
EFFICIENT DATA STRUCTURES

FOR CROSS-SAMPLE INFERENCES

ON GENOMIC DATA

POLITECNICO DI MILANO

Dipartimento di Elettronica, Informazione e Bioingegneria

Vahid JALILI

Thesis advisors:

Prof. Matteo Matteucci

Prof. Marco Masseroli

Thesis supervisor:

Prof. Stefano Ceri

Milan, Italy

Politecnico di Milano 2016

Wings are a constraint that
makes it possible to fly.

Robert Bringhurst

To my wife, son, and parents . . .

Acknowledgements

Though only my name appears on the cover of this dissertation as the author, a great many

people have contributed to its production. I owe my gratitude to all those people who have

made this dissertation possible and because of whom my graduate experience has been one

that I will cherish forever.

Foremost, my deepest gratitude is to my advisor Prof. Matteo Matteucci for the continuous

support of my PhD study and related research, for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me in all the time of research and writing of this

thesis. I could not have imagined having a better advisor and mentor for my PhD study. I

have been amazingly fortunate to have an advisor who gave me the freedom to explore on my

own, and at the same time the guidance to recover when my steps faltered. Prof. Matteucci

taught me how to question thoughts and express ideas, he taught me going after my dreams,

do not loose sight of them, fight for them, and materialize them. His patience and support

helped me overcome many crisis situations and finish this dissertation. I am also thankful to

him for encouraging the use of correct grammar and consistent notation in my writings and

for carefully reading and commenting on countless revisions of all the manuscripts I wrote

during my graduate experience. I hope that one day I would become as good an advisor to my

students as Prof. Matteucci has been to me.

My sincere thanks also goes to Prof. Stefano Ceri for insightful comments and constructive

criticisms at different stages of my research were thought-provoking and they helped me focus

my ideas. Additionally, I am thankful to him for giving me the opportunity to join his talented

research group. I am indeed thankful to prof. Marco Masseroli for all his kind support during

my graduate experience, for letting me join their lab, and particularly for his careful revisions

and constructive critic comments that improved our publications.

Besides my advisors and supervisor, I would like to thank my thesis reviewer Prof. Stefano

Rizzi for his insightful comments and encouragement, but also for the hard question which

incented me to widen my research from various perspectives.

I thank my fellow labmates, the Genome computing group at Politecnico di Milano, for all

the fun we have had in the last three years. In particular, I am grateful to Fernando Palluzzi

i

Acknowledgements

for enlightening me the glance of Genomics. I am thankful to Francesco Venco, Pietro Pinoli,

Arif Canakoglu, Abdulrahman kaitoua, Yuriy Vaskin, and Stefano Perna for the stimulating

discussions. I am indeed thankful to Marzia Angela Cremona, Yashar Deldjoo, Mehdi Elahi,

and Massimo Quadrana for their kindest and insightful support in statistical and analytical

challenges of present dissertation.

Last but not the least, I would like to thank my family: my wife, my parents, and to my sister

for supporting me spiritually throughout my graduate experience writing. None of this would

have been possible without the love and patience of my family. My immediate family to whom

this dissertation is dedicated to, has been a constant source of love, concern, support and

strength all these years. I would like to express my heart-felt gratitude to my family.

V. J.

ii

Abstract
Advances in next generation sequencing (NGS), also known as high-throughput sequencing,

ubiquitize DNA sequencing as a flexible tool for genome exploration. NGS has opened the

possibility of a comprehensive characterization of the genomic and epigenomic landscapes,

giving answers to fundamental questions for biological and clinical research, e.g., how DNA-

protein interactions and chromatin structure affect gene activity, how cancer develops, how

much complex diseases such as diabetes or cancer depend on personal (epi)genomic traits.

This is opening the road to personalized and precision medicine.

A distinguished aspect of NGS-based experiments is the large amount of data they produce.

The generated data are broadly applicable and facilitate various functional analysis, including

studies about DNA-protein interaction or histone modification (using Chromatin immuno-

precipitation followed by massively parallel DNA sequencing (ChIP–seq)), transcriptional

regulation (using RNA-seq), long range chromatin interactions explained by de novo spatial

structure of genome (using Hi-C6). Recent studies combine these studies into larger assays

for in-depth interpretations of sequencing data. Yet such interpretations, and making sense

of data, demand complex computation and large scale data retrieval systems. The present

dissertation has focused on sense-making, e.g., discovering how heterogeneous DNA regions

concur to determine particular biological processes or phenotypes. Towards such discovery,

characteristic operations to be performed on region data regard identifying co-occurrences of

regions, from different biological tests and/or of distinct semantic types, possibly within a cer-

tain distance from each others and/or from DNA regions with known structural or functional

properties.

The manuscript explains Di4 (1D interval incremental inverted index) and its predecessor Di3

(1D interval inverted index). Di4 and Di3 are single-dimension (1D) multi-resolution indexing

frameworks, designed to be comprehensive, generic, extensible, and scalable back-end data

structures for information retrieval on NGS interval-based data. Di4 and Di3 are defined at

data access layer, agnostic to data, business logic, and presentation layers; this design makes

them adaptable to any underlying persistence technology based on key-value pairs, spanning

from classical B+tree to LevelDB and Apache HBase, and it makes them suitable for different

business logic and presentation layer scenarios. Benchmarking Di4 and Di3 on real and simu-

lated datasets and a comparison with common tools in bioinformatics realm, demonstrate the

effectiveness of Di4 and Di3 as a back-end for general purpose genomic region manipulation.

iii

Acknowledgements

The applicability of Di4 and Di3 to different business logic and presentation scenarios, and

extensibility to application-specific functions, is assessed in comparative evaluation of ChIP-

seq samples. The ChIP-seq technology identifies protein-DNA interactions using enriched

regions on DNA when the significance measure (p-value) is below a stringency threshold.

Replicated samples are expected to have a degree of repeated evidence, which can locally lower

the minimum significance required to accept an enriched region. The present dissertation

discusses a method for the joint analysis of ChIP-seq replicates, which confirms overlapping

enriched regions if their comparative evaluation complies a set of user-defined thresholds.

The method is implemented using Di3 to demonstrate the extensibility of the frameworks.

Additionally, Di3 is used as back-end data structure to implement common ChIP-seq data

assessment methods, such as functional analysis, correlation assessment, nearest feature

distance distribution, chromosome-wide statistics, and genome browser.

Keywords: Genomic computing; indexing framework, domain-specific data indexing; region-

based operations and calculus; data integration; comparative analysis.

iv

Sommario

Grazie agli sviluppi nel sequenziamento di nuova generazione (NGS), anche noto come High-

Throughput Sequencing, il sequenziamento del DNA si è diffuso ovunque come strumento

flessibile per l’esplorazione del genoma. Le tecniche di NGS hanno reso possibile una ca-

ratterizzazione globale del panorama genomico ed epigenomico, rispondendo a domande

fondamentali nell’ambito della ricerca biologica e chimica quali l’effetto sull’attività genica

delle interazioni tra proteine e DNA, nonchè della struttura della cromatina, le modalità di

sviluppo di diverse forme di cancro e la dipendenza di malattie complesse come diabete dai

tratti (epi)genomici dell’individuo. A loro volta questi sviluppi stanno aprendo la strada alla

cosiddetta medicina di precisione, o personalizzata.

Una caratteristica peculiare degli esperimenti basati sull’NGS è la grande quantità di dati

da essi prodotti. Questi dati sono applicabili in diversi contesti e facilitano diversi tipi di

analisi funzionali, ad esempio gli studi sull’interazione DNA-proteine o le modificazioni degli

istoni (usando l’immunoprecipitazione della cromatina seguita dal sequenziamento mas-

sivo e parallelo del DNA – il ChIP-Seq), la regolazione della trascrizione (RNA-Seq) oppure

l’interazione a lungo raggio della cromatina spiegata attraverso una struttura spaziale del

genoma de novo (usando Hi-C6). Lavori più recenti hanno combinato queste ricerche in

studi più estesi sull’interpretazione approfondita dei dati di sequenziamento; tuttavia, sia

queste interpretazioni, sia l’attività stessa di estrapolare un significato dai dati, richiedono

calcoli onerosi e sistemi di estrazione dati all’altezza della quantità di dati disponibile. Questa

tesi si concentra sul sense-making, ovvero sull’indagare come regioni eterogenee del DNA

concorrano nel determinare particolari processi biologici o fenotipi. Al fine di effettuare tali

indagini, alcune operazioni di base devono essere effettuate su dati di regioni provenienti

da diversi test biologici e/o diversi tipi di dato semantico, al fine di identificare eventuali

co-occorrenze e, possibilmente, a quale distanza ciascuna di esse si manifesti rispetto alle

altre e/o ad altre regioni del DNA la cui struttura o le cui proprietà funzionali siano già note.

Il manoscritto descrive Di4 (un indice inverso incrementale per intervalli monodimensionali)

ed il suo predecessore non incrementale Di3. Di4 e Di3 sono framework di indicizzazione

monodimensionali (1D) multi-risoluzione, pensati per essere strutture dati generiche, esten-

dibili, globali e scalabili per effettuare ricerca e recupero di informazioni su dati NGS di natura

intervallare. Di4 e Di3 sono definiti a livello di accesso dati e sono agnostici al dato, alla logica

v

Acknowledgements

dei processi che lo elaborano e al livello di presentazione dello stesso; questa definizione

permette loro di essere adattabili a qualsiasi pre-esistente tecnologia di salvataggio su disco

che sia basata su coppie chiave-valore, a partire dal classico B-tree fino a LevelDB ed a Apache

Hbase e questo li rende adatti per diversi scenari di utilizzo. Esperimenti di benchmark su Di4

e Di3 effettuati sia su dataset reali sia sintetici ed un confronto con strumenti già esistenti nel

campo della bioinformatica hanno mostrato l’efficacia di questi indici come back-end per la

manipolazione, a qualunque fine, delle regioni genomiche.

L’applicabilità di Di4 e Di3 a diversi scenari di utilizzo e la loro estendibilità a funzioni specifi-

che sono state valutate tramite indagini comparative di campioni di ChIP-Seq. La tecnologia

ChIP-Seq identifica le interazioni proteina-DNA usando regioni arricchite sul DNA con un

valore di significatività (pvalue) al di sotto di una certa soglia critica. Ci si aspetta che campioni

duplicati abbiano un certo grado di replicazione nei risultati, cosa che può ridurre a livello

locale la minima significatività richiesta per accettare una regione arricchita. In questa tesi

viene presentato un metodo per l’analisi incrociata dei duplicati di ChIP-Seq al fine di validare

in modo più significativo regioni arricchite sovrapposte. Il metodo è stato implementato

usando Di3 al fine di dimostrare l’estendibilità dei framework. In aggiunta, Di3 viene utilizzato

come struttura dati di back-end per implementare altri metodi più comuni di valutazione

del dato ChIP-Seq, quali analisi funzionali, valutazioni di correlazione, distribuzione della

distanza delle feature più vicine, statistiche a livello di cromosoma e visualizzatori di genoma.

vi

Contents
Acknowledgements i

Abstract iii

List of figures xi

List of tables xiii

1 Introduction 1

1.1 Genomics primer . 1

1.2 Problem Statement . 8

1.3 Thesis Contribution . 9

1.4 Structure of the Thesis . 11

2 Background and State of the Art 13

2.1 State of Art Tools in Genomics for Region Calculus 14

2.2 Related Work from Classical Data Structures . 15

2.3 Related Work from Temporal Databases . 16

3 Di3: 1D Intervals Inverted Index 21

3.1 Di3 Design . 21

3.1.1 Snapshots keys organization . 23

3.1.2 Snapshots values organization . 24

3.2 Operations supported by Di3 . 26

3.3 Di3 Intervals . 28

3.3.1 First Resolution . 30

3.3.2 Second Resolution . 31

3.4 Retrievals . 34

4 Di4: 1D Intervals Incremental Inverted Index 37

4.1 Interval indexing beyond Di3 . 37

4.2 Di4 Objectives . 39

4.3 Di4 Design . 42

4.4 Notation . 43

4.5 Di4 First Resolution . 46

vii

Contents

4.6 Di4 Second Resolution . 48

4.6.1 Grouping . 48

4.6.2 Aggregation . 49

4.7 Di4 Indexing Algorithms . 49

4.7.1 Bookmarking intervals on First Resolution 50

4.8 Information Retrieval based on Intervals . 57

4.8.1 Data Structure Reconstruction . 60

4.8.2 Cover . 67

4.8.3 Summit . 71

4.8.4 Map . 72

5 Di4 and Di3 Performance Evaluation and Comparison 75

5.1 Performance Evaluation Setup . 75

5.2 Comparison between inverted index and incremental inverted index 78

5.2.1 Comparison of indexing speed . 79

5.2.2 Comparison of index file size . 80

5.2.3 Comparison of retrievals . 81

5.2.4 Performance evaluation based on different degrees of parallelization . . 84

5.2.5 Performance evaluation based on different persistence setup 86

5.3 Comparison of Di3 and Di4 performance with common bioinformatics tools . 86

6 Di3 Application in Comparative Analysis of ChIP-seq Replicates 93

6.1 Introduction . 93

6.2 Related Works . 96

6.2.1 Binary analysis . 97

6.2.2 Alignment read Merging . 97

6.2.3 Irreproducibility Discovery Rate . 98

6.2.4 joint Analysis of Multiple ChIP-seq Datasets 98

6.3 Definitions . 99

6.4 Combining Replicates . 100

6.4.1 Authenticity of Combining Replicates . 100

6.4.2 Combining Test Statistics . 102

6.4.3 Method of Combining Replicates . 104

6.4.4 Combining replicates using Di3 . 107

6.4.5 Threshold Automatic Validation . 107

6.4.6 Example . 109

6.5 Functional Annotation and Analysis of Enriched Regions 112

6.5.1 Motivation . 112

6.5.2 Algorithm . 112

6.5.3 Graphical User Interface . 113

6.6 Nearest Neighbor Distance Distribution . 113

6.6.1 Motivation . 113

6.6.2 Algorithm . 114

viii

Contents

6.6.3 Graphical User Interface . 114

6.7 Global Correlation Assessment . 115

6.7.1 Motivation . 115

6.7.2 Algorithm . 119

6.8 Genome Browser . 119

6.8.1 Algorithm . 120

6.9 Results . 120

6.9.1 Simulated Technical Replicates . 122

6.9.2 Evaluation of Technical Replicates . 123

6.9.3 Evaluation of Biological Replicates . 126

7 Toward Google-Style Search in Genomics 133

7.1 Introduction . 133

7.2 Pattern Finding Queries on Di4 . 134

7.2.1 Sample Pattern Rank . 136

7.2.2 Region Pattern Rank . 139

Conclusion and Future Works 146

Bibliography 162

Publication: Using combined evidence from replicates to evaluate ChIP-seq peaks 163

Publication: MuSERA: Multiple Sample Enriched Region Assessment 172

Publication: Indexing Next Generation Sequencing Data [SUBMITTED] 187

ix

List of Figures
1.1 DNA structure . 2

1.2 Sequence analysis . 3

1.3 ChIP-seq workflow . 4

1.4 ChIP-seq peak calling . 5

1.5 DNA sequencing cost . 7

1.6 Di4 Schematic Design . 10

3.1 Di3 data model . 23

3.2 Di3 key organization . 25

3.3 Di3 value organization . 26

3.4 An example of COVER function . 28

3.5 An example of SUMMIT function . 29

3.6 An example of MAP function . 29

3.7 An example of ACCHIS function . 29

3.8 The first and second resolutions of Di3 . 31

3.9 An illustration of single-pass compared to double-pass indexing 32

3.10 A comparison between single-pass and double-pass indexing 33

4.1 Design differences between Di3 and Di4 . 38

4.2 Di4 Schematic Design . 40

4.3 Di4 Architecture . 41

4.4 Di4 data structure . 45

4.5 Single-pass vs. Double-pass indexing . 51

4.6 Example of functions COVER, SUMMIT, MAP, and ACCHIS 59

4.7 A sample region for decomposition . 61

4.8 Candidate, Selected, and Reconstruction regions 62

4.9 Reconstruction of intervals of different types . 62

5.1 Application design of Di4 . 76

5.2 Interval/region accumulation distribution in datasets. 78

5.3 First pass indexing speed of Di3 and Di4 on four datasets 79

5.4 Comparison of Di3 and Di4 indexing elapsed time and index file size 81

5.5 Benchmark of retrieval functions . 83

5.6 Performance evaluation based on different degrees of parallelization 85

xi

List of Figures

5.7 Di4 operations performance correlation with persistence setup 89

5.8 Di4 index size on correlation with persistence setup 90

5.9 Benchmark: On-the-fly processing scenario . 90

5.10 Benchmark: Personal repository scenario . 91

6.1 Schematic view of comparative analysis of ChIP-seq replicates. 95

6.2 MuSERA architecture on extending Di3 . 96

6.3 An example of grouping intervals in different sets. 101

6.4 Possible overlapping conditions with three replicates. 104

6.5 The flowchart of combining replicates . 106

6.6 Automatic confirmation of intersecting peaks . 109

6.7 MuSERA features: functional annotation and analysis 114

6.8 MuSERA features: Nearest Neighbor Distance Distribution 116

6.9 Correlation assessment hierarchy . 117

6.10 Sample portion on genome . 118

6.11 The Calculated similarity of Figure 6.10 example 119

6.12 Integrated Genome Browser . 121

6.13 Technical replicates results . 125

6.14 Biological replicates results . 127

6.15 Sequence logos for the Position Weight Matrices 130

6.16 Biological replicates results (C = 2) . 131

7.1 Sample Pattern Rank, Example 1. 137

7.2 Sample Pattern Rank, Example 2. 138

7.3 Sample Pattern Rank, Example 3. 139

7.4 Sample Pattern Rank, Example 4. 140

7.5 Region Pattern Rank, Example 1. 141

xii

List of Tables
2.1 Functionality comparison of classical data structures 16

4.1 Taxonomy of Di4 functions . 59

5.1 Di3BCLI commands. 77

5.2 Datasets used for Di3 and Di4 benchmarking. 77

5.3 Specification of machines used for performance evaluation 77

6.1 Groups of ERs based on p-values . 99

6.2 Datasets used for evaluation of comparative analysis 122

6.3 Statistics of Simulated Technical Replicates. 123

6.4 Statistics of alternative simulated technical replicates. 124

6.5 P-values for the enrichment of the E-box in technical replicates. 124

6.6 Percentages of ERs overlapping with DNase-seq data in technical replicates . . 126

6.7 Percentages of ERs overlapping with DNase-seq data in biological replicates

(C = 1) . 128

6.8 P-values for the enrichment of the E-box in biological replicates (C = 1) 129

6.9 Percentages of ERs overlapping with DNase-seq data in biological replicates

(C = 2) . 129

6.10 P-values for the enrichment of the E-box in biological replicates (C = 2) 130

xiii

1 Introduction

Next generation sequencing; an embraced technology by life science realm that integrates

ideologies, analysis practices and toolkits for encyclopedic studies such as personalized

medicine. It’s data production cost is rapidly degrading, and is a ubiquitized standard; yet

generated data size outpace analytical and computational capacities. Present chapter discuss

pressing challenges in analysis, retrieval, interpretation, accessibility, and reproducibility — in

general, sense-making — on NGS data, and our contribution to tackle rising challenges.

1.1 Genomics primer

Genomics propelled biology for the last hundred years by sparking scientific quest to decipher

the nature of genetic material. 1865-1900: Mendelian inheritance and Boveri-Sutton theory

defines cellular basis of heredity; the chromosomes. 1930s : biochemistry, genetics and other

biological and physical disciplines converged to establish the molecular basis of heredity; the

DNA double helix structure. 1970s : determination of precise order of DNA building blocks and

discovery of biological mechanism for DNA-to-protein translation unlocked information basis

of heredity; DNA sequencing. Present: an incessant exploratory to decipher genes, genetic

regulatory networks, and ultimately entire genome spawning the field of Genomics.

The genome encodes how an organism evolves, functions and reproduces. It consists of DNA

(Deoxyribonucleic acid) which is a double-stranded molecule with double helix structure (see

Figure 1.1 1). Each DNA strand is a very long sugar-phosphate backbone of four nucleotides

Adenine (A), Guanine (G), Cytosine (C) and Thymine (T) bound together by covalent bonds.

The two DNA strands store same biological information, are anti-parallel, and are held together

by hydrogen bounds between complementary nucleotides (i.e., A with T, and C with G). Genes

are special subsequence of nucleotides and are molecular units of heredity; they encode

ribonucleic acid (RNA) and proteins (gene expression); and proteins perform functions in the

organism. Regulation of gene expression controls the quantity of RNA and proteins produced

by specific gene. Gene expression regulation is a function of variety of factors including cell

1Source: https://en.wikipedia.org/wiki/DNA

1

Chapter 1. Introduction

Figure 1.1: DNA structure.

type and determines how a cell functions. For instance, genes responsible for producing the

oxygen-carrying protein hemoglobin are relatively up-regulated in blood cells as opposed to

other cell types.

The procedure of studying a biological phenomena of an organism commonly starts by se-

quencing the DNA (primary analysis), follows by assembling the sequences (secondary anal-

ysis), and ends by analysis of the constructed representation of the chromosome (tertiary

analysis) (see Figure 1.2). The DNA sequencing is the process of determining the precise order

of four nucleotides. There has been various sequencing technologies developed since 1977

when Maxam-Gilbert published first sequencing technique known as chemical sequencing

method [1]; and since the beginning of twenty-first century Next-Generation Sequencing

(NGS) became the standard DNA sequencing technology. However, neither of current se-

quencing technologies can read DNA as one piece, rather they read it as a collection of short

fragments 2 of nucleotides (e.g., AACGTACCG) – referred-to as nucleic acid sequences, or

sequence reads, or raw reads.

2The length of the fragments varies from few tens of nucleotides to tens-of-thousands depending on the
technology and the machine in use (e.g., NGS fragments span few hundreds of nucleotides).

2

1.1. Genomics primer

Primary
Analysis

• Analysis of hardware
generated data,
machine stats, etc.

• Production of sequence
reads and quality score

Secondary
Analysis

• QA filtering on RAW
reads

• Alignment / Assembly of
reads

• QA and variant calling
on aligned reads

Tertiary Analysis

(Sense-making)

• Mult-sample processing

• QA / QC of variant calls

• Annotation and filtering
of variants

• Data aggregation

• Assosiation analysis

• Population structure
analysis

• Genome browser driven
exploratory analysis

Figure 1.2: Sequence analysis.

The procedure of assembling DNA fragments depends on the objectives of the DNA sequenc-

ing; the two common objectives are: (1)full genome sequencing to determine a complete

representation of whole genome of the organism by merging together the DNA fragments

using sequence assembly procedures; (2) study of functional and structural characteristics

of the genome by mapping DNA fragments to a position on a full genome sequence as the

reference using sequence alignment procedures. Ultimately, the assembled DNA fragments are

subjected to various analysis spanning from structural and functional analysis to genome-wide

association studies, variant annotation and motif analysis.

Analysis of the assembled/aligned fragments tend to get the attention as a common procedure

to disclose biological phenomena of a study (sense making). The NGS technology propelled the

analysis by offering ChIP-seq (chromatin immunoprecipitation followed by massively parallel

DNA sequencing) (see Figure 1.3 3) to study complex biological characteristics such as DNA-

protein-antibody interactions; and RNA-seq technology for studying features such as gene

expression, single nucleotide variation, or fusion gene detection. The NGS pipeline explains

biological phenomena of an experiment by two types of data: (1) raw reads, (2) genomic

intervals which are relatively enriched positions on DNA with respect to the background signal

that highlight the phenomena of the conducted experiment. The representations mainly differ

in the level of abstraction a biological phenomena is disclosed, and the significant disparity in

the data sizes. Therefore, the data management and analysis challenges are different.

3Source: https://www.bnl.gov/newsroom/news.php?a=11351

3

Chapter 1. Introduction

Figure 1.3: ChIP-seq workflow.

4

1.1. Genomics primer

Figure 1.4: ChIP-seq peak calling.

5

Chapter 1. Introduction

The ChIP-seq and RNA-seq technologies generalize complex events such as DNA-protein-

antibody interactions in terms of intervals, commonly known as binding sites or enriched

regions on the DNA domain [2][3] (see Figure1.4; source: [4]). The intervals of an experiment

are determined by various processes such as peak calling [5][6] and are collected in tab-

delimited files commonly referred-to as samples. The genomic intervals delegate various DNA

characteristics such as (dis)regulations of DNA biological function that express particular

genes. For instance, studying Transcription Factor (TF) proteins — presented as binding

sites — intervals can disclose a TFs’ binding profile and accordingly transcription regulatory

networks (e.g., [7] [8]). Chromosome Confirmation Capture (3C) [9] is a technique that explains

long-range chromatin interactions in terms of de novo 3D spatial organization of DNA using

intervals (e.g., Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) [10]

[11]).

Interest in genomics data is skyrocketing as the DNA sequencing cost is rapidly degrading

(from $100M in 2001 to few thousand dollars in 2014 per genome [12], see Figure 1.54) and

produced data size is growing exponentially [13]. For instance, the National Center for Biotech-

nology Information (NCBI) expanded the Gene Expression Omnibus (GEO) repository from

few hundreds of samples in 2000 to 550K in 2010 [14]. Additionally, a distinguished aspect of

NGS pipeline is the large amount of data it produces for each experiment that multiplies rapid

data production by larger data size for each sample. Ultimately, profound biological questions

are generally compiled into challenging Information Retrieval (IR) 5 (e.g., [16] [17]) and data

analysis tasks, which composed with data expansion rate become the genomics big data

problem [18] [19]. Let consider the query “find transcriptional repressor CTCF in ChIP-seq

samples of human cell lines that are at 100kb (kilo base-pair) range from given transcription

start site”, it is a challenging query given the large domain size; and jMOSAiCS [20] –an ad-

hoc application that jointly assesses ChIP-seq enriched regions of a sample across multiple

replicates– employs 30min on a single-CPU machine with Intel®Xeon®3.0 GHz processor

and 64-bit architecture for processing four replicates. It would be challenging to extend the

algorithm for similar inference applied on a larger number of samples. Therefore, genomics

tend to get the attention of various disciples to tackle the genomics big data challenge.

Studying a biological phenomena is a traverse on primary, secondary, and tertiary analysis,

with a fundamental difference between the steps in the data production cost, generated data

sizes, and execution time; and accordingly different challenges arise. The primary analysis

commonly starts by experimental design, continues by wet-lab preparation and ends at

machine execution which in overall is an intrinsic time consuming process (e.g., Illumina

HiSeq 2500 sequencing machine requires 3-12 days in standard mode to sequence each

provided sample) and commonly outputs data in FASTQ file format with average size of 180GB

4Source: https://www.genome.gov/sequencingcosts/
5From the perspective of either search criteria, domain, or both. For instance, from criteria perspective “find

all binding sites in provided sample that co-localize with human genes of hg19 assembly where provided TFs’
regulating these genes are enriched to a given extend”, or domain perspective “determine average expression rate
of all ChIP-seq peaks intersecting promoter regions of hg19 on ENCODE [15] for related cell lines”.

6

1.1. Genomics primer

Figure 1.5: DNA sequencing cost.

for human genome.6 The secondary analysis operates upon data produced by primary analysis

for sequence alignment/assembly and variant calling. The procedures are relatively faster than

primary analysis and generated data are commonly in SAM (Sequence Alignment Map), BAM

(Binary Alignment Map) and VCF (Variant Call Format) format which are of the same scale

as primary analysis output. The tertiary analysis spans a wide range of inferences initiating

from the output of secondary analysis such as variant annotation or peak calling. The tertiary

analysis procedures are considerably faster and produced data size are smaller in order of

magnitude.

On the other hand, the diversity of inferences grows exponentially from primary to tertiary

analysis, which motivates one-to-many relation between the data of two consecutive analysis

steps. For instance, suppose a study that defines an experiment and accordingly a FASTQ

file is generated and the fragments are aligned in a BAM file, and the targeted inference is

obtained by executing a particular pipeline of tertiary analysis. Another study with similar

experimental setup may leverage on the same BAM file as a second replicate for joint tertiary

analysis. Additionally, another study may apply a different pipeline on the same BAM file to

infer from a different aspect of the experiment. Therefore, the cardinality and diversity of

tertiary analysis data is growing exponentially as different labs executing different pipelines

on in-house or publicly available primary and secondary analysis data.

6Human genome has 3G base-pairs (i.e., 3×109), and each base-pair takes 2Bytes (1Byte for base-pair and
1Byte for quality score), therefore with sequencing coverage of 30x, one full human genome sequence in FASTQ
format takes 3G ×2×30 = 180GBytes. The FASTQ format is commonly compressed to 25% of original size.

7

Chapter 1. Introduction

The data production cost and generated data size rapidly degrades from primary to tertiary

analysis. In contrast, the cardinality of generated data grows exponentially from primary to

tertiary analysis. Additionally, while genomic aspects are generally abstracted as sequences of

nucleotides at primary and secondary analysis, tertiary analysis has interval-based represen-

tation. Therefore, the differences between the analysis steps necessitate different strategies

for data management and processing. The interest in tackling the challenges logically follows

data production pipeline and hence primary and secondary analysis got relatively more atten-

tion than tertiary analysis so far. While various ad-hoc and systematic solutions for optimal

data management and analysis are developed for sequence reads, genomic intervals has only

recently drawn the attention. Henceforth, this manuscript concentrates on genomic intervals.

1.2 Problem Statement

The sequencing machines encapsulate DNA fragments into files and the pipelines processing

fragments export data in samples (files) which motivates genomic data management research

to mainly focus on file systems. File systems coordinate physical access to data and are

specifically agnostic, such that, do not commonly enforce any structure on data. This charac-

terization has performance and generality advantages for wide-range of data types. However,

it is not strictly a good practice for querying, parallelization, data integrity and security on data

that intrinsically hold a structure. In addition, file system based management permits poor

practices such as duplications (i.e., personal copies) and encoding meta-data in filename.

In contrast, database management systems (DBMS) orchestrate both physical and logical

access to data, and maintains intrinsic and logical structure of data. In addition to addressing

file system based data management challenges (e.g., redundancy control), a DBMS offers

features for an improved access to data. In general, the features are as follows: concurrent

access that in addition to allowing multiple users and processes concurrent access to data, it

improves data sharing, efficient querying that allows fast retrieval on data by indexing pre-

determined attributes, extensibility and scalability that are key features for todays application

scenarios (e.g., genomics), which are well supported by DBMS, transaction support that via

atomic operations guarantees data accuracy and integrity, and allows data recovery having

abnormal termination of application.

Analysis of genomic intervals is the sense-making step which is commonly conducted by

various manipulations and trial-and-errors either individually, or jointly or cross-referenced

by supplementary in-house or publicly available data; therefore systematic solutions for

optimal retrievals, data management and analysis are highly demanded.

Additionally, similar to many other disciplines, genomics is the science of exploration [21], and,

to support that, different technologies are adapted including decision support systems (DSS),

knowledge-based DSS (KDSS) (DSS and KDSS in computational biology are reviewed in [22]),

and workflow management systems (WFMS) (integrating local and online resources spanning

data and software, e.g., Taverna [23]) that render transparent technical details. Tertiary analysis

8

1.3. Thesis Contribution

is a composition of manipulations spanning different disciplines such as data retrieval and

mining, statistical analysis, and linear algebraic manipulations. Current DSS, KDSS, and

WFMS are not fully comprehensive such that “sense-making” requirements commonly force

scientists to roll their proprietary solutions, typically by integrating existing “building blocks”,

which possibly end up with a solution that is difficult to scale, maintain and reuse.

Exploration is conceived of analytical and computational challenges. Remarkable efforts are

done for analytical aspects, e.g., SciDB [24]. SciDB is an analytical database mainly focused on

statistical and linear algebra operations such as matrix multiply, covariance, inverse, best-fit

linear equation solution, and singular value decomposition. SciDB has a multidimensional

array data structure with petabyte scalability, and performs significantly faster than related

works ([25]: benchmarking SciDB vs Postgres, Hadoop (where data management is in Hive, and

analytical operations are in Mahout), and column-based storage systems). However, beside the

analytical challenges, a computational challenge that affects the applicability, scalability, and

performance of sense-making systems is the underlying storage system. Present dissertation

is focused on a model for genomic data and a back-end data structure for comprehensive,

extensible, scalable, and efficient retrieval.

1.3 Thesis Contribution

The present dissertation is focused on algorithms and data structures for efficient retrieval

from NGS data. It explains 1D intervals inverted index (Di3) and 1D intervals incremental

inverted index (Di4); these are single-dimension multi-resolution generic indexing frameworks

over interval-based data to support query execution and coordinate-oriented retrievals. This

dissertation is genomic-centered, and explains Di3 and Di4 in favor of “sense-making”. The

data model maps positions on domain (e.g., Genome) to observed events (e.g., genomic activi-

ties), by indexing primary attribute of intervals — coordinates: left and right — in a NoSQL

key-value pair paradigm. The proposed indexes excel retrieval and data mining operations

on occurrence and co-occurrence of intervals by rendering transparent the complexities of

efficient, scalable, extensible, and comprehensive information retrieval system.

Intervals of input data are organized in a multi-resolution paradigm. The first resolution

provides detailed information about the coordinates of intervals and has two versions: inverted

index (Di3), and incremental inverted index (Di4). The second resolution aggregates first

resolutions to optimize retrieval on on-indexed attributes. See Figure 1.6.

In general, Di3 and Di4 aims at efficient execution of the following operations on genomic

data:

• Similarity search: given a set of samples, find most similar set of samples in terms of

co-occurrence of intervals.

• Range queries: for instance, find regions on domain where a specific number of inter-

vals co-occur.

9

Chapter 1. Introduction

Figure 1.6: Di3 and Di4 schematic design; the coordinates of intervals from input samples are indexed
in a double-resolution paradigm. First resolution indexes the coordinates in inverted, and incremental
inverted structures. Second resolution aggregates the non-indexed attributes of groups of intervals.
The size of persisted information decreases from input samples to the second resolution, with inverted
index of first resolution being relatively larger in size compared to incremental inverted index. The
manipulation of data structures logically starts from input samples and goes to second resolution
through first resolution. However, the retrieval is conducted in reverse order.

• Region calculus: e.g., given an interval, find all intervals overlapping with it.

• Data mining: co-occurrence patterns, dependency detection (i.e., given a dataset, de-

termine the positions on which the regions usually co-occur - with respect to the data in

repository), deviation detection (i.e., given a dataset, find positions on which the regions

do not commonly co-occur - based on the data in repository).

The proposed indexes are generic and designed for re-usability and extensibility over any

domain with (homogeneous and heterogeneous) interval-based data, which is attained by two

design decisions. First, the framework is defined at data access layer (DAL), independent from

data layer, with maximum flexibility to business logic layer, while both layers are agnostic of

the data model. This design makes Di3 and Di4 adaptable to any underlying key-value pair

persistence technology, business logic, and presentation layer scenarios (e.g., a graphical user

interface). The persistence technologies span built-in in-memory key-value pair collections

of most programming languages (e.g., “Dictionary” and “ConcurrentDictionary” in C# and

“map” in C++) and classical data structures such as B+tree to cloud-oriented technologies

(e.g., LevelDB inspired by Google’s BigTable technology, Apache Accumulo, Apache Cassandra,

Apache HBase, Kyoto Cabinet, Berkeley DB, or Symas Lightning Memory-Mapped Database

(LMDB) (NoSQL databases are surveyed in [26] and [27])).

Second, the diversity of domains, data types, and semantics of intervals supplemented by

application-driven operations, motivates implicit definition of “sense-making” functions,

such that, in contrast to what functions to be implemented, Di3 and Di4 define how such

10

1.4. Structure of the Thesis

functions to be applied. In this regard the proposed models accept user-defined functions

(UDF) through behavioral design patterns such as strategy pattern [28]. In general, Di3 and

Di4 models hold the following characteristics:

• Relative and absolute knowledge of the occurrence point on the domain.

• Retrieve relative ordering of intervals for conjoint evaluation (e.g., range queries, or

nearest neighbors).

• Persisted index leveraging on a data layer technology.

• Mainly static intervals such that commonly preserve their states and do not necessitate

to frequently update occurrence points of indexed intervals.

• Do not map sense of “now”.

• Accepts user-defined functions (UDF) over primitive Di4 operations.

1.4 Structure of the Thesis

The dissertation is organized as follows. Chapter 2, we review state-of-the-art for researches

conducted in genomics for efficient retrieval from NGS data. We review classical data struc-

tures such as interval tree that can be used for retrieval and organization of genomic intervals.

Then we review the state-of-the-art of temporal databases for efficient event storage and

retrieval methods that can be applied or inspire genomic interval manipulation.

In Chapter 3 describes Di3. We explain the Di3 data model, and intervals organization on

the model, and the kind of operations the model supports and excels. We then describe how

intervals are indexed on this data structure, to which we provide single-pass and multi-pass

indexing, and the explain the scenarios where one is superior to the other, and we provide

pseudo codes for each indexing algorithm. Finally, we explain the functionality of Di3 in three

layers of physical, logical, and semantic; and we formally described the information retrieval

functions of each layer and provide pseudo code for each.

In Chapter 4, we describe Di4, which provides Di3 functionalities but with a different model.

We explain Di4 independent from Di3 in model, algorithms and data structure. We explain Di4

design, model, and operations. We provide pseudo code for it’s manipulation and retrieval.

Similar to Di3, we explain the functions of Di4 in three layers, and for information retrieval

functions in each layer we provide pseudo code and formal description. We explain the

differences between Di3 and Di4. In Chapter 5, we assess the performance of Di3 vs. Di4. Then

we compare Di4 performance we common genomic tools.

In Chapter 6, we explain Di4 in a comparative analysis setup, which highlights Di4 applicability

to different business logic and presentation layer scenarios, in addition to extensive analytical

user-defined function. The setup provides means of comparative evaluation of ChIP-seq

11

Chapter 1. Introduction

enriched regions using replicated experiments. This setup describes two applications: share

business logic layer design, and differ in presentation layer (a command line interface (named:

MSPC (Multiple Sample Peak Calling)) as opposed to graphical user interface (named: MuSERA

(Multiple Sample Enriched Region Assessment))). In addition, MuSERA uses Di4 for common

“sense-making” procedures on ChIP-seq replicates such as (i) genome browser, (ii) functional

analysis, (iii) nearest neighbor search, and (iv) correlation assessment.

Finally, in Chapter 7, we described Google-style search, which is an extensive usage of Di4 for

similarity search.

12

2 Background and State of the Art

Chromatin immunoprecipitation (ChIP) followed by massively parallel DNA sequencing (ChIP-

seq) is rapidly emerging as a standard for investigating protein–DNA interactions. Commonly,

a comprehensive understanding of how various histone modifications, chromatin structures,

transcription factor bindings, and other DNA regulatory elements orchestrate a particular

transcriptional profile, necessitate a comparative consideration of multiple experiments. For

instance, various chromatin factors cooperate in complex manner to orchestrate transcription,

which necessitate robust similarity metric (e.g., insensitive to non-biological variation such

as peak width) on ChIP-seq data to quantify chromatin interactions [29]. Additionally, Given

the intrinsic noise of the ChIP-seq protocol, it is recommended to repeat every experiment at

least twice [30] which produces biological and technical replicates.

The ChIP-seq studies can thoroughly characterize genome-wide location of various protein

bindings [31] and histone modifications [32] with high precision. However, in addition to

actual location of individual elements, a profound study considers also interaction between the

regulatory elements. A common initial step in building genome-wide understanding of such

characteristics is to assess the co-occurrence of interactions from a dataset of homogeneous

ChIP-seq experiments [33] [31] [34] [29].

Sense making is an exploration task, and its functional requirements span basic region calculus

to complicated analysis-specific operations. Therefore, an ideal tool in this category is required

to offer quadruple aspects: functionality, extensibility, reusability, and scalability. Present

chapter discusses tools offered by bioinformatics community for interval-based genomic

data manipulation, and evaluates each for the quadruple aspects. Additionally, manipulation

of interval-based data has historical interest in the field of databases and data structures

which induced two distinct deviations, respectively temporal databases and spatial data

structures; both aiming at tackling interval-based data manipulation challenge from efficient

storage/retrieval and manifold operations point of view. Presents chapter also reviews related

studies in these fields.

13

Chapter 2. Background and State of the Art

2.1 State of Art Tools in Genomics for Region Calculus

The sequencing machines encapsulate DNA fragments into files, and pipelines processing

fragments export data in files (samples) which together motivates genomic data management

research to mainly focus on file systems. Bioinformatics community offers a rich collection of

ad-hoc applications (e.g., BEDTools [35], BEDOPS [36]) and systematic solutions (e.g., UCSC

[37] and Galaxy [38]) to perform prominent IR tasks. These tools mainly leverage on file system;

beside the poor practices file system triggers such as duplications (i.e., personal copies) and

encoding meta-data in filename, it also unnecessarily escalates the challenges for variety of

applications such as rapid retrieval, extendibility, data sharing, and analysis. Present section

discusses the challenges in details.

The cornerstone of interval-based data manipulation in genomics is interval intersection,

“given a query interval, find all reference intervals that overlap it” [39] [40]. Interval intersection

is fundamental for retrieval on annotation data and alignment databases, and integration

of diverse biological information using a reference genome [41]. Queries to retrieve features

overlapping specific regions are frequently used when examining genomic features (e.g., on a

genome browser). Such queries might be executed by linearly scanning entire file, that might

be reasonable for few retrieval. However, reading the entire file is an inefficient strategy in

long run. A trivial solution would be adopting database systems [37] [42]; however, the limited

functionality and poor performance practices [41] of generic database system, in addition

to the complexity of setting up and designing schemas of the database for an average end

user, discourage adoption of such systems. Therefore, a wide range of research is focused on

efficient algorithms for interval intersection, and an extensive set of applications implement it.

In general, interval intersection algorithms are trinary, described as follows.

i. Tree-based, e.g., BITS [43] (binary tree), and Segtor [44] (segment tree). The UCSC

Genome Browser [37], BEDTools [35], and SAMTOOLS [45] uses R-trees [46]; such that

intervals of a sample are partitioned into hierarchical “bins”, and query intervals are

compared with “bins” to narrow the search for interval intersection to a focused portion

of the genome. The algorithm is inefficient, as it necessitates a linear-sweep on all

the intervals in each candidate bin for those overlapping the reference. Additionally,

such algorithms are poor candidates for parallelism, because non-uniformly distributed

intervals (which is common for ChIP-seq, RNA-seq, and exome sequencing) unbalance

bin loads; consequently, some bins takes considerably longer time to be processed than

others.

ii. Plane-sweep-based on pre-sorted samples, e.g., FJoint [47] which concurrently scans

pre-sorted query sample and reference intervals to find overlaps. Some tools use plane-

sweep-based algorithms on pre-sorted samples [48] [49] [50]; for instance, recent ver-

sions of BEDTools and BEDOPS use plane-sweep as complement to tree data structure.

Theoretically, plane-sweep-based algorithms are optimal; except for parallelization con-

sidering “sweep invariant” challenge [51]: “given a sweep line and its associated split, all

14

2.2. Related Work from Classical Data Structures

intersections and event points are known between the sweep line and the beginning of

the split.”. Plane-sweep algorithms are parallelized by partitioning the input statically or

dynamically, such that each partition can be swept without violating “sweep invariant”

[52] [53] ([51] discusses a partitioning method without violating “sweep invariant”).

However, parallelization degree of this method is limited to the number of partitions,

and execution load of partitions is prone to non-uniformly distributed data.

iii. Index-based, e.g., NC-lists [41]. Efficient retrieval requires a dedicated data structure.

For instance indexed flat file such as BAM file [45], or Tabix [54] that adapts BAM

indexing techniques for generic tab-delimited files, convert a file of sequential access to

its equivalent random access file. Such data structures are commonly built during pre-

processing steps, and are persisted for further references. Building such data structures

may take a considerably long time; however, as the processing time is significantly

reduced, the pre-processing and processing balance is encouraging. The observation

leads to the conception of BAM format. A common method is Nested Containment

lists (NC-lists) [41] (an extension to NC-lists [55]) which is mainly designed for: “given a

query interval, find all reference intervals that overlap it”.

Commonly algorithms and tools offered by bioinformatics community are for pairwise inter-

section of genomic intervals. Extension to beyond pairwise is commonly provide by custom

scripts and algorithms do not offer such extensibility. Hence, custom scripts suffer scala-

bility and orthogonality, which makes it difficult to perform a comparative analysis on a

collection of homogeneous sample. Identifying intersecting intervals of multiple samples is

an important aspect to study variety of biological characteristics. To address the challenge,

“slice-then-sweep” algorithm [56] for N-Way interval intersection is developed.

2.2 Related Work from Classical Data Structures

Classical search trees such as interval trees [57], segment trees [58], range trees [59], or Fenwick

trees [60] are optimal solutions each for particular interval-based retrievals (see Table 2.1).

For instance, IR queries such as “find all the intervals intersecting given interval” can be

determined in O(log2 n) using interval trees; while queries such as “find non-overlapping

neighbor intervals at d-distance for a given interval”, or “find n-th closest interval” requires

re-mastering interval trees. Additionally, some operations despite of introducing challenges

may require multiple of such data structures to be utilized concurrently, which might be

considered suboptimal. For example, a query such as “given a point/interval determine n-th

closest region where a particular number of intervals are accumulated” requires segment

and Fenwick trees complementation. Moreover, such collections are mainly designed as

in-memory data structures; and when persisted, cause the burden of IO.

15

Chapter 2. Background and State of the Art

Table 2.1: Functionality comparison of classical data structures.

Feature Interval Trees Segment Trees Range Trees Fenwick Trees

Performance

Preprocessing O(n log2 n) O(n log2 n) O(n log2 n) O(n log2 n)
Query Time O(k + log2 n) O(k + log2 n) O(k + log2 n) O(log2 n)
Space O(log2 n) O(n log2 n) O(n) O(n)
Modification O(log2 n) O(log2 n) O(log2 n) O(n)

Application
Storage Interval Interval Point Accumulation
Query Point/Interval Point Interval Interval
Output Interval Interval Point Accumulation

2.3 Related Work from Temporal Databases

Informally, an event describes a phenomena that is happened, is happening, or is expected

to happen at certain time and/or at specific location. Events are central elements in the

representation of data in various domains spanning multimedia [61], geography [62], and

cultural heritage [63].

Vast majority of events can be generalized in terms of intervals on various domains, where

their manipulations can reveal extensive aspects of such events. For instance, Flight schedules

as events occurring on an airport can be modeled as intervals on temporal domain, which

then can be used for various scheduling task such as aircraft landing (e.g., [64], [65]), gates

(e.g., [66], [67]), crew (e.g., [68], [69]), baggage (e.g., [70]) or aircraft maintenance (e.g., [71],

[71]). Various scheduling problems [72] are also defined in terms of intervals; domain specific

scheduling such as parallel machine scheduling (e.g., [73]), sport game scheduling (e.g., [74],

[75]), flow-shop scheduling (e.g., [76], [77]), or general scheduling tasks (e.g., [78]).

Despite of scheduling problems, intervals have wide range of applications. Different versions

of elements[79] of spatial data each valid during a specific timespan are defined in terms of

intervals. Intervals are used in estimating rounding error of calculations in numerical analysis

(e.g., [80], [81]). Some computer-assisted proofs manipulates intervals for problems such as

proving Kepler [82] and double bubble [83] conjectures, or chaos in the Lorenz equations

(e.g., [84]). Global optimization is another domain of interval application (e.g., Rastering

function [85, 86]).

In this dissertation, events are considered as real-world occurrences that unfold over any

domain, and is focused on events that have happened. In general, according to a classification

proposed in [87], an event could be:

• structure operation, an event is triggered by an operation on a data structure. For

instance, insert an item into a table.

• behavior invocation, an event is triggered by execution of a user-defined function. For

instance, a message display is sent to an object of type widget.

• transaction, an event is triggered by executing transaction commands. For instance,

abort, commit.

16

2.3. Related Work from Temporal Databases

• abstract or user-defined, an event is triggered by a programming mechanism that

signals occurrence of an event explicitly. For instance, response to information entered

by a user.

• exception, an event is triggered by an exception occurrence. For instance, incorrect

input.

• clock, an event is triggered at specific point in time. For instance, Feb 16, 2016 15:05PM.

• external, an event is triggered by an action outer to the system. For instance, fire alarm

is triggered.

Additionally, [87] generalizes events in two types:

• primitive: an event is triggered by an occurrence described in pre-defined categories.

For instance, insert an item into a table.

• composite: an event is triggered by a primitive or a composite occurrences, where the

composition rule is defined an algebraic expression. Rich event algebras have been

proposed for a range of systems including [88] and [89].

A standard spatiotemporal database uses the basic model that all data objects have a locational

attribute and a temporal attribute that record the spatial and the valid time extent associated

with the object. Many spatiotemporal information systems develop novel access methods

for spatiotemporal queries. In some cases like Geographic Information Systems, the primary

data object can be a spatial location which has other non-spatial and temporal properties

associated with it. An event-oriented spatiotemporal database is a variant, which describes

spatiotemporal data objects with “events” as a data organizing attribute. In the event-based

approach introduced by [90] for efficiency reasons, an event is interpreted as a change in data

property. Such systems stores the time associated with each change in increasing order from

the initial “world state” at time t0 to the latest recorded change at time tn . [62] have developed

an object-based event model which is designed to answer queries like the following:

• What are all the events related to object X ?

• What are the objects that are related to event Y ?

• Has any instance of event type Y happened without the participation of object X ?

• What are all the events that are related to event Y ?

More specialized data models and access methods have been developed for specific event

related problems in spatiotemporal databases. In addition, considering the event modeling in

sensor networks (e.g., [91], [92], [93]), and multimedia information systems (a survey: [94]),

there exist a wide diversity in event modeling research. Present section considers modeling

events in temporal databases.

17

Chapter 2. Background and State of the Art

In general, three interpretation of time is considered in temporal databased: (i) valid time

during which a fact is true in the environment, (ii) transaction time during which a fact

is stored in the databased, and (iii) bitemporal where both valid and transaction time are

considered. Given that the present dissertation is focused on genomics as application scenario,

only temporal databases with valid time interpretation of time are considered in this section.

A classical organization of events in temporal databases fall in four categories as follows: [95]

i. State-space approaches [96] [97] where the state is an instantaneous point in the do-

main, and actions are mapping between states.

ii. Date line systems [98] [99] [100] events are organized by dates while their temporal

order is preserved, this method is mainly used for time points rather than time intervals.

iii. Before/after chaining [98]; motivated by relative temporal information. Although effi-

cient for relative ordering queries, but has intrinsic drawbacks of linear access for n-th

item.

iv. Formal models [101] which are essentially point-based representations, where inter-

vals are constructed out of consecutive points; with points forming the foundation of

reasoning system.

A temporal database model may incorporate multiple of concepts in one model. For instance,

event model of Bertino et al., [102] inspired state occurrence and state transition as views on

temporal data. Additionally, recent temporal data models introduce novel cloud-based and

modern hardware architecture based technologies (e.g., [103] [104], or [105] a recent book

on temporal data models and indexing). For instance, the Simple Event Model (SEM) [106]

which is created to model events in various domains, without making assumptions about the

domain-specific vocabularies. SEM is designed with a minimum of semantic commitment to

guarantee maximal interoperability. In addition, Checkpoint INTerval Index Array (CINTIA)

[107] is a recent indexing framework on temporal data. CINTIA is a data structure to store

and query on interval data, with main objective of high memory locality and query execution

performance on big collection of intervals. Regardless of the taxonomy, temporal databases

commonly define five conceptual operations on events described as follows:

i. GetStart(event) and GetStop(event) operations that respectively determine start

and end of the event.

ii. Lifespan(event) operation that returns an interval of time during which the event is

valid.

iii. Snapshot-state(event, time) operation that returns the state of the event at time,

while state could be true or false indicating whether the event is valid at time or not. A

different design of this function returns a record of all attributes of the event at time, if

the event is valid, and returns null if the event is not valid at time.

18

2.3. Related Work from Temporal Databases

iv. Snapshot-value(event, attribute, time) operation returns value of attribute

of event at time.

v. Historical-state(event, StartTime, EndTime) operation returns a ordered (based

on time) and timestamped record of all the attributes of event on given time interval.

Interval intersection query, as described in Section 2.1, is an active challenge in temporal

databases. An enormous amount of study is focused on optimal interval intersection queries

(e.g., [108] [109] [110] [111] [112] [113]), four technical goals that includes [41]:

i. Database scalability; for n interval in database, a method should ideally require O(logn)

for interval intersection, with memory cost of O(logn), while storage cost is O(n).

ii. Query scalability; for n intervals overlapping a query interval, a method should ide-

ally require O(n) to determine n intervals, while being linear (O(n)) or constant (O(1),

depending on the scenario) in memory requirement.

iii. Construction scalability; time complexity for creating an indexed database that sup-

ports interval intersection should be of the same scale of an standard database and does

not exceed O(n logn) for n intervals, and memory complexity be bound to O(n).

iv. Update scalability; a database should support and be agile on updates, such that an

update on n items should not exceed O(n logn) in time and memory complexity.

v. Practicality; such a database is required to be executable on a typical platform; data

size, execution environment and runtime should be of reasonable balance.

However, although classical data structures such as R-tree [46], segment tree [58], MV3R-Tree

[114], and Overlapping B+trees [115] are widely appreciated in the bioinformatics community,

but achievements of temporal database realm got relatively less attention by the community.

19

3 Di3: 1D Intervals Inverted Index

Present chapter explains 1D intervals inverted index (Di3), a general-purpose index structure

which provides fast access to intervals; therefore, it applies to several domains, including

genomics (any genomic region is a linear interval defined by the genomic coordinates of the

region ends). Di3 main strengths are its ability to adapt to domain needs, thanks to the native

support for user-defined functions (UDFs), and its portability to several implementation

technologies, thanks to its high-level, layered design that abstracts from implementation

details. Di3 models homogeneous and heterogeneous intervals on a domain; related events are

collected in sets, which collectively constitute a sample. For instance, a genomic data sample

may contain regions (i.e., intervals) of DNA-protein interactions occurring on a genome under

an experimental setup; each interval can be associated with values, e.g., a significance score.

Present chapter explains Di3 data structure at higher-level. It is mainly focused on describing

the indexing model, and how the elements of the model (snapshots) are used for bookkeeping

intervals. Intentionally present chapter keeps formalism at lower-level to focus on higher-

level concepts of indexing model. Next chapter, Chapter 4, explains the Di3 model and its

elements in details, discusses possible challenges that may raise under particular scenarios,

and provides 1D intervals incremental inverted index (Di4) that tackles the challenges of Di3

under the scenarios.

Accordingly, the chapter is organized as follows: Section 3.1 explains the model of Di3 and

its elements, Section 3.2 explains operations defined on Di3 model, Section 3.3 explains

how intervals are organized in Di3 model, and finally Section 3.4 provides pseudocode for

operations describing how Di3 model is used for each function.

3.1 Di3 Design

Genome exploration studies are grounded on the efficient execution of operations for the

composition and comparison of (epi)genomic regions, and their associated attributes. Region-

based operations to be performed towards these goals include the identification of co-occurrences

21

Chapter 3. Di3: 1D Intervals Inverted Index

or accumulations of regions, possibly from different biological tests and/or of distinct seman-

tic types, within the same area of the DNA, sometimes within a certain distance from each

others and/or from DNA regions with known structural or functional properties (e.g., de-

scribing particular DNA sequence motifs, genes involved in certain biochemical pathways,

or regulatory regions of gene transcription activity). Nowadays, such complex operations are

only partially supported by existing tools, e.g., BEDTools [35], BEDOPS [36], GROK [116]; these

tools typically support only algebraic operations based on the genomic coordinates of the

regions within a single data sample or a pair of samples at the time, requiring the use of scripts

to perform complex operations on multiple data samples.

To cope efficiently with complex region calculus, we have developed the Di3, a multi-resolution

single-dimension data structure. Di3 is defined at the data access layer, and it is independent

from data layer, business logic layer, and presentation layer. This design decision has two

significant advantages; firstly, being independent from the data layer, Di3 is adaptable to any

key-value pair persistence technology. These may range from Apache Cassandra, LevelDB,

Kyoto Cabinet, and Berkeley DB for persisted large scale data (NoSQL databases are surveyed

in [26] and [27]), to simple in-memory key-value collections implemented by most of modern

programming languages (e.g., “Dictionary” in C# and “map” in C++). Secondly, Di3 design can

support different business logic and presentation layer scenarios, which are complemented

by user-defined functions (UDF) provided via behavioral design patterns such as strategy

pattern [28].

In general, let S= {S1, . . .S j , . . .S J } denote the available samples, where each sample is a set

of intervals S j = {I j
1 , . . . I j

i , . . . I j
|S j |}; each interval I = [

¯
I , Ī) is included within its lower (left) and

upper (right) bounds (ends). Di3 organizes intervals by means of snapshots (see Figure 3.1

panel A); 1 each snapshot corresponds to a point on the domain, and it is associated with

all the intervals overlapping that point. More precisely, each snapshot Bb is a key-value pair

element, where the key (eb) is the coordinate of the snapshot on the domain, and the value

(λb) is a set of pointers to the descriptive metadata of all the intervals overlapping the eb

coordinate. For instance, two “Flight” events can be modeled using four snapshots as follows:

i. 9:00AM : Flight-A departures.

ii. 9:30AM : Flight-B departures, and Flight-A is flying, and was flying all the time between

9:00AM and 9:30AM.

iii. 10:00AM: Flight-A lands, and Flight-B is flying, and all the time between 9:30AM and

10:00AM both flights were flying.

iv. 10:30AM : Flight-B lands, and all the time between 10:00AM and 10:30AM Flight-B was

flying.

1The term snapshot is inspired by snapshot databases [117] where queries reconstruct database state at a given
time in past; in other words, in snapshot databases the focus is mainly on the queries that ask for the state of a
database at a given time.

22

3.1. Di3 Design

A B

e1 e2 e3 e4

0 0 1 1

Flight-A

Flight-B

ω

λ

Event

ω1

λ1

ω2

λ2

B1 B2

e1 e2

Figure 3.1: Di3 data model. (A) Depicts the key-value pair design decision, and dictionary entries (i.e.,
positions on the domain) and posting list (i.e., observed events on that position on the domain). (B)
Illustrates the “Flights” example and the four snapshots Di3 creates for the two flights.

In general, a snapshot on a domain has two essential attributes; first, a snapshot has at least

one causal event. For instance, the causal event of the snapshot at 9:30AM is the departure of

Flight-B. Second, a snapshot captures the state of events happing at a position on domain.

For instance, the snapshot of 9:30AM captures both departure of Flight-B (the causal event)

and Flight-A is flying, where both events are at a degree of happening. According to these

attributes, the organization of events by snapshots in key-value pair paradigm is described as

follows for key and value individually.

3.1.1 Snapshots keys organization

The procedure of assigning snapshots to each end of intervals is described step-by-step in

present subsection with reference to Figure 3.2 and highlighting main attributes of snapshot

key organization of the Di3 model as follows:

• One snapshot for each end of an interval (see panel A on Figure 3.2)

An interval I j
i is indexed using exactly two snapshots, one for the left-end (

¯
I j

i) and one

for the right-end (Ī j
i). For instance, referring to panel A on Figure 3.2, interval I 1

1 is

indexed by two snapshots B1 and B2. Each snapshot refers to a position on domain by

it’s key. For instance, snapshots B1 and B2 on panel A of Figure 3.2 refer to positions

e1 =
¯
I 1

1 and e2 = Ī 1
1 on the genome.

23

Chapter 3. Di3: 1D Intervals Inverted Index

• Snapshots are sorted (see panel B on Figure 3.2)

Snapshots are organized sorted based on snapshot key, and any new snapshot that is

inserted in Di3 maintains the order. For instance, referring to panel B on Figure 3.2,

interval I 2
1 is indexed by two snapshots B1 and B2 where e1 =

¯
I 2

1 and e2 = Ī 2
1 . Since,

¯
I 2

1

and Ī 2
1 occur earlier than

¯
I 1

1 and Ī 1
1 respectively, the snapshots are ordered accordingly.

• One snapshot for multiple causal intervals (see panel C on Figure 3.2)

A snapshot refers to at least one interval, and multiple intervals with one equal end can

be indexed using single snapshot. In other words, there exist at least one causal interval

for each snapshot. For instance, referring to panel C on Figure 3.2, a new interval I 3
1 is

inserted. A snapshot B3 is assigned to it’s left-end (i.e., e3 =
¯
I 3

1). However, the right-end

of I 3
1 equals the right-end of previously organized interval I 2

1 (i.e., Ī 2
1 = Ī 3

1), therefore,

the snapshot that was assigned to right-end of I 2
1 can be used to index the right-end

(e4 = Ī 2
1 = Ī 3

1).

• Gap (see panel D on Figure 3.2)

Two consecutive snapshots are not necessarily indexing contiguous intersection. In

other words, intervals indexed by two consecutive snapshots are not necessarily over-

lapping. For instance, referring to panel D on Figure 3.2, two consecutive snapshots B5

and B6 are indexing I 1
1 and I 3

2 respectively, while the two intervals are not overlapping.

Therefore, there is a gap between two consecutive snapshots if none of the indexed

intervals overlap.

• Adjacent bounds (see panel D on Figure 3.2)

Two adjacent snapshots are indexing two consecutive causals bounds. For instance,

referring to panel B on Figure 3.1, the snapshots at 9:00AM and 9:30AM are indexing

two consecutive flight departures (i.e., “Flight-A” and “Flight-B”). Therefore, the lower

and upper bound of an interval are not necessarily indexed by two adjacent snapshots.

The two bounds of an interval are indexed by two adjacent snapshots if are the two

consecutive causals bounds. For instance, referring to Figure 3.2, the lower and upper

bound of intervals I 3
1 and I 3

2 are indexed by two adjacent snapshots B3-B4 and B6-B7

respectively. In contrast, the two bounds of interval I 1
1 are indexed by non-adjacent

snapshots B2-B5, because the two bounds are not consecutive causalities.

3.1.2 Snapshots values organization

While the key of each snapshot informs the position on domain where an interval starts

or stops, the value of snapshots reconstructs the intervals overlapping the position. The

procedure of populating snapshots values by each interval insertion is described step-by-step

and highlighting main attributes of snapshot values is described as follows:

• Indexing an interval by a snapshot (see panel A on Figure 3.3)

Each snapshot stores a tuple per each interval it overlaps with. This tuple describes for

24

3.1. Di3 Design

 Keye1 e2 e3 e4 e5

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

e2e1 e3 e4 e5

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

 Keye1 e2 e3 e4 e5 e6 e7

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

 Keye1 e2 e3 e4

𝑆1

𝑆2

𝑆3

e2e1 e3 e4

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
p

u
t

D
i3

 Keye1 e2

𝑆1

𝑆2

𝑆3

e1 e2

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

In
pu

t
D

i3
A B

C D

Figure 3.2: Di3 key organization explained step-by-step. S j : sample j ; Ii : interval i ; Bb : snapshot b.

each interval the intersection condition, and it has a pointer to the interval descriptive

metadata. For instance, referring to panel A on Figure 3.3, the snapshots B1 and B2 have

one tuple for interval I 1
1 that overlaps with them. The tuples are (L,@I 1

1) and (R,@I 1
1)

as values of snapshots B1 and B2 respectively. Letters L and R describe the intersection

type, such that L tells that the left-end of the interval is overlapping the snapshot, and R

tells that right-end of the interval is overlapping the snapshot.

• Overlapping intervals (see panel B on Figure 3.3)

If two interval overlap, then there exist at least one snapshot that has intersection con-

dition M . For instance, referring to panel B on Figure 3.3, the newly inserted interval

I 2
1 overlaps previously inserted interval I 1

1 . The left-end of interval I 1
1 overlaps I 2

1 , and

right-end of interval I 2
1 overlaps I 1

1 , therefore, the related snapshots describe this condi-

tion by adding a tuple per each interval with the intersection condition M . In this case,

tuple (M ,@I 2
1) is added to B2 and tuple (M ,@I 1

1) is added to B3.

• A snapshot has at least one tuple with intersection condition L or R (see panel C on

Figure 3.3)

A snapshot is assigned per each end of intervals, therefore, the value of a snapshot has a

tuple to at least one causal interval. In other words, there exist at least one tuple with

intersection condition L or R, and any number of tuples with intersection condition M .

For instance, referring to panel C on Figure 3.3, the newly inserted interval I 3
1 has the

same right-end as the previously inserted interval I 2
1 , hence the snapshot B4 refers to

both causal intervals by having (R,@I 2
1) and (R,@I 3

1).

• Gap (see panel D on Figure 3.3)

A gap between two consecutive snapshots is determined by single snapshot value. If all

the tuples of a snapshot has intersection condition R, then there is a gap between the

25

Chapter 3. Di3: 1D Intervals Inverted Index

A B

C D

Value

 Keye1

 𝐋, @𝐈𝟏
𝟏

e2

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3

e1 e2

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

In
p

u
t

D
i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟐

e4

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3

e2e1 e3 e4

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
p

u
t

D
i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

e2e1 e3 e4 e5

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

e6 e7

 𝐋, @𝐈𝟐
𝟑 𝐑, @𝐈𝟐

𝟑

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Figure 3.3: Di3 value organization explained step-by-step. S j : sample j ; Ii : interval i ; Bb : snapshot b.

snapshot and it’s proceeding snapshot. For instance, referring to panel D on Figure 3.3,

the snapshot B5 has one tuple and it’s intersection condition is R, therefore, there is a

gap between B5 and B6. Alternatively, if all the tuples of a snapshot has intersection

condition L, there there is a gap between the snapshot and it’r former snapshot. For in-

stance, referring to panel D on Figure 3.3, the only tuple of snapshot B6 has intersection

condition L, hence, there exist a gap between B6 and B5.

