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Abstract
The	theme	of	energy	forecasting	is	today	a	very	sensitive	topic.	Until	a	few	decades	ago	no	one	posed	certain	
problems such as depletion of fossil resources and the degree of air pollution. Humanity is experiencing a time 
of great changes and, among these, energy supply is one of the most complicated aspects. In fact there are also 
other aspects connected to this theme, such as the unsustainability of an economy based on fossil fuels and the 
climate change in act. To address this issue each State is required to adopt an energy strategy that covers several 
years	and	not	just	the	upcoming,	in	order	to	allow	an	appropriate	transition	towards	greater	sustainability.	To	
this	end,	this	work	will	attempt	to	provide	an	appropriate	tool	for	accurate	energy	forecasting	and,	by	creating	
different	scenarios,	it	will	try	to	analyze	the	possible	actions	to	be	considered,	in	order	to	achieve	future	goals	
aimed,	for	example,	towards	a	more	sustainable	energy	environment.
For	the	development	of	the	thesis	was	therefore	necessary	to	explore	the	theme	of	energy	projections	and	the	
means	used	to	conduct	them,	analyzing	through	the	scientific	literature	their	capabilities	and	limitations	and	
choosing,	finally,	the	most	appropriate	means	for	the	goal	set	for	this	thesis.
The	data	collection	has	been	a	long	and	laborious	task,	necessary	to	obtain	official	data	and	validate	the	work	
of this thesis. The energy balance of the case study, the United Kingdom, is analyzed and then some scenarios 
have	been	built,	which	include	a	period	between	2010	and	2040,	based	on	official	energy	policies	of	the	case	
study.	Then	the	advantages	of	using	the	proposed	instrument	for	energy	prediction	are	highlighted,	as	well	as	
the	benefits	of	its	use	as	an	aid	in	policy	planning	strategies.

Keywords
Energy, energy forecast, energy policies, future strategies, leap, energy scenarios.

Sommario
Il tema delle previsioni energetiche è oggi un argomento molto delicato. Fino a pochi decenni fa nessuno si poneva 
certe problematiche quali l’esaurimento delle risorse di origine fossile e il grado di inquinamento atmosferico. 
L’umanità sta vivendo un’epoca di grandi cambiamenti e, tra questi, l’approvvigionamento energetico risulta 
uno degli aspetti più complicati a cui se ne collegano altri, quali l’insostenibilità di un’economia basata su 
fonti	 fossili	 e	 il	 cambiamento	 climatico	 in	 atto.	 Per	 affrontare	 tale	 argomento	 è	 necessario	 che	 ogni	 Stato	
adotti una strategia energetica che ricopra diversi anni e non solamente quelli imminenti, per poter permettere 
una	fase	di	transizione	adeguata	verso	una	maggiore	sostenibilità.	A	tal	fine	questo	lavoro	cercherà	di	fornire	
uno strumento alternativo per permettere una previsione energetica accurata e, tramite la creazione di diversi 
scenari, analizzare le possibili azioni da intraprendere per raggiungere obbiettivi futuri volti, per esempio, 
verso un ambiente energetico più sostenibile.
Per lo sviluppo della tesi è quindi stato necessario approfondire il tema delle previsioni energetiche ed i mezzi 
utilizzati	per	condurle,	analizzandone	nella	letteratura	scientifica	le	capacità	ed	i	limiti	e	scegliendo,	infine,	il	
mezzo	più	appropriato	per	l’obbiettivo	prefissato	per	questa	tesi.
La	raccolta	dati	si	è	rivelato	un	compito	lungo	e	laborioso	per	poter	ottenere	dati	ufficiali	e	validare	il	lavoro	di	
questa tesi. E’ stato analizzato il bilancio energetico del caso studio, il Regno Unito, e si sono poi costruiti degli 
scenari,	che	comprendono	un	periodo	tra	il	2010	e	il	2040,	basati	sulle	politiche	energetiche	ufficiali	del	caso	
studio. Si evidenziano quindi i vantaggi nell’usare lo strumento proposto per la previsione energetica e come 
ausilio	nella	pianificazione	delle	strategie	politiche.

Parole chiave
Energia, previsione energetica, politiche energetiche, strategie future, leap, scenari energetici.
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1. Introduction

