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Abstract

Nowadays Modern Web applications are often deployed and executed on a

Cloud infrastructure which provides a convenient on-demand approach for

renting resources and easy-to-use horizontal scaling capabilities. The work-

load of Web applications is continuously changing over time and unexpected

peaks of requests can happen, making the system unable to respond. For this

reason the autonomic adaptation is an emerging solution to automatically

adapt the resources allocated to the application according to the incoming

traffic, cpu-utilization, and other metrics. Our ongoing autonomic initiative

is based on the MAPE architecture (Monitor-Analyze-Plan-Execute). This

thesis focuses on the Execute component.

While the state of the art solutions focus on adjusting the number of Vir-

tual Machines allocated to the application, the containerization, a novel kind

of virtualization that takes place at the operating system level, is emerging

and is becoming popular. Containers are linux processes that can run sand-

boxed on a shared host operating system. This means that each container

does not contain an entire operating system making this technology more

lightweight and faster to boot comparing to Virtual Machines.

The contribution of this thesis is the implementation of the Execute

component that exploits the usage of both Virtual Machines and containers

enabling a faster and finer-grained adaptation and multi-layer adaptation.

We consider not only the adaptation at the infrastructure layer, but we also

adapt the middleware software that enables the execution of application spe-

cific code as application servers, DBMS and so on. We have implemented

two approaches for the ”Execute” component: the monolithic and the hier-

archical one. The former consists of a centralized architecture where only

monitoring sensors are distributed among the nodes, the latter consists in

completely distributed architecture where all the MAPE components are

replicated at each level of the hierarchy (container, VM, cluster of VMs,

etc.).

I





Acknowlegements

I would like to thank Politecnico Di Milano professors of the courses I took

for the dedication to their work and interesting, cutting-edge material they

were teaching us.

Also I would like to thank my supervisor Giovanni Quattrocchi for guiding

and supporting me all other my thesis production period.

III





Contents

Abstract I

Acknowlegements III

1 Introduction 1

1.1 General idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Autonomic system . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 MAPE The IBM Autonomic Framework . . . . . . . . . . . . 3

1.4 Cloud and coarse-grained virtualization . . . . . . . . . . . . 4

1.5 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Requirements 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Specific requirements . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Functional requirements . . . . . . . . . . . . . . . . . 10

2.2.2 Non functional requirements . . . . . . . . . . . . . . 16

2.2.3 Use case diagram . . . . . . . . . . . . . . . . . . . . . 16

3 Solution design 18

3.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Bin packing problem . . . . . . . . . . . . . . . . . . . 18

3.1.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Limitation of the ILP formulation . . . . . . . . . . . 21

3.1.4 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.5 Dependencies . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Constraint Satisfaction Problem . . . . . . . . . . . . 23

3.2.2 Limitation of the CSP . . . . . . . . . . . . . . . . . . 24

3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

V



3.3.1 Components . . . . . . . . . . . . . . . . . . . . . . . 26

4 Implementation 27

4.1 Integer Linear Programming . . . . . . . . . . . . . . . . . . . 27

4.2 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Main Node . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5.1 Processing list of actions . . . . . . . . . . . . . . . . . 35

4.5.2 Processing plan . . . . . . . . . . . . . . . . . . . . . . 35

4.5.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Monolithic vs Hierarchical approach . . . . . . . . . . . . . . 39

4.7 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7.1 Vagrant driver . . . . . . . . . . . . . . . . . . . . . . 40

4.7.2 AWS driver . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7.3 Docker driver . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10.1 The monolithic executor . . . . . . . . . . . . . . . . . 47

5 Conclusion and future work 49

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 51



Chapter 1

Introduction

Nowadays software can consist of many different parts that are running to-

gether. The functional and non functional requirements are subject to con-

tinuous changing and the service infrastructure should be capable to support

these changes. A concrete example of automatic infrastructure management

is Amazon’s Auto Scaling, which manage when and how an application’s re-

sources should be dynamically increased or decreased. This paper describes

implementation of alternative solution that help to solve autoscaling prob-

lems.

1.1 General idea

This paper describes Autonomic Systems management using different types

of virtualization: virtual machines and containers. This Autonomic System

adaptation is based on the MAPE framework: ”M” stands for monitoring,

”A” for analysing, ”P” for planning and ”E” for execution. In other words

the system is monitored, analysed and the adaptation plan is produced that

is executed by some driver depending on what virtualization technique we

choose.

1.2 Autonomic system

Autonomic system is self-adapting self-managing system with distributed

resources, that can adapt to unpredictable changes while hiding intrinsic

complexity to operators and users. IBM was on of the first companies who

suggested this kind of systems and it has set forth eight conditions that

define an autonomic system: The system must



1. know itself in terms of what resources it has access to, what its capa-

bilities and limitations are and how and why it is connected to other

systems.

2. be able to automatically configure and reconfigure itself depending on

the changing computing environment.

3. be able to optimize its performance to ensure the most efficient com-

puting process.

4. be able to work around encountered problems by either repairing itself

or routing functions away from the trouble.

5. detect, identify and protect itself against various types of attacks to

maintain overall system security and integrity.

6. The system must be able to adapt to its environment as it changes,

interacting with neighboring systems and establishing communication

protocols.

7. rely on open standards and cannot exist in a proprietary environment.

8. anticipate the demand on its resources while keeping transparent to

users.

Even though the purpose and thus the behaviour of autonomic systems

vary from system to system, every autonomic system should be able to

exhibit a minimum set of properties to achieve its purpose:

1. Automatic: This essentially means being able to self-control its in-

ternal functions and operations. As such, an autonomic system must

be self-contained and able to start-up and operate without any man-

ual intervention or external help. Again, the knowledge required to

bootstrap the system (Know-how) must be inherent to the system.

2. Adaptive: An autonomic system must be able to change its operation

(i.e., its configuration, state and functions). This will allow the system

to cope with temporal and spatial changes in its operational context

either long term (environment customisation/optimisation) or short

term (exceptional conditions such as malicious attacks, faults, etc.).

3. Aware: An autonomic system must be able to monitor (sense) its

operational context as well as its internal state in order to be able

to assess if its current operation serves its purpose. Awareness will

control adaptation of its operational behaviour in response to context

or state changes.
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1.3 MAPE The IBM Autonomic Framework

The IBM Autonomic Computing Initiative codified an external, feedback

control approach in its Autonomic Monitor-Analyze-Plan-Execute (MAPE)

Model. Figure 1 illustrates the MAPE loop, which distinguishes between

the autonomic manager (embodied in the large rounded rectangle) and the

managed element, which is either an entire system or a component within

a larger system. The MAP loop highlights four essential apsects of self-

adaptation:

1. Monitor: The monitoring phase is concerned with extracting informa-

tion - properties or states - out of the managed element. Mechanisms

range from source-code instrumentation to non-intrusive communica-

tion interception.

2. Analyze: is concerned with determining if something has one away in

the system, usually because a system property exhibits a value outside

of expected bounds, or has a degrading trend.

3. Plan: is concerned with determining a course of action to adapt the

managed element once a problem is detected.

4. Execute: is concerned with carrying out a chosen course of action

and effecting the changes in the system.