The number of intervals overlapping a snapshot presents the accumulation of intervals at that

snapshot. For instance, referring panel D on Figure 3.3, accumulation at B1 is 1, because the

snapshot refers to one interval I 2
1 ; accumulation at B2 is 2, because the snapshot refers to two

intervals I 2
1 and I 1

1 ; and accumulation at snapshot B3 is 3, because the snapshot refers to three

intervals I 1
1 , I 2

1 , and I 3
1 . To calculate accumulation, it is required to count the number of all

the intervals overlapping the position on domain to which the snapshot refers. These are the

intervals to which the snapshot has a pointer. However, the intervals are right-open which

means accumulation at B7 (panel D on Figure 3.3) is zero. Because B7 is referring to the right-

end of interval I 3
2 and right-end is exclusive at the position on domain to which the snapshot

refers to. Therefore, when counting the set of pointers in a snapshot for accumulation, only

the pointers with intersection condition L and M are considered.

3.2 Operations supported by Di3

Present section discuses data retrieval based on coordinate-oriented model of Di3 model. The

Di3 design provides a hierarchy of functions to facilitate retrieval and extensibility. Therefore,

data retrieval is defined in three levels: Physical, Logical, and Semantic. The former bridges the

26

3.2. Operations supported by Di3

Di3 data model to the data layer, using some key-value pair persistence technology. Operations

at the physical layer include Create, Read, Update, Deleted (CRUD), and Enumerate. These

operations create and manipulate the snapshots and organize them in a key-value pair storage,

by translating input intervals to snapshots and retrieving intervals from snapshots. They are

internal to Di3 and accordingly do not incorporate UDFs.

Logical level functions leverage on physical level operations, and they provide the essential

elements for region calculus. These functions cover classical region calculus that benefits

from the information of a single snapshot, e.g., “given a point on the domain, find intervals

overlapping with it” (similar to queries on segment trees [58]), or that leverage on information

provided by a set of consecutive snapshots, e.g., “given an interval, find all intervals overlap-

ping with it” (similar to queries on interval trees [57]). Logical level functions leverage on

snapshots to optimally retrieve co-occurrences of intervals, or co-occurrence histograms and

distributions; some of them define the Di3 public application programming interface (API),

whereas other functions can be user-defined functions (UDF).

Upon physical level operations and logical level functions, Di3 builds semantic level functions.

The goal of these functions is to facilitate both high-level reasoning on data that include

coordinate-attribute criteria, and UDFs creation for extensibility to application requirements.

These functions are: similarity search (see Chapter 7), which finds samples that best match

the criteria defined in a query; co-occurrence patterns, which searches for density-based co-

occurrence patterns; dependency detection, which determines the positions on the domain

where query regions co-occur; and deviation detection, which finds positions on the domain

where the regions of a given set do not commonly co-occur, based on the information stored

in the Di3 model.

The dissertation is focused on the logical layer, being this the de-facto Di3 API, whereas the

physical layer operations are strictly related to the specific persistence technology used for the

Di3 implementation, and the semantic layer functions are application dependent (some of

them are used by MuSERA and are described in Chapter 6). Concerning the logical layer, the

following are the operations natively supported by Di3:

• Cover; the COVER function applies to snapshots and reconstruct a single sample from

intervals constituting the snapshots by taking into account interval intersections and a

UDF. Each resulting interval I is the contiguous intersection of at least minAcc (mini-

mum accumulation) and at most maxAcc (maximum accumulation) of intervals. See

Figure 3.4 as an example of the COVER function. For each resulting interval I , the COVER

function determines contributing intervals, which then are passed to the UDF for fur-

ther evaluation. A UDF may assign to a resulting region I any user-defined value type,

spanning from “list of all contributing intervals” or “cardinality of contributing intervals”,

to analytical evaluations such as “custom aggregation of significance values”. In COVER,

the use of UDFs is thus supported, being count the default aggregation function.

27

Chapter 3. Di3: 1D Intervals Inverted Index

D o m a i n

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Cover Result

Figure 3.4: An example of COVER function with minAcc=2 and maxAcc=4 on 5 samples.

• Summit; the SUMMIT function is a variation of the COVER function; similarly, it takes

minAcc, maxAcc and a UDF, and reports the local intersections of COVER. In other words,

SUMMIT returns regions that start from a position where the number of intersecting

regions is between minAcc and maxAcc and does not increase afterwards, and stop at a

position where either the number of intersecting regions decreases, or it violates the

maxAcc parameter (see Figure 3.5). Similar to COVER, SUMMIT determines contributing

intervals and pass them to the UDF, which can aggregate any property of intervals and

return any user-defined aggregated value type.

• Map; given a reference interval I , the MAP function determines all the intervals indexed

in Di3 that overlap with I (similar to classical interval-tree operation). In addition to a

reference, the function takes a UDF and passes the determined intervals to the UDF

(see Figure 3.6). The output of the UDF is then reported back as an attribute of I . For

instance, a UDF may take all the intervals overlapping I and return their cardinality.

• Accumulation histogram/distribution; the functions ACCHIS and ACCDIS compute

the genome-wide accumulation of intervals, and respectively report a histogram or

distribution of the calculated information (see Figure 3.7).

• Nearest neighbor; given a reference interval I , the Nearest Neighbor function deter-

mines the nearest neighbor indexed interval, that is either an overlapping interval, or

the closest up-stream or down-stream non-overlapping interval.

3.3 Di3 Intervals

The design of Di3 is motivated by giving the best possible support to logic operations; in

particular, Di3 supports MAP and Nearest neighbour operations in logarithmic time in the

number of regions, while it supports COVER, SUMMIT and Accumulation histogram opera-

28

3.3. Di3 Intervals

D o m a i n

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Summit Result

Figure 3.5: An example of SUMMIT function with minAcc=2 and maxAcc=4 on 5 samples.

D o m a i n

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Map Reference

Figure 3.6: An example of MAP function on 5 samples. The dotted intervals are the intervals MAP function
finds overlapping reference intervals.

D o m a i n

 Accumulation Histogram Sample 1 Sample 2

 Sample 3 Sample 4 Sample 5

Figure 3.7: An example of Accumulation Histogram function on 5 samples.

29

Chapter 3. Di3: 1D Intervals Inverted Index

tions in linear time (indeed, second resolution indexing supports sub-linear time search, as it

will be later explained).

As have seen, Di3 adopts a single-dimension paradigm, and targets the interval’s coordinates;

however, it also adopts a double-resolution paradigm. The first resolution organizes intervals

based on their coordinates through snapshots and provides logarithmic access on the co-

ordinates; the second resolution builds groups of snapshots based on their coordinates and

computes suitable aggregation functions for each group, using all the attributes (and not just

the coordinates). These groups act as secondary key for improved access based on specific

attributes. In the following sections we describe each resolution in details.

3.3.1 First Resolution

Snapshots summarize information about the coordinates where a variation occurs in intervals,

i.e., when an interval starts or ends; a snapshot at eb exists iff at least one interval introduced

such variation. Hence, a finite set of snapshots can be used to index a finite set of intervals on

both discrete and contiguous domains. Note that multiple intervals with the same starts or

ends are possible.

Each snapshot holds a list of the IDs of all the intervals overlapping with its position; having

a pointer to each interval overlapping a point on the domain is advantageous mainly for

queries that target specific or relative positions. For instance, “given an interval, find all

intervals overlapping with it” requires O(log2 n) to find the snapshot which has a pointer to

all intersecting intervals; or “given an interval, find all its neighbors at 200 base-pair (unit

of the genomic domain) distance” requires O(log2 n) to find the snapshot at overlapping

position, plus few additional siblings of the determined snapshot, and then to join the intervals

represented by the snapshots (which asymptotically is still O(log2 n)). 2

This organization is shown in Figure 3.8; the upper part of the figure describes 4 input intervals;

the lower part of the figure describes the Di3 index, where each snapshot Bb includes a key-

value pair, the key is ei , and the value is the list of intervals which have an intersection with

Bb . Precisely, Bb can be at the left (L), at the right (R), or in the middle (M) of an interval; the

type of positioning (i.e., L, R or M) is included in each entry of the interval list, which also

contains a pointer to descriptive metadata for the interval. For instance, the third snapshot,

B3, intersects with three intervals, being in the middle of the S1 and S2 intervals and at the left

of the S3 interval.

The first resolution index is created using batch indexing, a method which includes input

intervals one after the other; such method is preferred over bulk indexing or range indexing,

which require the sorting of intervals prior to index creation. These methods are related to the

physical layer being implemented through a B+tree and they are related to classical methods

2 Computational complexities are based on a B+tree data structure for the implementation of the physical layer
operations.

30

3.3. Di3 Intervals

 Key

Value

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

e6 e7

 𝐋, @𝐈𝟐
𝟑 𝐑, @𝐈𝟐

𝟑

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

I1

A = 3

I2

C = 3

A = 3

C = 3

Figure 3.8: The first and second resolutions of Di3. The blocks of second resolution are composed of two
aggregations: maximum accumulation (A), and interval count (C).

for B+tree data insertion [118], [119]. To perform batch indexing, we contrasted two methods,

respectively called single pass indexing and double pass indexing. The former one considers

each interval in input and updates the data structure in a single pass; the latter one at the

first pass orders the snapshots of new intervals with respect to all existing intervals, and at the

second pass updates all the snapshots with the information about the list of the intersecting

intervals (see Figure 3.9 as an example).

The two methods are compared in Figure 3.10, the comparison clearly shows that no method

dominates over the other one. In general, single pass indexing is superior with a small number

of new intervals, while double-pass indexing is superior for a large number of new intervals.

Based on such analysis, the initial loading of the index in Di3 is performed by using the

double-pass indexing, while index update is performed by single pass indexing.

3.3.2 Second Resolution

The second resolution is built from the first resolution as of Figure 3.8, by grouping a set of

snapshots and aggregating the relative information. The elements of the second resolution

of Di3 are collections of consecutive snapshots grouped together, called blocks. Each block

31

Chapter 3. Di3: 1D Intervals Inverted Index

S1

S2

S3

S4

Value

 Keye1

 𝐋, @𝐈𝟏
𝟏

e2

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3

e1 e2

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

In
pu

t
D

i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟐

e4

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3

e2e1 e3 e4

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

e2e1 e3 e4 e5

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

e6 e7

 𝐋, @𝐈𝟐
𝟑 𝐑, @𝐈𝟐

𝟑

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟏

e2

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3

e1 e2

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

In
p

u
t

D
i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐋, @𝐈𝟏
𝟏

e3

 𝐑, @𝐈𝟏
𝟐

e4

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3

e2e1 e3 e4

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐋, @𝐈𝟏
𝟏

e3

 𝐋, @𝐈𝟏
𝟑

e4

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

e2e1 e3 e4 e5

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐋, @𝐈𝟏
𝟏

e3

 𝐋, @𝐈𝟏
𝟑

e4

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

e6 e7

 𝐋, @𝐈𝟐
𝟑 𝐑, @𝐈𝟐

𝟑

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

e6 e7

 𝐋, @𝐈𝟐
𝟑 𝐑, @𝐈𝟐

𝟑

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
pu

t
D

i3

Single-pass Indexing Multi-pass Indexing

Seco
n

d
 p

ass
First p

ass

M1

M2

M3

M4

M5

Figure 3.9: An illustration of single-pass compared to double-pass indexing.

32

3.3. Di3 Intervals

3.25

17.90

0.24

0 5 10 15 20

Double pass
indexing

Single pass
indexing

Elapsed Time (second) Thousands

Single vs. Double Pass Indexing Runtime
for Large Number of New Intervals

1st pass

2nd pass

0.31

0.57

6.42

0 1 2 3 4 5 6 7 8

Double pass
indexing

Single pass
indexing

Elapsed Time (second)

Single vs. Double Pass Indexing Runtime
for Small Number of New Intervals

1st pass

2nd pass

A

B

Figure 3.10: A comparison between single-pass and double-pass indexing in two scenarios: (A) large
number vs. (B) small number of new intervals.

is defined as a key-value pair; the key is defined by a grouping function, while the value is

defined by an aggregation function. More precisely:

In Grouping, a user-defined function groups a set of adjacent snapshots; depending on the

semantic of the UDF, such groups reveal various aspects. For instance, in the genomic domain

with intervals representing a biological activity, a group of snapshots is a region on a genome

where at least one biological activity is observed. The grouping function defines the block

key, as an interval on first resolution with start and stop being respectively the minimum and

maximum coordinates of the snapshots in the block.

With Aggregation, the information of the snapshots within each block are then aggregated,

thereby providing summary statistics on the specific attribute(s). Storing custom aggregations

for each block reduces snapshot access demands when a particular aggregation is commonly

used. The aggregation function defines the block value, which is generic in type and size. For

instance, count of intervals represented by grouped snapshots, or standard deviation and

mean of interval sizes.

Di3 already provides built-in functions for default grouping and aggregation; the default group-

ing function groups consecutive snapshots that point to consecutive overlapping intervals,

and the built-in aggregation function stores the maximum accumulation of each group. These

functions improve operations such as COVER, SUMMIT and Accumulation histogram, which

depend on accumulation indexes. For instance, in a COVER query, when the max accumulation

of a block is lower than the min accumulation accMin of the query, or the min accumulation of

33

Chapter 3. Di3: 1D Intervals Inverted Index

a block is higher than the max accumulation accMax of the query, the entire group of intervals

does not have an interval that satisfies the query and can be fully skipped. Moreover, disjoint

groups can be processed in parallel with no need for synchronization mechanisms.

3.4 Retrievals

Present section discusses the algorithms of Di3 functions, and provides pseudo code for each.

Cover, the function COVER iterates over snapshots of first resolution and determines sets of

intervals whose accumulation is between user-defined thresholds minAcc and maxAcc. The

determined intervals are then passed to UDF for further application-specific operations. The

Algorithm 1 provides pseudo code of this function.

Algorithm 1 Cover Algorithm

1: procedure COVER(minAcc, maxAcc, UDF)
2: determined_intervals ←;
3: accumulation ← 0
4: Bmarked ← null
5: for each snapshot B in first resolution of Di3 do
6: accumulation ← accumulation at B
7: if minAcc ≤ accumulation ≤ maxAcc then
8: Bmarked ← B
9: determined_intervals ← determined_intervals ∪ intervals of B

10: else
11: if Bmakred 6= null AND (accumulation > maxAcc OR accumulation < minAcc) then
12: determined_intervals ← determined_intervals ∪ intervals of B
13: UDF(Bmakred,B , determined_intervals)
14: Bmarked ← null
15: determined_intervals ←;

Summit, the function SUMMIT is a variant of COVER, similarly iterates over snapshots of first

resolution and determines sets of intervals whose accumulation is between user-defined

thresholds minAcc and maxAcc, and is local maximum. Similar to COVER, the retrieved intervals

are then passed to UDF for further application-specific operations. The Algorithm 3 provides

pseudo code of this function.

Algorithm 2 Map Algorithm

1: procedure MAP(Ireference, UDF)
2: determined_intervals ←;
3: for each snapshot B in first resolution of Di3 between

¯
Ireference and Īreference do

4: determined_intervals ← determined_intervals ∪ intervals of B
5: UDF(determined_intervals)

6: determined_intervals ←;

34

3.4. Retrievals

Algorithm 3 Summit Algorithm

1: procedure SUMMIT(minAcc, maxAcc, UDF)
2: determined_intervals ←;
3: accumulation ← 0
4: Bmarked ← null
5: marked_accumulation ← 0
6: for each snapshot B in first resolution of Di3 do
7: accumulation ← accumulation at B
8: if minAcc ≤ accumulation ≤ maxAcc then
9: Bmarked ← B

10: marked_accumulation ← accumulation
11: determined_intervals ← determined_intervals ∪ intervals of B
12: else
13: if Bmakred 6= null AND (accumulation > maxAcc OR accumulation < minAcc) AND

(marked_accumulation > accumulation OR marked_accumulation < accumulation) then
14: determined_intervals ← determined_intervals ∪ intervals of B
15: UDF(Bmakred,B , determined_intervals)
16: Bmarked ← null
17: marked_accumulation ← 0
18: determined_intervals ←;

Map, the function MAP finds all intervals overlapping a given reference interval Ireference, and

passes them to UDF for further application-specific operations. The Algorithm 2 provides

pseudo code of this function, the algorithm explains MAP for one reference intervals, hence

the algorithm can be repeated for each reference interval in a reference sample.

35

4 Di4: 1D Intervals Incremental
Inverted Index

Present chapter explains 1D intervals incremental inverted index (Di4), a general-purpose

indexing framework for interval-based data. The incremental inverted model of Di4 extends the

inverted model of Di3 to minimize redundancies. Present chapter discuss Di4 data structure

in details, and provide descriptions independent from Di3, such that an interested reader

does not require to reference Chapter 3 to understand the concepts and procedures of Di4.

The chapter is organized as follows: first, the challenges of Di3 model that motivates the

incremental structure of Di4 are discussed in Section 4.1, Section 4.2 explains objectives of

Di4 model, then the design of Di4 is explained in Section 4.3, and in sections 4.4, 4.5, and

4.6, respectively, the elements of Di4 are formally defined, then first and second resolutions

of Di4 for bookkeeping intervals are described these elements, and Section 4.7 explains the

algorithms for bookmarking intervals on first and second resolution, and finally, information

retrieval based on first and second resolutions of Di4 is explained in Section 4.8.

4.1 Interval indexing beyond Di3

A snapshot of Di3 has an inverted structure which bookmarks all the intervals overlapping

a snapshot position on the domain. This is an advantage of Di3 snapshot design, mainly

because a single snapshot renders a complete picture of all the intervals overlapping a position

on the domain independent from the other snapshots. For instance, referring to Figure 4.1,

where two “Flight” events are modeled on a time domain; “Flight-A” departures at 9:00AM and

lands at 10:00AM, and “Flight-B” departures at 9:30AM and lands at 10:30AM. The snapshot at

9:30AM renders: “Flight-B departures and Flight-A is flying”, which is a complete information

of the events at 9:30AM. “Flight-A is flying” is not the causal event of 9:30AM snapshot, and can

be inferred from either of 9:00AM or 10:00AM snapshots, however, the 9:30AM snapshot holds

“Flight-A is flying” information so that it can render the condition of both events independent

from the other snapshots.

Despite of the advantages of the inverted structure of Di3, scenarios with dense event occur-

rences and range queries introduce challenges to it. To be specific, consider a range query as

37

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

e1 e2 e3 e4

0

0

1

0

1

1

0

1

0 0 1 1

μ

ω

λ

Flight-A

Flight-B

ω

λ

Figure 4.1: Design difference between Di3 (Inverted) and Di4 (Incremental).

“what happens between 9:30AM and 10:00AM?”. To answer the query, snapshots 9:30AM and

10:00AM are processed, which independently provide the following information:

• 9:30AM : “Flight-B departures” and is flying henceforth;

+ “Flight-A is flying”, it was flying before, and is flying henceforth.

• 10:00AM : “Flight-A lands” and it was flying before;

+ “Flight-B is flying”, it was flying before, and is flying henceforth.

The two snapshots in summary inform: “Flight-B departed at 9:30AM while Flight-A was flying,

and when Flight-A landed at 10:00AM Flight-B was flying”. The underlined information is

explicitly provided by Di3 snapshots, however, it is redundant since having both snapshots,

the underlined information can be inferred as follows (italic information):

• 9:30AM : “Flight-B departures” and is flying henceforth;

and based on 10:00AM snapshot, Flight-A is flying now.

• 10:00AM : “Flight-A lands” and it was flying before;

and based on 9:30AM Flight-B is flying now.

Therefore, using only information of causal events, a complete picture of event occurrence is

can not be recovered.

38

4.2. Di4 Objectives

In scenarios with dense event occurrences, a considerable portion of events bookmarked

by a single snapshot, are non-causal events, and a large number of those are repeated from

the previous snapshots. In other words, the difference between two consecutive snapshots

might be a single event, while a considerable number of information is shared between the

snapshots. Di3 design decision for explicit information of non-causal events, although it

facilitates reconstructing intervals overlapping a position on domain, which is specially useful

for queries such as “find all intervals overlapping a point on domain”, introduces challenges.

Indeed, inferable non-causal information and a considerable share between snapshot events

introduce a significant (de-)serialization overhead when data do not fit in memory and a

persistent data structure is used.

To eliminate redundancy, and make snapshots more practical, an incremental structure has

been incorporated to the snapshot-based design Di3 design, named 1D intervals incremental

inverted index (Di4) and discussed in present chapter. Di4 keeps only the information about

causal events in each snapshot, and infers non-causal events using neighbor snapshots. For

instance, referring to Figure 4.1, for the snapshot 9:00AM, Di3 holds information of both

“Flight-A” (non-causal) and “Flight-B” (causal), while Di4 holds only “Flight-B” (causal) and

a counter of the non-causal events to be inferred. The incremental structure of Di4 the

rewrites retrieval algorithms to “infer” non-causal events, and this makes such algorithms

more complex than Di3 counterpart. Nevertheless, Di4 operations, spanning data structure

manipulation to retrieval, perform significantly faster than Di3, mainly because of reduced

events processing and smaller snapshots (de-)serialization.

4.2 Di4 Objectives

Di4 is a multi-resolution single-dimension generic indexing framework over interval-based

data (see Figure 4.2) to support query execution and coordinate-oriented retrievals in favor

of tertiary analysis, i.e., “sense-making”. The Di4 data model is a representation of interval-

based data that maps positions on domain (e.g., Genome) to observed events (e.g., genomic

activities), by indexing primary attribute of intervals – coordinates; left and right, in the NoSQL

key-value pair paradigm. The aim of Di4 is to excel in retrievals and data mining operations

related to occurrence and co-occurrence of intervals by rendering transparent the complexities

of efficient, scalable, extensible, and comprehensive information retrieval system.

The Di4 model holds the following characteristics: (i) relative and absolute knowledge of

the occurrence point on the domain, (ii) retrieve relative ordering of intervals for conjoint

evaluation (e.g., range queries, or nearest neighbors), (iii) persisted index leveraging on a data

(physical) layer technology, (iv) mainly static intervals such that commonly preserve their

states and do not necessitate frequent update on persisted information, (v) the model does

not map sense of now, and (vi) the model accepts user-defined functions (UDF) over primitive

Di4 operations.

The Di4 is generic and designed for reusability and extensibility over any domain with (homo-

39

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

Figure 4.2: Di4 schematic design; the coordinates of intervals from input samples are indexed in a double-
resolution paradigm. First resolution indexes the coordinates in inverted (i.e., Di3), and incremental
inverted (i.e., Di4) structures. Second resolution aggregates the non-indexed attributes of groups of
intervals. The size of persisted information decreases from input samples to the second resolution, with
inverted index of first resolution being relatively larger in size compared to incremental inverted index.
The manipulation of data structures logically starts from input samples and goes to second resolution
through first resolution. However, the retrieval is conducted in reverse order.

geneous and heterogeneous) interval-based data, which is attained by two design decisions.

First, the framework is defined at data access layer (DAL), independent from data (physical)

layer, with maximum flexibility to business logic layer, while both layers are agnostic of the

data model (see Figure 4.3). Second, the diversity of domains, data types, and semantics of

intervals supplemented by application-driven operations, motivates implicit definition of

sense-making functions, such that, in contrast to what functions to be implemented, Di4 de-

fines how such functions are to be applied. In this regard the Di4 model accepts user-defined

functions (UDF) through behavioral design patterns such as strategy pattern [28]. This design

makes Di4 adaptable to any underlying key-value pair persistence technology (spanning classi-

cal data structures such as B+tree to LevelDB inspired by Google’s BigTable technology, Apache

Accumulo, Apache Cassandra, Apache HBase, or Symas Lightning Memory-Mapped Database

(LMDB) (NoSQL databases are surveyed in [26] and [27])), and business logic and presentation

layer scenarios (e.g., a graphical user interface). In general, the operations of Di4 are defined

in three levels; physical level that maps Di4 model to persistence technology which makes the

model agnostic to data layer, logical and semantic levels which respectively define basic region

calculus and higher level functions while provide extensibility to different business logic and

presentation layer scenarios using generic interface and UDF support. The operations of

physical level are persistence technology-specific hence are generally discussed in present

chapter, logical level functions are discussed in Section 4.8, and operations of semantic level

are discussed by application in Chapter 6.

To avoid any infrastructure-related details and bias, and for the sake of unambiguous descrip-

40

4.2. Di4 Objectives

D
at

a
 L

ay
e

r
P

re
se

n
ta

ti
o

n
 L

ay
er

D
at

a
 A

cc
e

ss
 L

ay
e

r
B

u
si

n
e

ss
 L

o
gi

c
La

ye
r

P
e

rs
is

te
n

ce

Te
ch

n
o

lo
gy

Genome hierarchy orchestrator (Chr and strand)

Command-line interface

Region metadata storage

Orchestrator Command Parser Logger

 Semantic
 Level

Similarity search Co-occurrence patterns

 Logical
 Level

Batch Index Cover Summit Map Merge Complement

Accumulation Histogram Accumulation Distribution

 Physical
 Level

Create Read Update Delete Enumerate Reconstruct

Batch Index Cover Summit Map Merge Complement

Accumulation Distribution

Genome hierarchy orchestrator (Chr and strand) Region metadata storage

Co-occurrence patternsComparative evaluation Correlation assessment

Genome browserNearest neighbor distance distribution

Accumulation Histogram

Create Read Update Delete Enumerate

Graphical User Interface Orchestrator

Figure 4.3: Di4 architecture. Di4 and Di3 are defined at DAL in three levels of functionality; The
extensibility of Di4 and Di3 to different application scenarios is illustrated by two applications, Di4B-
Di4BCLI which is a command line interface for basic functionality of Di4 and Di3 (used for performance
evaluation in Chapter 5), and MuSERA which is a graphical tool for comparative evaluation of ChIP-seq
peaks (discussed in Chapter 6).

tion, the description of Di4 in the following uses B+tree as underlying data structure to hold

Di4 representation of data. Additionally, since the application focus of present dissertation is

on genomics, for demonstration and evaluation purpose; Di4 for Bioinformatics (Di4B), which

adapts Di4 to computational biology, and Di4B command line interface (Di4BCLI), which

provides a console-level accessibility to Di4B, are defined respectively at business logic layer

and presentation layer (see Figure 4.3). Additionally, the extensibility of Di4 to application

scenarios with graphical user-interface and application-specific functionalities is illustrated

41

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

by MuSERA (a graphical tool for comparative analysis of ChIP-seq replicates), described in

Chapter 6 (see Figure 4.3).

The cornerstone of Di4 innovations is the point-based index of interval coordinates that excels

the retrievals and data mining operations on occurrence and co-occurrence of intervals. In

general Di4 is designed for two class of operations as it follows:

i. Retrieval to perform operations such as similarity search (e.g., “given a set of samples,

find most similar set of samples in terms of co-occurrence of intervals”), range queries

(e.g., “find regions on domain where a specific number of intervals co-occur”), and

region calculus (e.g., “given an interval, find all intervals overlapping with it”).

ii. Data mining that mainly aims to operations such as co-occurrence patterns, dependency

detection (e.g, “given a dataset, determine the positions on which the regions usually

co-occur” – with respect to the data in repository), and deviation detection (e.g., “given a

dataset, find positions on which the regions do not commonly co-occur” – based on the

data in repository.)

4.3 Di4 Design

A durative event has three attributes on domain: (i) start, where the action begins, (ii) stop,

where the action is accomplished, and (iii) middle, where different degrees of the action

are being executed; such that, a durative event is happening between an inclusive start and

exclusive stop. For instance, “Flight-A” departures at 9:00AM (start attribute), and lands

at 10:00AM (stop attribute), and all the time between 9:00AM and 10:00AM it was flying

(middle attribute). Punctual events lack middle attribute and refer to transitional actions. For

instance, a “genomic mutation” is a punctual event that describes a transition event from

“mutated” to “not mutated”. A punctual event should not be mistaken with a momentary

concept which is a single self-explanatory snapshot on the domain. For instance, “an aircraft

is flying” is a momentary concept independent from “when aircraft departures” and “when

aircraft lands”. Additionally, a durative event on contiguous domain can be represented by an

infinite sequence of momentary snapshots, while a punctual event can not be subdivided.

Di4 models an abstract representation of durative and punctual events on contiguous domains

using adaptive snapshots. The model leverages on the instantaneous model concept that

any durative and punctual event on contiguous domain can be explicitly represented using

the start and stop snapshots, and the infinite sequence of momentary snapshots of durative

events can be represent implicitly. For instance, two “flight” events can be modeled using four

explicit snapshots as follows (see Figure 4.1):

i. 9:00AM : Explicit; Flight-A departures.

ii. 9:30AM : Explicit; Flight-B departures. Implicit; Flight-A is flying, and was flying all the

42

4.4. Notation

time between 9:00AM and 9:30AM.

iii. 10:00AM : Explicit; Flight-A lands. Implicit; Flight-B is flying, and all the time between

9:30AM and 10:00AM both flights were flying.

iv. 10:30AM : Explicit; Flight-B lands. Implicit; all the time between 10:00AM and 10:30AM

Flight-B was flying.

In general, a snapshot on a domain has two essential attributes; first, a snapshot has at least

one causal event. For instance, the causal event of the snapshot at 9:30AM is the “departure

of Flight-B“. Second, a snapshot captures both the causal events and momentary concepts.

For instance, the “Flight-A” has infinite momentary snapshots spanning 9:00AM to 10:00AM,

including 9:30AM when “Flight-B departures”; hence the snapshot of 9:30AM captures both

the causal event (i.e., “Flight-B departures”) and the momentary concept of “Flight-A” (i.e.,

“Flight-A is flying”). According to these two attributes, the Di4 index model adapts inverted

index paradigm.

A snapshot represents captured events explicitly by a pointer to the subject. For instance, the

snapshot of 9:30AM has pointers to “Flight-A” and “Flight-B”, a pointer could be an ID of a flight

in a database with all the related information such as aircraft model, passenger list, crew, and

etc. A pointer to a causal event is required, however, pointers to momentary concepts might be

suboptimal and evaluated as redundant in applications with dense events. For instance, while

a pointer to “Flight-A” is given at 9:00AM and 10:00AM snapshots (because “Flight-A” is the

causal event), it is not strictly necessary to repeat same information at 9:30AM snapshot where

“Flight-A” overlaps with a momentary concept, mainly because it is implicit based on 9:00AM

and 10:00AM snapshots. Therefore, to improve adaptability of Di4 to applications with dense

events, supplementary to the inverted index, the Di4 index model adapts incremental inverted

index paradigm where the pointers with momentary concepts are avoided. However, for the

sake of accuracy, the incremental model keeps track of the cardinality of momentary concepts

– implicit representation of events. For instance, the snapshot at 9:30AM under inverted index

says “Flight-B departures and Flight-A is flying”, while under incremental inverted index it

says “Flight-B departures and one another flight is flying” (see Figure 4.1).

4.4 Notation

Let J interval sets denoted as S = {S1, . . .S j , . . .S J } where S j = {I j
1 , I j

2 , . . . I j
i , . . . I j

|S j |} (see input

section of Figure 4.4). I = [
¯
I , Ī) denotes an interval with

¯
I and Ī stating respectively the lower

(left) and upper (right) bounds (ends) of interval I . Let Σ denote the universe of all elements

constituting intervals, and e ∈ Σ any element of such domain; an alternative definition of

I j
i = [e ′ =

¯
I j

i ,e ′′ = Ī j
i) where e ′′ > e ′. An interval I is a left-closed and right-open1 interval of

1This property is mainly in favor of interval definition in genomics; extending the algorithms to other interval
types is straight-forward.

43

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

ascending ordered pair of e elements, that is always
¯
I < Ī ; reverse intervals are not considered

here. For any pair of intervals I and I ′, exactly one property of following interval heptachotomy

holds (similar generalization is also provided in [95], [120], and [121]):

i. Ī ≤
¯
I ′: Non-overlapping, I is to the left of I ′.

ii. Ī <
¯
I ′∧

¯
I ′ ≤ Ī ≤ Ī ′: Overlapping, I is to the left of I ′.

iii.
¯
I <

¯
I ′∧ Ī ′ < Ī : I covers I ′.

iv.
¯
I =

¯
I ′∧ Ī = Ī ′: perfect overlap.

v.
¯
I ′ <

¯
I ∧ Ī < Ī ′: I ′ covers I .

vi.
¯
I ′ ≤

¯
I ≤ Ī ′∧ Ī ′ < Ī : Overlapping, I is to the right of I ′.

vii. Ī ′ ≤
¯
I : Non-overlapping, I is to the right of I ′.

Let D+ denote the first resolution of Di4; D+ = {B1, . . .Bb , . . .B|D+|} is the set of snapshots B

on Σ, as in Figure 4.4. By definition, the mapping D+� Σ is injective and non-surjective.

A snapshot is a key-value pair element, where the key is e ∈ Σ and the value is a < µ,ω,λ >
tuple. The set of all keys and values are denoted respectively D+

key and D+
value. The key is

the snapshot coordinate (the notation eb refers to the coordinate of snapshot Bb), and by

definition, it is the unique identifier of B . With reference to the value <µ,ω,λ>, the element

µb ∈N0 represents the number of intervals that occurred before and terminating after e (i.e.,

µb = |{Ii |eb ∈ (
¯
Ii , Īi)}|), such intervals are identified as passing intervals. Variable ωb ∈ N0

denotes the number of intervals whose right-end intersects with eb (i.e., ωb = |{Ii |eb = Īi }|).

The λb component is a collection of tuples (ϕ,@I) where each tuple represents an interval

intersecting e with either lower or upper bound (i.e., λb = {(ϕ,@I)i |
¯
Ii = eb ∨ Īi = eb}, such

intervals are called causal intervals. The element ϕ is ϕi = L ⇐⇒
¯
Ii = eb , and ϕi = R ⇐⇒

Īi = eb . Finally, the element @I is a pointer to descriptive metadata of the interval the tuple

corresponds to. By definition, a bijection property between I and @I holds (i.e., a pointer

points to only one interval, an interval is represented by only one pointer, and no null pointer

or un-pointed interval exists), leveraging on this property, @I is considered as the implicit

identifier (ID) of I .

Second resolution of Di4 is denoted as D∗ and it is defined as a set of blocks B on D+, D∗ =
{B1, . . . ,Bτ, . . . ,B|D∗|} (refer to Figure 4.4). A block bookmarks a set of successive snapshots

where the lower and upper bounds are determined by a grouping function ∆. For instance, B1

on Figure 4.4 is bookkeeping snapshots {B1,B2,B3,B4,B5}. Likewise a snapshot, a block is a

key-value pair element where the set of all keys and values are denoted respectively D∗
key and

D∗
value. Let I = [

¯
I, Ī] denote the key of a block for

¯
I, Ī ∈ {e1, . . . ,e|D+|}, and < α,γ > tuple be the

value. ατ ∈N+ is the maximum accumulation of intervals at the snapshots bookmarked by Ib ,

and the component γτ ∈N+ is the number of intervals located in the block bookmarked by Iτ.

44

4.4. Notation

Value

 Key

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐋, @𝐈𝟏
𝟏

e3

 𝐋, @𝐈𝟏
𝟑

e4

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

e6 e7

 𝐋, @𝐈𝟐
𝟑 𝐑, @𝐈𝟐

𝟑

𝔇+

𝑆1

𝑆2

𝑰𝟏
′ 𝑰𝟐

′ 𝑰𝟒
′ 𝑰𝟓

′ 𝑰𝟑
′ 𝑆′

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
p

u
t

D
i4

𝔇∗ 𝔹1

𝕀1 𝕀1 𝕀
1

𝔹2

𝕀2 𝕀2 𝕀
2

𝛼1 = 3

𝛾
1

= 3

𝛼2 = 1

𝛾
2

= 1

Figure 4.4: Input: Intervals are defined on Σ domain and are grouped in S1, S2, and S3 samples, where S

is the universe of all sets. The i -th interval of j -th set is denoted as I j
i and is distinguished by its lower

¯
I

and upper Ī bounds.
First resolution: The intervals of S′ summarize S in terms of bins: non-overlapping intervals of possibly
different length. For instance,

¯
I 2

1 and
¯
I 1

1 form I ′1. Di4 leverages on this concept and assigns a snapshot for
each unique I ′ bound. For instance, Di4 bookmarks

¯
I ′1 by snapshot B1. Each snapshot is bookkeeping

intervals overlapping a I ′ bound. For instance, B4 is bookkeeping I 2
1 and I 3

1 as ending at e4 (via λ4 and
ω4), and one another interval passing e4 (via µ4).
Second resolution: Bookmarks are aggregated and form blocks which constitute second resolution. For
instance, B1,B2,B3,B4, and B5 are grouped as B1, with I1 = [B1,B5], and maximum accumulation (α1 =
3) and interval count (γ1 = 3) are the aggregated information of intervals bookmarked by B1,B2,B3,B4,
and B5 snapshots.

The current implementation of Di4 organizes snapshots both for D∗ and D+ using B+ tree,

with β branching factor which enable efficient storage (O(logβn)) and retrieval (O(logβn))

from a persistent storage. The identifier of a snapshot, eb , is stored as the key on the B+ tree,

while the <µ,ω,λ> tuple forms the corresponding value node (see Figure 4.4).

Let δ j
i denote the number of snapshots the interval I j

i intersects (i.e., δ j
i = |{Bb |

¯
I j

i ≤ eb ≤ Ī j
i }|),

and φ j
i being the number of intervals I j

i intersects (i.e., φ j
i = |{I n

m |I n
m ∩ I j

i 6= ;}|). The Di4 holds

following properties:

45

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

1. Leveraging of the definition of an interval, I = [
¯
I , Ī): if Ī =

¯
I ′ then I ∩ I ′ =;

2. An interval I j
i is represented by exactly two snapshots (i.e., δ j

i = 2) that is: Bb : eb =
¯
I j

i

and Bb′ : eb′ = Ī j
i

3. For an interval I : eb =
¯
I ,eb′′ = Ī if ∃b′ : b < b′ < b

′′
then I intersects with at least one

another interval (i.e., if δ j
i > 2 then φ j

i > 0).

4.5 Di4 First Resolution

Now that we have defined intervals in the adaptive snapshotting structure, let describe how

this snapshotting is obtained. The superimposition of intervals given by sets in S induces a

new set of non-overlapping intervals, denoted by S′, on Σ (see Figure 4.4). Let I ′ denote an

interval of new set S′ = {I ′1, I ′2, . . . I ′|S′|} with
¯
I ′i , Ī ′i ∈ {∪i , j

¯
I j

i ∪∪i , j Ī j
i }. Therefore I ′ is not necessarily

a member of any S j , and
∑

j |S j | ≤ |S′| ≤ 2
∑

j |S j |−1.

The first resolution of Di4, D+, is derived from the intervals of S′, such that, each unique

e =
¯
I ′i and e = Ī ′i of S′ intervals is bookmarked by a D+ snapshot (see Figure 4.4). Any two

adjacent intervals of S′ introduce a unique e as e = Ī ′i = ¯
I ′i+1 resulting to a common snapshot

bookkeeping both bounds (e.g., I ′1 and I ′2 on Figure 4.4 are bookmarked by B2, explicitly and

implicitly respectively). Leveraging on the snapshot assignment semantic, snapshots hold

the property of dichotomies (i.e., ∀e,∃!b : e = eb). Each snapshot points to a coordinate on

Σ, and conveys the condition of each set at that specific coordinate. 2 Snapshots summarize

information about the coordinates where a variation occurs in intervals on Σ, that is ∀e |
∃i , j :

¯
I j

i = e ∨ Ī j
i = e ⇐⇒ ∃!B . A variation occurs when an interval starts (left-end is observed)

or ends (right-end is observed). Hence a finite set of snapshots can be used to index finite set

of intervals on both discrete and contiguous domains. However, depending on various interval

intersections conditions, the number of required snapshots (i.e., |D+|) varies spanning from

|S′|+1 to 2|S′|.

The four components of each snapshot, i.e., eb , µb , ωb , and λb , carry the explanatory informa-

tion about the coordinate on Σ which the snapshot bookmarks. The coordinate specified by

eb ∈Σ is called snapshot coordinate and it has the following property: ∃i , j : [eb =
¯
I j

i]∧[eb = Ī j
i].

Note that, the set i , j satisfying the former property is not necessarily a singleton, because

multiple intervals with the same lower-bound or upper-bound are possible.

Existence of a snapshot Bb identifies the presence of possibly multiple intervals intersect

with eb where at least one interval introduces the causal variation. A snapshot coordinate

acknowledge solely the occurrence of a variation at location eb on Σ, and does not render

any information regarding the original intervals. The reconstruction of S from Di4 is made

2The information are presented in inverted index; that is, information regarding interval I
j
i are present at Bb iff

I
j
i ∩eb 6= ;, or in other words

¯
I

j
i ≤ eb ≤ Ī

j
i .

46

4.5. Di4 First Resolution

possible through µb , ωb , and λb components where the role of each is explained in details in

the following.

Causal intervals are stored in the λb component which is a set of (ϕ,@I) tuples itself where

a one-to-one correspondence between causal intervals and λb items holds. Therefore, by

definition |λb | = |{I j
i |¯I

j
i = eb ∨ Ī j

i = eb}| and |λb | 6= 0. A pointer to the causal interval is given by

@I component of the relative tuple. The pointer is defined in its general form and could be

specified as a memory address, or a key of a relational database, or any application specific

pointer which points to descriptive metadata of the interval that helps answering queries

that require consideration of descriptive metadata. The intersection condition of a causal

interval is given by the ϕ component of the relative tuple which is ϕ = L ⇐⇒
¯
I j

i = eb (e.g.,

with reference to Figure 4.4; I 2
1 at B1) and ϕ= R ⇐⇒ Ī j

i = eb (e.g., I 1
1 at B5 of Figure 4.4).

Different from Di3, the Di4 is an incremental inverted index where each snapshot explicitly

points to causal intervals through the λb component, and only implicitly points to non-causal

intervals via the µb component. Indeed, the component µb ∈ N0 specifies the number of

non-causal intervals intersecting eb (i.e., µb = |{I j
i |¯I

j
i < eb < Ī j

i }|). By definition, exactly two

λ’s, λb and λb′′ , exist that have reference to I j
i where eb =

¯
I j

i and eb′′ = Ī j
i and any Bb′ where

¯
I j

i < eb′ < Ī j
i has µb′ > 0.

Finally, each snapshot has a component denoted by ωb ∈N0 that is defined as the number of

intervals whose right-end intersect eb (i.e., ωb = |{I j
i |Ī

j
i = eb}|), and, by definition, ωb ≤ |λb |.

The component ωb enables O(1) recovery of the number of causal intervals whose left-end or

right-end intersects the snapshot; that is: |{I j
i |Ī

j
i = eb}| =ωb and |{I j

i |¯I
j
i = eb}| = |λb |−ωb .

Depending on the intervals of S, intervals of S′ are not necessarily adjacent, hence neither

are the snapshots. In some applications where events in terms of intervals happen sporadic

such as in genetics while studying functions of genes, gaps such as the one between I 1
1 and I 3

2

in Figure 4.4 are common indeed. In contrast, applications with frequent event occurrences

such as air traffic control over a major city, may rarely introduce gaps. Therefore, gap determi-

nation (sometimes referred to as complement) is advantageous for "consonantal" intervals

detection. 3

Being snapshots assigned to variations, gaps are imaginary intervals where no actual interval

is present; hence no variation occurs, and accordingly, no snapshot is assigned to gaps. A gap

is implicitly defined with two consecutive snapshots, where the former bookmarks only right-

ends (e.g., B5 in Figure 4.4), and the subsequent snapshot points to only left-ends (e.g., B6 in

Figure 4.4). In general, there is a gap between eb and eb+1 if ωb = |λb | or ωb+1 = 0∧µb+1 = 0.

Yet each of these snapshots are equally sufficient to highlight a gap.

3Supposing intervals being events on an agenda, gaps could be interpreted as free slots for insertion of a new
event. With intervals representing scheduled tasks for a server, gaps are server idle time apt to new task assignment.
Intervals can denote DNA-protein interaction regions on genome, and gaps are DNA positions where no such
interaction is observed yet.

47

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

Due to our objective toward minimal accesses to the original intervals, Di4 holds least essential

information for S reconstruction from the index and basic retrievals. Information presented

by ω or ϕ are trivial to be obtained using λ and interval coordinate respectively; however,

when intervals are stored on external sources, each access to retrieve ϕ might be sub-optimal,

and likewise for ω. These two components minimize source accesses and increase the perfor-

mance with a penalty of negligible extra storage space requirement. For queries demanding

descriptive metadata of intervals, the data are accessible through the @I component.

4.6 Di4 Second Resolution

The first resolution (D+) of Di4 is a detailed index that contains minimal essential information

for reconstruction of original intervals. The second resolution (D∗) aggregates D+ in two

directions: item count and bookmarked information. In general, a group of consecutive

snapshots is summarized as a block (B) which is defined as a key-value pair element that forms

the second resolution of Di4, D∗ = {B1, . . . ,Bτ, . . . ,B|D∗|} and Bτ∩Bτ+1 =; (see Figure 4.4). A

block key is an interval I= [
¯
I, Ī] on D+ for

¯
I and Ī denoting respectively the lower and upper

bounds of the interval I. The value of a block is an application and demand specific aggregation

of the snapshots grouped in the block. For instance, the value could be the count of the

intervals bookmarked by the snapshots grouped by the block, or an aggregation of p-values of

the intervals. Similar to first resolution, the blocks of second resolution can be persisted using

any key-value pair storage technology; current implementation of Di4 uses classical B+tree.

The grouping and aggregation functions are described in details in following sections.

4.6.1 Grouping

A snapshot exists for each unique bound which bookmarks the occurrence of an event on

Σ. Accordingly, a function can define a set of adjacent snapshots that represent a collection

of event occurrences. Depending on the semantic of the function, such collections convey

different messages, or reveal various aspects of the events. For instance, let Σ be date on a

calendar, and intervals representing presence of an airplane in an airport for lower and upper

bound of an interval being respectively the arrival and departure time of the airplane. Groups

of snapshots of a maximum distance of 5min are representing the traffic time on the runway.

As another example, let Σ be the DNA of a species and intervals representing regions of genetic

function observations. Collections of all overlapping intervals could be interpreted as regions

of biological interaction of the study.

A grouping function ∆, groups consecutive snapshots in a block (B) by determining the two

bounds of I such that
¯
I ∈ {B1, . . . ,Bb} and Ī ∈ {Bb+1, . . . ,B|D+|}. The function ∆ is application-

specific and user-defined. In general, ∆ takes the snapshots of Di4 as input, and returns a

set of block keys (∆(D+
key) = {I}). If a custom ∆ function is not provided, Di4 uses a default

function that groups snapshots based on “gaps”, such that all the snapshots between two

48

4.7. Di4 Indexing Algorithms

consecutive “gaps” are grouped together. In general, supposing
¯
Iτ = Bα, Īτ = Bβ, and let A(Bb)

denote accumulation of intervals at snapshot Bb , the ∆ function is defined as follows:

∆
(
D+

key

)
=

{
I
∣∣∣ A (Bα−1) = 0∧ A

(
Bβ+1

)= 0∧ (∀Bb ,α< b <β : A (Bb) 6= 0
)}

4.6.2 Aggregation

The first resolution provides detailed information for each single e ∈Σ spanning from interval

coordinate and accumulation count to descriptive metadata. The information of the snapshots

constituting blocks are then aggregated in favor of providing summary statistics on the specific

attributes. The aggregate function(s) and target attribute(s) are application-specific and

user-defined, determined in accordance with application-oriented data analysis and retrieval

demand. For instance, in the aforementioned airport example, the number of the intervals

constituting a block is a pragmatic aggregation which can reveal extensive aspects such as high

traffic on the runway, where the block with highest value, is the time period of heaviest runway

traffic. Although such information can be collected by directly processing snapshots; however,

storing custom aggregations for each block reduces snapshot access demands specially if the

a particular aggregation is commonly appealed.

The default aggregation of Di4 calculates maximum accumulation (α ∈N) and counts (γ ∈N)

intervals bookmarked by the grouped snapshots. Hence, the default aggregation results a tuple

as (α,γ) as value of each block (see Figure 4.4). The two aggregated attributes are generally

defined as follows:

ατ = Ī
max

b=̄I
(
µb +|λb |−ωb

)
γτ =

∣∣∣{ I j
i

∣∣∣
¯
Iτ ≤

¯
I j

i ∧ Ī j
i ≤ Īτ

}∣∣∣
4.7 Di4 Indexing Algorithms

The indexing process consists of essential operation for creating the two resolutions of Di4

data structure from input intervals. The process starts from S j ∈ S sets, proceeds iterating

through the sets and indexing intervals, and stops when D+ and D∗ are properly structured

by all intervals. Di4 organizes snapshots and blocks on independent B+trees 4 forming first

and second resolution respectively.

Indexing algorithms for both first and second resolutions ensure data logical integrity by

maintaining the accuracy and consistency of intervals on D+ and D∗ at a full procedure of

data structures manipulation. First resolution indexing algorithm ensure that exactly two

snapshots point to an interval, and if the interval intersects another interval at least one

4Roger Knapp’s excellent B+tree implementation is used, the library is open-source distributed under the
Apache License, Version 2.0 and is available at http://www.nuget.org/packages/CSharpTest.Net.BPlusTree.

49

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

snapshot exists between the priors with µ ≥ 1. The second resolution indexing algorithm

maintains data logical integrity by creating non-overlapping blocks, and exactly one block

referring to the set of snapshots the segmentation function defines. The algorithms will not

modify the pointers to intervals, and will change only the affected blocks or snapshots through

an update procedure.

The process of populating both resolutions is described in details in following sections.

4.7.1 Bookmarking intervals on First Resolution

The first step of initializing Di4 data structure is populating first resolution (D+) by source

intervals. Likewise, the first step of indexing a new set is to update D+ by new intervals. The

source intervals (i.e., S j) are the input of first resolution indexing procedure. First resolution

index provides coordinates of intervals to be used both for creating second resolution, and

various retrieval functions.

In general, the procedure of indexing an interval is twofold. First, create, or update if already

exist, two snapshots referring to lower and upper bounds of the interval I j
i (i.e., Bb′ |eb′ =

¯
I j

i

and Bb′′ |eb′′ = Ī j
i) while the µb′ and µb′′ components of the new snapshots are initialized with

respect to closest right and left-hand-side neighbors respectively. Second, increment the µb

component of all snapshots between lower and upper bounds (i.e., µb |eb′ < eb < eb′′). By

definition, a snapshot at eb already exist iff I j
i intersects with at least one another interval.

Therefore, a correct value of µb is initialized through a snapshot read (first step), and is

maintained by n updates for n newly introduced intervals overlapping at eb (second step). Di4

is stored on a persistent storage and each read or update request is an I/O operation which

shall be minimized to avoid performance penalty.

In this regard, similar to Di3, two types of indexing algorithms are proposed. Single-pass

indexing: correctly initializes µb and maintains it’s value at a new interval insertion at a cost

of n +1 I/O operations. Double-pass indexing: neither fully initializes nor maintains µb at

first-pass rather updates all µ’s to correct values by second-pass at a cost of 1 I/O operation per

each µ. The two algorithms are compared in Section 4.7.1.

Single-pass vs Double-pass

The superiority of one algorithm over the other for indexing a new set S j depends on |S j | and

|D+|. Present section discusses the differences between the two algorithms, and benchmarks

them using ENCODE narrow peaks with 34,142,740 intervals distributed in 970 samples; and

running on an Amazon EC2 machine with Intel®Xeon®E5-2670 v2 processor, 320 GFLOPS,

and 122GB RAM. The ENCODE narrow peaks are chosen for benchmarking for two reasons.

First, it is a real and commonly used dataset. Second, the accumulation distribution of

intervals, which is important, because if two intervals intersect, then there will be at least one

snapshot that single pass indexing algorithm will update it. The accumulation distribution

50

4.7. Di4 Indexing Algorithms

535

34,142,205

Number of Indexed
Intervals

Before After

3.25

17.90

0.24

0 5 10 15 20

Double pass indexing

Single pass indexing

Elapsed Time (seconds)
Thousands

Single vs. Double Pass Indexing Runtime
for large number of new intervals

1st pass

2nd pass

0.31

0.57

6.42

0.00

0 2 4 6 8

Double pass indexing

Single pass indexing

Elapsed Time (seconds)

Single vs. Double Pass Indexing Runtime
for small number of new intervals

1st pass

2nd pass

34,145,321

34,145,856

Number of Indexed
Intervals

Before After

0.10

1.00

10.00

100.00

0 5 10 15 20 25 30 35

In
d

ex
in

g
Sp

ee
d

 (
in

te
rv

al
 p

er
 s

e
co

n
d

)
lo

ga
ri

th
m

ic
Th

o
u

sa
n

d
s

Indexed intervals

Millions

Single vs. Double pass indexing speed

Double-pass indexing - First pass Single-pass indexing

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Fr
eq

u
en

cy

x
1

0
0

0
0

0

Number of Accumulated Intervals

Accumulation Distribution

A

B-1 B-2

C-1 C-2

D

Figure 4.5: Single-pass indexing compared to double-pass indexing. A: double-pass vs. single-pass
for creating snapshots. B: superiority of double-pass for initializing data structure. C: superiority of
single-pass for updating Di4. D: accumulation distribution.

51

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

of ENCODE narrow peaks dataset is given on panel D of Figure 4.7.1, which shows that

20 to 200 intervals accumulation is quite common, whereas, conditions with 800 intervals

intersecting is rarely observed. Such accumulation distribution allows assessing different

aspects of algorithms.

Initialization superiority: double-pass indexing is superior for initializing D+ by S j (i.e.,

when
∑

j |S j | À |D+|). In general, double-pass indexing is relatively faster than single-pass

in organizing essential snapshots on underlying B+tree structure of D+. This is due to the

overhead of data structure consistency conservation at each new interval insertion by single-

pass, which is neglected by first-pass of double-pass indexing method. This penalty is in direct

relation with interval accumulation distribution; such that, the denser the intervals are, the

more updates are to be performed by single-pass method that reduces indexing speed. The

methods are benchmarked by adding 3.4E +6 intervals to a D+ which is initialized by 535

intervals (see panel B-1 on Figure 4.5). The first-pass of double-pass indexing algorithm out-

performs single-pass method for organizing necessary snapshots (see panel A on Figure 4.5).

The second-pass of double-pass algorithm is significantly fast; this is because, it neither in-

serts a new snapshot, nor changes the size of inserted snapshots (i.e., changing |λb | which

affects (de)serialization), rather modifies µ component only. Therefore, double-pass indexing,

considering both first-pass and second-pass, outperforms single-pass indexing algorithm for

this scenario; 58min compared to 5h (see panel B-2 on Figure 4.5).

Update superiority: single-pass indexing is comparatively optimal when
∑

j |S j | ¿ |D+|,
which is a common scenario of updating D+ by few intervals. The single-pass and double-pass

indexing algorithms are benchmarked for updating D+ with 535 intervals which is initialized

by 3.4E +6 intervals (see panel C-1 on Figure 4.5). The single-pass algorithm takes 57msec to

update D+, while the double-pass algorithm takes ~7sec in total (see panel C-2 on Figure 4.7.1).

This is because, single-pass maintains the consistency of data structure by updating few

snapshots, while double-pass algorithm iterates over all snapshots and updates same number

as single-pass. Therefore, the overhead of second-pass in this scenario is iteration over all

snapshots, which makes double-pass indexing algorithm relatively slower than single-pass

method.

Single-pass indexing

The single-pass indexing algorithm updates the first resolution of Di4 (D+) by a given interval

I j
i . The algorithm is consistent, such that it modifies only the effected snapshots of D+, and

ensures the accuracy of D+ data structure at each successful indexing of every single interval.

The algorithm is divided into three major steps for interval I j
i : (i) index lower bound of the

interval using Bα snapshot such that eα =
¯
I j

i , (ii) index upper bound of the interval in Bβ

snapshot where eβ = Ī j
i (α< β), and (iii) increment µ component of all snapshots between

Bα and Bβ. A pseudo code of single-pass indexing is given in Algorithm 4 and described as

follows.

52

4.7. Di4 Indexing Algorithms

Algorithm 4 Single-pass Indexing Algorithm

1: procedure INDEX(I j
i)

2: Read Bα |eα−1 <
¯
I j

i ≤ eα

3: if eα =
¯
I j

i then

4: Update λα←λα∪ (L,@I) j
i

5: else
6: Create Bα′ as eα′ ←

¯
I j

i , λα′ ← (L,@I) j
i , µα′ ←µα+ωα , and ωα′ ← 0

7: Update µα←µα+1

8: for each Bb |Bα < Bb < Bβ where Bβ ≤ Ī j
i < Bβ+1 do

9: Update µb ←µb +1

10: if eβ = Ī j
i then

11: Update Bβ as λβ←λβ∪ (R,@I) j
i and ωβ←ωβ+1

12: else
13: Update µβ←µβ+1

14: Create Bβ′ as eβ′ ← Ī j
i , λβ′ ← (R,@I) j

i , µβ′ ←µβ+ωβ , and ωβ′ ← 1

The algorithm starts by indexing
¯
I j

i . The first step is to find the first snapshot Bα intersecting

I j
i such that eα is the minimum indexed coordinate greater than or equal to

¯
I j

i . If
¯
I j

i = eα
then the referred variant coordinates are identical and hence Bα is the snapshot that can also

bookmark I j
i . Accordingly, the lower bound of the interval is indexed through updating λα

by adding a new tuple (L,@I) j
i which makes Bα the snapshot that indexes

¯
I j

i . However, if

¯
I j

i < eα then it implies that the lower bound of the interval refers to a coordinate that is not

indexed yet, hence a new snapshot Bα′ with eα′ =
¯
I j

i is created. The new causal coordinate (i.e.,

eα′) is environed by two consecutive indexed variations as: eα−1 < eα′ < eα; and any interval

I∗ intersects eα′ iff it overlaps both eα−1 and eα. However, to minimize persistent storage

accesses and since Bα is already fetched, the condition I∗∩eα′ is assessed independent from

eα−1 that is: I∗∩eα′ ⇐⇒
¯
I∗ < eα ≤ Ī∗. Note that, since eα−1 and eα are consecutive snapshots:

¯
I∗ < eα ≤ Ī∗ ⇒

¯
I∗ ≤ eα−1 < Ī∗ ⇒

¯
I∗ < eα′ < Ī∗ ⇒ I∗∩ eα′ 6= ;. Based on these reasonings the

new snapshot Bα′ is initialized as following and inserted into D+:

- µα′ ← µα+ωα: By definition, the lower bound of an interval that stops at or passes eα
is indexed at Bα−1 or a prior snapshot. Accordingly, since α−1 <α′ <α, such intervals

pass Bα′ as well and their count is obtained by adding the number of intervals stopping

at Bα to those who pass the snapshot.

- ωα′ ← 0: the coordinate was not indexed, hence none of the indexed intervals overlap

eα′ with its upper bound.

- λα′ ←
{

(L,@I) j
i

}
: I j

i is the only causal interval.

The algorithm continues by iterating from Bα to Bβ exclusively for eβ being the minimum

indexed coordinate greater than or equal to Ī j
i . Let {Bα, . . . ,Bb , . . .Bβ} be the set of snapshots

53

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

iterated over; if I j
i intersects eα and eβ then it also intersects eb . By definition, D+ preserves an

incremental structure that is by explicitly referring to an interval at two boundary snapshots

through λ components, and implicitly at interior snapshots through µ components. Therefore,

µb components are incremented while iterating over to maintain the incremental property.

The last step is to index the upper bound coordinate of the interval I j
i . The algorithm starts

by comparing Ī j
i and eβ. If eβ = Ī j

i then the upper bound is referring to a coordinate that

is already indexed, hence its only required to update Bβ by adding (R,@I) j
i tuple to λβ and

incrementing ωβ component. However, if eβ < Ī j
i , then a new snapshot Bβ′ with eβ′ = Ī j

i is

required. In this case, the upper bound of the interval is pointing to a coordinate between two

consecutive indexed coordinates eβ and eβ+1. An interval I∗ intersects the upper bound of I j
i

iff it overlaps both eβ and eβ+1. However, the condition can be verified by leveraging on the

information provided by Bβ only. In this regard, the new snapshot Bβ′ is initialized as follows:

- µβ′ ←µβ+ωβ: Based on aforementioned reasoning, any interval passing or stopping at

eβ, passes µβ′ .

- ωβ′ ← 1: The coordinate was not indexed, therefore no other interval except I j
i overlaps

eβ′ with its upper bound.

- λβ′ ←
{

(R,@I) j
i

}
: I j

i is the only causal interval at eβ′ .

The algorithm concludes by inserting Bβ into D+.

Double-pass indexing

The fundamental logic of indexing an interval on first resolution can be viewed as: organize

upper and lower bounds in distinct snapshots, and update all snapshots in between. Indexing

the two bounds may require new snapshots to be initialized and persisted on the underlying

B+tree structure. In contrast, updating procedure does not introduce new snapshots rather

it updates only µ component of existing ones; an update with no impact on the value size

of a key.5 The single-pass indexing algorithm intertwines the two concepts which despite

of the advantages, it has drawbacks of redundant B+tree traverses and snapshot updates

when multiple intervals overlap (which is quite common indeed); in addition to the overhead

of correct initialization requirement of a new snapshot. The value of a µ component is the

number of intervals whose left-end is observed in λ component of prior snapshots and right-

end is not observed yet. Therefore, µ can be set to its correct value with a single update.

Double-pass indexing leverages on these reasonings and separates lower and upper bound

5With reference to Notation section (Section 4.4), the key is snapshot coordinate, and value is (µ,ω,λ) tuple.
Update procedure modifies µ component only which is an integer and incrementing its number would not effect
the size of µ (if not compressed); therefore, the procedure does not affect value size and would not require B+tree
modification. To clarify the point, suppose λ component is to be updated which is a list of (ϕ,@I) tuple itself. Any
tuple added to λ will increases the value size and may incur an update to organization of values on the physical
storage.

54

4.7. Di4 Indexing Algorithms

Algorithm 5 First pass of Double-pass Indexing Algorithm

1: procedure INDEXFIRSTPASS(I j
i)

2: Read Bα |eα−1 <
¯
I j

i ≤ eα

3: if eα =
¯
I j

i then

4: Update λα←λα∪ (L,@I) j
i

5: else
6: Create Bα′ as eα′ ←

¯
I j

i , λα′ ← (L,@I) j
i , µα′ ←µα+ωα , and ωα′ ← 0

7: Read Bβ |Bβ ≤ Ī j
i < Bβ+1

8: if eβ = Ī j
i then

9: Update Bβ as λβ←λβ∪ (R,@I) j
i and ωβ←ωβ+1

10: else
11: Create Bβ′ as eβ′ ← Ī j

i , λβ′ ← (R,@I) j
i , µβ′ ←µβ+ωβ , and ωβ′ ← 1

indexing from µ component manipulation. The algorithm is advantageous when the number

of intervals to be indexed is considerably high, that includes scenarios such as initializing or

populating Di4 by a considerable number of intervals.

Similar to single-pass, double-pass algorithm is consistent, such that it modifies only the

effected snapshots. The first pass manipulates ω and λ components, and µ is updated by

second pass. Therefore, double-pass indexing algorithm maintains the accuracy of the D+

by successful execution of both passes. First pass iterates over intervals and populates first

resolution; and second pass iterates over snapshots and maintains the accuracy. The first and

second pass procedures are explained in details in the following.

First pass The first pass manipulates D+ by necessary snapshots to index the boundaries

of intervals. A pseudo code of first pass of double-pass indexing is given in Algorithm 5 and

described as follows. The algorithm iterates over a set of intervals (S j), and indexes intervals

in batch. For an interval I j
i it inserts two snapshots Bα and Bβ respectively for lower and

upper bounds (i.e., eα =
¯
I j

i and eβ = Ī j
i) through an atomic operation. The algorithm starts

by populating D+ by Bα. If the coordinate eα is already indexed then the same snapshot can

bookmark upper bound of I j
i too; in this regard, it is required to update the λ component

of the snapshot by (L,@I) j
i tuple. If the coordinate is not indexed, then the snapshot Bα is

initialized as following and inserted in D+:

µα← 0, ωα← 0, and λα← (L,@I) j
i

. The algorithm continues by indexing Bβ. If a snapshot at eβ coordinate exists, then the

same snapshot will be updated as following to bookmark lower bound of I j
i : ω←ω+1 and

λ←λ+ (R,@I) j
i . However, if the coordinate is not indexed, the snapshot Bβ is initialized as

following and inserted into D+ :µβ← 0, ωβ← 1, and λβ← (R,@I) j
i .

55

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

Algorithm 6 Second pass of Double-pass Indexing Algorithm

1: procedure INDEXSECONDPASS

2: µtemp ← 0
3: T ←;
4: for b = 0 to b = |D+| do
5: µtemp ←|T |+ωb

6: for each (ϕ,@I) ∈λb do
7: if @I ∈ T then
8: T ← T \ @I
9: else

10: T ← T ∪@I
11: if µb 6=µtemp then
12: Update µb ←µtemp

Second pass The second pass procedure ensures the accuracy of data structure by iter-

ating over existing snapshots and updating the µ components. The pseudo code is given

in Algorithm 6 and described as follows. Let T be a temporary list of pointers to intervals

which is updated while iterating through snapshots using λb ; and Tb denotes T set when it

reaches snapshot b. If upper bound of an interval is observed, its pointer will be added to T ,

and will be removed when the lower bound is determined. Therefore, at each snapshot Bb ,

Tb−{I |
¯
I = eb∨ Ī = eb} is the set of intervals passing Bb . The second pass algorithm leverages on

|Tb | to determine the correct value of each µb component (µb = |{I |
¯
I < eb < Ī }|), and updates

it if persisted value differs the determined one. The precedence of actions µb determination

and Tb update by λb is optional, however following conditions shall be considered and an

option be chosen for correct implementation:

- Determine µb first then update Tb : µb ←|Tb |−ωb (our choice)

- Update Tb first then determine µb : µb ←|Tb |− |λb |+ωb

The algorithm starts iteration from the first snapshot (B1). By definition, B1 being the first in-

dexed coordinate implies that there is no interval with left-end at a prior coordinate; therefore

6 ∃I |
¯
I < e1 ≤ Ī ⇒ µ1 = 0,ω1 = 0. Additionally, at the beginning of iteration the set T1 =; and

ω1 = 0 which results µ1 = 0. However, since µ1 was 0 and it equals the determined value, the

snapshot will not update; and the set T1 will be populated by λ1. The algorithm moves to next

snapshot (B2) and updates µ2 component iff µ2 6= |T2|−ω2. Then the algorithm updates T2

with respect to λ2 that is by adding @I to T2 if the corresponding tuple is (L,@I), or remove it

from T2 if < R,@I >. The process continues by applying same procedure on all subsequent

snapshots.