The	present	work	analyzes	the	energy	demand	of	a	European	country	used	as	a	case	study,	the	United	Kingdom,	
and	presents	a	 long-term	forecast.	More	specifically,	 it	describes	 the	current	energy	account	of	 the	UK	and	
forecasts the trend of its demand in the long-term, carefully examining current policies and creating energy 
scenarios	based	on	these	policies	for	the	years	between	2010	and	2040,	through	a	software	for	energy	projections.
The objective of this thesis is to develop an alternative instrument for energy forecast, by analyzing the existing 
models	in	the	scientific	literature,	and	to	apply	it	to	a	case	study,	consequently	observing	the	effects	of	different	
kinds	 of	 energy	management	 regarding	 the	 case	 study.	An	 authority,	 for	 example,	 through	 the	 creation	 of	
different	scenarios	according	to	the	chosen	constraints,	could	compare	the	different	results	obtained,	discuss	
strengths	and	weaknesses,	and	choose	the	energy	strategy	that	best	suits	its	needs,	having	an	accurate	energy	
forecasting.	This	is	also	important	because	of	the	recent	climate	conference	in	Paris,	the	COP21,	in	which	several	
countries have made important commitments. In particular, the EU and its Member States have committed to 
a binding target of at least 40% domestic reduction in greenhouse gas emissions by 2030 compared to 1990, to 
be	fulfilled	jointly,	as	set	out	in	the	conclusions	by	the	European	Council	of	October	2014.
For	 the	development	of	 the	 thesis	 it	was	 therefore	necessary	 to	examine	 the	 theme	of	energy	forecasts	and	
the	means	used	to	conduct	them,	analyzing	the	capabilities	and	limitations	of	each	one	and	choosing,	finally,	
the	most	appropriate	for	the	case	study.	The	software	used	for	the	analysis,	LEAP,	proved	its	usefulness	and	
importance	 in	energy	 forecast	 through	 the	 results	and	graphics	given	by	 its	output.	 Its	flexible	hierarchical	
structure	was	essential	to	describe	the	different	systems	taken	into	account	on	several	detailed	levels	and	with	
different	 degrees	 of	 accuracy.	The	 country	 chosen	 for	 the	 case	 study	 is	 one	of	 the	most	 industrialized	 and	
advanced	and	it	was	picked	based	on	the	ease	in	retrieving	official	data.	In	this	way,	a	more	accurate	analysis	
was	carried	out,	with	the	objective	of	making	the	results	obtained	more	representative	of	reality.	
The	thesis	is	organized	as	follows:	part	1	presents	the	theory	about	energy	demand	and	energy	forecast,	in	order	
to	better	understand	the	significance	of	this	work	and	to	introduce	the	reasons	behind	the	choice	of	the	tool	
used.	Part	2	presents	the	tool	used	to	conduct	the	study,	the	World	Energy	Outlook	that	inspired	the	baseline	
scenario,	and	the	LEAP	analysis	of	the	case	study.	This	analysis	was	conducted	primarily	through	a	hard	work	
of	gathering	official	energy	data,	in	order	to	be	able	to	product	an	accurate	energy	forecast.	Hence,	the	first	part	
of	the	work	wants	to	provide	the	methodology	and	the	inputs	to	carry	out	the	analysis,	which	is	developed	in	
the second part.
All	these	aspects	are	presented	in	the	following	chapters	on	a	detailed	level.
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Capitolo 2 | Energy Demand
This	chapter	talks	about	energy	demand:	the	first	part	presents	an	introduction	to	try	to	understand	what	this	
section	 is	 talking	about.	 It	 continues	by	analyzing	 in	more	detail	 the	energy	demand	 through	 its	economic	
foundations of energy demand, from theory to practice.

2.1 Understanding Energy Demand

Energy	demand	[1]	is	a	derived	demand	that	arises	for	satisfying	some	needs	which	are	met	through	use	of	
appliances. Hence, demand for energy then depends on the demand for energy services and the choice of 
energy	using	processes	or	devices.	End-use	service	demand	is	affected	by	the	cost	of	energy	but	also	by	other	
factors	such	as	climatic	conditions,	affordability	(or	income	of	the	decision-maker),	preference	for	the	end-use	
service, etc. Similarly, demand for end-use appliances depends on the relative prices of the appliances, relative 
cost of operation, availability of appliances, etc.
The	dynamics	of	energy	demand	is	influenced	by	the	inertia	of	appliance	stocks,	which	leads	to	limited	flexibility.	
At	any	given	 time	any	consumer	would	possess	a	 stock	of	 some	particular	devices	with	specific	operating	
characteristics	 (such	 as	 efficiency	 and	 costs).	The	 stock	 cannot	 be	 changed	 immediately	 and	 therefore	 the	
response	to	any	stimulation	would	come	from	behavioral	changes	(i.e.	rate	of	use	of	the	appliance,	acceptance	
of	lower	levels	of	comforts,	etc.)	while	using	the	same	appliances.	Over	a	longer	period	of	time,	consumers	
may	find	changing	the	stock	of	appliances	remunerative.	Similarly,	new	procurements	would	incorporate	the	
characteristics	preferred	by	consumers	given	the	changes	in	the	market	conditions	[1].	Therefore,	in	the	short	
run	the	response	is	partial	while	the	total	response	would	be	cumulate	over	time.
Energy	demand	analysis	has	attempted	to	capture	these	aspects	in	different	ways:		the	traditional	economists’	
approach	 relies	 on	 optimizing	 behavior	 within	 the	 neoclassical	 tradition	 of	 economics.	Another	 approach	
follows	the	engineering	tradition	and	criticizes	the	limitations	of	the	optimizing	and	rational	behavior	assumed	
in	the	traditional	analysis.	Instead,	they	introduce	other	behavioral	assumptions	(such	as	“satisficing”	approach	
in the sense of Herbert Simon [2] or evolutionary approach for technological change) and beliefs [3]. This 
divergence	in	the	views	has	dominated	the	energy	literature	in	the	past	and	led	to	the	emergence	of	two	distinct	
traditions of energy analysis – namely the econometric approach and the engineering end-use approach.  

