.

Figures 6.1-6.8 show that in both the single d.o.f. and two d.o.f.s
cases the adaptive solution provides an error response comparable to the
one with the best fixed n both in the extrema and in the middle of the
range; in any case it improves the performance of the pure Impedance
and Admittance Control. The error for the 2 d.o.f.s system is considered
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along the direction orthogonal to the wall where the desired impedance
relation is prescribed. Along the wall the maximum measured error is
around 1mm and it occurs in stiff environment due to the uncertainties
in the compensating gravitational term of the Impedance Control law

It can be noticed that in the single d.o.f. system the n trend varies
with the different stiffness setting up near the best fixed n. Indeed for
ke = 10N/m it remains most of the time equal to 1, then for ke = 700n/m
it moves around 0.8 and so on up to ke = 3200N/m where it assumes a
value of 0.4. On the other hand, for the 2 d.o.f.s system the n parameter
varies starting from 1 in soft environment and then jumping between dif-
ferent values as the stiffness increases. The difference between these two
behaviors underlines the fact that more than one possible solution exists
and the Neural Network can adapt the control system with different duty
cycle time evolution.

The intermediate stiffnesses are selected not in the set used for the
training of the Neural Network in order to prove that the adaptive system
can work properly over the entire considered range and not only in the
cases utilized in the training phase.

For the sake of completeness, in figure 6.9 the joints position evolution
of the 2 d.o.f.s system are reported considering as example the cases of
ke = 10N/m and ke = 3200N/m. Of course their trends are similar to the
end-effector position behavior.
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Figure 6.1: Error responses of the single d.o.f. system to a step
command position from 0 to 0.5m for ke = 10N/m
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Figure 6.2: Error responses of the single d.o.f. system to a step
command position from 0 to 0.5m for ke = 700N/m
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Figure 6.3: Error responses of the single d.o.f. system to a step
command position from 0 to 0.5m for ke = 2100N/m
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Figure 6.4: Error responses of the single d.o.f. system to a step
command position from 0 to 0.5m for ke = 3200N/m
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Figure 6.5: Error responses of the 2 d.o.f.s system to a step com-
mand position from 0 to 0.5m for ke = 10N/m
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Figure 6.6: Error responses of the 2 d.o.f.s system to a step com-
mand position from 0 to 0.5m for ke = 700N/m
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Figure 6.7: Error responses of the 2 d.o.f.s system to a step com-
mand position from 0 to 0.5m for ke = 2100N/m
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Figure 6.8: Error responses of the 2 d.o.f.s system to a step com-
mand position from 0 to 0.5m for ke = 3200N/m
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Figure 6.9: Joints coordinates of the 2 d.o.f.s system to a step com-
mand position from 0 to 0.5m for ke = 10N/m and ke = 3200N/m
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6.2 Time-variant stiffness
Thank to the capability of the Neural Network of selecting a n depending
on the states and the measured interaction force with the environment,
the system can react promptly to changes in the external conditions, even
if they vary suddenly.
Therefore the Adaptive Hybrid System results to be a suitable solution in
case of time-variant environment stiffness, as figures 6.11, 6.13 and 6.15
show. Its error response is compared with the ones of the Impedance and
Admittance Control.

The results in figure 6.11 are obtained considering a stiffness varying
with a certain time law and giving to the system different consecutive
unit steps (see figure 6.10). It can be seen that the proposed solution
can follow the variation of the environment guaranteeing the properties
of an almost zero steady state error and low overshoot in low stiffness
case, typical of the Admittance Control, and an high stability in stiffer
situation, characteristic of Impedance Control.

On the other hand in figure 6.13 a single unit command step is provided
to the controller and the stiffness is made vary following an exponential
law. One more time it can be observed that Impedance Control fails when
the environment suddenly changes becoming softer due to its incapability
in providing a stiff behavior. The Admittance Control instead presents
instability in the stiffer situation since its limits in guaranteeing soft fea-
ture. The Adaptive Hybrid System interpolates these two characteristics
and assures again almost zero steady state error with low stiffness and
stability with high stiffness.
These situations are reported in order to compare their results with the
ones already obtained in previous works on the hybrid system [9][10].