56

4.8. Information Retrieval based on Intervals

4.8 Information Retrieval based on Intervals

Generally, genomic intervals are organized in files (known as samples) in logical accordance

with common NGS pipelines. Such organization is not necessarily optimal for cross-sample

inferences. Therefore, Di4 aims at organizing the intervals in data structures that provide opti-

mal cross-sample region-level inferences. The data structure is supplemented by information

retrieval (IR) functions that provide means of finding intervals from D∗ and D+ that satisfy an

IR function criteria. Additionally, the functions leverage on behavioral design patterns such

as strategy pattern [122] that facilitates adaptation to application by enabling user defined

functions (UDF). Retrieval functions are generally defined as follows:

fName
([
R

]
,
[
D∗]

,
[
D+]

,
[

f (T)
]) = output

where Name is the function name. The R denotes a set of arguments defining the coordinate

criteria of the function. A retrieval function may operate upon either of D∗ or D+, or may

leverage on both using R arguments. This defines coordinate and feature oriented func-

tions described in following. Additionally, the UDF is denoted by f (T), where T is the set of

determined intervals. Note that, f (T) is provided via design pattern and may apply on any

attribute(s) of T intervals (e.g., coordinates, or meta-data), and may produce any output (e.g.,

a single value, an arbitrary size tuple of possibly different items). This defines first and higher

order functions described in following.

Coordinate and feature oriented functions

The relative location (or occurrence) of intervals is the key attribute of majority of interval-

based operations, which, if supplemented by application-driven meta-data aggregation, re-

veals extensive aspects of the events abstracted by intervals. For instance, co-localization

of genomic intervals of homogeneous samples (e.g., biological/technical replicates) with a

known region on DNA (e.g., transcription factor binding site) is an evidence of biological activ-

ity on the position with combined statistical significance obtained by aggregation of individual

significances (e.g., combining p-values using Fisher’s combined probability test). In general,

such inferences are either based on a big collection of data, or a small sub-section of a big col-

lection; nevertheless, an optimal method for cross-sample interval manipulations is needed.

The Di4 organizes intervals by indexing the primary attribute of any interval – coordinates –

on first resolution. Additionally, alternative application-driven commonly-used attributes are

aggregated by second resolution to optimize linear scan on first resolution for a non-indexed

attribute. Accordingly, the retrieval functions are categorized as coordinate-oriented functions

(COF) on D+, and feature-oriented functions (FOF) on D∗. A COF determines intervals located

at particular coordinates defined by function criteria (e.g., co-localization of intervals, or n-th

closest neighbor), and a FOF targets intervals of specific characteristic(s) complying function

criteria (e.g., regions of specific interval accumulation).

57

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

First and higher order functions

The coordinates are the least-common characteristic between all the events generalized as

intervals, and are used as indexing key and define relative location and ordering. Intervals of

different types vary in the meta-data. For instance, in genomics, an interval could represent

ChIP-seq peak with meta-data providing p-values, while another interval may present a gene

that have geneID in meta-data. The disparity of meta-data type introduce two challenges: first,

data persistence, second, meta-data-specific aggregations. The reference to meta-data by @I

component of λ addresses the first challenge by enabling varied meta-data types to be stored

on external storage with a corresponding persisted pointer in Di4. For instance, meta-data

could possibly be stored on a SQL databased where different types are stored on different

tables (e.g., ChIP-seq peaks are on table different from genes), and a pointer to a record

on a table is stored on Di4. The second challenge is addressed by leveraging on functional

programming paradigm. The diversity of meta-data types and particular application-driven

operations prevents explicit definition of aggregate functions. Therefore, in contrast to “WHAT

aggregation functions should be defined”, Di4 defines “HOW such functions should be applied”.

In this regard, Di4 provides higher-order IR functions that accept custom aggregate functions

as input in addition to retrieval criteria. Leveraging on pattern strategy, the polymorphic

higher-order IR functions are defined, which allow a generic aggregate function as input.

Such a design pattern encourages a developer to focus on the essence of “sense-making”

from retrieved intervals rather than technical details of the retrieval. Additionally, aggregate

functions that are composition of different functions are allowed, which expands the re-

usability of custom aggregate functions.

Similar to Di3, also Di4 provides functions to facilitate highlighting various aspects of indexed

data; as follows:

i. COVER the function determines a set of non-overlapping intervals of a contiguous

intersection with accumulation constrains (see COVER example on Figure 4.6).

ii. SUMMIT it is a variant of COVER and reports a sub-region of maximum accumulation

within COVER accumulation constrains (see SUMMIT example on Figure 4.6).

iii. MAP given a set of intervals, it determines a set of overlapping intervals from the data

structure (see MAP example on Figure 4.6).

iv. MERGE determines regions on the domain (Σ) with at least one event occurrence.

v. COMPLEMENT is the inverse of MERGE that finds regions on domain (Σ) with no event

occurrence.

vi. ACCHIS: accumulation histogram provides a contiguous set of intervals defined by

snapshots valued as the accumulation of composing intervals (see ACCHIS example on

Figure 4.6).

vii. ACCDIS: accumulation distribution calculates the distribution of intervals accumula-

tions.

58

4.8. Information Retrieval based on Intervals

Genome

COVER example
a m in = 2 and a m a x = 4

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Cover Result

Genome

SUMMIT example
a m in = 2 and a m a x = 4

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Summit Result

Genome

MAP example

 Sample 1 Sample 2 Sample 3
 Sample 4 Sample 5 Map Reference

Genome

ACCHIS example

 ACCHIS Result Sample 1 Sample 2

 Sample 3 Sample 4 Sample 5

Figure 4.6: Example of functions COVER, SUMMIT, MAP, and ACCHIS.

Table 4.1: Taxonomy of Di4 functions

Function D+ D∗ COF FOF UDF
MAP X X X
COVER X X X X
SUMMIT X X X X
MERGE X
COMPLEMENT X X
ACCHIS X X
ACCDIS X X

These functions cover COF/FOF and first/higher-order characteristics, and leverage on either

D∗, D+, or both (see Table 4.1).

In general, a retrieval from Di4 is a two-step process. First step determines a set of snapshots

that satisfy criteria from coordinate perspective. This step is the base of any retrieval from

Di4 and it differs from one function to another. Di4 has incremental structure, such that

a snapshot contains points to causal intervals only. Therefore, the first step intertwines a

procedure called reconstruction, which reconstructs all intervals overlapping a snapshot. The

reconstructed intervals are then passed to second step that applies a UDF on the intervals.

In following, present section first discusses the reconstruction procedure (Section 4.8.1), then

functions COVER, SUMMIT, and MAP are discussed respectively in section 4.8.2, 4.8.3, and 4.8.4.

59

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

4.8.1 Data Structure Reconstruction

Di4 has incremental structure, such that each snapshot has pointers to causal intervals only,

and pointers to non-causal intervals are given by neighbor snapshots. Pointers to the intervals

are required to access metadata and execute UDFs. Therefore, the incremental structure

necessitates reconstruction of intervals bookmarked by snapshots, which is finding point-

ers (i.e., @I) to all intervals overlapping a snapshot (including both causal and non-causal

intervals). For instance, consider a snapshot Bb as µb = 9, ωb = 0, and λb = {(L,@I) j
i }. This

snapshot bookmarks 10 intervals: one causal interval (i.e., I j
i) and 9 non-causal intervals. The

reconstruction algorithm determines the pointers of all the 10 intervals.

Design of data structure reconstruction algorithm In general, given a snapshot Bb , the

reconstruction algorithm traverses neighbor snapshots “in-order” (i.e., Bb+1,Bb+2, . . .) for non-

causal intervals pointers. For instance, referring to Figure 4.7, the snapshot B5 bookmarks

two intervals; one is the causal event, and one is a non-causal event. The right-end of R3 is

the causal event, and the reconstruction algorithm finds a pointer to R3 in λ5. However, the

algorithm has to traverse to B6 to find a pointer to R1 which is the non-causal event of B5

(while it is the causal event of B6). To determine pointers of all the intervals overlapping a

snapshot (e.g., B5), the reconstruction algorithm processes additional snapshots (e.g., B6 for all

the intervals of B5). The number of additional snapshots to be processed for a given snapshot,

depends on the bookmarked intervals and the given snapshot. For instance, while the recon-

struction algorithm traverse one additional snapshot for B5, it traverses 4 additional snapshots

for B2 (i.e., B3,B4,B5, and B6). The additional snapshots to be processed, motivates an optimal

design. To clarify, consider the example of Figure 4.7, and let the query be: “find regions on

domain where two intervals overlap, and sum the p-values”. 6 The IR function finds snapshot

B2 that satisfies the criteria, because |λ2|+µ2 −ω2 = 2; therefore, the intervals bookmarked

by B2 has to be reconstructed. The reconstruction algorithm traverses B2,B3,B4,B5, and B6,

and determines R2 and R1 as intervals bookmarked by B2. Then the IR function proceeds to

B3, which does not satisfy the criteria; hence, the IR function returns R1 and R2 complying

criteria between B2 (i.e., e2 =
¯
R2) and B3 (i.e., e3 = R̄2), and sums the p-values. The IR function

proceeds to B4, which complies criteria; therefore, the intervals bookmarked by B4 has to be

reconstructed. The reconstruction algorithm determines R3 as the causal event, and traverses

B5 and B6 for the non-causal event, i.e., R1. Then the IR function proceeds to B5, which does

not satisfy the criteria; therefore, the IR function returns R1 and R3 as two intervals complying

criteria between B4 (i.e., e4 =
¯
R3) and B5 (i.e., e5 = R̄3), and sums the p-values. The IR function

proceeds to B6, it does not comply criteria; and since B6 is the last snapshot, the IR function

concludes. Lets evaluate the two functions. The snapshots B3 to B6 are traversed two times,

once by the IR function, and once by the reconstruction algorithm; respectively for intervals

complying the query, and reconstruction of bookmarked intervals. Depending on the query

6This query can be answered using COVER function with minimum and maximum accumulation arguments set
to 2, and a UDF for aggregation of p-values. The COVER function is described based on Di3 in Section 3.4 and is
explained for Di4 in Section 4.8.2

60

4.8. Information Retrieval based on Intervals

R1

R2 R3

B1 B2 B3 B4 B5 B6

R3
R2
R1

Figure 4.7: A sample region for data structure reconstruction.

and intervals, this procedure may traverse some snapshots many times, which it is a signif-

icant performance penalty. Therefore, to reduce the number of snapshots traversal to one,

Di4 intertwined IR function traverse with reconstruction algorithm. This design, minimizes

runtime complexity of algorithm at the cost of implementation complexity. However, Di4 aims

for better performance, and complicated implementation is acceptable.

Now that we have briefly explained the reconstruction challenge, let describe the algorithm in

details.

The complementary resolutions of Di4 have distinct structures and render particular aspects

of indexed intervals, which make each resolution appropriate for different retrieval functions.

The first resolution, D+, has incremental structure and provides minimal comprehensive

bookkeeping of intervals, and immediate information of the coordinates of the intervals that

makes it appropriate for COF retrievals. The second resolution, D∗, provides aggregated

characteristics on sets of snapshots of first resolution that facilitate FOF retrievals from D+

limiting search domain to a fraction of snapshots.

A block, Bτ ∈D∗, bookmarks a region on D+ containing contiguous snapshots spanning from

Bα to Bδ and corresponding to
¯
Iτ and Īτ respectively (see Figure 4.8). The components γτ and

ατ of the block Bτ denote respectively the cardinality and maximum accumulation of intervals

between the snapshots Bα and Bδ (see Section 4.6). Blocks approximate snapshots, and can

inform if they contain at least one subset that satisfy a criteria. However, a block does not

inform the number of subsets, and exact position of snapshots.

A FOF retrieval iterates over blocks of second resolution, and if aggregated attribute satisfy

criteria, then a subset of snapshots represented by the block also satisfy criteria. For instance,

“find regions on domain where 10 intervals overlap”. 7 To answer this query, a FOF function

compares maximum accumulation (ατ) of each block with 10, and if ατ > 10, then a subset of

snapshots represented by the block is bookkeeping 10 overlapping intervals.

7This query can be answered using Cover function with minimum and maximum accumulation arguments set
to 10. The Cover function is described based on Di3 in Section 3.4 and is explained for Di4 in Section 4.8.2

61

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

𝐵𝜛 𝐵𝜐 𝐵𝛿 𝐵𝛾 𝐵𝛽

Type i intervals

Type ii intervals

Type iii intervals

Type iv intervals

𝐵𝛼 𝐵𝛼+1 𝐵𝛽+1

𝔹𝜏 𝕀𝜏 𝕀𝜏

G: Selected Region

P: Reconstruction Region

Region encompassing contributing intervals

C: Candidate Region

𝔇+

𝔇∗

Figure 4.8: Candidate, Selected, and Reconstruction regions.

𝐵𝜛 𝐵𝜐 𝐵𝛿 𝐵𝛾 𝐵𝛽 𝐵𝛼

𝜆𝛼
∗

 𝜆𝛼
𝑡

 𝜆𝛽
∗

 𝜆𝛽
𝑡

 𝜆𝛾
∗

 𝜆𝛾
𝑡

 𝜆𝛿
∗

 𝜆𝛿
𝑡

 𝜆𝜐
∗

 𝜆𝜐
𝑡

 𝜆𝜛
∗

 𝜆𝜛
𝑡

𝐼1

𝐼2

𝐼3

𝐼4

𝐼5 𝐼6

𝐼7

𝐼8

𝐼9

𝐼10

𝐼12

𝐼11

A

B

C

𝐵𝛼 𝐵𝛽 𝐵𝛾 𝐵𝛿 𝐵𝜐 𝐵𝜛

Type i intervals

Type ii intervals

Type iii intervals

Type iv intervals

Left-end is determined

Right-end is determined

Non-contributing

interval is determined

A pointer to the

interval

𝜇𝑏

𝜇∗

Explicitly

bookmarked

intervals

Implicitly

bookmarked

intervals

Figure 4.9: Reconstruction of intervals of different types.

In general, a block that satisfies FOF criteria defines a candidate region C = {Bα . . .Bδ} on first

resolution (see Figure 4.8). Let selected region be a subset of candidate region that satisfy

criteria, in general: G = {Bβ . . .Bγ} ⊂ C for α < β < γ < δ. Note that, a candidate region may

contain any number of selected regions.

The incremental structure of D+ necessitates reconstruction of intervals bookmarked by the

snapshots of selected region(s). An interval is reconstructed when a pointer to the interval is

determined; and Di4 holds pointer to an interval at the snapshots where the interval is the

62

4.8. Information Retrieval based on Intervals

causal event. The reconstruction of intervals of a candidate region, depends on the intervals

intersection condition with Bα—the first snapshot of the candidate region. A snapshot Bα

bookmarks an interval I either explicitly by a pointer to the interval in λα component if
¯
I = eα

or Ī = eα (I is a causal interval); or implicitly by one unit incremental of µα component if

¯
I < eα < Ī (I is a non-causal interval, refer to Section 4.5 for details). In general, an interval

Ii contributing to the candidate region has four possible intersection conditions with Bα as

follows (see Figure 4.9):

i. eα ≤
¯
Ii ∧ Īi ≤ eδ; Explicit

ii. eα ≤
¯
Ii ≤ eδ ∧ eδ < Īi ; Explicit/Implicit

iii.
¯
Ii < eα ∧ eα < Īi ≤ eδ; Implicit

iv.
¯
Ii < eα ∧ eδ < Īi ; Implicit

The intervals of type (i) and (ii) occur at eα or a following coordinate, and end subsequently

(see Figure 4.9). Therefore, while traversing the candidate region, such intervals are explicitly

bookmarked by the snapshot that corresponds to their left-end. Therefore, such intervals are

reconstructed at first encounter. However, the first snapshot that bookmarks an interval of

type (iii) and (iv) is Bα, which is implicitly bookkeeping such intervals through their cardi-

nality given by µα component (see Figure 4.9). Such intervals are bookmarked by a snapshot

that corresponds to their right-end, hence reconstruction of such intervals requires further

traversing the snapshots.

Let reconstruction region, P, be the set of contiguous snapshots to be traversed to reconstruct

the intervals implicitly bookmarked at Bα or Bβ (see Figure 4.8). The left-end of reconstruction

region is
¯
P = Bα+1 when the function traverses candidate region (i.e., running a FOF), or

¯
P =

Bβ+1 if it does not (i.e., running a COF). The right-end of reconstruction region is P̄ = Bυ where

all the implicitly bookmarked intervals by Bα or Bβ are reconstructed (i.e.,
(∀Ii |

¯
Ii <

¯
P < Īi

)→
Īi ≤ eυ).

Reconstruction Algorithm

The algorithm reconstructs the explicitly and implicitly bookmarked intervals traversing the

reconstruction region using temporary variables µ∗ and λ∗. Let µ∗ be the number of implicitly

bookmarked intervals of type (iii) and (iv), and λ∗ be the set of reconstructed intervals while

traversing the reconstruction region. The traversal of reconstruction region is intertwined with

retrieval functions traversing the candidate or selected region(s).

The algorithm starts iteration by initializing µ∗ and λ∗ based on the corresponding compo-

nents of the first snapshot of iteration (see Figure 4.9). The first snapshot is Bα′ ← Bα if traversal

starts on candidate region (C = {Bα . . .Bδ}, see Figure 4.8), and Bα′ ← Bβ if a selected region is

the start point (G = {Bβ . . .Bγ} ⊂ C, see Figure 4.8). Accordingly, µ∗ ←µα′ , and λ∗ is initialized

63

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

with the set of the pointers of intervals starting at Bα′ that is: λ∗ ← {@Ii | @Ii ∈λα′ ∧ ϕi = L}

(see Figure 4.9). Note that, the intervals ending at Bα′ (i.e., Īi = eα′ ; for instance I5 on Figure 4.9)

do not contribute to reconstruction region, and hence are avoided.

The algorithm proceeds traversing the reconstruction region and updating µ∗ and λ∗. The tu-

ples (ϕ,@I) of each snapshot are either bookkeeping an interval that is implicitly bookmarked

at Bα′ (e.g., I7 at Bβ on Figure 4.9), or correspond to the right-end of a reconstructed interval

(e.g., I2 at Bβ on Figure 4.9). In general, possible conditions of bookmarked intervals, and

updates on λ∗ and µ∗ variables accordingly, are defined as follows:

a. Reconstruct explicitly bookmarked intervals

ϕi = L: the tuple is bookkeeping the left-end of an interval of type (i) or (ii). Therefore,

@Ii is added to λ∗; for instance, referring to Figure 4.9 I6 and I8 at snapshots Bβ and Bγ

respectively.

b. Reconstruct implicitly bookmarked intervals

ϕi = R ∧ @I ∉λ∗: the tuple is bookkeeping the right-end of an interval of type (iii)

or (iv), which reconstructs an interval implicitly bookmarked at Bα′ . Accordingly, @Ii

is added to λ∗ and µ∗ is decremented one unit (µ∗ ← µ∗−1). For instance, I7 and I9

respectively at snapshots Bβ and Bγ on Figure 4.9.

c. Does not reconstruct a new interval

ϕi = R ∧ @I ∈λ∗: the tuple is bookkeeping the right-end of an interval of type (i) or

(ii), such that, the left-end is observed traversing former snapshots; therefore no update

on λ∗ and µ∗ is required. For instance, I1 at Bβ or I2 at Bγ on Figure 4.9.

The reconstruction algorithm terminates when two conditions are met; first, all snapshots of

candidate or selected region are traversed. Second, all the implicitly bookmarked intervals

are reconstructed (i.e., µ∗ = 0). Therefore, having processed the last snapshot of candidate

or selected region, the condition µ∗ = 0 is evaluated and the algorithm is terminated upon

confirmation. However, µ∗ 6= 0 necessitate the extension of traversal to reconstruct missing

intervals (i.e., intervals of type (iv), see I9 on Figure 4.9). For instance, referring to Figure 4.9, Bδ

is the last snapshot to be traversed, however, at this snapshotµ∗ = 1 (i.e., I9 is not reconstructed

yet). In such conditions, the algorithm continues traversing the snapshots and updating

temporary variables using (ϕ,@I)i , and a secondary temporary list of λ’s as follows:

a. Reconstruct explicitly bookmarked intervals

ϕi = R ∧ @Ii ∈λ∗: the tuple is bookkeeping the right-end of an interval of type (iii),

which does not necessitate updating neither λ∗ nor µ∗ (e.g., I4 at B% of Figure 4.9).

b. Reconstruct implicitly bookmarked intervals

ϕi = R ∧ @Ii ∉λ∗ ∧ @Ii ∉λ∗: such tuples correspond to the right-end of intervals

of type (iv) that reconstruct intervals implicitly bookmarked by snapshots of candidate

region. Therefore, @Ii is added to λ∗, and µ∗ is decremented one unit (e.g., I9 at B$ of

Figure 4.9).

64

4.8. Information Retrieval based on Intervals

c. Left-end of intervals not contributing to candidate region

ϕi = L: the pointer of such intervals are added to λtemp. For instance, I11 at Bυ on

Figure 4.9.

d. Right-end of intervals not contributing to candidate region

ϕi = R ∧ @Ii ∈λtemp: the pointer of such intervals are removed from λtemp

The algorithm iterates until µ∗ reaches zero.

Algorithm 7 Reconstruction stack: Open

1: G∗ ← {(left, right, µ, λ)}
2: λtemp ← {λ}

.G∗ and λtemp are temporary variables that are accessible by all procedures of
reconstruction.

3: procedure OPEN(Bb)
4: µnew ←µb −

∣∣λtemp
∣∣

5: λnew ← {(T,@I) | (ϕ,@I) ∈λtemp}
6: λtemp ←;
7: for each λ ∈λb do
8: if ϕ= T then
9: λnew ←λnew ∪λ

10: else
11: UPDATEG∗(@I)

12: if |G∗| > 0 then
13: for each λ ∈G∗

|G∗| do
14: if ϕ= T then
15: λnew ←λnew ∪ (T,@I)
16: µnew ←µnew −1

17: CONCLUDE()

18: G∗ ←G∗∪ (b, eb , µnew, λnew) . right-end value is temporarily set to eb

Algorithm 8 Reconstruction stack: Close

1: procedure CLOSE(Bb)
2: set right element of G∗

|G∗| to eb

3: for each λ ∈λb do
4: if ϕ= T then
5: λtemp ←λtemp ∪λ
6: else
7: UPDATEG∗(@I)

Termination Analysis

The algorithm terminates upon validation of two conditions as follows:

65

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

Algorithm 9 Reconstruction stack: Update

1: procedure UPDATE(Bb , regionType)
2: if regionType = selected then
3: for each λ ∈λb do
4: if ϕ= T then
5: G∗

|G∗| ←G∗
|G∗|∪λ

6: else
7: UPDATEG∗(@I)

8: else
9: for each λ ∈λb do

10: if ϕ= T then
11: λtemp ←λtemp ∪λ
12: else
13: if @I ∈λtemp then
14: λtemp ←λtemp \ λ
15: else
16: UPDATEG∗(@I)

Algorithm 10 Reconstruction stack: Update G∗

1: procedure UPDATEG∗(@I)
2: for each G ∈G∗ do
3: if @I ∈Gλ then .Gλ denotes λ component of G tuple.
4: set corresponding ϕ to F
5: else
6: Gλ←Gλ ∪ (F,@I)
7: Gµ←Gµ−1

Algorithm 11 Reconstruction stack: Conclude

1: procedure CONCLUDE

2: for each G ∈G∗ do
3: if Gµ = 0 then
4: call UDF and pass: left, right, {@I | @I ∈Gλ}
5: remove G

1. Traversal reaches the last snapshot

The last snapshot is Bδ when traversing the candidate region, or Bγ if traversing a selected

region.

2. µ∗ = 0

Each snapshot bookmarks intervals implicitly and explicitly. In a region traversal (e.g.,

candidate region), the implicitly bookmarked intervals are either common with the first

snapshot, or are disclosed in preceding snapshots. Therefore, the value of µ∗ which is

initialized as µ∗ ←µα′ , decreases at reconstruction of an implicitly bookmarked interval.

The traversal continues until µ∗ = 0. Given that Di4 data structures ensures existence of

66

4.8. Information Retrieval based on Intervals

two snapshots bookkeeping the two ends of a interval; therefore, the right-end of any im-

plicitly bookmarked interval is determined. In general, traversing {Bα . . .Bβ . . .Bγ . . .Bδ}

the following conditions are defined:

a. Let Ii be an implicitly bookmarked interval at Bα; by definition, ∃!Bx , x >α ∣∣ ex =
Īi .

b. Let I j be an implicitly bookmarked interval at Bγ; by definition, ∃!By , y < γ ∣∣ ey =
¯
I j .

Accordingly, following conditions are possible:

- if y >α then ∃!Bβ

∣∣ ey = eβ; the interval is reconstructed at prior snapshots.

- if y =α then ey = eα; the interval is reconstructed at prior snapshots (e.g., I3

on Figure 4.9).

- if y < α then ∃!Bδ, δ > γ
∣∣ eδ = Ī j ; requires further traversal (e.g., I9 on Fig-

ure 4.9).

4.8.2 Cover

The function COVER identifies co-occurrence of Genomic intervals with a quantitative measure,

which yields a collection of consecutive snapshots whose referenced intervals are of specific

accumulation (see COVER example on Figure 4.6). Let amin and amax denote respectively the

minimum and maximum accumulation criteria, and ab be the accumulation of intervals at Bb

(i.e., ab ←µb +|λb |−ωb). The snapshot Bb is evaluated as complying accumulation criteria if:

amin ≤ ab ≤ amax. Accordingly, the definition of COVER is given by Definition 4.8.2.

Definition 4.8.1: COVER

The syntax of COVER function, fcover, that takes arguments D∗, D+, amin, amax, and

f (T) is defined as follows:

fcover
(
amin, amax,D∗,D+, f (T)

)= {
R1, . . . ,R j , . . . ,R J

}
such that:

R j = [eα,eδ]

where:

amin ≥ a(Bα−1) or amax ≤ a(Bα−1)

amin ≤ a(Bα) ≤ amax

amin ≤ a(Bβ) ≤ amax for β ∈N0

amin ≤ a(Bδ) ≤ amax and β< δ
amin ≥ a(Bδ+1) or amax ≤ a(Bδ+1)

67

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

Motivation

Genome-wide binding profiles are increasingly becoming available for wide range of DNA-

protein interactions; however, dissecting vast majority of complex regulatory networks requires

consideration of co-occurrences of different protein bindings (e.g., co-occurrence of cis-

regulatory modules with Transcription Factors [123] [124]). The quantity of co-occurring

intervals is the first measure to disclose such biological characteristics. This requirement

motivated the definition of COVER function that identifies regions with specific co-occurrence

of intervals.

Intervals and their co-occurrences are widely studied in the spatial/temporal data field. Since

the first definition of frequent neighboring co-occurrences in spatial data by Morimoto et al.

[125], various methods are published targeting static and dynamic events (e.g., [126], [127]).

In general, the methods are defined in four layers as follows:

i. Data representation: the intervals are commonly organized in (rectangular/triangu-

lar/polygonal) grids-based (e.g., [128]) and clusters-based (e.g., [129]) representations.

ii. Indexing modules are used by some methods to improve the data access performance

(e.g., spatio-temporal trajectory indexing technique [130], [131], and [132]; see also [133]

and two extensive surveys [134], [135]).

iii. Candidate generation: candidates are collections of co-localization patterns and are

identified using variety of different techniques such Apriori-based [136] (e.g., [128],

[137]), clustering-based (e.g., [138], [129], and [139]), or hashing-based (e.g., disjoint

cubes hashing [140]).

iv. Co-occurrence patterns identification, which are defined upon candidates using ap-

proaches such as Apriori-gen-based [136].

In general, patterns are defined leveraging on candidates (i.e., iii.) and the contributing (e.g.,

[141], [137]), or no-contributing (e.g., false candidates [128]) instances. The co-occurring

intervals are commonly identified by joining co-occurrence patterns and their instances (e.g.,

[142]). However, the join operation is the hot-spot of join-based approaches ([143]) that

motivated partial-join [141] and join-less [144] approaches. Ultimately, Han et al. proposed

a method to mine the co-occurrence patterns without generating candidate regions ([145],

[146]).

Intervals possibly represent events with mixed feature types. For instance, the location of

an airplane at a given time can be bookmarked using a spatio-temporal interval. Mining the

co-occurrence patterns of intervals who are neighbors in a multi feature space, motivated

mixed-drove co-occurrence pattern mining [147][148]. Such patterns are commonly identified

in multiple steps, which is by identifying mixed-drove candidate patterns on one feature, and

pruning-out on other features (e.g., [149], [150], [151]). Celik et al. [152] inter-twined the

candidate pattern identification with filter in a 10-step algorithm to improve performance.

68

4.8. Information Retrieval based on Intervals

Algorithm 12 Cover

1: procedure COVER(amin, amax, UDF)
2: get a reconstruction stack initialized with UDF
3: atag ←−1
4: for each Bτ ∈D∗ do
5: if amin ≤ατ then
6: reset reconstruction
7: for each Bb |

¯
Iτ ≤ eb ≤ Īτ do

8: a ←µb+ |λb | −ωb

9: if atag =−1∧amin ≤ a ≤ amax then
10: atag ← a
11: start reconstruction by Bb

12: else
13: if atag 6= −1∧ (a < amin ∨ a > amax) then
14: close reconstruction by Bb

15: atag ←−1

16: update reconstruction by Bb

17: conclude reconstruction

Genomics challenge the current approaches by introducing multi-feature heterogeneous inter-

vals. For instance, a ChIP-seq peak is an interval representing significance of a DNA-protein-

antibody interaction using a p-value (a numerical attribute). An gene is also represented by

an interval associated with a gene ID (a string attribute). The least common characteristic

between such intervals is the coordinates, which is indexed by Di4. Genomics is interested

in both co-occurrence (coordinates) and mixed-feature patterns (coordinates and additional

features). The co-occurrence patterns are commonly defined in terms of accumulation of

intervals with determined criteria (e.g., min/max accumulation). However, mixed-feature

patterns are application-driven where the targeted attributes and corresponding criteria varies

between applications.

To address this requirement, Di4 defines the COVER function which identifies density-based

co-occurrence patterns on coordinates, and incorporates user-defined application-oriented

pattern finding method on additional attributes through f (T). The function f (T) is a UDF,

and could also aggregate any of the attributes of T intervals.

Algorithm

The second resolution, D∗, is an abstract representation of first resolution (D+); and D+ is an

abstraction of input samples. The coordinates of intervals as primary attributes, are indexed

in D+, and additional attributes of intervals for a group of snapshots are aggregated in D∗.

The aggregation of non-indexed attributes facilitates retrievals on such attributes by limiting

function’s domain to a fraction of snapshots whose aggregated attribute complies function

criteria. The COVER function identifies co-occurrence patterns defined as accumulation of

69

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

a specific number intervals, which is a non-indexed property. However, second resolution

aggregates this attribute for a group of snapshots, and necessitates a traversal on first resolution

for identification of particular accumulation and contributing intervals. Therefore, COVER

leverages on D∗ and aggregated accumulation to minimize the number of snapshots to be

processed with respect to the function criteria.

The COVER algorithm leverages on blocks (Bτ ∈D∗) and a comparison between ατ and amin to

avoid unnecessary traversal on D+. Such that, if amin ≤ατ then snapshots spanning from Bα

to Bδ (see Figure 4.8) are subject to COVER by set(s) of contiguous snapshots satisfying amin

and amax criteria. These snapshots form candidate region, and are traversed in determination

of particular co-occurrence patterns and contributing intervals, defined as selected region(s)

(D = {[
eβ, eγ

] | ∀Bb :β≤ b ≤ γ⇒ amin ≤ ab ≤ amax
}
). However, amin >ατ implies insufficient

accumulation from Bα to Bδ, and therefore a traverse on such snapshots is redundant and

avoided accordingly.

The algorithm is parallelized on D∗, and each thread processes a subset of blocks ([Bτ′ ,Bτ′′]).

The process executed by each of the threads on a subset of blocks is described as follows.

The algorithm iterates over [Bτ′ ,Bτ′′], and for every block Bτ it evaluates amin ≤ατ; and upon

confirmation, it initiates an iteration over snapshots [Bα,Bδ] such that eα = Iτ and eδ = Iτ as

COVER candidate region (C). The iteration over C for determination of COVER selected region(s)

(G) is inter-twined with reconstruction algorithm on reconstructing of contributing intervals

(see Section 4.8.1). Traversing C , a snapshot Bb ∈C is processed for two objectives as follows:

A. Identification of selected regions:

The condition amin ≤ ab ≤ amax is evaluated, and confirmation yields Bb ∈G . By defi-

nition, if Bb−1 ∉ G then Bb is the left-end of G . However, condition rejection has two

consequences; either Bb is the right-end of G if the left-end was determined, or Bb is

avoided as a snapshot bookkeeping intervals of improper accumulation. Ultimately,

having determined both ends of selected region, the reconstructed intervals are passed

to f (T) to aggregate additional attribute(s), or apply an application-driven pattern

identification.

B. Reconstruction of contributing intervals: (see Section 4.8.1 for details)

The reconstruction procedure depends on whether a snapshot is a member of candidate

region or not; accordingly:

- Bb ∈C

The reconstruction of every implicitly bookmarked interval Ii by Bb is performed

using λ∗. If
¯
Ii = eb then a tuple as (L,@I)i is added to λ∗. However, if Īi = eb , then

Ii could be the right-end of an interval whose left-end was implicitly bookmarked,

or an explicitly bookmarked interval. The condition is evaluated using λ∗ as:

if (L,@I)i ∈λ∗ then update λ∗ with (R,@I)i .

if (L,@I)i ∉λ∗ then add (R,@I)i to λ∗ and decrement µ∗ (i.e., µ∗ ←µ∗−1).

- Bb ∉C ∧ Bb ∈ P The reconstruction region is traversed to determine the right-end

70

4.8. Information Retrieval based on Intervals

of intervals that was implicitly bookmarked by Bα; accordingly, every implicitly

bookmarked interval Ii by Bb is reconstructed as follows:

>
¯
Ii = eb , then the interval does not contribute to selected region, hence (L,@I)i

is added to λt .

> Īi = eb , and if (L,@I)i ∈λt then it is removed; if (L,@I)i ∈λ∗ then it is update

to (R,@I)i ; otherwise, (R,@I)i is added to λ∗ and µ∗ ←µ∗−1.

Having processed the candidate region for all selected regions, and identified all contribut-

ing intervals by traversing the reconstruction region; the algorithm concludes iteration over

[Bα,Bδ], and proceeds to next block.

4.8.3 Summit

The function SUMMIT is a variation of COVER function, and determines region(s) of local max-

imum within COVER regions (see SUMMIT example on Figure 4.6). Let amin and amax denote

respectively the minimum and maximum accumulation criteria, and ab be the accumulation

of intervals at Bb (i.e., ab ← µb +|λb |−ωb). The snapshot Bb is evaluated as complying ac-

cumulation criteria if: amin ≤ ab ≤ amax. Accordingly, the definition of SUMMIT is given as in

Definition 4.8.3.

Definition 4.8.2: SUMMIT

The syntax of SUMMIT function, fsummit, that takes arguments amin, amax, D∗, D+, and

f (T) is defined as follows:

fsummit
(
amin, amax,D∗,D+, f (T)

)= {
R1, . . . ,R j , . . . ,R J

}
such that:

R j = [eα,eδ]

where:

amin ≥ a(Bα−1) or amax ≤ a(Bα−1)

a(Bα−1) < a(Bα)

amin ≤ a(Bα) ≤ amax

amin ≤ a(Bβ) ≤ amax for β ∈N0

amin ≤ a(Bδ) ≤ amax and β< δ
amin ≥ a(Bδ+1) or amax ≤ a(Bδ+1) or a(Bδ+1) < a(Bδ)

The SUMMIT function algorithm is similar to COVER function, with minor differences. The

function algorithm is given by Algorithm 13.

71

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

Algorithm 13 Summit

1: procedure SUMMIT(amin, amax, UDF)
2: get a reconstruction stack initialized with UDF
3: atag ←−1
4: aprevious ← 0
5: for each Bτ ∈D∗ do
6: if amin ≤ατ then
7: reset reconstruction
8: for each Bb |

¯
Iτ ≤ eb ≤ Īτ do

9: a ←µb+ |λb | −ωb

10: if atag < a ∧aprevious < a ∧amin ≤ a ≤ amax then
11: atag ← a
12: start reconstruction by Bb

13: else
14: if atag > a ∨ (

atag < a ∧ (a < amin ∨ a > amax)∧atag 6= −1
)

then
15: close reconstruction by Bb

16: atag ←−1
17: aprevious ← a

18: update reconstruction by Bb

19: conclude reconstruction

4.8.4 Map

The MAP function executes a range query on coordinate attribute. In general, given a reference

interval I r , the MAP function finds all the intervals indexed in Di4 that overlap with I r (see MAP

example on Figure 4.6). This functionality is similar to classical interval-tree [57] operation.

In addition to a reference, the function takes a UDF and passes the determined intervals to

the UDF. The output of the UDF is then reported back as an attribute of I r . For instance, a

UDF may take all the intervals overlapping I r and return their cardinality. The MAP function is

generally defined in Definition 4.8.4 for reference interval I r .

Algorithm

The MAP function takes a set of non-overlapping reference intervals and a UDF as input, and

operates on first resolution of Di4 (D+). The algorithm of MAP function iterates over reference

intervals Sr = {I r
1 , . . . I r

k , . . . I r
K } and snapshots of Di4 to find indexed intervals overlapping each

reference interval. For a reference interval I r
k , the algorithm determines a set of snapshots

[Bβ,Bγ] called selected region (G, see Section 4.8.1) such that eβ−1 <
¯
I r

k ≤ eβ and eγ ≤ Ī r
k < eγ+1.

The incremental structure of Di4 necessitates reconstruction of intervals bookmarked by

the snapshots of the selected region. The reconstruction region could possibly be longer than

selected region. Therefore, the selected region of multiple reference intervals may overlap. Note

that, the selected region of two consecutive reference intervals overlap iff there exist at least

one indexed interval that overlaps both of the reference intervals. Therefore, to avoid traversing

72

4.8. Information Retrieval based on Intervals

snapshots multiple times (in case of overlapping selected regions), the reconstruction process

is intertwined with MAP algorithm. In general the procedure of MAP function is as follows.

Definition 4.8.3: MAP

The syntax of MAP function, fmap, that takes arguments D+, f (T), and a reference

interval I r , and it is defined as follows:

fmap
(
I r ,D+, f (T)

)= {Ii }

such that I r and Ii satisfy conditions (ii), (iii), (iv), (v), or (vi) of interval heptachotomy

defined in Section4.4, which are:

Ī r <
¯
Ii ∧

¯
Ii ≤ Ī r ≤ Īi

¯
I r <

¯
Ii ∧ Īi < Ī r

¯
I r =

¯
Ii ∧ Ī r = Īi

¯
Ii <

¯
I r ∧ Ī r < Īi

¯
Ii ≤

¯
I ≤ Īi ∧ Īi < Ī r

Step 1. Run dichotomic search to find Bβ.

Having determined Bβ three conditions as follows are possible:

i. if eβ =
¯
I r

k , then λ∗ ←
{

@I j
i

∣∣∣(ϕ,@I
) j

i ∈λβ ∧ ϕi = L
}

The temporary variable λ∗ (see

Section 4.8.1) is initialized with the pointers of intervals in λβ that start at eβ.

ii. if
¯
I r

k < eβ < Ī r
k , then λ∗ ←

{
@I j

i

∣∣∣(ϕ,@I
) j

i ∈λβ
}

The temporary variable λ∗ is initial-

ized with all the pointers to the intervals in λβ.

iii. if Ī r
k ≤ eβ then λ∗ ←

{
@I j

i

∣∣∣(ϕ,@I
) j

i ∈λβ ∧ ϕi = R
}

The temporary variable λ∗ is

initialized with the pointers of intervals in λβ that stop at eβ

Step 2. Traverse selected region The algorithm traverses the snapshots between Bβ exclusive

and Bγ inclusive, and for each
(
ϕ,@I

) j
i it does:

. if ϕ j
i = L then λ∗ ←λ∗∪@I j

i .

. if ϕ j
i = R and @I j

i ∉λ∗ then λ∗ ←λ∗∪@I j
i and µ∗ ←µ∗−1 (see Section 4.8.1).

. if ϕ j
i = R and @I j

i ∈λ∗ then no further action is required.

Step 3. Finalize selected region

. if µ∗ = 0 then all the contributing intervals to the reference region I r
k are recon-

structed, hence the search is completed. Then the intervals contributing to the

reference region are passed to the UDF, and algorithm proceeds with I r
k+1 starting

at Step 1.

. if µ∗ 6= 0 then few of the intervals overlapping reference region I r
k are not recon-

structed yet, hence the algorithm proceeds traversing snapshots to reconstruct

such intervals. In this traversal, the coordinate of each snapshot is compared with

73

Chapter 4. Di4: 1D Intervals Incremental Inverted Index

the left-end of the reference interval I r
k+1. If a snapshot overlaps the reference

interval I r
k+1, then the algorithm proceeds with Step 2 for the reference interval

I r
k+1 while reconstructing intervals for I r

k . Note that, in this condition, the MAP

algorithm traverses the selected region of both I r
k and I r

k+1, and reconstruction

region of I r
k only. This design of the algorithm minimizes the number of snapshots

to be traversed.

74

5 Di4 and Di3 Performance Evaluation
and Comparison

The present chapter evaluates Di3 and Di4 performance in comparison with common tools

in bioinformatics. The chapter is organized as follows; the customization of Di3 and Di4 for

genomics, and environment setup (including data and machines) for performance assessment

are discussed in Section 5.1, Section 5.2 evaluates Di3 and Di4 performance, and finally

Section5.3 compares Di3 and Di4 performance to common tools of bioinformatics field under

common scenarios.

5.1 Performance Evaluation Setup

For the performance evaluation, we customized Di3 and Di4 to the genomic domain by build-

ing Di4 for Bioinformatics (Di4B) at the business logic layer that initialize several independent

Di3 and Di4 instances, one for each DNA chromosome and strand; the Di4B command line in-

terface (Di4BCLI) client at presentation layer (see Figure 5.1) provides user interaction through

a set of commands. These include: primitives for initializing the indexes, primitives for the

operations, and primitives for setting indexing modes and degree of parallelization. In general,

the Di4BCLI commands (listed in Table 5.1) have standard command argument structure,

where the number of arguments varies between different commands. Having executed a

command, its runtime is reported on console, and also saved in a user-defined log file.

The Index and BatchIndex primitives take a sample or a collection of samples as argument

and, based on the indexing mode, they index the intervals respectively in single-pass or

double-pass mode. Under double-pass indexing mode, the command 2Pass (which takes

no arguments) executes the second-pass of the indexing. The second resolution of Di3 is

created/updated by the 2RI command (that takes no arguments). The Cover and Summit

commands take minAcc, maxAcc, aggregate, and output arguments, execute the functions

with the parameters and export results to the output file. The Map command takes reference,

aggregate, and output arguments, executes the function and exports results in the output file.

The Merge, Complement, AccHis, and AccDis commands take output argument, execute the

function and report results to the output file. The GetIM reports current setting for indexing

75

Chapter 5. Di4 and Di3 Performance Evaluation and Comparison

Data Layer

Presentation Layer

Data Access Layer

Business Logic Layer

Di4

Di4B

Di4BCLI

In-RAM & Persisted B+tree

Figure 5.1: Application design of Di4, Di4 for Bioinformatics (Di4B), and Di4B Command Line Interface
(Di4BCLI), that customize Di4 and Di3 for genomic domain.

mode, and SetIM takes a mode argument which is either single or multi, and sets indexing

mode accordingly. Finally, GetDP reports current setting for degree of parallelization, and

SetDP takes two numbers as chr-degree and Di4/Di3-degree of parallelization and updates the

execution environment accordingly.

The performance of Di3 and Di4 are evaluated using samples downloaded from ENCODE

which is a public repository.1 The downloaded data are grouped in 9 datasets, as described in

Table 5.2; the datasets vary in size, but are similar in interval accumulation distribution which

are plotted in Figure 5.2. Data distribution may have a strong effect on the performance of an

index. For instance, non-uniformly distributed data may accumulate a big load of information

on some keys, while other keys may have lighter load; this is suboptimal because some keys

are very expensive to process, while others are cheap. This affects also parallel execution, as

some threads are busy for a very long time, while others are set free very early. The first step to

avoid such draw backs is at design level, by making correct decisions, based on the nature of

the data, for the key and value of the index.

The performance is assessed on two machines; a standard laptop to evaluate performance

for small-scale processes, and a virtual private server (VPS) for large-scale execution. The

specification of these two machines is given in Figure 5.3. Theoretical peak performance of

each machine’s processor is given in Giga Floating Point Operations Per Second (GFLOPS)

which is calculated as follows:

GFLOPS = (CPU speed in GHz) * (# of cores) * (CPU instructions per cycle)

The CPU speed and number of cores are obtained from the vendors website. The CPU

instructions per cycle (IPC) parameter depends on Advanced Vector Extensions (AVX) feature

of a CPU. The CPUs of machines we used for benchmarking belong to Intel®Sandy Bridge and

Ivy Bridge architecture that benefit from AVX256 that hold 8 single precision values. Therefore,

the IPC of these CPUs is as follows: 2

1https://genome.ucsc.edu/ENCODE/
2Source: http://media.wix.com/ugd/e53cc7_d9d115bb3548496481e893af130cf943.pdf

76

http://media.wix.com/ugd/e53cc7_d9d115bb3548496481e893af130cf943.pdf

5.1. Performance Evaluation Setup

Table 5.1: Di3BCLI commands.

Command Description
Index Takes a filename and indexes all its regions.
BatchIndex Takes a set of files specified using wild-card characters.
2Pass Runs second-pass of indexing in double-pass indexing mode.
2RI Indexes second resolution.
Cover Executes COVER function and exports results.
Summit Executes SUMMIT function and exports results.
Map Executes MAP function and exports results.
Merge Executes MERGE function and exports results.
Complement Executes COMPLEMENT function and exports results.
AccHis Determines Accumulation histogram and exports results.
AccDis Determines Accumulation distribution and exports results.
GetIM Reports current setting for indexing mode.
SetIM Sets indexing mode to the specified one.
GetDP Reports current setting for degree of parallelization.
SetDP Sets degree of parallelization to the specified one.

Table 5.2: Datasets used for Di3 and Di4 benchmarking.

Dataset label Sample count Region count Dataset size (MB)
C1 12 89,623 6.14
C2 22 258,406 17.40
C3 45 456,385 30.72
B1 90 1,407,493 92.16
B2 180 4,649,767 321.53
A1 500 28,392,674 1,382.40
A2 1,000 59,980,303 3,246.08
A3 1,500 94,997,460 4,986.88
A4 2,000 143,563,549 7.147.52

M1 M2

Amazon EC2 Laptop

c3.8xlarge

Physical Processor Intel® Xeon® E5-2680 v2 Intel® Core™ i3-2310M

of Cores 10 2

of Threads 20 4

Clock speed (GHz) 2.8 2.1

IPC 8 8

GFLOPS 224 33.6

60 8

Seq (R/W) 428.67 / 373.99 486.82 / 282.05

4K (R/W) 21.37 / 38.32 21.78 / 41.75

4K 64-Thread (R/W) 281.68 / 186.45 933.37 / 256.31

Machine label

Processor

SSD (MB/s)

RAM (GB)

Instance type

Machine type

Table 5.3: Specification of machines used for performance evaluation.

77

Chapter 5. Di4 and Di3 Performance Evaluation and Comparison

0

1

2

3

4

0 100 200 300 400 500

C
o
u
n
t

M
ill
io
n
s

Accumulation

Accumulation Distribution of A1

0

1

2

3

4

5

6

7

0 200 400 600 800 1000

C
o
u
n
t

M
ill
io
n
s

Accumulation

Accumulation Distribution of A2

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

C
o
u
n
t

M
ill
io
n
s

Accumulation

Accumulation Distribution of A3

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600

C
o
u
n
t

M
ill
io
n
s

Accumulation

Accumulation Distribution of A4

0

10

20

30

40

50

60

70

0 3 6 9 12 15

C
o
u
n
t

Th
o
u
sa
n
d
s

Accumulation

Accumulation Distribution of C1

0

20

40

60

80

100

120

140

160

0 4 8 12 16 20

C
o
u
n
t

Th
o
u
sa
n
d
s

Accumulation

Accumulation Distribution of C2

0

20

40

60

80

100

120

140

160

180

200

0 7 14 21 28 35 42
C
o
u
n
t

Th
o
u
sa
n
d
s

Accumulation

Accumulation Distribution of C3

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120

C
o
u
n
t

Th
o
u
sa
n
d
s

Accumulation

Accumulation Distribution of B1

0

100

200

300

400

500

600

700

800

0 25 50 75 100 125 150

C
o
u
n
t

Th
o
u
sa
n
d
s

Accumulation

Accumulation Distribution of B2

Figure 5.2: Interval/region accumulation distribution in datasets.

• IPC = 8 : double-precision FLOPS/cycle (4 AVX addition and multiplication).

• IPC = 16 : single-precision FLOPs/cycle (8 AVX addition and multiplication).

The machines have Solid-State Drive (SSD) storage device. Both Di3 and Di4 extensively

use I/O operations when are run in persisted mode. Therefore, the storage performance of

a machine is an important aspect that impacts the Di3 and Di4 performance. The storage

devices of the machines are assessed for sequential read/write (i.e., the time it takes to read

and write a 1GB file), random read/write of 4K blocks. Both Di3 and Di4 run in user-defined

degree-of-parallelism; therefore, storage performance in a multi-threaded execution is an

important parameter. Storage devices are tested for random read/write of 4K blocks in 64

threads. Results for sequential, random 4K , and parallel random 4K tests are given in Table 5.3.

5.2 Comparison between inverted index and incremental inverted

index

The current section discusses the performance of Di3 and Di4, both for indexing intervals, and

retrieval functions. In all the experiments of this section, we used M1 machine (see Table 5.3),

and A1, A2, A3, and A4 datasets (see Table 5.2).

78

5.2. Comparison between inverted index and incremental inverted index

2

20

200

0 5 10 15 20 25 30

Sp
e

e
d

 (
in

te
rv

al
 p

e
r

se
co

n
d

)

Th
o

u
sa

n
d

s

Indexed intervals Millions

Indexing speed on A1
Di3

DI4

2

20

200

0 10 20 30 40 50 60

Sp
e

ed
 (

in
te

rv
al

 p
e

r
se

co
n

d
)

Th
o

u
sa

n
d

s

Indexed intervals Millions

Indexing speed on A2
Di3

DI4

2

20

200

0 20 40 60 80 100

Sp
ee

d
 (

in
te

rv
al

 p
er

 s
ec

o
n

d
)

Th
o

u
sa

n
d

s

Indexed intervals Millions

Indexing speed on A3
Di3

DI4

2

20

200

0 25 50 75 100 125 150

Sp
ee

d
 (

in
te

rv
al

 p
er

 s
ec

o
n

d
)

Th
o

u
sa

n
d

s

Indexed intervals Millions

Indexing speed on A4
Di3

DI4

-0.0044

7,738.687,747.67

Average indexing speed

on A3

Di3

Di4

13,403.9213,286.67

Average indexing speed

on A1

Di3

Di4

9,150.699,318.69

Average indexing speed

on A2

Di3

Di4

6,921.056,818.02

Average indexing speed

on A4

Di3

Di4

Figure 5.3: First pass indexing speed of Di3 and Di4 on four datasets.

5.2.1 Comparison of indexing speed

The indexing speed of Di3 and Di4 is evaluated for first-resolution (in double-pass indexing

mode) and second-resolution, by executing Di3 and Di4 separately on the M1 machine (see

Table 5.3) for indexing all the intervals of A1, A2, A3, and A4 datasets (see Table 5.2). The

first step is to index intervals on the first resolution. Accordingly, we assess the first-pass of

bookmarking intervals on first-resolution. The indexing speed (intervals per second) and

average indexing speed of Di3 and Di4 for the first-pass is plotted separately for each dataset

on Figure 5.3. In general, both methods execute similar actions at first step, which is creating

snapshots, bookkeeping causal intervals by λ component of the snapshots, and inserting

newly created snapshots to the data structure of first-resolution (i.e., inserting to key-value

pair storage technology at physical layer, such as B+tree). Therefore, Di3 and Di4 first pass

indexing complexity is similar, which is confirmed by the speed and average indexing speed

plots on the four dataset (see Figure 5.3), and indexing elapsed time (see first-pass elapsed

time on Figure 5.4).

The Di3 and Di4 indexing algorithms mainly differ in the second-pass of double-pass indexing,

and indexing of second resolution. In general, at second-pass of indexing intervals, for the

first-resolution, Di3 and Di4 perform similar procedures, which is reading snapshots created

79

Chapter 5. Di4 and Di3 Performance Evaluation and Comparison

during the first-pass, and updating each snapshot such that it complies the design of Di3 and

Di4. The algorithms of Di3 and Di4 take similar time to read a snapshot from corresponding

first-resolution, because the snapshots of both Di3 and Di4 after first-pass are bookkeeping

only causal intervals, therefore, the snapshot are similar in size and hence take equal time to

be de-serialized from persistence technology. However, the complexity of update is different

between Di3 and Di4. The second-pass indexing algorithm of Di3 updates λ component of

snapshots by adding new (ϕ,@I) tuples (ϕ = M for all newly inserted tuples). The number

of newly added tuples depend on the accumulation of intervals (i.e., the more the intervals

are accumulated, the more tuples to be added to each snapshot), and has impact on the

complexity of update procedure (i.e., the larger the number of new tuples to be added, the

longer it takes to update a snapshot). On the other hand, the second-pass indexing algorithm

of Di4 updates first resolution by modifying the µ component of snapshots. In general, the

second-pass indexing algorithm of Di3 increases the size of snapshots by new tuples added

to λ, while the second-pass indexing algorithm of Di4 keeps the size intact and modifies the

value of µ. Therefore, the second-pass of Di3 takes longer time than Di4, which is confirmed

by the elapsed time of second pass plotted for four datasets on Figure 5.4.

The second-resolution data structure is common between Di3 and Di4, however, the com-

plexity of creating it differs depending on whether it is created based on the first resolution

of Di3 or Di4. The grouping and aggregation functions of second-resolution are indepen-

dent from Di3 and Di4 bookmarking design. In general, the complexity of creating/updating

blocks of second-resolution is independent from Di3 and Di4 design. However, the blocks of

second-resolution are created based on the intervals bookmarked by snapshots. Therefore,

the complexity of reconstructing bookmarked intervals, which differs between Di3 and Di4,

impacts the second resolution indexing runtime (see Figure 5.4). Since reconstructing inter-

vals from Di4 is relatively faster than Di3, creating second resolution based on Di4 is relatively

faster than creating it based on Di3 (see Figure 5.4).

5.2.2 Comparison of index file size

The persisted data size of Di3 and Di4 are compared with each other, which includes snapshots

and blocks organized respectively in first-resolution and second-resolution. The file size is a

factor of the number and size of snapshots. The Di3 and Di4 both create a snapshot for each

end of an interval, therefore, Di3 and Di4 create same number of snapshots. However, the

snapshots of Di3 explicitly bookmark all overlapping intervals (i.e., inverted structure), while

the snapshots of Di4 are bookkeeping only causal intervals explicitly (i.e., incremental inverted

structure); therefore, the snapshots of Di3 are relatively larger than the snapshots of Di4. This

makes the index file size of Di3 relatively larger than the file size of Di4 (see Figure 5.4).

Additionally, the growth rate of Di3 index file size is significantly faster than Di4 due to the

inverted structure of Di3. Let explain this by an example; consider two consecutive snapshots

Bi and B j , where each is bookkeeping 1 causal interval, and n non-causal interval. In Di3, Bi

80

5.2. Comparison between inverted index and incremental inverted index

35.20

35.61

1.76

1.20

1.76

0.77

33 34 35 36 37 38 39

Di3

Di4

Runtime (min)

Indexing speed on A1

First pass Second pass Second resolution

109.27

107.30

6.84

3.36

17.11

2.08

100 105 110 115 120 125 130 135

Di3

Di4

Runtime (min)

Indexing speed on A2

First pass Second pass Second resolution

204.59

204.36

11.76

4.54

39.22

3.91

190 200 210 220 230 240 250 260

Di3

Di4

Runtime (min)

Indexing speed on A3

First pass Second pass Second resolution

345.70

350.89

17.93

5.40

55.34

6.85

320 340 360 380 400 420

Di3

Di4

Runtime (min)

Indexing speed on A4

First pass Second pass Second resolution

260%, 3.50

267%, 8.46

228%, 11.11

181%, 12.61

404%, 5.45

797%, 25.27

898%, 43.71

817%, 56.99

0 10 20 30 40 50 60

A1

A2

A3

A4

File size (GB)

D
at

as
et

Index file size

Di3
Di4

Figure 5.4: Comparison of Di3 and Di4 indexing elapsed time and index file size. The “Index file size”
in addition to index file size, in data label, it includes the index file size proportional to input data size
calculated as (index file size / input size)∗100.

and B j have n +1 tuples in λ components (i.e., |λi | = n +1 and |λ j | = n +1), while in Di4, Bi

and B j have 1 tuple in λ components. Let Bk be a new snapshot created for indexing a new

interval, such that ei < ek < e j (which creates Bi ,Bk ,B j). The new snapshot in Di3 explicitly

bookmarks the intervals bookmarked by B j , which is by duplicating all the tuples in λ j in λk

such that |λk | = |λ j |+1. However, the new snapshot in Di4 implicitly bookmarks the intervals

bookmarked by B j by µk component. Therefore, with one new snapshot, the number of tuples

in λ components in Di3 is: |λi |+ (2∗|λ j |) while in Di4 it is: |λi |+ |λ j |+1; this makes Di3 grow

faster in file size compared to Di4 (see Figure 5.4).

5.2.3 Comparison of retrievals

The section benchmarks Di3 and Di4 for the IR functions COVER, SUMMIT, and MAP. The perfor-

mance of Di3 and Di4 for each of the functions is discussed separately in the following.

81

Chapter 5. Di4 and Di3 Performance Evaluation and Comparison

Benchmark for Accumulation Operations

The Di3 and Di4 performance for COVER, SUMMIT, ACCHIS (accumulation histogram) and

ACCDIS (accumulation distribution) operations are assessed. The function SUMMIT is a varia-

tion of COVER, similarly, the function ACCDIS is a variation of ACCHIS; therefore, their perfor-

mance is at the same scale (see Figure 5.5). Both the accumulation histogram and distribution

functions scan all snapshots; hence, their performance can be evaluated as the maximum time

required for a full scan of Di3 and Di4, which is linear to dataset size and it differs between

Di3 and Di4. In general, a linear scan is faster on Di4 compared to Di3 due to the incremental

structure of Di4 snapshots, which are faster to de-serialize and exclude redundant information

(see Figure 5.5).

The functions COVER and SUMMIT use both resolutions of Di3 and Di4 (i.e., first-resolution and

second-resolution). As for accumulation histogram and distribution operations, the functions

COVER and SUMMIT require linear scan of snapshots for regions of specific accumulation of

intervals. However, the second resolution index prunes a percentage of linear scan based on

minAcc and maxAcc parameters, and on their overlap with the accumulation distribution of

data. The less effective pruning is expected with parameters set around the peak of accumula-

tion distribution, therefore the COVER and SUMMIT functions are expected to be faster than the

ACCHIS and ACCDIS with such choice of parameters.

The second resolution is common between Di3 and Di4; therefore, COVER and SUMMIT of Di3

have similar complexity to COVER and SUMMIT of Di4 for traversing second resolution. Di3

and Di4 differ in first-resolution; therefore, the COVER and SUMMIT functions of Di3 perform

differently from the COVER and SUMMIT functions of Di4 in traversing the first-resolution.

The snapshots of Di3 are larger in size compared to the snapshot of Di4; therefore, the de-

serialization of Di3 snapshots is more expensive compared to Di4 snapshots. In contrast, a

single snapshot of Di3 renders the information of all the intervals overlapping the position on

domain to which the snapshot corresponds to, while reconstructing intervals overlapping a

position on domain using Di4 snapshots may require processing additional snapshots.

In general, the penalties of Di3 and Di4 are: Di3 has larger snapshots that are expensive

for de-serialization and duplicated information in a sequence of snapshots (which reduce

traversal speed), while Di4 requires more snapshots to be processed. The superiority of one

over the other depends on the input data and the retrieval function. The COVER and SUMMIT

functions traverse a set of snapshots (determined by a block, see Section 3.4 and Section 4.8.2),

and the traverse is faster with snapshots of Di4, because they are smaller in size compared

to the snapshots of Di3, and exclude duplication. Additionally, the traverse required for

reconstructing intervals is intertwined with the traverse of COVER and SUMMIT functions (see

Section 4.8.1), therefore, the number of snapshots to be traversed (in addition to the ones

required for COVER or SUMMIT) for reconstructing contributing intervals is minimized.

The performance is benchmarked with minAcc and maxAcc at the peak of accumulation

distribution, e.g., minAcc = 80 and maxAcc = 100 for A2 (see Figure 5.2 for accumulation

82

5.2. Comparison between inverted index and incremental inverted index

70.41

212.58

308.99

427.46

26.53

92.89

142.83

195.01

0 150 300 450

A1

A2

A3

A4

Runtime (second)

D
at

as
et

Benchmark on MAP function

Di3
Di4 1.46

5.19

16.19

19.45

1.63

36.93

72.72

104.00

0 20 40 60 80 100 120

A1

A2

A3

A4

Runtime (second)

D
at

as
et

Benchmark on COVER function

Di3
Di4

25.64

105.60

155.09

307.62

158.28

401.74

591.32

942.32

0 200 400 600 800 1000

A1

A2

A3

A4

Runtime (second)

D
at

as
et

Benchmark on ACCHIS function

Di3
Di4 1.15

1.22

10.90

13.51

0.54

12.13

81.34

92.19

0 20 40 60 80 100

A1

A2

A3

A4

Runtime (second)

D
at

as
et

Benchmark on SUMMIT function

Di3
Di4

Figure 5.5: Benchmark of retrieval functions COVER, SUMMIT, and MAP on A1, A2, A3, and A4 datasets,
running on M1 machine.

distribution). Figure 5.5 confirms two points; first, even with the peak of the parameter values

the functions perform faster than full scan. Second, the COVER and SUMMIT functions of Di4

are relatively faster than the COVER and SUMMIT functions of Di3.

Benchmark of MAP

The MAP operation directly operates upon coordinates and snapshots, and performs a di-

chotomic search to find regions that satisfy a given criteria. The Di3 snapshots determined

by the dichotomic search of MAP function renders all the contributing intervals, while the

snapshots of Di4 depend on neighbor snapshots to reconstruct the intervals overlapping

reference regions. The number of neighbor snapshots to be processed additionally, depends

on the distribution of indexed intervals and reference regions. The number may grow as large

as it minimizes the advantage of a dichotomic search, and it takes longer time to process

additional Di4 snapshots than it takes to process limited number of Di3 snapshots. In general,

for a single reference region, O(log |B+|) is the number of Di3 snapshots to be processed, and

O(log |B+|+n) is the number of Di4 snapshots for n neighbor snapshots. For a relatively small

n, the MAP operation processes same number of snapshots on Di3 and Di4; since Di4 snapshots

are faster to de-serialize and avoid duplicates, then MAP on Di4 performs relatively faster than

83

Chapter 5. Di4 and Di3 Performance Evaluation and Comparison

on Di3. For a relatively large n, the MAP operation process more snapshots on Di4 than on

Di3, whereas the cost of traversing additional snapshots is more than the de-serialization

and duplicated information penalty of few Di3 snapshots. Accordingly, the MAP function may

perform better on Di3 (with inverted snapshots and duplicate information) than Di4 (with

incremental snapshots).

A benchmark of the MAP operation using a reference sample from the ENCODE repository,

which includes 196,180 regions (8.9 MB in size) is given in Figure 5.5. The figure shows excellent

scalability with respect to growth in data size for both Di3 and Di4. Note that the reference

sample is also an ENCODE narrow peak sample; hence, its intervals are mostly co-localized

with the indexed intervals. Therefore, a very big percentage of indexed data overlaps with the

reference intervals. In this condition, n is relatively large. Therefore, Di3 performs significantly

faster than Di4 on the four datasets.

5.2.4 Performance evaluation based on different degrees of parallelization

We benchmarked Di4 by exploiting two levels of parallelism: chromosome level parallelism

(i.e., executing operations on multiple chromosomes concurrently) and Di4 level of parallelism

(i.e., each chromosome is further divided into multiple sections or bins, and multiple threads

process the resulting sections). The evaluation is using 100 ENCODE narrow peaks containing

18,410,405 intervals, and it runs on M2 machine. The results are plotted in Figure 5.6 in

performance coefficient calculated as follows:

x ′
n =

(
min(x1, x2, . . . xn , . . . xN)

xn

)
∗100

The lowest value (i.e., fastest operation) is transformed to 100, and all other values are scaled

between 0 and 1 based on their difference with lowest value.