2.2 Economic foundations of energy demand [4]

The	factors	driving	energy	demand	differ	across	economic	agents	and	sectors.	Households	consume	energy	to	
satisfy certain needs and they do so by allocating their income among various competing needs so as to obtain 
the greatest degree of satisfaction from total expenditure. Industries and commercial users demand energy as 
an input of production and their objective is to minimize the total cost of production. Therefore the motivation 
is not same for the households and the productive users of energy and any analysis of energy demand should 
treat these categories separately.

2.2.1 Household energy demand
The microeconomic basis for consumer energy demand relies on consumers’ utility maximization principles. 
Such	an	analysis	assumes	that	consumers	know	their	preference	sets	and	ordering	of	preferences.	It	also	assumes	
that preference ordering can be represented by some utility function and that the consumer is a rational one in 
that	it	will	always	choose	a	most	preferred	bundle	from	the	set	of	feasible	alternatives.	Following	consumer	
theory	[4],	 it	 is	considered	 that	an	 incremental	 increase	 in	consumption	of	a	good	keeping	consumption	of	
other goods constant, increases the satisfaction level but this marginal utility (or increment) decreases as 
the quantity of consumption increases. Moreover, maximum utility achievable given the prices and income 
requires marginal rate of substitution to be equal to the economic rate of substitution. This in turn requires that 
the marginal utility per dollar paid for each good be the same. If the marginal utility per dollar is greater for 
good	A	than	for	good	B,	then	transferring	a	dollar	of	expenditure	from	B	to	A	will	increase	the	total	utility	for	
the	same	expenditure.	It	follows	that	reduction	in	the	relative	price	of	good	A	will	tend	to	increase	the	demand	
for good A and vice versa. 
It	follows	the	mathematical	formulation	of	the	problem:
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Utility maximization and energy demand [4]
Consider	that	the	utility	function	of	a	consumer	can	be	written	as

u U= (X ,X ,X ,...,Xn)1 2 3

Eq. 1
Where Xn are the goods. The consumer has the budget constraint I:

I p X p X pnXn= + + +1 1 2 2 ...

Eq. 2

Where pn are the prices of Xn. For maximization of the utility subject to the budget constraint, set the 
Lagrange

L U X X X Xn I p X p X pnXn= − − + + +( , , ,..., ) ( ( ... ))1 2 3 1 1 2 2λ
Eq. 3

Setting	partial	derivatives	of	L	with	respect	to	X1,	X2,	X3,…,	Xn	and	λ	equal	to	zero,	n+1	equations	are	
obtained representing the necessary conditions for an interior maximum.
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Solving the necessary conditions yields demand functions in prices and income.

X d p p p In1 1 1 2= ( , ,..., , )

X d p p p In2 2 1 2= ( , ,..., , )

...

X d p p p In n n= ( , ,..., , )1 2

Source: Bohi (1981) 
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An	individual	demand	curve	shows	the	relationship	between	the	price	of	a	good	and	the	quantity	of	that	good	
purchased,	assuming	that	all	other	determinants	of	demand	are	held	constant.		The		market		demand		function		
for		a		particular		good		is		the		sum		of		each	individual’s	demand	for	that	good.	The	market	demand	curve	
for	the	good	is	constructed	from	the	demand	function	by	varying	the	price	of	the	good	while	holding	all	other	
determinants constant.

2.2.2 Industrial and commercial energy demand
In the case of industry and commercial sectors, energy is used as an input to produce an output (or outputs). 
The	theory	of	the	producers	is	used	to	determine	energy	demand	in	both	sectors.	Like	households,	producers	
face certain constraints:
a)	The	production	process	has	its	own		technical		limitations		that		specify		the	maximum	output	levels	for	a	

given combination of inputs.
b)	The	capacity	of	the	plant	at	any	given	time	is	fixed	and	cannot	be	exceeded.
c) There may be constraints on the availability of certain inputs.
Production	of	any	good	is	expanded	until	an	additional	increment	of	the	good	produced	in	the	most	efficient	
manner	makes	no	further	contribution	 to	net	 revenue.	Similarly,	any	factor	of	production	will	be	 increased	
until, other inputs remaining unchanged, an additional unit of the factor yields no additional net revenue. In 
order	to	minimize	the	cost	of	any	given	level	of	input,	the	firm	should	produce	at	that	point	for	which	the	rate	
of technical substitution is equal to the ratio of the inputs’ rental prices. The solution of the conditions leads to 
factor demand functions.

Cost minimization problem of the producer

Consider	a	firm	with	single	output,	which	is	produced	with	two	inputs	X1	and	X2.	The	cost	of	production	is	
given by

TC c X c X= +
1 1 2 2

Eq. 7
Where cn are the costs of each inputs. This is subject to

q f X X0 1 2= ( , )St
Eq. 8

The	first	order	conditions	for	a	constrained	minimum	are:

δ δ λδ δL X c f X/ /
1 1 1

0= − =

δ δ λδ δL X c f X/ /
2 2 2

0= − =
 Eq. 9

From above, 

c c f X f X RTS X forX1 2 1 2 1 2/ ( / ) / ( / ) ( )= =δ δ δ δ
Eq. 10

In	order	to	minimize	the	cost	of	any	given	level	of	input,	the	firm	should	produce	at	that	point	for	which	the	rate	
of technical substitution is equal to the ratio of the inputs’ rental prices. 
The solution of the conditions leads to factor demand functions.

