
I M P R O V I N G J A C K D AW : A L G O R I T H M L I N E A R I Z AT I O N ,
S T R E A M I N G A N D V I S U A L I Z AT I O N

federico aleotti

Relator: Prof. Stefano Zanero

Correlator: Ing. Mario Polino

Politecnico di Milano
April 2016

Federico Aleotti: Improving Jackdaw: algorithm linearization, streaming
and visualization, , © April 2016

Cleverness is no guarantee of sensible behaviour.

— Last argument of kings

Assume nothing: you don’t know until you know.
— City of stairs

A B S T R A C T

In a growing malware panorama, automatic analysis systems are be-
coming essential. Jackdaw aims to be a global analysis tool based on
both static a dynamic analysis techniques which extracts high-level
behaviours from malware binaries, operating as an on-line service
to which analysts can submit binaries to be analysed. Furthermore,
Jackdaw is meant to allow the creation of a malware map that makes
possible to visualise and understand the malware evolution in time,
automatically based on the malware analysis results.

My goal consists of improving the existing framework by decreas-
ing the temporal complexity of the analysis from NP to at least poly-
nomial, restructuring the system to work as a stream service and cre-
ating a dynamical, real-time malware map.

v

A C K N O W L E D G M E N T S

My first thanks are for Stefano, who inspired me with his lessons,
who taught me a lot, pushed me when I needed to be pushed and
who was always there when he was needed. He is a great professor
and a great friend.

Not less important in the least, i have to thank my two IT friends:
Daniele and Francesco. Both taught me a lot and helped me through
the most difficult part of my career. They made my study place home.

And finally, i have to thank Mario, who supervised me during my
thesis, had and endless flow of suggestions and steered me on the
right track when I needed it.

Thank you.

vii

C O N T E N T S

1 introduction 1

2 state of the art 5

2.1 Jackdaw 5

2.1.1 Step 1: Data Collection 5

2.1.2 Step 2: Clustering of Taint Information 7

2.1.3 Step 3: Behavior Extraction 7

2.1.4 Step 4: Semantic Tagging 9

3 problem analysis and solution developing 11

3.1 Generalization algorithm 11

3.1.1 Problem analysis 11

3.1.2 Solution development 13

3.1.3 Complexity proof 22

3.2 Batch to stream 28

3.2.1 Problem analysis 29

3.2.2 Solution development 30

3.3 Visualization 33

3.3.1 Problem analysis 33

3.3.2 Solution development 36

3.3.3 Implementation 37

4 experiments 43

4.1 Generalization algorithm testing 43

4.1.1 Graph variety 43

4.1.2 Solution quality 45

4.1.3 Performance testing 48

4.1.4 Threshold testing 51

4.2 Batch to stream testing 55

4.2.1 Memory solution testing 55

4.2.2 Time solution testing 55

4.3 Visualization testing 56

4.3.1 Visualization test 56

4.3.2 Visualization scalability test 57

4.3.3 Scalable visualization algorithm 57

4.3.4 Scalable visualization testing 58

5 conclusions , limits and future works 61

5.1 Conclusions 61

5.2 Limits and future works 62

bibliography 63

ix

L I S T O F F I G U R E S

Figure 2.1 Taint example 6

Figure 2.2 Semantic tagging 9

Figure 3.1 Sample graphs 16

Figure 3.2 Clustering optimisation 32

Figure 4.1 Test 1: against known solution 46

Figure 4.2 Test 2: against known solution 46

Figure 4.3 Test 3: against empty solution 47

Figure 4.4 Test 7: manual examination 49

Figure 4.5 Test 7: manual examination 50

Figure 4.6 Test 7: manual examination 51

Figure 4.7 Test 7: manual examination 52

Figure 4.8 Threshold testing: flatness 53

Figure 4.9 Threshold testing: best threshold value 54

Figure 4.10 Test 13: Visualization 56

Figure 4.11 Highly shared behaviour 57

Figure 4.12 Test 14: Visualization scalability 58

Figure 4.13 Test 15: scalable visualization 60

Figure 4.14 Test 15: Detail 60

L I S T O F TA B L E S

Table 3.1 Linear node counting 18

Table 4.1 Test 8-10: Speedup w.r.t previous algorithm 51

Table 4.2 Test 11: Memory performance 55

Table 4.3 Test 12: Clustering performance 55

L I S T I N G S

x

1
I N T R O D U C T I O N

Malicious software, often referred to as malware, is one of the major
threats to computer systems. Malware has become the main mean
through which cybercriminals infect computer systems to gain access
to sensitive information, turn computer into bots, and monetize by
re-selling the computational and networking capabilities of infected
computers for malicious purposes (e.g., spam sending, malware dis-
tribution, denial of service). The evolution of malware is a tangible
effect of the emergence of a profit-driven under- ground economy.
There are even real pay-per-install marketplaces where malware au-
thors can pay to have their malicious software installed on victim
machines, via social engineering, spam, and other infection vectors
[4].

The industry of malicious software is evolving and new malware
samples are frequently developed and deployed. In addition, the ex-
isting samples are constantly updated. Hence, a wide range of mal-
ware variants are spread around the world, and every day anti-malware
companies receives huge amounts of new malware samples that must
be analyzed in order to create signature for their detection. A signa-
ture is a distinctive feature of a malware sample (e.g.m sequence of
bytes). However malware authors became skilled to evade signatures,
changing their malicious code to avoid detection. For this reason, it
is very important to analyze each malware sample to observe their
behaviors. A behavior is a sequence of events (e.g., spam sending,
adding a rule to a firewall, download and execute a file). An analyst
can define and name behaviors manually (e.g., as a sequence of func-
tion names, or system events). Unfortunately, there are not enough
analysts to dissect all these malicious programs, so there is a need to
automate analysis procedures and increase malware detection rate.

The two main techniques to analyze (malicious) programs auto-
matically are static and dynamic analysis. Static analysis works on
the code (e.g., machine, assembly, source). It has the advantage of
reaching high code coverage and scalability, but code obfuscation or
packing may render it ineffective. Obfuscation techniques aim to con-
fusing the executable code to make it difficult to analyze (e.g., to
disassemble) while preserving its functionality. Packing techniques
encrypt or compress the executable code. Dynamic analysis observes
the execution flow of a running program. Usually, dynamic analy-
sis techniques are used to search known malicious behaviors into a
program. These techniques are effective even if the malware adopts
obfuscation or packing. However, their code coverage is low, as pure

1

2 introduction

dynamic analysis techniques only record the events observed during
execution. Indeed, some evasive malware families change their behav-
ior when executed in a monitored or debugging environment. Thus,
one of the main problems in malware analysis is to automatically
define interesting (malicious) behaviors.

Jackdaw is a tool to analyse malware that uses a novel approach to
extract behavior specifications though a combination of static and dy-
namic analysis techniques. In a first phase, Jackdaw identifies behav-
iors, expressed as groups of APIs invoked by the malware. To this end,
Jackdaw applies a clustering procedure on data obtained by static
analysis, exploiting taint dependencies obtained through dynamic
analysis. Then, Jackdaw builds a model of each cluster by means of
representative API functions. The resulting models are the extracted
behaviors. Last, Jackdaw attaches a semantic meaning to these be-
haviors. To this end, Jackdaw crawls StackOverflow (a questions-and-
answers platform on a wide range of topics in computer program-
ming) to link function names and semantic tags. Using this knowl-
edge, Jackdaw selects the most relevant tags for each behavior and
assigns a name to it.

The goal of this thesis is to bring Jackdaw on a whole new level:
from malware analysis tool to be used by single analysts, to a shared
tool to be used by a community. Jackdaw will be restructured in order
to work as a streaming service so that analysts could just submit their
malware samples and obtain the extracted behaviors. Also, Jackdaw
will benefit from the amount of data it will receive since it will allow
it to perform better clustering and better generalisation.

But in order to do that a lot of performance problems will have to
be addressed, starting from the algorithm used in the generalisation
step, which is currently an np-hard problem but needs to be reduced
to polynomial time complexity in order to manage a greater input
flow. This will be the most challenging part of this work: develop a
new algorithm to generalize the API calls graphs in polynomial time,
possibly a low-order-polynomial time. Generalisation is currently the
most time-consuming step, so complexity needs to be reduced in or-
der to allow Jackdaw to work as a streaming service. Details in the
algorithmic problem can be found in section 2.1.3. Another big prob-
lem will be data representation, since a lot of additional data will
need to be loaded thus increasing the spatial complexity1.

In order to convert Jackdaw into a streaming service the whole
structure must be reviewed. This will require a deep understanding
of the program structure, capability to see the big picture and to re-
shape Jackdaw in order to keep the data necessary to add new analy-
sis results to an already existing panorama of clusters and extracted
behaviours.

1 Clusters get bigger the more samples are submitted, and need to be loaded every
time the clustering step occurs

introduction 3

Finally, the huge amount of data available to this new Jackdaw
will be exploited in order to build a malware map, i.e. a framework
that will allow analysts to see the overall results of Jackdaw analysis:
the relations between malware implementations and extracted beha-
viours via fps. Building a visualization infrastructure will be also a
conceptual challenge: how can such a huge amount of data be rep-
resented in an undestrandable way? And it would be better if that
map could evolve as new malware samples are submitted, instead of
being periodically rebuilt. This will mean to create a live map, which
is an additional challenge.

2
S TAT E O F T H E A RT

In this chapter a brief review of the literature will be provided, and
the details of Jackdaw’s functioning will be presented.

2.1 jackdaw

Jackdaw is inspired by previous attempts to automatize the malware
analysis process, and its primary goal is to be a fully automated tool
for malware analysis.

For example, The work presented by Comparetti et al. [8], called
Reanimator, can find different implementations of the same behavior
to unveil the functionalities that are not exhibited during dynamic
analysis by a malware, but it needs the behaviors to be manually
specified by an analyst.

Along the line of [8], Lindorfer et al. [5] observe that malware au-
thors regularly update their software in order to beat defenses, im-
prove their capabilities or change their business model. For this pur-
pose, the proposed system, called Beagle, regularly downloads new
versions of the same malware, then compares new versions with the
old ones through a series of static and dynamic analysis techniques
in order to track its evolution. What is interesting is that Beagle needs
manually-defined rules t identify behaviors.

Jackdaw, on the contrary, extracts behaviors in a fully automatic
way, operating in four steps. In this section will be provided details
on each step, highlighting which improvements are intended to be
introduced by this work.

2.1.1 Step 1: Data Collection

To extract fingerprints and API functions call from raw data for each
instance of a malware only the taints that contain fingerprints must be
selected. At the taint level (Figure 2.1), the interest is in API functions,
with their parameters, and fingerprints.

Extracting fingerprints is simple and for each fingerprint in a taint
Jackdaw only takes the hash that represents it as described in [3].
Instead, a normalization process is needed in order to extract API
functions.

5

6 state of the art

Figure 2.1: This is an example of taint that shows parameters propagation
and API function names cleaning.

2.1.1.1 API Function Name Normalization

For API functions extraction, the namespace of the functions must be
taken into account carefully. With namespace is meant that, according
to the Windows API documentation [7], suffixes such as ’A’,’W’,’Ex’
in the function name specify the mode in which execute the call (in
particular they represent ANSI, Unicode and the win32 version of
each function that could add specific parameters), without changing
the semantic. These suffixes are not important for Jackdaws’s analysis,
because the API functions must be generalised as much as possible
in order to create our behaviors, and then only in the semantic of the
API functions matters.

Example: ’CreateEvent’ function (that creates or opens a
named or unnamed event object) has the three form ’Cre-
ateEventA’ (ANSI), ’CreateEventW’ (Unicode) and ’Cre-
ateEventEx’. All of them have been renamed as ’CreateEvent’

Similarly, there are also prefixes such as ’WSA’ and ’AFD ’ that must
be discarded in this analysis, because both of them refer to the same
windows socket API.

Example: ’socket’ / ’WSASocket’ are the same function
that creates a socket that is bound to a specific transport
service provider. Jackdaw represents it as ’socket’.

For each function, Jackdaw also extract the parameters, each divided
in name and value. The problem here is that parameter names were
not always meaningful, in the sense that in many cases the name of
the parameter is generic like ’ObjectAttribute’ and does not give a
semantic of that parameter. In other cases they represent exactly the

2.1 jackdaw 7

meaning of the parameters, e.g., ’ForeignPort’ for the API connect
represents the parameter with which specify the port of the connec-
tion.

2.1.1.2 Cuckoo

The fps extraction is provided by Cuckoo [2], a malware analysis sys-
tem able to perform exactly the operation described above.