Figure 1.1: The IBM Autonomic MAPE Reference model
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1.4 Cloud and coarse-grained virtualization

Modern web applications more often are run in the cloud. Running in the

cloud means that application is deployed not on real physical (bare-metal)

machine, but on the virtual machine where virtual infrastructure can be

configured on the cluster of machines. This approach has advantages to

classic bare-metal one. First of all it is scalability: as machine is virtual we

can do vertical scaling (allocate CPU cores or RAM) as we want, moreover if

the cloud infrastructure works on the cluster, we can provide resources that

one real machine just do not have. The second advantage is again scaling:

we can easily create new virtual machines: this is called horizontal scaling.

And the last advantage is on-demand computing or pay-as-you-go, when you

do not need to pay upfront, but only for the resources you use.

Current implementation uses Amazon Elastic Cloud Computing as cloud

provider. Also it is supported Vagrant. Vagrant is software that is higher-

level wrapper around virtualization software such as VirtualBox, VMWare,

KVM, Linux containers and Amazon EC2. We do not use Vagrant and

Amazon EC2 drivers for vertical scaling, but only for the horizontal one:

creating/deleting new virtual machines. This scaling is considered as

coarse-grained, because Amazone EC2 VM and VirtualBox VM takes quite

long time to create and use heavy virtualization technologies: like full-

virtualization, paravirtualization or hardware-assisted virtualization.

1.5 Containers

Container virtualization is operating-system-level virtualization method

where the kernel of an operating systems allows for multiple isolated user-

space instances, instead of just one.

On Unix-like operating systems, one can see this technology as an ad-

vanced implementation of the standard chroot mechanism. In addition to

isolation mechanisms, the kernel often provides resource-management fea-

tures to limit the impact of one container’s activities on other containers.

In this work we use docker implementation of container virtualization. It

uses modern Linux features like LXC containers and cgroups for managing

resources.

Containers have some advantages comparing to classic full-virtualization:

they have very low or zero overhead, because they are running without

emulation and just send system signals to operation system kernel. Moreover

containers are much faster to create/delete as they do not need to start /

stop operation system that can take significant amount of time. On the
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other hand containers are not considered as classic virtualization killers,

that will take its place. Current approach is to use classic virtualization for

clouds, and run container above classic virtual machines, so the containers

virtualization is used above the classic one.

Figure 1.2: Comparing VM to container

1.6 Contribution

The main contribution was implementing the ”E” executor part of MAPE

framework applied to autonomous system. Different implementation cases

were researched with different virtualization techniques and implementa-

tions. First of all executor accepts as the input the plan from the ”P” plan-

ner. It was considered two different implementations of executor: ”mono-

lithic” and ”hierarchical”. The difference between them is that the mono-

lithic executor manages virtual machines on its own, it decides when it is

required to create/delete virtual machine, the input plan goes to the main

node, which orchestrates agent nodes (virtual machines) with docker con-

tainers. The hierarchical executor manages only containers on the virtual

machines and the plan is built for each VM, so the executor does not need to

estimate the number of virtual machines or try to solve allocation problem.

Also the executor considers different types of virtualization: coarse-

grained one (full-virtualization, hardware-assisted or paravirtualization) and

the operation system-level virtualization (containers). Drivers for vagrant
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and amazon elastic cloud were implemented for coarse-grained virtualiza-

tion. The driver for docker was implemented to support the light-weight

containers virtualization.

Also some configuration adjustment should be implemented for continu-

ously changing environment. For example after scaling JBOSS application

from using 1 CPU and 2gb RAM to 8 CPU and 16gb RAM, we want to run

instead of 4 JBOSS threads, 32 threads. This requirement was implemented

as ”scale-hooks” which run on each docker container creation/update. Also

sometimes configuration adjustment should be more complex, taking the

same example with JBOSS resources update, load balancing node needs to

change weights or to add new nodes to its configuration. So load balancing

node should wait for finishing of create/update operations on each JBOSS

node and after that trigger its adjustment. This type of adjustment we call

”tier-hooks” and for them should be specified dependency, for example load

balance node depends on JBOSS tier. After each change of JBOSS tier, the

tier-hooks run for the nodes that depend on the changed tier.

1.7 Thesis structure

The rest of the paper is organized as follows. The second part describes

the objective, functional, non functional requirements and shows use-case

diagram. The section 3 presents the solution design, problems, approaches,

decision made and the architecture (components). The implementation part

discusses algorithms, distributed vs monolithic approaches, Vagrant driver,

AWS driver, docker driver and shows class diagrams and sequence diagram.

And the last section is the conclusion and future works.
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Chapter 2

Requirements

2.1 Introduction

The following requirements describe the system called Executor. The main

goal of the Executor is to provide required infrastructure and resources to

the controlled micro-services. With the term micro-service we understand

some 1-tier or multi-tier application. We consider only 2 types of resources:

CPU cores and available RAM.

The required infrastructure and resources are provided by creating Vir-

tual Machines and allocating containers on them. Each container is consid-

ered to store 1 tier of the application. If tier requires more resources than

1 VM has then this tier would be represented by more than 1 container on

different VMs.

The input of the executor is the topology and the plan. The topology

describes each application and its tiers: static information which can be

changed only by sending ”change topology” request. The plan says how

many resources are required for each tier.

The plan can be of two different types: the monolithic and the hier-

archical one. The monolithic plan says just how many resources it needs

for each tier and the Executor considering current allocation tries to de-

cide how many VMs it needs to create / delete and how it should allocate

containers on all VMs to satisfy all plan requirements. Current allocation

is information about currently used VMs, containers and tiers running on

them.

The hierarchical plan takes VMs management on its own and specifies

tiers resources demand for each VM separately. It says that on this VM,

this tier needs this number of CPU cores and this number of available RAM.

Also a continuously adjusted system requires some triggers to be run
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on the adjustment. The system requires two types of triggers: one that

runs on each container after scaling (container create / update) and another

that runs after some dependee tier (container) is scaled. We will call these

triggers hooks. For example the first scale hooks are used when we need

to adjust a number of threads considering how many resources container

has. The second tier hooks are used by load balancer, which may need to

change weights for tiers after dependee containers are changed. Also tier

hooks can be used to provide information about dependee tiers: for example

JBOSS tiers need the IP address of the DB tier.

2.2 Specific requirements

This section contains all requirements for the Executor: functional, non-

functional and constraints. Each requirement is described in the following

sections:
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Requirement ID Uniquely identifiers requirement

Title Gives the requirement a symbolic name

Description The definition of the requirement

Priority Defines the order in which requirements should

be implemented. Priorities are designated (high-

est to lowest) from 1 to 3. Requirements of prior-

ity 1 are mandatory; 2 represents ”nice to have”

features , and 3 represents optional features.

Risk Specifies the risk of not implementing the re-

quirement. It shows how critical the require-

ment is to the system as a whole. The following

risk levels are defined over the impact of not be-

ing implemented correctly.

• Critical (C) It will break the main func-

tionality of the system. The system can-

not be used if this requirement is not im-

plemented.

• High (H) It will impact the main func-

tionality of the system. Some function of

the system could be inaccessible, but the

system can be generally used.

• Medium (M) It will impact some system

features, but not the main functionality.

The system can still be used with some

limitation.