2.2.3 Transport energy demand
For energy demand in the transport sector, three types of generic approaches are found:
a) Identity models
b) Structural models
c)	The	market-share	model
The identity models consider the demand for a transport fuel to be equal to the product of vehicle utilization
rate	and	total	stock	of	vehicles.	This	can	be	expressed	as
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D S R Ut t t t= ⋅ ⋅
                 Eq. 11
where	Dt	 is	 the	demand	 for	 fuel	at	 time	 t,	St	 is	 the	vehicle	 stock,	Rt	 is	 the	utilization	 rate	 (kilometers	per	
year)	and	Ut	is	the	unit	energy	consumption	(litre	per	kilometer).	The	demand	is	estimated	by	estimating	each	
component separately and the overall demand is obtained using the identity. Uri [5] provides an early example 
of	application	of	 this	model	econometrically.	This	 identity	 is	generally	used	 in	end-use	models	as	well	but	
applied as a disaggregated level. 
The structural model on the other hand considers the demand for the transport services and derives the demand 
for energy related to those transport services as a derived demand. The demand for transport services is explained 
using	the	basic	consumer	theory	assuming	that	profit	maximizing	firms	choose	the	transport	service	to	minimize	
costs of production (see par. Structural models of transport fuel demand). For given cost minimizing demands 
for	transport	services,	the	derived	demand	for	specific	fuels	is	developed.	
The	 market-share	 model	 on	 the	 other	 hand	 considers	 the	 inter-fuel	 substitution	 possibilities.	 To	 ensure	 a	
consistent outcome, the demand is estimated using a set of simultaneous equation systems.  
Clearly, the neo-classical foundation of the above theories of demand analysis assumes the completeness of 
markets	and	the	participation	of	energy	products	in	the	market.	Any	energy	that	remains	outside	the	market	
system	 is	not	covered.	Accordingly,	 traditional	energies	which	are	collected	by	 the	users	and	 for	which	no	
monetary	 transactions	 take	place	will	 not	 be	 covered	by	 these	 theories.	 In	 addition,	 the	 external	 effects	 of	
energy	 use,	 to	 the	 extent	 they	 are	 not	 captured	 through	 the	market	 pricing	 system,	will	 not	 enter	 into	 the	
decision-making	process,	thereby	providing	incorrect	resource	allocation	information	and	decisions.	Informal	
economic	activities	will	also	not	be	included,	thereby	providing	inaccurate	information	and	forecasts.
Accordingly,	the	key	assumptions	imbedded	in	the	theoretical	foundation	might	be	unrealistic	in	the	context	of	
developing	countries.	The	co-existence	of	market	and	non-market	based	energy	supplies	introduces	a	complex	
decision-making	which	requires	considering	monetary	and	non-monetary	transactions.	The	paragraph	Rationale	
for traditional energy use in developing countries explains the necessity to incorporate traditional energy in 
energy demand modeling exercises in developing countries. Ignoring an important energy source from analysis 
due	to	data	constraints	or	limitations	of	the	analytical	framework	does	not	provide	a	realistic	or	correct	picture.

2.2.3.1 Structural models of transport fuel demand [6]
The	structural	models	generally	determine	the	transport	fuel	demand	using	a	two-stage	process.	In	the	first	stage,	
the demand for transport services is related to the distance traveled by passengers (indicated by passenger-
kilometers)	and	freight	transport	(indicated	by	ton-kilometers).	For	these	two	types	of	transport	demand,	the	
basic theories of consumer demand and producer demand are used.
For passenger demand, it is assumed that individuals maximize their utility through optimal selection of  
their	goods	and		services	operating	within	their		budget	constraint.	The	demand	function	is	derived	from	the	
constrained	optimization	of	the	utility	function.	This	yields	the	demand	function	of	the	following	form:

PT f P W Dp= ( , , , )1

Eq. 12

Where PT is the passenger transport demand function, I is the real income, Pp is the price of passenger transport, 
W is the price vector for other goods and services, D is a vector of other demographic variables.
For freight transport, let us assume that the industry using the transport services minimizes its cost. Let the cost 
function be denoted by:

C P X Qf(P , , , )0

    Eq. 13

Where	Pf	is	the	price	for	freight	transport	(per	ton	kilometer),	Po	–	the	price	vector	for	other	inputs,	X	is	a	
vector	of	fixed	factor	quantities,	Q	is	the	level	of	output.
The	cost	minimizing	demand	 for	 freight	 is	obtained	by	differentiating	 the	cost	 function	with	 respect	 to	Pf,	
which	yields	the	demand	equations	of	the	following	form:

FT f Q P P Xf= 2 0( , , , )
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       Eq. 14

Given	the	demand	for	PT	and	FT,	the	demand	for	specific	fuels	is	obtained	assuming	appropriate	separability	
of	functions.	It	 is	now	considered	that	the	utility	or	cost	function	contains	the	relevant	passenger	or	freight	
demand,	the	price	of	the	relevant	fuels	and	other	factor	inputs	or	variables.	The	demand	function	for	a	specific	
fuel	is	obtained	by	differentiating	Eq.	14	with	respect	to	its	price	and	takes	the	following	form:

Demand g PT FT P= ( , , )

Eq. 15

The	two-stage	econometric	model	for	transport	fuel	demand	is	thus	obtained.