Note that, M2 machine has 2 cores and 4 logical processor, hence a degree-of-parallelization

16x16 (256 threads) is beyond the M2s’ logical processor count. Di4 indexes data relatively

faster when the degree-of-parallelism is even between two levels of parallelism and in total

are equal to M2s’ logical processor count. Di4 is penalized with locking overhead in favor of

enabling multi-threading. The degree-of-parallelism should balance between logical processor

counts and locking overhead, such that locking overhead is not compensated if Di4 is executed

in single-thread. This aspect is highlighted in Figure 5.6 by MAP, COVER, and SUMMIT functions

plot; where Di4 runs relatively faster when degree-of-parallelism is close to logical processor

count. The functions ACCHIS and ACCDIS linearly scan Di4 and do not run in parallel at Di4

level; and only one thread runs even if higher parallelization degree. Therefore these functions

run relatively faster when Di4 runs single threaded (see Figure 5.6).

84

5.2. Comparison between inverted index and incremental inverted index

70

78

65

61

48

91

100

79

66

52

99

87

75

60

45

93

82

68

56

38

93

77

66

49

33

0.5

1

2

4

8

16

32

0.5 1 2 4 8 16 32

D
i4

-L
e

ve
l D

P

Chr-Level DP

Indexing Speed

6

84

75

72

57

6

100

83

67

54

6

89

71

40

46

6

83

67

51

42

6

82

65

36

40

0.5

1

2

4

8

16

32

0.5 1 2 4 8 16 32

D
i4

-L
e

ve
l D

P

Chr-Level DP

MAP speed

27

46

64

64

35

33

64

90

81

46

38

70

100

63

39

35

67

94

92

46

30

66

91

78

52

0.5

1

2

4

8

16

32

0.5 1 2 4 8 16 32

D
i4

-L
ev

el
 D

P

Chr-Level DP

COVER Speed

28

47

66

66

36

35

66

90

77

49

39

73

100

81

56

37

65

94

88

45

32

64

85

90

55

0.5

1

2

4

8

16

32

0.5 1 2 4 8 16 32

D
i4

-L
ev

el
 D

P

Chr-Level DP

SUMMIT speed

76

52

30

18

8

94

68

38

19

12

100

66

40

18

11

90

55

27

16

9

84

44

21

10

4

0.5

1

2

4

8

16

32

0.5 1 2 4 8 16 32

D
i4

-L
e

ve
l D

P

Chr-Level DP

ACCHIS Speed

76

54

29

18

8

92

69

40

19

12

100

68

40

19

12

92

59

24

12

8

95

47

19

9

7

0.5

1

2

4

8

16

32

0.5 1 2 4 8 16 32

D
i4

-L
e

ve
l D

P

Chr-Level DP

ACCDIS speed

Figure 5.6: Performance evaluation based on different degrees of parallelization. The values are in
performance coefficient such that 100 is the fastest.

85

Chapter 5. Di4 and Di3 Performance Evaluation and Comparison

5.2.5 Performance evaluation based on different persistence setup

Present section discusses Di4 performance correlation with persistence setup. In general,

Di4 performance is evaluated under varying partition allocation unit size for NTFS partition

spanning 512b to 8192b, and block size spanning 512b to 8192b. The evaluation is done

using 1,000 ENCODE narrow peaks containing 34,099,281 intervals in total, and runs on M1

machine. The results are given in Figure 5.7 for indexing speed and runtime of functions

MAP, COVER, SUMMIT, ACCHIS, and ACCDIS; and in Figure 5.8 for persisted data size. In general,

partition allocation size (cluster size) do not affect the index file size (see Figure 5.8) which is

due to the SSD storage type of M1 machine (compared to HDD); while block size is in direct

relation with file size, such that with smaller block sizes (e.g., 512bytes) data is more compact

than with higher block sizes. The functions performance also vary based on different partition

allocation and block size; however, the data and the function also affect this evaluation. For

instance, if on average, snapshots are bigger than block sizes, then multiple blocks should be

read to de-serialize a snapshot, while, have the same snapshot on a bigger block size would

require a single block to de-serialize the snapshot. In general, the functions perform relatively

better with 4Kbytes block and cluster sizes.

5.3 Comparison of Di3 and Di4 performance with common bioin-

formatics tools

We start with an evaluation of Di3 enacted from a user interface, and then we present a

comparison with BEDTools and BEDOPS, the most popular tools for genomic region calculus.

This section compares the performance of Di3 and Di4 against the two tools commonly used

in genomic region processing, namely, BEDTools [35] and BEDOPS [36]. The benchmark

runs on the M2 machine, with Di3 and Di4 executed under Microsoft Windows® 10 operating

system, and BEDTools and BEDOPS under Linux. The BEDTools and BEDOPS run in-memory;

therefore, Di3 and Di4 are also executed in-memory (i.e., without persisting data structures to

hard disk). Additionally, the Python and shell scripts for the batch execution of BEDTools and

BEDOPS are prepared as it follows.

1 sort -bed reference.narrow > reference_sorted.bed

2 for i in Files/*

3 do

4 sort -bed $i > $i.sorted

5 bedmap --ec --count --echo reference_sorted.bed $i.sorted > $i.res

6 done

86

5.3. Comparison of Di3 and Di4 performance with common bioinformatics tools

1 from __future__ import print_function

2 from subprocess import call

3 import os

4 import pickle

5

6 def ListAllFiles(scd):

7 f = []

8 for root , sub , files in os.walk(scd):

9 for x in files:

10 f += [os.path.join(root , x)]

11 return f

12

13 path = "testFiles/"

14 singleFile = path + "/allFiles"

15 singleFileSorted = singleFile + "Sorted"

16 filenames = ListAllFiles(path)

17 with open(singleFile , 'w') as outfile:

18 for fname in filenames:

19 with open(fname) as infile:

20 for line in infile:

21 outfile.write(line)

22

23 f = open(singleFile , "r")

24 lines = [line for line in f if line.strip()]

25 f.close()

26 lines.sort()

27 pickle.dump(lines , singleFileSorted)

28 with open(singleFileSorted , 'w') as outFile:

29 for item in lines:

30 outFile.write(item)

31

32 call("bedtools map -a ~/ Desktop/refP.bed -b "+ singleFile + " -o count > ~/

Desktop/results/res2.bed", shell = True)

Among the possible operations that are available from the Di4B Command Line Interface,

BEDTools and BEDOPS implement the MAP operator, i.e., given a reference sample, find input

intervals overlapping with the reference regions. Therefore, we compared the MAP operator

of Di3 and Di4 against the bedtool map from BEDTools and the bedmap from BEDOPS. We

considered two typical usage scenarios in genomic region processing: (i) personal repository,

and (ii) on-the-fly processing.

Personal Repository

This is a common scenario for bioinformaticians’, where a personal repository of in-house

data, as output of the execution of a NGS data processing pipeline, and/or data obtained from

publicly available repositories is persistent on their machine. Such data are stored for further

processing or to be used for comparative evaluation and cross-referencing. The repository is a

collection of properly organized files, indexed and persistent in Di3 and Di4. This benchmark

is run on M2 machine (see Table 5.3) and uses B1 and B2 datasets (see Table 5.2), and a

reference sample including 196,180 regions (8.9MB in size).

The data were pre-processed, i.e., filtered, and regions in samples were sorted preliminary for

87

Chapter 5. Di4 and Di3 Performance Evaluation and Comparison

BEDTools and BEDOPS, and indexed for Di3 and Di4. Hence, the benchmark started from

pre-processed data, and for comparison considered only execution time. As Figure 5.10 shows,

Di3 and Di4 performs significantly faster than BEDTools and BEDOPS.

In general, the indexing time Di3 and Di4 is equal (as shown in Panel D and B on Figure 5.10 for

first-pass indexing speed and total indexing elapsed time respectively), and so is the persisted

information size (see Panel C on Figure 5.10). Di3 runs relatively faster than Di4 on the MAP

operation (see panel A1 on Figure 5.10). As discussed in Section 5.2, the performance of Di4 for

COVER and SUMMIT depends on n additional snapshots to traverse to reconstruct contributing

intervals. The panels A2 and A3 on Figure 5.10 confirms that, in this scenario, the penalty of

traversing larger snapshots with duplicated information of Di3 is less than the penalty of n

additional traverse of Di4. The Panel A4 on Figure 5.10 plots the runtime of accumulation

histogram operation, which shows that in general, traversing all snapshots of Di4 is faster than

traversing Di3.

On-the-Fly Processing

Processing data on-the-fly is a bioinformaticians’ daily-base scenario, where a relatively small

dataset is obtained from the execution of a NGS data processing pipeline and it may not be

archived for further evaluation. The in-memory version of Di3 and Di4 are benchmarked

versus BEDTools and BEDOPS on MAP operation using one reference, including 196,180 regions

(8.9MB in size), and three datasets of ENCODE narrow peak samples, C1, C2, and C3 (see

Table 5.2) as target, and run tools on M2 machine (see Table 5.3).

The data were not pre-processed; i.e., data were not sorted for BEDTools and BEDOPS, and

not indexed for Di3 and Di4. Hence, the execution time incorporates pre-processing time in

all cases. Figure 5.9 shows that Di3 and Di4 performs faster than BEDTools and BEDOPS on

the three datasets. This highlights that Di3 and Di4 are also an agile back-end data structure

for on-the-fly processing, even by incorporating the indexing time within the processing time.

88

5.3. Comparison of Di3 and Di4 performance with common bioinformatics tools

71

82

94

77

71

82

95

76

72

85

100

88

71

84

98

90

256

512

1024

2048

4096

8192

16384

256 512 1024 2048 4096 8192 16384

B
lo

ck
 S

iz
e

 (
b

yt
es

)

Partition Allocation (bytes)

Indexing Speed

89

71

77

83

66

97

77

89

100

86

75

78

69

80

70

78

256

512

1024

2048

4096

8192

16384

256 512 1024 2048 4096 8192 16384

B
lo

ck
 S

iz
e

 (
b

yt
es

)

Partition Allocation (bytes)

MAP Speed

67

75

73

66

33

98

67

62

100

63

76

96

72

97

59

70

256

512

1024

2048

4096

8192

16384

256 512 1024 2048 4096 8192 16384

B
lo

ck
 S

iz
e

 (
b

yt
es

)

Partition Allocation (bytes)

COVER Speed

95

100

98

96

70

44

97

99

43

100

100

41

95

99

99

47

256

512

1024

2048

4096

8192

16384

256 512 1024 2048 4096 8192 16384

B
lo

ck
 S

iz
e

 (
b

yt
es

)

Partition Allocation (bytes)

SUMMIT Speed

93

100

90

85

85

80

81

89

51

94

95

46

87

88

61

60

256

512

1024

2048

4096

8192

16384

256 512 1024 2048 4096 8192 16384

B
lo

ck
 S

iz
e

 (
b

yt
es

)

Partition Allocation (bytes)

ACCHIS Speed

52

64

100

56

54

93

86

53

58

52

58

59

52

59

59

60

256

512

1024

2048

4096

8192

16384

256 512 1024 2048 4096 8192 16384

B
lo

ck
 S

iz
e

 (
b

yt
es

)

Partition Allocation (bytes)

ACCDIS Speed

Figure 5.7: Di4 operations performance correlation with persistence setup. Block size is the number of
bytes per file block size. The values are in performance coefficient such that 100 is the fastest.

89

Chapter 5. Di4 and Di3 Performance Evaluation and Comparison

100

88

49

25

100

88

49

25

100

88

49

25

100

88

49

25

256

512

1024

2048

4096

8192

16384

256 512 1024 2048 4096 8192 16384

B
lo

ck
 S

iz
e

(b
yt

es
)

(N
u

m
b

er
 o

f
b

yt
es

 p
er

 f
ile

 b
lo

ck
 s

iz
e)

Partition Allocation (bytes)

File Size on Disk (GB)

Figure 5.8: Di4 index size on correlation with persistence setup. Block size is the number of bytes per file
block size. The values are in size coefficient such that 100 is the smallest size.

3.55

10.80

23.30

4.63

10.75

20.69

9.74

17.97

35.97

18.87

34.74

70.82

0 10 20 30 40 50 60 70 80

C1

C2

C3

Runtime (second)

D
at

as
et

Benchmark on MAP function

BEDTools BEDOPS Di3 Di4

Figure 5.9: Benchmark: On-the-fly processing scenario

90

5.3. Comparison of Di3 and Di4 performance with common bioinformatics tools

12.59

90.34

1.08

2.16

87.41

160.90

143.30

335.98

0 100 200 300

B1

B2

Runtime (second)

D
at

as
et

MAP Benchmark

BEDTools
BEDOPS
Di3
Di4

0.31

5.01

0.36

2.48

0 1 2 3 4 5 6

B1

B2

Runtime (second)

D
at

as
et

COVER Benchmark

Di3

Di4

0.25

4.34

0.40

1.34

0 1 2 3 4 5

B1

B2

Runtime (second)

D
at

as
et

SUMMIT Benchmark

Di30.88

13.33

1.02

22.18

0 10 20 30

B1

B2

Runtime (second)

D
at

as
et

HISTOGRAM Benchmark

Di3
Di4

0

500

1000

1500

2000

B1 B2

8
0

6

1
,3

6
67

2
6

1
,6

2
3

Fi
le

 s
iz

e
(M

B
)

Dataset

Index file size

Di4
Di3

4

40

0 1 2 3 4 5

In
d

ex
in

g
sp

ee
d

 (
in

te
rv

al
 p

er

se
co

n
d

)

Th
o

u
sa

n
d

s

Indexed intervals Millions

First-pass indexing speed

B1 - Di3
B1 - Di4
B2 - Di3
B2 - Di4

103.5

573.3

109.7

589.9

0

200

400

600

800

B1 B2

R
u

n
ti

m
e

(s
ec

o
n

d
)

Dataset

Indexing Elapsed Time

Di4
Di3

A1 A2

A4 A3

B C

D

Figure 5.10: Benchmark: Personal repository scenario.

91

6 Di3 Application in Comparative
Analysis of ChIP-seq Replicates

Present chapter discusses Multiple Sample Peak Calling (MSPC), a novel method to rigorously

combine the results of peak calls in ChIP-seq replicates and to obtain new, sample-specific,

peak lists taking into account their combined evidence. Additionally, present chapter discusses

Multiple Sample Enriched Region Assessment (MuSERA), a novel, advanced graphical tool

which extends Di3 to efficiently implement, extend and generalize MSPC. In addition, MuSERA

further assess the identified enriched regions using Di3 through common tertiary analysis

procedures such as functional analyses, correlation assessment, nearest feature distance

distribution, and visualization on a genome browser. Furthermore, MuSERA implements

an intuitive graphical interface that provides several graphic displays which help the user in

gaining a deeper insight and biological evaluation of the analysis results.

6.1 Introduction

Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is a

multi-purpose technology that allows the precise determination of DNA or RNA sequences

within a sample of interest [153], and is widely used for studying chromatin modifications

and Protein-DNA in vivo interactions. The analysis of ChIP-Seq samples outputs a number

of enriched regions (ER), each indicating a protein-DNA interaction or a specific chromatin

modification. ERs (or “peaks”) are called when the read distribution is significantly different

from the background, and its corresponding significance measure (extreme value probabilities,

p-value) is below a user-defined threshold. Inferior enrichment regions with p-values close

to the background signal are either veritably a portion of background slightly enriched due

to some biological or technical bias in experiment, or indeed are biologically important

regions with enrichments less significant than expected. The protocol is subject to noise [154];

hence to avoid a large number of false positives, commonly used thresholds are often very

stringent; this generates many false negatives (undiscovered, genuine interaction sites, with

read distribution considerably above background level).

93

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Given the intrinsic noise of the ChIP-seq protocol, it is good practice to repeat every experi-

ment at least twice, as the guidelines of the ENCODE project indicate [30]. The information

contained in replicates can then be used to assess the validity of the peaks obtained from a

single sample, especially of those with low-intensity. Biological replicates (i.e., multiple differ-

ent but biologically equivalent samples, grown/treated under the same conditions) are used

to assess the variations of the biological effect studied, and the differences among samples

are attributed to true biological variability. Technical replicates (i.e., multiple samples taken

from the very same biological system) are used to measure the reproducibility of a specific

experiment and its analysis, and differences are attributed to technical issues in measurement.

In both cases we expect largely overlapping ER patterns across replicates, with technical repli-

cates much more homogeneous than biological ones. Leveraging on this feature, we propose

to use replicates for a comprehensive evaluation of ERs across multiple samples.

In addition, a rapidly growing domain of important biological questions are being addressed

by the comparative analysis of multiple ChIP-seq data as a significant and authentic technique.

Multiple developmental stages, time courses (e.g., [155]), identification of differential binding

patterns of Transcription Factors (TF) or histone mark modifications [156], [157], [158] are of

distinct biologically important aspects appropriately address by comparing multiple ChIP-seq

data. Current analytical approaches for ChIP-seq analysis are largely tend towards single-

sample studies (reviewed in [159]), and have limited applicability in comparative settings

that aim to identify combinatorial patterns of enrichment across multiple datasets, and

discriminate sub-threshold binding from truly non-bound regions.

Multiple Sample Peak Calling In this chapter, we propose Multiple Sample Peak Calling

(MSPC), a novel method to rigorously combine the results of peak calls in ChIP-seq replicates

and to obtain new, sample-specific, peak lists taking into account their combined evidence.

The method takes as input, for each replicate, a list of enriched genomic regions and a mea-

sure of their individual significance in terms of a p-value. Starting from a permissive call,

the initial ERs are divided in “stringent” (highly significant) and “weak” (moderately signifi-

cant), and the presence of overlapping enriched regions across multiple replicates is assessed.

Non-overlapping regions can be penalized or discarded according to specific needs. The sig-

nificance of the overlapping regions is rigorously combined with the Fisher’s method to obtain

a global score. Finally, this score is assessed against an adjustable threshold on the combined

evidence, and peaks in each replicate are either confirmed or discarded (see Figure 6.1). In

other words, we are able to “rescue” weak peaks, which would probably be discarded in a

single-sample analysis, when their combined evidence across multiple samples is sufficiently

strong.

Multiple Sample Enriched Region Assessment The authenticity of combined evidence de-

pends on variety of factors including the quality of replicates and accordingly called ERs,

and also the choice of parameters to combine evidences. Inaccurate setup may lead to un-

94

6.1. Introduction

Figure 6.1: Schematic view of the proposed method. First, with a permissive call, peaks of a single
individual sample are divided as stringent and weak. Then, combining the evidence of multiple replicates,
the peaks in each replicate are confirmed or discarded.

desirable results. However, commonly an imprecise setup is not evident until the results

are further assessed using common procedures such as visualization on a genome browser,

functional analysis, or nearest-neighbor search, which motivates a trial-and-error paradigm

for correct setup. For instance, combining two replicates with stringent ERs may confirm a

small fraction of the ERs and discard a majority of them. In this case, a further assessment

such as calculation of distribution of distances between the ERs of two replicates may show

that ERs are relatively close to each other but non-overlapping. This observation can hint on

peak calling parameters (e.g., peak calling threshold is very high so that a number of narrow

and adjacent peaks are determined instead of a wide and strong one), or may encourage

being more flexible on overlapping ERs requirement. Alternatively, suppose two replicates

which are experiments on TFBS and hence it’s expected from identified ERs to be at specific

distance from known genes. It is expected from confirmed ERs to be close and discarded

ERs to be farther. However, this can be verified using known genes and different sets of ERs

as inputs to functional analysis and nearest neighbor search methods; where observations

may encourage modifying the parameters of combining replicates or may hint an improper

setup of the pipeline (e.g., imprecise peak calling setup, improper data cleaning pipeline, a

wrong down-sampling of reads, or a bad choice of control sample). All these are based on

trial-and-error and require the usage of different programs; by importing the output of one

program into another (assuming the possibilities on inconsistency between the supported

formats and possible requirement for conversions) which is cumbersome. To address this

95

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

D
at

a
 L

ay
e

r
P

re
se

n
ta

ti
o

n
 L

ay
er

D
at

a
 A

cc
e

ss
 L

ay
e

r
B

u
si

n
e

ss
 L

o
gi

c
La

ye
r

P
e

rs
is

te
n

ce

Te
ch

n
o

lo
gy

(B

+
tr

ee
)

 Semantic
 Level

Similarity search

 Logical
 Level

Batch Index Cover Summit Map

 Physical
 Level

Create Read Update Delete Enumerate

Genome
Hierarchy

Orchestrator
(Chr and strand)

Region
metadata
storage

Comparative
evaluation and
corresponding

UDF

Correlation
assessment and
corresponding

UDF

Nearest neighbor
distance distribution
and corresponding

UDF

Create Read Update Delete Enumerate

Comparative evaluation overview

Orchestrator

Distribution of enriched regions p-value

Integrated Genome Browser

Nearest neighbor analysis

Distribution of combined evidences Functional analysis

Chromosome-wide statistics

Neighbors Nearest Neighbor Distance

Figure 6.2: MuSERA architecture on extending Di3.

need, in this chapter, we present Multiple Sample Enriched Region Assessment (MuSERA), a

novel, advanced graphical tool which extends Di3 to efficiently implement, extend and gener-

alize MSPC, and in addition performs functional analyses on the identified ERs; furthermore,

through its intuitive graphical interface it provides several graphic displays that help the user

in gaining a deeper insight and biological evaluation of the analysis results. The architecture

of MuSERA on extending Di3 is given in Figure 6.2 which includes only the component of Di3

that are used to implement the functions of MuSERA. The extension of Di3 operations, and

business logic layer components of MuSERA for each operation are discussed in sections 6.4,

6.5, 6.6, 6.7, and 6.8, respectively on combining replicates, functional analysis, nearest feature

distance distribution, correlation assessment, and integrated genome browser.

6.2 Related Works

Enrichment analysis of single ChIP-seq sample is well established; however, comparative en-

richment analysis using two or more ChIP-seq samples with each other lacks a comprehensive

method. In this section, we explain few available options.

96

6.2. Related Works

6.2.1 Binary analysis

An intuitive method would be comparing two ChIP-seq samples by overlapping ERs, however

this method reported to have intrinsic statistical [160] and biological problem. ChIP-seq

experiments are subject to noise, and hence it is suggested to repeat an experiment at least

twice [30], however, by overlapping peaks from repeated evidences, typically merely ~75%

co-localization is observed, although binding profile is virtually identical and global similarity

assessed by Pearson correlation coefficient (PCC) is of 0.9 and higher [160] (a phenomena

known as "winner’s curse" [161]). Regardless of the quality of the samples, the produced

replicates tend to have a degree of dissimilarity because of possible biological variations and

instrumental errors and biases. Therefore, enrichment regions above a certain threshold

in one replicate, might be missing a supportive evidence from other replicate because the

enriched region might be below the threshold, and vice-versa. The challenged might be solved

with permissive p-value threshold, however, it is discouraged because of the high false-positive

penalty. Therefore, binary analysis does not differentiate between sub-threshold binding, and

truly non-binding site; and neither accounts for experimental variations defined in biological

and technical replicates.

6.2.2 Alignment read Merging

An intuitive way to combine evidence in replicates is to merge the alignment reads, and use a

peak caller on the combined data. As the combined dataset corresponds to the sum of the two

signals, weak, co-occurring peaks should increase their significance. To this end, alignment

files from replicates can be merged, and using merged backgrounds, call peaks on merged

replicates. As we previously reported [162], merging the alignment files “averages” replicates

with different sets of peaks, which does not necessarily give rise to true sub-thresholded bind-

ing sites. In other words, it uniformly increases statistical evidences that although reinforces

binding signal, but an inevitable side effect is that it potentially increase the number of false

positives. Additionally, the strategy is limited in applicability, it combines the reads of two

biological/technical replicates and produces one output, disregarding the true invariance

between the replicates. For instance, given three biological replicates, it is desired to combined

the statistical evidences for binding sites with an objective of giving rise to sub-thresholded

bindings considering a degree of dissimilarity in biding profile as experimental invariance.

The merging strategy, increases evidences for binding sites, and may give rise to sub-threshold

bindings, however, it does not account for biological invariance, and also the output is a

merge of three replicates that requires a devious procedure to separate for each; if possible.

Besides, the merging strategy has no user-defined parameter to tune the results and to weight

co-occurrence and significance of ERs.

97

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

6.2.3 Irreproducibility Discovery Rate

Irreproducibility Discovery Rate (IDR) [163] is a metric quantifying the reproducibility of a

peak across two ChIP-seq replicates by comparing the two lists of ERs, ranked according to

their significance. In essence, after calling the peaks, the IDR pipeline uses a bivariate rank

distribution to separate the signal (reproducible peaks) from noise (irreproducible peaks) in

an experiment (or pairwise comparison). Each peak is associated with an IDR value, which

quantifies the probability that the peak belongs to the irreproducible set. IDR is computable

using the scripts provided by Anshul Kundaje.1 The IDR [163] is a measure of the consistency of

ERs identified in replicates, which has been systematically assessed in the ENCODE project. As

we reported [162], the IDR method is rather stringent and generates only a small set of validated

(reproducible) peaks, also we showed that a number of peaks considered “irreproducible” by

IDR (with a 0.05 threshold) are validated by motif analysis. Finally, the IDR can be directly

computed only for pairs of replicates, and an extension for more is ambiguous and indirect.

6.2.4 joint Analysis of Multiple ChIP-seq Datasets

The joint analysis of multiple ChIP-seq datasets (jMOSAiCS) [20] is a generic tool for joint

analysis of multiple ChIP-seq samples, which can be also used to find common patterns of

enrichment between ChIP-seq replicates. First, the MOSAiCS peak caller [164] pre-processes

replicates and corresponding control samples by binning the mapped read counts on the

genome (default width of 200 bp), and applies the MOSAiCS model fit to each replicate-control

pair individually. Afterwards, the jMOSAiCS model is applied to the data fitted with MOSAiCS:

region-specific enrichment patterns are determined by posterior probabilities assigned to the

internal variables, and a binary variable denotes the potential enrichment of a region based

on dependencies among samples. jMOSAiCS is designed to detect combinatorial patterns

of enrichment in multiple ChIP-seq samples. Even if jMOSAiCS is conceived to integrate

different ChIP-seq datasets that profile distinct features on the same biological sample, it

can also be applied to replicates of the same ChIP-seq. As we reported [162], jMOSAiCS

commonly produces a very large amount of ERs in each experiment. We checked for the

enrichment of the Myc E-box in the peaks identified by jMOSAiCS, and it showed the presence

of the Myc canonical E-box only in half of our test samples. The observation concludes that

when jMOSAiCS applied to replicates of the same ChIP-seq experiment, has the tendency of

introducing a large amount of extra peaks, which are not always validated by motif analysis.

Moreover, jMOSAiCS requires significant computational resources, such that the running times

for two replicates were in the order of 3 hours, with about 40 GB of memory consumption, on

a server with two Intel Xeon E5-2650 processors and 64 GB of RAM, as this tool starts from

alignment files and finds ERs independently. In addition, jMOSAiCS requires data fitted to

MOSAiCS model, which restricts the choice of peak caller to MOSAiCS only and that may not

fully adapt common pipelines used across different labs.

1Available at the URL https://sites.google.com/site/anshulkundaje/projects/idr

98

https://sites.google.com/site/anshulkundaje/projects/idr

6.3. Definitions

Table 6.1: Groups of ERs based on p-values

Condition Action Description
p j i < T s r j i ∈ R s

j Stringent

p j i > T w r j i ∈ Rb
j Background

T s < p j i < T w K ≥C ∧X 2
j i > γ r j i ∈ Rc

j Confirmed

Otherwise r j i ∈ Rd
j Discarded

6.3 Definitions

Given a set of J replicates, each sample j is associated with a set R j of I enriched regions r j i :

R j {r j 1,r j 2, . . . ,r j i , . . . ,r j I }. Each region r j i is defined by
(
chromosome j i , start j i ,end j i , p j i

)
where p j i denotes a measure of the significance of r j i (i.e. its p-value). T s is a stringent

threshold on p-values, defining a set R s
j of stringent (highly enriched) ERs; R s

j : r j i ∈ R s
j ⇐⇒

p j i < T s . Similarly, we define a set Rw
j of weak (moderately enriched) ERs, containing all

regions whose Pvalue is between T s and a weak threshold T w , with T w > T s , i.e. Rw
j : r j i ∈

Rw
j ⇐⇒ T s < p j i < T w . Clearly, Rw

j ∩R s
j =; and, if T w is the maximum p-value allowed for

an ER to be associated with sample j , Rw
j ∪R s

j = R j (see Table 6.1, and Figure 6.3).

For each region i of each sample j , let r j i ,k denote the region of sample k overlapping with

r j i , if any. If sample k has multiple regions overlapping with r j i , we choose the most/least

significant one, i.e. the one with the lowest/highest p-value (user defined). Let R j i be the

collection of r j i ,k for 1 ≤ k ≤ J , including r j i itself. Let K = |R j i ,∗ j | be the cardinality of R j i ,∗,

the set of the ERs intersecting with r j i , with 1 ≤ K ≤ J by definition.

The significance of an ER is assessed through a process of combining evidences with respect

to a combined evidence X 2 statistics; this process uses a Fisher’s combined probability test

[165], that follows a χ2 distribution with 2K degrees of freedom, and a stringency threshold (γ),

which defines confirmed (Rc
j = {r j i | X 2

j i ≥ γ}) and discarded (Rd
j = {r j i | X 2

j i < γ}) sets of ERs.

The method generates an output set (Ro
j) by applying a multiple testing correction procedure

on confirmed ERs. Additionally, we define the following sets:

i. stringent confirmed: R sc
j =

{
r j i

∣∣∣ p j i < T s ∧ X 2
j i ≥ γ

}
⊆ Rc

j

ii. stringent discarded: R sd
j =

{
r j i

∣∣∣ p j i < T s ∧ X 2
j i < γ

}
⊆ Rd

j

iii. weak confirmed: Rwc
j =

{
r j i

∣∣∣ T s ≤ p j i < T w ∧ X 2
j i ≥ γ

}
⊆ Rc

j

iv. weak discarded: Rwd
j =

{
r j i

∣∣∣ T s ≤ p j i < T w ∧ X 2
j i < γ

}
⊆ Rd

j

v. multiple-testing confirmed: Rmtc
j ⊆ Ro

j

vi. multiple-testing discarded: Rmtd
j ⊆ Ro

j

99

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

We distinguish between technical and biological replicates of an experiment. Technical

replicates aim at controlling the variability of the experimental procedure used to obtain

the data and should yield exactly the same results in absence of experimental noise. In a

ChIPseq experiment, this corresponds to performing multiple times the same ChIP protocol

on the same biological sample, followed by independent sequencing on the same platform;

we expect to observe a significant overlap between ER lists in these samples. Conversely,

biological replicates are obtained by applying the same protocol on biologically equivalent

samples, what could give rise to different binding profiles of a transcription factor, as in the

case of tumor samples; here, the variability in the data can also stem from the “true” biological

variation of the phenomenon of interest. Consequently, the lack of overlap between ERs in

biological replicates does not necessarily correspond to a false positive result, as it could reflect

a true biological interaction occurring only in some samples. With our method, the user is

able to control for the required level of overlap and combined significance, according to the

specificities of the dataset.

6.4 Combining Replicates

The main idea behind our method is that repeated evidence across replicates can compensate

for a lower significance in a single sample, which is implemented through the Fisher’s method

[165]. The Fisher’s method combines the p-values of each test in a global test statistics

that follows a χ2 distribution with 2K degrees of freedom (where K is the number of tests

combined); therefore, it can be used to falsify the statement “all null hypotheses are true”, i.e.

“all overlapping ERs are due to background noise”. Comparing intersecting ERs from a set of J

replicates is equivalent to test the same genomic region in independent experiments against

the same null hypothesis H0, i.e. “the number of reads in the region under study is sampled

from the background distribution”, and obtaining independent probabilities of rejecting H0

(i.e. independent p-values).

6.4.1 Authenticity of Combining Replicates

A p-value is “the probability of the observed results, plus more extreme results, if the null

hypothesis were true” [166], or in algebraic notation Prob(X ≥ x | H0) for X being “a random

variable corresponding to some way of summarizing data (such as a mean or proportion), and

x is the observed value of that summary in the current data.” [166] The p-value is calculated,

assuming that the H0 is true, therefore lower p-values could not be interpreted as rejecting H0.

Comparing p-value to a significance level yields either to rejection of H0, or cannot reject H0

which does not imply that H0 is true. Therefore, when the p-value of an enrichment region

is less than an expected value, it yields insufficient evidence to decide upon the probability

of observing the enriched region only by chance, it should not be miss-interpreted that this

means the region is observed only by chance. Therefore by combining corresponding p-

values into one single test statistic, one increases observation, hence statistical evidence for

100

6.4. Combining Replicates

Stringent
56%

Weak
44%

Input

Stringent-
Confirmed

48%

Weak-
Confirmed

52%

Output

Stringent Confirmed
7%

Stringent Discarded [C]
15%

Stringent Discarded [T]
0%

Weak Confirmed
7%Weak Discarded [C]

69%

Weak Discarded [T]
2%

Intermediate set

Figure 6.3: The information for these pie-charts are provided by MuSERA
and MSPC and are plotted here as an example. These are the informa-
tion about sample wgEncodeBroadHistoneK562CtcfStdAlnRep1, analyzed with
wgEncodeBroadHistoneK562CtcfStdAlnRep2 as supporting sample, and considering them as
biological samples with T s = 1E −8, T w = 0.01, C = 2, γ= 1E −8, and α= 0.05.
[C]: refers to ERs discarded failing compiling minimum overlapping ER requirement.
[T]: refers to ERs discarded failing the combined stringency test.

enrichment at specific position on genome. Note that, p-value is neither the probability of

accepting H0, nor rejecting alternative hypothesis (Ha) [167] [168], rather H0 is rejected at a

given significance level if p-value is lower than or equal to the given significance level [169];

also note that, the significance level is not determined by p-value, it’s rather given. [167] [168]

101

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

6.4.2 Combining Test Statistics

Weak peaks, corresponding to a moderate enrichment of ChIP-seq reads, could arise from a

random deviation from the background distribution, and they are therefore usually discarded

from a single-sample analysis. However, if the same evidence is confirmed across replicates,

it could correspond to a true interaction of the antibody with its target on the DNA. The

significance of an enrichment is assessed via multiple independent tests, however, if one or

few test results indicate individually insignificant, “yet the aggregate gives an impression that

the probabilities are on the whole lower than would often have been obtained by chance.”

[165] To combine the individual one-sided test statistics, we assume the following prerequisite

are satisfied for the p-values:

1. Experiments are independent, accordingly, the significant of enrichment region, are

independent.

2. On-sided test statistics have continuous distribution function under null hypothesis,

therefore, the distribution function of test statistic is uniformly distributed under the

same overall null hypothesis on (0,1), hence, the inverse of standard normal distribution

function, has a standard normal distribution under same overall null hypothesis. [170]

The general form of a statistics combining p-values is:

Θ=
K∑

i=1
wi F (pi) (6.1)

where the factor wi denotes the weight of each test statistics combined; however, this factor

is not always initially proposed by the author and for augmentation reasons, it is added up

in latter researches, therefore to keep methods in original and coherent format, we would

decline this parameter. Some of the methods for combining test statistics are as following:

i. Ronald Fisher’s combined probability test [165]

ΘF = X 2 =−2
K∑

i=1
loge pi (6.2)

where K is the number of independent p-values (pi) being combined. Each of the

pi ’s is uniformly distributed, therefore the negative natural logarithm will render them

exponentially distributed, and scaling each of them by two gives them a Chi-squared

(χ2) distribution with two degrees of freedom, hence their summation will be following

the same distribution with 2K degrees of freedom. [171]

ii. Liptak’s method for combined probability test [172]

ΘL =
K∑

i=1

(
Φ−1 (

1−pi
))

(6.3)

where Φ−1 is the inverse of standard normal distribution function.

102

6.4. Combining Replicates

iii. Mudholkar and George [173]

ΘM =
K∑

i=1

(
− log

pi

1−pi

)
(6.4)

iv. Wilkinson [174]

ΘW =
K∑

i=1

(
I
(
pi ≤ ε

))
(6.5)

This method is based upon the number of pi ’s below ε threshold.

v. Truncated product method [175]

ΘZ =
K∑

i=1

(
I
(
pi ≤ ε

)
loge pi

)
(6.6)

There have been plenty of efforts on assessing asymptotic optimality of distinct methods

of combining independent tests of significance. Littell and Folks [176] [177] compared four

different methods via exact Bahadur relative efficiency [178], (1) Fisher’s method, (2) a method

which is based on the mean of normal transforms of the significance levels, (3) a method based

on maximum significance level, and finally (4) a method based on minimum significance

level. They reasoned, “there is no uniformly best method of combining independent tests, at

least from a power point of view”. They showed that Fisher’s method is at least as efficient

as studied methods and “under certain conditions, Fisher’s method is optimal among all

tests based on the data, not only among methods of combining”. Another and relatively new

effort [179] reasoned that there exist no uniformly most powerful test. “Various combination

methods were compared empirically instead of by further theoretical investigation. However,

all these investigations failed to find any practically most powerful region”. Another research

[180]reasoned that Wilkinson’s method [174] is asymptotically optimal than Fisher’s method.

Considering all novel researches on comparing meta-analysis methods, to combine the sig-

nificance of a set of overlapping peaks, we use the Fisher’s combined probability test [165]:

X 2
j i =−2

∑
r j i ,K ∈R j i ,∗

ln
(
pK

)
(6.7)

where pi is the p-value of the region r j i ,K , and X 2
j i is a test statistic which follows a χ2 distribu-

tion with 2K degrees of freedom (where K is the number of combined p-values).

103

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

r11 r12

r21 r22 r23

r31 r32 r33

G e n o m e

A sample portion on the domain

 Sample 1 Sample 2 Sample 3

Figure 6.4: Possible overlapping conditions with three replicates.

6.4.3 Method of Combining Replicates

Background

Intersecting regions between multiple samples can be far from trivial, especially when J > 2.

We illustrate some of the situations that can arise for J = 3 in Figure 6.4. A region in one sample

can overlap with multiple regions in another sample, like r12 in sample 1 with r21 and r22

in sample 2 on Figure 6.4. As some peak callers tend to produce small, adjacent peaks that

correspond to the same physical interaction between the antibody and the target, we consider

only the region with the most stringent p-value in sample 2 to validate r12. If both r21 and r22

are considered, the ER in the first sample would be backed by two, independent evidences in

the second sample, thus leading to an overestimation of the significance of r12. Similarly, r11

is evaluated together with r21 and one of the two regions r31 and r32. Moreover, a region can

overlap with distinct regions in multiple samples, which do not overlap with each other, like

r12, r21 and r22.

Considering the number of regions and samples, determination of intersecting regions with a

given region is computationally expensive process. In literature, there exist various efficient

algorithms addressing the issue. However, depending on our specific need, the performance

of these methods vary considerably. In following we emphasize the methods and their com-

parisons.

ERs can efficiently be sorted on genomic coordinates. Hence one trivial approach of finding

intersection between J samples could be to use an algorithm based on ordered lists. Using

this representation, samples could be intersected using a linear merge by scanning both

lists in parallel. Such algorithms are in complexity order of O
(∑

j |S j |
)
. These approaches

are inefficient when only a small fraction of ER’s intersect or the ER count in samples differ

significantly [181].

104

6.4. Combining Replicates

Data structures such as binary search trees offer efficient search bases, Red-Black trees are an

example data structures utilizing these bases [182]. Red-Black trees are type of self-balancing

search trees which at every node insertion or deletion operation change the height of tree to

preserve the height-balance (i.e., the height of left and right subtrees of each node are either

equal or their difference is at most 1). The complexity of search operations could be of order

O(n) in unbalanced trees, while height-balanced trees guarantee O(log2 n) complexity, where

n is the number of items inserted in the binary tree.

Interval trees [183] [184] are an augmentation of Red-Black trees with every node representing

an interval (ER in this context). Interval trees keep all the intervals with start point smaller

than root start point in left-subtree of the root, and all the intervals with start point greater

than or equal to the root start point in right-subtree. This property allows queries such as

"given an interval I , find first occurring interval in interval tree intersecting with I " to be

done in O(log2 n) time, while preprocessing takes O(n log2 n) where n is the number of ERs

in this context. Interval trees are output sensitive algorithms, meaning that, a query for

all intervals intersecting with I require O(k log2 n), for k being the number of intersecting

intervals. Alternatively, [185] reported an algorithm for retrieval of k intersecting intervals

with I in O(k + log2 n) time.

Algorithm

Interval trees are optimal data structures for our challenges, hence we use the method to

find ERs overlapping a given ER. To this end, for each chromosome of sample j we create

an interval tree, this allows us to parallelize process chromosome wide. Then for each ER

of sample j , we determine the intersecting ER’s on corresponding chromosome of samples

{1,2, . . . J }− j . The process requires O(kn log2 n) time for one sample and O(Jkn log2 n) for all

samples. Since k and J are considerably smaller than n, hence asymptotic behavior of the

algorithm will be in order of O(n log2 n) for one or more samples test. Unlike linear merge

algorithms, this method does not necessarily require the ERs to be provided sorted, and the

difference between samples in terms of ERs count and the fraction of intersecting ERs, has no

impact on performance.

A flowchart of the method is given at Figure 6.5, and we discuss the detail in the following.

We assign every ER r j i in a given sample j to either R s
j or Rw

j according to its significance.

For a given ER, we then determine R j i ,∗ as the set of ERs in the replicates that overlap with

r j i , including r j i itself. The cardinality K of R j i ,∗ represents a measure of the reproducibility

of the signal in the region spanned by r j i , while the significance of r j i ,K ∈ R j i ,∗ is a measure

of the intensity of the signal in a specific replicate K , given the background. We rigorously

combine the significance of the overlapping ERs in R j i ,∗ with the Fisher’s method and define a

new score for their combined evidence X 2, as follows (see section 6.4.2 for details):

X 2
j i =−2

∑
r j i ,K ∈R j i ,∗

ln
(
pK

)
(6.8)

105

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

START

YES

YES

YES

YES

NO

NO

YES

NO

NO

NO

END

YES

NO

YES

NO

Technical
Replicate ?

YES
NO

𝑗 = 0

𝑗 = 𝑗 + 1

𝑗 ≤ 𝐽 𝑖 = 0 𝑖 = 𝑖 + 1 𝑖 ≤ 𝐼

𝑗 = 0

𝑗 = 𝑗 + 1

𝑗 ≤ 𝐽

𝑝 𝑗𝑖 < 𝑇𝑠 𝑟 𝑗𝑖 ∈ 𝑅 𝑗
 𝑠

 𝑇𝑠 ≤ 𝑝 𝑗𝑖 < 𝑇𝑤 𝑟 𝑗𝑖 ∈ 𝑅 𝑗
 𝑤

 Find 𝑅𝑗𝑖 ,∗

𝐾 = 𝑅𝑗𝑖 ,∗

𝐾 ≥ 𝐶 𝑟 𝑗𝑖 ∈ 𝑅 𝑗
 𝑑

𝑋 𝑟 𝑗𝑖

2 > 𝜒𝛾 ,2𝐾
2 ∀𝑗 𝑟𝑗𝑖 ∈ 𝑅 𝑗

 𝑑

∀𝑗 𝑟𝑗𝑖 ∈ 𝑅𝑗
𝑐

𝑅𝑗
𝑐 = 𝑅𝑗

𝑐 ∖ 𝑅𝑗
𝑐 ∩ 𝑅𝑗

𝑑

𝑅𝑗
𝑑 = 𝑅𝑗

𝑑 ∖ 𝑅𝑗
𝑐 ∩ 𝑅𝑗

𝑑

𝑅𝑗
𝑜 = 𝐵𝐻 𝑅𝑗

𝑐 , 𝛼

Figure 6.5: The flowchart of combining replicates. For the definition of symbols, see section 6.3; and for
the description of method, see section 6.4.3.

Then, we compare X 2 with an adjustable threshold c:

1. if the desired stringency is obtained, we assign r j i to the set Rc
j of confirmed peaks for

sample j .

2. if the condition is not met, i.e. the combined evidence is not strong enough, we assign

r j i to the set Rd
j of discarded peaks for sample j .

All the ERs in R j i ,∗ are assigned to the corresponding confirmed Rc
K or discarded Rd

K set,

respectively. We leave the possibility to distrust a region r j i , regardless of its significance,

when it is not backed up by the presence of overlapping ERs in a minimum number of samples

C . C is an adjustable parameter ranging between 1 and J , with different default values for

106

6.4. Combining Replicates

Algorithm 14 A UDF for comparative evaluation

1: procedure COMBINEERS(R j i ,∗)
2: if |R j i ,∗| ≥C then
3: X 2

r j i
←−2

∑
r j i∈R j i ,∗ ln(p j i)

4: if X 2
r j i

>χ2
γ,2K then

5: ∀ j r j i ∈ Rc
j

6: else
7: ∀ j r j i ∈ Rd

j

8: else
9: r j i ∈ Rd

j

10: return Rd
j and Rc

j

biological and technical replicates. In summary, for a given sample j (see Table 6.1):

Rc
j =

{
r j i

∣∣ X 2
j i ≤ γ ∧ K ≥C

}
Rd

j =
{

r j i
∣∣ X 2

j i > γ ∨ K <C
}

We repeat this procedure for each sample. We note that an ER can participate in different

sets of overlapping regions, as a consequence, it is possible that an ER is assigned to both the

confirmed and discarded sets as a result of different tests. These peaks are assigned to the

confirmed set if replicates are biological and to the discarded set if replicates are technical.

In other words, as technical replicates are supposed to be very similar, for an ER it is enough

to fail the test once to be removed from the confirmed set, while for biological replicates this

condition is relaxed and it is enough to pass the test at least once for an ER to be confirmed.

6.4.4 Combining replicates using Di3

MuSERA extends the operations of Di3 through UDF to combine replicates based on the algo-

rithm of MSPC (given in Figure 6.5). MuSERA defines a UDF for combining overlapping ERs

(given in Algorithm 14), and defines a comparative evaluation function (given in Algorithm 15)

that incorporates the UDF and Di3 functions to combine replicates.

6.4.5 Threshold Automatic Validation

The Fisher’s method is a universal procedure to combine independent p-values. It is based

on simple considerations: under the null hypothesis H0, p-values are uniformly distributed

on the interval [0,1] and their logarithms follow an exponential distribution; the sum of the

p-values, multiplied by a factor two, approximately follows a χ2 distribution with degrees

of freedom equal to twice the number of p-values combined. We confirm a peak when its

combined p-value is below a definable threshold γ , i.e., pcomb
j i < γ. To increase computational

107

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Algorithm 15 Comparative evaluation of ERs of ChIP-seq replicates

1: procedure COMPARATIVEEVALUATION

2: for each r j i do
3: if p j i < T s then
4: r j i ∈ R s

j
5: else
6: if T s ≤ p j i < T w then
7: r j i ∈ Rw

j
8: else
9: continue iteration with next r j i

10: fmap(r j i ,D+, CombineERs) . Calls the MAP function of Di3 and passes: r j i as
reference interval, first resolution index, and CombineERs UDF.

11: for each sample j do
12: if sample are technical replicates then

13: Rc
j ← Rc

j \
{

Rc
j ∩Rd

j

}
14: else
15: Rd

j ← Rd
j \

{
Rc

j ∩Rd
j

}
16: Ro

j ← BH(Rc
j ,α) . BH: Benjamini–Hochberg step-up procedure

17: return Ro
j

efficiency, we rewrite this condition on X 2
j i as it follows. Let FK (x) be the right-tail cumulative

probability for a χ2 distribution with 2K degrees of freedom, i.e.,

Fk (x) =
∫ +∞

x
χ2

2K (t)d t (6.9)

thus, pcomb
j i = FK (X 2

j i). A threshold on the test-statistic equivalent to γ can be defined as

X 2
γ,2K : FK (X 2

γ,2K) = γ. Hence, pcomb
j i < γ ⇐⇒ X 2

j i > χ2
γ,2K . As the function FK (x) can be

expensive to compute and the number of K overlapping peaks rarely exceed 5− 10, for a

given γ, we computed a look-up table for several values of K , and we test directly X 2
j i against

such look-up table values. With this procedure, the significance of a genomic region across

replicates is rigorously weighted: the larger is the number of overlapping ERs, the weaker is the

single-sample significance needed to confirm the peak. We note that, depending on the values

of γ, K and pk (the p-value of region k), we can avoid running the Fisher’s test altogether. Let’s

suppose we have the same p-value pk = p∗ for each k (i.e., for all K intersecting ERs); the

condition X 2
j i >χ2

γ,2K becomes:

−2
∑

r j i ,k ∈ R j i ,∗
ln p∗ >χ2

γ,2K (6.10)

and thus:

exp

(
χ2
γ,2K

−2K

)
> p∗ (6.11)

108

6.4. Combining Replicates

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

2 3 4 5 6 7 8 9 10

Th
re

sh
o

ld
-1

0
Lo

g 1
0

p
-v

al
u

e

K (intersecting peaks count)

Thresholds for automatic validation

γ = 1.00E-1 γ = 1.00E-2 γ = 1.00E-3 γ = 1.00E-4 γ = 1.00E-5

γ = 1.00E-6 γ = 1.00E-7 γ = 1.00E-8 γ = 1.00E-9

Figure 6.6: Maximum thresholds (in −10log10 units) for the p-value of each intersecting peak to auto-
matically confirm all peaks (without need to run the Fisher’s test), as a function of the intersecting peak
number K and of the definable combined evidence threshold γ.

In other words, if the p-values of the K intersecting peaks are all below or equal to p∗ =
exp

(
χ2
γ,2K

/−2K
)
, the test is not performed and all peaks are automatically confirmed. The

values of p∗ for different thresholds γ are shown as a function of K in the Figure 6.6. We note

that, when γ= T s and C = 1, all the strong peaks pass the test.

6.4.6 Example

We illustrate here how the ER sets generated by our method are obtained for the example in

Figure 6.4. Let r12, r32 and r33 be strong enriched regions (ERs) and p21 < p22; the set of strong

and weak ERs of each sample are defined as: R s
1 = {r12}, Rw

1 = {r11}, R s
2 =;, Rw

2 = {r21,r22,r23},

R s
3 = {r32,r33}, and Rw

3 = {r31}. The corresponding ER sets generated by our method are detailed

as it follows for two cases: 1) the samples are technical replicates; 2) the samples are biological

replicates.

Case 1: Technical Replicates

Being the samples technical replicates, we set C = J by default (C can be changed by the

user). Our method begins by evaluating the first region of the first sample, r11. The set

of ERs overlapping with r11 is determined as it follows: R11,∗ = (R1 ∩min R1)∪ (R1 ∩min R2)∪
(R1 ∩min R3) = {r11,r21,r32}, where ∩min selects the intersecting region with the minimum

p-value (highest significance) in each sample and (R1 ∩min R1) includes r11 in R11,∗. As r11

intersects both with r31 and r32 from sample 3, our method considers only the most significant

109

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

ER among the two, which is r32, according to our assumptions. As samples are technical

replicates, our method computes K = ∣∣R11,∗
∣∣ = 3 = C and verifies that the condition K ≥ C

holds for r11. Then, it combines the p-values of the intersecting ERs using the Fisher’s method

as it follows:

X 2
11 =−2

∑
rk∈R11,∗

ln pk =−2ln p11 −2ln p21 −2ln p32

Depending on p11, p21, p32 and the adjustable threshold γ, the combined evidence of the

intersecting ERs either confirms or discards all the ERs in R11,∗. If the ERs are confirmed,

r11 ∈ Rc
1 , r21 ∈ Rc

2 and r32 ∈ Rc
3 . Otherwise, if the ERs are discarded, r11 ∈ Rd

1 , r21 ∈ Rd
2 and

r32 ∈ Rd
3 .

Our method continues by assessing the second ER in the first sample, r12. In this case, the

set of intersecting regions is R12,∗ = (R1 ∩min R1)∪ (R1 ∩min R2)∪ (R1 ∩min R3) = {r12,r21}. Since

r12 does not intersect with the minimum number of required ERs (i.e.,
∣∣R12,∗

∣∣= K = 2 <C), all

these peaks are assigned to the discarded sets of the corresponding samples, i.e., r12 ∈ Rd
1 and

r21 ∈ Rd
2 .

In the second sample, the set R21,∗ = {r21,r12,r32} is determined for r21 and, with K = 3, the

condition on the minimum intersecting ERs is also met; thus, the p-values p21, p12 and p32

are combined through the Fisher’s method. The ERs are then confirmed, if their combined

evidence satisfies the threshold, i.e., r21 ∈ Rc
2 , r12 ∈ Rc

1 and r32 ∈ Rc
3 ; otherwise, r21 ∈ Rd

2 ,

r12 ∈ Rd
1 and r32 ∈ Rd

3 .

In the following, r22, r23 and r31 are discarded (together with their intersecting ERs) because

in these cases the number of intersecting ERs is insufficient (i.e., K <C = J): R22,∗ = {r22,r12}

and r22 ∈ Rd
2 , r12 ∈ Rd

1 ; R23,∗ = {r23} and r23 ∈ Rd
2 ; R31,∗ = {r31,r11} and r31 ∈ Rd

3 and r11 ∈ Rd
1 .

The ER r32 intersects with 2 other ERs (R32,∗ = {r32,r21,r11}), satisfying the K ≥C requirement.

If condition X 2
j i >χ2

γ,2K is met, r32 ∈ Rc
3 , r21 ∈ Rc

2 and r11 ∈ Rc
1 ; otherwise, r32 ∈ Rd

3 , r21 ∈ Rd
2 and

r11 ∈ Rd
1 .

Finally, r33 is discarded because K <C : R33,∗ = {r33} and r33 ∈ Rd
3 .

The final outcome depends on the combined evidences X 2
11, X 2

21 and X 2
32. Let us assume that

all combined evidences satisfy the condition X 2
j i >χ2

γ,2K and therefore all the corresponding

regions are confirmed. Thus, the final ER sets are the following:

Rw,d
1 = {r11} Rw,c

1 = {r11} R s,d
1 = {r12} R s,c

1 = {r12}

Rw,d
2 = {r21,r22,r23} Rw,c

2 = {r21} R s,d
2 =; R s,c

2 =;
Rw,d

3 = {r31} Rw,c
3 =; R s,d

3 = {r33} R s,c
3 = {r32}

In the case of technical replicates, the set of confirmed peaks (Rc
j = Rw,c

j ∪R s,c
j) is modified

110

6.4. Combining Replicates

by removing the ERs in common with the set of discarded peaks (Rd
j = Rw,d

j ∪R s,d
j), resulting

in the following sets: Rw,c
1 =;, R s,c

1 =;, Rw,c
2 =;, R s,c

2 =;, Rw,c
3 =;, R s,c

3 = {r32}. Finally, for

each set the output set, Ro
j is obtained by applying the multiple testing correction on the set of

confirmed peaks Rc
j , and only ERs with a false discovery rate below a definable threshold α are

kept. Let us suppose that this requirement is met by r32; the final outcome becomes: -3mm

Ro
1 =;

Ro
2 =;

Ro
3 = {r32}

Case 2: Biological Replicates

In case the samples are biological replicates, for this example let us set C = 2 < J . First our

method determines the set of intersecting ERs for the first ER in the first sample, i.e., r11:

R11,∗ = (R1 ∩min R1)∪ (R1 ∩min R2)∪ (R1 ∩min R3) . The condition on the minimum number

of intersecting region K = 3 ≥ C = 2 is met, and therefore the Fisher’s method is applied to

evaluate the combined evidence for that ER. Here, we assume that X 2
j i >χ2

γ,2K , and therefore

r11 ∈ Rc
1 , r21 ∈ Rc

2 and r32 ∈ Rc
3 .

For the second ER in the first sample, r12, our method obtains R12,∗ = {r12,r21} (we remind

that in case of multiple intersections with ERs in the same sample, like r21 and r22 here, only

the strongest ER, i.e., r21, is considered), which satisfies K = 2 ≥ C = 2. Let us assume the

combined p-value confirms the ERs of R12,∗ i.e., r12 ∈ Rc
1 , r21 ∈ Rc

2 .

In the second sample, R21,∗ = {r21,r12.r32} also satisfies the condition K = 3 ≥ C = 2. Again,

let us assume that using the Fisher’s method the ERs in R21,∗ are confirmed; thus, r21 ∈ Rc
2 ,

r12 ∈ Rc
1 and r32 ∈ Rc

3 .

For r22, the set of intersecting peaks is R22,∗ = {r22,r12}. With conditions K = 2 ≥ C = 2 and

X 2
j i >χ2

γ,2K satisfied, all these ERs are confirmed, i.e., r22 ∈ Rc
2 and r12 ∈ Rc

1 .

Both r23 and r33 do not intersect any other ER, therefore, R23,∗ = {r23} and R33,∗ = {r33}fail to

satisfy the condition K = 1 ≥C = 2 and the corresponding ERs are discarded, i.e., r23 ∈ Rd
2 and

r33 ∈ Rd
3 .

In the third sample, the set R32,∗ = {r31,r11} for r31 satisfies k = 2 ≥ C = 2. Assuming that

X 2
j i >χ2

γ,2K , these ERs are confirmed, i.e., r31 ∈ Rc
3 and r11 ∈ Rc

1 .

Finally, for r32 we have R32,∗ = {r32,r21,r11}, which satisfies K = 3 ≥ C = 2. Assuming that

X 2
j i > χ2

γ,2K , also these ERs are confirmed, i.e., r32 ∈ Rc
3 , r21 ∈ Rc

2 and r11 ∈ Rc
1 . Thus, the final

sets of ERs are:

111

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Rw,d
1 =; Rw,c

1 = {r11} R s,d
1 =; R s,c

1 = {r12}

Rw,d
2 = {r23} Rw,c

2 = {r21,r22} R s,d
2 =; R s,c

2 =;
Rw,d

3 =; Rw,c
3 = {r31} R s,d

3 = {r33} R s,c
3 = {r32}

In the case of biological replicates, the ERs which were assigned both to the discarded set

(Rd
j = Rw,d

j ∪R s,d
j) and to the confirmed set (Rc

j = Rw,c
j ∪R s,c

j) of a sample are relocated only to

the latter set: Rd
j = Rd

j \ {Rc
j ∩Rd

j }. In this example, this modification leaves the previous sets

unmodified.

Lastly, for each sample j , the output set Ro
j is obtained by applying the multiple testing

correction on the confirmed set Rc
j , and only ERs with a false discovery rate below a definable

thresholdα are kept. If this requirement is met by each confirmed ER, the final result becomes:

Ro
1 = {r11,r12}

Ro
2 = {r21,r22}

Ro
3 = {r31,r32}

6.5 Functional Annotation and Analysis of Enriched Regions

6.5.1 Motivation

An ER can overlap known genomic loci, like promoters or other regulatory elements of genes.

Besides, a gene might be regulated by a transcription factor bound to a DNA regulatory

element far from its promoter (e.g., regulatory elements called enhancers [186] can be located

far from transcription start, like for the Sonic hedgehog (Shh) gene in mouse [187]), even

interspersed with other non-regulated genes [188] [189]. MuSERA can efficiently assign an

ER to the closest up-/down-stream genomic feature (e.g., gene Transcription Start Site (TSS),

promoter region, Coding DNA Sequence (CDS), or enhancer list), thanks to its optimised

implementation using binned data. Furthermore, MuSERA estimates the ER-to-feature overlap

score, by determining the number of ERs intersecting with genomic annotations (i.e., known

genes, 3’/5’ Untranslated Regions (UTR), CDSs, Intergenic Regions (IGR), introns, promoter

regions, etc.), or with any experimentally verified binding sites uploaded in MuSERA by the

user through annotations in General Transfer Format (GTF) format. Additionally, it estimates

the ER-to-feature distance distribution between the ERs and the closest up-/down-stream

features per functional group. All these options allow to better evaluate the distribution of the

ERs in the genomic context.

6.5.2 Algorithm

Once replicates are combined, MuSERA automatically annotates ERs with user-provided ge-

nomic features (e.g., genes, promoters, CDSs, binding sites of other transcription factors, etc.),

which is by indexing data in Di3. MuSERA is an interactive tool, where the user can tune a

112

6.6. Nearest Neighbor Distance Distribution

few parameters to achieve better results; hence, response time to update each annotation pa-

rameter is reasonably fast. MuSERA can linearly group ERs and known binding sites/genomic

annotations that overlap; however, this would require re-running the algorithm in case of any

user-defined parameter is changed. To avoid this, the functional analysis algorithm of MuSERA

extends Di3, and indexes ERs and known binding sites/genomic annotations once a session is

selected, which significantly improves the performance at changing user-defined parameters.

In general, a snapshot of Di3 bookmarks all the ERs and genomic features overlapping a

position on genome; hence it enables constant access for the biological interpretation of the

snapshot. This aspect avoids re-running the annotation process in case of changing any user-

defined annotation parameter, such as the filter option (e.g., considering only Transcription

Factor Binding Sites or Coding DNA Sequences as known binding sites/genomic annotations).

Additionally, given an ER, the corresponding DNA segments (i.e., snapshots) are determined in

logarithmic time, because this requires a dichotomic search on first resolution of Di3, and the

element annotations are determined in constant time; therefore, an ER annotation is optimally

computed in O(log2 n) for n snapshots. A pseudo code of functional analysis algorithm using

Di3 is given in Algorithm 16.

Algorithm 16 Functional analysis algorithm based on Di3

1: procedure FUNCTIONALANALYSIS(r j i)
2: T ← fmap(r j i ,D+, null) . Does not pass a UDF to the MAP function.
3: T ← update T with user-defined annotation parameters
4: return T

6.5.3 Graphical User Interface

This tab helps assessing the distances between ERs and given genomic features (see Figure 6.7).

To do so, i.e., to calculate the distance from set X to set Y, MuSERA requires the user to provide

the sets X and Y, where X is a set of ERs and Y is a set of genomic features. For instance, X can

be the set of all weak-confirmed and weak-discarded ERs on chr2 and chrX of all the samples

of the session; and Y can be a selected source of genomic features.

6.6 Nearest Neighbor Distance Distribution

6.6.1 Motivation

MuSERA can compute the ER nearest neighbour distance distribution (NND); together with

the supplied functional annotation and analysis features, this is particularly useful for ChIP-

seq annotation. In each analysis session consisting of at least two samples, the ERs of each

sample are grouped into different sets before (stringent or weak set) and after (stringent

confirmed, weak confirmed, stringent discarded, and output set) the multiple-sample analysis.

To estimate the NND, after the user chooses the desired sample(s) and set(s) to be considered,

for each ER MuSERA determines the distance to the nearest ER; an option is available to treat

113

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Figure 6.7: MuSERA features: functional annotation and analysis.

all selected samples and sets either as a single entity or as distinct entities. In the case of single

entity, the closest neighbour of an ER could be an ER belonging to any set of any sample of the

analysis session. In the case of distinct entities, the closest neighbour of an ER is determined

within the same set and sample of the ER.

6.6.2 Algorithm

Once an analysis session is selected through the GUI of MuSERA, all ERs and user-provided

genomic features (e.g., genes, promoters, CDSs, binding sites of other transcription factors,

etc.) are automatically indexed in Di3. MuSERA is an interactive tool and aims for fastest re-

sponse time for parameter changes. Therefore, to improve performance, the nearest neighbor

(feature) distance distribution function of MuSERA leverages on nearest neighbor function of

Di3. The nearest neighbor function of Di3 is defined at semantic level and is implemented over

the functions of logical and physical levels. However, this design is agnostic to MuSERA which

facilitates application of function; to calculate nearest feature distance distribution MuSERA

defines a UDF and passes it to Di3, which is described by pseudo codes of Algorithm 17 and

Algorithm 18.

6.6.3 Graphical User Interface

This tab provides features to estimate the distribution of distances between the ERs and their

nearest neighbors (see Figure 6.8). The distance is the distance between an ER belonging to the

selection and the closest ER also belonging to the selection. For instance, let us suppose that

weak-confirmed and weak-discarded classifications are chosen. For each ER belonging to the

weak-confirmed or weak-discarded classification, the distance to the closest weak-confirmed

114

6.7. Global Correlation Assessment

Algorithm 17 Nearest feature distance distribution function of Di3

1: procedure NEAREST_NEIGHBOR_DISTANCE(r j i , UDF)
2: find Bb

∣∣eb−1 <
¯
r j i ≤ eb

3: i ← 0
4: do
5: i ← i +1
6: d ←−1
7: if UDF(@I ∈ Bb−i) = true then
8: d ← eb −eb−i

9: if UDF(@I ∈ Bb+i) = true then
10: d ← min(d ,eb+i −eb)

11: while d 6= −1
12: return d

Algorithm 18 Nearest feature distance distribution procedure of MuSERA

1: procedure NND_UDF({@I j i })
2: T ← {@I j i }

. @I j i is pointer to any interval, and its type is determined using interval meta data
which are organized by “Region metadata storage” component of MuSERA.

3: if T contains any of user-specified features then
4: return true
5: else
6: return false

1: procedure NND(r j i)
2: return fNND(r j i ,NND_UDF)

or weak-discarded ER will be determined. If the closest ER is upstream, the distance is between

the start of the ER and the end of the neighbor. If the closest ER is downstream, the distance is

between the end of the ER and the start of the neighbor. If the closest neighbor is overlapping

the ER, then the distance is zero.

6.7 Global Correlation Assessment

6.7.1 Motivation

The similarity between replicates is frequently assessed either before peak calling, using

genome-wide read densities, or after peak calling, using the identified enriched regions.

Pearson’s product-moment correlation coefficient (PCC) [190] is a threshold-independent and

scale-invariant method [160] commonly used to compute a global correlation assessment

between replicates. PCC is also used after the peak calling when binned signal intensities are

provided, either in a separate wiggle file per sample or as numerical vectors per identified

ER (e.g., dataset chipseq mES of [191]). Besides, the Jaccard Similarity Coefficient (JSC) is a

115

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Figure 6.8: MuSERA features: Nearest Neighbor Distance Distribution.

statistical method for correlation/diversity assessment of samples, consisting on the ratio

between the cardinalities of the intersection and the union of two sets; it can be used both

as before peak calling (e.g., [192] increased genes detection power of RNA-seq data using JSC

for global similarity filtering) and post peak calling (e.g., [193] [194]) correlation assessment

procedure.