2.1.2 Step 2: Clustering of Taint Information

The goal of this step, is to group taints by behavior similarity. Jackdaw
can exploit similarity based on colored CFG [3]. This representation
of the code takes care of structure of basic blocks and system calls in
it. So these fingerprints have inside all the information that Jackdaw
needs to have a meaningful clustering. To this end Jackdaw uses a fast,
one-pass algorithm for dynamic clustering of an input stream of data
(Algorithm 2.1). It associates an item to the cluster with the highest
similarity. The similarity among an item and a cluster is computed
with single linkage policy. It is defined a threshold (s) of similarity
that determines if an item is enough similar to be inserted in a cluster
or if it has to be considered as a new cluster. In order to use Algorithm
2.1, a similarity measure is needed. From the result of our validation
[9] has been concluded that Jaccard Similarity (2.1) is well suited for
Jackdaw’s purposes.

J(A, B) =
|AT

B|
|AS

B| (2.1)

Equation 2.1 is computed on fingerprints. Each taint is viewed as a
set of fingerprints.

2.1.3 Step 3: Behavior Extraction

In this phase Jackdaw extracts rules that characterize each cluster
obtained with the previous step.

2.1.3.1 Most Frequent Rule API Functions Extraction

This is the first heuristic Jackdaw uses in order to extract the API
functions that represent a cluster. It is based on the frequency of the
API functions, i.e., an API is representative of a cluster if it appears
more than n percent of taints belonging to that cluster. It has been
chosen n = 0.70 empirically, as a result of an experiment [9]. The base
shape of MFR is a conjunction of API fun

B1 = API1 ^ API2 ^ · · · ^ APIn (2.2)

8 state of the art

Algorithm 2.1 Clustering algorithm based on ECM [10]: s is max of
Jaccard similarity between t and all taints in the cluster

Input: taintset, clusterset={c[1..l]}

for all t in taintset do

for i in {1..l} do

s[i] = s(t,c[i])

end for

i* = argmax(s[i])

if s[i*] > threshold then

c[i*] .add(t)

else

new c[l+1]

c[l+1].add(t)

clusterset.add(c[l+1])

l = l+1

end if

end for

The Equation 2.2 means the behavior of the taint is B1 if each APIx is
in the taint.

2.1.3.2 Propositional Logic Rule API Functions Extraction

There can be API functions that act in the same way but have different
names.

The basic shape of PLR is like MFR, but PLR also exploits the cor-
relation between API functions presence in taints to identify system
calls that have same effect, with the assumption that cluster contains
only taints with the same behavior.

PLR heuristic uses a logic expression with APIs as propositions to
define a behaviour, allowing thus more expressive power in defining
it for example including conditional APIs, i.e. APIs with different
names that act in the same way.

2.1.3.3 Improving generalization

What MFR and PLR both fail to keep into account are the relations
between API calls into the same cluster: a cluster is not a set of API
calls, but a graph of API calls connected to each other by directed
graphs that represent the data flow between them, and this informa-
tion should be kept into account in order to obtain a better general-
isation and thus a more precise behaviour extracted. Furthermore, it
doesn’t rely anymore on the assumption that a cluster contains only
taints with the same behavior, which is not easily proved.

A few steps in this directions were already taken, but the problem
is that generalising graphs essentially means to extract the maximum

2.1 jackdaw 9

Figure 2.2: This is an example of posts as result of ”connect port 25” re-
searches. Here is highlighted the elements that Jackdaw uses for
its analysis.

common subgraph, which is notoriously an np-hard problem. One
of the goals of this thesis will thus be to develop an algorithm to
generalize the API calls graphs of each cluster in polynomial time.

2.1.4 Step 4: Semantic Tagging

Jackdaw uses StackOverflow, a famous question and answer site for
programmers, to allows crawler to extract semantic data related to the
generalized API calls: for each element of the power set of API func-
tions of each behavior the crawler searches StackOverflow questions
that contain that element.

Example: this is an example of behavior: DnsQuery, Socket,
LoadLibrary, Connect(port:25,IP: public) The crawler searches
each element of that behavior and all its subsets, like (Dns-
Query,Socket), (Socket,Connect(port:25,IP: public)), etc.

From each post (referring to Figure 2.2) title, body and tags are ex-
tracted. Then Jackdaw analyses post tags. A tag, according to Stack
overflow definition,"is keyword or label that categorizes a question

10 state of the art

with other, similar questions. Using the right tags makes it easier for
others to find and answer your question".

Jackdaw extracts from all the posts related to a behavior tags (Fig-
ure 2.2) and give to them a vote. Finally, it applies majority votes
technique to determine the tags that represent hints.

A score is computed for each post in order to understand if it’s a
post that is really related to that specific API or not. In order to do
that, three list of words have been created. These lists represent:

• Interesting words: a positive score is given to the post for each
word of this list contained in it; this list contains words like
windows,winapi that suggest that post is related to Windows
API.

• Trifling words: a negative score is given to the post for each
word of this list contained in it; this list contains words like
php,python.. that means that the post is related to a specific
programming language and not to the API.

• Blacklist: in this list have been put the words that is not interest-
ing having into the hints list, because they do not describe the
API.

Given those lists, the score of the post is computed as the sum of
points collected by itself tags. A post is marked as important if it has
a positive (greater than or equal to zero) score. Thus Jackdaw weights
each tag with the post score as shown:

tagScorei,j = (postScorei*
1
n
)*isTagInPosti,j

where isTagInPosti,j 2 0,1 represents if the post ith contains the tag
jth and n is the number of posts related to that behavior; the vote for
each tag is computed as the sum of tag score related to that behavior
as below:

tagVote =
n

Â
i=1

tagScorei,j

where n is again the number of posts related to the behavior.

3
P R O B L E M A N A LY S I S A N D S O L U T I O N
D E V E L O P I N G

In this chapter the specific problems of this work will be detailed and
analyzed, and the solution development will be reported step by step.

3.1 generalization algorithm

The first problem to be solved is how to perform a better generaliza-
tion of the API calls graphs: after clustering on the FPs, each cluster
is a collection of API calls graphs, theoretically similar to each other.
It is necessary to generalize this collection in order to isolate the API
calls that better characterize the cluster. The problem is, thus, a com-
mon subgraph problem between all the graphs of the cluster. The
common subgraph problem is a well known problem in information
technology, and not an easy one: it is a renowned NP-hard problem.

3.1.1 Problem analysis

In this section the problem of generalization will be detailed and an-
alyzed.

The goal is to find the maximum common subgraph between a
bunch of graphs, keeping into account a subgraph tolerance. The first
thing that must be defined is what is the maximum common sub-
graph. With maximum common subgraph is intended the subgraph
with the highest number of nodes and edges among common sub-
graphs. But what if this subgraph is not connected, i.e. it’s composed
by two subgraphs? This case needs to be kept into account, thus the
common subgraph is a multigraph

approximate solution The goal consists not only in solving
the problem of generalization, but especially in doing it in polyno-
mial time because a higher temporal complexity time is too much for
the program to process the expected workload. The solution will thus
be an approximate one and, if possible, it should be a low-order poly-
nomial one, since we expect a lot of graphs in each cluster and each
graph has a lot of nodes.

The temporal complexity should not be measured w.r.t the num-
ber of graphs, because graphs are complex objects often made of a
large number of nodes, which could be processed several times each.
Thus, a temporal complexity based on the number of graphs would
be deceiving.

11

12 problem analysis and solution developing

The temporal complexity would be better defined considering the
number of edges, as it is usually done with graphs, but such a com-
plexity would not consider node operations. The complexity will thus
be defined on the total number of nodes, i.e. adding up the number
of nodes of each graph, plus the total number of edges, i.e. adding
up the number of edges of each graph.

subgraph tolerance Since the clustering is made on the FPs,
and the generalization is performed with regard to the API calls, it is
possible to find in some clusters an API graph which is really differ-
ent from the others in the cluster. The probability of this is expected
to be low, since the whole work is based on the assumption that FPs
are strongly related to the correspondent API calls, but the possibil-
ity needs to be considered, since a single different graph in a cluster
can produce an empty common subgraph. In order to address this
problem a subgraph tolerance must be introduced: the common sub-
graph needs to be computed excluding a small percentage of graphs
from the cluster graphs. However, excluding graphs may still be not
enough: some graph features can be common features between the
most of the graphs in the cluster, but not all, and this features can
be spread non homogeneously between the graphs. Let’s suppose we
have five graphs: 1, 2, 3, 4 and 5. Feature A is common between 1, 2,
3 and 4. Feature B is common between graphs 2, 3, 4, and 5. Feature
C is common between 1 and 2. Which features should be included
in the common subgraph, considering a tolerance of 80%? Feature A
and feature B, because they’re shared between the 80% of the graphs.
But this cannot be achieved by simply removing the 20% of the graph,
i.e. one graph. Thus, the tolerance must be considered explicitly while
building the common subgraph: each node must be included in the
common subgraph if and only if it’s shared between at least the 80%
of the graphs, and the same for the edges.

existing solutions The first step toward finding a solution to
the generalization problem has been analyzing existent ones. The real
problem in doing this was the subgraph tolerance, since it is not
commonly addressed in solving the common subgraph problem. The
most promising paper is Mining Significant Graph Patterns by Leap
Search [11]. The algorithm proposed has very hight time complexity,
too hight to be used, but the paper provided an interesting insight:
the main idea was to reduce the number of the graphs to be checked
in order to reduce time complexity.

We used this idea in our own solution.

problem analysis on generic graphs In order to work on
graphs, a representation system must be adopted. Graphs are usually
defined as a set of nodes and a set of edges, where each edge connects

3.1 generalization algorithm 13

two nodes. Viewing graphs as sets opens up an interesting perspec-
tive: operations on sets are fast, polynomial operations, so why it’s
so complex to operate on graphs? The problem is in the edges: each
edge point to two nodes, thus each edge can be seen as a set of nodes,
but a single node can be contained in multiple edges. Also, nodes
and edges are indistinguishable from each other, making a matching
between two graphs a really hard operation. The real problem emerg-
ing from this analysis is the topological information: if you consider
the graph just a set of nodes and edges not linked to each other, the
problem becomes simpler by some orders of magnitude.

problem analysis on specific graphs Since the graphs the
algorithm need to generalize are not generic graphs, but specific API
call graphs deriving from the Cuckoo analysis, it is worth to analyze
a sample of them to verify if some simplifying assumption can be
made. From this analysis two main features emerged:

• In API calls graphs each node is thus characterized by a label,
containing the name of the corresponding API call, and some
attributes with the API call parameters.

• The API calls graphs have a relatively low number of edges w.r.t
the number of nodes.

3.1.2 Solution development

In this section a solution will be developed basing on the key elements
emerged from the previous section’s analysis.

defining a tolerance threshold Defining a threshold for
the subgraph tolerance is not an easy task: how can a fitness function
be defined for the common subgraph depending on the tolerance?
Fortunately, if our assumption is correct, i.e. there’s a strong correla-
tion between FPs and API graphs, the number of “strangers” in the
graph population will be small. And if this number is small, even if
a bunch of correct graphs are excluded, generalization shouldn’t be
lost in the common subgraph, since the features are almost univer-
sally shared.

Thus, the precise value of the threshold is not so rele-
vant provided that a threshold exists (Assumption 0).

basic solution idea : pruning The operation that must be per-
formed on the graphs can be viewed as a search for the maximum
common subgraph into the space of the possible subgraphs. In order
to find a possible subgraph, a search into the space of possible graphs
obtained using nodes and edges from the graph population must be
performed.

14 problem analysis and solution developing

As seen into the Mining Significant Graph Patterns by Leap Search
paper, reducing the search space is the key to reduce complexity.
From artificial intelligence, the easiest way to perform a search in
some space with low complexity is to perform some sort of pruning.

Pruning is an operation usually performed on search trees, which
decides, basing on some heuristic, that some branches need no further
exploration, for example because you can prove that any result found
exploring that branches is suboptimal. In order to prune effectively
an heuristic is needed to accept or discard candidates, and it must
be a low complexity one. Furthermore, this heuristic must keep into
account the subgraph tolerance.

the candidates generation problem The solution idea is to
apply a pruning heuristic to the common subgraph search space, i.e
recursively reducing the number of possible candidates to be the max-
imum common subgraph, starting from all subgraphs of all graphs
as candidates.