Source: Brendt and Botero (1985)

2.2.3.2 Rationale for traditional energy use in developing countries [7]
Any	energy	use	involves	costs	and	resource	allocation	problems.	Both	traditional	energies	(TE:	we	use	the	
term ‘traditional energies’ to ‘non-commercial energies’ to avoid any confusion arising out of monetisation 
or	commercialisation	of	some	of	such	fuels)	which	play	a	crucial	role	in	the	energy	profile	of	the	poor,	and	
modern energies impose private and social costs. The private cost may be in monetary terms or in terms of 
time spent by the family members to collect the TEs. For collected TEs, the problem of valuation of the cost 
arises and the collected fuel is considered as free fuel by many, even perhaps by the poor themselves, as no 
monetary	transactions	are	involved.	However,	depending	on	the	quantity	of	collected	fuel,	its	source	and	the	
type of labor used in the collection process, the private cost and social cost can be substantial. The social cost 
arises due to externalities arising from pollution and other socio-economic problems related to particular forms 
of energy use.  
The	 entire	 decision-making	 process	 for	 use	 of	 any	modern	 energy	 form	 (electricity,	 kerosene	 or	 LPG,	 or	
renewable	energies)	as	opposed	to	any	other	form	of	traditional	energies	revolves	around	monetary	transactions.	
Any	commercial	energy	requires	monetary	exchanges	and	the	decision	to	switch	to	commercial	energies	can	be	
considered	a	three-stage	decision-making	process.	First,	the	household	has	to	decide	whether	to	switch	or	not	
(i.e.	switching	decision).	Second,	it	decides	about	the	types	of	appliances	to	be	used	(i.e.	appliance	selection	
decision). In the third stage, consumption decision is made by deciding the usage pattern of each appliance (i.e. 
consumption decision).  
While	the	costs	do	not	always	lend	themselves	to	monetary-based	accounting,	the	switching	decision	is	largely	
determined by monetary factors: the amount and regularity of money income, alternative uses of money and 
willingness	to	spend	part	of	the	income	to	consume	commercial	energies	as	opposed	to	allocating	the	money	
to	other	competing	needs.	Appliance	selection	is	affected	by	similar	factors:	cost	of	appliance,	the	monetary	
income	variables	described	above	and	the	availability	of	financing	for	appliance	purchases	through	formal	and	
informal	credit	markets.	Finally,	the	consumption	decision	depends	on,	among	others,	family	size,	activities	of	
the family members, availability of appliances and family income. 
This	framework	of	three-stage	decision-making	helps	in	analyzing	the	problem	in	a	logical	manner.	The	poor	
normally	lack	regular	money	income	flows	due	to	unemployment	or	part-employment,	both	of	which	sometimes	
produce	 in-kind	 payments	 as	 compensation.	Moreover,	 they	 often	 participate	 in	 informal	 sector	 activities,	
where	barter	rather	than	monetized	transactions	prevail.	It	is	rational	for	any	household	or	individual	to	focus	
on private monetary costs rather than social and/or non-monetized costs due to the inherent subjectivity and 
complexity	of	 the	valuation	problem.	Moreover,	 any	modern	 energy	has	 to	 compete	with	other	goods	 and	
services (including saving for the future) procured by the household for an allocation of monetary resources. 
Given above characteristics and constraints, it is quite logical for the poor to have a natural preference for the 
fuel	that	involves	no	or	minimum	money	transactions.	Reliance	on	firewood	and	other	traditional	energies	used	
for	cooking,	which	constitute	the	major	source	of	energy	demand	by	the	poor,	can	be	explained	using	this	logic.
  

Source: Bhattacharyya (2006)    

Bhattacharyya [8] further noted that “The application of economic theories that presuppose the existence of 
monetized	markets	 and	 are	 concerned	only	with	 agents	 involved	 in	 such	markets	 faces	 serious	 conceptual	
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problems	in	dealing	with	economies	that	do	not	conform	to	such	stereotypes.	Serious	conceptual	difficulties	
and	incompatibilities	arise	in	the	valuation	of	goods	for	which	no	tangible	payment	is	made.	For	energy	goods,	
the problem is further complicated by the fact that these are not goods for direct consumption but intended 
to	derive	certain	end-use,	which	could	be	satisfied	by	a	number	of	substitutes.	Evaluating	the	contribution	of	
these	energies	in	monetary	terms	when	some	are	acquired	through	non-money	activities	still	rests	problematic.	
Because non-money activities often occupy a far greater share than the monetized part in the rural energy of 
a developing economy, it is thus imperative that any and every economic indicator for these sectors and the 
whole	economy	should	take	into	account	both	the	monetized	and	the	non-monetized	sectors,	as	well	as	their	
mutual interaction”.
While the theory is capable of capturing non-price variables in principle, the implementation in actual models 
would	show	how	far	this	is	captured.	Similarly,	the	reliance	on	consumption	data	implies	that	only	the	satisfied	
demand is captured in the energy statistics. Using consumption and demand interchangeably implies that the 
non-	manifested	demand	 is	not	 taken	 into	consideration	 in	practice.	This	 again	can	 introduce	a	bias	 in	 the	
analysis by providing an inaccurate picture in developing countries.  Hence, the prescriptions based on standard 
economic theories can be misleading.