• Low (L) The system can be used without

limitation, but with some workarounds.
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2.2.1 Functional requirements

Requirement ID FR-0

Title The user should set topology of the system

Description The topology should include:

• Infrastructure description

– Driver used (Vagrant, AWS)

– AWS autoscaling group name

– Credentials (Optional)

• Max VMs value

• Application list

• Tiers list of each applications

• Scalability of the tier

• Docker image of the tier

• Scale hooks

• The tier dependencies list

• Tier hooks

•

Priority 1

Risk C
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Requirement ID FR-1

Title The user should emulate a monolithic plan exe-

cution

Description The user should provide the monolithic plan to

the system and get the result as list of actions

executed: VMs created / deleted, containers cre-

ated / deleted / updated, scale hooks run and

tier hooks run

Priority 2

Risk M

Requirement ID FR-2

Title The user should execute a monolithic plan

Description The plan should describe the required resources

for all the tiers of the application.

Priority 1

Risk C

Requirement ID FR-3

Title The user should see the current allocation

Description The allocation should include

• VMs IP addresses

• VMs containers

• container resources (CPU cores and RAM)

Priority 2

Risk M
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Requirement ID FR-4

Title The user should see the docker information

about running containers

Description The user should see output of ”docker inspect”

command for each container on each VM. The

interested information is ”cpuset” and RAM

used by the docker container.

Priority 2

Risk M

Requirement ID FR-5

Title The user should emulate a hierarchical plan ex-

ecution on a VM

Description Each VM should accept a hierarchical plan and

emulate its execution, showing updated / cre-

ated / deleted containers and scale-hooks that

should be executed.

Priority 2

Risk H

Requirement ID FR-6

Title The user should execute a hierarchical plan

Description The user should execute a hierarchical plan on

the VM

Priority 1

Risk C

12



Requirement ID FR-7

Title The system should distinguish the scalable and

not scalable tiers in the topology

Description The maximum number of containers for the not

scalable tier is 1. For the both scalable and not

scalable tiers the minimum number of containers

is 0.

Priority 3

Risk L

Requirement ID FR-8

Title The system should run scale-hooks after con-

tainers create / update actions

Description Each VM after creating / updating containers

check the topology if scale-hooks specified for

this tier and run them. Scale-hook is a bash

script that get as an input 4 integer arguments:

initial CPU cores usage, initial RAM memory

units usage, new CPU cores usage, new RAM

memory units usage.

Priority 2

Risk M
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Requirement ID FR-9

Title The system should run tier-hooks after creating

/ deleting / updating of dependee tier containers

Description The topology should specify an optional depen-

dency between tiers. The type of dependencies

supported is: 1-to-n (a dependency from a not

scalable tier to a scalable), 1-to-1 (a dependency

from a not scalable tier to a not scalable), n-to-

1 (a dependency from a scalable tier to a not

scalable). The dependency n-to-n (from a scal-

able tier to a sclalable tier) is not required. The

tier-hook is a bash script that gets as an input

3 string arguments: a dependent tier name, a

dependee tier name and a new allocation JSON

stringified.

Priority 2

Risk M

Requirement ID FR-11

Title The hierarchical plan should processed through

the master node

Description Besides the fact that the hierarchical plan can be

run directly on the agent node, we should have

a 1 entry point (the master node) to manage

dependencies and tier-hooks.

Priority 2

Risk M
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Requirement ID FR-11

Title The hierarchical plan should be executed only

when messages from each planner have arrived

Description The hierarchical planner sends the new plan

from each container, but we can not proceed im-

mediately these plans due to dependencies. So

plans should be processed considering dependen-

cies only after the executor received plans from

each container (tier).

Priority 2

Risk M
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2.2.2 Non functional requirements

1. (NFR-0) A monolithic executor should not create / use VMs, if it is

possible to allocate resources on less number of VMs.

2. (NFR-1) An allocation should use resources (CPU cores and RAM)

equal to a demand (required in a plan).

3. (NFR-2) A move from a previous allocation to a new one should have

minimized weight of actions. Possible actions: VM create, VM delete,

VM use, container create, container delete, container update, container

use. The weights can be tuned, but the order of weights should be:

VM create > VM use > VM delete and

container create > container update > container use > container delete

4. (NFR-3) A monolithic plan that requires about 100 tiers and 50 VMs

should be emulated in less than 10s

5. (NFR-4) All the requests should be closed by the authorisation.

6. (NFR-5) Actions of the plan should run in the order of dependencies.

Nodes that are dependees should be run first. A dependency graph

should be taken into the account.

7. (NFR-6) Containers should be created before the delete action, oth-

erwise the application will not have enough resources in the moment

between containers were deleted and before they are created.

2.2.3 Use case diagram

The use case diagram shows main user actions. It is considered that for the

monolithic plan the user runs these actions on the main node, but for the

distributed executor on the agent (the virtual machine)
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Figure 2.1: Use-case diagram
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Chapter 3

Solution design

The executor contains of two parts: the main node and the agents. The

agent runs on the created VMs, manages starting / updating / removing

of the docker containers, executing of the distributed plan and provides

information about current allocation and docker inspect output. The main

node manages executing of the monolithic plan, and also provides current

allocation and docker inspect output. The main node provides the allocation

by sending requests to each known agent and aggregating answers.

3.1 Problems

3.1.1 Bin packing problem

The monolithic approach given current allocation and the monolithic plan

(resource demand for each tier) should do creation / deletion of VMs and

allocation containers on them. This problem is similar to well-known Bin

packing problem. A VM for us is a bin and a container is an object which we

need to pack in the bin. The container has two dimensions: CPU cores and

RAM, so this is 2D bin packing problem. The main difference to bin packing

problem is that we have initial allocation (initial packing) and we should not

only minimize number of bins used, but also number of movements required

to reach the final allocation from the initial one.

The linear optimisation problem was formulated to solve this 2d bin

packing problem:

minimize
∑
i∈I

∑
j∈J

(w0ijα0ij + w1ijα1ij) +
∑
i∈I

(w2iβ0i + w3iβ1i)

18



subject to

(1)
∑
j∈J

xij ≤ m0iβ0i ∀i ∈ I

(2)
∑
j∈J

yij ≤ m1iβ0i ∀i ∈ I

(3) xij ≤ m0iαij ∀i ∈ I, j ∈ J
(4) yij ≤ m1iαij ∀i ∈ I, j ∈ J

(5)
∑
i∈I

xij = d0j ∀j ∈ J

(6)
∑
i∈I

yij = d1j ∀j ∈ J

(7) m1ixij ≥ yij ∀i ∈ I, j ∈ J
(8) m0iyij ≥ xij ∀i ∈ I, j ∈ J
(9) α0ij + α1ij = 1 ∀i ∈ I, j ∈ J
(10) β0i + β1i = 1 ∀i ∈ I

α0ij ∈ {0, 1} ∀i ∈ I, j ∈ J
α1ij ∈ {0, 1} ∀i ∈ I, j ∈ J
β0i ∈ {0, 1} ∀i ∈ I
β1i ∈ {0, 1} ∀i ∈ I
xij ∈ Z xij ≥ 0 ∀i ∈ I, j ∈ J
yij ∈ Z yij ≥ 0 ∀i ∈ I, j ∈ J

where

I is the set of VMs,

J is the set of Tiers,

α0ij is ”tier is used” binary variable that is true if we allocate container

for tier[j] on VM[i], α1ij is ”tier is idle” binary variable that is true only

if α0ij is false, the equation (9) links them together, β0i is ”vm is used”

binary variable that is true if we allocate any container for any tier on

VM[i], β1i is ”vm is idle” binary variable that is true only if β0i is false,

the equation (10) links them together, xij is ”cpu usage” variable: the

number of CPU cores that tier[j] uses on VM[i], yij is ”mem usage”

variable: ”the number of RAM units (1 unit = 512Mb) that tier[j] uses on

VM[i], (1) is CPU availability constraint and constraint for activation of

”vm is used” variable, constant m0i is the number of CPU cores on VM[i]