To further reduce the time complexity, instead of explicitly gener-
ating the candidates the pruning concept is applied to the original
graphs, removing nodes and edges that can’t be in the maximum
common subgraph, and further reducing time complexity. Then the
pruning can also be applied to the whole graphs which subgraphs
cannot be the maximum common subgraph, removing them from the
search space. So the goal is now to find an heuristic to determine if
a node can be included in the solution or not, and the same for the
edges. And then an heuristic to determine if a graph can be declared
certainly not part of the solution, so that we can reduce the number
of graph to be pruned.

heuristic idea 1 If graphs are represented as a set of nodes and
a set of edges, it is straightforward to see that the common subgraph
must have as nodes the intersection of the sets of nodes. We do not,
of course, perform a topological match since the complexity is NP.
Instead, we perform a match on API labels (if more than one node in
a graph can have the same label, we consider them indistinguishable).
With this heuristic all the nodes which label is not in the intersection
of node label sets can be pruned from each graph, along with all
its edges. To keep into account the subgraph tolerance we adjust the
definition as follows:

“A node label is in the intersection if it appears in at
least the threshold percent of the graphs in the cluster.”

In this way only the nodes which labels are in the intersection are
kept.

heuristic idea 2 Similarly, we can quickly prune edges based
on the labels of the nodes they connect. Since edges are directional,

3.1 generalization algorithm 15

we use the concatenation of the node labels to represent the edge
label, and then apply the same reasoning of heuristic 1 to edges: an
intersection of edge labels can be defined, keeping into account the
subgraph tolerance, as:

“An edge label is in the intersection if it appears in at
least the threshold percent of the graphs in the cluster.”

heuristic idea 3 Heuristics one and two prune graphs by re-
moving all edges and nodes that are not part of the intersection. Still,
an arbitrary number of nodes and edges remains, with no way to
decide which ones to keep. The problem is evidently the lack of topo-
logical information, so an heuristic that incorporates some topolog-
ical information must be found, even if it means to sacrifice linear
complexity.

We tried using specific features of the cluster’s graphs, instead of
considering the graphs as generic. In the cluster’s graphs the edges
are directed, and this fact can be used to describe topology by simply
representing a father-son relationship between nodes. Exactly as be-
fore, the problem is how to match nodes between graphs in order to
understand which node has to have which child. The API label can
be used to partially solve this problem: a count of the child nodes
can be kept for each node label. For example, considering graph (a)
in Figure 3.1, A-nodes have a total of 1 child of type A and 3 child
of type B, while B-nodes have a total of 1 child of type A and 1 child
of type B. This information can be used to compute the number of
child of each node label that the common subgraph must have, and
then this number can be used to exclude graphs that have less child
than the solution, since the solution can’t be included in them. The
problem is that this information cannot be used to prune graphs, and
also the topological information contribution is really low, because,
for example, graph (b) in Figure 3.1 has nothing to do with the graph
above, still the child count is the same exact as before.

A further improvement of this heuristic can be obtained by repre-
senting child not with their total number but with a set containing
the number of child for each node label. Taking graph 1 as an ex-
ample, A-nodes would have {1,0,0} child of type A, and {0,2,0} child
of type B, while B-nodes would have {1,0,0,0} child of type A and
{0,0,1,0} child of type B. Confronting it with graph 2, which A-nodes
have {1,0,0} child of type A and {2,0,0} child of type B, and which
B-nodes have {1,0,0,0} child of type A and {0,1,0,0} child of type B, it’s
evident that the only difference is in the order, i.e. the topological dis-
tribution, of the child. Even though an univocal ordering of the child
can be introduced, like the one obtained by exploring deep-first the
graph, the problem of finding the root node remains: in the examples
simple trees have been used for simplicity, but there’s no guarantee
of the cluster graphs being trees. So the child computation should

16 problem analysis and solution developing

(a)

(b)

Figure 3.1: Even if the two graphs are notably different, the label count is
the same for each one of them.

3.1 generalization algorithm 17

be repeated for each possible root node, increasing significantly the
complexity. (And this excluding the case, possible but not present in
the sampled graphs, of not having any root node, i.e. not having a
node without incoming edges).

It’s evident that the more topological information is included, the
highest the complexity becomes. So the problem becomes a trade-
off between complexity and topological information. Even worse, the
topological information gain upon raising the complexity is very low.
In order to define a tradeoff we would need to switch to an experi-
mental approach, but doing that will mean define a quality measure,
which is not an easy task.

Before moving to the experimental phase, we decided to try to
exploit the topological information already available, implicitly con-
tained in the solution candidates. The main problem in exploiting
this fact is that an heuristic to prune nodes or edges from our candi-
dates is not available, except for the first two. But heuristics to prune
graphs from the search space can be created, as proved with heuristic
3. So we tried to build an heuristic able to isolate a single candidate
by pruning graphs from the search space.

heuristic 4 We have to find an heuristic to quickly exclude a big
amount of graphs. Even better if that heuristic could just pinpoint the
right candidate among the others.

The first problem is that the common subgraph is not included in
every single cluster’s graph, because of the subgraph tolerance, so
we must find a way to exclude all the graphs that cannot contain the
solution.

In fact, the common subgraph could be fully contained in no graph,
but let’s assume for a moment that there is at least one graph which
fully contains the common subgraph. This assumption will be re-
ferred as Assumption 1.

The easiest way to do that is to compute the number of nodes of
the common subgraph by counting the nodes of all graphs and se-
lecting the lowest number after considering the subgraph threshold.
Then, all the smaller graphs can be deleted. And this process can be
repeated for edges too. This idea can be improved by considering
the information obtained by applying heuristic 1 and 2: instead of
computing the total number of nodes of the common subgraph, we
compute the number of nodes of the common subgraph for each node
label. (Heuristic 1 already needs to scan the nodes in order to com-
pute which node labels have to be pruned). The subgraph threshold
is considered by computing for each graph the total number number
of nodes with that label, and then choosing among these numbers the
highest number which relative frequency is at least equal to the sub-
graph tolerance threshold. Unfortunately this heuristic can be used
to prune graphs but not nodes, because even if a graph is known to

18 problem analysis and solution developing

have too many nodes labeled for example A, there is no way to decide
which one to prune and which one to keep.

The really interesting point is that this heuristic can be applied in
linear time too (w.r.t the number of nodes): with a single scan of all
the nodes it is possible to fill in a list, for each graph, with all node
labels, and for each label progressively increment the node counter.
An example of such a table can be found in Table 3.1.

Graph1 Graph2 Graph3

Label A 2 0 3

Label B 5 6 4

Table 3.1: This table can be computed with just a single scan of the nodes of
all graphs, i.e. in linear time.

The final operation of extracting the number of nodes for each label
requires only to sort the number of nodes of each graph for that label,
and since it’s an integer sorting, it can be performed as a counting
sort, keeping the complexity linear.

Again, as with nodes, the number of edges with each label that
must be part of the intersection can be computed. The process is
identical to the one presented for nodes, so the details will not be
provided. As before, the whole operation can be made in linear time,
this time w.r.t the number of edges.

applying heuristic 4 Heuristic 4 is able to determine the num-
ber of nodes and edges that the common subgraph must have, for
each label, keeping the subgraph tolerance into account. This heuris-
tic need to be used to isolate the most-promising candidate among
all pruned candidates. In order to do that, all graphs which have a
number of nodes or edges smaller than the computed one, even if for
only one label, are deleted. That done, the remaining candidates can
either have the exact number of nodes and edges for each label, or
more than that. Now it must be remembered that, with the previous
assumption (Assumption 1) the common subgraph is surely fully in-
cluded in at least one graph. So if there is one and only one candidate
which has the right number of nodes and edges for each label, and
if enough graphs from the total population have been excluded to
represent the whole subgraph tolerance (Assumption 2), that graph
must be the common subgraph. If, instead, all the remaining graphs
have more nodes or edges than the solution in at least one label, or
there is more than one distinct candidate, with the exact number of
nodes and edges, a way to isolate the common subgraph is needed.

Now we need an heuristic to extract the common subgraph from
the common subgraph between candidates. A possible solution would
be to perform the perfect intersection (since assumption 2 is assumed
to hold and thus the subgraph tolerance has already been fully taken

3.1 generalization algorithm 19

into account) between the remaining graphs, but this is an NP opera-
tion. To improve that, since the complexity of the intersection cannot
be reduced, the number of elements must be kept as low as possi-
ble. Thus, the intersection could be performed only between the two
smallest graphs among the survivors: it would still be NP-complex,
but it would be performed on fewer elements. Then the intersection
could be tested to see if it was the only one graph with the right
number of nodes and edges for each label, and if not the intersection
could be repeated with the next smallest graph.

However, what is the probability of the smallest graph being so dif-
ferent from the solution? Since it is the smallest and the solution is
surely included in it, it is reasonable to suppose that the error commit-
ted in choosing it is small (Assumption 3). Of course this will need
to be experimentally verified, but if it works then the algorithm is
completely linear in time.

discussing assumptions Now that a scratch of solution has
been found, the assumptions made need to be discussed. Assumption
1 is the most demanding:

“there is at least a graph which fully contains the com-
mon subgraph”.

This would be undeniably true if the subgraph tolerance threshold
was 1, i.e. the perfect common subgraph. Since it is not, but it would
probably have a value of around 80%, this assumption would still be
reasonable only if the subgraph tolerance applied only to graphs (i.e.
excluded only some graphs instead of specific features): once that 20%
of graphs has been excluded, the common subgraph with subgraph
tolerance reduces to the perfect common subgraph.

Now, the point is that if the percentage of graphs excluded by the
graph pruning of heuristic 4 is large enough to represent the sub-
graph tolerance, the common subgraph can be found by performing
the perfect intersection among the remaining graphs, which is exactly
the case discussed above implying that assumption 1 holds.

And since the assumption that states:

“the percentage of graphs excluded by the graph prun-
ing of heuristic 4 is large enough to represent the sub-
graph tolerance”

is assumption 2, the bottom line is that assumption2 => assumption
1, i.e if assumption 2 holds, then assumption 1 holds too.

Now let’s analyze assumption 2, which states that the percentage
of excluded graphs due to the pruning (the graphs that become too
small after the pruning to be possible candidates for the solution)
is such that the remaining graphs, in percentage, are equal or fewer
to the subgraph tolerance threshold. (e.g. if we have a population

20 problem analysis and solution developing

of 100 graphs in the cluster, and the threshold is 80%, assumption 2

states that at least 20 of that graphs are excluded due to the prun-
ing). Of course this cannot be proved, because if we had 100 identical
graphs, none would been pruned and thus excluded. But the inter-
esting property that emerges from the definition of assumption 2 is
that it depends on the subgraph tolerance threshold. And it was pre-
viously shown that is reasonable to assume that the threshold value
is not really important (assumption 0), as long as the threshold ex-
ists (and it’s > 50%, for obvious reasons). Then, if the threshold value
is not important to the quality of the solution, it’s straightforward
that if the pruning excludes at least some graphs, a threshold can
be defined such that the percentage of surviving graphs is equal or
less than this threshold. And assuming that the pruning excludes
some graphs means that some node or edge labels are not commonly
shared among all graphs, which is reasonable and also can be easily
tested by looking at some sampled graphs. So, provided that there
is a certain variety in the graphs, assumption 0 => assumption 2 =>
assumption 1.

the final solution Provided that assumption 0 holds, and that
there is a certain variety in graphs, which will be proved experimen-
tally since it’s not possible to prove them theoretically, the solution
algorithm can now be detailed.

Once the cluster graphs have been loaded, each node must be
scanned in order to build a table like the one detailed in heuristic
4. This table will be used to compute the number of nodes the com-
mon subgraph must have for each label. Then, for each node label
that has a count of 0, i.e. must not be included in the solution, each
node with that label in each graph will be deleted.

Algorithm 3.1 Node counting

#count the number of nodes each graphs has, for each node

type (associated api)

nodeCounter = dict()

nodeCounter[’ total ’] = collections.Counter()

for g in graphs: for n in g.nodes():

if getApi(n) not in nodeCounter:

nodeCounter[getApi(n)] = collections.Counter()

nodeCounter[getApi(n)][str(id(g))]+=1

#count how many nodes of each type the solution must have

solutionNodes = collections.Counter()

for s in nodeCounter.keys():

solutionNodes[s] = Numberize(graphs, nodeCounter[s],

threshold)

3.1 generalization algorithm 21

This process will be repeated step by step for edges too, as detailed
in heuristic 4.