2.3 Energy demand modeling in practice [1]

In	order	to	understand	the	mechanism	of	the	model,	this	section	presents	a	review	of	selected	literature	on	energy	
demand	forecasting	with	a	view	to	take	stock	of	the	evolution	in	the	knowledge	and	modeling	preferences.

2.3.1 Aggregate energy demand forecasting
Aggregate	energy	demand	generally	refers	to	what	is	known	as	primary	energy	demand	in	energy	accounting	
terminology and is normally obtained by combining the demand for various sectors and the energy needs for 
the	 transformation	sector.	Below	it	 is	presented	 two	studies:	one	about	primary	energy	demand	forecasting	
and one sector or fuel-level aggregate studies. In the end-use tradition, the aggregated demand is obtained 
by summing demand at the disaggregated levels and accordingly, in methodological terms, there is nothing 
specific	here.	In	contrast,	in	the	econometric	approach,	some	studies	have	focused	on	the	aggregate	demand	
only.	In	addition,	there	are	some	econometric	studies	which	forecast	energy	demand	by	fuel	or	by	sector	but	
focus	on	the	sectors	or	the	fuels	as	a	whole.

2.3.1.1 Primary energy demand forecasting
The	aggregated	studies	were	common	using	reduced	form	specifications	because	data	and	computing	capacity	
was	limited.	Dahl	(1994a)	suggests	that	although	models	are	found	to	test	per	capita	energy	and		total	energy	
consumption	 in	 the	 reduced	 form	 versions	 with	 or	 without	 dynamic	 elements,	 “aggregation	 can	 cause	
heteroscedasticity	when	the	population	varies	across	the	sample.”	(See	Difference	between	the	total	and	per	
capita	specifications	of	energy	demand	below	for	further	explanation).

2.3.1.1.1 Difference between the total and per capita specifications of energy demand [9]
Consider	a	simple	log-linear	demand	specification	with	price	and	income	as	dependent	variables:

lnQ	=	α	+	βlnP	+	γlnY
Eq. 16

where	Q	is	the	total	energy	demand,	P	is	the	price	of	energy	and	Y	is	the	GDP	of	the	country.
The	per-capita	specification	can	be	written	as:

ln(Q/pop)	=	δ	+	εln(P)	+	ζln(Y/pop)	
Eq. 17

Where	pop	represents	population.	This	equation	can	be	rewritten	as:

lnQ	=	δ	+	εln(P)	+	ζln(Y)	+	(1-ζ)ln(pop)
Eq. 18
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Comparing	Eq.	16	with	Eq.	18,	it	becomes	clear	that	the	two	specifications	are	equivalent,	if	the	income	elasticity	
is	equal	to	1.	When	the	income	elasticity	is	different	from	one,	the	two	specifications	are	not	equivalent	because	
of	the	last	term	in	Eq.	18.	When	ζ>1,	the	last	term	in	Eq.	18	is	negative	and	when	ζ<1,	the	last	term	is	positive.	
This	would	affect	the	income	elasticity	estimation	and	the	forecast.

Source: Dahl (1994a)

Another	 study	 is	 presented	 by	Westoby	 and	Pearce	 [10]	where	 they	 stablish	 a	 linear	 relationship	 between	
output	and	energy	adjusted	for	calorific	content	or	to	study	linear	relationships	between	energy	and	income.	
Subsequently,	more	variables,	including	price,	were	included	in	the	single	equation	models,	so	energy	intensity	
has	also	been	modeled	in	single	equation	form	by	linking	it	to	price,	fuel	share	and	economic	structure.	The	
study	finds	that	simple	energy-output	relationships	break	down	during	the	periods	of	unstable	energy	prices	
and can provide robust forecasts even if these models are “cheap and transparent” and can still play a role in 
policy	and	planning	decision-making	processes.		This	view	is	echoed	by	Bohi	and	Zimmerman	[11]	who	found	
that	reduced	form	models	produced	comparable	results	as	obtained	from	structural	models	and	performed	well.	
(See	typical	examples	of	single	equation	econometric	models	below).

2.3.1.1.2 Typical examples of single equation econometric models [10]
The	following	equations	provide	examples	of	specifications	used	in	simple	econometric	analyses.	E	is	energy	
consumption, Y is income (GDP), P is price, POP is population, EMP is employment of labour, a, b, c, d, e, 
f,	-	are	coefficients	to	be	determined	through	the	estimation	process,	t	is	time	period	t	while	t-1	represents	the	
time period before t.  

	 a.	Linear	relation	between	energy	and	income	(GDP)

E a bYt t= +
Eq. 19

This implies an (income) elasticity that tends asymptotically to unity as income increases. Note that b is not the 
elasticity	in	this	specification,	which	has	to	be	determined	from	the	basic	definition	of	elasticity	(This	turns	out	
to	be	(1-a/E)	and	as	E	tends	to	infinity,	the	elasticity	tends	to	1).

	 b.			Log-linear	specification	of	income	and	energy

ln ln lnE a b Yt t= +
Eq. 20

	 Here	b	represents	the	elasticity	of	demand,	which	is	a	constant	by	specification.

	 c.	Linear	relation	between	energy	and	price	and	income	variables

E a bY cPt t t= + +    
Eq. 21

	 This	is	not	a	popular	specification	however.

	 d.	Log-linear	specification	of	income,	price	and	energy

ln ln lnY lnE a b c Pt t t= + +
Eq. 22

	 As	with	model	(b),	the	short-run	price	and	income	elasticities	are	directly	obtained	here.