The similarity estimates help to better understand the different ER sets. For instance, a

sample may contain a large number of ERs when peaks are called with a permissive p-value

threshold, which are not necessarily co-localized with evidences on other replicates. Therefore,

similarity between input sets is expected to be low; the similarity between discarded evidences

is expected to be very low, while higher similarities are expected for confirmed ERs and output

sets. A hierarchical representation of different classes of ERs along with their similarity indexes

is provided in Figure 6.9 (MuSERA provides the information required to generate this figure,

the figure is not generated by MuSERA itself).

MuSERA determines both region-level and base-pair-level correlations between all pairs of sets

using JSC (see Figure 6.9). They are respectively computed as the ratio between the number of

overlapping regions (region-level correlation), or genomic bases (base-pair-level correlation),

and the total number of regions, or genomic bases, in the considered sets. Base-pair-level

correlation is more stringent and is to be preferred when the position of the ERs is known

with certainty, or when the experimental protocols have a low level of noise. Region-level

correlation is instead more permissive, as it scores the overlap of entire regions rather than

116

6.7. Global Correlation Assessment

Input

0.086

0.084

Stringent ERs

0.402

0.282
Weak ERs

0.049

0.031

Stringent – Confirmed

0.402

0.282

Weak – Confirmed

0.758

0.274

Stringent – Discarded

0.000

0.000

Weak – Discarded

0.008

0.004

Output

0.866

0.479Base-Pair-Level Jaccard Similarity

Region-Level Jaccard Similarity

Figure 6.9: During processing of two replicate samples, MuSERA estimates the Jaccard similarity
coefficient between the two samples and for each of their computed ER sets. Values are shown
for the ENCODE samples wgEncodeSydhTfbsK562CmycIfna30StdAlnRep1 and wgEncodeSydhTf-
bsK562CmycIfna30StdAlnRep2 (processed with analysis parameters: BioRep, T s = 1E −8, T w = 1E −4,
γ= 1E −8, and C = 1), which overall show a rather low correlation (Input). In these samples the peaks
are called using MACS2.0 [195] with 0.001 p-value threshold; hence, such low correlation is expected
because of low signal-to-noise ratio. Initial classification of the ERs in each replicate (i.e., Stringent
ERs vs. Weak ERs) confirms that in the replicates stronger evidences correlate better than weaker ones.
Combining the samples, each of the two initial categories is divided into the Confirmed and Discarded
sub-categories; ERs in the Confirmed sub-categories resulted to be considerably more correlated compared
to their corresponding ERs in the Discarded sub-categories.

quantifying the magnitude of this overlap; this correlation measure is then to be preferred in

presence of heterogeneous or noisy data sets.

Overall Similarity The overall similarity is computed across samples in terms of regions

and base-pairs in common. For instance, the overall similarity between two replicates in

Figure 6.10 is computed as follows:

1. Base-pair-level:

J = |Rep1 ∩Rep2|
|Rep1 ∪Rep2|

= (6−4)+ (19−16)+ (27−24)+ (49−46)+ (58−56)

(10−2)+ (30−13)+ (37−33)+ (43−40)+ (51−46)+ (60−54)
= 0.3

2. Region-level:

J = |Rep1 ∩Rep2|
|Rep1 ∪Rep2|

= 4+5

6+5
= 0.81

117

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

2 4 6 10 13 16 19 24 27 30 33 37 40 43 46 49 51 54 56 58 60

Genomic Position

A sample portion on genome

Rep2 Rep1

Figure 6.10: An example of a portion of genome with two replicates

Sample-wide Similarity

we compute similarities as follows:

1. How similar is Rep1 to Rep2 in Figure 6.10 ?

(a) Base-pair-level:

J =
∑ | ri |: ri ∈ Rep1 ∧ ri ∩Rep2 6= ;∑ | ri |: ri ∈ Rep1

= (6−4)+ (19−16)+ (27−24)+ (49−46)+ (58−56)

(6−4)+ (19−13)+ (27−24)+ (51−46)+ (58−54)
= 0.65

(b) Region-level:

J =
∣∣{ri

∣∣ri ∈ Rep1 ∧ ri ∩Rep2 6= ;}∣∣∣
| Rep1 |

= 5

5
= 1

2. How similar is Rep2 to Rep1 in Figure 6.10 ?
(a) Base-pair-level:

J =
∑ | ri | : ri ∈ Rep2 ∧ ri ∩Rep1 6= ;∑ | ri |: ri ∈ Rep2

= (6−4)+ (19−16)+ (27−24)+ (49−46)+ (58−56)

(10−2)+ (30−16)+ (37−33)+ (43−40)+ (49−46)+ (60−56)
= 0.3

(b) Region-level:

J =
∣∣{ri

∣∣ri ∈ Rep2 ∧ ri ∩Rep1 6= ;}∣∣∣
Rep2

= 4

6
= 0.6

The similarity indexes are plotted in Figure 6.11; as illustrated, for the sample-wide similarities,

the similarity index of Rep1-to-Rep2 is higher than the index of Rep2-to-Rep1. These similarity

indexes indicate that all Rep1 ERs are intersecting with ERs of Rep2 (region-level similarity

of Rep1-to-Rep2 = 1; base-pair-level similarity of Rep1-to-Rep2 = 0.65 : 65% of base pairs of

118

6.8. Genome Browser

0.3

0.81

0.3

0.6

0.65

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Base-pair-level

Region-level

Similarity Index

Similarity

How similar Rep1 is to Rep2? How similar Rep2 is to Rep1? Overall Similarity

Figure 6.11: The Calculated similarity of Figure 6.10 example.

Rep1 ERs are overlapping with Rep2 base pairs), while Rep2 has ERs not overlapping Rep1

ERs (region-level similarity of Rep2-to-Rep1 = 0.6 : only 60% of Rep2 ERs are overlapping Rep1

ERs; base-pair-level similarity of Rep2-to-Rep1 = 0.3 indicates that only 30% the base-pairs of

Rep2 ERs are covered by Rep1 ERs). The plot also highlights the differences between different

similarity assessments.

6.7.2 Algorithm

MuSERA extends Di3 to assess global and sample-wide correlation between sample; it uses

COVER and SUMMIT operations with UDFs as in the pseudo codes of Algorithm 19 and Algo-

rithm 20.

6.8 Genome Browser

MuSERA implements a flexible and highly interactive set of plotting features based on the

Dynamic Data Display [196] package, allowing real-time interactive zoom and pan on genome-

Algorithm 19 Sample-wide correlation assessment for sample j

1: procedure CORRELATION_REGIONLEVEL(j)
2: A ← COVER(J , J , UDF_REGIONLEVEL)
3: return

∑
A

/ |S j |
1: procedure CORRELATION_BASEPAIRLEVEL(j)
2: A ← SUMMIT(J , J , UDF_BASEPAIRLEVEL)
3: return

∑
A

/ ∑
i (r̄ j i −

¯
r j i)

119

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Algorithm 20 Global correlation assessment

1: procedure CORRELATION_REGIONLEVEL

2: A ← COVER(J , J , UDF_REGIONLEVEL)
3: U ← COVER(1, J , UDF_REGIONLEVEL)

. A and U are a set of numbers, where each number is cardinality of intervals at each
region that satisfies COVER criteria.

4: return
∑

A
/ ∑

U

1: procedure CORRELATION_BASEPAIRLEVEL

2: A ← SUMMIT(J , J , UDF_BASEPAIRLEVEL)
3: U ← COVER(1, J , UDF_BASEPAIRLEVEL)

. A and U are a set of numbers, where each number is cardinality of base-pairs at
each region that satisfies COVER/SUMMIT criteria.

4: return
∑

A
/ ∑

U

1: procedure UDF_REGIONLEVEL({r j i })
2: return |{r j i }|
1: procedure UDF_BASEPAIRLEVEL({r j i })
2: return min r̄ j i −max

¯
r j i

scale samples. Having combined samples, MuSERA automatically creates bins independently

for each of the determined sets (e.g., R s
j , Rw

j , Rc
j , Rd

j , etc.), and displays in tabular format all the

ERs of the sets with their corresponding information (e.g., chromosome, start, end, p-value,

X 2, etc.). By double-clicking on any of the listed ERs, MuSERA plots it together with all the

ERs (in different colors according to the set they belong, i.e., stringent confirmed, stringent

discarded, weak confirmed, or weak discarded) and annotations, if any, within a window of

user-defined size (e.g., see Figure 6.12); then, this can be easily scrolled, panned and zoomed

to interactively explore the location on the DNA also of all the other ERs and annotations.

6.8.1 Algorithm

The NEIGHBORS function of Di3 finds all intervals at d maximum distance from r reference

interval, it passes the determined intervals to a UDF, and returns the output of the UDF (see

Algorithm 21). Therefore, the output of NEIGHBORS function is UDF-specific, which could be a

list of determined intervals, or an aggregation of an attribute of determined intervals. MuSERA

uses the NEIGHBOR function to show all the ERs surrounding a given ER, hence it passes a UDF

that determines a list of neighbor intervals to be plotted on the integrated genome browser.

6.9 Results

ChIP-seq enriched regions are read from data files in standard Browser Extensible Data (BED)

format; besides standard ER format specifications (columns “chromosome”, “start”, “end”), we

require a p-value quantifying the significance of each ER, which is usually computed by the

120

6.9. Results

Figure 6.12: For a selected ER (e.g., the ER in light blue, named MACS_peak_26), the ER(s) it is combined
with (e.g., the ER in purple, named MACS_peak_31) and all surrounding ERs (colored according to the
set they belong) and available annotations are plotted; hovering the cursor on an ER, a tooltip is opened
that shows the corresponding information (e.g., start, stop, name, p-value).

peak caller used to identify the ER. Binary Alignment/Map (BAM) files for the transcription

factor Myc in human K562 cells (myelogenous leukaemia) were taken from the ENCODE

project repository, for a total of 15 samples obtained in 7 different experiments as summarized

in Table 6.2. Each experiment contained 2 or 3 biological replicates of the same ChIPseq.

Technical replicates were artificially created to test our method, as they were not directly

available in the ENCODE repository (see Section 6.9.1).

Peak calling was performed with the software package MACS2 [195] with the parameters

Algorithm 21 NEIGHBORS function of Di3

1: procedure NEIGHBORS(r,d , UDF)
2: find Bb

∣∣eb−1 <
¯
r ≤ eb

3: i ← 0
4: T ←;
5: do
6: T ← T ∪ {@I }b−i

7: T ← T ∪ {@I }b+i

8: i ← i +1
9: while i ≤ d

10: return UDF(T)

Algorithm 22 Integrated genome browser of MuSERA

1: procedure GENOMEBROWSER_UDF(T)
2: return (T)

1: procedure GENOMEBROWSER(r, d)
2: T ← NEIGHBORS (r, d , GENOMEBROWSER_UDF)
3: Plot T

121

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Table 6.2: Datasets of transcription factor Myc in human K562 cells used for evaluation of comparative
analysis.

Sample Name Short Name Aligned Reads Rs Rw

wgEncodeOpenChromChipK562CmycAlnRep1 Myc1_1 10,719,209 19,171 287,651
wgEncodeOpenChromChipK562CmycAlnRep2 Myc1_2 8,763,362 32,850 311,409
wgEncodeOpenChromChipK562CmycAlnRep3 Myc1_3 9,649,688 13,623 104,911
wgEncodeSydhTfbsK562CmycIggrabAlnRep1 Myc2_1 17,507,194 42,456 64,016
wgEncodeSydhTfbsK562CmycIggrabAlnRep2 Myc2_2 22,256,240 33,015 54,773
wgEncodeSydhTfbsK562CmycStdAlnRep1 Myc3_1 6,077,198 5,473 22,965
wgEncodeSydhTfbsK562CmycStdAlnRep2 Myc3_2 5,897,211 12,832 18,753
wgEncodeSydhTfbsK562CmycIfna30StdAlnRep1 Ifna30_1 10,115,596 1,901 13,654
wgEncodeSydhTfbsK562CmycIfna30StdAlnRep2 Ifna30_2 18,600,414 2,527 97,620
wgEncodeSydhTfbsK562CmycIfna6hStdAlnRep1 Ifna6h_1 9,377,798 5,852 12,087
wgEncodeSydhTfbsK562CmycIfna6hStdAlnRep2 Ifna6h_2 19,334,518 4,547 102,168
wgEncodeSydhTfbsK562CmycIfng30StdAlnRep1 Ifng30_1 11,602,299 8,227 13,190
wgEncodeSydhTfbsK562CmycIfng30StdAlnRep2 Ifng30_2 16,666,560 30,524 25,484
wgEncodeSydhTfbsK562CmycIfng6hStdAlnRep1 Ifng6h_1 14,019,564 2,485 13,376
wgEncodeSydhTfbsK562CmycIfng6hStdAlnRep2 Ifng6h_2 19,666,823 27,728 25,118

“�auto-bimodal”, “-p 0.0001” thus setting a p-value threshold of 1E −4, and “-g hs”; using

alignment files available in the ENCODE repository, together with the corresponding back-

ground (standard input for all samples except for Myc2, for which the input signal from rabbit

IgG ChIP-seq was used). In each sample-input pair, the total number of reads was made

equal by randomly down-sampling the largest alignment file. The performed call determined

between ~15K and ~345K peaks across the different samples (see Table 6.2).

Adjustable parameters of the method are:

• T s : maximum P-value to consider a peak as “stringent”

• T w : maximum P-value to consider a peak as “weak”

• γ: maximum combined significance to confirm a peak

• C : minimum number of samples with intersecting peaks needed to apply the combined

evidence evaluation

• α: maximum false discovery rate after the Benjamini-Hochberg correction

• the choice of “technical replicate” versus “biological replicate”

For our evaluations we used: T s = 1E −8, T w = 1E −4, γ= 1E −8, α= 0.05 for all comparisons,

C = 1 for biological replicates and C = J for technical replicates. Required time was a few

seconds for 2 samples with 100,000 peaks each on a standard desktop computer.

6.9.1 Simulated Technical Replicates

Artificial technical replicates were obtained by pooling alignment files of biological replicates

in each experiment considered (in Table 6.2) and randomly splitting reads in two new artificial

alignment files. Peaks were called with the software package MACS2 [195]. Stringent: ERs

with p-value < T s . Weak: ERs with T s ≤ p-value < T w . T s = 1E −8, T w = 1E −4. Details about

122

6.9. Results

Table 6.3: Statistics of Simulated Technical Replicates.

Sample Name Short Name Aligned Reads Rs Rw

wgEncodeOpenChromChipK562CmycAln_1 Myc1 14,566,130 22,928 13,770
wgEncodeOpenChromChipK562CmycAln_2 Myc1 14,566,130 23,175 13,664
wgEncodeSydhTfbsK562CmycIggrabAln_1 Myc2 19,881,717 2,457 3,858
wgEncodeSydhTfbsK562CmycIggrabAln_2 Myc2 19,881,717 2,466 3,891
wgEncodeSydhTfbsK562CmycStdAln_1 Myc3 5,987,205 1,267 1,559
wgEncodeSydhTfbsK562CmycStdAln_2 Myc3 5,987,295 1,270 1,564
wgEncodeSydhTfbsK562CmycIfna30StdAln_1 Ifna30 14,358,005 13,476 4,522
wgEncodeSydhTfbsK562CmycIfna30StdAln_2 Ifna30 14,358,005 13,364 4,581
wgEncodeSydhTfbsK562CmycIfna6hStdAln_1 Ifna6h 14,356,158 20,926 6,194
wgEncodeSydhTfbsK562CmycIfna6hStdAln_2 Ifna6h 14,356,158 21,054 6,212
wgEncodeSydhTfbsK562CmycIfng30StdAln_1 Ifng30 14,134,430 37,171 9,338
wgEncodeSydhTfbsK562CmycIfng30StdAln_2 Ifng30 14,134,430 37,146 9,333
wgEncodeSydhTfbsK562CmycIfng6hStdAln_1 Ifng6h 16,843,194 7,680 4,033
wgEncodeSydhTfbsK562CmycIfng6hStdAln_2 Ifng6h 16,843,194 7,695 3,969

technical replicates are collected in the Table 6.3. An alternative to our strategy to generate

technical replicates would be to randomly split the reads in each original alignment file in

replicates rather than merging biological replicates in ENCODE first. However, this procedure

gives rise to a much poorer signal, preventing the identification of most ERs. The statistics of

these alternative technical replicates are described in the Supplementary Table 6.4.

6.9.2 Evaluation of Technical Replicates

Technical replicates are used to evaluate and remove the noise introduced in the experimental

procedure. In the case of ChIP-seq experiments, they are usually generated by performing

the same ChIP protocol on the same biological sample, and then performing the sequencing

independently. As the ENCODE datasets include only biological replicates, we tested our

method on artificial technical replicates (see Section 6.9.1).

Results for T s = 1E −8, T w = 1E −4, γ= 1E −8, α= 0.05 and C = 2 are shown in Figure 6.13.

For each replicate sample (panels A–G), we show two bars: the left bar (SS) represents the

peaks called in a single sample analysis (R s in green and Rw in red), while the right bar (MS)

classifies the same peaks, according to the output of our algorithm, in the four sets described:

R s,c (light green), Rw,c (dark green), R s,d (light red) and Rw,d (dark red).

As expected, the number of R s stringent and Rw weak peaks called in the same technical

replicates is always very similar, even if the absolute numbers differ significantly across the

different conditions considered. Each output set has a consistent fraction of Rw,c weak con-

firmed ERs, which ranges from 20% to 98% (mean 46%, standard deviation 30%) of the starting

number of stringent peaks (Rw,c /R s , panel H); thus by combining evidence in replicates, our

method “rescues” (i.e. confirms) a large amount of weak co-localized peaks that would oth-

erwise be discarded through a usual single sample evaluation. The percentage of stringent

discarded peaks (R s,d /R s , panel H) is very low and varies from 0% in Myc2 to 12% in Myc3

123

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Table 6.4: Statistics of alternative simulated technical replicates.

Sample Name Short Name Aligned Reads Rs Rw

wgEncodeOpenChromChipK562CmycAlnRep1_1 Myc1_1_a 5,359,605 8,450 7,325
wgEncodeOpenChromChipK562CmycAlnRep1_2 Myc1_1_b 5,359,605 8,543 7,402
wgEncodeOpenChromChipK562CmycAlnRep2_1 Myc1_2_a 4,381,681 14,111 9,931
wgEncodeOpenChromChipK562CmycAlnRep2_2 Myc1_2_b 4,381,681 14,138 9,945
wgEncodeOpenChromChipK562CmycAlnRep3_1 Myc1_3_a 4,824,844 8,529 6,062
wgEncodeOpenChromChipK562CmycAlnRep3_2 Myc1_3_b 4,824,844 8,520 6,162
wgEncodeSydhTfbsK562CmycIggrabAlnRep1_1 Myc2_1_a 8,753,597 1,187 2,408
wgEncodeSydhTfbsK562CmycIggrabAlnRep1_2 Myc2_1_b 8,753,597 1,211 2,307
wgEncodeSydhTfbsK562CmycIggrabAlnRep2_1 Myc2_2_a 11,128,120 1,523 2,548
wgEncodeSydhTfbsK562CmycIggrabAlnRep2_2 Myc2_2_b 11,128,120 1,483 2,529
wgEncodeSydhTfbsK562CmycStdAlnRep1_1 Myc3_1_a 3,038,599 733 1,602
wgEncodeSydhTfbsK562CmycStdAlnRep1_2 Myc3_1_b 3,038,599 762 1,577
wgEncodeSydhTfbsK562CmycStdAlnRep2_1 Myc3_2_a 2,948,606 606 2,376
wgEncodeSydhTfbsK562CmycStdAlnRep2_1 Myc3_2_b 2,948,606 575 2,515
wgEncodeSydhTfbsK562CmycIfna30StdAlnRep1_1 Ifna30_1_a 5,057,798 919 1,512
wgEncodeSydhTfbsK562CmycIfna30StdAlnRep1_2 Ifna30_1_b 5,057,798 957 1,516
wgEncodeSydhTfbsK562CmycIfna30StdAlnRep2_1 Ifna30_2_a 9,300,207 14,244 3,845
wgEncodeSydhTfbsK562CmycIfna30StdAlnRep2_2 Ifna30_2_b 9,300,207 14,127 3,912
wgEncodeSydhTfbsK562CmycIfna6hStdAlnRep1_1 Ifna6h_1_a 4,688,899 3,369 1,979
wgEncodeSydhTfbsK562CmycIfna6hStdAlnRep1_2 Ifna6h_1_b 4,688,899 3,404 1,924
wgEncodeSydhTfbsK562CmycIfna6hStdAlnRep2_1 Ifna6h_2_a 9,667,259 19,815 5,796
wgEncodeSydhTfbsK562CmycIfna6hStdAlnRep2_2 Ifna6h_2_b 9,667,259 19,742 5,708
wgEncodeSydhTfbsK562CmycIfng30StdAlnRep1_1 Ifng30_1_a 5,801,150 28,287 8,958
wgEncodeSydhTfbsK562CmycIfng30StdAlnRep1_2 Ifng30_1_b 5,801,150 28,386 8,885
wgEncodeSydhTfbsK562CmycIfng30StdAlnRep2_2 Ifng30_2_a 8,333,280 17,339 5,253
wgEncodeSydhTfbsK562CmycIfng30StdAlnRep2_2 Ifng30_2_b 8,333,280 17,370 5,170
wgEncodeSydhTfbsK562CmycIfng6hStdAlnRep1_1 Ifng6h_1_a 7,009,782 2,027 1,749
wgEncodeSydhTfbsK562CmycIfng6hStdAlnRep1_2 Ifng6h_1_b 7,009,782 2,098 1,740
wgEncodeSydhTfbsK562CmycIfng6hStdAlnRep2_1 Ifng6h_2_a 9,833,412 6,030 3,408
wgEncodeSydhTfbsK562CmycIfng6hStdAlnRep2_2 Ifng6h_2_b 9,833,412 6,603 3,366

Table 6.5: P-values for the enrichment of the E-box in technical replicates.

Sample R s Ro Rw,c R s,d

Myc1_a 1.1e-802 4.2e-925 3.1e-120 -
Myc1_b 1.5e-847 1.3e-931 1.1e-143 -
Myc2_a 4.3e-976 4.7e-1113 2.1e-125 -
Myc2_b 2.7e-951 6.5e-1120 1.6e-125 -
Myc3_a 1.1e-495 6.6e-536 5.9e-072 -
Myc3_b 2.3e-461 2.2e-535 1.6e-075 -
Ifna30_a 6.8e-170 3.7e-220 4.9e-079 -
Ifna30_b 1.1e-169 7.5e-241 1.0e-075 -
Ifna6h_a 4.2e-296 4.8e-418 1.6e-161 -
Ifna6h_b 2.3e-306 1.0e-427 4.7e-136 -
Ifng30_a 1.7e-813 8.1e-910 3.2e-076 4.0e-021
Ifng30_b 2.1e-834 1.2e-891 6.3e-097 4.7e-023
Ifng6h_a 6.2e-895 9.9e-942 7.0e-101 1.6e-038
Ifng6h_b 1.1e-886 3.1e-965 1.6e-098 2.4e-022

124

6.9. Results

Figure 6.13: Technical replicates. For each of the 7 experiments considered, two technical replicates were
obtained by pooling reads from the biological replicates of the conditions and then randomly splitting the
resulting alignment files in two equal parts. A-G: ER sets for the technical replicates considered. SS, single
sample analysis; MS, multiple sample analysis. In each panel, the SS stacked bars represent R s (green)
and Rw (red) in the two replicates, while the MS bars show the same peaks, confirmed or discarded
according to the output of our method: R s,c (light green), Rw,c (dark green), R s,d (light red) and Rw,d

(dark red). H, general statistics on the cardinality of the ER sets; I, validation of the sets with the Myc
binding motif (Myc canonical E-box); “Y”, presence of the E-box; “-”, set too small to find any enriched
motif. See Table 6.5 for E-box enrichment p-values.

(mean 5.6%, standard deviation 3.8%). The output set Ro corresponds to the set of confirmed

peaks Rc = R s,c ∪Rw,c , where the significance of each peak has been adjusted for multiple

testing; combining the evidence present in replicates increases the number of obtained peaks

up to almost the double of what obtained with a single sample at the same stringency (Ro/R s ,

panel H).

For technical replicates, we expect the output of each replicate to be similar, and therefore the

parameter C was set to C = J = 2 for all technical replicate comparisons. Setting C = 1 would

be instead equivalent to trust even isolated peaks, which are not present in the other replicate.

With the latter choice, and γ= T s , no stringent peaks would be discarded.

As a preliminary evaluation of the results obtained, we considered the overlap of the peaks

with the enriched regions in DNase-seq data. On average, 95.4% of the peaks in Ro , 95.4% of

peaks in R s and 94.6% of peaks in Rw,c were in open chromatin regions, while this fraction

was only 89.4% for R s,d and 93.0% for Rw,d (see Table 6.6). The overlap with open chromatin,

125

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Table 6.6: Percentages of ERs overlapping with DNase-seq data in technical replicates.

Sample R s Ro Rw,c R s,d Rw,d

Myc1_a 94.5 90.2 81.1 70.4 70.4
Myc1_b 94.4 90.2 80.9 74.7 72.0
Myc2_a 98.0 97.9 97.2 96.3 97.8
Myc2_b 98.0 97.9 97.2 98.4 96.7
Myc3_a 86.1 88.7 93.0 77.8 93.8
Myc3_b 86.4 88.7 93.3 80.1 93.8
Ifna30_a 95.9 96.6 96.7 87.5 97.3
Ifna30_b 95.4 96.7 97.3 86.7 95.5
Ifna6h_a 97.6 98.0 98.0 94.6 97.7
Ifna6h_b 95.9 98.0 98.2 94.9 97.0
Ifng30_a 99.7 99.6 99.1 99.6 99.1
Ifng30_b 99.7 99.6 99.2 99.7 99.5
Ifng6h_a 96.8 96.9 96.2 94.5 95.3
Ifng6h_b 96.7 96.8 96.4 94.0 96.3

however, is not yet a validation of a specific binding event. We performed then motif analysis

on the nucleotide sequences corresponding to the ERs in the four sets: R s , Ro , Rw,c and R s,d .

Myc is known to bind a large number of sites on the DNA, particularly with high affinity to

those with the 6-nucleotide motif called Enhancer-box or E-box. This protein-binding region

has the generic consensus nucleotide sequence CANNTG (with N representing any nucleotide

[197]). In particular, Myc binds with maximum strength to the CACGTG motif (also called the

“canonical” Myc E-box [198]). Therefore, we consider the enrichment of the Ebox in a set of

peaks a sufficient condition to consider the set as containing “true” binding sites. Panel I in

Figure 6.13 shows that the E-box is always enriched in the R s stringent and Ro output sets,

as well as in the Rw,c weak confirmed set. This result confirms that in the large majority of

cases the weak peaks overlapping in replicates identify real binding sites, which are missed by

a stringent single-sample call. In 4 out of 14 cases, the R s,d stringent discarded set is enriched

for the E-box, although at much lower significance (see Table 6.5), while in the remaining

cases the number of peaks in the R s,d set is low. This analysis suggests that the default value

C = J used for our artificial technical replicates may be too conservative and still discards a

small fraction of real binding sites.

6.9.3 Evaluation of Biological Replicates

The ENCODE data repository always includes one or more biological replicates for each

ChIP-seq experiment. For the transcription factor Myc, multiple data sources are available,

either obtained in independent experiments, or scored against different backgrounds (in

Myc2, the input was derived from immuno-precipitating normal rabbit IgG, while in all the

other samples the standard input for the K562 cell line was used). We applied our method to

biological replicates obtained from each of the ENCODE experiments considered, and we also

combined replicates from 2 experiments (Myc2 and Myc3). Parameters for the method were

126

6.9. Results

Figure 6.14: Biological replicates. A–H: ER sets in the biological replicates considered. SS, single sample
analysis; MS, multiple sample analysis. In each panel, the SS stacked bars represent R s (green) and Rw

(red) in the replicates, while the MS bars show the same peaks, confirmed or discarded according to
the output of our method: R s,c (light green), Rw,c (dark green), R s,d (light red) and Rw,d (dark red). I,
general statistics on the cardinality of the ER sets; J, validation of the sets with the Myc binding motif
(Myc canonical E-box); “Y”, presence of the E-box. See Table 6.8 for E-box enrichment P-values.

the same as for the technical replicate evaluation reported in the Section 6.9.2 (i.e. T s = 1E −8,

T w = 1E −4, γ = 1E −8, α = 0.05); for the additional parameter C , in the case of biological

replicates we adopted the permissive choice of C = 1 (default for the analysis of biological

replicates). With these values (i.e. γ= T s and C = 1), our method never discards a stringent

peak (we consider that a single strong evidence is enough for biological replicate evaluation).

Results are shown in Figure 6.14.

The number of peaks in biological replicates of the same experiment can be very different

(panels A-H), reflecting the different efficiency of the ChIP-seq protocol, and the number

of weak peaks (Rw) is usually much larger than the number of stringent peaks (R s). In the

considered cases, the number of confirmed weak peaks (Rw,c) is often much bigger (up to

~4 times) than the number of stringent peaks (R s) (column Rw,c /R s in panel I), confirming

that the evidence in a “good” replicate allows the rescue of many peaks in a “bad” replicate.

We observe a similar situation when we combine samples obtained with different inputs. For

example, by combining together the four replicates of the Myc2 and Myc3 cases (panel D),

127

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Table 6.7: Percentages of ERs overlapping with DNase-seq data in biological replicates (C = 1). ChIP-seq
ERs contained in each of the sets were overlapped with open chromatin regions obtained from DNase-
seq experiments. The average percentage of overlapping peaks in the weak confirmed sets (91.0%) is
comparable to what found for the stringent peaks (88.9%) or in the output peak sets (91.1%) and higher
than what found for the weak discarded peaks (51.6%). R s : stringent ER set. Ro : output ER set. Rw,c :
weak confirmed ER set. R s,d : stringent discarded ER set. Rw,d : weak discarded ER set.

Sample R s Ro Rw,c Rw,d

Myc1_1 77.1 79.6 81.7 13.1
Myc1_2 70.2 73.9 79.4 16.4
Myc1_3 98.3 92.9 89.4 23.9
Myc2_1 97.5 96.3 93.0 61.8
Myc2_2 97.3 96.5 95.3 51.7
Myc3_1 61.8 79.5 90.4 36.6
Myc3_2 92.6 86.3 63.7 87.2
Myc2_3_1 97.5 96.2 92.9 61.0
Myc2_3_2 97.3 96.4 95.2 51.0
Myc2_3_3 61.8 83.1 92.3 14.8
Myc2_3_4 92.6 91.2 90.0 48.8
Ifna30_1 94.6 92.9 91.8 83.2
Ifna30_2 73.2 83.9 92.7 14.7
Ifna6h_1 98.1 97.4 96.4 93.2
Ifna6h_2 90.9 94.5 97.2 15.3
Ifng30_1 99.6 99.4 99.2 91.8
Ifng30_2 99.5 99.4 98.2 93.1
Ifng6h_1 95.5 96.5 96.7 39.6
Ifng6h_2 94.1 94.1 93.2 83.2

we increase massively the number of peaks in the output set for the samples with lower peak

counts (Myc3) by confirming a number of their weak peaks much larger than in the evaluation

performed without Myc2. Therefore, the presence of high-quality replicates can be of great

help in improving the call on many low-quality replicates. The average overlap with open

chromatin regions of the Rw,c weak confirmed sets is 91.0% (compared with the 51.6% for the

weak discarded peaks), and motif analysis confirms that in all the samples the ERs contain the

canonical Myc binding site (panel J and Table 6.7 and Table 6.8).

We applied our method also using C = 2 on all biological replicates considered: most of the

times that the R s,d stringent discarded peak set had a substantial size, the E-box motif was

present, although the average overlap with open chromatin was only 75.9% (see Figure 6.16, Ta-

ble 6.9 and Table 6.10). This further confirms that, in biological replicates, a lack of overlapping

with peaks in other replicates does not necessarily correspond to an artifactual interaction.

128

6.9. Results

Table 6.8: P-values for the enrichment of the E-box in biological replicates (C = 1). P-values for the
enrichment of the E-box in the different peak sets, as estimated with the DREME package [199]. As the
E-box is represented by several Position Weight Matrices (PWMs) in the Jaspar Core Vertebrata database
(see Figure 6.15), we chose the best p-value among those obtained for the PWMs considered. R s : stringent
ER set. Ro : output ER set. Rw,c : weak, confirmed ER set.

Sample R s Ro Rw,c

Myc1_1 3.1e-627 1.5e-886 1.4e-283
Myc1_2 7.5e-563 3.5e-795 2.8e-235
Myc1_3 6.3e-508 4.5e-788 4.8e-326
Myc2_1 7.3e-987 1.3e-1198 3.0e-240
Myc2_2 5.7e-832 8.8e-1164 3.0e-334
Myc3_1 4.9e-266 1.9e-479 1.8e-216
Myc3_2 7.3e-548 1.4e-603 1.4e-083
Myc2_3_1 7.3e-987 5.8e-1099 7.3e-244
Myc2_3_2 5.7e-832 2.0e-1123 2.2e-345
Myc2_3_3 4.9e-266 7.1e-547 6.1e-270
Myc2_3_4 7.3e-548 6.7e-806 3.4e-313
Ifna30_1 1.9e-222 2.1e-370 2.0e-146
Ifna30_2 1.6e-183 1.1e-330 1.8e-156
Ifna6h_1 1.1e-483 1.1e-654 1.1e-188
Ifna6h_2 1.2e-374 3.2e-561 1.1e-188
Ifng30_1 6.3e-711 8.9e-1038 1.9e-354
Ifng30_2 4.2e-786 5.4e-876 7.3e-144
Ifng6h_1 2.0e-232 5.4e-479 6.4e-254
Ifng6h_2 2.6e-1321 1.5e-1276 5.5e-014

Table 6.9: Percentages of ERs overlapping with DNase-seq data in biological replicates (C = 2). ChIP-seq
ERs contained in each of the sets were overlapped with open chromatin regions obtained from DNase-
seq experiments. The average percentage of overlapping peaks in the weak confirmed sets (92.2%) is
comparable to what found for the stringent peaks (91.5%) or in the output peak sets (94.5%) and higher
than what found for the stringent discarded peaks (75.9%) and weak discarded peaks (50.0%). R s :
stringent ER set. Ro : output ER set. Rw,c : weak confirmed ER set. R s,d : stringent discarded ER set. Rw,d :
weak discarded ER set.

Sample Rs Ro Rw,c Rs,d Rw,d

Myc1_1 77.1 95.7 92.9 42.9 13.1
Myc1_2 98.3 95.6 92.3 93.4 16.4
Myc1_3 98.3 93.1 89.4 84.0 23.8
Myc2_1 97.5 96.7 93.0 93.5 61.8
Myc2_2 97.3 96.9 95.3 83.5 51.7
Myc3_1 61.8 83.8 90.4 16.1 36.6
Myc3_2 92.6 81.8 63.7 96.6 87.2
Ifna30_1 94.6 93.3 91.8 88.9 83.2
Ifna30_2 73.2 93.2 92.7 41.9 14.8
Ifna6h_1 98.1 97.4 96.4 97.3 93.2
Ifna6h_2 90.9 97.5 97.2 62.8 15.2
Ifng30_1 99.6 99.4 99.2 97.1 91.8
Ifng30_2 99.5 99.4 98.2 99.4 93.1
Ifng6h_1 95.5 97.0 96.7 48.5 39.6
Ifng6h_2 94.1 97.0 93.2 92.8 83.2

129

Chapter 6. Di3 Application in Comparative Analysis of ChIP-seq Replicates

Figure 6.15: Sequence logos for the Position Weight Matrices (PWMs) from the Jaspar Core Vertebrata
database used to validate Myc peaks.

Table 6.10: P-values for the enrichment of the E-box in biological replicates (C = 2). P-values for the
enrichment of the E-box in the different peak sets, as estimated with the DREME package [199]. As the
E-box is represented by several Position Weight Matrices (PWMs) in the Jaspar Core Vertebrata database
(see Figure 6.15), we chose the best p-value among those obtained for the PWMs considered. R s : stringent
ER set. Ro : output ER set. Rw,c : weak confirmed ER set. R s,d : stringent discarded ER set. “-“: set too small
to find any enriched motif. “N”: E-box not enriched.

Sample Rs Ro Rw,c Rs,d

Myc1_1 3.1e-627 3.7e-878 - -
Myc1_2 7.5e-563 1.7e-792 2.8e-235 N
Myc1_3 2.9e-503 9.5e-780 2.2e-321 2.9e-008
Myc2_1 6.3e-508 2.0e-784 4.8e-326 8.0e-013
Myc2_1 7.3e-987 2.5e-1125 6.6e-245 4.7e-126
Myc2_2 5.7e-832 6.6e-1131 3.0e-334 2.4e-027
Myc3_2 4.9e-266 2.5e-473 1.8e-216 -
Ifna30_2 1.6e-183 5.6e-348 4.2e-161 7.8e-016
Ifna30_1 1.9e-222 1.8e-336 2.0e-146 3.9e-031
Ifna6h_1 1.1e-483 8.0e-583 1.1e-188 2.9e-065
Ifna6h_2 1.2e-374 1.1e-555 3.4e-223 2.9e-023
Ifng30_1 6.3e-711 4.5e-984 1.9e-354 N
Ifng30_2 4.2e-786 2.6e-839 1.3e-113 2.9e-175
Ifng6h_1 2.0e-232 1.3e-447 6.4e-254 -
Ifng6h_2 2.6e-1321 3.3e-442 5.5e-014 2.0e-893

130

6.9. Results

Figure 6.16: A-G: ER sets in the biological replicates considered, obtained with C = 2. SS: single sample
analysis; MS: multiple sample analysis. In each panel, the SS stacked bars represent R s (light green) and
Rw (red) in the replicates, while the MS bars show the same peaks, confirmed or discarded according to
the output of our method: R s,c (light green), Rw,c (dark green), R s,d (pink) and Rw,d (red). H: general
statistics on the cardinality of the ER sets. I: validation of the sets with the Myc binding motif (Myc
canonical E-box); “Y”: presence of the E-box; “N”: absence of the E-box; “-“: set too small to find any
enriched motif (see Supplementary Table 8 for E-box enrichment p-values).

131

7 Toward Google-Style Search
in Genomics

7.1 Introduction

Understanding genome regulation is a main target in cancer and other complex diseases. Many

different combinations of chromatin conformation, binding, histone modifications, and gene

expression patterns, determine genome’s response to the environment and to internal stimuli.

We call these combinations genomic regulatory signatures. Genomic regulatory signatures,

detected as a combination of high-throughput experimental signals, may appear incomplete

or even biologically irrelevant if not considered in their context. The context is represented by

a physical (including mechanical) or chemical stimulus, affecting the signature characteristics

and thus the genomic response to it. The context can be both external, when a stimulus is

applied from outside, such as drug induction (i.e. ligand-receptor interaction); or internal, due

to the activity of a trans-agents (e.g. transcription factor/cofactor), the presence of an active

distal regulatory element (e.g. an enhancer), or a cis-regulatory element, such as a promoter-

binding motif. Depending on the context, biological signals composing a signature may

vary in relative distances, amplitude, statistical significance, and signal shape. For instance,

H3K4me1 signal is typically unimodal and very high at enhancers, but bimodal surrounding

promoters; while H3K4me3 signal is unimodal and high at active promoters, but almost absent

at enhancers, misregarding the activation status. Another example is represented by those

trans-agents, like Mediator, capable of mediating the promoter-enhancer interaction, or the

capability of some factors, like CTCF, of creating chromatin domains. Beside basic known

functions, genomic signals are still not fully understood, especially considering their possible

interactions (i.e. the most informative part).

Since the heterogeneous semantic of different high-throughput experiments, and their intrin-

sic noise, often difficult to divide from true signal, a robust method capable of recognizing

signal patterns (i.e. signatures) above the background is highly requested by the community.

Given the complexity of the problem of recognizing informative signatures in the genome (i.e.

signatures that could explain genomic regulation), a divide-et-impera method is often the

winning strategy. Explain a subset of regulatory functions allow us to better reduce the impact

133

Chapter 7. Toward Google-Style Search in Genomics

of noise on true signal (signal-to-noise ratio is a local property), and to better define a less

complex and more clear mechanism. We call these local patterns as landmarks, and we take

them as examples (“training”) for our similarity search.

For instance, consider a dataset of related samples (e.g., replicates, or samples of a specific

cell-line) of Transcription Factors (TF), Histone Modifications (HM) and RNASeqs, targeting a

particular experiment, where the samples are pre-processed to preserve only the highly reliable

evidences. The samples may have a degree of similarity between each other, and between

binding sites (i.e., in binding profile); for instance the samples may in general show relatively

high activity on some promoter regions. In other words, the binding pattern could possibly be

replicated through the samples, and the replicated regions are the landmarks defining regions

of interest to which the process should be scoped. It is of high interest to identify the set of

samples in repository (e.g., ENCODE data) that have high degree of similarity in binding profile

to the query dataset. This step is currently done manually and through visual inspection on

few predicted samples that are selected based a researcher’s personal experience. Also, this

procedure currently requires the candidate datasets to be processed (cleaned) using similar

pipeline that applied on query dataset. Note that, the cleaning procedure could possibly

differ from one study to another targeting different regions of interest that possibly would

necessitate pre-processing the candidates according to query pre-processing setup.

So the research question would be: identify datasets in the repository that have similar binding

profile to query dataset with a degree of similarity, without the necessity of cleaning the

repository the same way the query dataset was cleaned. Additionally, it should be noted

that there exist a many-to-many relationship between samples of query and target, i.e., one

reference interval can be close to multiple intervals from other samples, and vice versa.

Moreover, the samples of the query may possibly be assigned a weight for each indicating

the importance of contribution of the binding profile from that sample to overall binding

signature.

7.2 Pattern Finding Queries on Di4

Present section provides means to define regions and metrics of interest, and to search for

regions and samples that satisfy the criteria using a query. For this purpose, two orthogonal

approaches are defined, Samples Pattern Rank (SPR) (see Section 7.2.1), and Regions Pattern

Rank (RPR) (see Section 7.2.2). The former ranks regions based on a defined pattern, while the

latter ranks samples based on another defined pattern. For formal definition of RPR and SPR

we use following syntax:

1. A sample ID:

<SID> := <reference to sample>

2. Coordinates of regions are defined as follows:

134

7.2. Pattern Finding Queries on Di4

a. Left-end (start) is an integer referring to a base-pair on genome:

<L> := <integer for left-end>

b. Right-end (stop) is an integer referring to a base-pair of genome:

<R> := <integer for right-end>

c. Summit is an integer referring to a base-pair on genome:

<S> := <integer for summit>

3. A region:

REGION> := (<L> <R> [<S>])

4. A window that defines extension to left and right of a region:

<WINDOW> := (<int> <int>) | ()

5. A set of regions (where an empty set could mean every region):

<REGION_LIST> := (<REGION>+)

6. A sample list: <SAMPLES_LIST> := (<SID>+) | ((<SID><SID>+)+)

7. A select statement is defined as follows:

<SELECT_STATEMENT> :=

(SELECT ((<attribute> <value>)∗)
[(AGGREGATE <AGGREGATE_FUNCTION>)]

[(PATTERN <PATTERN_FUNCTION> [<PATTERN_FUNCTION>])]

[(WEIGHT <float> [<float>])])

8. Rank statement is defined as follows:

<RANK_STATEMENT> :=

RANK_SAMPLES_INDEPENDENT |

RANK_ALL_BY_PEARSON |

RANK_ALL_BY_COSINE

9. We define a comparison operator for rank statement as follows:

<int>← (<COMPARISON>(<float>+) (<float>+))
The function compares first and second vectors and returns -1 if first proceeds the

second, 0 if are equal, and +1 if first follows the second.

10. A pattern function could be a selection of predefined functions, or a custom function,

such that:

<PATTERN_FUNCTION> := JACCARD | EXPRESSION_LEVEL

A custom pattern function has following signature:

<float>← (<NAME> <REGION_LIST> [<REGION_LIST>] [(<parameter> <value>)]∗)
If the second region list is missing, the function is computed with respect to the ref-

erence. Possible values of <NAME> could be JACCARD, DENSE, COOCCURRENCE, and etc.,

which could possibly be extended by user to best adapt the application.

135

Chapter 7. Toward Google-Style Search in Genomics

11. An aggregate function is a selection from a set predefined functions, formally defined as

follows:

<AGGREGATE_FUNCTION> :=

COVER |

SUMMIT |

MERGE |

COMPLEMENT |

DICHOTOMY |

ACCUMULATION_HISTOGRAM

With reference to this syntax, SPR and RPR are defined in following subsections.

7.2.1 Sample Pattern Rank

A query defines the pattern of interest, and Di4 returns a ranked set of samples. In general, let

define SPR query as follows:

SAMPLE_LIST ← SPR (<REGION_LIST>

<WINDOW>

<SELECT_STATEMENT>+

<RANK_STATEMENT>)

Example 1

Function DENSE defines pattern on interest for promoter regions, and function JACCARD

defines a pattern of interest for enhancer regions. A set of reference regions as candidate

promoter and enhancer regions are given ((10 20) (35 65)). We are interested in set of

samples that satisfy this property (see Figure 7.1).

SAMPLE_LIST ← SPR (

((10 20) (35 65))

()

((SELECT (Type Enhancer)) (PATTERN DENSE))

((SELECT (Type Promoter)) (PATTERN JACCARD))

RANK_SAMPLES_INDEPENDENT)

Explanation: two reference regions (10 20) and (35 65) are given, which (10 20) could be

an Enhancer region, and (35 65) be a Promoter region. Since we are interested in evaluation

of promoters and enhancers together, the BODY of SPR is composed of two statements where:

• The first statement selects Enhancers from repository and evaluates their regions over-

lapping reference REGION_LIST using DENSE. Suppose the selection, select S1, S2, and S3

from repository, and DENSE evaluates the regions of each sample as < 12,0 >, < 37,0.1 >,

< 8,0 > respectively.

136

7.2. Pattern Finding Queries on Di4

S1

S2

S3

S4

S5

A: Selected Input B: Processed C: Ranked

R1

10 20

R2

35 65

S1

S2

S3

S4

S5

R1

10 20

R2

35 65

12

37

8

0

0.1

0

0.01

0

34

8

S2

S1

S3

S4

S5

R1

10 20

R2

35 65

37

12

8

0.1

0

0

0.01

0

34

8

Best Tuple

2nd Best Tuple

Figure 7.1: Sample Pattern Rank, Example 1.

• The second statement selects Promoters from repository and evaluates their regions

intersecting reference REGION_LIST using JACCARD. Suppose the selection, selects S4

and S5, and JACCARD evaluates the regions of each sample as < 0.01,34 >, < 0,8 >
respectively.

The Ranking method is set to Rank_Sample_Independent, this means:

1. The samples from first statement (i.e., Enhancers) is ranked independent from the

second statement (i.e., Promoters).

2. The output of SPR is a list of tuples (in this example a pair (because we defined two

statements)).

Accordingly, the samples are evaluated as follows: S1, S2, and S3 are ranked independently

and we obtain following ranked list: (S2 S1 S3); also S4 and S5 are evaluated independently and

we obtain following ranked list: (S4 S5). The output of SPR is produced with the composition

of the two sets (in general: n-dimensional cross product) and then ranking the set, an example

would be:

SAMPLE_LIST = ((S2 S4) (S1 S5))

Example 2

Function COOCCURRENCE defines pattern of interest on a set of given reference regions ((10

20) (35 65)), and we are interested in finding samples from data type Enhancer and Pro-

moter that best match the pattern (see Figure 7.2).

SAMPLE_LIST ← SPR (

((10 20) (35 65))

()

(SELECT ((Cell-line ENHANCER)(Cell-line PROMOTER))(PATTERN COOCCURRENCE))

RANK_ALL_BY_PEARSON)

137

Chapter 7. Toward Google-Style Search in Genomics

S1

S2

S3

S4

S5

A: Selected Input B: Processed C: Ranked

R1

10 20

R2

35 65

S1

S2

S3

S4

S5

R1

10 20

R2

35 65

12

37

8

0

0.1

0

0.01

0

34

8

S2

S1

S3

R1

10 20

R2

35 65

37

12

8

0.1

0

0

S4 0.01 34

S3 0 8

Figure 7.2: Sample Pattern Rank, Example 2.

Explanation: Two reference regions are given, and regions overlapping the reference from

all sample belonging to data type Enhancer and Promoter are determined and each sample

is evaluated using COOCCURRENCE function on the two reference regions. After this, we have

multiple vectors representing each sample, then the choice RANK_ALL_BY_PEARSON specifies

that the vectors to be ranked for closest match to the query, which outputs a ranked set of

samples (NOT a set of tuples of samples as in previous example); for instance:

SAMPLE_LIST = (S3 S8 S1 S2)

Example 3

Referring to Example 1 (Section 7.2.1), incorporate the Summit of reference regions and add an

extension of 10bp to up-stream and 53bp to down-stream. Also evaluate the regions differently

for up-stream and down-stream to Summit by replacing DENSE with DENSE and SPARSE for up-

stream and down-stream respectively, and JACCARD with DENSE and JACCARD for up-stream

and down-stream respectively (see Figure 7.3).

SAMPLE_LIST ← SPR (

((10 20 15) (35 65 38))

(10 53)

(SELECT (Type Enhancer) (PATTERN DENSE SPARSE))

(SELECT (Type Promoter) (PATTERN DENSE JACCARD))

RANK_SAMPLES_INDEPENDENT)

Example 4

Given a pattern function DENSE that applies to enrichment at TFBS (reference regions: ((10

20) (35 65))) that are highly active at certain condition, we are interest to see, in general, in

which conditions we have similar binding activity at these TFBS. Target conditions of interest

are: (1) cell-line CL1, Antibody AB1, Lab LB1, (2) cell-line CL2, Antibody AB2, Lab LB2. At each

138

7.2. Pattern Finding Queries on Di4

S1

S2

S3

S4

S5

A: Selected Input B: Processed C: Ranked

R1

10 15 20

R2

35 38 65

S1

S2

S3

S4

S5

R1

10 20

R2

35 65

12 , 100

37 , 1

8 , 80

0 , 100

0 , 80

0 , 100

0.01, 0.1

0 , 0

34 , 0.8

8 , 0.0

S1

S3

S2

S4

S5

R1

10 20

R2

35 65

12 , 100

8 , 80

37 , 1

0 , 100

0 , 100

0 , 80

0.01, 01

0 , 0

34 , 0.8

8 , 0.0

Best Tuple

2nd Best Tuple

Up-stream and Down-stream Extensions

Figure 7.3: Sample Pattern Rank, Example 3.

condition, we might have multiple samples, that we consider them as replicates and merge

their regions using MERGE function (see Figure 7.4).

SAMPLE_LIST ← SPR (

((10 20) (35 65))

()

(

SELECT ((Cell-line CL1) (Lab LB1) (Antibody AB1))

(AGGREGATE MERGE)

(PATTERN DENSE)

)

(

SELECT ((Cell-line CL2) (Lab LB2) (Antibody AB2))

(AGGREGATE MERGE)

(PATTERN DENSE)

)

RANK_ALL_BY_PEARSON)

7.2.2 Region Pattern Rank

A query defines the pattern of interest, and Di4 returns a ranked set of regions. In general, let

define RPR query as follows:

SAMPLE_LIST ← RPR (<REGION_LIST>

<WINDOW>

<SELECT_STATEMENT>+

<RANK_STATEMENT>)

Note that, rank statement for RPR does not include the Rank_Sample_Independent option

as is available for SPR.

139

Chapter 7. Toward Google-Style Search in Genomics

S6

S1

S2

S3

S4

S5

A: Selected Input C: Processed C: Ranked

R1

10 20

R2

35 65

R1

10 20

R2

35 65

80 1

25 75

R1

10 20

R2

35 65

25

80

75

1

B: Aggregated

R1

10 20

R2

35 65

Figure 7.4: Sample Pattern Rank, Example 4.

Example 1

We are given a set of genes that are involved in a specific disease. We are asked to compare the

given set of genes with genes involved in multiple similar conditions; and rank the reference

genes such that a reference gene that is highly active in all the similar conditions is assigned

with higher rank compared to another reference gene that has varying activity across similar

conditions or low activity on all the similar conditions. For instance, we are given two genes

which have coordinates (10, 20) and (35, 65). According to our experimental setup, sam-

ples with antibody AB1 and AB2 are considered similar to the reference, so we are interested in

the enrichment of the reference genes in samples with AB1 and AB2. However, there could be

multiple samples with AB1 in repository, which we would like to MERGE them to single sample.

Additionally, there could be multiple samples with AB2 in repository, which we would like

to aggregate them to single sample using COVER (2, ANY). Also, we define enrichment (i.e.,

patter of interest) with pattern function ACTIVE. Finally, we would like to rank the enrichment

of reference genes on the similar conditions using Pearson correlation (see Figure 7.5). To

answer this question, we define RPR query as follows:

SAMPLE_LIST ← RPR (

((10 20) (35 65))

()

(

SELECT (Antibody AB1)

(AGGREGATE MERGE)

(PATTERN ACTIVE)

)

(

SELECT (Antibody AB2)

(AGGREGATE (COVER 2 ANY))

(PATTERN ACTIVE)

)

RANK_ALL_BY_PEARSON)

140

7.2. Pattern Finding Queries on Di4

S6

S1

S2

S3

S4

S5

A: Selected Input C: Processed C: Ranked

R1

10 20

R2

35 65

R1

10 20

R2

35 65

0.1 12.1

18.6 20.4

1. R2

2. R1

12.1 , 20.4

0.1 , 18.6

B: Aggregated

R1

10 20

R2

35 65

Figure 7.5: Region Pattern Rank, Example 1.

The query might calculate function ACTIVE for reference gene at (10, 20) with 0.1 on AB1

and 18.6 on AB2; and for reference gene at (35, 65) with 12.1 and 20.4 on AB1 and AB2

respectively. After final step that is ranking, the gene at (35, 65) with evaluations 12.1 and

20.4 shows relatively high activity on similar conditions than the gene at (10, 20) with

evaluations 0.1 and 18.6.

141

Conclusion and Future Works

Comparative evaluation of evidences from a large collection of homo/heterogeneous genomic

data is a paramount work that enables assessment of variety of aspects of the data. The big

data size and the need for efficient retrieval and inferences, encourage adapting data indexing

techniques. However, the diversity in comparative analysis requirements, heterogeneity in

data types, and the large size of datasets, introduce analytical and computational challenges.

Accordingly, a retrieval technique has to have (i) Tera-byte scalability, (ii) offer comprehensive

and orthogonal region calculus, (iii) support a wide range of analytical operations that inherit

from diverse research questions, and (iv) adapt to different application scenarios with varying

computational infrastructure. Present dissertation discusses two indexing frameworks, 1D

intervals inverted index (Di3) and 1D intervals incremental inverted index (Di4); these two

offer aforementioned features, discussed generally as follows.

Multi-resolution data structure

Di3 and Di4 are single-dimension indexing frameworks that organize intervals based on

coordinate attribute. Therefore, Di3 and Di4 excel coordinate-based operations. However,

some inferences on data may operate upon an aggregated aspect of coordinates or meta-data

of intervals. Such operations are supported by the multi-resolution design of Di3 and Di4,

which enables an abstract view over a set of intervals through custom aggregates of coordinate

attribute (indexed) or non-indexed attributes of intervals (e.g., “p-value”). Therefore, the

support of a retrieval function that operates upon a non-indexed attribute is twofold. First,

a second resolution is created by aggregating an attribute of a set of intervals using a user-

defined function (discussed in Section 4.6). Second, the retrieval function uses the items of

second-resolution to determine position on domain which satisfy function criteria (e.g., see

COVER function discussed in Section 4.8.2). Based on the multi-resolution design, Di3 and Di4

operate optimally on non-indexed attributes.

Agnostic to persistence technology

Di3 and Di4 are agnostic to persistence technology. This design enables adaptation of the

Di3 and Di4 data model and functionality to different persistence technologies spanning

classical B+tree to local or distributed Big data key-value pair storage technologies such as

LevelDB, Apache Cassandra, and Riak [200]; in general, any Dynamo [201] storage system.

143

Chapter 7. Toward Google-Style Search in Genomics

This is achieved through the physical layer of Di3 and Di4. This layer defines CRUD (Create,

Read, Update, and Delete) and enumerate operations, which bridge between the Di3 and Di4

functions, and persistence-technology-specific data access functionality. In other words, the

physical layer abstracts the persistence technology to the functions of Di3 and Di4. This design

makes Di3 and Di4 operations independent from persistence technology and minimizes the

effort of adapting different storage technologies to manipulation of the physical layer only

(which is simplified as implementing the physical layer interface for CRUD and enumerate

operations based on persistence technology functionalities).

Agnostic to business logic layer and presentation scenarios

Di3 and Di4 are agnostic to business logic layer and presentation scenarios. This design

facilitates adaptation to variety of disciplines and interval-based data models with application

specific operations, defined at business logic layer. Additionally, it supports any user-interface

spanning console-level accessibility and stand-alone graphical user interface (e.g., MSPC [162]

and MuSERA [202] as discussed in Chapter 6), to web-based applications. This extensibility

is due to the generic design of Di3 and Di4 model on interval-based data, which has two key

advantages described as follows.

i. It adapts the model to any interval-based data. In general, Di3 and Di4 organize intervals

based on the primary attribute —coordinate, and are scoped lower and upper bounds

which are the least common characteristics of interval-based data. This extends the

model to different applications with varying coordinate characteristics. For instance,

genomics locate an interval with chromosome and strand, in addition to lower and

upper bounds. To address this, Di3 and Di4 are extensible to multiple-dimension

data structure through additional resolutions defined at the data access layer (within

business logic layer) per each extra coordination characteristic; which is one instance

of Di3 or Di4 per each additional coordinate attribute. For instance in genomics, one

Di3 or Di4 instance for Chr1, +strand, another Di3 or Di4 instance for Chr1, -strand,

another Di3 or Di4 instance for Chr2, +strand, and so on so forth (see Figure 7.6). Note

that, different resolutions are considered independent, and any domain specific inter-

resolution process or retrieval is entrusted to the domain specific application (e.g., “if

the sum of p-values of intervals overlapping GeneX on Chr1 is above a certain threshold,

then find intervals overlapping given GeneY on Chr2”).

ii. Di3 and Di4 support heterogeneous data types; this is motivated by the wide-range of

information in a discipline that can be abstracted by an interval-based representation.

For instance, a gene, a promoter, a transcription factor binding site, and an un-annotated

ChIP-seq peak, all represent different genomic concepts which are abstracted by an

interval-based representation on the genome. Different data types share coordination

characteristics, and differ in additional attributes. For instance, while an un-annotated

ChIP-seq peak has “p-value” attribute, a gene has “GeneID” attribute instead. However,

being generic on data type, Di3 and Di4 store a pointer to descriptive meta-data per each

144

7.2. Pattern Finding Queries on Di4

Data Layer

Presentation
Layer

Data Access
Layer

Business
Logic Layer

Binary File n-1 Binary File nBinary File 1 Binary File 2 Binary File 3

Di3 / Di4
Chr1 +strand

Di3 / Di4
Chr1 -strand

Di3 / Di4
Chr2 +strand

Di3 / Di4
ChrY +strand

Di3 / Di4
ChrY -strand

Di4B Chromosome switch

Di4B

Di4BCLI

...

...

MuSERA Chromosome switch

MuSERA Genome model

MuSERA graphical user interface

Figure 7.6: The multi-dimensional architecture of Di3 and Di4 for Chromosome and strand coordinate
attributes.

indexed interval. In this case, an external storage may organize genes in a table which

has “GeneID” attribute, and store un-annotated ChIP-seq peaks on another table which

has “p-value” attribute. This design enables Di3 and Di4 to support heterogeneous

data types; and descriptive information of interval-based data are fetched from external

storage upon request by a function, using the pointer stored per each interval.

Extensive domain-specific operations

Extensive aspects of data is assessed using domain specific aggregates applied on coordinates

and/or descriptive metadata of intervals. Di3 and Di4 determine a set of snapshots and the

composing intervals as the result of a search query; then they apply a user-defined function

on determined information to make a custom inference. For instance, in genomics, statistical

significance of a “ChIP-seq peak” (interval) is verified by combining the “p-values” (descriptive

metadata) of co-localized intervals of replicates (search result) using a data fusion function

such as Fisher’s method (user-defined function). This assessment is extensively studied in

MSPC [162] and MuSERA [202], and is discussed in Chapter 6. Such extensibility on domain-

specific and application-specific functions is facilitated by the design of Di3 and Di4 through

design pattern of functions (a composition of strategy and factory method patterns [122])1.

Such design provides extensive flexibility to Di3 and Di4 functions, and facilitates adaption to

different disciplines with various inference requirements.

Future work

Di3 and Di4 index the primary attribute of an interval, i.e., coordinate, and provide logarithmic

access to this attribute while offering a linear access (with the pruning of second-resolution)

to additional attributes. In general, first, candidate intervals that satisfy the coordinate criteria

1Domain and application specific aggregate algorithm, encapsulated in “strategy” object, is passed to Di3 and
Di4 functions, and applied on determined snapshots and intervals. Finally, a “factory” determined output object is
returned, which enables functions to return any user-defined output.

145

Chapter 7. Toward Google-Style Search in Genomics

of a query are determined; then candidates are linearly filtered for the intervals complying

the criteria of additional attributes. The efficiency of this method depends on the selectivity

of coordinate criteria. Such that, a selective coordinate criteria, selects a relatively small

number of indexed intervals which creates a significantly small number of candidates for

the filter of additional attributes criteria. In contrast, a coordinate criteria with low or none

selectivity, takes all or a big percentage of indexed intervals as candidates for the filter of

additional attributes criteria; which has a cost proportional to linearly scanning Di3 and Di4

data structure. For instance, the query “find intervals overlapping a known genomic region

that has p-value above X threshold” has coordinate criteria, which is “overlapping a known

genomic region”; however, this criteria has limited selectivity because a majority of indexed

intervals overlap known genomic regions. Therefore, finding intervals that satisfy the “p-

value above X threshold” criteria is as expensive as a linear scan on Di3 and Di4. Additionally,

regardless of the selectivity of coordinate criteria, creating candidate intervals is a performance

penalty and may lead to a considerable memory footprint. Therefore, it is generally preferred

to minimize the usage and size of candidate intervals.

To address these challenges, Di3 and Di4 can be extended as multi-attribute index; such that,

the (commonly used) meta-data of intervals are also indexed in Di3 and Di4 as additional

dimensions. Therefore, the intervals satisfying coordinate and additional attributes criteria of

a query, are the intervals at the intersection of retrievals on multiple-dimension. This design

has two advantages; first, the selectivity of coordinate attribute becomes equally important

to the selectivity of indexed additional attributes. Second, minimizes the size of candidate

intervals, and limits the generation of candidate intervals to queries with select criteria of

non-indexed attributes, or an aggregation of indexed attributes.

146

Bibliography

[1] Allan M Maxam and Walter Gilbert. A new method for sequencing dna. Proceedings of

the National Academy of Sciences, 74(2):560–564, 1977.

[2] Raja Jothi, Suresh Cuddapah, Artem Barski, Kairong Cui, and Keji Zhao. Genome-wide

identification of in vivo protein–dna binding sites from chip-seq data. Nucleic acids

research, 36(16):5221–5231, 2008.

[3] Dominic Schmidt, Michael D Wilson, Christiana Spyrou, Gordon D Brown, James Had-

field, and Duncan T Odom. Chip-seq: Using high-throughput sequencing to discover

protein–dna interactions. Methods, 48(3):240–248, 2009.

[4] Peter J Park. Chip–seq: advantages and challenges of a maturing technology. Nature

Reviews Genetics, 10(10):669–680, 2009.

[5] Anton Valouev, David S Johnson, Andreas Sundquist, Catherine Medina, Elizabeth

Anton, Serafim Batzoglou, Richard M Myers, and Arend Sidow. Genome-wide analysis of

transcription factor binding sites based on chip-seq data. Nature methods, 5(9):829–834,

2008.

[6] Shirley Pepke, Barbara Wold, and Ali Mortazavi. Computation for chip-seq and rna-seq

studies. Nature methods, 6:S22–S32, 2009.

[7] Bart Deplancke, Arnab Mukhopadhyay, Wanyuan Ao, Ahmed M Elewa, Christian A

Grove, Natalia J Martinez, Reynaldo Sequerra, Lynn Doucette-Stamm, John S Reece-

Hoyes, Ian A Hope, et al. A gene-centered c. elegans protein-dna interaction network.

Cell, 125(6):1193–1205, 2006.

[8] Reut Shalgi, Daniel Lieber, Moshe Oren, and Yitzhak Pilpel. Global and local archi-

tecture of the mammalian microrna–transcription factor regulatory network. PLoS

computational biology, 3(7):e131, 2007.

[9] Job Dekker, Karsten Rippe, Martijn Dekker, and Nancy Kleckner. Capturing chromosome

conformation. science, 295(5558):1306–1311, 2002.

[10] Melissa J Fullwood and Yijun Ruan. Chip-based methods for the identification of

long-range chromatin interactions. Journal of cellular biochemistry, 107(1):30–39, 2009.

147

Bibliography

[11] Melissa J Fullwood, Mei Hui Liu, You Fu Pan, Jun Liu, Han Xu, Yusoff Bin Mohamed,

Yuriy L Orlov, Stoyan Velkov, Andrea Ho, Poh Huay Mei, et al. An oestrogen-receptor-

&agr;-bound human chromatin interactome. Nature, 462(7269):58–64, 2009.

[12] Dna sequencing costs.

[13] Yuichi Kodama, Martin Shumway, and Rasko Leinonen. The sequence read archive:

explosive growth of sequencing data. Nucleic acids research, 40(D1):D54–D56, 2012.

[14] Tanya Barrett, Dennis B Troup, Stephen E Wilhite, Pierre Ledoux, Carlos Evangelista,

Irene F Kim, Maxim Tomashevsky, Kimberly A Marshall, Katherine H Phillippy, Patti M

Sherman, et al. Ncbi geo: archive for functional genomics data sets—10 years on.