Figure 6.15 shows that the proposed strategy is able to adapt itself to
changes in the environment condition also in the 2 d.o.f.s system. The
error response is computed considering the environment evolution and the
commanded displacement reported in figure 6.14. The command position
is orthogonal to the wall.
Again it can be noticed that the Adaptive Hybrid System can guarantee a
good damping of the response in stiff environment and a very low overshoot
and steady state error in soft environment modifying its features with the
Neural Network.
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Figure 6.10: Time varying contact stiffness ke, command position
x0 and adapted n trend for the single d.o.f. system
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6.3 Robustness analysis

In the previous chapters it was shown that the main differences in the
behavior between Impedance and Admittance Control take place when
delays, uncertainties and uncompensated friction intervene in the system.
For this reason the training of the Neural Network was performed intro-
ducing these effects. Moreover in the training a step command position of
0.5m was used and a stiffness range between 10N/m and 3210N/m was
considered.
In this section the robustness of the Adaptive Hybrid System is investi-
gated simulating conditions outside the training, i.e. taking a stiffness
outside the above-mentioned range, introducing different uncertainties,
delays and friction and giving different command step higher than 0.5m.

In figure 6.16 the error response of the single d.o.f. system in an envi-
ronment with a stiffness outside the defined range is taken into account.
The hybrid system with the Neural Network can guarantee good perfor-
mances even in this situation. It is slightly worse than the best fixed
n case, but only in terms of oscillation during the transient, indeed the
settling time is almost the same. This means that the Neural Network
system is robust to circumstances not foreseen in the design phase.
The same observation can be done observing the behavior of the 2 d.o.f.s
system in figure 6.15. In the first instants the stiffness is 4500N/m and it
can be seen that the Adaptive Hybrid System responds in an appropriate
way guaranteeing a certain damping. In addition, in this case a step com-
mand higher than the one utilized in the training phase was given to the
system, however the controller behaves well.

Figures 6.17-6.20 show the error responses for both the single and
two d.o.f.s cases increasing the uncertainties, delays and frictions with re-
spect to the training condition. As examples, the stiffnesses ke = 10N/m,
ke = 1200N/m, ke = 2600N/m and ke = 3200N/m are considered. Again
the results of the Adaptive Hybrid System, Hybrid System with optimal
fixed n, Admittance Control and Impedance Control are compared. The
values used in these simulations are Td = 2.5ms, m̂ = 0.7∗m, cv = 2Ns/m
and Fc = 4N for the single d.o.f. system. Instead, as regards the two
d.o.f.s case, they are Td = 3ms, M̂1 = 0.7∗M1, M̂2 = 0.7∗M2, Ĵ1 = 0.7∗J1,
Ĵ2 = 0.7 ∗ J2, cv = 5Ns/m and Fc = 2N .
It can be noticed that the adaptive solution is robust when the conditions
differ from the training situation. This property can be attributed to the
generalization features of the Neural Network. The Adaptive Hybrid Sys-
tem continues to carry out its duty and interpolates between Impedance
and Admittance Control correctly giving performance similar to the opti-
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mal fixed n solution. Indeed the settling time is the same and the oscil-
lations during the transient are comparable or sometimes better than the
optimal fixed n response.

time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
-x

re
f (

m
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Admittance

Impedance

n=0.3
n

adapted

time (s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.16: Error responses of the single d.o.f. system to a step
command position from 0 to 0.5m for ke = 5000N/m out of the
training range
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6.4 Specialized training
As last observation, it should be noticed that in the case the environment
stiffness, either variable in time or not, is known, the training can be
specialized obtaining performance higher than the pure Impedance and
Admittance Control embedded in the system and higher than possible
solutions with an optimal fixed n.