(maximum allowed value for xij), (2) is the same as (1), but for the

RAM units, constant m1i is the number of RAM units on VM[i] (maximum

allowed value for yij) (3) and (4) are activation of αij constraints similar

to (1) and (2). (3) is for CPU cores, (4) is for RAM units, (6) is the

RAM units demand equation, where d1j is the RAM units demand from the
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plan for the tier[j], (5) is the same as (4), but for the CPU cores, d0j
is the CPU cores demand from the plan for the tier[j], (7) says that if

tier[j] uses some RAM on VM[i], then it must use some CPU cores, (8)

is the same as constraint (7), but other way round: if tier[j] uses some CPU

cores on VM[i], then it must use some RAM units.

This formulation of the problem requires us to know the number of VMs

beforehand, which we do not know. So the upper bound number of VMs is

calculated and provided to the ILP solver. VMs that are used in the initial

allocation are already created, but there are also VMs that are empty and

are only going to be created if there will be some container on it.

Considering the initial allocation is done by constants w0ij , w1ij , w2i, w3i.

Where w0ij is the constant for using tier[j] on VM[i], so knowing initial

allocation we can set this constant to the cost of the container creation

if there is no tier[j] on VM[i] in the initial allocation, and the cost of the

container update if there is tier[j] on VM[i] in the initial allocation. Here is

a pitfall that if in the initial allocation container was used on the VM, and

we use it in the new allocation, we can not differentiate if the value of CPU

cores and RAM units used has changed (we need to run container update

command) or is not changed (we need do nothing).

The weight constant w1ij is the cost of removing container of the tier[j]

from the VM[i], this weight should be 0 if the tier[j] was not on the VM[i]

in the initial allocation.

The weight w2i is the cost of VM[i] creation. if VM[i] is already used in

the initial allocation this constant is 0.

The weight w3i is the cost of using the VM[i]. This cost is 0, if the VM

is not created yet, and it was not used in the initial allocation.

Considering NFR-2, the weights for actions should follow these rules:

1. container delete < container update < container create

2. VM delete < VM use < VM create

3. VM delete + container delete + container create <

VM use + container update

The rule number 3 is introduced, because it is possible a situation when

for example we can remove some VM[p], this VM had in the initial allocation

1 container. The weight of vm usage=30, the weight of vm deletion=25,

the weight of container update=10, the weight of container deletion=5, the

weight of container create=15. So to continue to use this VM the objective

function will have vm usage + container update = 30 + 10 = 40, and to

remove this container in the worst case we need to create container in another
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place: vm deletion+container deletion+container create = 25+5+15 =

45. So ILP minimizing the objective function will choose not to remove the

VM[p], but keep it. This is against our requirement NFR-0 and we want to

keep the minimum number of VMs possible.

Also NFR-2 requires weight of ”container use” be less than ”container

update”, but I could not found the easy way to differentiate them in ILP.

As we have initial allocation as constants, for example cij is CPU cores

used by container[j] on VM[i] and mij is the same for RAM units. The new

allocation in the ILP are variables xij and yij for CPU cores and RAM units

accordingly. So to differentiate ”container use” from ”container update”, we

need either xij + yij 6= cij + mij or abs(xij + yij − cij −mij) > 0 or some

”if” constraint that all makes our ILP non linear. The effective workaround

to solve this issue is considered out of scope of this paper.

3.1.2 Scalability

The tier can be scalable or not. The not scalable tier can have only 1 or

0 containers. If the tier is absent in the plan, it will have 0 containers,

otherwise it will be 1, whilst the scalable tier can have any number of con-

tainers ≥ 0 allocated on different VMs. In the ILP formulation not scalable

containers are not considered, so the current workaround is too

3.1.3 Limitation of the ILP formulation

This ILP formulation has some limitations:

1. This formulation of the problem requires us to know the number of

VMs beforehand, which we do not know. But we can make upper-

bound estimation.

2. This formulation does not differentiate between ”container update”

and ”container use” (do nothing with container).

3. Weights should be chosen wisely to satisfy NFR-0.

4. Bin packing problem is NP-hard

5. We have 1 optimal solution and can not choose between several differ-

ent solutions

3.1.4 Hooks

Hooks are scripts that trigger on the tier / container scaling. The goal is to

adjust the application’s configuration after the allocation is changed.
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We tried to extract and describe use cases of adjusting required:

1. Jboss needs to adapt the number of threads considering the number

of CPU allocated.

2. LoadBalancer needs to be provided with the list of Jboss containers

and resources allocated to adapt it weights.

3. Jboss needs to be provided with the DB address on container creation

/ change.

The adjustment 1 should be run for the container after it is created or

updated. We call this adjustment ”scale-hook” or ”on node scale” hook.

The script should be provided with 4 arguments: previous CPU cores al-

located, previous RAM memory units allocated, and new CPU cores and

RAM memory units allocated.

In the 2nd adjustment the LoadBalancer tier depends on the Jboss tier.

So the dependencies should be specified. Also the dependent node (Load-

Balancer) should wait until all the containers of the dependee are processed

(JBOSS). After that the adjustment script should be run on all the con-

tainers of the dependent node (LoadBalancer). We call this adjustment

”tier-hook” or ”on dependency scale” hook.

The 3d adjustment should be run only on the container start. To simpliy

the first version of the application we decided not to implement this adjust-

ment for the dependecy 1-to-n. Only for the dependencies n-to-1 and 1-to-1

after the dependee tier is processed, the ip of the dependee tier is provided

to the dependent node on the creation (parameter ”add-host”).

This creates some limitations: the dependee container should be pro-

cessed before dependent containers. For example, if the first plan will have

only dependent containers, in the next plan it will be added dependee con-

tainer, and in the last plan the dependence between them will be specified,

then ”add-host” feature will not be propagated and the dependee containers

will not know about the dependant one.

Similar problem if we decided to remove the not-scalable tier from the

plan, the dependee containers will have not valid ”add-host” link and even

if later we put the ”not-scalable” tier back to the plan, it will have another

IP address.

So considering these limitations we suggest one of the two workarounds.

The first is to manage the DB dependencies out of the topology and

provide the IP address in the topology as ”docker parameter”.
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The second is just use docker ”add-host” feature as it. So if the depen-

dent container is removed, or the dependency is added, the user should be

aware that ”add-host” will not be specified.

3.1.5 Dependencies

Considering the requirement FR-9 only 1-to-1, 1-to-n and n-to-1 dependen-

cies are supported. The dependencies between scalable tiers are not sup-

ported. The dependencies are only used to manager tier-hooks and . The

flow for container allocation and hooks execution should be:

1. get tiers dependency graph (G)

2. get set of Tiers without outgoing dependencies (T)

3. run container create / update / delete for each tier in T

4. run scale hooks if needed for each tier container in T

5. run tier hooks if needed for each tier container in T

6. remove T from G

7. if G is not empty go to 2

3.2 Approaches

Besides the ILP approach to solve container allocation problem discussed

above it was also tried another approache: Constraint Satisfaction Problem.