Nucleic acids research, 39(suppl 1):D1005–D1010, 2011.

[15] ENCODE Project Consortium et al. The encode (encyclopedia of dna elements) project.

Science, 306(5696):636–640, 2004.

[16] Rhoda J Kinsella, Andreas Kähäri, Syed Haider, Jorge Zamora, Glenn Proctor, Giulietta

Spudich, Jeff Almeida-King, Daniel Staines, Paul Derwent, Arnaud Kerhornou, et al. En-

sembl biomarts: a hub for data retrieval across taxonomic space. Database, 2011:bar030,

2011.

[17] José Caldas, Nils Gehlenborg, Eeva Kettunen, Ali Faisal, Mikko Rönty, Andrew G Nichol-

son, Sakari Knuutila, Alvis Brazma, and Samuel Kaski. Data-driven information retrieval

in heterogeneous collections of transcriptomics data links sim2s to malignant pleural

mesothelioma. Bioinformatics, 28(2):246–253, 2012.

[18] Zhang Zhang, Jeffrey P Townsend, Jun Yu, Kei-Hoi Cheung, and Vladimir B Bajic. Data

integration in bioinformatics: current efforts and challenges. INTECH Open Access

Publisher, 2011.

[19] Lin Dai, Xin Gao, Yan Guo, Jingfa Xiao, Zhang Zhang, et al. Bioinformatics clouds for big

data manipulation. Biology direct, 7(1):43, 2012.

[20] Xin Zeng, Rajendran Sanalkumar, Emery H Bresnick, Hongda Li, Qiang Chang, and

Sündüz Keleş. jmosaics: joint analysis of multiple chip-seq datasets. Genome biology,

14(4):R38, 2013.

[21] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of data explo-

ration techniques. In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, pages 277–281. ACM, 2015.

[22] Mark A Musen, Blackford Middleton, and Robert A Greenes. Clinical decision-support

systems. In Biomedical informatics, pages 643–674. Springer, 2014.

[23] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R Pocock, Peter

Li, and Tom Oinn. Taverna: a tool for building and running workflows of services.

Nucleic acids research, 34(suppl 2):W729–W732, 2006.

148

Bibliography

[24] Philippe Cudré-Mauroux, Hideaki Kimura, K-T Lim, Jennie Rogers, Roman Simakov,

Emad Soroush, Pavel Velikhov, Daniel L Wang, Magdalena Balazinska, Jacek Becla,

et al. A demonstration of scidb: a science-oriented dbms. Proceedings of the VLDB

Endowment, 2(2):1534–1537, 2009.

[25] Rebecca Taft, Manasi Vartak, Nadathur Rajagopalan Satish, Narayanan Sundaram,

Samuel Madden, and Michael Stonebraker. Genbase: a complex analytics genomics

benchmark. In Proceedings of the 2014 ACM SIGMOD international conference on

Management of data, pages 177–188. ACM, 2014.

[26] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on nosql database. In Pervasive

computing and applications (ICPCA), 2011 6th international conference on, pages 363–

366. IEEE, 2011.

[27] Bogdan George Tudorica and Cristian Bucur. A comparison between several nosql

databases with comments and notes. In Roedunet International Conference (RoEduNet),

2011 10th, pages 1–5. IEEE, 2011.

[28] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. Design patterns:

Elements of reusable object-oriented software. Reading: Addison-Wesley, 49(120):11,

1995.

[29] Maria D Chikina and Olga G Troyanskaya. An effective statistical evaluation of chipseq

dataset similarity. Bioinformatics, 28(5):607–613, 2012.

[30] Stephen G Landt, Georgi K Marinov, Anshul Kundaje, Pouya Kheradpour, Florencia Pauli,

Serafim Batzoglou, Bradley E Bernstein, Peter Bickel, James B Brown, Philip Cayting, et al.

Chip-seq guidelines and practices of the encode and modencode consortia. Genome

research, 22(9):1813–1831, 2012.

[31] David S Johnson, Ali Mortazavi, Richard M Myers, and Barbara Wold. Genome-wide

mapping of in vivo protein-dna interactions. Science, 316(5830):1497–1502, 2007.

[32] Tarjei S Mikkelsen, Manching Ku, David B Jaffe, Biju Issac, Erez Lieberman, Georgia

Giannoukos, Pablo Alvarez, William Brockman, Tae-Kyung Kim, Richard P Koche, et al.

Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.

Nature, 448(7153):553–560, 2007.

[33] Xi Chen, Han Xu, Ping Yuan, Fang Fang, Mikael Huss, Vinsensius B Vega, Eleanor

Wong, Yuriy L Orlov, Weiwei Zhang, Jianming Jiang, et al. Integration of external sig-

naling pathways with the core transcriptional network in embryonic stem cells. Cell,

133(6):1106–1117, 2008.

[34] Elizabeth D Wederell, Mikhail Bilenky, Rebecca Cullum, Nina Thiessen, Melis Dagpinar,

Allen Delaney, Richard Varhol, YongJun Zhao, Thomas Zeng, Bridget Bernier, et al.

Global analysis of in vivo foxa2-binding sites in mouse adult liver using massively

parallel sequencing. Nucleic acids research, 36(14):4549–4564, 2008.

149

Bibliography

[35] Aaron R Quinlan and Ira M Hall. Bedtools: a flexible suite of utilities for comparing

genomic features. Bioinformatics, 26(6):841–842, 2010.

[36] Shane Neph, M Scott Kuehn, Alex P Reynolds, Eric Haugen, Robert E Thurman, Audra K

Johnson, Eric Rynes, Matthew T Maurano, Jeff Vierstra, Sean Thomas, et al. Bedops:

high-performance genomic feature operations. Bioinformatics, 28(14):1919–1920, 2012.

[37] W James Kent, Charles W Sugnet, Terrence S Furey, Krishna M Roskin, Tom H Pringle,

Alan M Zahler, and David Haussler. The human genome browser at ucsc. Genome

research, 12(6):996–1006, 2002.

[38] Jeremy Goecks, Anton Nekrutenko, James Taylor, et al. Galaxy: a comprehensive ap-

proach for supporting accessible, reproducible, and transparent computational research

in the life sciences. Genome Biol, 11(8):R86, 2010.

[39] Ewan Birney, D Andrews, Mario Cáccamo, Yuan Chen, Laura Clarke, Guy Coates, Tony

Cox, Fiona Cunningham, Val Curwen, Tim Cutts, et al. Ensembl 2006. Nucleic acids

research, 34(suppl 1):D556–D561, 2006.

[40] Belinda Giardine, Laura Elnitski, Cathy Riemer, Izabela Makalowska, Scott Schwartz,

Webb Miller, and Ross C Hardison. Gala, a database for genomic sequence alignments

and annotations. Genome research, 13(4):732–741, 2003.

[41] Alexander V Alekseyenko and Christopher J Lee. Nested containment list (nclist): a new

algorithm for accelerating interval query of genome alignment and interval databases.

Bioinformatics, 23(11):1386–1393, 2007.

[42] Lincoln D Stein, Christopher Mungall, ShengQiang Shu, Michael Caudy, Marco Man-

gone, Allen Day, Elizabeth Nickerson, Jason E Stajich, Todd W Harris, Adrian Arva, et al.

The generic genome browser: a building block for a model organism system database.

Genome research, 12(10):1599–1610, 2002.

[43] Ryan M Layer, Kevin Skadron, Gabriel Robins, Ira M Hall, and Aaron R Quinlan. Binary

interval search: a scalable algorithm for counting interval intersections. Bioinformatics,

29(1):1–7, 2013.

[44] Gabriel Renaud, Pedro Neves, Edson Luiz Folador, Carlos Gil Ferreira, and Fabio Passetti.

Segtor: rapid annotation of genomic coordinates and single nucleotide variations using

segment trees. PloS one, 6(11):e26715, 2011.

[45] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,

Goncalo Abecasis, Richard Durbin, et al. The sequence alignment/map format and

samtools. Bioinformatics, 25(16):2078–2079, 2009.

[46] Antonin Guttman. R-trees: a dynamic index structure for spatial searching, volume 14.

ACM, 1984.

150

Bibliography

[47] Joel E Richardson. Fjoin: simple and efficient computation of feature overlaps. Journal

of Computational Biology, 13(8):1457–1464, 2006.

[48] Michael Ian Shamos and Dan Hoey. Geometric intersection problems. In Foundations

of Computer Science, 1976., 17th Annual Symposium on, pages 208–215. IEEE, 1976.

[49] Jon L Bentley and Thomas A Ottmann. Algorithms for reporting and counting geometric

intersections. Computers, IEEE Transactions on, 100(9):643–647, 1979.

[50] Bernard Chazelle and Herbert Edelsbrunner. An optimal algorithm for intersecting line

segments in the plane. Journal of the ACM (JACM), 39(1):1–54, 1992.

[51] Mark McKenney and Tynan McGuire. A parallel plane sweep algorithm for multi-

core systems. In Proceedings of the 17th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, pages 392–395. ACM, 2009.

[52] Michael T Goodrich, Jyh-Jong Tsay, Darren Erik Vengroff, and Jeffrey Scott Vitter.

External-memory computational geometry. In Foundations of Computer Science, 1993.

Proceedings., 34th Annual Symposium on, pages 714–723. IEEE, 1993.

[53] Hans-Peter Kriegel, Thomas Brinkhoff, and Ralf Schneider. The combination of spatial

access methods and computational geometry in geographic database systems. In

Advances in Spatial Databases, pages 5–21. Springer, 1991.

[54] Heng Li. Tabix: fast retrieval of sequence features from generic tab-delimited files.

Bioinformatics, 27(5):718–719, 2011.

[55] Matthias Zytnicki, YuFei Luo, and Hadi Quesneville. Efficient comparison of sets of

intervals with nc-lists. Bioinformatics, 29(7):933–939, 2013.

[56] Ryan M Layer and Aaron R Quinlan. A parallel algorithm for-way interval set intersec-

tion.

[57] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Section

14.3: Interval trees, chapter 14, pages 348–354. MIT press Cambridge, third edition

edition.

[58] Jon Louis Bentley. Solutions to klee’s rectangle problems. Technical report, Technical

report, Carnegie-Mellon Univ., Pittsburgh, PA, 1977.

[59] Jon Louis Bentley. Decomposable searching problems. Information Processing Letters,

8(5):244–251, 1979.

[60] Peter M Fenwick. A new data structure for cumulative frequency tables. Software:

Practice and Experience, 24(3):327–336, 1994.

[61] Utz Westermann and Ramesh Jain. Toward a common event model for multimedia

applications. IEEE MultiMedia, (1):19–29, 2007.

151

Bibliography

[62] Michael Worboys and Kathleen Hornsby. From objects to events: Gem, the geospatial

event model. In Geographic Information Science, pages 327–343. Springer, 2004.

[63] Tuukka Ruotsalo and Eero Hyvönen. An event-based approach for semantic metadata

interoperability. Springer, 2007.

[64] MJ Soomer and Geert Jan Franx. Scheduling aircraft landings using airlines’ preferences.

European Journal of Operational Research, 190(1):277–291, 2008.

[65] Sheng-Peng Yu, Xian-Bin Cao, and Jun Zhang. A real-time schedule method for aircraft

landing scheduling problem based on cellular automation. Applied Soft Computing,

11(4):3485–3493, 2011.

[66] Andrew Lim, Brian Rodrigues, and Yi Zhu. Airport gate scheduling with time windows.

Artificial Intelligence Review, 24(1):5–31, 2005.

[67] Ulrich Dorndorf, Andreas Drexl, Yury Nikulin, and Erwin Pesch. Flight gate scheduling:

State-of-the-art and recent developments. Omega, 35(3):326–334, 2007.

[68] Cynthia Barnhart, Amy M Cohn, Ellis L Johnson, Diego Klabjan, George L Nemhauser,

and Pamela H Vance. Airline crew scheduling. In Handbook of transportation science,

pages 517–560. Springer, 2003.

[69] Joyce W Yen and John R Birge. A stochastic programming approach to the airline crew

scheduling problem. Transportation Science, 40(1):3–14, 2006.

[70] Ahmed Abdelghany, Khaled Abdelghany, and Ram Narasimhan. Scheduling baggage-

handling facilities in congested airports. Journal of Air Transport Management, 12(2):76–

81, 2006.

[71] Jose L Tongzon. Determinants of port performance and efficiency. Transportation

Research Part A: Policy and Practice, 29(3):245–252, 1995.

[72] Chris N Potts and Vitaly A Strusevich. Fifty years of scheduling: a survey of milestones.

Journal of the Operational Research Society, pages S41–S68, 2009.

[73] Nicholas G Hall, Chris N Potts, and Chelliah Sriskandarajah. Parallel machine scheduling

with a common server. Discrete Applied Mathematics, 102(3):223–243, 2000.

[74] Daniel Costa. An evolutionary tabu search algorithm and the nhl scheduling problem.

Infor-Information Systems and Operational Research, 33(3):161–178, 1995.

[75] Graham Kendall, Sigrid Knust, Celso C Ribeiro, and Sebastián Urrutia. Scheduling in

sports: An annotated bibliography. Computers & Operations Research, 37(1):1–19, 2010.

[76] Leslie A Hall. Approximability of flow shop scheduling. Mathematical Programming,

82(1-2):175–190, 1998.

152

Bibliography

[77] TC Edwin Cheng and Zhaohui Liu. Approximability of two-machine no-wait flowshop

scheduling with availability constraints. Operations Research Letters, 31(4):319–322,

2003.

[78] Reuven Bar-Yehuda, Magnús M Halldórsson, Joseph Naor, Hadas Shachnai, and Irina

Shapira. Scheduling split intervals. SIAM Journal on Computing, 36(1):1–15, 2006.

[79] Richard Snodgrass and Ilsoo Ahn. A taxonomy of time databases. In ACM Sigmod Record,

volume 14, pages 236–246. ACM, 1985.

[80] Siegfried M Rump. Algebraic computation, numerical computation and verified inclu-

sions. Springer, 1988.

[81] Marc Daumas and Guillaume Melquiond. Generating formally certified bounds on

values and round-off errors. In Real Numbers and Computers, pages 55–70, 2004.

[82] Thomas C Hales. A proof of the kepler conjecture. Annals of mathematics, pages

1065–1185, 2005.

[83] Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros. Proof of the double

bubble conjecture. Annals of Mathematics, pages 459–489, 2002.

[84] Z Galias and P Zgliczyński. Computer assisted proof of chaos in the lorenz equations.

Physica D: Nonlinear Phenomena, 115(3):165–188, 1998.

[85] LA Rastrigin. Systems of extremal control, 1974.

[86] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuris-

tic for global optimization over continuous spaces. Journal of global optimization,

11(4):341–359, 1997.

[87] Norman W Paton and Oscar Díaz. Active database systems. ACM Computing Surveys

(CSUR), 31(1):63–103, 1999.

[88] Jennifer Widom and Stefano Ceri. Active database systems: Triggers and rules for ad-

vanced database processing. Morgan Kaufmann, 1996.

[89] Sharma Chakravarthy, Vidhya Krishnaprasad, Eman Anwar, and Seung-Kyum Kim.

Composite events for active databases: Semantics, contexts and detection. In VLDB,

volume 94, pages 606–617, 1994.

[90] Donna J Peuquet and Niu Duan. An event-based spatiotemporal data model (estdm)

for temporal analysis of geographical data. International journal of geographical infor-

mation systems, 9(1):7–24, 1995.

[91] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. Tinydb:

an acquisitional query processing system for sensor networks. ACM Transactions on

database systems (TODS), 30(1):122–173, 2005.

153

Bibliography

[92] Zhao Cao, Yanlei Diao, and Prashant Shenoy. Architectural considerations for distributed

rfid tracking and monitoring. In Proceedings of the ACM Workshop on Networking Meets

Databases (NetDB), 2009.

[93] Venkatesh Raghavan, Elke Rundensteiner, John Woycheese, and Abhishek Mukherji.

Firestream: Sensor stream processing for monitoring fire spread. In 2007 IEEE 23rd

International Conference on Data Engineering, pages 1507–1508. IEEE, 2007.

[94] Lexing Xie, Hari Sundaram, and Murray Campbell. Event mining in multimedia streams.

Proceedings of the IEEE, 96(4):623–647, 2008.

[95] James F Allen. Maintaining knowledge about temporal intervals. Communications of

the ACM, 26(11):832–843, 1983.

[96] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem

proving to problem solving. Artificial intelligence, 2(3):189–208, 1972.

[97] Earl D Sacerdoti. A structure for plans and behavior. Technical report, DTIC Document,

1975.

[98] Bertram C Bruce. A model for temporal references and its application in a question

answering program. Artificial intelligence, 3:1–25, 1972.

[99] Gary G Hendrix. Modeling simultaneous actions and continuous processes. Artificial

Intelligence, 4(3):145–180, 1974.

[100] Kenneth Kahn and G Anthony Gorry. Mechanizing temporal knowledge. Artificial

intelligence, 9(1):87–108, 1977.

[101] Drew McDermott. A temporal logic for reasoning about processes and plans*. Cognitive

science, 6(2):101–155, 1982.

[102] Elisa Bertino, Elena Ferrari, and Giovanna Guerrini. An approach to model and query

event-based temporal data. In Temporal Representation and Reasoning, 1998. Proceed-

ings. Fifth International Workshop on, pages 122–131. IEEE, 1998.

[103] Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A temporal-probabilistic

database model for information extraction. Proceedings of the VLDB Endowment,

6(14):1810–1821, 2013.

[104] Rita de Caluwe, Guy De Tré, and Gloria Bordogna. Spatio-temporal databases: flexible

querying and reasoning. Springer Science & Business Media, 2013.

[105] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N Papadopoulos, and Yannis

Theodoridis. R-trees: Theory and Applications. Springer Science & Business Media,

2010.

154

Bibliography

[106] Willem Robert Van Hage, Véronique Malaisé, Roxane Segers, Laura Hollink, and Guus

Schreiber. Design and use of the simple event model (sem). Web Semantics: Science,

Services and Agents on the World Wide Web, 9(2):128–136, 2011.

[107] Ruslan Mavlyutov and Philippe Cudre-Mauroux. Cintia: A distributed, low-latency

index for big interval data. In Big Data (Big Data), 2015 IEEE International Conference

on, pages 619–628. IEEE, 2015.

[108] Benjamin Schlegel, Thomas Willhalm, and Wolfgang Lehner. Fast sorted-set intersection

using simd instructions. In ADMS@ VLDB, pages 1–8, 2011.

[109] Bolin Ding and Arnd Christian König. Fast set intersection in memory. Proceedings of

the VLDB Endowment, 4(4):255–266, 2011.

[110] Marcus Fontoura, Maxim Gurevich, Vanja Josifovski, and Sergei Vassilvitskii. Efficiently

encoding term co-occurrences in inverted indexes. In Proceedings of the 20th ACM

international conference on Information and knowledge management, pages 307–316.

ACM, 2011.

[111] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. Faster set intersection with simd

instructions by reducing branch mispredictions. Proceedings of the VLDB Endowment,

8(3):293–304, 2014.

[112] Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David P Woodruff, and Grigory

Yaroslavtsev. Beyond set disjointness: the communication complexity of finding the

intersection. In Proceedings of the 2014 ACM symposium on Principles of distributed

computing, pages 106–113. ACM, 2014.

[113] Weixiong Rao, Lei Chen, Pan Hui, and Sasu Tarkoma. Bitlist: New full-text index for

low space cost and efficient keyword search. Proceedings of the VLDB Endowment,

6(13):1522–1533, 2013.

[114] Yufei Tao and Dimitris Papadias. The mv3r-tree: A spatio-temporal access method for

timestamp and interval queries. In Proceedings of Very Large Data Bases Conference

(VLDB), 11-14 September, Rome, 2001.

[115] Theodoros Tzouramanis, Yannis Manolopoulos, and Nikos Lorentzos. Overlapping

b+-trees: an implementation of a transaction time access method. Data & Knowledge

Engineering, 29(3):381–404, 1999.

[116] Kristian Ovaska, Lauri Lyly, Biswajyoti Sahu, Olli A Janne, and Sampsa Hautaniemi.

Genomic region operation kit for flexible processing of deep sequencing data. IEEE/ACM

Transactions on Computational Biology and Bioinformatics (TCBB), 10(1):200–206, 2013.

[117] Curtis Dyreson, Fabio Grandi, Wolfgang Käfer, Nick Kline, Nikos Lorentzos, Yannis

Mitsopoulos, Angelo Montanari, Daniel Nonen, Elisa Peressi, Barbara Pernici, et al. A

consensus glossary of temporal database concepts. ACM Sigmod Record, 23(1):52–64,

1994.

155

Bibliography

[118] Goetz Graefe. Sorting and indexing with partitioned b-trees. In CIDR, volume 3, pages

5–8, 2003.

[119] Thanaa M Ghanem, Rahul Shah, Mohamed F Mokbel, Walid G Aref, and Jeffrey S Vitter.

Bulk operations for space-partitioning trees. In Data Engineering, 2004. Proceedings.

20th International Conference on, pages 29–40. IEEE, 2004.

[120] Martin Erwig and Markus Schneider. Spatio-temporal predicates. Knowledge and Data

Engineering, IEEE Transactions On, 14(4):881–901, 2002.

[121] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunopulos. Mining

frequent arrangements of temporal intervals. Knowledge and Information Systems,

21(2):133–171, 2009.

[122] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

elements of reusable object-oriented software. Pearson Education, 1994.

[123] Roded Sharan, Ivan Ovcharenko, Asa Ben-Hur, and Richard M Karp. Creme: a frame-

work for identifying cis-regulatory modules in human-mouse conserved segments.

Bioinformatics, 19(suppl 1):i283–i291, 2003.

[124] Priya Sudarsanam, Yitzhak Pilpel, and George M Church. Genome-wide co-occurrence

of promoter elements reveals a cis-regulatory cassette of rrna transcription motifs in

saccharomyces cerevisiae. Genome research, 12(11):1723–1731, 2002.

[125] Yasuhiko Morimoto. Mining frequent neighboring class sets in spatial databases. In

Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 353–358. ACM, 2001.

[126] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules between

sets of items in large databases. In ACM SIGMOD Record, volume 22, pages 207–216.

ACM, 1993.

[127] Karthik Ganesan Pillai, Rafal Angryk, Juan M Banda, Michael Schuh, Tim Wylie, et al.

Spatio-temporal co-occurrence pattern mining in data sets with evolving regions. In

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on, pages

805–812. IEEE, 2012.

[128] Xiangye Xiao, Xing Xie, Qiong Luo, and Wei-Ying Ma. Density based co-location pattern

discovery. In Proceedings of the 16th ACM SIGSPATIAL international conference on

Advances in geographic information systems, page 29. ACM, 2008.

[129] Vladimir Estivill-Castrol and Alan T Murray. Discovering associations in spatial data—an

efficient medoid based approach. In Research and Development in Knowledge Discovery

and Data Mining, pages 110–121. Springer, 1998.

156

Bibliography

[130] Yuhan Cai and Raymond Ng. Indexing spatio-temporal trajectories with chebyshev

polynomials. In Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, pages 599–610. ACM, 2004.

[131] Berkay Aydin, Dustin Kempton, Vijay Akkineni, Shaktidhar Reddy Gopavaram,

Karthik Ganesan Pillai, and Rafal Angryk. Spatiotemporal indexing techniques for

efficiently mining spatiotemporal co-occurrence patterns. In Big Data (Big Data), 2014

IEEE International Conference on, pages 1–10. IEEE, 2014.

[132] V Prasad Chakka, Adam C Everspaugh, and Jignesh M Patel. Indexing large trajectory

data sets with seti. Ann Arbor, 1001:48109–2122, 2003.

[133] Hanan Samet. Foundations of multidimensional and metric data structures. Morgan

Kaufmann, 2006.

[134] Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. Spatio-temporal access

methods. IEEE Data Eng. Bull., 26(2):40–49, 2003.

[135] Long-Van Nguyen-Dinh, Walid G Aref, and Mohamed Mokbel. Spatio-temporal access

methods: Part 2 (2003-2010). 2010.

[136] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association

rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499,

1994.

[137] Yan Huang, Shashi Shekhar, and Hui Xiong. Discovering colocation patterns from spatial

data sets: a general approach. Knowledge and Data Engineering, IEEE Transactions on,

16(12):1472–1485, 2004.

[138] Yan Huang, Jian Pei, and Hui Xiong. Mining co-location patterns with rare events from

spatial data sets. Geoinformatica, 10(3):239–260, 2006.

[139] Vladimir Estivill-Castro and Ickjai Lee. Data mining techniques for autonomous explo-

ration of large volumes of geo-referenced crime data. In Proc. of the 6th International

Conference on Geocomputation, pages 24–26. Citeseer, 2001.

[140] Junmei Wang, Wynne Hsu, and Mong Li Lee. A framework for mining topological

patterns in spatio-temporal databases. In Proceedings of the 14th ACM international

conference on Information and knowledge management, pages 429–436. ACM, 2005.

[141] Jin Soung Yoo, Shashi Shekhar, John Smith, and Julius P Kumquat. A partial join ap-

proach for mining co-location patterns. In Proceedings of the 12th annual ACM interna-

tional workshop on Geographic information systems, pages 241–249. ACM, 2004.

[142] Shashi Shekhar, Pusheng Zhang, Yan Huang, and Ranga Raju Vatsavai. Trends in spatial

data mining. Data mining: Next generation challenges and future directions, pages

357–380, 2003.

157

Bibliography

[143] Shashi Shekhar and Yan Huang. Discovering spatial co-location patterns: A summary of

results. In Advances in Spatial and Temporal Databases, pages 236–256. Springer, 2001.

[144] Jin Soung Yoo and Shashi Shekhar. A joinless approach for mining spatial colocation

patterns. Knowledge and Data Engineering, IEEE Transactions on, 18(10):1323–1337,

2006.

[145] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate gener-

ation. In ACM SIGMOD Record, volume 29, pages 1–12. ACM, 2000.

[146] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without

candidate generation: A frequent-pattern tree approach. Data mining and knowledge

discovery, 8(1):53–87, 2004.

[147] Mete Celik, Shashi Shekhar, James P Rogers, James Shine, et al. Mixed-drove spa-

tiotemporal co-occurrence pattern mining. Knowledge and Data Engineering, IEEE

Transactions on, 20(10):1322–1335, 2008.

[148] Zhanquan Wang, Xuanhuang Peng, Chunhua Gu, and Bingqiang Huang. Mining at most

top-k% mixed-drove spatiotemporal co-occurrence patterns. In Control Conference

(ASCC), 2013 9th Asian, pages 1–5. IEEE, 2013.

[149] Yan Huang, Liqin Zhang, and Pusheng Zhang. A framework for mining sequential

patterns from spatio-temporal event data sets. Knowledge and Data Engineering, IEEE

Transactions on, 20(4):433–448, 2008.

[150] Joachim Gudmundsson and Marc van Kreveld. Computing longest duration flocks in

trajectory data. In Proceedings of the 14th annual ACM international symposium on

Advances in geographic information systems, pages 35–42. ACM, 2006.

[151] Dina Q Goldin, Todd D Millstein, and Ayferi Kutlu. Bounded similarity querying for

time-series data. Information and Computation, 194(2):203–241, 2004.

[152] Mete Celik, Shashi Shekhar, James P Rogers, James Shine, Jin Soung Yoo, et al. Mixed-

drove spatio-temporal co-occurence pattern mining: A summary of results. In Data

Mining, 2006. ICDM’06. Sixth International Conference on, pages 119–128. IEEE, 2006.

[153] Erwin L van Dijk, Hélène Auger, Yan Jaszczyszyn, and Claude Thermes. Ten years of

next-generation sequencing technology. Trends in genetics, 30(9):418–426, 2014.

[154] Yiwen Chen, Nicolas Negre, Qunhua Li, Joanna O Mieczkowska, Matthew Slattery, Tao

Liu, Yong Zhang, Tae-Kyung Kim, Housheng Hansen He, Jennifer Zieba, et al. Systematic

evaluation of factors influencing chip-seq fidelity. Nature methods, 9(6):609–614, 2012.

[155] Mark B Gerstein, Zhi John Lu, Eric L Van Nostrand, Chao Cheng, Bradley I Arshinoff,

Tao Liu, Kevin Y Yip, Rebecca Robilotto, Andreas Rechtsteiner, Kohta Ikegami, et al.

Integrative analysis of the caenorhabditis elegans genome by the modencode project.

Science, 330(6012):1775–1787, 2010.

158

Bibliography

[156] Maya Kasowski, Fabian Grubert, Christopher Heffelfinger, Manoj Hariharan, Akwasi

Asabere, Sebastian M Waszak, Lukas Habegger, Joel Rozowsky, Minyi Shi, Alexan-

der E Urban, et al. Variation in transcription factor binding among humans. science,

328(5975):232–235, 2010.

[157] Matthew T Maurano, Eric Haugen, Richard Sandstrom, Jeff Vierstra, Anthony Shafer,

Rajinder Kaul, and John A Stamatoyannopoulos. Large-scale identification of sequence

variants influencing human transcription factor occupancy in vivo. Nature genetics,

2015.

[158] Wei Zheng, Hongyu Zhao, Eugenio Mancera, Lars M Steinmetz, and Michael Sny-

der. Genetic analysis of variation in transcription factor binding in yeast. Nature,

464(7292):1187–1191, 2010.

[159] Elizabeth G Wilbanks and Marc T Facciotti. Evaluation of algorithm performance in

chip-seq peak detection. PloS one, 5(7):e11471, 2010.

[160] Anaïs F Bardet, Qiye He, Julia Zeitlinger, and Alexander Stark. A computational pipeline

for comparative chip-seq analyses. Nature protocols, 7(1):45–61, 2012.

[161] Kirk E Lohmueller, Celeste L Pearce, Malcolm Pike, Eric S Lander, and Joel N Hirschhorn.

Meta-analysis of genetic association studies supports a contribution of common vari-

ants to susceptibility to common disease. Nature genetics, 33(2):177–182, 2003.

[162] Vahid Jalili, Matteo Matteucci, Marco Masseroli, and Marco J. Morelli. Using combined

evidence from replicates to evaluate chip-seq peaks. Bioinformatics, 31(17):2761–2769,

2015.

[163] Qunhua Li, James B Brown, Haiyan Huang, and Peter J Bickel. Measuring reproducibility

of high-throughput experiments. The annals of applied statistics, pages 1752–1779,

2011.

[164] Pei Fen Kuan, Dongjun Chung, Guangjin Pan, James A Thomson, Ron Stewart, and

Sündüz Keleş. A statistical framework for the analysis of chip-seq data. Journal of the

American Statistical Association, 106(495):891–903, 2011.

[165] Ronald Aylmer Fisher. Statistical methods for research workers. 1934.

[166] Steven Goodman. A dirty dozen: twelve p-value misconceptions. In Seminars in

hematology, volume 45, pages 135–140. Elsevier, 2008.

[167] Mark J Schervish. P values: what they are and what they are not. The American Statisti-

cian, 50(3):203–206, 1996.

[168] Jonathan AC Sterne and George Davey Smith. Sifting the evidence—what’s wrong with

significance tests? Physical Therapy, 81(8):1464–1469, 2001.

159

Bibliography

[169] Ronald A Fisher. The arrangement of field experiments. In Breakthroughs in Statistics,

pages 82–91. Springer, 1992.

[170] Joachim Hartung. A note on combining dependent tests of significance. Technical report,

Technical Report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen,

Universität Dortmund, 1998.

[171] Morton B Brown. 400: A method for combining non-independent, one-sided tests of

significance. Biometrics, pages 987–992, 1975.

[172] T Liptak. On the combination of independent tests. Magyar Tud Akad Mat Kutato Int

Kozl, 3:171–197, 1958.

[173] Govind S Mudholkar and E Olusegun George. The logit statistic for combining

probabilities-an overview. Technical report, DTIC Document, 1977.

[174] Bryan Wilkinson. A statistical consideration in psychological research. Psychological

Bulletin, 48(2):156, 1951.

[175] Dmitri V Zaykin, Lev A Zhivotovsky, Peter H Westfall, and Bruce S Weir. Truncated

product method for combining p-values. Genetic epidemiology, 22(2):170–185, 2002.

[176] Ramon C Littell and J Leroy Folks. Asymptotic optimality of fisher’s method of combining

independent tests. Journal of the American Statistical Association, 66(336):802–806, 1971.

[177] Ramon C Littell and J Leroy Folks. Asymptotic optimality of fisher’s method of combining

independent tests ii. Journal of the American Statistical Association, 68(341):193–194,

1973.

[178] RR Bahadur. Stochastic comparison of tests. Annals of Mathematical Statistics, 31(2):276–

295, 1960.

[179] Sungho Won, Nathan Morris, Qing Lu, and Robert C Elston. Choosing an optimal

method to combine p-values. Statistics in medicine, 28(11):1537, 2009.

[180] Dmitri V Zaykin, Lev A Zhivotovsky, Wendy Czika, Susan Shao, and Russell D Wolfinger.

Combining p-values in large-scale genomics experiments. Pharmaceutical statistics,

6(3):217–226, 2007.

[181] Frank K. Hwang and Shen Lin. A simple algorithm for merging two disjoint linearly

ordered sets. SIAM Journal on Computing, 1(1):31–39, 1972.

[182] Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms.

Acta informatica, 1(4):290–306, 1972.

[183] Edward M McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276,

1985.

160

Bibliography

[184] Herbert Edelsbrunner. Dynamic data structures for orthogonal intersection queries.

Technische Universität Graz/Forschungszentrum Graz. Institut für Informationsverar-

beitung, 1980.

[185] Franco P Preparata and Michael Shamos. Computational geometry: an introduction.

Springer Science & Business Media, 2012.

[186] Michael Bulger and Mark Groudine. Enhancers: the abundance and function of regula-

tory sequences beyond promoters. Developmental biology, 339(2):250–257, 2010.

[187] Laura A Lettice, Simon JH Heaney, Lorna A Purdie, Li Li, Philippe de Beer, Ben A Oos-

tra, Debbie Goode, Greg Elgar, Robert E Hill, and Esther de Graaff. A long-range shh

enhancer regulates expression in the developing limb and fin and is associated with

preaxial polydactyly. Human molecular genetics, 12(14):1725–1735, 2003.

[188] William J Glassford and Mark Rebeiz. Assessing constraints on the path of regulatory

sequence evolution. Philosophical Transactions of the Royal Society B: Biological Sciences,

368(1632):20130026, 2013.

[189] Kyle L MacQuarrie, Abraham P Fong, Randall H Morse, and Stephen J Tapscott. Genome-

wide transcription factor binding: beyond direct target regulation. Trends in Genetics,

27(4):141–148, 2011.

[190] Karl Pearson. Note on regression and inheritance in the case of two parents. Proceedings

of the Royal Society of London, pages 240–242, 1895.

[191] Xiaobei Zhao, Eivind Valen, Brian J Parker, and Albin Sandelin. Systematic clustering of

transcription start site landscapes. PLoS One, 6(8):e23409, 2011.

[192] Andrea Rau, Mélina Gallopin, Gilles Celeux, and Florence Jaffrézic. Data-based filtering

for replicated high-throughput transcriptome sequencing experiments. Bioinformatics,

29(17):2146–2152, 2013.

[193] Eugenia G Giannopoulou and Olivier Elemento. An integrated chip-seq analysis plat-

form with customizable workflows. BMC bioinformatics, 12(1):277, 2011.

[194] Haitham Ashoor, Aurélie Hérault, Aurélie Kamoun, François Radvanyi, Vladimir B Bajic,

Emmanuel Barillot, and Valentina Boeva. Hmcan: a method for detecting chromatin

modifications in cancer samples using chip-seq data. Bioinformatics, 29(23):2979–2986,

2013.

[195] Yong Zhang, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S Johnson, Bradley E

Bernstein, Chad Nusbaum, Richard M Myers, Myles Brown, Wei Li, et al. Model-based

analysis of chip-seq (macs). Genome biology, 9(9):R137, 2008.

[196] Microsoft. Dynamic data display, 2009.

161

Bibliography

[197] Cornelis Murre, Patrick Schonleber McCaw, and David Baltimore. A new dna binding

and dimerization motif in immunoglobulin enhancer binding, daughterless, myod, and

myc proteins. Cell, 56(5):777–783, 1989.

[198] Albertha JM Walhout, JM Gubbels, R Bernards, PC Van der Vliet, and H Th M Timmers.

c-myc/max heterodimers bind cooperatively to the e-box sequences located in the first

intron of the rat ornithine decarboxylase (odc) gene. Nucleic acids research, 25(8):1493–

1501, 1997.

[199] Timothy L Bailey. Dreme: motif discovery in transcription factor chip-seq data. Bioin-

formatics, 27(12):1653–1659, 2011.

[200] Rusty Klophaus. Riak core: building distributed applications without shared state. In

ACM SIGPLAN Commercial Users of Functional Programming, page 14. ACM, 2010.

[201] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and

Werner Vogels. Dynamo: amazon’s highly available key-value store. In ACM SIGOPS

Operating Systems Review, volume 41, pages 205–220. ACM, 2007.

[202] Vahid Jalili, Matteo Matteucci, Marco J. Morelli, and Marco Masseroli. Musera: Multiple

sample enriched region assessment. Briefings in Bioinformatics, 2016.

162

Genome analysis

Using combined evidence from replicates to

evaluate ChIP-seq peaks

Vahid Jalili1, Matteo Matteucci1, Marco Masseroli1 and

Marco J. Morelli2,*

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy and 2Center

for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on August 6, 2014; revised on April 24, 2015; accepted on May 4, 2015

Abstract

Motivation: Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) detects genome-

wide DNA–protein interactions and chromatin modifications, returning enriched regions (ERs), usu-

ally associated with a significance score. Moderately significant interactions can correspond to true,

weak interactions, or to false positives; replicates of a ChIP-seq experiment can provide co-localised

evidence to decide between the two cases. We designed a general methodological framework to

rigorously combine the evidence of ERs in ChIP-seq replicates, with the option to set a significance

threshold on the repeated evidence and a minimum number of samples bearing this evidence.

Results: We applied our method to Myc transcription factor ChIP-seq datasets in K562 cells avail-

able in the ENCODE project. Using replicates, we could extend up to 3 times the ER number with re-

spect to single-sample analysis with equivalent significance threshold. We validated the ‘rescued’

ERs by checking for the overlap with open chromatin regions and for the enrichment of the motif

that Myc binds with strongest affinity; we compared our results with alternative methods (IDR and

jMOSAiCS), obtaining more validated peaks than the former and less peaks than latter, but with a

better validation.

Availability and implementation: An implementation of the proposed method and its source code

under GPLv3 license are freely available at http://www.bioinformatics.deib.polimi.it/MSPC/ and

http://mspc.codeplex.com/, respectively.

Contact: marco.morelli@iit.it

Supplementary information: Supplementary Material are available at Bioinformatics online.

1 Introduction

Chromatin immunoprecipitation followed by next-generation

sequencing (ChIP-seq) is the most commonly used method to study

genome-wide chromatin modifications or protein–DNA interactions.

Computational tools like MACS (Zhang et al., 2008) or ZINBA

(Rashid et al., 2011) are applied on aligned ChIP-seq reads to detect

enriched regions (ERs) over the genome (often called ‘peaks’), where

the local accumulation of sequencing fragments exceeds that of a

background distribution, typically estimated from randomly frag-

mented chromatin or by performing the ChIP-seq protocol with a

control antibody (Bailey et al., 2013). As the protocol is subjected to

multiple sources of noise (Chen et al., 2012), some low-intensity accu-

mulation of reads is possible even in absence of a true interaction with

the target. These low-intensity peaks, which are usually present in

large amounts, contain therefore a mixture of false positives and true,

although weak, interactions; they are typically discarded when strin-

gent thresholds on the peak call are used. This approach leads to the

discovery of the strongest interactions only, and might distort the gen-

ome-wide picture of the genomic locations of the transcription factor

binding sites or histone modifications of interest.

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2761

Bioinformatics, 31(17), 2015, 2761–2769

doi: 10.1093/bioinformatics/btv293

Advance Access Publication Date: 7 May 2015

Original Paper

 by guest on D
ecem

ber 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

163

Given the intrinsic noise of the ChIP-seq protocol, it is good prac-

tice to repeat every experiment at least twice, as the guidelines of the

ENCODE project indicate (Landt et al., 2012). The information con-

tained in replicates can then be used to assess the validity of the peaks

obtained from a single sample, especially of those with low-intensity.

In this paper, we propose a novel method to rigorously combine

the results of peak calls in ChIP-seq replicates and to obtain new, sam-

ple-specific, peak lists taking into account their combined evidence.

Our method takes as input, for each replicate, a list of enriched gen-

omic regions and a measure of their individual significance in terms of

a P-value. Starting from a permissive call, we divide the initial ERs in

‘stringent’ (highly significant) and ‘weak’ (moderately significant), and

we assess the presence of overlapping enriched regions across multiple

replicates. Non-overlapping regions can be penalised or discarded ac-

cording to specific needs. The significance of the overlapping regions

is rigorously combined with the Fisher’s method to obtain a global

score. Finally, this score is assessed against an adjustable threshold on

the combined evidence, and peaks in each replicate are either con-

firmed or discarded (a schematic view of our method is given in Fig. 1

and a visualisation of the results of the method on data from the

ENCODE project is shown in Fig. 2). In other words, we are able to

‘rescue’ weak peaks, which would probably be discarded in a single-

sample analysis, when their combined evidence across multiple sam-

ples is sufficiently strong.

We applied our method to ENCODE datasets from ChIP-seq ex-

periments of the Myc transcription factor in K562 human cells, for

which multiple samples with replicates are available. As Myc prefer-

entially binds to a well-defined motif, the choice of this TF allowed

us to validate our results through motif analysis and DNase-seq

data; finally, we compared our findings with other state-of-art meth-

ods. The strong aspects of our method, besides the validity and rele-

vance of the results that it provides, are its simplicity and flexibility,

together with its efficiency (few minutes for 2–3 replicates with a

few tens of thousands of peaks each).

2 Methods

Here, a brief description of the method and datasets used is given.

For more details, see the Extended Methods section in the

Supplementary Material.

2.1 Data collection and peak calling
ChIP-seq enriched regions are read from data files in standard

Browser Extensible Data (BED) format; besides standard ER format

specifications (columns ‘chromosome’, ‘start’, ‘end’, ‘ID’), we re-

quire a P-value quantifying the significance of each ER, which is

usually computed by the peak caller used to identify the ER.

Binary Alignment/Map (BAM) files for the transcription factor

Myc in human K562 cells (myelogenous leukaemia) were taken

from the ENCODE project repository, for a total of 15 samples ob-

tained in 7 different experiments as summarised in Table 1. Each

experiment contained 2 or 3 biological replicates of the same ChIP-

seq. Technical replicates were artificially created to test our method,

as they were not directly available in the ENCODE repository.

Technical replicates were obtained by merging the ENCODE align-

ment files relative to biological replicates for each of the seven con-

ditions considered above, and then by randomly splitting their reads

in two new alignment files. Details about technical replicates, and

the process used to generate them, are collected in the

Supplementary Table S1.

Fig. 1. Pictorial schematic view of the proposed method. First, with a permissive call, we divide peaks of a single individual sample in stringent and weak. Then,

combining the evidence of multiple replicates, the peaks in each replicate are confirmed or discarded

Fig. 2. Genome browser view of a result of the proposed method. Tracks for

two ChIP-seq replicates are shown along with the position of the stringent

peaks, the weak peaks confirmed by our method and the open chromatin re-

gions (measured as DNase-seq enriched regions). Case 1 refers to a weak

peak rescued by a stringent peak, while Case 2 refers to two weak peaks vali-

dating each other

2762 V.Jalili et al.

 by guest on D
ecem

ber 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

164

Peak calling was performed with the software package MACS2

(Zhang et al., 2008) with the following parameters: ‘–auto-bimodal

-p 0.0001 -g hs’ (thus setting a p-value threshold of 10�4), using

alignment files available in the ENCODE repository, together with

the corresponding background (standard input for all samples ex-

cept for Myc2, for which the input signal from rabbit IgG ChIP-seq

was used). In each sample-input pair, the total number of reads was

made equal by randomly down-sampling the largest alignment file.

The performed call determined between �15 k and �345 k peaks

across the different samples (see Table 1).

2.2 Definitions
Given a set of J replicates, each sample j is associated with a set Rj of

I enriched regions rji: Rj¼ {rj1, rj2, . . . , rji, . . . , rjI}. Each region rji is

defined by (chromosomeji, startji, endji, IDji, pji), where pji denotes a

measure of the significance of rji (i.e. its P-value). Ts is a stringent

threshold on P-values, defining a set Rj
s of stringent (highly en-

riched) ERs; Rj
s: rji 2 Rj

s iff pji<Ts. Similarly, we define a set Rj
w of

weak (moderately enriched) ERs, containing all regions whose P-

value is between Ts and a weak threshold Tw, with Tw>Ts, i.e. Rj
w:

rji 2 Rj
w iff Ts�pji<Tw. Clearly, Rj

w \ Rj
s¼Ø and, if Tw is the

maximum P-value allowed for an ER to be associated with sample j,

Rj
w| Rj

s¼Rj.

For each region i of each sample j, let rji,k denote the region of

sample k overlapping with rji, if any. If sample k has multiple re-

gions overlapping with rji, we choose the most significant one, i.e.

the one with the lowest p-value. Let Rji be the collection of rji,k for

k 2 {1, . . . , J}, including rji itself. Let K¼ jRji,*j be the cardinality of

Rji,*, the set of the ERs intersecting with rji, with 1�K� J by

definition.

We distinguish between technical and biological replicates of an

experiment. Technical replicates aim at controlling the variability of

the experimental procedure used to obtain the data and should yield

exactly the same results in absence of experimental noise. In a ChIP-

seq experiment, this corresponds to performing multiple times the

same ChIP protocol on the same biological sample, followed by in-

dependent sequencing on the same platform; we expect to observe a

significant overlap between ER lists in these samples. Conversely,

biological replicates are obtained by applying the same protocol on

biologically equivalent samples, what could give rise to different

binding profiles of a transcription factor, as in the case of tumor

samples; here, the variability in the data can also stem from the

‘true’ biological variation of the phenomenon of interest.

Consequently, the lack of overlap between ERs in biological repli-

cates does not necessarily correspond to a false positive result, as it

could reflect a true biological interaction occurring only in some

samples. With our method, the user is able to control for the

required level of overlap and combined significance, according to

the specificities of the dataset.

2.3 Algorithm: overall procedure
The main idea behind our method is that repeated evidence across

replicates can compensate for a lower significance in a single sample,

which is implemented through the Fisher’s method. The Fisher’s

method combines the P-values of each test in a global test statistics

that follows a chi-squared distribution with 2 k degrees of freedom

(where k is the number of tests combined); therefore, it can be used

to falsify the statement ‘all null hypotheses are true’, i.e. ‘all overlap-

ping ERs are due to background noise’. Comparing intersecting ERs

from a set of J replicates is equivalent to test the same genomic re-

gion in independent experiments against the same null hypothesis

H0, i.e. ‘the number of reads in the region under study is sampled

from the background distribution’, and obtaining independent prob-

abilities of rejecting H0 (i.e. independent P-values). Here, we briefly

outline the structure and motivation of our algorithm, following the

flowchart given in Figure 3, while we discuss its details in the

Extended Methods (data structures, search algorithms and combin-

ing test statistics sections).

We assign every ER rji in a given sample j to either Rj
s or Rj

w ac-

cording to its significance. For a given ER, we then determine Rji,*

as the set of ERs in the replicates that overlap with rji, including rji it-

self (see Definitions subsection). The cardinality K of Rji,* represents

a measure of the reproducibility of the signal in the region spanned

by rji, while the significance of rji,k 2 Rji,* is a measure of the inten-

sity of the signal in a specific replicate k, given the background. We

rigorously combine the significance of the overlapping ERs in Rji,*

with the Fisher’s method, as described in the Extended Methods,

and define a new score for their combined evidence pji
comb. Then,

we compare this new score with an adjustable threshold c: if the

desired stringency is obtained, we assign rji to the set Rj
c of con-

firmed peaks for sample j; if the condition is not met, i.e. the com-

bined evidence is not strong enough, we assign rji to the set Rj
d of

discarded peaks for sample j. All the ERs in Rji,* are assigned to the

corresponding confirmed Rk
c or discarded Rk

d set, respectively.

Table 1. ENCODE alignment files used and their quantitative

features

Sample name Short

name

Aligned

reads

Rs Rw

wgEncodeOpenChromChip

K562CmycAlnRep1

Myc1_1 10 719 209 19 171 287 651

wgEncodeOpenChromChip

K562CmycAlnRep2

Myc1_2 8 763 362 32 850 311 409

wgEncodeOpenChromChip

K562CmycAlnRep3

Myc1_3 9 649 688 13 623 104 911

wgEncodeSydhTfbs

K562CmycIggrabAlnRep1

Myc2_1 17 507 194 42 456 64 016

wgEncodeSydhTfbs

K562CmycIggrabAlnRep2

Myc2_2 22 256 240 33 015 54 773

wgEncodeSydhTfbs

K562CmycStdAlnRep1

Myc3_1 6 077 198 5473 22 965

wgEncodeSydhTfbs

K562CmycStdAlnRep2

Myc3_2 5 897 211 12 832 18 753

wgEncodeSydhTfbs

K562CmycIfna30StdAlnRep1

Ifna30_1 10 115 596 1901 13 654

wgEncodeSydhTfbs

K562CmycIfna30StdAlnRep2

Ifna30_2 18 600 414 2527 97 620

wgEncodeSydhTfbs

K562CmycIfna6hStdAlnRep1

Ifna6h_1 9 377 798 5852 12 087

wgEncodeSydhTfbs

K562CmycIfna6hStdAlnRep2

Ifna6h_2 19 334 518 4547 102 168

wgEncodeSydhTfbs

K562CmycIfng30StdAlnRep1

Ifng30_1 11 602 299 8227 13 190

wgEncodeSydhTfbs

K562CmycIfng30StdAlnRep2

Ifng30_2 16 666 560 30 524 25 484

wgEncodeSydhTfbs

K562CmycIfng6hStdAlnRep1

Ifng6h_1 14 019 564 2485 13 376

wgEncodeSydhTfbs

K562CmycIfng6hStdAlnRep2

Ifng6h_2 19 666 823 27 728 25 118

Peaks were called with the software package MACS2. Rs: stringent ER set

(ERs with P-value <Ts). Rw: weak ER set (ERs with Ts�P-value<Tw).

Ts¼10�8, Tw¼ 10�4.

Combining replicate ChIP-seqs 2763

 by guest on D
ecem

ber 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

165

We leave the possibility to distrust a region rji, regardless of its

significance, when it is not backed up by the presence of overlapping

ERs in a minimum number of samples C. C is an adjustable param-

eter ranging between 1 and J, with different default values for biolo-

gical and technical replicates. In summary, for a given sample j,

Rj
c¼ {rji j pji

comb� c
V

(K�C)} and Rj
d¼ {rji j (pji

comb> c)
W

(K<C)}. We repeat this procedure for each sample.

We note that an ER can participate in different sets of overlap-

ping regions, as we discuss in detail in the Extended Methods. As a

consequence, it is possible that an ER is assigned to both the con-

firmed and discarded sets as a result of different tests. These peaks

are assigned to the confirmed set if replicates are biological and to

the discarded set if replicates are technical. In other words, as tech-

nical replicates are supposed to be very similar, for an ER it is

enough to fail the test once to be removed from the confirmed set,

while for biological replicates this condition is relaxed and it is

enough to pass the test at least once for an ER to be confirmed.

After applying the proposed method, each peak has two proper-

ties: its initial significance, which can be either stringent (s) or weak

(w), and the result of the multiple replicate comparison, which can

be either confirmed (c) or discarded (d). Then, for each sample we

define four mutually exclusive sets on the basis of these property val-

ues: Rs,c, Rw,c, Rs,d, Rw,d, with Rc¼Rs,c | Rw,c and Rd¼Rs,d |
Rw,d. The final output set Rj

o of each sample j is obtained by apply-

ing the Benjamini–Hochberg correction procedure to Rj
c, independ-

ently from the choice of the other parameters, in order to account

for multiple testing (Benjamini and Hochberg, 1995), and keeping

only the ERs with false discovery rate smaller than an adjustable

threshold a.

2.4 Validation
In order to validate the peaks obtained after combining replicates,

we first checked whether the peaks we rescued fell within open chro-

matin by intersecting their genomic coordinates with enriched

regions in DNase-seq data obtained from ENCODE (see Extended

Methods). Then, we looked for enriched motifs in the nucleotide se-

quences spanned by the sets of ERs that we obtained. To perform

motif analysis, we used the software package DREME (Bailey,

2011) with parameters ‘-e 0.00001 -m 10’. Results were scored

against the JASPAR database (Mathelier et al., 2014) using the soft-

ware package TOMTOM (Gupta et al., 2007). Myc strongly binds

to one specific motif, called the canonical Enhancer-box or E-box,

corresponding to the Position Weight Matrices (PWMs) MA0058

(MAX), MA0059 (MYC::MAX), MA0093 (USF1), MA0104

(Mycn) and MA0147 (Myc) in the Jaspar Core Vertebrata database

(the corresponding sequence logos are shown in the Supplementary

Fig. S1); thus, an ER set is validated when at least one of these

PWMs is found significantly enriched in the ER set. We note that

Myc has a weaker affinity for other versions of the E-box, but we

chose to exclude these other motifs from the validation to achieve

maximum stringency.

2.5 Comparison with other methods
Irreproducibility Discovery Rate (IDR) (Li et al., 2011). It is a met-

ric quantifying the reproducibility of a peak across two ChIP-seq

replicates by comparing the two lists of ERs, ranked according to

their significance. In essence, after calling the peaks, the IDR pipe-

line uses a bivariate rank distribution to separate the signal (repro-

ducible peaks) from noise (irreproducible peaks) in an experiment

(or pairwise comparison). Each peak is associated with an IDR

value, which quantifies the probability that the peak belongs to the

irreproducible set. IDR was computed for our validation with the

scripts provided by Anshul Kundaje at the URL https://sites.google.

com/site/anshulkundaje/projects/idr

jMOSAiCS (Zeng et al., 2013). It is a generic tool for joint ana-

lysis of multiple ChIP-seq samples, which can be also used to find

common patterns of enrichment between ChIP-seq replicates. First,

the MOSAiCS peak caller pre-processes replicates and correspond-

ing control samples by binning the mapped read counts on the gen-

ome (default width of 200 bp), and applies the MOSAiCS model fit

to each replicate-control pair individually. Afterwards, the

jMOSAiCS model is applied to the data fitted with MOSAiCS: re-

gion-specific enrichment patterns are determined by posterior prob-

abilities assigned to the internal variables, and a binary variable

denotes the potential enrichment of a region based on dependencies

among samples. jMOSAiCS was executed with default parameter

values as described at http://www.bioconductor.org/packages/re

lease/bioc/vignettes/jmosaics/inst/doc/jmosaics.R. The complete

script is included in the Extended Methods.

3 Results

In this section, we report the results obtained by applying our

method on either technical or biological ChIP-seq replicates. The

method takes as input the genomic coordinates and a measure of sig-

nificance (i.e. the P-value) of each of the ERs for each replicate con-

sidered. For each input sample j, it outputs the lists of confirmed

(Rj
o) and discarded (Rj

d) ERs, as well as the lists of stringent con-

firmed (Rs,c), weak confirmed (Rw,c), stringent discarded (Rs,d) and

weak discarded (Rw,d) ERs.

Adjustable parameters of the method are: Ts (maximum P-value

to consider a peak as ‘stringent’), Tw (maximum P-value to consider

a peak as ‘weak’), C (minimum number of samples with intersecting

peaks needed to apply the combined evidence evaluation), c (max-

imum combined significance to confirm a peak), a (maximum false

Fig. 3. Flowchart of the proposed method. For the definition of the symbols,

see the Definitions subsection of the Methods

2764 V.Jalili et al.

 by guest on D
ecem

ber 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

166

discovery rate after the Benjamini-Hochberg correction), together

with the choice of ‘technical replicate’ versus ‘biological replicate’

mode. For our evaluations we used: Ts¼10�8, Tw¼10�4, c¼10�8,

a¼0.05 for all comparisons, C¼1 for biological replicates and

C¼ J for technical replicates. Required time was a few minutes for 2

samples with 100 000 peaks each on a standard desktop computer.

3.1 Technical replicates
Technical replicates are used to evaluate and remove the noise intro-

duced in the experimental procedure. In the case of ChIP-seq experi-

ments, they are usually generated by performing the same ChIP

protocol on the same biological sample, and then performing the

sequencing independently. As the ENCODE datasets include only

biological replicates, we tested our method on artificial technical

replicates, simulated as described in the Methods section. Details

about these samples can be found in the Supplementary Table S1.

An alternative to our strategy to generate technical replicates would

be to randomly split the reads in each original alignment file in repli-

cates rather than merging biological replicates in ENCODE first.

However, this procedure gives rise to a much poorer signal, prevent-

ing the identification of most ERs. The statistics of these alternative

technical replicates are described in the Supplementary Table S2.

Results for Ts¼10�8, Tw¼10�4, c¼Ts, a¼0.05 and C¼2 are

shown in Figure 4. For each replicate sample (panels A–G), we show

two bars: the left bar (SS) represents the peaks called in a single-

sample analysis (Rs in light gray and Rw in dark grey), while the

right bar (MS) classifies the same peaks, according to the output of

our algorithm, in the four sets described above: Rs,c (light gray), Rw,c

(medium-light grey), Rs,d (medium-dark grey) and Rw,d (dark grey).

As expected, the number of Rs stringent and Rw weak peaks

called in the same technical replicates is always very similar, even if

the absolute numbers differ significantly across the different condi-

tions considered. Each output set has a consistent fraction of Rw,c

weak confirmed ERs, which ranges from 20% to 98% (mean 46%,

standard deviation 30%) of the starting number of stringent peaks

(Rw,c / Rs, panel H); thus by combining evidence in replicates, our

method ‘rescues’ (i.e. confirms) a large amount of weak co-localised

peaks that would otherwise be discarded through a usual single sam-

ple evaluation. The percentage of stringent discarded peaks (Rs,d /

Rs, panel H) is very low and varies from 0% in Myc2 to 12% in

Myc3 (mean 5.6%, standard deviation 3.8%). The output set Ro

corresponds to the set of confirmed peaks Rc¼Rs,c | Rw,c, where

the significance of each peak has been adjusted for multiple testing;

combining the evidence present in replicates increases the number of

obtained peaks up to almost the double of what obtained with a sin-

gle sample at the same stringency (Ro/ Rs, panel H).

For technical replicates, we expect the output of each replicate to

be similar, and therefore the parameter C was set to C¼ J¼2 for all

technical replicate comparisons. Setting C¼1 would be instead

equivalent to trust even isolated peaks, which are not present in the

other replicate. With the latter choice, and c¼Ts, no stringent peaks

would be discarded.

As a preliminary evaluation of the results obtained, we con-

sidered the overlap of the peaks with the enriched regions in

DNase-seq data. On average, 95.4% of the peaks in Ro, 95.4%

of peaks in Rs and 94.6% of peaks in Rw,c were in open chroma-

tin regions, while this fraction was only 89.4% for Rs,d and

93.0% for Rw,d (Supplementary Table S3). The overlap with

open chromatin, however, is not yet a validation of a specific

binding event. We performed then motif analysis on the nucleo-

tide sequences corresponding to the ERs in the four sets: Rs, Ro,

Rw,c and Rs,d. Myc is known to bind a large number of sites on

the DNA, particularly with high affinity to those with the 6-nu-

cleotide motif called Enhancer-box or E-box. This protein-bind-

ing region has the generic consensus nucleotide sequence

CANNTG (with N representing any nucleotide; Murre et al.,

1989). In particular, Myc binds with maximum strength to the

CACGTG motif (also called the ‘canonical’ Myc E-box [Walhout

et al., 1997]). Therefore, we consider the enrichment of the E-

box in a set of peaks a sufficient condition to consider the set as

containing ‘true’ binding sites. Panel I in Figure 4 shows that the

E-box is always enriched in the Rs stringent and Ro output sets,

as well as in the Rw,c weak confirmed set. This result confirms

that in the large majority of cases the weak peaks overlapping in

replicates identify real binding sites, which are missed by a strin-

gent single-sample call. In 4 out of 14 cases, the Rs,d stringent

discarded set is enriched for the E-box, although at much lower

significance (Supplementary Table S5), while in the remaining

cases the number of peaks in the Rs,d set is low. This analysis sug-

gests that the default value C¼ J used for our artificial technical

replicates may be too conservative and still discards a small frac-

tion of real binding sites.

3.2 Biological replicates
The ENCODE data repository always includes one or more biolo-

gical replicates for each ChIP-seq experiment. For the transcription

factor Myc, multiple data sources are available, either obtained in

independent experiments, or scored against different backgrounds

(in Myc2, the input was derived from immuno-precipitating normal

rabbit IgG, while in all the other samples the standard input for the

K562 cell line was used). We applied our method to biological repli-

cates obtained from each of the ENCODE experiments considered,

and we also combined replicates from 2 experiments (Myc2 and

Myc3). Parameters for the method were the same as for the technical

replicate evaluation reported in the previous section (i.e. Ts¼10�8,

Tw¼10�4, c¼Ts, a¼0.05); for the additional parameter C, in the

case of biological replicates we adopted the permissive choice of

C¼1 (default for the analysis of biological replicates). With these

values (i.e. c¼Ts and C¼1), our method never discards a stringent

peak (we consider that a single strong evidence is enough for biolo-

gical replicate evaluation). Results are shown in Figure 5.

The number of peaks in biological replicates of the same experi-

ment can be very different (panels A-H), reflecting the different effi-

ciency of the ChIP-seq protocol, and the number of weak peaks (Rw)

is usually much larger than the number of stringent peaks (Rs). In

the considered cases, the number of confirmed weak peaks (Rw,c) is

often much bigger (up to �4 times) than the number of stringent

peaks (Rs) (column Rw,c/Rs in panel I), confirming that the evidence

in a ‘good’ replicate allows the rescue of many peaks in a ‘bad’ repli-

cate. We observe a similar situation when we combine samples ob-

tained with different inputs. For example, by combining together

the four replicates of the Myc2 and Myc3 cases (panel D), we in-

crease massively the number of peaks in the output set for the sam-

ples with lower peak counts (Myc3) by confirming a number of their

weak peaks much larger than in the evaluation performed without

Myc2. Therefore, the presence of high-quality replicates can be of

great help in improving the call on many low-quality replicates. The

average overlap with open chromatin regions of the Rw,c weak con-

firmed sets is 91.0% (compared with the 51.6% for the weak dis-

carded peaks), and motif analysis confirms that in all the samples

the ERs contain the canonical Myc binding site (panel J and

Supplementary Tables S6 and S8).

Combining replicate ChIP-seqs 2765

 by guest on D
ecem

ber 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

167

We applied our method also using C¼2 on all biological repli-

cates considered: most of the times that the Rs,d stringent discarded

peak set had a substantial size, the E-box motif was present, al-

though the average overlap with open chromatin was only 75.9%

(Supplementary Fig. S2 and Tables S9 and S11). This further con-

firms that, in biological replicates, a lack of overlapping with peaks

in other replicates does not necessarily correspond to an artifactual

interaction.

3.3 Comparison with alternative strategies
3.3.1 Alignment read merging

An intuitive way to combine evidence in replicates is to merge the

alignment reads, and use a peak caller on the combined data. As the

combined dataset corresponds to the sum of the two signals, weak,

co-occurring peaks should increase their significance. We have

merged alignment files from replicates for each considered experi-

ment, using merged backgrounds when available (Myc3 only), and

considered only peaks with P-value smaller than Ts¼10�8. In al-

most all the cases, the number of peaks called from the merged repli-

cates was substantially lower than the number of peaks obtained by

our algorithm (Table 2, third and fourth columns). Moreover, a

large fraction of the peaks detected in the merged samples over-

lapped with at least one of the peaks obtained by our method

(Table 2, fifth column). The only cases when this fraction was below

70% were those where the replicates exhibited a very large differ-

ence in the number of called peaks (Myc3, Ifng30, Ifng6h). In these

cases, the output set of the replicate with the higher number of peaks

always showed a very high overlap with the merged sample peaks.

Merging the alignment files therefore ‘averages’ replicates with dif-

ferent sets of peaks, whereas our method ‘rescues’ a sample with few

ERs with the help of a sample with many ERs. Besides, the merging

strategy has no user-defined parameter to tune the results, whereas

our method provides a rigorous way to weight co-occurrence and

significance of ERs.