For example, figure 6.21 shows the error response of the single d.o.f.
system with a network trained on a stiffness fixed at 1600N/m. It is
compared with the response of the optimal fixed n solution. It can be
seen that the system with the Adaptive Hybrid Control follows better the
reference trajectory.

This result is relevant whenever the environment is time-variant but
known a priori with a certain accuracy or in case of a robot that has to
accomplish different tasks working in different structured environments,
fixed or not. Indeed in this latter situation it would be necessary more ma-
chines due to the different hardware requirements of the Admittance and
Impedance Control. Developing the proposed strategy it could be possible
to have a single robot with one controller capable of facing circumstances
where an Admittance Control should be used and circumstances where an
Impedance Control should be more suitable, just changing the weights of
the network.

Of course also the optimal fixed n solution could be a good candidate in
these situations. The choice between the two strategies should be a trade-
off between the complexity of the controller and the desired performance
depending on the level of knowledge of the environment stiffness.
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Figure 6.21: Comparison between error responses of Hybrid Control
and Adaptive Hybrid Control for ke = 1600N/m
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Chapter 7

Conclusions

The presented control framework is a new solution to the impedance con-
trol problem that continuously switches between controllers with admit-
tance and impedance causality adapting itself to unknown environments
by a continual selection of a proper duty cycle.
The time variant duty cycle allows to decide the correct contribution of
each one of the two control laws. In this way it is possible to interpolate
properly the features between them obtaining very good performance in
different scenarios.

The system exploits a Feedforward Neural Network to adapt the con-
trol action. It gives as output the opportune duty cycle trend as a conse-
quence of the position, velocity and interaction force evolution depending
on the interacting environment.
It was proven that a Genetic Algorithm can be used successfully as opti-
mization method in an offline training phase.

Simulation are performed for a single and a two d.o.f.s systems as first
step for future developments for multiple d.o.f.s cases.
The results also show the robustness characteristics of the system. Its
performance are just slightly affected by uncertainties in the physical sys-
tem modeling, uncompensated friction and delay in measurements. This
capability is related to the generalization feature of the Neural Network
that are able to give good responses even in situation not strictly included
in the training.
The system guarantees very interesting performance in time variant envi-
ronments; this could make the proposed adaptive controller suitable for a
wide range of possible application.

Summing up, the Adaptive Hybrid System Framework seems to be a
promising alternative to already existing impedance control implementa-
tions. It unifies in a single controller the benefits from Admittance and
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Impedance Control; indeed it can improve upon the steady state perfor-
mance of Impedance Control and stability characteristics of Admittance
Control.

The very next step for the development of this approach should be an
experimental validation of the simulated results.
Moreover it should be interesting to apply the presented control strategy
to a real application and compare it with other existing control laws.

As regards the analytical stability analysis, it was done for the simple
system with a fixed duty cycle, in addition a linear closed loop system was
considered. Therefore an extension of the analysis to a nonlinear, multi-
degree-of-freedom closed-loop system could be an useful development.

Then it was seen that a Genetic Algorithm can lead to good results
as concerns the determination of the Neural Network weights. However
due to the problem nature, that can admits more possible solutions, and
the stochastic nature of the method, the process could be slow. A deeper
analysis aimed at understanding how to move towards a precise desired
solution can improve the velocity and efficiency of the training phase.

In this work a physical system that remains in contact with the envi-
ronment was considered. In reality, contact transitions from free motion
to constraint one may occur and they are characterized by impulsive force.
An important goal for future research could be the study of these situa-
tions.

Finally, as already explained, the idea behind the proposed strategy is a
framework capable of interpolating the responses between two control laws
with different causality. In this work simple Impedance and Admittance
Control were used. It could be interesting to investigate the behavior of
the system considering advanced versions of the two controllers embedded
in the hybrid framework.
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