Algorithm 3.2 Edge counting

#count the number of edges each graphs has, for each edge

type (the type of an edge depends on the type of the

nodes it connect and its direction)

edgeCounter = dict()

edgeCounter[’ total ’] = collections.Counter()

for g in graphs:

for e in g.edges():

if (getApi(e[0])+getApi(e[1])) not in edgeCounter:

edgeCounter[(getApi(e[0])+getApi(e[1]))] =

collections.Counter()

edgeCounter[(getApi(e[0])+getApi(e[1]))][str(id(g))

]+=1

#count how many edges of each type the solution must have

solutionEdges = collections.Counter()

for s in edgeCounter.keys():

solutionEdges[s] = Numberize(graphs, edgeCounter[s],

threshold)

Algorithm 3.3 This function extracts from a list of integers the highest
number in the threshold percent of the list’s items

def Numberize(graphs, counter, threshold):

#transforms the counter in a list

myList = list()

for g in graphs:

myList.append(counter[str(id(g))])

counting_sort_reversed(myList)

#find the % and return results

return myList.pop(int(round(len(myList)*threshold) -1))

Each graph’s number of nodes and edges will be checked, for each
label, against the number of nodes and edges of the common sub-
graph. If at least one of this numbers is lower in the graph than in the
solution, that whole graph will be deleted.

After performing the smaller graphs removal (Algorithm 3.5), since
assumption 0 => assumption 2 => assumption 1, the percentage of
surviving graphs is smaller or equal than the subgraph tolerance
threshold. This means that the perfect common subgraph among the
survivor is the solution. And since it is the perfect common subgraph,

22 problem analysis and solution developing

Algorithm 3.4 Graph pruning

for g in graphs:

for n in g.nodes():

if solutionNodes[getApi(n)] == 0:

g.remove_node(n)

for e in g.edges():

if solutionEdges[(getApi(e[0])+getApi(e[1]))] == 0:

g.remove_edge(*e)

Algorithm 3.5 Smaller graphs removal

for g in graphs:

for n in nodeCounter.keys():

if (nodeCounter[n][str(id(g))] < solutionNodes[n]):

graphs.remove(g)

break

if g in graphs:

for e in edgeCounter.keys():

if (edgeCounter[e][str(id(g))] < solutionEdges[e

]):

graphs.remove(g)

break

it must be fully included into all other graphs. So we only need to ex-
tract the smallest survivor graph, which is the common subgraph.

Algorithm 3.6 Solution extraction

#solution extrction

counting_sort_nodes(graphs)

if len(graphs) > 0:

exportgraph = graphs[0]

else:

exportgraph = nx.DiGraph()

As shown in algorithm 3.6,the solution extraction is obtained just
by sorting the graphs on the number of nodes and exporting the
smallest. Of course if all the graphs have been removed, the graph
to be exported is an empty graph.

3.1.3 Complexity proof

In this section a formal proof of the algorithm’s complexity will be
provided.

3.1 generalization algorithm 23

analysis of matrix construction In the code which builds
the node counter matrix, provided in Algorithm 3.7,

Algorithm 3.7 Node counter matrix

for g in graphs:

for n in g.nodes():

if getApi(n) not in nodeCounter:

nodeCounter[getApi(n)] = collections.Counter()

nodeCounter[getApi(n)][str(id(g))]+=1

nodeCounter[’ total ’][str(id(g))] = g.number_of_nodes()

the loop cycles on each node in every graph, i.e. has a complexity of
O(n), with n = total number of nodes in all graphs. For the complexity
to be linear all the instruction executed inside the graph must have a
complexity of O(1), and in fact:

if getApi(n) not in nodeCounter:

checking if a key is present in a counter, since the counter is an
hash structure, is O(1)

nodeCounter[getApi(n)] = collections.Counter()

initializing a new key in the counter is an O(1) instruction

nodeCounter[getApi(n)][str(id(g))]+=1

assigning a value (or incrementing the previous one) to a counter
is O(1) due to the hash nature of the counter data structure.

nodeCounter[’ total ’][str(id(g))] = g.number_of_nodes()

counting the number of nodes is a O(n) instruction, but it’s exe-
cuted out of the cycle, so it doesn’t raise the complexity.

analysis of solution specs definition Starting from the
code:

for s in nodeCounter.keys():

solutionNodes[s] = Numberize(graphs, nodeCounter[s],

threshold)

This loop cycles on all the keys of nodeCounters, i.e. all the dif-
ferent API attributes of the nodes in all graphs, without duplication,
so this loop is O(k). The instruction inside the loop must, thus, be
O(something) so that O(something*k)  O(n). To compute the com-
plexity of that instruction the function Numberize needs to be ana-
lyzed.

analysis of numberize In this paragraph will be provided the
analysis of the function Numberize, which code can be found in Al-
gorithm 3.8.

24 problem analysis and solution developing

Algorithm 3.8 Numberize

def Numberize(graphs, counter, threshold):

#transforms the counter in a list

myList = list()

for g in graphs:

myList.append(counter[str(id(g))])

counting_sort_reversed(myList)

#find the % and return results

return myList.pop(int(round(len(myList)*threshold) -1))

First of all, the counter which now contains the number of nodes
with a specific API indicized on the parent graph, is transformed into
a list. To do that a loop on the graphs, i.e. with complexity O(g) is
performed. This means that the total complexity is O(k*g).

Fortunately, the graphs are quite similar so every graph shares al-
most all its nodes API with all the other graphs. In the worst case
scenario, each graph’s nodes have a different API, so k = #nodes of
graph g, and thus k*g = total number of nodes in all graphs = n, i.e.
O(k*g) = O(n).

counting_sort_reversed(myList)

The counting sort is notoriously O(elements), and the elements
here are equal to the number of graphs g, so again the total com-
plexity is O(k*g) = O(n).

return myList.pop(int(round(len(myList)*threshold) -1))

The final instruction is a return, which performs a pop operation on
a list (O(1)), calculating the index of the element to pop with simple
math (O(1)).

Algorithm 3.9 Graph pruning

#graph pruning

for g in graphs:

for n in g.nodes():

if solutionNodes[getApi(n)] == 0:

g.remove_node(n)

analysis of pruning From the code of the pruning algorithm
provided in Algorithm 3.9, the double loop cycles as usual on the
total number of nodes, thus being O(n). The instruction inside need
to be O(1):

if solutionNodes[getApi(n)] == 0:

3.1 generalization algorithm 25

accesses solutionNodes, which is a dictionary and thus can be ac-
cessed through hash, in O(1), and

g.remove_node(n)

which is O(1) since graphs nodes are directly accessible from the
pointer n.

Algorithm 3.10 Smaller graphs removal

for g in graphs:

for n in nodeCounter.keys():

if (nodeCounter[n][str(id(g))] < solutionNodes[n]):

graphs.remove(g)

break

if g in graphs:

for e in edgeCounter.keys():

if (edgeCounter[e][str(id(g))] < solutionEdges[e

]):

graphs.remove(g)

break

analysis of graph removal From the code of the graphs re-
moval algorithm provided in Algorithm 3.10, graph removal performs
a loop on graphs, which is O(g). As previously proved during the
analysis of Numberize, looping on the graphs inside a loop on the
different API labels, or vice-versa, has a total complexity of O(n).

The function graphs.remove is the deletion of the element of a list,
thus direct accessed and performed in O(1).

Since the only operation performed inside this double loop is a con-
ditional graph removal based on simple math, the overall complexity
of the graph removal is still O(n).

Algorithm 3.11 Solution extraction

counting_sort_nodes(graphs)

if len(graphs) > 0:

exportgraph = graphs[0]

else:

exportgraph = nx.DiGraph()

analysis of solution extraction From the code of the so-
lution extraction algorithm provided in Algorithm 3.11, the counting
sort is notoriously linear in the number of elements to be sorted, i.e
the number of graphs, but this is not a normal counting sort since

26 problem analysis and solution developing

it orders more complex data than integers. As will be proved below,
this sort complexity is O(n)

The export operation is beyond the scope of this analysis, since the
solution has already been found and can be accessed in O(1).

Anyway, it’s an operation that involves only the solution graph, so
for n large enough O(export)  O(n).

analysis of counting sort Since the counting sort is not na-
tive in python, two implementations have been written and will now
be analyzed. The first implementation, which is provided in Algo-
rithm 3.12, sorts an array (list) of integer numbers, in reversed order,
and one that sorts a list of graphs basing of the number of nodes.

Algorithm 3.12 Simple counting sort

def counting_sort_reversed(array):

count = collections.Counter()

init with zeros

max = 0

for a in array:

if a > max:

max = a count[a] += 1

count occurences i = 0

for a in reversed(range(max+1)):

emit

for c in range(count[a]):

- emit ’count[a]’ copies of ’a’

array[i] = a i += 1

return (array)

The basic counting sort begins creating a support structure. I de-
cided to use a counter structure to have a structural relation between
the element and its ordering.

for a in array:

if a > max:

max = a count[a] += 1

The first loop cycles on the elements of the array, thus being O(elements).
All the operation it performs are O(1) (simple math, value assignment
and counter value increasing).

When the support structure is fully initialized, it contains the new
ordering of the elements, so the only operation needed is to replicate
this new ordering in the array and return it.

for a in reversed(range(max+1)):

for c in range(count[a]):

array[i] = a i += 1

3.1 generalization algorithm 27

This loop complexity is more difficult to compute. The external
loop cycles from the maximum element down to 0, but sometimes
does nothing at all: the inner cycle only activates if count[a] 6= 0, i.e.
if there is at least one element in the original array which has a value
equal to the current value of a. This means that for each possible
value of a, the assignment operation is performed exactly the number
of times that an element with value a appears in the original array.
Thus, this two loops perform an assignment for each element of the
original vector, so that the complexity is still O(elements).

Algorithm 3.13 Advanced counting sort

def counting_sort_nodes(list_of_graphs):

count = dict()

max = 0

for g in list_of_graphs:

if g.number_of_nodes() > max:

max = g.number_of_nodes()

if g.number_of_nodes() not in count.keys():

count[g.number_of_nodes()]= dict()

count[g.number_of_nodes()][’count ’] = 0

count[g.number_of_nodes()][’graphs ’] = list()

#count occurences

count[g.number_of_nodes()][’count ’] += 1

#append graph

count[g.number_of_nodes()][’graphs ’].append(g)
i = 0

for n in range(max+1):

if n in count.keys():

for c in range(count[n][’count ’]):
- emit ’count[n]’ copies of ’n’

list_of_graphs[i] = count[n][’graphs ’].pop()
i += 1

return (list_of_graphs)

This advanced version of the counting sort, provided in Algorithm
3.13, is based on the exact same principle of the previous, but sorts a
more complex data structure: a graph. The tricky part is that now the
sorting has to be performed on data which is not an integer, but has
only an integer property.

for g in list_of_graphs:

if g.number_of_nodes() > max:

max = g.number_of_nodes()

if g.number_of_nodes() not in count.keys():

count[g.number_of_nodes()]= dict()

count[g.number_of_nodes()][’count ’] = 0

28 problem analysis and solution developing

count[g.number_of_nodes()][’graphs ’] = list()

#count occurences

count[g.number_of_nodes()][’count ’] += 1

#append graph

count[g.number_of_nodes()][’graphs ’].append(g)

In this first loop the initialization of max (the maximum number
of nodes among all graphs) is performed. Since the loop cycles on g,
and the number_of_nodes function is O(nodes), the total complexity
of the maximum extraction is O(n). Then the loop performs a series of
assignments and initializations, which are O(1). Finally, it assigns to
the corresponding counter the graph that originates that node count,
so that, e.g. for a counter value of 4, all graphs with 4 nodes can be
accessed. this is essential for the algorithm to work, but is just a O(1)
complexity operation.

for n in range(max+1):

if n in count.keys():

for c in range(count[n][’count ’]):
list_of_graphs[i] = count[n][’graphs ’].pop()
i += 1

This second cycles are pretty much the same than the basic version:
n ranges from 0 to the maximum numbers of nodes. If there is any
graph with a node count equal to n, for each of such graphs that
graph is appended to the list of sorted graphs. Again the two loops
combined cycle exactly on the number of elements of the initial graph
list, and they perform only assignments, which are O(1) operations,
for a total complexity equal to O(elements) = O(g).

The overall complexity of this sorting is thus O(n).

final considerations I proved complexity only for the opera-
tions on nodes, but since the code is pretty much identical, the same
goes for operations on edges.

Since no part of the algorithm has a more than linear complexity,
the overall complexity is O(n) for the node operations, where n is
the total number of nodes considering nodes from all graphs, and
O(e) for the edges operations, where e is the total number of edges
considering edges from all graphs.

And since the nodes code does not interact with the edges code, to
total complexity is O(n+e), which is linear.

3.2 batch to stream

The next problem that needs to be addressed is transforming the ex-
isting infrastructure to make it support a constant stream of data,
instead of analyzing only a given batch of samples. The idea is that
anyone should be able to provide a malware binary sample anytime,

3.2 batch to stream 29

and the sample has to be analyzed by cuckoo, clustered and gener-
alized in order to extract his behaviors, and the behaviors delivered
back to the user.