3.2.1 Constraint Satisfaction Problem

CSP is defined as a triple <X, D, C>, where X is a set of variables, D is a

set of the respective domains of values, C is a set of constraints.

In our context we have 2 matrices of variables as X:

xij is a matrix that specify how many CPU is used by Tier[j] on VM[i],

yij is a matrix that specify how many RAM units are used by Tier[j] on

VM[i].

The domain D for us is all possible values of CPU cores and RAM units.

For example if we have AWS t2.medium with 2 CPU cores and 8 RAM units,

we have:

d0ij is {0, 1, 2} for CPU cores,

d1ij is {0, 1, 2, 3, 4, 5, 6, 7, 8} for RAM mem units.

For a set of constraints C we should consider similar to ILP:
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• availability constraints on each VM for CPU cores and for RAM mem

units

• demand constraint considering the plan

• 0 CPU cores with RAM > 0 or other way round

3.2.2 Limitation of the CSP

This CSP formulation has also some limitations:

1. Comparing to ILP, changing domain to continuous values may cause

problems.

2. The solution of the CSP is a list of different solutions, that can differ

only by a permutation. We can have a factorial number of different

solutions which we need to look to found the optimal one considering

the initial allocation.

3. The problem is NP-Hard and the complexity growth is much faster

than the ILP.

The CSP formulation has one insuperable problem that it does not scale.

If we have 10 Tiers, 10 VMs, and 16 CPU cores and 64 RAM mem units,

the CSP solution does not complete in appropriate time.

3.3 Architecture

The architecture consists of two main components: Executor Main Node

and Executor Agent. The main node accepts a monolithic plan, orchestrates

agents and has a whole picture of VMs allocated. The agent node can accept

a distributed plan to execute, can run / start / stop docker containers,

provides the allocation information and output of docker inspect command.

These executor nodes are ”Execute” part of the autonomous system

MAPE framework. The Monitor component measures different metrics of

applications that are running in the containers on the Executor agents, and

provide this information to the Analyze component. The Plan component

together with the Analyze component produce a new plan (a resource de-

mand for tiers) which is sent to Executor.

24



Figure 3.1: Architecture

25



3.3.1 Components

Figure 3.2: Executor main node classes

Figure 3.3: Executor agent node classes
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Chapter 4

Implementation

4.1 Integer Linear Programming

For prototype the ILP problem formulated in the section 3.1.1 was modeled

and solved in AMPL language.

Listing 4.1: AMPL model

s e t Tier ;

s e t VM;

param t i e r u s e d {Tier , VM} ;

param vm used{VM} ;

param cpu demand{Tier } ;

param mem demand{Tier } ;

param cpu max{VM} ;

param mem max{VM} ;

param u s e t i e r w e i g h t {Tier , VM} ;

param use vm weight {VM} ;

param n o t u s e t i e r w e i g h t {Tier , VM} ;

param not use vm weight {VM} ;

var t i e r u s a g e {Tier , VM} >= 0 binary ;

var vm usage{VM} >= 0 binary ;

var t i e r i d l e {Tier , VM} >= 0 binary ;

var vm idle {VM} >= 0 binary ;

var cpu{Tier , VM} >= 0 i n t e g e r ;

var mem{Tier , VM} >= 0 i n t e g e r ;
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minimize co s t :

sum{ i in Tier , j in VM}
( u s e t i e r w e i g h t [ i , j ] ∗ t i e r u s a g e [ i , j ] +

n o t u s e t i e r w e i g h t [ i , j ] ∗ t i e r i d l e [ i , j ] ) +

sum{ j in VM} ( use vm weight [ j ] ∗ vm usage [ j ] +

not use vm weight [ j ] ∗ vm idle [ j ] ) ;

s u b j e c t to CPU ava i l ab i l i ty { j in VM} :

sum{ i in Tier }
cpu [ i , j ] <= cpu max [ j ] ∗ vm usage [ j ] ;

s u b j e c t to RAM avai labi l i ty { j in VM} :

sum{ i in Tier } mem[ i , j ] <= mem max [ j ] ;

s u b j e c t to CPU demand{ i in Tier } :

sum{ j in VM} cpu [ i , j ] = cpu demand [ i ] ;

s u b j e c t to RAM demand{ i in Tier } :

sum{ j in VM} mem[ i , j ] = mem demand [ i ] ;

s u b j e c t to CPU activation { i in Tier , j in VM} :

cpu max [ j ] ∗ t i e r u s a g e [ i , j ] >= cpu [ i , j ] ;

s u b j e c t to RAM activation{ i in Tier , j in VM} :

mem max [ j ] ∗ t i e r u s a g e [ i , j ] >= mem[ i , j ] ;

s u b j e c t to CPU RAM activation{ i in Tier , j in VM} :

mem max [ j ] ∗ cpu [ i , j ] >= mem[ i , j ] ;

s u b j e c t to RAM CPU activation{ i in Tier , j in VM} :

cpu max [ j ] ∗ mem[ i , j ] >= cpu [ i , j ] ;

s u b j e c t to l i n k t i e r i d l e { i in Tier , j in VM} :

t i e r i d l e [ i , j ] + t i e r u s a g e [ i , j ] = 1 ;

s u b j e c t to l i n k v m i d l e { j in VM} :

vm idle [ j ] + vm usage [ j ] = 1 ;

In the executor we solve the problem using or-tools and ILP solver by

Google. The Solver component accepts the current allocation, the topology
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and provides as output a new allocation. The new allocation is the input

of the Translator component which translates the new allocation to the

list of actions to be run. This list of actions is the input to the Executor

component.

4.2 API

4.2.1 Main Node

[GET] /api/allocation Returns the allocation JSON of known VMs. In

reality, just make calls to VMs and groups answers.

Listing 4.2: Example GET allocation output

{
”52 . 3 4 . 2 . 1 7 0 ” : {

” rub i s app s e r v e r ” :{
” cpuset ” : [ 0 ] ,

” cpu core s ” : 1 ,

”mem units ” : 2

} ,
” pw i t t e r app s e rv e r ” :{

” cpuset ” : [ 1 ] ,

” cpu core s ” : 1 ,

”mem units ” : 3

}
}

}

[GET] /api/inspect Returns the inspect output JSON for known VMs.

In reality, just make calls to VMs and groups answers.

Listing 4.3: Example GET inspect output

{
”52 . 3 4 . 2 . 1 7 0 ” : {

” rub i s app s e r v e r ” :{
”MemUnits ” : 2 ,

”CpusetCpus ” : ”0” ,

”Memory”:1073741824

} ,
” pw i t t e r app s e rv e r ” : {

”MemUnits ” : 3 ,

”CpusetCpus ” : ”1” ,

”Memory” : 1610612736

}
}

}

[GET] /api/topology

Returns JSON with the current topology.