Energy forecast modelling and tools:a case study of The United Kingdom

22

 
	 e.	Dynamic	version	of	log-linear	specification	of	energy	with	price	and	income	variables

ln ln lnY ln lnE a b c P d Et t t t= + + + −1

Eq. 23

 The short run and long-run price and income elasticities are obtained here.

 f. Log-linear model of price and other demographic variables

ln ln lnY ln ln lnE a b c P c EMP d POPt t t t t= + + + +
Eq. 24

 g. Log-linear model of energy, price, income, fuel share and economic structure variables

ln ln lnP lnY ln lnE a b c d F e St t t t t= + + + +
Eq. 25

 h. Dynamic version of the above model

ln ln lnP lnY ln ln lnE a b c d F e S f Et t t t t t= + + + + + −1

Eq. 26

	 i.	Linear	relation	between	per	capita	energy	and	income

E
POP

a b Y
POP

t

t

t

t

= +

Eq. 27

	 j.	Log	linear	relation	between	per	capita	energy	and	income

ln ln ln
E
POP

a b Y
POP

t

t

t

t

= +

Eq. 28

	 k.	Log-linear	relation	between	energy	intensity	and	other	variables

ln / ln ln lnF lnE Y a b P c d St t t t t= + + +
Eq. 29

 l. Dynamic version of log-linear energy intensity relation

ln
ln ln lnF ln ln /

E
Y

a b P c d S e E Yt

t
t t t t t= + + + + − +1 1

Eq. 30

Source: Westoby and Pearce (1984)

The	main	 objective	 of	 these	 studies	 and	 others	 that	 it	 did	 not	mentioned	was	 to	 identify	 any	 statistically	
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significant	relationships	between	commonly	known	economic	variables	and	aggregate	energy	demand	even	
if they do not capture the spatial dimension or the traditional energies or technological diversity. Most of 
these	studies	find	long-term	price	and	income	elasticities	of	energy	demand	does	not	play	a	significant	role	in	
influencing	demand	in	developing	countries	where	income	drives	the	demand	because	in	such	cases	may	not	
be helpful. Further, these studies do not consider traditional energies, informal economic activities and being 
aggregated studies ignore rural-urban divide and technological diversities existing in developing countries. 
While	such	studies	employ	State-of-the-art	econometric	knowledge,	the	outcomes	may	prove	to	be	of	limited	
use	for	policy-making	in	developing	countries.			

2.3.1.2 Sector or fuel-level aggregate studies
Several	studies	focusing	on	specific	fuels	or	specific	sectors	are	found	in	the	literature.	For	example,	Suganthi	
and Jagadeesan [12] and more recently Iniyan et al [13] have reported aggregate demand models for India. The 
1992 study considered three fuels (coal, oil and electricity) and presented estimations and forecasts for each 
fuel	for	1995-96	and	2000-01.	However,	as	this	study	used	coal	replacement	equivalent	as	the	unit	of	energy	
and	the	term	was	not	adequately	clarified,	it	was	not	possible	to	check	how	their	forecast	fared	compared	to	the	
actual	demand.	Their	2006	study	presents	a	system	of	three	models	for	India	for	configuring	energy	systems	
for three years 2010-11, 2015-16 and 2020-21.
Since	the	1990s,	some	studies	analyzing	specific	fuel	demand	at	the	aggregate	level	have	also	used	cointegration	
and error correction methods. For example, Chan and Lee [14] have analyzed coal demand in China using three 
alternative	specifications,	namely	Engle-Granger’s	error	correction	model,	Hendry’s	error	correction	model	
and	Hendry’s	general-to-specific	approach.	Similarly,	Moosa	[15]	analyses	oil	demand	in	developing	countries	
to	find	the	correct	specification	and	importance	of	oil	price	in	the	demand	relation.		
Several	 studies	do	not	allow	a	careful	consideration	of	 rural-urban	dichotomy	and	often	do	not	go	beyond	
identifying the price and income elasticities as the drivers. The role of technology is hardly considered and 
structural	change	does	not	appear	as	a	main	concern.	Given	that	all	developing	countries	are	aiming	at	breaking	
away	from	the	past	demand	trend,	attempts	to	find	better	or	closer	fit	with	the	past	data	may	not	bear	much	
importance	for	the	future.	There	lies	the	problem	with	the	econometric	approach	of	demand	analysis	in	the	
context of developing economies.

2.3.2 Energy demand forecasting at the sector level
The	major	energy	consumers	are	the	industry,	transport,	and	residential	sector.	Now	is	presented	how	alternative	
approaches have attempted energy demand forecasting.