3.2.1 Problem analysis

To transform the infrastructure in a streaming infrastructure, there
are three big problem that must be faced.

• First, the infrastructure have to be structured to support stream-
ing.

• Second, since streaming implies a big volume of data, the spa-
tial complexity can become a bottleneck. The memory usage
needs thus to be checked and possibly optimized.

• Third, since a big amount of sample is expected, the time sched-
ule of each phase needs to be well planned to avoid bottlenecks
and to deliver the results in a reasonable time.

structure problem The structure problem in transforming the
infrastructure into a streaming one is essentially a problem of data
storing: cluster information need to be stored in order to be able to
perform the clustering on future data. Also, to be able to perform
generalization, each graph in each cluster must be stored, since the
generalization performed is not a perfect one, and thus the common
subgraph is not sufficient to perform the intersection. Finally, a sys-
tem to link each analyzed sample with the extracted behaviors need
to be implemented.

While this are the main implementational differences, there is also
another aspect to be considered: actually the infrastructure is com-
posed by two different parts, the cuckoo analysis and the clustering
+ generalization. These two operations need to be chained somehow
to be performed automatically in sequence, but this problem will be
left to be analyzed in the time problem section.

memory problem The memory problem arises as a consequence
of the structure problem: since all the clusters need to be loaded in
memory to perform the clustering of new samples, the space the clus-
ters occupy needs to be reduced to the minimum. Currently the clus-
ters object contains all the fps that characterize that cluster, in a list,
and all the graphs that are part of that cluster, in another list.

Also, all the graphs of each cluster should be loaded in order to
perform the graph generalization, and since graphs are heavy objects,
this can quickly become a problem.

time problem The time problem is a double problem: first of all,
the time complexity bottleneck needs to be identified, if present, and

30 problem analysis and solution developing

tried to be solved. Second, but not less important, the activities need
to be scheduled. The analysis is divided in three phases: cuckoo anal-
ysis (fps & api calls extraction), clustering, generalization. The first
phase is totally independent from previous data, so can be scheduled
independently. The problem rises with the other two, since there is a
lot of data loading, which is slow, and does not depend on the volume
of data to be analyzed (e.g. to generalize even a single sample, all the
graphs in that sample’s clusters need to be loaded), a compromise
between the overall time needed to provide results and the necessity
to analyze a minimum amount of data needs to be found.

3.2.2 Solution development

structure solution idea First of all a system to keep track of
which behavior is extracted from which sample needs to be found.
The most straightforward solution is to include in the cluster struc-
ture a list field containing the reference of all the binaries which fps
have been clustered into that cluster.

On second thought, anyway, it has been decided to also export
the cluster data in a database in order to be able to query it. It has
been decided to use a simple, non-relational database like Mongodb
to export the cluster data structure. The db structure consists of a
single collection containing cluster information in form of id, list of
the binaries, path of the generalized graph representing the extracted
behavior, and list of the fps characterizing that cluster. To this end,
the clusters structure has been modified to include an id field, which
is just an increasing integer number.

The second part of the structure problem is the very structure of
this work. Leaving aside the cuckoo analysis part, which is easily sep-
arable from the second part, before starting any analysis the existing
clusters need to be loaded, and a global variable named lastcluster,
which keeps track of the highest cluster number assigned as an id,
needs to be initialized.

Then, every time the clustering phase is run, all the clusters which
receive a new element or the newly created clusters are flagged as
modified. To this purpose a boolean field has been inserted in the
clusters data structure. In this way, during the generalization phase,
only the clusters flagged as modified are generalized, saving compu-
tational time, but even more important avoiding to load the graphs
of the other clusters.

The generalization phase is mostly untouched by the transforma-
tion into streaming since it needs to be totally repeated, but fortu-
nately it’s a linear operation.

memory solution idea The basic idea in order to save memory
is, obviously, to load only what is strictly necessary, only when it’s

3.2 batch to stream 31

strictly necessary, and then unload it. The problem is that loading
data is a very time-consuming operation. A trade off thus needs to be
found.

The cluster’s problem is the first problem to be addressed: clusters
are used in the clustering phase, and the only data needed there are
the fps, the ids and the modified flags. Since there is no use for graphs
in this phase, the graphs can be detached from the clusters data struc-
ture. Ids and flags are atomic data units, so there is nothing that can
be done to reduce their space, but fps are a list which contains all the
fps associated to all the graphs in each clusters. And each element of
that list is a list composed by the single fps of that specific graph. This
implies a lot of data duplication, which could be avoided using a set
structure instead of a list of lists. Unfortunately, this deeply changes
the cluster’s data structure, and thus the clustering algorithm needs
also to be restructured. A further discussion of this idea can be found
in the following paragraph: Time solution idea, since changing the
algorithm can also change it’s time complexity.

The second data structure on which space can be saved is graphs.
Graphs are really complex data structures which requires a lot of
space to be loaded, so, again, it would be better to load them only
at the last moment. Graphs are extracted from the cuckoo analysis
results during the clustering phase. To reduce as much as possible
the memory usage, only one result file is loaded at a time, and when
the clustering algorithm has finished processing it, all the extracted
graphs are stored. This does not increases the number of load/store
operation since all the graphs need to be loaded one time and stored
one time in the clustering phase. The only alternative would be to
keep all the graphs in memory between the clustering phase and gen-
eralization phase, but this is clearly not a feasible option. In order to
keep a link between each graph and the cluster it belongs to, without
increasing the complexity of the data structure or the memory usage,
each graph is stored in a directory which name is the id of the cluster
that graph belongs to.

Since graphs then are only used in the generalization phase, that
is the point they will be loaded in memory. The generalization phase
processes one cluster for a time, so only one of the cluster’s graphs
need to be loaded, and after the generalization is finished the memory
is freed. It could be theoretically possible to load only one graph for a
time, compile the graph matrix, switch to the following graph, and so
on, but this increases drastically the number of load operations1, thus
drastically decreasing the performance of the generalization phase.

time solution idea First, the scheduling problem will be ad-
dressed: thanks to the memory optimizations, clustering and gener-

1 Because the graph needs also to be loaded during the pruning operation, and then
again during in the small graphs removal sub-phase

32 problem analysis and solution developing

alization may be performed without recurring to compromised solu-
tion like loading only a sample of the graphs. The only consideration
to be kept in mind is that the more sample are included in the analy-
sis, the better the efficiency is. So the ideal setup would be to perform
the clustering and generalization only after a certain number of bina-
ries has been submitted. This number cannot be calculated at the mo-
ment, because it will mostly depend on the data volume submitted
by the user.

In order to start the clustering a script has been written that checks
the result folder from cuckoo analysis and moves all the result files
into a specific directory. A second script placed at the beginning of
the clustering algorithm checks this directory periodically and if the
number of file is greater than the threshold, starts the analysis. The
cuckoo result files are deleted as they are processed since they’re not
important per se.

The second part of the time problem is more challenging: in order
to find the possible bottleneck the execution has been analyzed with c-
profile, and it resulted that, on average, the clustering phase takes 10

times the time of the generalization phase. In order to reduce the com-
plexity of the clustering phase, and possibly also the memory usage,
a solution could be to use sets instead of lists to collect the cluster’s
element’s FPs, and then instead of checking the sample FPs against
each other sample’s FPs set in the cluster, a single check against the
whole set of FPs would be performed (Figure 3.2).

Figure 3.2: The Jaccard clustering performs a similarity check against each
element of the cluster (a). The overlap clustering, on the the hand,
performs only one check, and avoids FPs duplication in the sme
cluster(b).

This is a deep change in the cluster structure, however, and requires
the clustering algorithm to be rebuilt, since the FPs set thus obtained
will grow (in number of elements) as more graphs are added to the
cluster, but the FPs of a single graph will remain a few. This will cause
the jaccard similarity, defined as

J(A, B) =
|AT

B|
|AS

B|

to decrease with the increasing of the cluster’s elements, which is
obviously undesired. A new similarity measure is needed, which can
be the overlapping similarity:

3.3 visualization 33

Overlap(A, B) =
|AT

B|
min(|A| , |B|)

Being the denominator only dependent on the smallest set size, the
effect mentioned above does not occur with this similarity. Of course
the performance improvement needs to be tested, and also the qual-
ity of the extracted behaviors need to be compared. A comparison
between the two clustering algorithms are shown in Algorithm3.15

and Algorithm 3.14.

3.3 visualization

The goal of this part is to build an infrastructure that will allow to see
the structure of the analyzed data and results: the relation between
malware samples and extracted behaviors via fps.

3.3.1 Problem analysis

The basic problem is to build an infrastructure that will be able to
render the relationship between analyzed sample and results. The
goal of this visualization is a global one: being able to see if, adding
samples, the emerging behaviors are shared among them, which be-
haviors are the most common ones, which data is anomalous and,
ultimately, to verify the assumption of this whole work: that the sys-
tem presented is able to extract meaningful behaviors from malware
using its combined analysis method.

The biggest problem in this visualization task is to allow the user
to see a huge amount of data and understand something, possible
not by using numbers as aggregators, but to actually allow the user
to see the results.

So it’s necessary to represent in some way all the malware samples
provided, and all the extracted behaviors. Also, the link between each
sample and behavior needs to be represented. This link is a many to
many link, since a single sample can present more than one behavior
and each behavior hopefully is shared among a lot of samples. Finally,
ideally a third level need to be introduced, explicitly representing the
fingerprints as the linking element between sample and behavior.

This means that a data structure containing that information need
to be saved. The cluster structure already contains the link between
each behavior and the generating fps, so the easiest thing would be
to add to the cluster data structure information on the generating
sample.

34 problem analysis and solution developing

Algorithm 3.14 Jaccard clustering

def clusterize_jaccard(fps, graph):

global lastcluster

for c in clusters:

sim = jaccardSim(c[’ fps ’], fps)

if sim > 0.60:

c[’graphs ’] += 1

f = ’ clusters/’+str(c[’ id ’])+ ’/graph ’+str(c[’
graphs ’])

nx.write_gpickle(graph, f + ’ . gpickle ’)
nx.write_dot(graph, f + ’ . dot ’)
c[’ fps ’] = c[’ fps ’].union(fps)
c[’modified ’] = True

return c[’ id ’]
c = dict()

c[’ fps ’] = set()

c[’ fps ’] = c[’ fps ’].union(fps)
c[’graphs ’] = 0

c[’modified ’] = True

c[’ id ’] = lastcluster+1

lastcluster+=1

os.mkdir(’ clusters/’ + str(c[’ id ’]) + ’/’)
clusterlist.append(str(c[’ id ’]))
f = ’ clusters/’ + str(c[’ id ’]) + ’/graph ’ + str(c[’

graphs ’])
nx.write_gpickle(graph, f + ’ . gpickle ’)
nx.write_dot(graph, f + ’ . dot ’)
clusters.append(c)

return c[’ id ’]

#Compute Jaccard Similarity of 2 sets

def jaccardSim(setA, setB):

if len(setA) == 0 and len(setB) == 0:

return 1

commonAB = setA.intersection(setB)

unionAB = len(setA) + len(setB) - len(commonAB)

return float(len(commonAB))/float(unionAB)

3.3 visualization 35

Algorithm 3.15 Overlap clustering

def clusterize_overlap(fps, graph):

global lastcluster

for c in clusters:

sim = overlapSim(c[’ fps ’], fps)

if sim > 0.60:

c[’graphs ’] += 1

f = ’ clusters/’+str(c[’ id ’])+ ’/graph ’+str(c[’
graphs ’])

nx.write_gpickle(graph, f + ’ . gpickle ’)
nx.write_dot(graph, f + ’ . dot ’)
c[’ fps ’] = c[’ fps ’].union(fps)
c[’modified ’] = True

return c[’ id ’]
c = dict()

c[’ fps ’] = set()

c[’ fps ’] = c[’ fps ’].union(fps)
c[’graphs ’] = 0

c[’modified ’] = True

c[’ id ’] = lastcluster+1

lastcluster+=1

os.mkdir(’ clusters/’ + str(c[’ id ’]) + ’/’)
clusterlist.append(str(c[’ id ’]))
f = ’ clusters/’ + str(c[’ id ’]) + ’/graph ’ + str(c[’

graphs ’])
nx.write_gpickle(graph, f + ’ . gpickle ’)
nx.write_dot(graph, f + ’ . dot ’)
clusters.append(c)

return c[’ id ’]

#Compute Overlap Similarity of 2 sets

def overlapSim(setA, setB):

commonAB = setA.intersection(setB)

lenght = min([len(setA), len(setB)])

return float(len(commonAB))/float(lenght)

36 problem analysis and solution developing

3.3.2 Solution development

From the problem analysis emerged clearly that what is needed to
be represented is a three layer structure composed of interconnected
nodes that must be enriched with at least basic tracking information.
This infrastructure must be able to provide statistical information at
glance, and to represent huge amounts of data while being easily
comprehensible.