3.3.2 Irreproducibility discovery rate

The IDR (Li et al., 2011) is a measure of the consistency of ERs

identified in replicates, which has been systematically assessed in the

ENCODE project. We computed the IDR for the ERs in our samples

and used an IDR threshold of 0.05. The results are shown in the

Fig. 4. Technical replicates. For each of the 7 experiments considered, two technical replicates were obtained by pooling reads from the biological replicates of

the conditions and then randomly splitting the resulting alignment files in two equal parts. A-G: ER sets for the technical replicates considered. SS, single sample

analysis; MS, multiple sample analysis. In each panel, the SS stacked bars represent Rs (light gray) and Rw (dark grey) in the two replicates, while the MS

bars show the same peaks, confirmed or discarded according to the output of our method: Rs,c (light gray), Rw,c (medium-light gray), Rs,d (medium-dark gray) and

Rw,d (dark grey). H, general statistics on the cardinality of the ER sets; I, validation of the sets with the Myc binding motif (Myc canonical E-box); ‘Y’, presence of

the E-box; ‘-‘, set too small to find any enriched motif. See Supplementary Table S5 for E-box enrichment P-values

2766 V.Jalili et al.

 by guest on D
ecem

ber 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

168

Fig. 5. Biological replicates. A–H: ER sets in the biological replicates considered. SS, single sample analysis; MS, multiple sample analysis. In each panel, the SS

stacked bars represent Rs (light gray) and Rw (dark grey) in the replicates, while the MS bars show the same peaks, confirmed or discarded according to the out-

put of our method: Rs,c (light gray), Rw,c (medium-light gray), Rs,d (medium-dark gray) and Rw,d (dark grey). I, general statistics on the cardinality of the ER sets; J,

validation of the sets with the Myc binding motif (Myc canonical E-box); ‘Y’, presence of the E-box. See Supplementary Table S8 for E-box enrichment P-values

Table 2. Comparison with merged alignment files and IDR

Sample Rs Ro Merged Ro \Merged IDR< 0.05 Ro \ IDR< 0.05

Myc1_1 19 171 42 663 27 958 20 359 (73%) 3097 3097 (100%)

Myc1_2 32 850 54 420 27 958 22 265 (80%) 4618 4618 (100%)

Myc1_3 13 623 34 858 27 958 20 112 (72%) 4966 4964 (99%)

Myc2_1 42 456 56 989 39 805 38 958 (98%) 24 066 23 767 (99%)

Myc2_2 33 015 54 889 39 805 37 765 (95%) 24 066 23 767 (99%)

Myc3_1 5473 14 411 15 404 9 252 (60%) 2356 2237 (95%)

Myc3_2 12 832 16 401 15 404 12 483 (81%) 2356 2237 (95%)

Ifna30_1 1901 4839 3650 2918 (80%) 1171 811 (69%)

Ifna30_2 2527 5605 3650 2914 (80%) 1171 823 (70%)

Ifna6h_1 5852 9570 6633 5913 (89%) 2274 2078 (91%)

Ifna6h_2 4547 10 547 6633 5671 (85%) 2274 2078 (91%)

Ifng30_1 8227 18 112 32 363 15 828 (49%) 5586 5586 (100%)

Ifng30_2 30 524 33 203 32 363 30 307 (94%) 5586 5586 (100%)

Ifng6h_1 2485 12 052 21 145 8506 (40%) 5181 4352 (84%)

Ifng6h_2 27 728 28 564 21 145 20 187 (96%) 5181 5079 (98%)

Comparison of the output set Ro (3 rd column) with ERs obtained by merging replicates (4th column) and with ERs having Irreproducibility Discovery Rate

(IDR)<0.05 (6th column). The number of overlapping peaks between Ro and the two other methods (5th and 7th columns, respectively) is shown, together with

the fraction of the other method peaks overlapping with peaks in Ro. In general, Ro is larger and comprises the majority of the peaks obtained by the other

methods.

Combining replicate ChIP-seqs 2767

 by guest on D
ecem

ber 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

169

sixth and seventh columns of Table 2. First of all, the IDR-validated

peaks are few and often entirely contained in our output sets.

This highlights that the IDR method is rather stringent and generates

only a small set of validated (reproducible) peaks. We repeated our

analysis for the Myc2 sample for a lower Tw threshold and

found similar results (see Supplementary Material). Our method

does not score the reproducibility of a peak, but it rather combines

evidence in replicates, and has the option to accept very stringent

peaks even if they are not found in other replicates. We conclude

that our method confirms weak peaks that are considered ‘irrepro-

ducible’ by IDR (with a 0.05 threshold), and are validated by

motif analysis (Figs 4 and 5, Supplementary Tables S3–S11).

Finally, differently from our method, which accepts any number of

replicates, the IDR can be directly computed only for pairs of

replicates.

3.3.3 jMOSAiCS

We compared our results also with those obtained with jMOSAiCS

(Zeng et al., 2013), a tool designed to detect combinatorial patterns

of enrichment in multiple ChIP-seq samples. Even if jMOSAiCS is

conceived to integrate different ChIP-seq datasets that profile dis-

tinct features on the same biological sample, it can also be applied to

replicates of the same ChIP-seq. Applying jMOSAiCS to our biolo-

gical replicates (Table 3) resulted in a very large amount of ERs in

each experiment, which were on average around 5 times larger than

our peaks (ER average size data are not shown). These sets of peaks

contained by far the majority of the ERs identified by our method.

We checked for the enrichment of the Myc E-box in the peaks iden-

tified by our method, but not by jMOSAiCS and vice versa (peaks

identified by jMOSAiCS, but not by our method). While in the for-

mer case the Myc binding motif was enriched in all the sets with an

enough number of peaks to detect any enriched motif, the latter case

showed the presence of the Myc canonical E-box only in half of the

samples. Moreover, the running times of jMOSAiCS for two repli-

cates were in the order of 3 hours, with about 40 GB of memory

consumption, on a server with two Intel Xeon E5-2650 processors

and 64 GB of RAM, as this tool starts from alignment files and finds

ERs independently. On the same platform, our method ran in a few

minutes; the preliminary peak calling step needed to obtain the sets

of enriched regions required about 40 min for each of the replicates

with MACS2 (Zhang et al., 2008). We conclude that jMOSAiCS,

when applied to replicates of the same ChIP-seq experiment, has the

tendency of introducing a large amount of extra peaks, which are

not always validated by motif analysis, and it requires significant

computational resources. On the other hand our method is much

faster, as it allows to start from pre-determined ER lists, and at least

equally specific.

4 Discussion

We introduced a novel and rigorous method to combine evidence in

ChIP-seq replicates and we applied it to several ENCODE datasets

for the transcription factor Myc in the K562 cell line. Our results

confirmed that a considerable number of ERs, which display a weak

significance in single-sample analysis, can be ‘rescued’ by the help of

co-localised evidence in multiple replicates. We proved that the nu-

cleotide sequences spanned by these weak peaks are almost always

found in open chromatin regions and enriched for the Myc canon-

ical E-box motif, for which the Myc protein has the highest affinity.

Surprisingly, even in the case of technical replicates, where reprodu-

cibility should be high, we found that discarding ERs only on the

base of the lack of overlap often results in the dismissal of true bind-

ing sites. This can be due to the fact that our technical replicates

were simulated using a computational procedure starting from the

biological replicates available; nonetheless, we recommend to be

careful in setting the overlapping parameter to high stringency (i.e.

C¼ J).

We stress that our method works as a post-processing of a per-

missive peak call and it does not question the reliability of the output

of the peak caller (any peak caller providing a P-value score can be

used; we recommend using the same peak caller with the same par-

ameters on all the replicates). The method has three main strengths:

(i) rigour: single-sample evidence from each replicate is combined

through the Fisher’s method; (ii) versatility: with the choice of a few

parameters, it can be decided to weight co-localisation (C) and com-

bined significance (c) differently; (iii) efficiency: typically, the

Table 3. Comparison with jMOSAiCS

Sample Rs Ro jMOSAiCS Ro\jMOSAiCS E-box jMOS AiCS\Ro E-box

Myc1_1 19 171 42 663 50 539 7649 Y 31 750 N

Myc1_3 13 623 34 858 33 867 4156 Y 17 249 N

Myc2_1 42 456 56 989 91 252 1346 Y 46 979 N

Myc2_2 33 015 54 889 92 423 799 Y 50 428 Y

Myc3_1 5473 14 411 18 244 2801 Y 9061 N

Myc3_2 12 832 16 401 27 116 1390 Y 13 181 Y

Ifna30_1 1901 4839 32 711 111 - 28 752 Y

Ifna30_2 2527 5605 30 695 527 - 26 616 Y

Ifna6h_1 5852 9570 38 517 114 Y 29 703 N

Ifna6h_2 4547 10 547 36 258 408 Y 28 028 Y

Ifng30_1 8227 18 112 49 843 257 Y 33 763 N

Ifng30_2 30 524 33 203 69 128 150 - 39 996 N

Ifng6h_1 2485 12 052 31 160 483 Y 22 678 Y

Ifng6h_2 27 728 28 564 70 888 98 - 45 601 Y

Comparison of the output set Ro (3rd column) with ERs obtained by jMOSAiCS (4th column). The 5th and 6th columns show the number of peaks that are

present in Ro but not in the jMOSAiCS output, and the enrichment of the Myc canonical E-box in this last set, respectively. Vice versa, the 7th and 8th columns

show the number of peaks present in the jMOSAiCS output but not in Ro, and the corresponding enrichment of the E-box, respectively. For Myc1, the comparison

was done only with replicates 1 and 3. jMOSAiCS outputs a large number of ERs, including most of the peaks identified by our method, but only a fraction of the

jMOSAiCS-specific peaks contains the Myc binding motif. Each E-box column refers to the set described in the previous column and is marked as follows: ‘Y’:

presence of the E-box; ‘N’: absence of the E-box; ‘-’: set too small to find any enriched motif.

2768 V.Jalili et al.

 by guest on D
ecem

ber 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

170

required time is in the order of few minutes on a standard desktop

computer and does not require special hardware.

Comparing our method with two other common approaches

(replicate merging and IDR) confirmed the stable identification of a

core of stringent, reproducible peaks. Besides this, our tests demon-

strated that less stringent evidence consistently present across repli-

cates can be combined, leading to the ‘rescue’ of sets of ERs

corresponding to real binding sites, e.g. of the transcription factor

(TF) Myc. In particular, our results are compatible with those found

with IDR, a method widely used in ENCODE to assess the consist-

ency of each detected peak: IDR works by comparing peak rankings

and inferring the proportion of reproducible and irreproducible sig-

nal in the replicates, while our algorithm provides complementary

information by computing the combined significance of a number of

overlapping peaks. Despite comparable running times, we differ

from IDR as we do not automatically discard non-overlapping peaks

and we can directly apply our method to more than two replicates

without relying on multiple pairwise comparisons. We stress that

our method should not be considered an alternative to IDR, but ra-

ther complementary to it.

A further comparison with a tool designed for more complex

analysis (identifying combinatorial patterns of enrichment across

different ChIP-seq experiments performed over the same biological

sample), jMOSAiCS, revealed that, in the specific task of comparing

replicates of ChIP-seq experiments performed against the same tar-

get, this last tool confirms more peaks, which however do not al-

ways enrich for the E-box.

Recently, JAMM (Ibrahim et al., 2015), a tool based on local

multivariate Gaussian mixture models for directly finding ERs on

ChIP-seq replicates, has been introduced. JAMM confirms that

pooling replicates can blur the specific spatial resolution of single-

sample peaks and lead to less accurate calls in terms of peak width

and intensity.

In summary, our strategy represents a promising trade-off be-

tween stringent techniques (IDR) and permissive techniques

(jMOSAiCS).

Acknowledgements

We thank Mattia Pelizzola and Stefano de Pretis for useful discussions.

Funding

This work was supported by the Fondazione Istituto Italiano di Tecnologia

and by AIRC [grant no. IG_13182], and it is part of and supported by the

‘Data-Driven Genomic Computing (GenData 2020)’ PRIN project (2013–

2015), funded by the Italian Ministry of the University and Research (MIUR).

Conflict of Interest: none declared.

References

Bailey,T.L. (2011) DREME: motif discovery in transcription factor ChIP-seq

data. Bioinformatics, 27, 1653–1659.

Bailey,T. et al. (2013) Practical guidelines for the comprehensive analysis of

ChIP-seq data. PLoS Comput. Biol., 9, e1003326.

Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B,

289–300.

Chen,Y. et al. (2012) Systematic evaluation of factors influencing ChIP-seq fi-

delity. Nat. Methods, 9, 609–614.

Gupta,S. et al. (2007) Quantifying similarity between motifs. Genome Biol.,

8, R24.

Ibrahim,M.M. et al. (2015) JAMM: a peak finder for joint analysis of NGS

replicates. Bioinformatics, 31, 48–55.

Landt,S.G. et al. (2012) ChIP-seq guidelines and practices of the ENCODE

and modENCODE consortia. Genome Res., 22, 1813–1831.

Li,Q. et al. (2011) Measuring reproducibility of high-throughput experiments.

Ann. Appl. Stat., 5, 1752–1779.

Mathelier,A. et al. (2014) JASPAR 2014: an extensively expanded and

updated open-access database of transcription factor binding profiles.

Nucleic Acids Res., 42, D142–D147.

Murre,C. et al. (1989) A new DNA binding and dimerization motif in im-

munoglobulin enhancer binding, daughterless, MyoD, and myc proteins.

Cell, 56, 777–783.

Rashid,N.U. et al. (2011) ZINBA integrates local covariates with DNA-seq

data to identify broad and narrow regions of enrichment, even within ampli-

fied genomic regions. Genome Biol., 12, R67.

Walhout,A.J. et al. (1997) c-Myc/Max heterodimers bind cooperatively to the

E-box sequences located in the first intron of the rat ornithine decarboxylase

(ODC) gene. Nucleic Acids Res., 25, 1493–1501.

Zeng,X. et al. (2013) jMOSAiCS: joint analysis of multiple ChIP-seq datasets.

Genome Biol., 14, R38.

Zhang,Y. et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome

Biol., 9, R137.

Combining replicate ChIP-seqs 2769

 by guest on D
ecem

ber 22, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

171

MuSERA: Multiple Sample Enriched Region

Assessment
Vahid Jalili, Matteo Matteucci, Marco J. Morelli and Marco Masseroli
Corresponding author. Marco Masseroli, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32,
20133 Milano, Italy. Tel.: þ39-02-2399-3553; Fax: þ39-02-2399-3411; E-mail: marco.masseroli@polimi.it

Abstract

Enriched region (ER) identification is a fundamental step in several next-generation sequencing (NGS) experiment types.
Yet, although NGS experimental protocols recommend producing replicate samples for each evaluated condition and their
consistency is usually assessed, typically pipelines for ER identification do not consider available NGS replicates. This may
alter genome-wide descriptions of ERs, hinder significance of subsequent analyses on detected ERs and eventually preclude
biological discoveries that evidence in replicate could support. MuSERA is a broadly useful stand-alone tool for both inter-
active and batch analysis of combined evidence from ERs in multiple ChIP-seq or DNase-seq replicates. Besides rigorously
combining sample replicates to increase statistical significance of detected ERs, it also provides quantitative evaluations
and graphical features to assess the biological relevance of each determined ER set within its genomic context; they include
genomic annotation of determined ERs, nearest ER distance distribution, global correlation assessment of ERs and an inte-
grated genome browser. We review MuSERA rationale and implementation, and illustrate how sets of significant ERs are ex-
panded by applying MuSERA on replicates for several types of NGS data, including ChIP-seq of transcription factors or his-
tone marks and DNase-seq hypersensitive sites. We show that MuSERA can determine a new, enhanced set of ERs for each
sample by locally combining evidence on replicates, and prove how the easy-to-use interactive graphical displays and
quantitative evaluations that MuSERA provides effectively support thorough inspection of obtained results and evaluation
of their biological content, facilitating their understanding and biological interpretations. MuSERA is freely available at
http://www.bioinformatics.deib.polimi.it/MuSERA/.

Key words: next-generation sequencing; ChIP-seq and DNase-seq data analysis; combined evidence in replicates; integrated
genome browser; genomic data visualization

Background

Next-generation sequencing (NGS) is a multi-purpose technology,
which allows precise determination of DNA or RNA sequences
within a sample of interest [1]. In particular, some strategies

allow enriching for regions of cellular DNA characterized by some
common property: chromatin immunoprecipitation followed by
NGS (ChIP-seq) [2] reveals genome-wide DNA–protein inter-
actions and chromatin modifications, e.g. histone marks, while

Vahid Jalili is a PhD candidate at Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy. His research on tertiary
analysis of next-generation sequencing data is focused on systematic solutions for analytical and computational challenges.
Matteo Matteucci is associate professor of pattern recognition and machine intelligence at Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milano, Italy. His research includes pattern recognition, machine learning, classification, robotics, computer vision and signal pro-
cessing. He has co-authored more than 150 scientific international publications.
Marco Morelli is a researcher at the Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy. A physicist by back-
ground, his research interests span from bioinformatic analysis of next-generation sequencing data to dynamical models and machine learning algorithm
for pattern recognition in big data.
Marco Masseroli is associate professor of bioinformatics and biomedical informatics at Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milano, Italy. His research interests include distributed Internet technologies, biomolecular databases, biomedical terminologies
and bio-ontologies to effectively retrieve, manage, analyze and semantically integrate genomic information with clinical and high-throughput genomic
data. He is author of more than 170 scientific articles.
Submitted: 1 December 2015; Received (in revised form): 1 February 2016

VC The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com

1

Briefings in Bioinformatics, 2016, 1–15

doi: 10.1093/bib/bbw029
Paper

 Briefings in Bioinformatics Advance Access published March 24, 2016

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

172

DNase I sequencing (DNase-seq) [3] provides a global view of the
open chromatin in a cellular sample through the identification of
hypersensitive sites. The analysis of these NGS data returns, in
both techniques, a list of enriched regions (ERs), often named
‘peaks’ and defined through their genomic coordinates; usually
these peaks are also associated with a statistical significance
score, i.e. a P-value. The availability of NGS data has opened the
possibility of a comprehensive characterization of genomic and
epigenomic landscapes; yet, extracting such biological informa-
tion from raw data requires the use of complex computational
pipelines, which include the identification of the ERs as a key
step.

Although NGS experimental protocols recommend the pro-
duction of at least two replicates for each sequenced sample,
specific methods and tools currently used for ER calling (e.g.
MACS [4] or ZINBA [5]) usually consider only a single sample at
a time, and use global stringent thresholds to eliminate the
noise in the data [6]; then, the ERs extracted from individual
replicates are compared, and typically only the ERs identified in
multiple replicates are retained (e.g. by simple intersection or
using the irreproducibility discovery rate (IDR) method [7]). As
we recently demonstrated [8], considering single samples and
applying individual stringent thresholds lead to the discovery of
the strongest ERs only, and it may discard true, although less in-
tense, ERs, which in turn could be picked up by taking advan-
tage of the increased sensitivity provided by replicates.
Neglecting weak ERs may eventually distort the genome-wide
picture of the genomic locations of the ERs of interest, hamper
the significance of the following analyses on the identified ERs
and ultimately prevent biological discoveries that could be sup-
ported by considering also the true, but less intense, ERs (i.e.
genomic features) present in the NGS data. Alternative methods
considering multiple samples exist, but were designed for other
purposes (e.g. jMOSAiCS [9], which was designed to identify
combinatorial patterns of enrichment across multiple ChIP-seq
samples); they can be used also to discover ERs across repli-
cates, but at the cost of a higher number of not validated peaks
(false positives) [8].

Recently, we proposed a novel method that simultaneously
considers multiple ChIP-seq replicates for transcription factors
(TFs) and rigorously combines local evidence of ERs; the method
provides new sample-specific peak lists taking into account the
combined evidence of ERs, called with a threshold less stringent
than usual [8]. In the tests performed on public ChIP-seq data
sets for the Myc TF in K562 human cells, this method allowed to
significantly extend the number of detected ERs, with respect to
single-sample analysis with an equivalent significance thresh-
old. The newly discovered ERs were validated by motif analysis
and overlap with open chromatin regions. Furthermore, com-
parison with alternative methods (i.e. IDR and jMOSAiCS)
showed that the method discovers more validated peaks than
the former and less peaks than the latter, but with a better
validation.

The authenticity of the ERs discovered by combining evi-
dence depends on a variety of factors, including the quality of
replicates and called ERs, as well as the choice of parameter val-
ues used to combine the evidence. An assessment of the result-
ing ERs should always be performed: for example, it could be
achieved by visualizing the results in a genome browser, in-
specting ER nearest-neighbour distributions, and/or comparing
the ERs with known genomic annotations (functional analysis).
These last two procedures involve the calculation of the distri-
bution of distances between ERs of replicates, or between ERs
and known genomic features (e.g. genes, promoters or other

regulatory regions). Such distributions may show, for example,
that ERs in different sets are relatively close to each other, but
they are not overlapping, or that they are not at specific dis-
tances from known genes; if this is not expected (e.g. as in the
case of replicates regarding ChIP-seq experiments of TFs), it
may suggest a revision of the parameter values used for peak
calling, or for combining ER evidence.

Addressing all the above aspects, here we review MuSERA, a
novel, broadly useful, advanced graphical tool that efficiently
implements, extends and generalizes the original method pre-
sented in [8], and, in addition, integrates commonly used ana-
lysis features that allow performing easily further assessments,
genomic annotations and functional analyses on the identified
ERs. Through its intuitive graphical interface, MuSERA provides
several graphic displays that help the user in gaining a deeper
insight and biological evaluation of the analysis results. We re-
view the main MuSERA features, describing how they are imple-
mented, and we apply MuSERA to several types of data, from
ChIP-seq experiments of TFs or histone marks, both narrow
and broad, to DNase-seq experiments. Finally, we review and
discuss some examples of the analysis of these data using
MuSERA, which show the relevance of the additional ERs identi-
fied with MuSERA, as well as the efficacy of the graphical dis-
plays of the computational results that MuSERA provides in
supporting the biological interpretation of NGS experiments.

Notations

An ER is a unique independent entity, denoted by rji, belonging
to the sample Rj¼ {rj1, . . ., rji, . . ., rjI}, with U¼ {R1, . . ., Rj, . . ., RJ}
being a set of replicates; the index i, with 1� i� I, identifies the
regions within a given replicate, and the index j, with 1� j� J,
identifies the replicates. An ER is characterized by its genomic
coordinates (chromosomeji, startji, endji) and P-valueji (pji). The sig-
nificance of rji is stratified by the ‘stringent’ (Ts) and ‘weak’ (Tw)
thresholds, with Ts<Tw; accordingly, Rj

s¼ {rji j pji<Ts}, Rj
w¼ {rji j

Ts�pji<Tw} and Rj
b¼ {rji j pji � Tw} represent the sets of ‘strin-

gent’, ‘weak’ and ‘background’ ERs, respectively, for the repli-
cate sample j.

Let Rji,* be the set of all ERs intersecting with rji (including rji),
where only the intersecting ER with the lowest/highest P-value
of each sample is considered if multiple intersecting ERs exist in
a sample, and let K¼ jRji,*j, where 1�K� J by definition.
According to the method in [8], the significance of an ER in Rji,* is
assessed by computing a ‘combined evidence’ X2 statistics (i.e.
the sum, over the K ERs in Rji,*, of �2 ln pji), which, according to
the Fisher’s combined probability test [10], follows a v2 distribu-
tion with 2K degrees of freedom; the right-tail cumulative prob-
ability of this v2 distribution defines the ER combined evidence
pji

comb, whose comparison with a ‘stringency threshold’ c defines
‘confirmed’ (Rj

c¼ {rji j pji
comb � c}) and ‘discarded’ (Rj

d¼ {rji j
pji

comb> c}) sets of ERs for each replicate sample j. Subsequently,
the method generates an ‘output set’ (Rj

o) for each replicate
sample by applying a multiple testing correction procedure on
the confirmed ERs of the sample. Additionally, for each replicate
sample j, the method defines the following sets: (i) ‘stringent
confirmed’ Rj

sc¼ {rji j pji<Ts ^ pji
comb � c} � Rj

c, (ii) ‘stringent dis-
carded’ Rj

sd¼ {rji j pji<Ts ^ pji
comb> c} � Rj

d, (iii) ‘weak confirmed’
Rj

wc¼ {rji j Ts�pji<Tw ^ pji
comb � c} � Rj

c, (iv) ‘weak discarded’
Rj

wd¼ {rji j Ts�pji<Tw ^ pji
comb> c} � Rj

d, (v) ‘multiple-testing con-
firmed’ Rj

mtc (with Rj
mtc¼Rj

o) and (vi) ‘multiple-testing discarded’
Rj

mtd (with Rj
mtcþRj

mtd¼Rj
c). In addition to the method from [8],

MuSERA provides also a single ‘unified output set’ (Ruo) repre-
senting the confirmed ERs present in all the Rj

o sets of the

2 | Jalili et al.

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

173

combined replicate samples. This Ruo set is built by merging all
ERs in all the Rj

o sets (one for each replicate sample), so that, for
each group of overlapping ERs in the Rj

o sets, only a single ER is
present in Ruo, having as left-end and as right-end the left-most
left-end and the right-most right-end of the overlapping ERs, re-
spectively. A significance score is assigned to each ER in Ruo, cal-
culated by rigorously combining the significance of the
overlapping ERs in the Rj

o sets using the Fisher’s method [10].

MuSERA features

MuSERA combines replicates to increase the statistical signifi-
cance of ERs. It assigns ERs to different sets and provides an
integrated genome browser for their visualization. Furthermore,
for the evaluation of the replicate-combined results, it offers
several additional features, including ‘genomic annotation and
functional analysis of enriched regions’, ‘nearest enriched re-
gion distance distribution’ and ‘global correlation assessment of
enriched regions’, for in-depth investigation of each of the ER
sets. MuSERA bins distances based on a user-modifiable win-
dow size, shows results on tables and plots (supporting user-
friendly zoom and pan) and allows operations to be applied on
user-selected chromosomes. These and other MuSERA features,
including ‘interactive and batch execution’ as well as ‘input/
output standard data formats’, are reviewed in the following
sections, where we show the relevance and utility of MuSERA
for biological investigation. MuSERA is a .NET application imple-
mented in C# that runs primarily on Microsoft WindowsVR and
may be run also on other operating systems using an Oracle
Virtual Box virtual machine freely provided for non-commercial
use.

Combining replicates

To combine ER evidence present in sample replicates, MuSERA
extends the method described in [8], and implements it in an ef-
ficient multi-threaded environment. Each ER is categorized as
‘stringent’, ‘weak’ or ‘background’ with respect to the signifi-
cance of the ER according to user-defined stringent (Ts) and
weak (Tw) thresholds, with only ‘stringent’ and ‘weak’ ERs being
considered for replicate evidence combination. The algorithm
combines the P-values of intersecting ERs using the Fisher’s
method [10], if and only if the number of such intersecting ERs
is above or equal to a user-defined lower bound (C); accordingly,
it assigns the property of ‘confirmed’ or ‘discarded’ to each of
the intersecting ERs if the combined evidence pji

comb is below or
is not below, respectively, the user-defined combined strin-
gency threshold c (see the ‘Notations’ section). Besides, overlap-
ping ERs located in a number of samples below the required
value of the parameter C are ‘discarded’. Each replicate sample
contributes to the evidence combination with single evidence
only; hence, if a sample has multiple ERs overlapping with a
single ER of another sample, only the most/least stringent (ac-
cording to user definition) overlapping ER of the former repli-
cate is considered for the evaluation of the ER of the latter
replicate.

Genomic annotation and functional
analysis of ERs

An ER can overlap known genomic loci, like promoters or other
regulatory elements of genes. Besides, a gene might be regu-
lated by a TF bound to a DNA regulatory element far from its

promoter (e.g. regulatory elements called ‘enhancers’ [11] can
be located far from transcription start, like for the Sonic hedge-
hog (Shh) gene in mouse [12]), even interspersed with other
non-regulated genes [13, 14]. MuSERA can efficiently assign an
ER to the closest up-/down-stream genomic feature [e.g. gene
transcription start site, promoter region, Coding DNA Sequence
(CDS) or enhancer], thanks to its optimized implementation
using an adaptive binning of data (see ‘Implementation’ section
and Figures 1B and 2). Furthermore, MuSERA estimates the ‘ER-
to-feature overlap score’, by determining the number of ERs
intersecting with genomic annotations (e.g. known genes, 30/50

untranslated regions, CDSs, intergenic regions (IGR), introns,
promoter regions), or with any experimentally verified binding
sites uploaded in MuSERA by the user as annotations in General
Transfer Format (GTF). Additionally, it estimates the ‘ER-to-fea-
ture distance distribution’ between the ERs and the closest up-/
down-stream features per functional group. All these options
allow better biological evaluation of the distribution of the ERs
in the genomic context.

Nearest ER distance distribution

MuSERA can compute the ER nearest neighbour distance distri-
bution (NND). In each analysis session consisting of at least two
samples, the ERs of each sample are grouped into different sets
before (‘stringent’ or ‘weak’ set) and after (‘stringent confirmed’,
‘weak confirmed’, ‘stringent discarded’, and ‘output’ set) the
multiple-sample analysis. To estimate the NND, after the user
chooses the desired sample(s) and set(s) to be considered, for
each ER, MuSERA determines the distance to the nearest ER; an
option is available to treat all selected samples and sets either
as a single entity or as distinct entities. In the case of single en-
tity, the closest neighbour of an ER could be an ER belonging to
any set of any sample of the analysis session. In the case of dis-
tinct entities, the closest neighbour of an ER is determined
within the same set and sample of the ER.

Global correlation assessment of ERs

The similarity between replicates is frequently assessed either
before peak calling, using genome-wide read densities, or after
peak calling, using the identified ERs. Pearson’s product-
moment correlation coefficient (PCC) [15] is a threshold-
independent and scale-invariant method [16] commonly used
to compute a global correlation assessment between replicates.
PCC is also used after the peak calling when binned signal
intensities are provided, either in a separate ‘wiggle’ file per
sample or as numerical vectors per identified ER (e.g. data set
chipseq_mES of [17]). Similarly, the Jaccard Similarity
Coefficient (JSC) is a statistical method for correlation/diversity
assessment of samples, consisting on the ratio between the car-
dinalities of the intersection and the union of two sets; it can be
used both before peak calling (e.g. [18] increases genes detection
power of RNA-seq data using JSC for global similarity filtering)
or as a post peak calling correlation assessment procedure (e.g.
[19, 20]).

MuSERA determines both region-level and base-pair-level
correlations between all pairs of sets using JSC (see Figures 2
and 3). They are respectively computed as the ratio between the
number of overlapping regions (region-level correlation), or gen-
omic bases (base-pair-level correlation), and the total number of
regions, or genomic bases, in the considered sets. Base-pair-
level correlation is more stringent and is to be preferred when
the position of the ERs is known with more certainty, or when

MuSERA: Multiple Sample Enriched Region Assessment | 3

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

174

the experimental protocols have a low level of noise. Region-
level correlation is instead more permissive, as it scores the
overlap of entire regions rather than quantifying the magnitude
of this overlap; this correlation measure is then to be preferred
in the presence of heterogeneous or noisy data sets.

Interactive and batch execution

MuSERA implements two execution procedures: ‘Interactive’
and ‘Batch’ processing. The ‘Interactive mode’ is provided
through a graphical user interface (GUI) with a wide range of re-
view graphical features; it is intended for processing a limited
number of samples, where results need to be reviewed through
multiple user iterations for parameter tuning (see Figure 4 for
cross-functional flowchart). The ‘Batch mode’ is suitable for
processing a high number of samples with a given set of param-
eters; it reads ‘jobs’ defined in a simple way through an
Extensible Markup Language (XML) file and it has a limited set
of review features. The XML file is compliant with the World
Wide Web Consortium Document Object Model (DOM) level 1
core and DOM level 2 core recommendations, and its schema
has been defined so to ease the work of the end user in the def-
inition of ‘jobs’.

Input/output standard data formats

MuSERA processes ERs and allows further investigation of re-
sults using genome annotations as references. ERs can be read
from tab-delimited files consisting of the ER genomic interval

attributes (chromosome, start, end and P-value) as essential
fields; common standard tab-delimited formats such as
Browser Extensible Data (BED), ENCODE narrowPeak and
ENCODE broadPeak are of such kind. Genome annotations like
Reference Sequence (RefSeq) or GENCODE genes can be parsed
and loaded from files in standard formats such as the GTF.

MuSERA exports each of the resulting ER sets in a separate
BED file. Additionally, an XML file is created for each Rj

o, Rj
c and

Rj
d set, containing extensive explanatory information for each

included ER, such as (i) ER signature (i.e. chromosome, start,
end, name, P-value), (ii) initial categorization (i.e. stringent or
weak), (iii) computed combined P-value (X2) and corresponding
right-tail probability (pcomb) and (iv) signatures of the ERs it is
combined with, including the sample name they belong to.
Chromosome-wide basic statistics of each input sample (e.g.
widest/narrowest peak, lowest/highest P-value and average/
median/standard-deviation of P-values) are provided in a separ-
ate text file. When running in ‘Batch Mode’, MuSERA also ex-
ports a text file for each analysis session, providing
comprehensive information about the parameters and the over-
all analysis results for any future reference.

Implementation
Overview

MuSERA is a .NET application written in Model-View-
ViewModel (MVVM) pattern [21], with a GUI developed in
Windows Presentation Foundation (WPF) graphical system and

Figure 1. Binned data. (A) A set of bins is created with respect to the ERs of the replicates. (B) The bins are then modified with respect to known binding sites/genomic

annotations. Each bin contains all available information for the segment of genome it represents; for instance, in (B), Bin2 corresponds to r11 intersecting with Gene1 at

the genome position determined by the Bin2 coordinates. Bins are orderly stored by their genomic position, which enables a binary search for a specific bin. An ER is

possibly represented by more than one bin, i.e. by all bins that start/end within the ER coordinates (e.g. in (B), the ER r11 is represented by bins Bin2, Bin3, Bin4 and Bin5);

therefore, comprehensive information about an ER is provided by the union of all bins spanning it.

Figure 2. Genomic annotation and correlation assessment. For each ER, MuSERA computes the distance between the ER and the closest known genomic feature (site).

If an ER overlaps a feature (e.g. r11 and site1), their distance is 0; otherwise two distances are computed between the ER and the closest up-stream and down-stream fea-

tures, respectively. MuSERA determines the correlation between samples in terms of the Jaccard Similarity Coefficient (JSC), both at region level and base-pair level.

The right-hand side of the figure highlights the possibility of considerable difference between the two levels.

4 | Jalili et al.

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

175

business logic written in C# programming language. Being the
GUI implemented in WPF, leveraging on DirectX and on the
Graphical Processing Unit in a Multithreaded Apartment (MTA)
model, MuSERA delivers a high-end smooth, interactive and
user-friendly graphics. The MVVM pattern and MTA model en-
able separation of business logic and GUI process load, which
avoids any possible lag on either side. As far as code metrics are
concerned (calculated by Microsoft Visual Studio), MuSERA con-
sists of roughly 6500 lines of code with a maintainability index
of 82, cyclomatic complexity of 2.000 and 9 maximum depth of
inheritance [22].

MuSERA source code is freely available under open-source
GPLv3 license at http://musera.codeplex.com/; its implementa-
tion for MS-Windows systems and an Oracle Virtual Box virtual
machine for its evaluation on other systems (e.g. Linux, Mac)
are freely available for downloading for non-commercial use
from http://www.bioinformatics.deib.polimi.it/MuSERA/, where
the MuSERA user manual (Supplementary file 1) is also
available.

Interactive and batch execution

The ‘Interactive mode’ is implemented using the Multi-
Threaded Apartment model, while the ‘Batch mode’ uses the
Single-Threaded Apartment model. The two modes use com-
mon thread-safe components that enable concurrent execution
of modes with no intervention, and the possibility to set the
process priority of the ‘Batch mode’.

The ‘Batch mode’ executes a series of ‘jobs’ collected in an
‘at-job’ that is defined in an XML file compliant with the DOM
specifications. An ‘at-job’ consists of three parts: (i) properties
(e.g. ‘Height’, ‘Width’, ‘Font size’) for all generated plots, (ii) path
of the file where the batch log writes and (iii) a collection of

‘jobs’. A ‘job’ is entitled as ‘Session’ and has three sets of
parameters:

• Load and Save parameters, which define the full path of input

files and the folder where to save the results; additionally, they

enable/disable saving different ER sets to separate files.
• Analysis parameters, which set analysis properties such as Ts

and Tw.

• BED parser parameters, which set properties such as P-value col-

umn number in input BED files to correctly load them.

A sample portion of an ‘at-job’ XML file is shown in
Supplementary file 2. The ‘at-job’ is executed by a ‘managed
code’ with least possible footprints, all being memory resources
freed-up at ‘job’ execution termination. Hence, the ‘Batch mode’
memory requirement is limited to the amount needed for a sin-
gle ‘job’ execution.

Determination of intersecting ERs

Cross-replicate, co-localized ERs shall be combined for overall
significance determination of evidence; for each ER i of each
sample j (i.e. rji), MuSERA combines the ERs in Rji,*, i.e. the set of
ERs in the replicates that intersect with rji (including rji), using
the Fisher’s method [10]. The set Rji,* can be determined using
various efficient methods, such as algorithms based on ordered
lists, i.e. by scanning all lists in parallel and linearly grouping
ERs. However, the performance of such algorithms degrades
when the intersection size is considerably smaller than the in-
put size, or when input sizes vary significantly between the ER
sets [23].

Algorithms based on variants of self-balancing binary search
trees, such as interval trees [24] (i.e. an augmentation of red-
black trees [25]) or segment trees [26], are asymptotically

Input

0.086

0.084

Stringent ERs

0.402

0.282

Weak ERs

0.049

0.031

Stringent – Confirmed

0.402

0.282

Weak – Confirmed

0.758

0.274

Stringent – Discarded

0.0

0.0

Weak – Discarded

0.008

0.004

Output

0.866

0.479Base-Pair-Level Jaccard Similarity

Region-Level Jaccard Similarity

Figure 3. Correlation assessment hierarchy. During processing of two replicate samples, MuSERA estimates the Jaccard Similarity Coefficient between the two samples

and for each of their computed ER sets. Values are shown for the ENCODE samples wgEncodeSydhTfbsK562CmycIfna30StdAlnRep1 and

wgEncodeSydhTfbsK562CmycIfna30StdAlnRep2 (processed with analysis parameters: BioRep, Ts ¼ 10� 8, Tw ¼ 10� 4, c ¼ 10� 8, C ¼ 1), which overall show a rather

low correlation (Input). In these samples the peaks are called using MACS2.0 [4] with 0.001 P-value threshold; hence, such low correlation is expected because of low

signal-to-noise ratio. Initial classification of the ERs in each replicate (i.e. Stringent ERs versus Weak ERs) confirms that in the replicates stronger evidence correlates

better than weaker one. Combining the samples, each of the two initial categories is divided into the Confirmed and Discarded sub-categories; ERs in the Confirmed

sub-categories result to be considerably more correlated compared with their corresponding ERs in the Discarded sub-categories.

MuSERA: Multiple Sample Enriched Region Assessment | 5

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

176

Figure 4. Cross-functional flowchart for the MuSERA Interactive mode. The flowchart shows a simplified flow of the major Interactive mode uses. In the Process part of

the Business Logic section of the flowchart, the processes (rectangles) tagged with a black triangle in their bottom-right corner are time-consuming concurrent proc-

esses that allow executing other paths while MuSERA is busy computing them.

6 | Jalili et al.

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

177

optimal data structures that store intervals and efficiently sup-
port queries for intervals overlapping a given interval/point. An
ER is an interval on the genomic domain with respect to its
‘chromosome’, ‘start’ and ‘end’ attributes; this makes interval
trees an appropriate data structure for the determination of Rji,*

sets. Additionally, interval trees do not require the input to be
sorted, which saves the time for sorting a possibly unsorted
input.

MuSERA creates distinct interval trees, one for each chromo-
some of each replicate. The query time of an interval tree is
order of O(k Log2 n) for reporting k intervals when the tree holds
n items. Therefore, Rji,* determination has O(J k Log2 n) complex-
ity, as it requires processing J distinct interval trees, each repre-
senting the same chromosome for one of the J replicates.
Additionally, MuSERA processes chromosomes independently,
and hence it is parallelized by distributing individual chromo-
some processes on available threads.

Genomic annotation of ERs

Once replicates are combined, MuSERA automatically annotates
ERs with user-provided genomic features (e.g. genes, promoters,
CDSs, binding sites of other TFs), independently for each of the
ER sets (e.g. Rj

s, Rj
w, Rj

c, Rj
d). MuSERA is an interactive tool, where

the user can tune a few parameters to achieve better results;
hence, response time to update each annotation parameter
should be reasonably fast. MuSERA can linearly group ERs and
known binding sites/genomic annotations that overlap; how-
ever, this would require re-running the algorithm in case of any
user-defined parameter is changed. To avoid this, the genomic
annotation algorithm of MuSERA pre-processes data by defining
genome-wide dynamic bins with coordinates determined by the
ERs of the considered set (Figure 1A) and the known binding
sites/genomic annotations (Figure 1B), the bins being stored and
sorted according to their ‘start’ coordinate.

A bin spans a segment on the genome determined by two
consecutive start/end coordinates of ERs or genomic annota-
tions (i.e. start-start, start-end, end-start or end-end; see Bin1,
Bin2, Bin3 and Bin5, respectively, in Figure 1B), and it includes all
available information for that segment of DNA; hence, it enables
constant access for the biological interpretation of the segment.
This aspect avoids re-running the annotation process in case of
changing any user-defined annotation parameter, such as the
filter option (e.g. considering only TF binding sites or CDSs as
known binding sites/genomic annotations). Additionally, given

an ER, the corresponding DNA segments (i.e. bins) are deter-
mined in logarithmic time, because this requires a binary search
on sorted elements (bins), and the element annotations are
determined in constant time; therefore, an ER annotation is op-
timally computed in O(Log2 n), where n is the number of defined
bins.

Integrated genome browser

MuSERA implements also a flexible and highly interactive set of
plotting features based on the Dynamic Data Display [27] pack-
age, allowing real-time interactive zoom and pan on genome-
scale samples. Having combined samples, MuSERA automatic-
ally creates bins independently for each of the determined sets
(e.g. Rj

s, Rj
w

, Rj
c, Rj

d), as already shown in Figure 1, and displays
in tabular format all the ERs of the sets with their corresponding
information (e.g. ‘chromosome’, ‘start’, ‘end’, ‘P-value’, X2). By
double-clicking on any of the listed ERs, MuSERA plots it to-
gether with all the ERs (in different colours according to the set
they belong, i.e. ‘stringent confirmed’, ‘stringent discarded’,
‘weak confirmed’ or ‘weak discarded’) and annotations, if any,
within a window of user-defined size (e.g. see Figure 5); then,
this can be easily scrolled, panned and zoomed to interactively
explore the location on the DNA also of all the other ERs and
annotations.

Use case results and practical guidance

In this section, we first illustrate how sets of significant ERs are
expanded by applying MuSERA on replicates, for several types
of NGS data, such as ERs from ChIP-seq of TFs and broad and
narrow histone marks, and DNase-seq hypersensitive sites. We
show that MuSERA is able to correctly determine a new set of
ERs by locally combining their evidence on replicates, and we
prove how the integrated graphical features that MuSERA pro-
vides well support thorough inspection of the obtained results
and evaluation of their biological content.

Used data sets

We applied MuSERA on publicly available NGS data sets from
the ENCODE repository, which always provides at least two bio-
logical replicates for each experiment [28]; we considered data
sets regarding K562 (acute myelogenous leukaemia) human
cells. To test MuSERA against a variety of different types of data
and peak shapes, we decided to consider nine different data

Figure 5. An example view of the integrated genome browser. For a selected ER (e.g. the ER represented by the light blue thick interval on Rep1 line, named MACS_peak_26),

the ER(s) it is combined with (e.g. the ER represented by the purple thick interval on Rep2 line, named MACS_peak_31) and all surrounding ERs (coloured according to the set

they belong) and available annotations are plotted; hovering the cursor on an ER, a tooltip is opened to show the corresponding information (e.g. start, stop, name, P-value).

MuSERA: Multiple Sample Enriched Region Assessment | 7

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

178

sets: two ChIP-seq data sets of the TF CTCF (CTCF1, with three
replicates, and CTCF2, with two replicates), one ChIP-seq data
set of the TF JunD (JunD, two replicates), one ChIP-seq data set
of the RNA Polymerase II molecule, responsible for gene tran-
scription (Pol2, two replicates), one ChIP-seq data set of the his-
tone mark H3K4me3, marking active promoters (H3K4me3, two
replicates), which usually generates narrow, TF-like peaks, one
DNase-seq data set, corresponding to open chromatin regions
(DNaseI, two replicates) and three data sets of histone marks,
which are deposited over large genomic regions (H3K9me3 and
H3K27me3, two replicates each, marking the body of repressed
genes; H3K36me3, two replicates, marking actively transcribed
gene bodies). The details of the samples are given in Table 1.

Results of combining ER evidence on replicates and their
validation

MuSERA has been run with parameters Ts¼ 10 � 8, Tw¼ 10� 4,
C¼ 1 in the ‘biological replicate’ mode, meaning that the valid-
ation of an ER overlapping with ERs in the other replicate sam-
ples is sufficient to validate all overlapping ERs. In particular,
with the choice C¼ 1 we decided to automatically confirm each
stringent peak, regardless of its overlap with peaks in the other
replicates, as we found this was the best strategy for the TF Myc
[8].

As we can see from Figure 6 (panels A–I), showing the sizes
of the different ER sets determined, by combining ER evidence
on replicates MuSERA allows the ‘rescue’ of a large number of
peaks (Rw,c set, dark green) below the chosen significance
threshold Ts in a single sample. The number of ‘rescued’ (i.e.
weak, confirmed) peaks in the output set Ro ranges from 12% to
more than the double of the size of the original single-sample
stringent set Rs (panel J): the presence of a biological replicate
allows a consistent expansion of the set of ‘good’ peaks by lo-
cally lowering the sensitivity threshold. The highest efficiency
is found for the Pol2, DNaseI, H3K27me3 and H3K36me3 sam-
ples, where the sample output set Ro has more than double (up

to more than triple for H3K27me3) of the peaks in the stringent
set Rs.

In all determined ER sets of the CTCF samples, we validated
our results by looking for the presence of the CTCF motif (coded
as a Position Weight Matrix in the JASPAR CORE Vertebrata
database entry MA0139.1 [29]) recognized on the genome in the
sequences spanned by the peaks in the different sets. We found
the motif enriched in all the CTCF Rs and Ro sets, as expected,
but also in all the Rw,c and in two of five Rw,d sets, even if the P-
values of the enrichments are higher (i.e. less significant) in the
Rw,d set case. This result fully validates the ‘rescue’ process pro-
posed by MuSERA, and also suggests that our peak call has been
rather stringent. The details of the validation results are shown
in Table 2.

Use case result evaluation with MuSERA graphical
features

Through its graphical interface, MuSERA allows a quick inspec-
tion of the analysis results and a thorough evaluation of their
biological content. Figure 7 shows the MuSERA ‘Overview’ panel
providing a general overview of the ER sets determined for the
CTCF1_1 sample, and including a global view of the parameter
values used. All ERs of each set are listed in a table view, to-
gether with all their quantitative values and computed statis-
tics; with just a double click, the ERs can be easily displayed in
the genomic context along the DNA, thanks to the MuSERA inte-
grated genome browser (Figure 5).

Furthermore, several other quantitative features that
MuSERA automatically computes can be straightforwardly dis-
played; some of them are shown in Figure 8: the stratification of
the ER sets over the different chromosomes (panel A), the distri-
bution of the combined significance (X2) of the ERs in each set
(panel B, Output Set of the CTCF1_1 sample) and the distribution
of the distance of the ERs in each set from the closest genomic
feature chosen (panel C, Output Set of the CTCF1_1 sample; the

Table 1. ENCODE alignment files used and their quantitative features

Sample name Short name Aligned reads Rs Rw

wgEncodeOpenChromChipK562CtcfAlnRep1 CTCF1_1 6 051 439 53 339 22 290
wgEncodeOpenChromChipK562CtcfAlnRep2 CTCF1_2 6 211 475 57 104 26 177
wgEncodeOpenChromChipK562CtcfAlnRep3 CTCF1_3 11 988 569 66 262 36 278
wgEncodeSydhTfbsK562CtcfbIggrabAlnRep1 CTCF2_1 26 957 114 58 089 45 727
wgEncodeSydhTfbsK562CtcfbIggrabAlnRep2 CTCF2_2 26 437 775 52 386 34 130
wgEncodeSydhTfbsK562JundbIggrabAlnRep1 JunD_1 16 175 565 48 152 67 154
wgEncodeSydhTfbsK562JundbIggrabAlnRep2 JunD_2 28 086 672 66 936 59 105
wgEncodeSydhTfbsK562Pol2IggmusAlnRep1 Pol2_1 17 762 352 18 392 53 489
wgEncodeSydhTfbsK562Pol2IggmusAlnRep2 Pol2_2 19 293 573 21 810 61 160
wgEncodeBroadHistoneK562H3k4me3StdAlnRep1 H3K4me3_1 9 512 593 28 595 28 271
wgEncodeBroadHistoneK562H3k4me3StdAlnRep2 H3K4me3_2 15 640 462 35 285 34 526
wgEncodeOpenChromDnaseK562AlnRep1 DNaseI_1 9 993 542 41 184 133 829
wgEncodeOpenChromDnaseK562AlnRep2 DNaseI_2 29 472 357 56 800 146 113
wgEncodeBroadHistoneK562H3k9me3StdAlnRep1 H3K9me3_1 15 816 227 2428 3324
wgEncodeBroadHistoneK562H3k9me3StdAlnRep2 H3K9me3_2 33 939 687 1978 8555
wgEncodeBroadHistoneK562H3k27me3StdAlnRep1 H3K27me3_1 12 210 065 1969 6916
wgEncodeBroadHistoneK562H3k27me3StdAlnRep2 H3K27me3_2 12 119 288 21 554 25 603
wgEncodeBroadHistoneK562H3k36me3StdAlnRep1 H3K36me3_1 14 803 144 12 606 10 365
wgEncodeBroadHistoneK562H3k36me3StdAlnRep2 H3K36me3_2 10 393 298 4435 10 189

Peaks were called with the software package MACS2.0 [4] using the parameters ‘-auto-bimodal -p 0.01 -g hs’ (thus setting a P-value threshold of 10� 2). Rs: stringent ER

set (ERs with P-value<Ts). Rw: weak ER set (ERs with Ts�P-value<Tw). Ts¼10� 8, Tw¼10� 4. Peaks for the histone marks H3K4me3, H3K9me3, H3K27me3 and

H3K36me3 were called with the ‘broad’ option.

8 | Jalili et al.

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

179

chosen genomic feature is the set of promoters in the human
genome hg19).

The ‘genomic annotation and functional analysis of en-
riched regions’ and the ‘nearest enriched region distance distri-
bution’ that MuSERA supports can provide better understanding
and improved biological interpretation of the obtained results.
For example, looking at the peak-to-peak distance across the
different samples (Figure 9, panel A: narrow ERs; panel B: broad
ERs), which MuSERA automatically quantifies to build the ‘near-
est enriched region distance distributions’, we can see that this
quantity is higher in weak confirmed peaks than in stringent
confirmed peaks for the considered samples of the CTCF TF and
H3K4me3 and H3K9me3 histone marks; whereas, this distance
is roughly the same for the DNase I Hypersensitive Site (DHS),
RNA Polymerase II and for some of the broad histone mark sam-
ples considered. This probably depends on the fact that the
stringent confirmed CTCF peaks correspond to high-affinity
binding sites of the TF, while the CTCF weak peaks could be
generated by transient interactions with the DNA, which are
not stabilized by a specific target, and therefore are scattered
across the genome. A similar argument holds for the H3K4me3
and H3K9me3 histone marks, although in this case the strength

of the signal is just an indication of the fraction of cells bearing
the modification, and it is more difficult to identify the mechan-
ism responsible for this difference; a good guess is that it could
be related to the local balance of the enzymes transferring and
removing the methyl groups to the histone proteins. On the
other hand, DHS ERs are found throughout the genome and do
not have preferred genomic locations where the signal is stron-
ger; therefore, in this case the peak-to-peak distance distribu-
tion is similar for strong and weak peaks. The mixed behaviour
of sample H3K27me3 may depend on the large differences in
the number of peaks across the two replicates: replicate 1 al-
most quadruplicates its number of ERs in the Ro set, thanks to
the high number of ERs in replicate 2, and probably the few
stringent confirmed peaks were more scattered around the gen-
ome than the many weak confirmed peaks. A similar case, al-
though with lesser intensity, may hold true for replicate 2 in
sample H3K36me3.

The case of RNA Polymerase II is rather surprising: RNA
Polymerase II is the molecule transcribing the genome, and it is
mostly localized on genes and promoters, although recent stud-
ies indicate that most of the genome has the potentiality of
being transcribed [31]. To gain a better insight on this aspect, we
took advantage of the ‘genomic annotation and functional ana-
lysis’ available in MuSERA to inspect the genomic location of
the RNA Polymerase II peaks. Using the ‘ER-to-feature overlap
score’ that MuSERA automatically calculates when promoters,
intragenic regions or IGR are selected as genomic features, re-
spectively, we found that the fraction of RNA Polymerase II
peaks located on these regions is unchanged in the stringent
and weak ER sets and across the replicates (Figure 10). Thus, the
features that MuSERA computes and graphically shows enabled
us to conclude that RNA Polymerase II binds with a wide range
of intensities to both genes and intergenic elements.

Finally, the ‘global correlation assessment’ provided by
MuSERA, through the evaluation of the JSC for each type of ER
set determined, confirms that the obtained output sets are

Figure 6. ER sets for the considered data sets. (A–I) ER sets in the testing data sets considered (biological replicates). SS: single sample analysis; MS: multiple sample

analysis. In each panel, the SS stacked bars represent Rs (light green/gray) and Rw (green/gray) sets in the replicates, while the MS bars show the same peaks, confirmed

or discarded according to the MuSERA output: Rs,c (light green/gray), Rw,c (dark green/gray) and Rw,d (red/black) sets. Note that setting the parameter C ¼ 1, the Rs,d set

is always empty. (J) General statistics on the cardinality of the ER sets. See Table 2 for the validation results of the CTCF peaks.

Table 2. Validation results of the peaks for the CTCF samples

Sample Rs Ro Rw,c Rw,d

CTCF1_1 7.4 e-3575 3.4 e-3786 5.2 e-338 –
CTCF1_2 1.6 e-3586 2.2 e-3846 4.1 e-147 –
CTCF1_3 8.6 e-4115 3.8 e-4321 6.9 e-199 2.4 e-128
CTCF2_1 2.6 e-3610 5.2 e-3676 2.7 e-116 9.4 e-67
CTCF2_2 7.5 e-3414 1.0 e-3517 2.8 e-267 –

P-values for the enrichment of the CTCF binding motif (JASPAR CORE Vertebrata

database entry MA0139.1), as estimated with the DREME package [30] in the

150 bp around the peak midpoint. Rs: stringent ER set. Ro: output ER set. Rw,c:

weak, confirmed ER set. Rw,d: weak, discarded ER set. ‘-’: no enriched motif.

MuSERA: Multiple Sample Enriched Region Assessment | 9

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

180

much more congruent than the stringent sets, which
would have been used as outputs in the absence of MuSERA
(Figure 11, left panel); besides, even for weak ERs, which may in-
clude a higher fraction of spurious binding sites, the JSC value
increases considerably for the weak confirmed sets, confirming
the validity of the ‘rescue’ process that MuSERA performs
(Figure 11, right panel). The evidence in the replicates of a data
set is therefore combined in sets of ERs that are more coherent
between themselves than the outputs of single-sample
analyses.

Performance

We benchmarked the MuSERA performance for a variety of op-
erations, including loading data, combining replicates and pre-
processing of analysis results for further assessments through
e.g. genomic annotation, similarity search or integrated genome
browser. Tests were performed on a standard laptop computer
running Microsoft WindowsVR 10, with IntelVR CoreTM i3 (2.10 GHz)
CPU and 6 GB of RAM. The benchmark was performed on mul-
tiple ENCODE ChIP-seq and DNase-seq data sets regarding K562
human cells, including two to three replicates each, where the

overall number of ERs in the replicate samples of each data set
spanned few thousands to millions of ERs. Additionally, a data
set of human genome hg19 promoters (counting 82 960 pro-
moter regions) was imported for genomic annotation perform-
ance benchmarking.

In general, MuSERA performance is in the scale of seconds,
spanning few tens to hundreds of seconds depending on oper-
ation and number of ERs on replicates, from few tens of thou-
sands to millions of ERs (Figure 12). The process of parsing and
loading ERs from input sample files runs in a handful of seconds
for most samples. The algorithm of combing replicates is highly
optimized and runs in few tens of seconds for two to three repli-
cates with a few hundreds of thousands of ERs each. The correl-
ation between replicates is assessed once replicates are
combined; the algorithm runs instantaneously (hence it is not
explicitly included in Figure 12). Some operations (e.g. nearest
neighbour search, genomic annotation and genome browsing)
depend on a data structure that is automatically populated
once an analysis session is selected. Such process is executed in
background to minimize its effect on other MuSERA independ-
ent operations and maximize user experience (i.e. the user can
benefit the other independent features of MuSERA while the

Figure 7. Overview panel of the MuSERA graphical interface. After an analysis is performed, MuSERA shows the statistics of the analysed sets in the ‘Overview’ panel.

Data shown regard the CTCF1_1 sample.

10 | Jalili et al.

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

181

required data structure is being populated in background); the
process completes in few tens of seconds, depending on the
number of considered ERs and genomic features. Once the data
structure is populated, the operations, such as genome brows-
ing, are instantaneous.

Discussion and conclusions

We reviewed MuSERA, an effective, efficient and easy-to-use
graphical tool of broad utility to combine evidence across ChIP-
seq or DNase-seq replicates, and to evaluate them and their

Figure 8. Some graphical analyses performed by MuSERA. The different panels of MuSERA plot the features computed in the analysis. For example, we show here (A)

elements in the sets, stratified by chromosomes; (B) distribution of the combined significance (X2) of the output set (Ro) ERs for the CTCF1_1 sample; (C) distance of ERs

in the output set (Ro) of the CTCF1_1 sample from human promoters: clearly, the CTCF TF prefers to bind the DNA close to the regulatory regions of a gene.

MuSERA: Multiple Sample Enriched Region Assessment | 11

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

182

biological relevance in the genomic context. MuSERA allows the
annotation of samples with user-defined genomic features and
the visualization of results in an integrated genome browser.
Furthermore, it provides a rich set of quantitative evaluations
and interactive graphical displays, which greatly help the
understanding and biological interpretations of results.

Common tools used to analyse NGS data are usually de-
signed for scientists with training in bioinformatics or other
quantitative disciplines, as they usually involve command-line
interfaces and heavily rely on extensive coding abilities. This
naturally poses a barrier against biologists who generated the
data, and would like to directly perform simple analyses on
them. Only few tools make use of a GUI to reach out to larger
audiences, the Galaxy project being the most prominent ex-
ample [32, 33]. However, this large, all-purpose tool can become
rather complex to use despite the presence of a GUI, and usually
requires powerful computing facilities to run analysis applica-
tions on NGS data files, which are typically large. MuSERA, on
the other hand, is a dedicated tool efficiently performing inte-
grated analysis of replicated NGS data sets involving ERs, which
can be directly used on any personal computer and mastered in
a short time. Some tools, like Nebula [34], provide a more
focused GUI centred on the processing of ChIP-seq data, and
yet, they do not consider the presence of replicates. This same
and relevant limitation generally applies to the available tools
commonly used for NGS data evaluation, including
GenometricCorr [35], which is focused on the detection of gen-
ome-wide correlations between pairs of samples; it includes

four different methods to compute these correlations (‘relative
distance’, ‘absolute distance’, ‘projection’ and ‘Jaccard’), to-
gether with appropriate null models and statistical tests to
evaluate the significance of the correlations. We note that the
‘ER-to-feature overlap score’ implemented in MuSERA can be
thought of a specific case of the ‘absolute distance’ method im-
plemented in GenometricCorr, where all distances>0 (i.e. con-
sidering only non-overlapping regions in the pair of samples
considered) are discarded. Some other tools, like PAPST [36],
focus on co-localization of different types of ERs, but do not con-
sider the significance of the ERs in their analysis. Instead,
MuSERA uniquely combines a rigorous approach for jointly
evaluating ERs in replicates [8] with an intuitive GUI and an
array of useful downstream analyses, both computational and
graphical. Moreover, it leverages on high-end data structures to
minimize the runtime of common analysis procedures, and
executes time-consuming operations in the background, result-
ing in high user-friendly interaction with minimal lag.
Additionally, while batch processing on common tools requires
scripting and/or coding knowledge, MuSERA facilitates batch
execution specification by providing a simple XML structure to
define batch jobs.

We applied MuSERA to ChIP-seq data sets of TFs and histone
marks, and to a DNase-seq data set, and we found that the effi-
ciency of the ‘rescue’ of weak ERs varies between 12% and 279%,
thus potentially making a big impact on the final list of sample-
specific confirmed ERs. Variation of MuSERA efficacy depends
on many factors, including the quality of replicates and the

Figure 9. Peak-to-peak distance. The boxplots represent the peak-to-peak distance for the stringent confirmed and weak confirmed ER sets for all the samples con-

sidered. Samples displaying narrow, Gaussian-like peaks (A) are shown separated from samples having ERs with a broader shape (B). While this distance is on average

greater in the weak confirmed ER sets for the considered TFs (CTCF and JunD) and the H3K4me3 and H3K9me3 histone marks, it stays roughly constant in the two sets

for DHS and RNA Polymerase II, and in the remaining histone marks.

12 | Jalili et al.

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

183

Figure 11. Region-level Jaccard Similarity Coefficient (JSC). The JSC measures the similarity between two or more sets, and it is automatically computed by MuSERA for

any type of ER set determined. The figure shows that, for each of the data sets considered, the similarity between the output sets is much higher than the similarity be-

tween the stringent sets (left panel). For the sets of weak ERs (right panel), which usually contain a higher fraction of binding sites, the JSC value is rather low, but it

considerably increases for the weak confirmed sets, supporting the validity of the evidence-combining process that MuSERA performs. Finally, we note that the CTCF1

data set, which has three replicates, has a lower JSC value owing to the evaluation of an additional sample in the overall ER overlaps.

Figure 10. Distribution of RNA Polymerase II ERs in the genome. RNA Polymerase II (Pol2) ERs fall mostly around genes (promoter, intragenic), but a considerable frac-

tion is located in intergenic regions. This behaviour is highly conserved across the two replicates considered and across stringent confirmed and weak confirmed ERs.

MuSERA: Multiple Sample Enriched Region Assessment | 13

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

184

biological characteristics of the ERs. For example, for the TF
CTCF we observed the lowest rate of rescue of weak peaks
among all the replicates: this TF makes contact with the DNA
through 11 distinct zinc-finger domains [37], and therefore
binds in an extremely strong way. In this case, most of these
interactions correspond to a clear signal in the ChIP-seq experi-
ment, and the corresponding ERs are inevitably classified as
stringent. Therefore, for this particular TF, the replicates are
more coherent than usual, and most of the weak interactions
are classified as noise. On the opposite, DNaseI hypersensitive
sites have been shown to display a continuum of intensities,
which does not saturate even at high sequencing depths [38];
therefore, for these experiments, the border between weak and
stringent ERs is somewhat arbitrary and many of the ERs classi-
fied as weak in a single sample correspond to true open chro-
matin regions, consistently observed across replicates. In this
case, MuSERA is particularly successful in expanding the set of
the confirmed ERs.

The integrated genome browser and the several graphical
features that MuSERA offers for genomic annotation and func-
tional analysis of ERs, nearest ER distance distribution and glo-
bal correlation assessment of ERs proved useful for the
evaluation and biological interpretation of the obtained ERs
within the genomic context, and could be the starting point of
deeper functional analyses based on more refined measures, as
currently implemented in other tools [9, 35, 36]. Moreover, the
method that MuSERA implements to obtain the ERs was proved,
with respect to other approaches, to optimally address the spe-
cific task of combining evidence over replicates [8]. Its output,
designed to allow quick pipelining to downstream analyses,
provides both sample-specific BED files of the different ER sets
determined, and a single BED file unifying the significant con-
firmed ERs present in the combined replicate samples; all these
files can be directly analysed with common tools like BEDTools
[39], BEDOPS [40] or Bioconductor [41]. In addition, the overview
XML files generated give all the details about the performed
combination of multiple evidence across replicates, and allow
tracking down the individual overlapping events among ERs. All

this makes MuSERA a tool likely to be of broad utility that repre-
sents a significant advance over previously published software.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.

Key Points

• Replicates in next-generation sequencing experiments
are recommended, but their full potential, especially
in experiments involving the identification of enriched
regions (ER), is often neglected.

• MuSERA is a tool that allows combining local evidence
in replicates to improve ER calling, and provides quan-
titative evaluations and graphical features to assess
the biological relevance of each determined ER set
within its genomic context; they include genomic an-
notation of determined ERs, nearest ER distance distri-
bution and global correlation assessment of ERs.

• MuSERA comes with an intuitive graphical user inter-
face, making it immediate to use, which provides an
integrated genome browser and an array of graphical
displays that greatly support understanding and biolo-
gical interpretations of the results.

• By applying MuSERA to different data types, including
ChIP-seq of transcription factors or histone marks and
DNase-seq hypersensitive sites, we always found
enhanced sets of ERs and proved its effective support
in the inspection of obtained results and evaluation of
their biological content.

• MuSERA represents a significant advance over previ-
ously published software, as we discuss and compara-
tively demonstrate.

Figure 12. Benchmarking of MuSERA main operations. Operation runtime, on a logarithmic scale, for increasing number of ERs in combined replicates of ENCODE

ChIP-seq or DNase-seq data sets (two to three replicates for each data set). The data sets considered were downloaded from ENCODE; for the ER counts in the figure

they were, from left to right: wgEncodeSydhHistoneK562bH3k4me3bUcdAlnRep1/2, wgEncodeUwDnaseK562Znf4g7d3AlnRep1/2, wgEncodeUwDnaseK562Znf2c10c5

AlnRep1/2, wgEncodeOpenChromDnaseK562NabutAlnRep1/2 and wgEncodeOpenChromDnaseK562G1phaseAlnRep1/2/3.

14 | Jalili et al.

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

185

Funding

This work was supported by the Fondazione Istituto Italiano
di Tecnologia and by AIRC [IG_13182] and the Italian Ministry
of the University and Research (MIUR) [‘Data-Driven Genomic
Computing (GenData 2020)’ PRIN project (2013-2015)].

References
1. van Dijk E, Auger H, Jaszczyszyn Y, et al. Ten years of next-gen-

eration sequencing technology. Trends Genet 2014;30(9):418–26.
2. Park P. ChIP-seq: advantages and challenges of a maturing

technology. Nat Rev Gen 2009;10:669–80.
3. Cockerill P. Structure and function of active chromatin and

Dnase I hypersensitive sites. FEBS J 2011;278:2182–210.
4. Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-

Seq (MACS). Genome Biol 2008;9(9):R137.
5. Rashid NU, Giresi PG, Ibrahim JG, et al. ZINBA integrates local

covariates with DNA-seq data to identify broad and narrow
regions of enrichment, even within amplified genomic re-
gions. Genome Biol 2011;12(7):R67.