Listing 4.4: Example topology

{
” i n f r a s t r u c t u r e ” : {

” c l oud d r i v e r ” : {
”name” : ”aws−ec2 ” ,

” autosca l ing group name ” : ”monol i th ic−ex−8cpu ” ,
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” c r e d e n t i a l s ” : ”/ usr /me/ u t i l s /aws . p r op e r t i e s ”

} ,
”max vms ” : 10 ,

” hook s g i t r epo ” : ” https :// github . com/ n43 j l /hooks . g i t ”

} ,
”apps ” : [{

”name” : ” rub i s ” ,

” t i e r s ” : {
” loadba lance r ” : {

”name” : ”Front Load Balancer ” ,

”max node ” : 1 ,

” docker image ” : ”haproxy ” ,

”depends on ” : [ ” app se rve r ” ] ,

” on dependency sca le ” : ” r e l o a d s e r v e r p o o l . sh ” ,

”max rt ” : 0 .1

} ,
” app se rve r ” : {

”name” : ”Appl i cat ion Logic Tier ” ,

” docker image ” : ” po l imi / rubis−j bo s s ” ,

”depends on ” : [ ” db ” ] ,

” on node s ca l e ” : ” jbos s hook . sh ” ,

” on dependency sca le ” : ” r e l o ad connec t i on s . sh ” ,

” port s ” : [ ” 8 0 : 8 0 80” ] ,

” entrypoint params ” : ”−w 3 −k ev en t l e t ”

} ,
”db ” : {

”name” : ”Data Tier ” ,

”max node ” : 1 ,

” docker image ” : ”mysql ” ,

” on node s ca l e ” : ”mysql hook . sh ” ,

”max rt ” : 0 . 2 ,

” por t s ” : [ ” 3306 : 3306” ]

}
}

} ,{
”name” : ” pwi t te r ” ,

” t i e r s ” : {
” app se rve r ” : {

”name” : ”Appl i cat ion Logic Tier ” ,

” docker image ” : ” pwitter−web” ,

” port s ” : [ ” 8080 : 5000” ] ,

” entrypoint params ” : ” /opt/ jboss −4 .2 . 2 .GA/bin /run . sh −−host =0 .0 .0 . 0

−−bootd i r=/opt/ rub i s / rubis−cvs−2008−02−25/ Se rv l e t s H ib e rna t e −c d e f au l t ”

} ,
”db ” : {

”name” : ”Data Tier ” ,

”max node ” : 1 ,

” docker image ” : ”mysql ” ,

” on node s ca l e ” : ”mysql hook . sh ” ,

”max rt ” : 0 . 2 ,

” por t s ” : [ ” 3307 : 3306” ]

}
}

} ] ,
}

[PUT] /api/topology

Set the topology. The payload is the same as the example output of the

[GET] /api/topology method.

[PUT] /api/translate

Returns JSON with the actions list required to execute provided in the

payload plan.

Listing 4.5: Example of the input payload

{
” rub i s ” : {
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” app se rve r ” : {
” cpu core s ” : 1 ,

”mem units ” : 3

}
} ,
” pwi t te r ” : {

” app se rve r ” : {
” cpu core s ” : 1 ,

”mem units ” : 4

}
}

}

Listing 4.6: Example of the output

{
” ac t i on s ” : [

”update conta ine r \” rub i s app s e r v e r \”
on the vm ”52 . 34 . 2 . 170” s e t cpu core s=1 and mem units=3”,

”update conta ine r \” pw i t t e r app s e rv e r \”
on the vm ”52 . 34 . 2 . 170” s e t cpu core s=1 and mem units=4”

]

}

4.2.2 Agent

[GET] /api/allocation

Returns JSON with the current allocation of the containers on the VM. The

difference with the ”inspect” command is that ”inspect” is the output of

”docker inspect” command, while the ”allocation” is taken from the app

runtime state. e.g. We create using the API some container ”Jboss”. Both

the ”allocation” and ”inspect” will return 1 container. After that we stop

/ start our Executor Agent Node. The ”allocation” will be empty, but the

”inspect” will return 1 container.

Listing 4.7: Example GET allocation output

{
” rub i s app s e r v e r ” :{

” cpu core s ” : 1 ,

”mem units ” : 2

} ,
” pw i t t e r app s e rv e r ” :{

” cpu core s ” : 1 ,

”mem units ” : 3

}
}

[GET] /api/inspect

Returns JSON with the current docker containers running on the VM.

Listing 4.8: Example GET inspect output

{
” rub i s app s e r v e r ” :{

”MemUnits ” : 2 ,

”CpusetCpus ” : ”0” ,

”Memory”:1073741824

} ,
” pw i t t e r app s e rv e r ” : {
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”MemUnits ” : 3 ,

”CpusetCpus ” : ”1” ,

”Memory” : 1610612736

}
}

[GET] /api/topology

The output is the same as for the main node.

[PUT] /api/topology

The input and the output is the same as for the main node.

[PUT] /api/translate

Returns JSON with the actions list required to execute provided in the

payload plan.

Listing 4.9: Example of the input payload

{
” rub i s ” : {

” app se rve r ” : {
” cpu core s ” : 1 ,

”mem units ” : 3

}
} ,
” pwi t te r ” : {

” app se rve r ” : {
” cpu core s ” : 1 ,

”mem units ” : 4

}
}

}

Listing 4.10: Example of the output

{
” ac t i on s ” : [

”update conta ine r \” rub i s app s e r v e r \” s e t cpu core s=1 and mem units=3”,

”update conta ine r \” pw i t t e r app s e rv e r \” s e t cpu core s=1 and mem units=4”

]

}

[PUT] /api/topology

Set the topology. The payload is the same as the example output of the

[GET] /api/topology method.

[PUT] /api/execute

Returns JSON with the actions list required to execute provided in the

payload plan.

Listing 4.11: Example of the input payload

{
” rub i s ” : {

” app se rve r ” : {
” cpu core s ” : 1 ,
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”mem units ” : 3

}
} ,
” pwi t te r ” : {

” app se rve r ” : {
” cpu core s ” : 1 ,

”mem units ” : 4

}
}

}

[PUT] /api/run/tier hooks

Returns JSON with the actions list required to execute provided in the

payload plan.

Listing 4.12: Example of the input payload

[

{
”app ” : ” rub i s ” ,

”dependent ” : ” app se rve r ” ,

”depends on ” : [ ” db ” ] ,

” a l l o c a t i o n ” : ” . . . ”

}
]

[PUT] /api/docker/run

Runs the docker container specified in the payload.

Listing 4.13: Example of the input payload

{
”name” :” pw i t t e r app s e rv e r ” ,

” cpu core s ” : 2 ,

”mem units ” : 3

}

[PUT] /api/docker/remove

Removes the docker container specified in the payload.

Listing 4.14: Example of the input payload

{
”name” :” pw i t t e r app s e rv e r ”

}

[PUT] /api/docker/update

Returns JSON with the actions list required to execute provided in the

payload plan.

Listing 4.15: Example of the input payload

{
”name” :” pw i t t e r app s e rv e r ” ,

” cpu core s ” : 1 ,

”mem units ” : 2

}
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4.3 Topology

There are restrictions for the topology:

1. Ports are specified in the form (host VM port : guest container port).

All hosts ports specified for all tiers should be unique, even for different

applications.

2. The script name specified in the ”on node scale” should be located in

the repository specified in ”hooks git repo” in the folder ”scale hooks”.

3. The script name specified in the ”on dependency scale” should be

located in the repository specified in ”hooks git repo” in the folder

”tier hooks”.