Reasoning on the structure of the data, it’s reasonable to think of
a sort of graph. This graph must have three different types of node:
sample, fps and behavior, and each node must be linked to the gener-
ating nodes.

The problem is that huge graphs are hardly readable, and the main
problem is that there are too many nodes in a small space. So how
can the space be augmented, without using impossibly huge screens?
The first idea is to zoom out. To maintain readability while zooming
out, each node type must be immediately recognizable. In order to
achieve that, different colors on a black background may be used. But
still, with a lot of nodes the graph readability could not be easy.

To find a solution to the problem, comparison with a similar one
can come in hand. It has been looked for the usual readable repre-
sentation of something with a lot of elements, like stars. When repre-
senting stars, it is usually used a star map, which is a 2D maps of a
little region of the space. But what if one wanted to represent and see
all the known stars? The answer is pretty obvious: a 3D map can be
used, and navigated to explore the different regions.

This is the main idea for such a complex representation: an ex-
plorable 3D map, which of course needs to convey the largest number
of information from the maximum possible distance of the camera.

And a graph can easily be represented as a 3D object.
At this point, the best way of convey the largest amount of informa-

tion needed to be found. Colors has been used to distinguish different
types of nodes:

• red for behaviors, which are the most important nodes

• yellow for samples

• green for fps

The chosen colors can easily be seen on a black background, improv-
ing glance visualization.

Then, applied the principle that the most important information
must be more visible has been applied:

• Empty behaviors, while still worthy of being represented, are
not of much interest: they have been rendered as grey nodes.

3.3 visualization 37

• Samples which extracted behaviors are generated only from one
or two samples, are not of much interest, because the aim of this
work is to highlight that behaviors are shared among a large
number of samples, so they have been rendered rendered blue.

Following the same visibility principle, nodes have been sized accord-
ingly:

• FPs nodes are small, since they’re only needed to support the
edges, but don’t convey information by themselves.

• The more samples a behavior is extracted from, the bigger it’s
rendered, following a logarithmic scale to avoid giant behaviors
to hide the smaller ones.

Finally, the node shape has been used to convey some information of
the behavior itself:

• the more complex a behavior is, i.e. the more nodes are in
the generalized graph, the more complex it’s shape is. To al-
low users to understand shapes with a glance, only four shapes
have been used: cubes, octahedrons, dodecahedrons, and icosa-
hedrons.

To guarantee traceability, each behavior is labeled with the number of
the cluster is generalized from, so that its structure can be inspected
manually.

3.3.3 Implementation

The first issue in implementing the solution presented above is how
to keep track of the linking between behavior, fps and samples. Since
in the cluster data structure, which has a record for each behavior,
information on the FPs is already included, the simplest solution is
to attach to each FPs a reference to the generating sample. Of course
each sample may generate more than one subgraph with relevant FPs,
so the sample identifiers here may be duplicated.

That decided, the whole visualization infrastructure must be imple-
mented. Fortunately, a similar product already existed: Ubigraph [1].
Ubigraph is system to visualize dynamic graphs that make use of a
server to host the whole rendering infrastructure. The server can be
easily commanded by python scripts. The advantage of this solution
is that the server can run indefinitely and new nodes can be added
as new data is processed, allowing users to effectively see the whole
process in action.

A script has been implemented to convert the analysis results in
a graph and send it to the Ubigraph server to be rendered on the
screen. Ubigraph also provides basic controls for navigation, allow-
ing the user to change the angle of view, zoom into the interesting

38 problem analysis and solution developing

structures to view better interesting features and zoom out to get a
general picture of what is happening.

Algorithm 3.16 Rendered data structure

import xmlrpclib

import sys

import os

import networkx as nx

import pickle

import math

import time

Create an object to represent our server.

server_url = ’http://127.0.0.1:20738/RPC2’
server = xmlrpclib.Server(server_url)

server.ubigraph.clear()

define something useful

lastcluster = -1

clusters = []

next_id = 0

samples = dict()

clusternodes = dict()

fps_struct = dict()

U = server.ubigraph

edges = set()

As detailed in Algorithm 3.16, it has been defined a data structure
to keep track of which behaviors, FPs and samples have already been
rendered. This is vital since this GUI need to be executed continu-
ously while new data is being processed, and needs thus to be able to
update the graph without rebuilding it. In order to do that a way to
compute the differences is needed, and this data structure provides
an easy way to do that. The reference of the already created nodes are
kept as an integer number: the id that Ubigraph requires to identify
each node. At the same way, the edges are identified by the concate-
nation of the ids of the nodes they connect.

The most up to date cluster information is loaded through through
the same exact function that loads them in the generating algorithm
(see Algorithm 3.17and Algorithm 3.18)

Then, first of all the sample nodes are generated by loading in-
formation from the reference, since in the cluster structure they are
duplicated, while here each sample has a unique record, as shown in
Algorithm 3.19.

3.3 visualization 39

Algorithm 3.17 Look for clusters

#look for clusters

try:

os.stat(’ clusters/’)
except:

os.mkdir(’ clusters/’)
clusterlist = os.listdir(’ clusters/’)
if ’ . DS_Store ’ in clusterlist:

clusterlist.remove(’ . DS_Store ’)
importClusters()

Algorithm 3.18 Import clusters

def importClusters():

global lastcluster

if len(clusterlist) == 0:

print "warning: no prior existing clusters "
return False

else:

for c in clusterlist:

f = open(’ clusters/’ + c + ’/’ + c, " r ")
clusters.append(pickle.load(f)) f.close()

print "loaded cluster : ", c

if int(clusters[len(clusters)-1][’ id ’]) >

lastcluster:

lastcluster = int(clusters[len(clusters)

-1][’ id ’])
return True

CreateSampleNodes()

40 problem analysis and solution developing

Algorithm 3.19 Create sample nodes

def CreateSampleNodes():

global next_id

reference = load_obj(’ reference ’)
for impl in reference:

if impl not in samples:

if len(reference[impl]) > 0:

samples[impl] = next_id

U.new_vertex_w_id(next_id)

U.set_vertex_attribute(next_id, ’ color ’, ’
#0000 f f ’)

next_id += 1

return

def save_obj(obj, name):

with open(name + ’ . pkl ’, ’wb’) as f:

pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)

def load_obj(name):

with open(name + ’ . pkl ’, ’ rb ’) as f:

return pickle.load(f)

Once the sample nodes are ready, the clusters are processed, and
for each behavior not already present a new node is created. Then
the FPs of the considered cluster are scanned, and for each one, if a
node representing that is not already present, a new one is created.
Then, the FPs node is linked with the originating sample node and
the extracted behavior node. The FPs are checked even if the behavior
node was already present because the cluster can have been modified,
i.e. new samples can have been added to that cluster and thus new
fps nodes or new edges must be created. See Algorithm 3.20for the
details.

Finally, it is checked if the behavior is extracted from more than
two samples, the color of those sample nodes is set to yellow, and
all the properties of the behavior node (size, color, label and shape)
are set according to the specifics detailed in the previous section, as
shown in Algorithm 3.21.

3.3 visualization 41

Algorithm 3.20 Cluster node creation

#for each sample node, create its fps nodes

for c in clusters:

if c[’ id ’] not in clusternodes:

clusternodes[c[’ id ’]] = next_id

U.new_vertex_w_id(next_id)

next_id += 1

n_source = set(c[’source ’])
for i in range(0, len(c[’ fps ’])):

#linking fps to implementations

k = frozenset(c[’ fps ’][i])
if k not in fps_struct:

CreateNewFps(next_id)

CreateNewEdge(samples[c[’source ’][i]],next_id)
CreateNewEdge(next_id, clusternodes[c[’ id ’]])
next_id += 1

else:

CreateNewEdge(samples[c[’source ’][i]],fps_struct
[k])

CreateNewEdge(fps_struct[k], clusternodes[c[’ id ’
]])

if len(n_source)>2:

U.set_vertex_attribute(samples[c[’source ’][i]],
’ color ’, ’# ff f f00 ’)

SetBehaviourNodeProperties(clusternodes[c[’ id ’]],len(c[
’source ’]))

def CreateNewFps(FpsId):

fps_struct[k] = FpsId

U.new_vertex_w_id(FpsId)

U.set_vertex_attribute(FpsId, ’ color ’, ’#00ff00 ’)
U.set_vertex_attribute(FpsId, ’ size ’, ’ 0.2 ’)
return

def CreateNewEdge(node1, node2):

if str(node1) + str(node2) not in edges:

U.new_edge(int(node1), int(node2))

edges.add(str(node1) + str(node2))ù

return True

else:

return False

42 problem analysis and solution developing

Algorithm 3.21 Cluster node properties

def BehaviourNodeShape(NumberOfNodes):

if NumberOfNodes > 3 and NumberOfNodes <= 7:

return ’octahedron ’
else:

if NumberOfNodes > 7 and NumberOfNodes <= 15:

return ’dodecahedron ’
else:

if NumberOfNodes > 15:

return ’ icosahedron ’
return ’cube ’

def SetBehaviourNodeProperties(NodeId, SourceLength):

U.set_vertex_attribute(NodeId, ’ color ’, ’#ff0000 ’)
U.set_vertex_attribute(NodeId, ’ label ’, str(c[’ id ’]))
U.set_vertex_attribute(NodeId, ’ size ’, str(round(math.

log10(SourceLength)+1,1)))

graph = nx.read_gpickle(’ clusters/’ + str(c[’ id ’]) + ’/
export . gpickle ’)

if graph.number_of_nodes() == 0:

U.set_vertex_attribute(clusternodes[c[’ id ’]], ’ color
’, ’#474747 ’)

else:

U.set_vertex_attribute(clusternodes[c[’ id ’]], ’shape
’, BehaviourNodeShape(graph.number_of_nodes))

return

4
E X P E R I M E N T S

In chapter 4 all the experiments needed to verify assumptions and
results form chapter 3 will be presented, and results will be discussed.

4.1 generalization algorithm testing

Since the whole algorithm is based on the assumptions,these are the
first thing we will test:

• graph variety, i.e. the percentage of identical graph in a cluster
is small.

• Assumption 3: the error committed choosing the smallest sur-
viving graph is small.

All other assumption have been proved to depend on either of these
on or assumption 0, which is the fundamental assumption for all the
project.

It’s also straightforward that assumption 3 is valid if and only if
the quality of result is good, and vice versa.

4.1.1 Graph variety

In order to test the graph variety in each cluster, a little script has
been created. The code is provided in Algorithm4.1

The script simply confront each graph in the cluster with each other
graph in the same cluster, checking isomorphism and API attributes
matching.

The expected result is a low percentage of matches, which, note, is
not the percentage of matching graphs because each graph is checked
multiple times against the others. A reasonable result would thus be
 30%.

The script was run on a sample of 218 clusters generated with the
algorithm detailed in section 1 from a sample of 1000 cuckoo analysis
results, and resulted in a match percentage of 19%, well below the
limit.

Please note that a low percentage of graph matching does not inval-
idate the clustering phase: in the clustering phase the goal is to match
similar graphs, and similar graph are considered non matching from
this script even if there is only the slightest difference. On the contrary,
similar but different graphs implies that this generalization phase is
necessary and useful.

43

44 experiments

Algorithm 4.1 Graph variety script

import os

import networkx as nx

import sys

import pickle

def equalNode(node1,node2):

if str(node1[’api ’]) == str(node2[’api ’]):
return True

else:

return False

def isomorphic(graph1,graph2):

if nx.is_isomorphic(graph1, graph2, node_match =

equalNode):

return True

else:

return False

if __name__ == ’__main__ ’:
clustermatch = list()

mypath = sys.argv[1]

clusters = os.listdir(mypath)

for c in clusters:

if os.path.isdir(miopath + c):

print " processing cluster : " + c

total = 0

match = 0

graphls = os.listdir(mypath + c + ’/’)
graphls.remove(’export . gpickle ’)
graphlist= list()

for g in graphls:

if g.endswith(’ . gpickle ’):
graphlist.append(g)

for g in graphlist:

for g2 in graphlist:

if g != g2:

total+=1

if isomorphic(nx.read_gpickle(mypath

+ c + ’/’ + g),nx.read_gpickle(

mypath + c + ’/’ + g2)):

match+=1

if total > 0:

clustermatch.append(match*100/total)

print match*100/total

else:

#rare case in which there’s only one graph

clustermatch.append(0) print 0

match_percentage = sum(clustermatch) / len(clustermatch)

print " matching percentage : " + str(match_percentage)

4.1 generalization algorithm testing 45

4.1.2 Solution quality

Defining a test to verify the quality of the solution is not a straight-
forward task, for the simple reason that the effective test would be
to implement the np algorithm and confront the results. This is im-
practical for several reasons: first, implementing an NP algorithm is
anything but simple; second, in order to use it to generalize a sample
of graphs would take a lot of time, since complexity is so high. So we
decided to exploit another algorithm, heuristic based, that was im-
plemented to perform the generalization but was discarded for two
reasons: exponential complexity and threshold fixed to 1. This algo-
rithm has been implemented in [6], and details about it can be found
there. We will assume, basing on experimental verification of [6], that
that algorithm works, and we will refer to it from now on as the
previous algorithm.