6. Chen Y, Negre N, Li Q, et al. Systematic evaluation of factors
influencing ChIP-seq fidelity. Nat Methods 2012;9(6):609–14.

7. Li Q, Brown JB, Huang H, et al. Measuring reproducibility of
high-throughput experiments. Ann Appl Stat 2011;5(3):
1752–79.

8. Jalili V, Matteucci M, Masseroli M, et al. Using combined evi-
dence from replicates to evaluate ChIP-seq peaks.
Bioinformatics 2015;31(17):2761–9.

9. Zeng X, Sanalkumar R, Bresnick EH, et al. jMOSAiCS: joint ana-
lysis of multiple ChIP-seq datasets. Genome Biol 2013;14(4):R38.

10.Fisher RA. Statistical Methods for Research Workers. Guildford,
UK: Genesis Publications, Ltd, 1925.

11.Bulger M, Groudine M. Enhancers: the abundance and func-
tion of regulatory sequences beyond promoters. Dev Biol
2010;339(2):250–7.

12.Lettice LA, Heaney SJ, Purdie LA, et al. A long-range Shh en-
hancer regulates expression in the developing limb and fin
and is associated with preaxial polydactyly. Hum Mol Genet
2003;12(14):1725–35.

13.Glassford WJ, Rebeiz M. Assessing constraints on the path of
regulatory sequence evolution. Philos Trans R Soc Lond B Biol Sci
2013;368(1632):20130026.

14.MacQuarrie KL, Fong AP, Morse RH, et al. Genome-wide tran-
scription factor binding: beyond direct target regulation.
Trends Genet 2011;27(4):141–8.

15.Pearson K. Note on regression and inheritance in the case of
two parents. Proc R Soc Lond 1895;58(347-352):240–2.

16.Bardet AF, He Q, Zeitlinger J, et al. A computational pipeline
for comparative ChIP-seq analyses. Nat Protoc 2012;7(1):45–61.

17.Zhao X, Valen E, Parker BJ, et al. Systematic clustering of tran-
scription start site landscapes. PLoS One 2011;6(8):e23409.

18.Rau A, Gallopin M, Celeux G, et al. Data-based filtering for
replicated high-throughput transcriptome sequencing ex-
periments. Bioinformatics 2013;29(17):2146–52.

19.Giannopoulou EG, Elemento O. An integrated ChIP-seq ana-
lysis platform with customizable workflows. BMC
Bioinformatics 2011;12(1):277.

20.Ashoor H, H�erault A, Kamoun A, et al. HMCan: a method for
detecting chromatin modifications in cancer samples using
ChIP-seq data. Bioinformatics 2013;29(23):2979–86.

21.Smith J. WPF apps with the Model-View-ViewModel design
pattern. MSDN Magazine 2009;24(2):dd419663.

22.Visual Studio Code metrics values. 2015. https://msdn.micro
soft.com/en-us/library/bb385914.aspx (30 January 2016, date
last accessed).

23.Hwang FK, Lin S. A simple algorithm for merging two disjoint
linearly ordered sets. SIAM J Comput 1972;31–9.

24.Cormen TH, Leiserson CE, Rivest RL, et al. Section 14.3: inter-
val trees. In: Introduction to algorithms. 3rd edn. Cambridge,
MA: MIT Press and McGraw-Hill, 2009, p. 348354.

25.Bayer R. Symmetric binary B-trees: data structure and main-
tenance algorithms. Acta Inform 1972;1(4):290–306.

26.Bentley JL. Solutions to Klee’s rectangle problems. Pittsburgh, PA:
Carnegie-Mellon University, 1977.

27.CodePlex. Dynamic Data Display. 2011. http://dynamicdata
display.codeplex.com/ (30 January 2016, date last accessed).

28.Landt SG, Marinov GK, Kundaje A, et al. ChIP-seq guidelines
and practices of the ENCODE and modENCODE consortia.
Genome Res 2012;22(9):1813–31.

29.Mathelier A, Zhao X, Zhang AW, et al. JASPAR 2014: an exten-
sively expanded and updated open-access database of tran-
scription factor binding profiles. Nucleic Acids Res 2014;42:
D142–7.

30.Bailey TL. DREME: motif discovery in transcription factor
ChIP-seq data. Bioinformatics 2011;27(12):1653–9.

31.Djebali S, Davis CA, Merkel A, et al. Landscape of transcription
in human cells. Nature 2012;489(7414):101–8.

32.Blankenberg D, Taylor J, Schenk I, et al. A framework for col-
laborative analysis of ENCODE data: making large-scale ana-
lyses biologist-friendly. Genome Biol 2007;17(6):960–4.

33.Boekel J, Chilton JM, Cooke IR, et al. Multi-omic data analysis
using Galaxy. Nat Biotechnol 2015;33:137–9.

34.Boeva V, Lermine A, Barette C, et al. Nebula – a web server for
advanced ChIP-seq data analysis. Bioinformatics
2012;28(19):2517–19.

35.Favorov A, Mularoni L, Cope LM, et al. Exploring massive, gen-
ome scale datasets with the GenometriCorr package. PLoS
Comput Biol 2012;8(5):e1002529.

36.Bible PW, Kanno Y, Wei L, et al. PAPST, a user friendly and
powerful Java platform for ChIP-seq peak co-localization ana-
lysis and beyond. PLoS One 2015;10(5):e0127285.

37.Phillips JE, Corces VG. CTCF: master weaver of the genome.
Cell 2009;137(7):1194–211.

38.Neph S, Viestra J, Stergachis AB, et al. An expansive human
regulatory lexicon encoded in transcription factor footprints.
Nature 2012;489(7414):83–90.

39.Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities
for comparing genomic features. Bioinformatics 2010;26(6):
841–2.

40.Neph S, Kuehn MS, Reynolds AP, et al. BEDOPS: high-
performance genomic feature operations. Bioinformatics
2012;28(14):1919–20.

41.Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open
software development for computational biology and bio-
informatics. Genome Biol 2004;5:R80.

MuSERA: Multiple Sample Enriched Region Assessment | 15

 by guest on M
arch 25, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

186

Indexing Next Generation Sequencing Data

Vahid Jalilia,∗, Matteo Matteuccia, Marco Masserolia, Stefano Ceria

aDipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy

Abstract

Next-Generation Sequencing (NGS), also known as high-throughput se-
quencing, has opened the possibility of a comprehensive characterization of
the genomic and epigenomic landscapes, giving answers to fundamental ques-
tions for biological and clinical research, e.g., how DNA-protein interactions
and chromatin structure affect gene activity, how cancer develops, how much
complex diseases such as diabetes or cancer depend on personal (epi)genomic
traits, opening the road to personalized and precision medicine. In this con-
text, our research has focused on sense-making, e.g., discovering how het-
erogeneous DNA regions concur to determine particular biological processes
or phenotypes. Towards such discovery, characteristic operations to be per-
formed on region data regard identifying co-occurrences of regions, from dif-
ferent biological tests and/or of distinct semantic types, possibly within a
certain distance from each others and/or from DNA regions with known
structural or functional properties. In this paper, we present Di3, a Durable
Interval Inverted Index, acting as a multi-resolution single-dimension data
structure for interval-based data queries. Di3 is defined at data access layer,
independent from data layer, business logic layer, and presentation layer; this
design makes Di3 adaptable to any underlying persistence technology based
on key-value pairs, spanning from classical B+tree to LevelDB and Apache
HBase, and makes Di3 suitable for different business logic and presentation
layer scenarios. We demonstrate the effectiveness of Di3 as a general pur-
pose genomic region manipulation tool, with a console-level interface, and as
a software component used within MuSERA, a tool for comparative analysis
of region data replicates from NGS ChIP-seq and DNase-seq tests.

∗To whom correspondence should be addressed
Email address: vahid.jalili@polimi.it (Vahid Jalili)

Preprint submitted to Special Issue on Life Sciences Data Analysis February 16, 2016

187

Keywords:
Genomic computing; domain-specific data indexing; region-based
operations and calculus; data integration.

1. Introduction

Next-Generation Sequencing (NGS) is a family of technologies for pre-
cisely, quickly and cheaply reading the DNA or RNA of biological sam-
ples (Shendure and Ji, 2008), (Schuster, 2008), producing huge amounts
of data. Large-scale sequencing projects are spreading and very numerous
genomic features, produced by processing NGS raw data, are collected by
research centers, often organized through world-wide consortia, e.g., EN-
CODE (ENCODE Project Consortium et al., 2012), TCGA (Weinstein et al.,
2013), 1000 Genomes Project (1000 Genomes Project Consortium et al., 2010),
Epigenomics Roadmap (Romanoski et al., 2015), and others.

The availability of NGS data has opened the possibility of a compre-
hensive characterization of genomic and epigenomic landscapes. Answers to
fundamental questions for biological and clinical research are hidden in these
data, e.g., how DNA-protein interactions and chromatin structure affect gene
activity, how cancer develops, how much complex diseases such as diabetes
or cancer depend on personal (epi)genomic traits. Personalized and precision
medicine based on genomic information is becoming a reality; the potential
for data querying, analysis and sharing may be considered as the biggest and
most compelling big data problem of mankind.

NGS technologies (Schuster, 2007), (Caporaso et al., 2012) allow collect-
ing genome-wide genomic and epigenomic features, including DNA mutations
or variations (DNA-seq), transcriptome profiles (RNA-seq), DNA methyla-
tions (BS-seq), DNA-protein interactions and chromatin characterizations
(ChIP-seq and DNase-seq) (Park, 2009), (Cockerill, 2011). The processing
of raw data (i.e., NGS reads) produced by these technologies returns lists of
regions of cellular DNA, characterized by some common property; such re-
gions, often referred as peaks (of NGS reads), are defined through their linear
genomic coordinates and they are usually associated with several attribute
values, including a statistical significance score, e.g., a p-value (Zhang et al.,
2008) (Rashid et al., 2011).

The comparative analysis of heterogeneous genomic features produced by
NGS technologies is named tertiary analysis, in contrast to primary analysis,

2

188

focused on the alignment of raw data (short reads) to reference genomes, and
secondary analysis, focused on feature calling. Tertiary analysis is responsi-
ble of sense-making, e.g., discovering how heterogeneous regions synergically
concur to determine particular biological processes or phenotypes.

Our research is targeting tertiary analysis; we recently proposed a new
holistic approach to genomic data modeling and querying1 that takes ad-
vantage of cloud-based computing to manage heterogeneous data produced
by NGS technologies. In (Masseroli et al., 2015), we introduced the novel
GenoMetric Query Language (GMQL), built on an abstract model for ge-
nomic data; we sketched out its main operations and demonstrated its use-
fulness, expressive power and flexibility through multiple different examples
of biological interest (including finding ChIP-seq peaks in promoter regions,
finding distal bindings in transcription regulatory regions, associating tran-
scriptomics and epigenomics, and finding somatic mutations in exons).

We also developed methods for secondary data analysis, with a focus
on data integration. Indeed, NGS experimental protocols recommend the
production of at least two replicates for each sequenced sample, in order to
remove false positive calls and “rescue” (i.e., call) regions with low signif-
icance score which would probably be discarded in a single sample evalua-
tion, but that are supported by a sufficiently strong evidence when combined
across multiple replicate samples. To perform such task, we recently pro-
posed a novel method (Jalili et al., 2015), which has been then implemented
in MuSERA (Jalili et al., 2016), an efficient tool for locally combining ev-
idence on replicates and interactive graphical evaluations of results in the
genomic context.

1.1. Our Contribution

Both GMQL and MuSERA are grounded on the efficient execution of
operations for the composition and comparison of (epi)genomic regions, and
their associated attributes. Region-based operations to be performed towards
these goals include the identification of co-occurrences or accumulations of
regions, possibly from different biological tests and/or of distinct semantic
types, within the same area of the DNA, sometimes within a certain dis-
tance from each others and/or from DNA regions with known structural
or functional properties (e.g., describing particular DNA sequence motifs,

1http://www.bioinformatics.deib.polimi.it/genomic computing/

3

189

genes involved in certain biochemical pathways, or regulatory regions of gene
transcription activity). Nowadays, such complex operations are only par-
tially supported by existing tools, e.g., BEDTools (Quinlan and Hall, 2010),
BEDOPS (Neph et al., 2012), GROK (Ovaska et al., 2013); these tools typ-
ically support only algebraic operations based on the genomic coordinates
of the regions within a single data sample or a pair of samples at the time,
requiring the use of scripts to perform complex operations on multiple data
samples.

To cope efficiently with complex region calculus, we have developed the
Durable Interval Inverted Index (Di3), a multi-resolution single-dimension
data structure. Di3 is defined at the data access layer, and it is independent
from data layer, business logic layer, and presentation layer. This design de-
cision has two significant advantages; firstly, being independent from the data
layer, Di3 is adaptable to any key-value pair persistence technology. These
may range from Apache Cassandra, LevelDB, Kyoto Cabinet, and Berkeley
DB for persisted large scale data (NoSQL databases are surveyed in (Han
et al., 2011) and (Tudorica and Bucur, 2011)), to simple in-memory key-
value collections implemented by most of modern programming languages
(e.g., “Dictionary” in C# and “map” in C++)2. Secondly, Di3 design can
support different business logic and presentation layer scenarios, which are
complemented by user-defined functions (UDF) provided via behavioral de-
sign patterns such as strategy pattern (Vlissides et al., 1995).

In this paper, we describe two contexts of use of Di3:

• General-purpose, self-contained use of Di3 from the Di3B command-
line interface (Di3BCLI) that provides console-level accessibility to
Di3B operations (see Figure 1). This is also used for performance
evaluation.

• Use of Di3 as a component within the MuSERA tool (Jalili et al., 2016),
showing how Di3 adapts to the general requirements of secondary and
tertiary data analysis (see Figure 1).

2In this manuscript, we use an implementation of Di3 which relies on classical B+tree
and runs both in-memory and persistent.

4

190

Data Layer

Presentation Layer

Data Access Layer

Business Logic Layer

Di3

Di3B

Di3BCLI

MuSERA Genome Model

MuSERA GUI

In-RAM & Persisted B+tree

Figure 1: Two applications’ design of Di3.

1.2. Outline

This paper is organized as follows. Section 2 presents the state of the
art. Section 3 is dedicated to the Di3 method, further sub-structured in its
model, data structure, and supported operations. Section 4 reports experi-
ments which assess the effectiveness of Di3 with big data sets and compare
to BEDOPS and BEDTools, which are currently used in the state of the art
for region-based operations. In Section 5 we demonstrate how Di3 is used
within MuSERA, a recently developed tool for multiple sample peak calling.

2. Related Work

Previous work for Di3 can be traced to classical search trees, such as
interval trees (Cormen et al., 2009), segment trees (Bentley, 1977), range
trees (Bentley, 1979), or Fenwick trees (Fenwick, 1994); these are optimal so-
lutions, each for particular interval-based retrieval, and some are used in com-
mon bioinformatics tools as underlying data structure, e.g., UCSC Genome
Browser and BEDTools use R-Trees (Guttman, 1984). However, individu-
ally such data structures do not provide a comprehensive solution for tertiary
analysis challenges. For instance, retrieval queries such as ‘find all the in-
tervals (i.e., regions) intersecting with a given interval ’ can be determined
in O(log2 n) using interval trees; while queries such as ‘find the n-th closest
interval ’ require re-mastering the very same data structure, which becomes
inefficient. Moreover, some of such data structures are mainly designed as
in-memory data structures; and when persisted, they cause a severe overhead
in terms of Input/Output operations. Additionally, these data structures are
poor candidates for parallelism; for instance, R-trees partition intervals into

5

191

hierarchical bins, hence non-uniformly distributed intervals (which are com-
mon for ChIP-seq, RNA-seq, and exome sequencing) unbalance bin loads,
and, consequently, some bins take considerably longer time to be processed
than others.

Temporal databases and spatial data structures provide solutions for in-
terval manipulation, from efficient storage and retrieval to manifold oper-
ations on top of that. Generally, in the temporal databases the challenge
is formalized as object/tuple versioning, e.g., (Snodgrass and Ahn, 1985);
in such methods, objects have different versions at various timespans, and
can be valid or invalid at a given period, see also (Elmasri et al., 1990).
Other works have shown temporal indexing schemes which handle the dif-
ferent notions of time, as well as non-temporal attributes, by using classical
B+trees (Goh et al., 1996) or by exploiting the built-in functionalities of rela-
tional database systems (Stantic et al., 2010). Such systems hold the concept
of time; hence, they render past (history), now, and future. Consequently,
the storage technology is commonly ’append-only’, and removing an object
is generally defined as invalidating the object at a given timespan. Addi-
tionally, temporal operations commonly target recent events; hence, events
prior to a certain time point are usually archived to reduce the amount of
information to be processed for regular queries (which generally target recent
events only).

A common prerequisite in temporal databases design is that the update,
insertion, and deletion operations target now and history is intact (e.g.,
John’s paid salary at last year does not change), however, few works exist
concerning bi-temporal data where updating past is possible through addi-
tional dimension (Kaufmann et al., 2015). Compared to temporal databases,
genomic databases have a fundamental difference: they do not hold any syn-
onym for temporal model concerning past, now, and future concepts, as all
events on the genomics domain are of equal importance from the location
perspective; manipulation functions can target any position on the genome,
and thus storage, indexing, and operations should be targeted at this aim.

Similarly to what we propose here, several works have proposed the em-
bedding of region query processing functions within libraries that can be
integrated within programs (Cereda et al., 2011), (Ovaska et al., 2013). In
particular, GROK (Ovaska et al., 2013) presents a rather elegant mathemat-
ical formalism based on set algebra; its authors propose a genomic region
abstraction (that may represents reads, genomic variants, mutations, and so
on), and then define a set of region operations, delivered as the Genomic Re-

6

192

gion Operation Kit (GROK) library. In comparison, GROK supports lower-
level abstractions than Di3 and some low-level operations (e.g., flipping re-
gions) that Di3 does not directly support, but they must be embedded into
C++ programming language code. Furthermore, high-level declarative oper-
ations, such as COVER and MAP (see Section 3), can be encoded in GROK, but
they must be invoked from line editors or C++ programs.

BEDTools (Quinlan and Hall, 2010) and BEDOPS (Neph et al., 2012)
are customarily used by biologists for processing region data in BED format;
they can be used from within software environments for bioinformatics (e.g.,
BioPerl, BioPython, R and Bioconductor), and support algebraic operations
based on the genomic coordinates of regions, but only within a single or a
pair of data samples at the time, requiring the use of scripts to evaluate
multiple data samples. A thorough comparison of Di3 with BEDTools and
BEDOPS is presented in Section 4.

Alternative approaches exist to efficiently process intervals in the Apache
Hadoop ecosystem (Buck et al., 2011), (Eldawy and Mokbel, 2013) by im-
plementing algorithms which partition the operands in order to speed up
their evaluation. In (Chawda et al., 2014) the authors propose an algo-
rithm based on data binning; recently, (Afrati et al., 2015) further analyze
binning-based algorithms in order to assess their computation bounds. For
Apache Spark (Zaharia et al., 2012), similar problems have been addressed
by projects such as GeoSpark (Yu et al., 2015) and (Sriharsha, 2015). Be-
sides cloud-based systems, scientific databases can also be used to support
genomic computing, including Vertica3 (used by the Broad Institute and NY
Genome Center), and SciDB4 (further enhanced by Paradigm45 a company
whose products include genomics adds-on to SciDB and access to NGS data
from TCGA and 1000 Genomes Project).

Several organizations are considering genomics at a global level. For
instance, Global Alliance for Genomics and Health (GA4GH)6 is a large con-
sortium of over 200 research institutions with the goal of supporting volun-
tary and secure sharing of genomic and clinical data; their work on data
interoperability is producing a conversion technology for the sharing of data
on DNA sequences and genomic variations (GA4GH Data Working Group,

3https://www.vertica.com/
4http://www.scidb.org/
5http://www.paradigm4.com/
6http://genomicsandhealth.org/

7

193

2015). Also Google recently provided an API to store, process, explore, and
share DNA sequence reads, alignments and variant calls, using Google’s cloud
infrastructure7.

3. Di3 Design

Di3 is a general-purpose index structure which provides fast access to
intervals; therefore, it applies to several domains, including genomics (any
genomic region is a linear interval defined by the genomic coordinates of the
region ends). Di3 main strengths are its ability to adapt to domain needs,
thanks to the native support for user-defined functions (UDFs), and its porta-
bility to several implementation technologies, thanks to its high-level, layered
design that abstracts from implementation details. Di3 models homogeneous
and heterogeneous intervals on a domain; related events are collected in sets,
which collectively constitute a sample. For instance, a genomic data sample
may contain regions (i.e., intervals) of DNA-protein interactions occurring
on a genome under an experimental setup; each interval can be associated
with values, e.g., a significance score.

In general, let S = {S1, . . . Sj, . . . SJ} denote the available samples, where
each sample is a set of intervals Sj = {Ij1 , . . . Iji , . . . Ij|Sj |}; each interval I =

[
¯
I, Ī) is included within its lower (left) and upper (right) bounds (ends).

Di3 organizes intervals by means of snapshots (see Figure 2); each snapshot
corresponds to a point on the domain, and is associated with all the intervals
overlapping that point. More precisely, each snapshot Bb is a key-value pair,
where the key (eb) is the coordinate of the snapshot on the domain, and
the value (λb) is a set of pointers to descriptive metadata of all the intervals
overlapping the coordinate eb.

3.1. Di3 Operations

The coordinate-oriented model of Di3 facilitates region calculus. Data
retrieval is defined in three levels: Physical, Logical, and Semantic. The
former bridges the Di3 data model to the data layer, using some key-value
pair persistence technology. Operations at the physical layer include Create,
Read, Update, Deleted (CRUD), and Enumerate. These operations create
and manipulate the snapshots and organize them in a key-value pair stor-
age, by translating input intervals to snapshots and retrieving intervals from

7https://cloud.google.com/genomics/

8

194

Value

 Keye1

 𝐋, @𝐈𝟏
𝟐

e2

 𝐌, @𝐈𝟏
𝟐

 𝐋, @𝐈𝟏
𝟏

e3

 𝐌, @𝐈𝟏
𝟐

 𝐌, @𝐈𝟏
𝟏

 𝐋, @𝐈𝟏
𝟑

e4

 𝐌, @𝐈𝟏
𝟏

 𝐑, @𝐈𝟏
𝟑

 𝐑, @𝐈𝟏
𝟐

e5

 𝐑, @𝐈𝟏
𝟏

e6 e7

 𝐋, @𝐈𝟐
𝟑 𝐑, @𝐈𝟐

𝟑

𝑆1

𝑆2

𝑆3 𝑰𝟏
𝟑 𝑰 𝟏

 𝟑 𝑰𝟏
𝟑

 𝑰𝟐
𝟑 𝑰 𝟐

 𝟑 𝑰𝟐
𝟑

e2e1 e3 e4 e5 e6 e7

𝑰𝟏
𝟏 𝑰 𝟏

 𝟏 𝑰𝟏
𝟏

𝑰𝟏
𝟐 𝑰 𝟏

 𝟐 𝑰𝟏
𝟐

In
p

u
t

D
i3

Figure 2: Di3 data structure. Sj : sample j; Ii: interval i; Bb: snapshot b.

snapshots. They are internal to Di3 and accordingly do not incorporate
UDFs.

Logical level functions leverage on physical level operations, and provide
the essential elements for region calculus. These functions cover classical re-
gion calculus that benefits from the information of a single snapshot, e.g.,
’given a point on the domain, find intervals overlapping with it’ (similar to
queries on segment trees), or that leverage on information provided by a set
of consecutive snapshots, e.g., ’given an interval, find all intervals overlap-
ping with it’ (similar to queries on interval trees). Logical level functions
leverage on snapshots to optimally retrieve co-occurrences of intervals, or co-
occurrence histograms and distributions; some of them define the Di3 public
application programming interface (API), whereas other functions can be
user-defined.

Upon physical level operations and logical level functions, Di3 builds
semantic level functions. The goal of these functions is to facilitate both
high-level reasoning on data that include coordinate-attribute criteria, and
UDFs creation for extensibility to application requirements. These functions
are: similarity search, which finds samples that best match the criteria de-
fined in a query; co-occurrence patterns, which searches for density-based
co-occurrence patterns; dependency detection, which determines the posi-
tions on the domain where query regions co-occur; and deviation detection,

9

195

D o m a i n

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Cover Result

Figure 3: An example of COVER function with minAcc=2 and maxAcc=4 on 5 samples.

which finds positions on the domain where the regions of a given set do not
commonly co-occur, based on the information stored in the Di3 model.

In this paper we focus on the logical layer, being this the de-facto Di3 API,
whereas the physical layer operations are strictly related to the specific per-
sistence technology used for the Di3 implementation, and the semantic layer
functions are application dependent (some of them are used by MuSERA
and are described in Section 5). Concerning the logical layer, we have the
following operations natively supported by Di3:

Cover. The COVER function applies to snapshots and computes a single sam-
ple from intervals constituting the snapshots, by taking into account interval
intersections and a UDF. Each resulting interval I is the contiguous inter-
section of at least minAcc (minimum accumulation) and at most maxAcc

(maximum accumulation) of intervals. See Figure 3 as an example of the
COVER function. For each resulting interval I, the COVER function determines
contributing intervals, which then are passed to the UDF for further eval-
uation. A UDF may assign to a resulting region I any user-defined value
type, spanning from ’list of all contributing intervals’ or ’cardinality of con-
tributing intervals’, to analytical evaluations such as ’custom aggregation of
significance values’. In COVER, the use of UDFs is thus supported, being
count the default aggregation function.

10

196

D o m a i n

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Summit Result

Figure 4: An example of SUMMIT function with minAcc=2 and maxAcc=4 on 5 samples.

Summit. The SUMMIT function is a variation of the COVER function; similarly
it takes minAcc, maxAcc and a UDF, and reports the local intersections of
COVER. In other words, SUMMIT returns regions that start from a position
where the number of intersecting regions is between minAcc and maxAcc and
does not increase afterwards, and stop at a position where either the number
of intersecting regions decreases, or it violates the maxAcc parameter (see
Figure 4). Similar to COVER, SUMMIT determines contributing intervals and
pass them to the UDF, which can aggregate any property of intervals and
return any user-defined aggregated value type.

Map. Given a reference interval I, the MAP function determines all the in-
tervals indexed in Di3 that overlap with I (similar to classical interval-tree
operation). In addition to a reference, the function takes a UDF and passes
the determined intervals to the UDF (see Figure 5). The output of the UDF
is then reported back as an attribute of I. For instance, a UDF may take all
the intervals overlapping I and return their cardinality.

Accumulation histogram/distribution. The functions Accumulation histogram

and Accumulation distribution compute the genome-wide accumulation
of intervals, and respectively report a histogram or distribution of the calcu-
lated information (see Figure 6).

11

197

D o m a i n

 Sample 1 Sample 2 Sample 3

 Sample 4 Sample 5 Map Reference

Figure 5: An example of MAP function on 5 samples.

D o m a i n

 Accumulation Histogram Sample 1 Sample 2

 Sample 3 Sample 4 Sample 5

Figure 6: An example of Accumulation Histogram function on 5 samples.

12

198

Nearest neighbor. Given a reference interval I, the Nearest neighbor func-
tion determines the nearest neighbor indexed interval, that is either an over-
lapping interval, or the closest up-stream or down-stream non-overlapping
interval.

3.2. Di3 Internals

The design of Di3 is motivated by giving the best possible support to
logic operations; in particular, Di3 supports MAP and Nearest neighbour

operations in logarithmic time in the number of regions, while it supports
COVER, SUMMIT and Accumulation histogram operations in linear time (in-
deed, second resolution indexing supports sub-linear time search, as it will
be later explained). These aspects motivate the superior performance of Di3
over the state-of-the-art, as discussed in Section 4.

Di3 adopts a single-dimension paradigm, and targets the interval’s co-
ordinates; however, it also adopts a double-resolution paradigm. The first
resolution organizes intervals based on their coordinates through snapshots
and provides logarithmic access on the coordinates; the second resolution
builds groups of snapshots based on their coordinates and computes suit-
able aggregation functions for each group, using all the attributes (and not
just the coordinates). These groups act as secondary key for improved ac-
cess based on specific attributes. In the following sections we describe each
resolution in details.

3.2.1. First Resolution

Snapshots summarize information about the coordinates where a varia-
tion occurs in intervals, i.e., when an interval starts or ends; a snapshot at
eb exists iff at least one interval introduced such variation. Hence, a finite
set of snapshots can be used to index a finite set of intervals on both discrete
and contiguous domains. Note that multiple intervals with the same starts
or ends are possible.

Each snapshot holds a list of the IDs of all the intervals overlapping with
its position; having a pointer to each interval overlapping a point on the
domain is advantageous mainly for queries that target specific or relative po-
sitions. For instance, ’given an interval, find all intervals overlapping with it’
requires O(log2 n) to find the snapshot which has a pointer to all intersecting
intervals; or ’given an interval, find all its neighbors at 200 base-pair (unit
of the genomic domain) distance’ requires O(log2 n) to find the snapshot at

13

199

overlapping position, plus few additional siblings of the determined snap-
shot, and then to union the intervals represented by the snapshots (which
asymptotically is still O(log2 n))8.

This organization has been shown already in Figure 2; the upper part of
the figure describes 4 input intervals; the lower part of the figure describes
the Di3 index, where each snapshot Bb includes a key-value pair, the key is
ei, and the value is the list of intervals which have an intersection with Bb.
Precisely, Bb can be at the left (L), at the right (R), or in the middle (M) of
an interval; the type of positioning (i.e., L, R or M) is included in each entry
of the interval list, which also contains a pointer to descriptive metadata
for the interval. For instance, the third snapshot, B3, intersects with three
intervals, being in the middle of the S1 and S2 intervals and at the left of the
S3 interval.

The first resolution index is created using batch indexing, a method which
includes input intervals one after the other; such method is preferred over
bulk indexing or range indexing, which require the sorting of intervals prior
to index creation. These methods are related to the physical layer being
implemented through a B+tree and they are related to classical methods for
B+tree data insertion (Graefe, 2003), (Ghanem et al., 2004). To perform
batch indexing, we contrasted two methods, respectively called single pass
indexing and double pass indexing. The former one considers each interval
in input and precisely updates the data structure in a single pass; the latter
one at the first pass orders the snapshots of new intervals with respect to all
existing intervals, and at the second pass updates all the snapshots with the
information about the list of the intersecting intervals.

The two methods are compared in Figure 7, the comparison clearly shows
that no method dominates over the other one. In general, single pass indexing
is superior with a small number of new intervals, while double-pass indexing
is superior for a large number of new intervals. Based on such analysis, the
initial loading of the index in Di3 is performed by using the double-pass
indexing, while index update is performed by single pass indexing.

8Computational complexities are based on a B+tree data structure for the implemen-
tation of the physical layer operations.

14

200

3.25

17.90

0.24

0 5 10 15 20

Double pass
indexing

Single pass
indexing

Elapsed Time (second) Thousands

Single vs. Double Pass Indexing Runtime
for Large Number of New Intervals

1st pass

2nd pass

0.31

0.57

6.42

0 1 2 3 4 5 6 7 8

Double pass
indexing

Single pass
indexing

Elapsed Time (second)

Single vs. Double Pass Indexing Runtime
for Small Number of New Intervals

1st pass

2nd pass

A

B

Figure 7: A comparison between single-pass and double-pass indexing in two scenarios:
(A) large number vs. (B) small number of new intervals.

3.2.2. Second Resolution

The second resolution is built from the first resolution as of Figure 7,
by grouping a set of snapshots and aggregating the relative information.
The elements of the second resolution of Di3 are collections of consecutive
snapshots grouped together, called blocks. Each block is defined as a key-
value pair; the key is defined by a grouping function, while the value is defined
by an aggregation function. More precisely:

In Grouping, a user-defined function groups a set of adjacent snapshots;
depending on the semantic of the UDF, such groups reveal various aspects.
For instance, in the genomic domain with intervals representing a biological
activity, a group of snapshots is a region on a genome where at least one
biological activity is observed. The grouping function defines the block key,
as an interval on first resolution with start and stop being respectively the
minimum and maximum coordinates of the snapshots in the block.

With Aggregation, the information of the snapshots within each block
are then aggregated, thereby providing summary statistics on the specific
attribute(s). Storing custom aggregations for each block reduces snapshot

15

201

access demands when a particular aggregation is commonly used. The ag-
gregation function defines the block value, which is generic in type and size.
For instance, ’count’ of intervals represented by grouped snapshots, or stan-
dard deviation and median of interval sizes.

Di3 already provides built-in functions for default grouping and aggrega-
tion; the default grouping function groups consecutive snapshots that point
to consecutive overlapping intervals, and the built-in aggregation function
stores the maximum accumulation of each group. These functions improve
operations such as COVER, SUMMIT and Accumulation histogram, discussed
in Section 3.1, which depend on accumulation indexes. Indeed in a COVER

query, when the max accumulation of a block is lower than the min accu-
mulation accMin of the query, or the min accumulation of a block is higher
than the max accumulation accMax of the query, the entire group of intervals
does not have an interval that satisfies the query and can be fully skipped.
Moreover, disjoint groups can be processed in parallel with no need for syn-
chronization mechanisms.

4. Experiments

We start with an evaluation of Di3 enacted from a user interface, and then
we present a comparison with BEDTools and BEDOPS, the most popular
tools for genomic region calculus.

4.1. Di3 Evaluation

We customized Di3 to the genomic domain by building a Di3B index at
the business logic layer that initializes several independent Di3 instances,
one for each DNA chromosome and strand; the Di3BCLI client at presen-
tation layer (see Figure 1) provides user interaction through a set of com-
mands. These include: primitives for initializing the indexes, primitives for
the operations of Section 3.1, and primitives for setting indexing modes and
parallelism.

In general, the Di3BCLI commands (listed in Table 1) have standard com-
mand argument structure, where the number of arguments varies between
different commands. Having executed a command, its runtime is reported
on console, and also saved in a user-defined log file. The Index and BatchIn-
dex primitives take a sample or a collection of samples as argument and,
based on the indexing mode, index the intervals respectively in single-pass or
double-pass mode. Under double-pass indexing mode, the command 2Pass

16

202

Table 1: Di3BCLI commands.
Command Description
Index Takes a filename and indexes all its regions.
BatchIndex Takes a set of files specified using wild-card characters.
2Pass Runs second-pass of indexing in double-pass indexing mode.
2RI Indexes second resolution.
Cover Executes COVER function and exports results.
Summit Executes SUMMIT function and exports results.
Map Executes MAP function and exports results.
Merge Executes MERGE function and exports results.
Complement Executes COMPLEMENT function and exports results.
AccHis Determines Accumulation histogram and exports results.
AccDis Determines Accumulation distribution and exports results.
GetIM Reports current setting for indexing mode.
SetIM Sets indexing mode to the specified one.
GetDP Reports current setting for degree of parallelization.
SetDP Sets degree of parallelization to the specified one.

(which takes no arguments) executes the second-pass of the indexing. The
second resolution of Di3 is created/updated by the 2RI command (that takes
no arguments). The Cover and Summit commands take minAcc, maxAcc,
aggregate, and output arguments, execute the functions with the parameters
and export results to the output file. The Map command takes reference,
aggregate, and output arguments, executes the function and exports results
in the output file. The Merge, Complement, AccHis, and AccDis commands
take output argument, execute the function and report results to the output
file. The GetIM reports current setting for indexing mode, and SetIM takes
a mode argument which is either emphsingle or emphmulti, and sets index-
ing mode accordingly. Finally, GetDP reports current setting for degree of
parallelization, and SetDP takes two numbers as chr-degree and Di3-degree
of parallelization and updates the execution environment accordingly.

We benchmarked Di3 by exploiting two levels of parallelism: chromosome
level parallelism (i.e., executing operations on multiple chromosomes concur-
rently) and binning within chromosomes (i.e., each chromosome is further
divided into multiple sections or bins, and multiple threads process the re-
sulting sections). In all the experiments of this section, we used an Amazon

17

203

Table 2: Datasets used for Di3 benchmarking.

Label Sample count Region count Dataset size (GB)
A1 500 28,392,674 1.35
A2 1,000 59,980,303 3.17
A3 1,500 94,997,460 4.87
A4 2,000 143,563,549 6.98

EC2 machine running Microsoft Windows Server 2012 with an Intel R© Xeon R©

E5-2670 v2 CPU, 320 GFLOPS, and 122 GB RAM. We used four datasets
of ENCODE narrow peak samples, as described in Table 2; the datasets vary
in size, but are similar in interval accumulation distribution. Figure 8 shows
the accumulation distribution of datasets A2 and A4; statistics for the other
two datasets follow similar distributions.

4.1.1. Benchmark of MAP

First, we assessed the performance of MAP, an operation which directly
operates upon coordinates. We considered as reference a sample from the
ENCODE repository, which includes 196,180 regions (8.9 MB in size); the
MAP was performed over the four datasets in Table 2. Figure 9 shows excellent
scalability with respect to growth in data size. Note that the reference sample
is also an ENCODE narrow peak sample; hence, its intervals are mostly co-
localized with the indexed intervals. Therefore, a very big percentage of
indexed data overlaps with the reference intervals.

4.1.2. Benchmark for Accumulation Operations

Second, we assessed Di3 performance for COVER, SUMMIT, Accumulation
histogram and Accumulation distribution operations, which use accu-
mulation indexes as parameters. The function SUMMIT is a variation of COVER
and, similarly, the function Accumulation distribution is a variation of
Accumulation histogram; therefore, their performance is at the same scale
(see Figure 10). Both the Accumulation histogram and distribution func-
tions scan all snapshots; hence, their performance can be evaluated as the
maximum time required for a full scan of Di3, which is linear to dataset size.
Likewise, the functions COVER and SUMMIT require linear scan of snapshots
for regions of specific accumulation of intervals. However, the second resolu-
tion index prunes a percentage of linear scan based on minAcc and maxAcc

parameters, and on their overlap with the accumulation distribution of data.

18

204

0

100

200

300

400

500

600

0 200 400 600 800 1000

C
o

u
n

t

Th
o

u
sa

n
d

s

Accumulation

Accumulation Distribution of
ENCODE narrow peaks of A2 dataset

0

1000

2000

3000

4000

5000

6000

7000

0 200 400 600 800 1000 1200 1400 1600 1800

C
o

u
n

t

Th
o

u
sa

n
d

s

Accumulation

Accumulation Distribution of
ENCODE narrow peaks of A4 dataset

A

B

Figure 8: Interval/region accumulation distribution in datasets A2 (Panel A) and A4
(Panel B).

19

205

16

32

64

128

256

A1 A2 A3 A4

R
u

n
ti

m
e

(s
ec

o
n

d
)

Dataset

Benchmarking Map Function

Map

Figure 9: Benchmarking MAP function of Di3.

The less effective pruning is expected with parameters set around the peak
of accumulation distribution, therefore the COVER and SUMMIT functions are
expected to be faster than the Accumulation histogram and Accumulation

distribution with such choice of parameters. We executed COVER and
SUMMIT functions with minAcc and maxAcc at the peak of accumulation dis-
tribution (e.g., minAcc=80 and maxAcc=100 for A2); Figure 10 confirms that
even with the peak of the parameter values the functions perform faster than
full scan.

4.1.3. Effect of Accumulation Distribution

Data distribution may have a strong effect on the performance of an index.
For instance, non-uniformly distributed data may accumulate a big load of
information on some keys, while other keys may have lighter load; this is
suboptimal because some keys are very expensive to process, while others
are cheap. This affects also parallel execution, as some threads are busy for
a very long time, while others are set free very early. The first step to avoid
such draw backs is at design level, by making correct decisions, based on the
nature of the data, for the key and value of the index.

In this section, we evaluate Di3 design and performance for data with
different accumulation distribution. For this we simulated 10 datasets, each

20

206

1

2

4

8

16

32

A1 A2 A3 A4

R
u

n
ti

m
e

 (
se

co
n

d
)

H
u

n
d

re
d

s

Dataset

Benchmarking Linear Scan Functions

Cover
Summit
Accumulation histogram
Accumulation distribution

Figure 10: Benchmarking linear scan functions of Di3.

21

207

164

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cover Summit AccHis AccDis

1

2

4

8

16

32

64

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
u

n
ti

m
e

(s
ec

o
n

d
)

Simulated Dataset

Performance Evaluation on
Simulated Datasets

Figure 11: Function performance on simulated data.

containing 500 samples and 200,000 regions in each sample. Datasets differ
in the percentage of intersecting intervals (in the extreme case, all samples
contribute to intersection; therefore, the accumulation of the intersection
region equals to the number of samples). A dataset with no intersection is
labeled ’0%’, while a dataset with all intervals intersecting is labeled ’100%’.

We executed Di3 functions on all simulated datasets. Figure 11 shows
the results. Minor variations in function runtime throughout the datasets
are due to the randomly generated positions and overlapping on intervals in
the datasets. The figure highlights that Di3’s performance is independent
from the accumulation distribution of the input datasets.

4.2. Comparison with State of the Art Tools

In this section we compare the performance of Di3 with the one of two
tools commonly used in genomic region processing, namely, BEDTools (Quin-
lan and Hall, 2010) and BEDOPS (Neph et al., 2012). We ran the tools on
a standard laptop (Intel R© Core

TM
i3 2.10 GHz and 8 GB RAM). We ran

BEDTools and BEDOPS under Linux, and Di3 under Microsoft Windows R©

10 operating system. We prepared Python and shell scripts for the batch
execution of BEDTools and BEDOPS, and executed Di3 in-memory. Among

22

208

Table 3: Datasets used for Di3 benchmarking versus BEDTools and BEDOPS.

Label Sample count Region count Dataset size (MB)
B1 90 1,407,493 97.4
B2 180 4,649,767 322.0

the possible operations that are available from the Di3B Command Line In-
terface, BEDTools and BEDOPS implement the MAP operator, i.e., given a
reference sample, find input intervals overlapping with the reference regions.
Therefore, we compared the MAP operator of Di3 against the ’bedtools map’
from BEDTools and the ’bedmap’ from BEDOPS. We considered two typical
usage scenarios in genomic region processing: (i) personal repository, and
(ii) on-the-fly processing.

4.2.1. Personal Repository

This is a common scenario for bioinformaticians, where a personal repos-
itory of in-house data, as output of the execution of a NGS data processing
pipeline, and/or data obtained from publicly available repositories is persis-
tent on their machine. Such data are stored for further processing or to be
used for comparative evaluation and cross-referencing. The repository is a
collection of properly organized files, indexed and persistent in Di3. We used
two datasets of ENCODE narrow peak samples as in Table 3, and a reference
sample including 196,180 regions (8.9 MB in size).

The data were pre-processed, i.e., filtered, and regions in samples were
sorted for BEDTools and BEDOPS, and indexed for Di3. Hence, bench-
mark started from pre-processed data, and for comparison considered only
execution time. As Figure 12 shows, Di3 performs significantly faster than
BEDTools and BEDOPS.

4.2.2. On-the-Fly Processing

Processing data on-the-fly is a bioinformaticians’ daily-based scenario,
where a relatively small dataset is obtained from the execution of a NGS
data processing pipeline and may not be archived for further evaluation. We
benchmarked the in-memory version of Di3 versus BEDTools and BEDOPS
on MAP operation using one reference, including 196,180 regions (8.9 MB in
size), and three datasets of ENCODE narrow peak samples, described as in
Table 4, as target.

23

209

0.95

2.16

87.41

160.90

143.30

335.98

0 50 100 150 200 250 300 350 400

B1

B2

Runtime (second)

D
at

as
et

Benchmark on MAP function

BEDTools BEDOPS Di3

Figure 12: Benchmark: Personal repository scenario

Table 4: Datasets used for Di3 benchmarking versus BEDTools and BEDOPS for on-the-
fly processing.

Label Sample count Region count Dataset size (MB)
C1 12 89,623 6.17
C2 22 258,406 17.8
C3 45 456,385 31.5

24

210

4.63

10.75

20.69

9.74

17.97

35.97

18.87

34.74

70.82

0 10 20 30 40 50 60 70 80

C1

C2

C3

Runtime (second)

D
at

as
et

Benchmark on MAP function

BEDTools BEDOPS Di3

Figure 13: Benchmark: On-the-fly processing scenario

The data were not pre-processed: data were not sorted for BEDTools and
BEDOPS, and not indexed for Di3. Hence, the execution time incorporated
pre-processing time in all cases. Figure 13 shows that Di3 performs faster
than BEDTools and BEDOPS on the three datasets. This highlights that
Di3 is also an agile back-end data structure for on-the-fly processing, even
by incorporating the indexing time within the processing time.

5. Use of Di3 as a Component within MuSERA

The analysis of NGS ChIP-seq samples outputs a number of enriched re-
gions (ERs) for NGS reads, each indicating a protein-DNA interaction or a
specific chromatin modification. ERs (or ’peaks’) are called when the enrich-
ment p-value is below a user-defined threshold. ERs with a p-value close to
that of the background signal are either a background signal which is slightly
enriched due to some biological or technical bias in the experiment, or indeed
are biologically important regions with an enrichment less significant than
expected. The NGS protocol is subject to noise; to avoid a large number of
false positive ERs, commonly used thresholds are often very stringent, yield-
ing many false negatives. However, the guidelines of the ENCODE project
recommend repeating a NGS experiment at least twice (Landt et al., 2012) on

25

211

replicate samples, where the information contained in replicates is expected
to be largely overlapping. We recently proposed a novel method (Jalili et al.,
2015) that, by leveraging on available replicates, differentiates between sub-
thresholded ERs and truly non-ERs, using a rigorous combination of the
significance of individual ERs that overlap in replicate samples.

The results of the method should be further assessed using common pro-
cedures, such as visualization on a genome browser, functional analysis, or
nearest-neighbor search. To this end, we recently proposed Multiple Sam-
ple Enriched Region Assessment (MuSERA) (Jalili et al., 2016), a novel
graphical tool that leverages on Di3 (On-the-Fly scenario) to implement (i)
comparative analysis of replicate samples using the method originally pro-
posed in (Jalili et al., 2015), (ii) ER functional analysis, (iii) nearest neigh-
bor search, (iv) correlation assessment, and (v) an integrated user-friendly
genome browser.

MuSERA builds the business logic layer and presentation layer above Di3
(recall Figure 1). It encapsulates peaks as intervals for Di3, and provides par-
ticular comparative analysis driven operations (e.g., methods for combining
p-values, and classification of peaks as true sub-thresholded ERs or artifacts)
via UDF. Additionally, it uses an in-memory implementation of B+tree to
implement the physical layer (Figure 1).

5.1. Comparative analysis

MuSERA combines statistical evidence of an ER (i.e., its p-value) with
the co-localized evidence from replicates (it uses only the strongest evidence
from each replicate if more than one evidence - i.e., ER - from a replicate is
co-localized), and confirms/discards ERs based on the comparison between
their combined evidence and a user-defined threshold. For this functional-
ity, MuSERA benefits from Di3 MAP function with a UDF for comparative
analysis, explained in (Jalili et al., 2015). The procedure is as follows:

i. MuSERA provides graphical means to select and load replicates.

ii. MuSERA indexes replicates in Di3 on-the-fly.

iii. Through a graphical user interface (GUI), MuSERA gets user-defined
parameters for a UDF for the comparative analysis.

iv. MuSERA executes Di3 MAP with reference sample (the replicate against
which ERs are to comparatively evaluated) and a UDF that:

(a) In each replicate sample, choses the interval with the lowest p-value
from the set of intervals overlapping with a reference interval.

26

212

(b) If the number of overlapping intervals satisfies a user-defined min-
imum threshold, then combines the p-values of the overlapping in-
tervals and the reference interval using the Fisher’s method (Fisher,
1925).

(c) If the combined stringency satisfies a user-defined threshold, then
stores the intervals as confirmed, or as discarded otherwise.

5.2. Genome browser

MuSERA plots a given ER and all the neighbor ERs from replicates,
as well as user-uploaded known genomic features (e.g., genes or promoter
regions) at a given distance (e.g., within 100k base-pair). This function
leverages again on the MAP (i.e., ’given an interval, find intervals overlapping
with it’) and the Nearest neighbor search functions of Di3. The determined
intervals are then plotted using a dynamic plot that allows zoom in and out,
and pan, which together with optimal retrieval from Di3 and plot features
provides a high-end genome browser (see Figure 14 Panel A).

5.3. Functional analysis

Assigning an ER to the closest up-/down-stream genomic feature (e.g.,
gene Transcription Start Site (TSS), or Coding Sequence (CDS)) is a very
useful and common task to help the biological interpretation of NGS results.
MuSERA implements it optimally using Di3; it leverages on relative ordering
of intervals accessible via a consecutive set of snapshots, and on the Nearest

neighbor search, to calculate the ER-to-feature conservation rate (which
is determine as the number of ERs intersecting with genomic annotations)
and the ER-to-feature distance distribution between ERs and the closest up-
/down-stream features (see Figure 14 Panel B).

5.4. Nearest neighbor

MuSERA computes the ER nearest neighbour distance distribution with
functional annotation, leveraging on Nearest neighbor search function of
Di3. The distribution facilitates biological assessment of ERs; for instance,
it helps evaluating that comparatively confirmed weak ERs are relatively
closer to functional annotations than comparatively evaluated true non-ERs
(see Figure 14 Panel C).

27

213

A

B

C

Figure 14: MuSERA at work. (A) ERs on the genome browser together with known
genomic feature annotations (i.e., promoter regions); (B) Up-stream and down-stream
distances of a given ER to the closest features; (C) Distances of a given ER to the nearest
neighbours. Distances are measured in base pairs (bp).

28

214

5.5. Correlation assessment

MuSERA determines correlations, both at region-level and base-pair-
level, between replicates. They are respectively computed as the ratio be-
tween the number of overlapping regions (region-level correlation), or ge-
nomic bases (base-pair-level correlation), and the total number of regions, or
genomic bases considered, producing the respective Jaccard similarity coef-
ficients. Base-pair-level correlation is more stringent and is to be preferred
when the position of the ERs is known with certainty, while region-level cor-
relation is instead more permissive, as it scores the overlap of entire regions
rather than quantifying the magnitude of this overlap; this correlation mea-
sure is then to be preferred in presence of heterogeneous or noisy data sets.
MuSERA estimates both correlations leveraging on the SUMMIT function of
Di3, that calculates density-based co-occurrences.

6. Conclusion

We proposed Di3 (Durable Interval Inverted Index), a multi-resolution
single-dimension data structure for interval-based data queries. We presented
Di3’s method by illustrating its model, data structure, and supported opera-
tions, and then we demonstrated its effectiveness, both as a stand-alone tool
and in comparison with the state-of-the-art systems BEDOPS and BED-
Tools. Finally, we showed how Di3 was used as a software component within
MuSERA, a tool for multiple sample peak calling. We proved that Di3 is a
flexible, high-performance component, whose use as a self-standing system is
much superior to current state-of-the-art.

Previously, we implemented GMQL, the innovative region-based genomic
data querying system, by using cloud computing and specifically the Apache
Spark and Flink engines within the Apache Hadoop framework; as future
work, we plan to support an alternative implementation of the domain-
specific operations of GMQL by using Di3, so as to compare cloud-based
computing with specialized indexing on very large datasets. We also plan
a full integration of the Di3 technology within Galaxy (Giardine et al.,
2005), (Goecks et al., 2010)9.

9Vahid Jalili will join Galaxy in September 2016 as post-doc, with the objective of
integrating Di3 within the Galaxy framework.

29

215

Acknowledgments

We acknowledge the essential contributions of Fernando Palluzzi, who has
adviced us about the biological use of Di3, and of Roger Knapp, who pro-
vided a B+tree implementation. Research is supported by the Data-Driven
Genomic Computing (GenData 2020) PRIN project (2013-2016), funded by
the Italian Ministry of the University and Research, and by a grant from
Amazon Web Services.

Author contributions

Concept: Jalili, Matteucci, Ceri. Software Design: Jalili, Matteucci.
Software Implementation: Jalili. Data acquisition: Jalili. Data analysis
and interpretation: Jalili, Matteucci. Manuscript drafting: Jalili, Matteucci,
Masseroli, Ceri. Critical revision: Ceri.

References

1000 Genomes Project Consortium, et al., 2010. A map of human genome
variation from population-scale sequencing. Nature 467 (7319), 1061–1073.

Afrati, F. N., Dolev, S., Sharma, S., Ullman, J. D., 2015. Bounds for over-
lapping interval join on MapReduce. In: EDBT/ICDT Workshops. pp.
3–6.

Bentley, J. L., 1977. Solutions to Klee’s rectangle problems. Tech. rep., Tech-
nical report, Carnegie-Mellon Univ., Pittsburgh, PA.

Bentley, J. L., 1979. Decomposable searching problems. Information Process-
ing Letters 8 (5), 244–251.

Buck, J. B., Watkins, N., LeFevre, J., Ioannidou, K., Maltzahn, C., Polyzotis,
N., Brandt, S., 2011. SciHadoop: array-based query processing in Hadoop.
In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. No. 66. ACM, pp. 1–11.

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley,
J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., et al., 2012.
Ultra-high-throughput microbial community analysis on the illumina hiseq
and miseq platforms. The ISME journal 6 (8), 1621–1624.

30

216

Cereda, M., Sironi, M., Cavalleri, M., Pozzoli, U., 2011. GeCo++: a C++
library for genomic features computation and annotation in the presence
of variants. Bioinformatics 27 (9), 1313–1315.

Chawda, B., Gupta, H., Negi, S., Faruquie, T. A., Subramaniam, L. V., Mo-
hania, M. K., 2014. Processing interval joins on Map-Reduce. In: EDBT.
pp. 463–474.

Cockerill, P. N., 2011. Structure and function of active chromatin and DNase
I hypersensitive sites. FEBS Journal 278 (13), 2182–2210.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., 2009. Section 14.3:
Interval trees, third edition Edition. MIT press Cambridge, Ch. 14, pp.
348–354.

Eldawy, A., Mokbel, M. F., 2013. A demonstration of spatialhadoop: an
efficient mapreduce framework for spatial data. Proceedings of the VLDB
Endowment 6 (12), 1230–1233.

Elmasri, R., Wuu, G. T., Kim, Y.-J., 1990. The time index: An access
structure for temporal data. In: Proceedings of the 16th International
Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc.,
pp. 1–12.

ENCODE Project Consortium, et al., 2012. An integrated encyclopedia of
dna elements in the human genome. Nature 489 (7414), 57–74.

Fenwick, P. M., 1994. A new data structure for cumulative frequency tables.
Software: Practice and Experience 24 (3), 327–336.

Fisher, R. A., 1925. Statistical methods for research workers. Genesis Pub-
lishing Pvt Ltd.

GA4GH Data Working Group, 2015. GA4GH API.
URL http://ga4gh.org/#/documentation

Ghanem, T. M., Shah, R., Mokbel, M. F., Aref, W. G., Vitter, J. S., 2004.
Bulk operations for space-partitioning trees. In: Data Engineering, 2004.
Proceedings. 20th International Conference on. IEEE, pp. 29–40.

31

217

Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah,
P., Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., et al., 2005. Galaxy:
a platform for interactive large-scale genome analysis. Genome research
15 (10), 1451–1455.

Goecks, J., Nekrutenko, A., Taylor, J., et al., 2010. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent compu-
tational research in the life sciences. Genome Biol 11 (8), R86.

Goh, C. H., Lu, H., Ooi, B.-C., Tan, K.-L., 1996. Indexing temporal data
using existing B+-trees. Data & Knowledge Engineering 18 (2), 147–165.

Graefe, G., 2003. Sorting and indexing with partitioned b-trees. In: CIDR.
Vol. 3. pp. 5–8.

Guttman, A., 1984. R-trees: a dynamic index structure for spatial searching.
Vol. 14. ACM.

Han, J., Haihong, E., Le, G., Du, J., 2011. Survey on NoSQL database. In:
Pervasive computing and applications (ICPCA), 2011 6th international
conference on. IEEE, pp. 363–366.

Jalili, V., Matteucci, M., Masseroli, M., Morelli, M. J., 2015. Using com-
bined evidence from replicates to evaluate ChIP-seq peaks. Bioinformatics
31 (17), 2761–2769.

Jalili, V., Matteucci, M., Morelli, M. J., Masseroli, M., 2016. MuSERA:
Multiple sample enriched region assessment. Briefings in bioinformatics,
submitted.

Kaufmann, M., Fischer, P. M., May, N., Ge, C., Goel, A. K., Kossmann, D.,
2015. Bi-temporal timeline index: A data structure for processing queries
on bi-temporal data. In: Data Engineering (ICDE), 2015 IEEE 31st Inter-
national Conference on. IEEE, pp. 471–482.

Landt, S. G., Marinov, G. K., Kundaje, A., Kheradpour, P., Pauli, F., Bat-
zoglou, S., Bernstein, B. E., Bickel, P., Brown, J. B., Cayting, P., et al.,
2012. ChIP-seq guidelines and practices of the ENCODE and modEN-
CODE consortia. Genome research 22 (9), 1813–1831.

32

218

Masseroli, M., Pinoli, P., Venco, F., Kaitoua, A., Jalili, V., Palluzzi, F.,
Muller, H., Ceri, S., 2015. GenoMetric Query Language: a novel approach
to large-scale genomic data management. Bioinformatics 31 (12), 1881–
1888.

Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., John-
son, A. K., Rynes, E., Maurano, M. T., Vierstra, J., Thomas, S., et al.,
2012. BEDOPS: high-performance genomic feature operations. Bioinfor-
matics 28 (14), 1919–1920.

Ovaska, K., Lyly, L., Sahu, B., Janne, O. A., Hautaniemi, S., 2013. Ge-
nomic region operation kit for flexible processing of deep sequencing data.
IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB) 10 (1), 200–206.

Park, P. J., 2009. ChIP–seq: advantages and challenges of a maturing tech-
nology. Nature Reviews Genetics 10 (10), 669–680.

Quinlan, A. R., Hall, I. M., 2010. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26 (6), 841–842.

Rashid, N. U., Giresi, P. G., Ibrahim, J. G., Sun, W., Lieb, J. D., 2011. Zinba
integrates local covariates with dna-seq data to identify broad and narrow
regions of enrichment, even within amplified genomic regions. Genome Biol
12 (7), R67.

Romanoski, C. E., Glass, C. K., Stunnenberg, H. G., Wilson, L., Almouzni,
G., 2015. Epigenomics: roadmap for regulation. Nature 518 (7539), 314–
316.

Schuster, S. C., 2007. Next-generation sequencing transforms today’s biology.
Nature 200 (8), 16–18.

Schuster, S. C., 2008. Next-generation sequencing transforms today’s biology.
Nature methods 5 (1), 16–18.

Shendure, J., Ji, H., 2008. Next-generation DNA sequencing. Nature biotech-
nology 26 (10), 1135–1145.

Snodgrass, R., Ahn, I., 1985. A taxonomy of time databases. In: ACM Sig-
mod Record. Vol. 14. ACM, pp. 236–246.

33

219

Sriharsha, R., 2015. Magellan.
URL http://spark-packages.org/package/harsha2010/magellan

Stantic, B., Topor, R., Terry, J., Sattar, A., 2010. Advanced indexing tech-
nique for temporal data. Computer Science and Information Systems 7 (4),
679–703.

Tudorica, B. G., Bucur, C., 2011. A comparison between several NoSQL
databases with comments and notes. In: Roedunet International Confer-
ence (RoEduNet), 2011 10th. IEEE, pp. 1–5.

Vlissides, J., Helm, R., Johnson, R., Gamma, E., 1995. Design patterns:
Elements of reusable object-oriented software. Reading: Addison-Wesley
49 (120), 11.

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger,
B. A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J. M., Network, C.
G. A. R., et al., 2013. The cancer genome atlas pan-cancer analysis project.
Nature genetics 45 (10), 1113–1120.

Yu, J., Wu, J., Sarwat, M., 2015. GeoSpark: A cluster computing framework
for processing large-scale spatial data.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M.,
Franklin, M. J., Shenker, S., Stoica, I., 2012. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In: Pro-
ceedings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, pp. 15–28.

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein,
B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., et al., 2008. Model-
based analysis of chip-seq (macs). Genome biology 9 (9), R137.

Author biographies

34

220

Vahid Jalili is a Ph.D. candidate at Politecnico di Milano,
Dipartimento di Elettronica, Informazione e Bioingegneria,
where his research on tertiary analysis of Next Generation
Sequencing data is focused on systematic solutions for ana-
lytical and computational challenges. His research interest
spans topics in computational biology, cognitive science, and

artificial intelligence; such as information retrieval and data mining in Ge-
nomics, cognitive inhibition and visual perception, and application of artifi-
cial intelligence to games.

Matteo Matteucci is Associate Professor at the Diparti-
mento di Elettronica Informazione e Bioingegneria of Po-
litecnico di Milano. In 1999 he got a Laurea degree in Com-
puter Engineering at Politecnico di Milano, in 2002 he got
a Master of Science in Knowledge Discovery and Data Min-
ing at Carnegie Mellon University (Pittsburgh, PA), and in

2003 a PhD in Computer Engineering and Automation at Politecnico di
Milano (Milan, Italy). His main research topics are pattern recognition,
machine learning, machine perception, robotics, computer vision and sig-
nal processing. He has co-authored more than 150 scientific international
publications and he has been involved in national and international funded
research projects.

Marco Masseroli received the Laurea Degree in Electronic
Engineering in 1990 from Politecnico di Milano, Italy, and
a PhD in Biomedical Engineering in 1996, from Universidad
de Granada, Spain. He is Associate Professor at the Diparti-
mento di Elettronica, Informazione e Bioingegneria (DEIB)
of Politecnico di Milano, Italy, and lecturer of Bioinformat-
ics and BioMedical Informatics. His research activity is on

the application of information technology to the medical and biological sci-
ences in several Italian and international research centers. He has also been
Visiting Professor at the Departamento de Anatoma Patolgica, Facultad de
Medicina of the Universidad de Granada - Spain, and Visiting Faculty at
the Cognitive Science Branch of the National Library of Medicine, National
Institute of Health, Bethesda - US. His research interests are in the area
of bioinformatics and biomedical informatics, focused on distributed Inter-
net technologies, biomolecular databases, controlled biomedical terminologies
and bio-ontologies to effectively retrieve, manage, analyze, and semantically

35

221

integrate genomic information with patient clinical and high-throughout ge-
nomic data. He is the author of more than 170 scientific articles, which have
appeared in international journals, books and conference proceedings.

Stefano Ceri is Professor at the Dipartimento di Elettron-
ica, Informazione e Bioingegneria (DEIB) of Politecnico di
Milano. He was Visiting Professor at the Computer Science
Department of Stanford University (1983-1990), Chairman
of the Computer Science Section of DEI (1992-2004), Direc-
tor of Alta Scuola Politecnica (ASP) of Politecnico di Mi-

lano and Politecnico di Torino (2010-2013). In 2008 he has been awarded an
advanced ERC Grant on Search Computing (2008-2013). He is co-founder
(2001) of WebRatio (http://www.webratio.com/). His research work has
been generally concerned with extending database technology to incorporate
new features: distribution, object-orientation, rules, streaming data, crowd-
based and genomic computing. He is currently leading the PRIN project
GenData 2020, focused on building query and data analysis systems for ge-
nomic data as produced by fast DNA sequencing technology. He is the re-
cipient of the ACM-SIGMOD ”Edward T. Codd Innovation Award” (2013),
and an ACM Fellow and member of the Academia Europaea.

36

222

	Acknowledgements
	Abstract
	List of figures
	List of tables
	Introduction
	Genomics primer
	Problem Statement
	Thesis Contribution
	Structure of the Thesis

	Background and State of the Art
	State of Art Tools in Genomics for Region Calculus
	Related Work from Classical Data Structures
	Related Work from Temporal Databases

	Di3: 1D Intervals Inverted Index
	Di3 Design
	Snapshots keys organization
	Snapshots values organization

	Operations supported by Di3
	Di3 Intervals
	First Resolution
	Second Resolution

	Retrievals

	Di4: 1D Intervals Incremental Inverted Index
	Interval indexing beyond Di3
	Di4 Objectives
	Di4 Design
	Notation
	Di4 First Resolution
	Di4 Second Resolution
	Grouping
	Aggregation

	Di4 Indexing Algorithms
	Bookmarking intervals on First Resolution

	Information Retrieval based on Intervals
	Data Structure Reconstruction
	Cover
	Summit
	Map

	Di4 and Di3 Performance Evaluation and Comparison
	Performance Evaluation Setup
	Comparison between inverted index and incremental inverted index
	Comparison of indexing speed
	Comparison of index file size
	Comparison of retrievals
	Performance evaluation based on different degrees of parallelization
	Performance evaluation based on different persistence setup

	Comparison of Di3 and Di4 performance with common bioinformatics tools

	Di3 Application in Comparative Analysis of ChIP-seq Replicates
	Introduction
	Related Works
	Binary analysis
	Alignment read Merging
	Irreproducibility Discovery Rate
	joint Analysis of Multiple ChIP-seq Datasets

	Definitions
	Combining Replicates
	Authenticity of Combining Replicates
	Combining Test Statistics
	Method of Combining Replicates
	Combining replicates using Di3
	Threshold Automatic Validation
	Example

	Functional Annotation and Analysis of Enriched Regions
	Motivation
	Algorithm
	Graphical User Interface

	Nearest Neighbor Distance Distribution
	Motivation
	Algorithm
	Graphical User Interface

	Global Correlation Assessment
	Motivation
	Algorithm

	Genome Browser
	Algorithm

	Results
	Simulated Technical Replicates
	Evaluation of Technical Replicates
	Evaluation of Biological Replicates

	Toward Google-Style Search in Genomics
	Introduction
	Pattern Finding Queries on Di4
	Sample Pattern Rank
	Region Pattern Rank

	Conclusion and Future Works
	Bibliography
	Publication: Using combined evidence from replicates to evaluate ChIP-seq peaks
	Publication: MuSERA: Multiple Sample Enriched Region Assessment
	Publication: Indexing Next Generation Sequencing Data [SUBMITTED]