4. The max node=1 means that the tier is not scalable. It will not be

moved from one VM to another and it must have the resources demand

less than it is available on one VM.

5. For tiers with the max node> 1 is allowed to have dependencies only to

tiers with max node=1 (n-to-1). n-to-n dependencies are not allowed.

6. Dependencies between tiers from different applications are not allowed.

7. Circular dependencies are not allowed

Also tier names should be unique inside the app, and the app name

should be unique too. Any tiers of any apps can be on the same VM, so

uniqueness of the container name is imposed by using as container name the

compound name: ”APP NAME TIER NAME”.

4.4 Hooks

To adjust to the new allocation they should be provided with input param-

eters.

The ”on node scale” hook requires as the input parameter the previous

resources and the new. So there are 4 input parameters: previous CPU

cores, previous memory units, new CPU cores and new memory units.

The ”on dependency scale” hook requires the IP address of the dependee

tier and new allocation resources. So the input parameters are: the dependee

tier name, the dependent tier name and stringified allocation JSON.
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4.5 Algorithms

4.5.1 Processing list of actions

The algorithm figure 4.1 describes the workflow in processing the list of ac-

tions for containers and processing hooks. First of all the tiers that depends

on other tiers should be processed only after the dependee. To support this

we build the dependency graph and process tiers without dependencies first

and after remove them from the graph.

The second is the order of processing a tier. We should first create

containers, after we can do update and only after that we can do remove.

This is done to have more resources than it required for the tiers, otherwise

the monitor component may detect that applications needs more resources.

All the hooks (scale-hooks and tier-hooks) are run only they are specified

for this tier.

4.5.2 Processing plan

Processing the plan is specified in the figure 4.2. While processing the plan,

the plan ”app -> tier -> demand” is flatten to the form ”app tier -> de-

mand”. If the demand is not equal to allocation than the ILP formulation

is built and solved. As the result we get the new resource allocation consid-

ering VMs and containers with resources on them. The procedure ”process

list of actions” is described in the figure 4.1.
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Figure 4.1: Processing list of actions
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Figure 4.2: Processing the plan
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4.5.3 Translation

The goal of the translation is to express the new allocation as the list of

actions considering the current allocation. The set of possible actions con-

sidering we the container with the name ”app tier” and the VM with the

IP ”127.0.0.1”:

• Create VM ’127.0.0.1’

• Delete VM ’127.0.0.1’

• Create container ’app tier’ on the VM ’127.0.0.1’ with cpu=2 and

mem=2.5gb

• Update container ’app tier’ on the VM ’127.0.0.1’ set cpu=1 and

mem=1gb

• Run scale hooks for the container ’app tier’ on the VM ’127.0.0.1’

• Delete container ’app tier” on the VM ’127.0.0.1’

• Run tier hooks for the container ’app tier’ on the VM ’127.0.0.1’

The algorithm for this translation is:

Listing 4.16: Translation algorithm

FOR ALL vm IN c u r r e n t a l l o c a t i o n :

IF vm IN n e w a l l o c a t i o n :

FOR ALL conta ine r IN c u r r e n t a l l o c a t i o n [vm ] :

IF not conta ine r IN n e w a l l o c a t i o n [vm ] :

p u s h d e l e t e c o n t a i n e r a c t i o n

ELSE:

push de l e t e vm act i on

FOR ALL vm IN n e w a l l o c a t i o n :

IF vm IN c u r r e n t a l l o c a t i o n :

FOR ALL conta ine r IN n e w a l l o c a t i o n [vm ] :

IF conta ine r IN o l d a l l o c a t i o n [vm ] :

p u s h u p d a t e c o n t a i n e r a c t i o n i f n e e d e d

p u s h r u n s c a l e h o o k s i f n e e d e d

ELSE:

p u s h c r e a t e c o n t a i n e r a c t i o n

p u s h r u n s c a l e h o o k s i f n e e d e d

ELSE:

push create vm act ion
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FOR ALL conta ine r IN n e w a l l o c a t i o n [vm ] :

p u s h c r e a t e c o n t a i n e r a c t i o n

p u s h r u n s c a l e h o o k s i f n e e d e d

Scale-hooks run after each container update / create. Tier-hooks can be

handled only considering the dependency graph. The executor adds tier-

hooks to the list of actions.

4.6 Monolithic vs Hierarchical approach

Figure 4.3: Hierarchical Executor

The current approach with solving a plan using ILP formulation we call

the ”monolithic” approach. Considering that all the implementation is run

in the MAPE framework environment for the monolithic approach we have a

global planner. Having a global planner has some drawbacks, as the control
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loop timeout should be at least the time required to run the plan (considering

the VM creation take a long time for our test it was approximately 150s).

To go around large control loop timeouts we decided that MAPE com-

ponents can be hierarchically spread among all the VMs and containers. So

instead of having the one global planner, we want to have planner for each

container. This we call the hierarchical approach.

In the hierarchical approach for each container there is the planner which

produce the plan for its own container. To handle the VM constraints in

CPU cores and memory, the VM has another planner that consolidates all

containers plan and resolves this constraints. In the future work we are

thinking to have the CPU requirement in the plan as the float number, this

simplifies the constraint resolving considering each plan.

After plans are built for each VM, it hierarchically goes to the root plan-

ner and the root planer provides the plan to the master node executor. The

master node executor accepts the plan, but it do not run it until the plans

from each VM have arrived. This is because of the tier-hooks. To support

tier-hooks we need to execute actions in the particular order (calculated by

the dependency-graph), so we can not run some actions, until we know all

the actions we need to run.

4.7 Drivers

There were implemented several drivers for managing virtual / cloud infras-

tructure: Vagrant, AWS, Docker.

As vagrant is an interface (a facade) to large list of different virtualization

providers and AWS also supports very large list of vitalization (even Docker

containers). This 3 cases covers a lot of different virtualization techniques.

4.7.1 Vagrant driver

Vagrant was used mostly during the implementation stage of the work to

test everything locally without paying for Amazon AWS infrastructure.

The image for Vagrant is based on the ”ubuntu/trusty64” image with

docker and ”Ecoware executor agent” installed.

All ports that are required for tiers should be preconfigured in the Va-

grantfile. The application ”Ecoware executor agent” uses the port 8000,

which should be also preconfigured in the Vagrant file. The Vagrant config-

uration files can be found in the repository.

Vagrant is something like an interface or a facade to list of the virtual-

ization providers. As providers Vagrant supports:
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• VirtualBox

• VMware

• Hyper-V

• Docker

• You can develop your own plugin for custom provider

Using Vagrant helps to abstract from different providers and make it easy

to change providers without changing our driver.

To manage Vagrant our driver uses the python module subprocess to call

OS commands like vagrant up

4.7.2 AWS driver

For implementing AWS driver it were tested 3 different ways to communicate

with AWS:

1. HTTP REST calls

2. AWS management console

3. Python AWS SDK boto3

As all the code for the paper was written in the python, it was decided that

using boto3 is the simplest and cleanest way.

In current implementation it was easier to use the AWS Auto Scaling

Groups to create VMs. So creating VMs now is based on the ”desired

capacity” method for Auto Scaling Groups in AWS. So the workflow for

creating VMs now is:

1. Get required VM number from ILP solution (n).

2. Set desired capacity for the Auto Scaling Group to n.

3. Poll number of instances in the Auto Scaling Group until it equals to

n.