Thus, the testing of the algorithm will be divided in several phases:

1. Testing against known solution.

2. Testing against the previous algorithm using threshold 1.

3. Introduction of empty graphs to verify threshold effectiveness.

4. Testing against the previous algorithm manually examining a
sample of non matching cases.

4.1.2.1 Testing against known solution

The first test will be to generate a bunch of graphs, in a way that
the perfect common subgraph is known a priori, and then run the
algorithm on them. The easiest way to do that is to start from the de-
sired common subgraph itself, and then add nodes randomly, mind-
ing never to include the same node in two different graphs. Then
the threshold will be set to one and the algorithm run. The expected
result is the perfect common subgraph.

test 1 As can be seen from Figure 4.1 the generalization algorithm
is correctly able to extract the common subgraph.

test2 Again the algorithm is able to extract the common subgraph,
as shown in Figure 4.2

test 3 The third test is another simple test, but this time the graphs
used will be generated in such a way that no node is shared among
them. Then the threshold will be set to one and the algorithm run.
The expected solution is an empty graph. As shown in Figure 4.3, the
algorithm correctly extracts an empty behavior.

46 experiments

(a) Generating com-
mon subgraph

(b) Added graph (c) Added graph

(d) Added graph

(e) Extracted common sub-
graph

Figure 4.1: Starting from a generating common subgraph (a), additional
graphs are generated by inserting different nodes and are added
to the cluster (b, c, d). Then the generalization algorithm is run
to verify if it is able to extract the common subgraph (e), which
must be identical to the generating one(a).

(a) Generating common sub-
graph

(b) Added graph (c) Added graph

(d) Added graph (e) Extracted common
subgraph

Figure 4.2: Starting from a generating common subgraph (a), additional
graphs are generated by inserting different nodes and are added
to the cluster (b, c, d). Then the generalization algorithm is run
to verify if it is able to extract the common subgraph (e), which
must be identical to the generating one(a).

4.1 generalization algorithm testing 47

(a) Starting graph (b) Starting graph

(c) Starting graph (d) Extracted common
subgraph

Figure 4.3: Starting from three graphs without even a common node (a,b,c)
the algorithm is run to verify if it is able to extract an empty
common subgraph (d)

4.1.2.2 Testing against the previous algorithm using threshold 1

The second phase consists of more refined tests: the previous algo-
rithm will be run on a sample of clusters, large enough to have a
good statistic (>200 clusters), then the algorithm developed in this
work will be run on that same clusters setting the threshold to 1 and
the resulting common subgraphs will be confronted using the match-
ing algorithm detailed in Algorithm 4.1 opportunely modified. The
expected result is an high percentage (>90%) of matching between
the two algorithms. A 100% is not expected since the algorithm devel-
oped in this work is still an approximated algorithm: it’s impossible
to provide perfect results since the solution of the common subgraph
problem is NP, and the algorithm developed in this work is linear.

test 4 The test results is a matching percentage of 99% over 218

analyses clusters, exactly as expected.

4.1.2.3 Introduction of empty graphs to verify threshold effectiveness

The third phase consists of inserting empty graphs into the previous
clusters. Since the only common subgraphs with an empty graph is
an empty graph, this should make all the solutions converge to an
empty graph.

48 experiments

test 5 An empty graph has been inserted in every cluster, then
all 218 clusters have been generalized and the resulting common sub-
graphs matched against an empty graph. The result is a matching
percentage of 100%

test 6 Now, the threshold is going to be lowered to allow the sub-
graph tolerance to compensate for the empty graphs inserted. Since
one empty graph will be inserted into each cluster, and the average
cluster has 4-5 graphs, a 75% value should be sufficient to compen-
sate for all (or almost all) the clusters. That done, the new common
subgraphs will be matched with the one obtained with threshold =
1 without empty graphs. The expected result is a perfect (or almost
perfect) matching.

The result after all 218 clusters were matched is a total matching
percentage of 97%

4.1.2.4 Testing against the previous algorithm manually examining a sam-
ple of non matching cases

The final test to be performed is to run both the previous algorithm
and the algorithm developed in this work on some of clusters, using a
the threshold obtained from the tests in 4.1.4, and confront the results.
Obviously the expected result is not a perfect match, since with the
algorithm developed in this work a subgraph tolerance is being used,
but the purpose of the confrontation is only to isolate the cases in
which the tolerance makes the difference in the final results. This
cases will be sampled and manually examined to verify that the result
difference is due to the threshold variation, and not to an error of the
algorithm.

test 7 All 218 clusters were matched.The 97% of the solutions
were identical, the other 3% was different and has been manually
inspected, and the results can be seen in Figure 4.4, Figure 4.5, Figure
4.6 and Figure 4.7.

4.1.3 Performance testing

Since the major purpose of this thesis is the creation of an efficient
algorithm, the performance deserves to be measured as an additional
proof of the quality of the algorithm. Since one of the reasons for
which the previous algorithm could not be used was his time com-
plexity, i.e. it’s inefficiency, that algorithm will be used as a baseline
to calculate the speed improvement.

In order to measure the execution time of the algorithm a python-
integrated profiling framework will be used: c-profile. C-profile com-
putes the total time of execution of a program, with a reasonable over-

4.1 generalization algorithm testing 49

(a) Cluster 152 - Graph 1

(b) Cluster 152 - Graph 2

(c) Extracted common subgraph

(d) Previous algorithm’s extracted common subgraph

Figure 4.4: Cluster 152 presents anomalous graphs: all the nodes had the
same API (a, b). It’s reasonable that the algorithm developed in
this work does not have the tools to extract the common sub-
graph, and in fact the solution it extracted is not exact (c). But
to be fair, neither the previous algorithm was able to extract the
perfect common subgraph (d).

50 experiments

(a) Cluster 212 - Graph 1

(b) Cluster 212 - Graph 2

(c) Cluster 212 - Graph 3

(d) Cluster 212 - Graph 4 (e) Cluster 212 - Graph 5 (f) Cluster 212 - Graph 6

(g) Cluster 212 - Graph 7 (h) Cluster 212 - Graph 8 (i) Cluster 212 - Graph 9

(j) Cluster 212 - Graph 10 (k) Extracted common sub-
graph

Figure 4.5: Cluster 212 has three anomalous graphs, which are totally differ-
ent from the other seven graphs in the cluster: a, b and c are all
composed of NtCreateFile nodes, whereas d, e, f, g, h, i and j are
made of NtDeviceControlFile nodes. The previous algorithm ex-
tracted an empty common subgraph, but thank to the subgraph
tolerance the algorithm developed in this work was able to ex-
tract a better solution (k)

4.1 generalization algorithm testing 51

(a) Cluster 4 - Graph 1 (b) Cluster 4 - Graph 2

(c) Exported common
subgraph

(d) Previous algorithm’s exported common subgraph(s)

Figure 4.6: Cluster 4 is a normal cluster, and the algorithm developed in this
work extracts the common subgraph without any problems (c).
The reason why the matching is different is that the previous
algorithm erroneously extracts two common subgraphs, one of
which is contained in the other (d).

head. Since the same profiler will be used to measure both algorithms
execution times, the overhead will be negligible.

The expected result is an execution time for this at least one order
of magnitude smaller than the previous algorithm’s one.

Test results are reported in Table 4.1.

Test 8 Test 9 Test 10

Number of sample clusters 218 216 213

Number of graphs 1000 1100 1050

Generalization time 11.993 seconds 21.972 seconds 15.443 seconds

Previous time 429.207 seconds 578.493 seconds 468.245 seconds

Speedup x35.79 (+3479%) x26.32 (+2532%) x30.32 (+2932%)

Table 4.1: Test 8-10: Speedup w.r.t previous algorithm

4.1.4 Threshold testing

Assumption 0 states that the threshold is robust to small variation, i.e
the solution does not change if the threshold varies by a small amount.
This assumption can be verified by running the algorithm several
time, each time varying the threshold of a unit, and computing the
matching between the result of each execution with the following

52 experiments

(a) Cluster 53 - Graph 1

(b) Cluster 53 - Graph 2 (c) Cluster 53 - Graph 3

(d) Cluster 53 - Graph 4 (e) Cluster 53 - Graph 5

(f) Cluster 53 - Graph 6 (g) Cluster 53 - Graph 7

(h) Cluster 53 - Graph 8 (i) Extracted common subgraph (j) Previous algorithm’s
extract common sub-
graph

Figure 4.7: Cluster 53 is a normal cluster. The difference in results is due
only to the subgraph tolerance: the solution extracted by the al-
gorithm developed in this work (i) has an additional node w.r.t
the previous one (j), which is shared between all the graphs in
the cluster (a, b, c, d, e, f, g) but one (h):

4.1 generalization algorithm testing 53

one. This matching can then be plotted against the threshold. The
expected result is a flat line, indicating that the solution is robust to
small threshold variation. The result is reported in Figure 4.8.

The next test is to progressively increase the threshold variation
entity, and for each threshold value calculate the solution variation
due to that threshold variation. The expected result is the presence
of a maximum in the matching, which represent the threshold value
more resistant to variation, and this value is expected to be found in
the 75-85% interval.

In order to perform this test the algorithm will be looped and with
each iteration the threshold will be increased of 1, from an initial
value of 60 to a final value of 90, to obtain the common subgraph for
each threshold value, for each cluster. Then, a modified version of the
matching script will compute the match percentage for each solution
with the following one (i.e. the one obtained by the algorithm with
the threshold increased by 1), initially, and then augmenting the gap
increasingly.

The results have been plotted against the threshold to better be able
to see the point of maximum (see Figure 4.9).

Figure 4.8: This graph has been obtained confronting each cluster’s solution
with the one obtained with a threshold increasing of 1. It’s evi-
dently almost a flat line, since it only varies between 100% and
99% matching. This proves that assumption 0 holds.

Looking at Figure 4.9it’s evident, even if the variation is really small
(1%), that there is a point of maximum between 73 and 74%, and also
another possible one past 87%.

I decided to keep 74% as the best threshold value, since it’s in the
middle of the analyzed interval and it’s obviously more robust to
the presence of anomalous graphs. Also, in order to guarantee that
assumption 2 holds, a lesser threshold is better.

Note: it can be wondered why the graphs are so flat (they still
vary between 98% and 100%) and if such data is meaningful. The
reason for this flatness is to be found in the method used to perform
the comparison between results: for reason of complexity, a binary
algorithm has been used, i.e. an algorithm that returns 1 if there is
a perfect match between the compared graphs, and 0 if not. Using a
fuzzy algorithm, i.e. an algorithm able to return a similarity measure
between matched graphs, would most probably lead to a better curve.

54 experiments

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.9: These graphs are obtained by increasing progressively the thresh-
old distance in the matching phase. The first (a) is thus obtained
with a distance of 2, the second (b) with a distance of 3 and so
on.

4.2 batch to stream testing 55

4.2 batch to stream testing

4.2.1 Memory solution testing

The solution detailed in the previous section has been implemented
and tested with the following results:

test 11 The test has been executed by manually checking the
amount memory occupied by the algorithm during the two phases
of clustering and generalization. The test has been repeated a few
time using different graphs.

As can be seen in Table 4.2, the memory consumption has de-
creased at least by 4 times, proving the adopted strategy effective.

Number of tests 10

Number of clusters (avg.) 217

Number of graphs 1000

Clustering memory usage (avg.) < 300 MB

Previous clustering memory usage (avg.) 2 GB

Generalization memory usage (avg.) < 500 MB

Previous generalisation memory usage (avg.) 2 GB

Table 4.2: Test 11: Memory performance

4.2.2 Time solution testing

The first testing performed is a performance testing: the two cluster-
ing algorithms have been run on the same data several times, and the
total execution times have been averaged and confronted.

Number of tests 10

Number of graphs 1000

Number of generated clusters (avg..) 214

Average Jaccard execution time 277.255 seconds

Average Overlap execution time 265.749 seconds

Speedup 4.5%

Table 4.3: Test 12: Clustering performance

test 12 As can be seen from Table 4.3, the speedup is not really rel-
evant since the goal was a magnitude order speedup. Furthermore in
some of the test the Jaccard algorithm performed even better than the
Overlap algorithm. The explanation is straightforward upon data ob-

56 experiments

servation: the first algorithm to be run always outperformed slightly
the other, and this is surely due to the cache spatial localization which
allowed the second algorithm to load the data faster. This means that
the bottleneck is data loading, and the algorithm efficiency is not
enough to represent a distinctive gain.

Since for the visualization part would be better to have a data struc-
ture with all the distinct FPs instead of a single, huge set, we decided
to stick with the jaccard similarity, which results in terms of quality
had already been tested.

4.3 visualization testing

In order to test the visualization part Jackdaw has been run first on a
small amount of binaries, allowing thus a small and highly readable
map to be obtained. Later, the test has been repeated on a higher
amount of samples in order to test the scalability.

4.3.1 Visualization test

In order to test the visualization part Jackdaw has been run on 1000

sample binaries in order to create a topological map of the behaviors.
The results can be seen in Figure 4.10, in which behaviors appear as
red nodes and binaries appear as blue or yellow nodes.

Figure 4.10: Test 13: Visualization

There are evidently behaviors that are not shared among many bi-
naries, but this is acceptable considering the small amount of samples
that have been used. On the other side, there are some examples of
highly shared behaviors, like the one reported in Figure 4.11 which

4.3 visualization testing 57

has been extracted from the map in Figure 4.10. Furthermore, there is
a strong connection between behavior 222 and behaviors 225 and 232,
since a significative number of binaries shares at least two of them.

Figure 4.11: Highly shared behaviour

4.3.2 Visualization scalability test

Verified the the map is working as intended, the test has been re-
peated using more than 8000 graphs. The results can be seen in Fig-
ure4.12. It’s immediate that the visualization algorithms does not
scale in the least, since the map is unreadable. This evidently requires
the algorithm to be re engineered in order to better scale.

4.3.3 Scalable visualization algorithm

The evident problem with the map it’s the number or edges between
the nodes: the number of edges is too high to allow a readable distri-
bution of the weekly connected components of the map’s graph. In
order to reduce the number of edges, the easiest idea is to eliminate
the fps nodes: their informative contribution is small, since there is
always a correspondence one to one between FPs and behaviors.

However, this solution reduces the number of edges at most of a
number equal to the number of behavior, which is far smaller than
the number of binaries.

In order to build a really scalable visualization algorithm a solution
should be found to reduce the number of edges down of some orders
on magnitude. Possibly, also the number of nodes should be reduce,
without sacrificing the expressive power of the map.

58 experiments

Figure 4.12: Test 14: Visualization scalability

The proposed solution is to build an algorithm that is able to rec-
ognize congruent nodes. A node A is defined congruent to another
node B if and only if the group of nodes G connected to node A is
equal to the group of nodes G’ connected to node B, i.e. if A and B
have the exact same edges.

In this case, by rendering a single node AB the number of nodes
and edges is halved once for each congruent node in the map. A label
is added to the node with the number of congruent nodes represent
as a single one, and the size f the node is proportional to this number,
allowing the user to understand the magnitude of generating samples
at glance.

The assumption that the number of congruent nodes rises with the
number of samples analyzed is compatible with the assumption of
Jackdaw that the number of behavior is limited and behaviors are
highly shared among binaries.

The proposed idea has been implemented in the Algorithm 4.2.

4.3.4 Scalable visualization testing

The new visualization algorithm has been run on the same 8000 sam-
ples, and the results are reported in Figure 4.13. As shown, the map
is now clear and readable, and the frame rate has improved from 1fps
to 30 fps, allowing a fluider navigation.

Figure 4.14 reports a detail of the map, highlighting a structure in
which 6 samples share behavior 6, which is also shared by 7 samples
which also share behavior 4.

4.3 visualization testing 59

Algorithm 4.2 Scalable visualization

if 1==1: #loop here

try: os.stat(’ clusters/’) #look for clusters

except: os.mkdir(’ clusters/’)
clusterlist = os.listdir(’ clusters/’)
if ’ . DS_Store ’ in clusterlist: clusterlist.remove(’ .

DS_Store ’)
importClusters()

for c in clusters:

for s in c[’source ’]:
if s not in samples:

samples[s] = dict()

samples[s][’ set ’] = set()

samples[s][’ set ’].add(c[’ id ’])
for c in clusters:

if c[’ id ’] not in clusternodes:

clusternodes[c[’ id ’]] = next_id

U.new_vertex_w_id(next_id)

clusternodes[c[’ id ’]] = next_id

next_id = next_id +1

SetBehaviourNodeProperties(clusternodes[c[’ id ’]],
len(c[’source ’]))

removals = list()

for s in samples:

conta = 1

for s2 in samples:

if samples[s] == samples[s2] and (s != s2):

conta+=1

removals.append(s2)

samples[s][’conta ’] = conta

for r in removals:

if r in samples:

del samples[r] #comment this line to have the

extended visualization

for s in samples:

U.new_vertex_w_id(next_id)

samples[s][’ id ’] = next_id

U.set_vertex_attribute(next_id, ’ label ’, str(

samples[s][’conta ’]))
U.set_vertex_attribute(next_id, ’ size ’, str(round(

samples[s][’conta ’]/10,1)))
if samples[s][’conta ’] > 2:

U.set_vertex_attribute(next_id, ’ color ’, ’#
ff f f00 ’)

else:

U.set_vertex_attribute(next_id, ’ color ’, ’#0000

f f ’)
for c in samples[s][’ set ’]:

CreateNewEdge(next_id, clusternodes[c])

next_id = next_id + 1

60 experiments

Figure 4.13: Test 15: scalable visualization

Figure 4.14: Test 15: Detail

5
C O N C L U S I O N S , L I M I T S A N D F U T U R E W O R K S

In this chapter a summary of the improvements provided to Jackdaw
by this work will be presented, the existing limits will be highlighted
and additional improvements that could be added in the future will
be detailed

5.1 conclusions

The most significative contribution of this work to the Jackdaw project
is without doubt the development and implementation of a gener-
alization algorithm which can perform in linear time (as proved in
section 3.1.3). The previous generalisation algorithm performed in
NP time complexity, which made Jackdow impossibile to be used in
streaming due to the volume of sample provided.

The new generalisation algorithm shifts the bottleneck to the clus-
tering phase, which can be parallelised to improve performance (see
section 5.2), allowing an additional overall performance improvement.

Thanks to this new algorithm, it has been possibile to rewrite Jack-
daw to work as a streaming service, and it is now able to process
samples completely automatically until the final result. The stream-
ing conversion allows to overcome one of the greatest limits of Jack-
daw, i.e. the requirement of having multiple instances of the same
malware to be able to extract the behaviour: working as a streaming
service will allow this new Jackdaw to collect a lot of samples of every
malware.

The other major contribution of this work to the Jackdaw project
was the visualization system, which allows Jackdaw to be used in a
completely new way: not only to analyse single malware samples, or
batch of malware samples, but to monitor the whole malware ecosys-
tem. Once a sufficient amount of samples will be submitted, the visu-
alization tool will effectively map the malware behaviour ecosistem,
allowing amalysts to monitor the emergence of new behaviours.

The visulisation system has proven easy to navigate and to under-
stand, that was the main concern with such a feature, and has already
show that there are commonly shared behaviours between different
malware implementations, which was the fundamental assumption
of the Jackdaw project.

61

62 conclusions , limits and future works

5.2 limits and future works

The main limit of this work is that it needs an interface, even a sim-
ple one, to allow users to easily submit samples and receive results.
Building such an interface, anyway, is not a complex task since all the
chaintool is ready and working.

The malware map could also be enriched by adding additional in-
formation and references. A tracebak algorithm has been sketched in
order to allows to match a mouse click on a node to the object rep-
resented by that node, and could be exploited to convey additional
information on that specific behaviour directly on the map. Such a
feature has not been implemented in this work because additional
information on the map reduced readability and understandability
of the whole ecosystem, which was the main point in realizing a
map. An aoutomatic system could also be developed to track changes
in the malware map, effectively extracting information on the mal-
ware ecosystem evolution without requiring an analyst to examine
the map.

To the performance side, the clustering algorithm can not be fur-
ther improved, but it can be parallelized, be it locally or even better
distributed on a network of machines. At that point, the generaliza-
tion could also be split allowing each machine to generalise only a
specific set of clusters.

B I B L I O G R A P H Y

[1] Ubigraph. http://ubietylab.net/ubigraph/. (Cited on
page 37.)

[2] Cuckoo sandbox. 2014. http://cuckoosandbox.org. (Cited on
page 7.)

[3] Darren Mutz William Robertson Christopher Kruegel, En-
gin Kirda and Giovanni Vigna. Polymorphic worm detection us-
ing structural information of executables. Springer-Verlag, Berlin,
Heidelberg, 2006. http://dx.doi.org/10.1007/11663812_11.
(Cited on pages 5 and 7.)

[4] Christian Kreibich Juan Caballero, Chris Grier and Vern Paxson.
Measuring pay-per-install: the commoditization of malware dis-
tribution. Proceedings of the 20th USENIX conference on Security,
2011. http://dl.acm.org/citation.cfm?id=2028067.2028080.
(Cited on page 1.)

[5] Federico Maggi Paolo Mi-lani Comparetti Martina Lindorfer,
Alessandro Di Federico and Stefano Zanero. Proceedings of the
annual computer security applications conference (acsac). 2012.
(Cited on page 5.)

[6] Alessio Massetti. Extracting common maliciuos temporal depen-
dent behaviours from malware, 2015. (Cited on page 45.)

[7] Microsoft. Msdn. 2013. http://msdn.microsoft.com. (Cited on
page 6.)

[8] Engin Kirda Clemens Kolbitsch-Christopher Kruegel Paolo Mi-
lani Comparetti, Guido Salvaneschi and Stefano Zanero. Pro-
ceedings of the 2010 ieee symposium on security and privacy.
2010. (Cited on page 5.)

[9] Mario Polino and Andrea Scorti. Jackdaw: Automatic Behavior Ex-
tractor and Semantic Tagger. 2013. (Cited on page 7.)

[10] Qun Song and Nikola Kasabov. Ecm - a novel on-line, evolving
cluster- ing method and its applications. The MIT Press, 2001. (Cited
on page 8.)

[11] Jiawei Han Philip S. Yu Xifeng Yan, Hong Cheng. Mining sig-
nificant graph patterns by leap search. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data,
2008. (Cited on page 12.)

63

http://ubietylab.net/ubigraph/
http://cuckoosandbox.org
http://dl.acm.org/citation.cfm?id=2028067.2028080
http://msdn.microsoft.com

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of April 8, 2016 (classicthesis).

http://code.google.com/p/classicthesis/

D E C L A R AT I O N

I hereby declare that this thesis is my own work and that, to the best
of my knowledge and belief, it contains no material previously pub-
lished or produced by anothe party in fulfillment, partial or otherwise
of any other degree of diploma at another University or institute of
higher learning, except when due acknolegment is made in the text.

Como, April 2016

Federico Aleotti

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 State of the art
	2.1 Jackdaw
	2.1.1 Step 1: Data Collection
	2.1.2 Step 2: Clustering of Taint Information
	2.1.3 Step 3: Behavior Extraction
	2.1.4 Step 4: Semantic Tagging

	3 Problem analysis and solution developing
	3.1 Generalization algorithm
	3.1.1 Problem analysis
	3.1.2 Solution development
	3.1.3 Complexity proof

	3.2 Batch to stream
	3.2.1 Problem analysis
	3.2.2 Solution development

	3.3 Visualization
	3.3.1 Problem analysis
	3.3.2 Solution development
	3.3.3 Implementation

	4 Experiments
	4.1 Generalization algorithm testing
	4.1.1 Graph variety
	4.1.2 Solution quality
	4.1.3 Performance testing
	4.1.4 Threshold testing

	4.2 Batch to stream testing
	4.2.1 Memory solution testing
	4.2.2 Time solution testing

	4.3 Visualization testing
	4.3.1 Visualization test
	4.3.2 Visualization scalability test
	4.3.3 Scalable visualization algorithm
	4.3.4 Scalable visualization testing

	5 Conclusions, limits and future works
	5.1 Conclusions
	5.2 Limits and future works

	Bibliography
	Colophon
	Declaration