4. Poll the status of all instances of the Auto Scaling Group to be the

”in service”.

5. Get IP addresses of all VMs.

6. Analyse the previous allocation, the new allocation and separate ex-

isted machines with the new.
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7. Set the topology to the new VMs, on error sleep 10s and repeat.

The ”polling” in this context means to make the request to the AWS

and if the result is not satisfactory, sleep 10s, and repeat the request again.

Creating the VM takes approximately 150s.

For the deletion of the VM we can not just set the desired capacity to

the smaller number, because we need to delete some particular machine, but

not any one from all machines. To remove particular machine we just do 2

actions:

1. Detach the instance from the autoscaling group.

2. Terminate the instance

The AWS infrastructure supports different virtualization techniques:

• HVM

• PV

• Docker containers

HVM stands for Hardware-Assisted Virtualization. PV stands for Paravir-

tualization. In spite of the fact that these virtualization techniques are

different and have its own advantages and disadvantages, AWS helps us to

abstract from this and use its unified API.

To configure AWS for using with AWS driver it is required to do some

steps:

AMI. The AMI should contain the Ecoware Executor Agent and docker

installed. The Ecoware Executor Agent and docker engine should be in

the autostart. All the containers images that will be used for different

tiers should be pulled in the docker. Also all the containers should be

removed to not have the name collision.

Security Group. Security Group should be configured considering all the

ports that containers want to listen to and the Ecoware Executor Agent

default port 8000.

Launch Configuration. Launch Configuration should be created consid-

ering the AMI we want to use, the security group, and the AWS in-

stance type.

Auto Scaling Group. Auto Scaling Group should be created using the

Launch Configuration with the initial instance number equals to 0.
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4.7.3 Docker driver

Besides the fact that both Vagrant and AWS support Docker containers as

under layer virtualization technique (or the provider), we use docker without

any facade or interface, but directly. This helps to simplify and separate the

separation between fine-grained and coarse-grained virtualization.

Docker is managed as the Vagrant using OS calls with the python module

subprocess.

The command to run have this structure (example of the run action):

Listing 4.17: Docker run template

docker run − i t d {PORTS} {HOSTS} −−cpuset−cpus={CPUS}
−m={MEM}m −−name={NAME} −v=/ecoware : / ecoware {IMAGE}
{ENTRY PARAMS}

Listing 4.18: Docker run example

docker run − i t d −p 8080:5000 −−add−host=”db : 1 7 2 . 3 1 . 3 1 . 1 2 3 ”

−−cpuset−cpus =0,1 −m=512m −−name=r u b i s a p p s e r v e r

−v=/ecoware : / ecoware pwitter−web −w 3 −k e v e n t l e t

-it option means to allocate a tty for the container process (to run it

interactively).

-d option means to run container in the detached mode (background mode).

The variable {PORTS} is built considering ports specified in the topology.

The variable {HOSTS} is built if the tier has dependency n-to-1 or 1-to-1.

Variables {CPUS} and {MEM} is resources demand from the plan.

The variable {NAME} is built from the topology like

”{APP NAME} {TIER NAME}”.

-v option means to add a data volume. The format is host dir:guest dir. The

name of the directory is hardcoded, this is directory where the git repository

with hooks is pulled.

The variable {IMAGE} is taken from the topology.

The variable {ENTRY PARAMS} is the entry point params also taken from

the topology.

4.8 Unit testing

Some of the algorithms can be easily tested with unit-testing.

For example, the ILP algorithm is quite weight sensitive and tuning the

weights can break some logic. Moreover there are many different ways how

the system can satisfy the new plan and sometimes it is not clear and obvious
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which way is more optimal. So for the ILP solver it was written a list of the

tests.

The input for the test is 3 json files: ”plan.json”, ”result.json” and ”al-

location.json”. So the iLP solver is tested that given the current allocation

and the plan, it produces the new allocation equals to specified in the ”re-

sult.json”.

Any arguable ILP solution can be inspected in details and added to the

tests.

Also algorithms like ”building the dependency graph”, ”translation from

allocation to actions” are tested too.
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4.9 UML

Figure 4.4: Class diagram for the executor on the Main Node

Figure 4.5: Class diagram for the executor on the Agent Node
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Figure 4.6: Sequence diagram
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4.10 Examples

4.10.1 The monolithic executor

For example we have initially empty system without running VMs and con-

tainers. The topology of our applications is the same as in the listing 4.4.

The executor is running locally on the port 8000: http://localhost:8000/.

The autoscaling group ”monolithic ex 8cpu ” is configured and it uses VMs

with 8 CPU cores and 32gb of RAM (64 RAM units).

As the HTTP client we can consider the unix tool ”curl”.

First we set the topology

curl -X PUT -d @topology.json $endpoint

where ”topology.json” file contains the same json as in the listing 4.4 and

$endpoint is http://localhost:8000/api/topology

We can check the new topology opening in any browser

http://localhost:8000/api/topology.

For example now we want to start only the rubis application, giving 4

CPU cores and 4gb of RAM to ”app server” and 1 CPU core and 4gb of

RAM to the ”db” tier.

For this example the payload.json” should be:

Listing 4.19: payload.json

{
” rub i s ” : {

” app se rve r ” : {
” cpu core s ” : 4 ,

”mem units ” : 8

} ,
”db ” : {

” cpu core s ” : 1 ,

”mem units ” : 8

}
}

}

First, we can check which actions would be run for this plan by calling

endpoint for translation. This call will not run these actions.

curl -X PUT -d @payload.json $endpoint

the $endpoint is http://localhost:8000/api/translate

After that we can execute the plan by calling the execute endpoint:

curl -X PUT -d @payload.json $endpoint

where $endpoint is http://localhost:8000/api/execute

We can check new allocation by calling these endpoints from the browser:

http://localhost:8000/api/allocation and

http://localhost:8000/api/inspect.

After the planner decides to change the allocation of the containers it
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should just send to /execute/ endpoint the new payload with the new re-

sources demand.
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Chapter 5

Conclusion and future work

5.1 Conclusion

In this work it was implemented the Executor component for the autonomic

system based with the adaption based on the MAPE framework. It were

considered different virtualization types: coarse-grained the classic one (vir-

tual machines) and the fine-grained container virtualization. During the

implementing and experiments we can see advantages of container virtual-

ization: using the fine-grained adaptation capabilities can greatly improve

performance when autoscaling cloud-based web-application.

Modern cloud micro services and multitier architectures can benefit from

using the autoscaling techniques, providing the decrease in the computa-

tional resource consuming, while showing high performance at the same

time. The decreasing in the resource consumption it is not only sustain-

able approach to the environment, but also the reduction of the expenses

considering the pay-as-you-go services like AWS.

5.2 Future work

As it is said in the conclusion part the adaptation using containers can

greatly improve the performance of the autoscaling. As the evaluation part

was not the part of this paper, the evaluation and the proof should be done

as the future work.

Also as the future work it is considered the support of other infrastruc-

ture or cloud engines: Google App Engine or Microsoft Azure Cloud

Also the future work comprises the integration of feature adaptation by

extending the adaptation hook mechanism, an extension of the planner to

make it work hierarchically with respect to the controlled resources, and even
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finer-grained solution to control the CPUs cores allocated to a container, and

further evaluation on more case studies of different kinds.
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