2.3.2.1 Industrial sector

2.3.2.1.1Econometric approach
Earlier studies of industrial energy demand, as Brendt and Wood [16], either focused on outputs solely and 
did	 not	 consider	 the	 influence	 of	 price	 on	 demand	 or	 failed	 to	 take	 inter-fuel	 and	 inter-factor	 substitution	
possibilities. They used trans-log cost function for analyzing industrial energy demand.

Translog cost function [17]

The translog cost function is considered to be the second order approximation of an arbitrary cost function. It 
is	written	in	general	form	as	follows:

ln ln . ln ln ln . lnC P P P Q Qi i
i j

ij i j Q QQ
i

Qi=∝ +∑ ∝ + + ∝ + ( ) +∑∑ ∑0

2

0 5 0 5γ γ γ lln lnQ Pi

Eq. 30

where	C	=	Total	cost,	Q	is	output,	Pi	are	factor	prices,	i	and	j	=	factor	inputs.
This cost function must satisfy certain properties:

• homogeneous of degree in prices;
• satisfy	conditions	corresponding	to	a	well-behaved	production	function.
• Cost function is homothetic (separable function of output and factor prices) and homogeneous.

Accordingly,	the	following	parameter	restrictions	have	to	be	imposed:
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∑∝ =i 1
Eq. 31

γ γij ji i j= ≠,
Eq. 32
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Eq. 33
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Qi∑ =γ 0

Eq. 34

γ γQi QQ= =0 0� � � � � � � � �
Eq. 35

The derived demand functions can be obtained from Shepherd’s lemma

X C Pi i= δ δ/ � � � � � � � � � � � � � � � � � �

Eq. 36

Although	these	functions	are	non-linear	in	the	unknown	parameters,	the	factor	cost	shares	M PX Ci i i= /  are 
linear in parameters.

M Pi i
j

ij j=∝ + ( )∑γ ln �	for	i	=	factor	inputs,	j	=	factor	inputs,	i	#	j
Eq. 37

These share equations are estimated to obtain the parameters. Only n-1 such equations need to be estimated as 
the	shares	must	add	to	the	first	equation.
The	own	price	elasticity	of	factor	demand	is	obtained	as	follows:

E X Pii i i= δ δln / ln

Eq. 38
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The cross-price elasticity can be derived similarly as
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Eq. 44

Allen partial elasticity of substitution is given by:

σ
γ
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ii i j

i j

M M
M M

=
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Eq. 45

Source: Pindyck (1979).

The disadvantages of this function include: local approximation of the demand that may not be plausible 
globally, loss of degrees of freedom, and complicated estimation techniques [18].
Parallel to the developments in the translog approach, the use of multinomial logit models became popular in 
the energy studies. The logit model is not derived from the utility maximization theory but derives its appeal 
from its interesting properties [17]:

 ○ it is relatively easy to estimate
 ○ it ensures that the outcomes are non-negative and add to one
 ○ as	the	share	of	a	component	becomes	small,	it	requires	increasingly	large	changes	to	make	it	smaller
 ○Flexible for incorporating a dynamic structure

Logit model [17]
The	logit	model	for	fuel	share,	Si,	can	be	written	as:
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Eq. 46

Where Qi  is the quantity of fuel i, Q QT i= ∑ , and f is the function representing consumers preference 
choices.
The	share	equation	for	any	two	fuels	can	be	written	as
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Eq. 47
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As the sum of the shares adds up to one, only (n-1) equations need to be estimated simultaneously.
For	estimation	purposes,	a	specific	functional	form	has	to	be	chosen.	This	is	often	done	arbitrarily	and	we	use	
a	linear	specification	of	relative	fuel	pries,	income	and	temperature	as	given	below.

f a b P cY d Ti i i i i i= + + +

Eq. 48
Where Pi  is (Pi /PE ) - ratio of price of fuel i to the aggregate fuel price, Y is income, T is the temperature.
Substitution of Eq. 3 in Eq. 2 yields the equations to be estimated:
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Eq. 49

Where	i	=	1,	2,	3,	…(n-1)

A	dynamic	version	of	the	equation	can	be	easily	written	by	including	the	lagged	shares	in	the	functional	form:

f a b P cY d Si i i i i i i t= + + + −


, 1

Eq. 50

The equations for dynamic estimation in that case turns out as:
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Eq. 51

Where	i	=	1,	2,	3,	…,	(n-1)
Source: Pindyck (1979)

With the cointegration revolution in the 1990s the trend changed to the reliance on single equations and this 
became	a	remarkable	turning	point	in	the	econometric	research	when	earlier	methods	were	almost	abandoned.	
These studies often adopted an aggregated analysis but used more advanced time-series data analysis techniques. 
That econometric analysis has been applied to the industrial energy demand of developing countries and their 
occurrences	are	rather	limited	and	often	restricted	to	more	advanced	developing	countries	with	a	large	industrial	
base. Recent studies explain that the issues of structural change and technological improvements have not been 
sufficiently	captured.	This	approach	may	not	be	suitable	for	many	developing	countries.

2.3.2.1.2 End-use approach
This approach to industrial energy demand, that depends by data availability, focuses on the disaggregated 
demand	analysis	and	retains	at	least	2-digit	level	classification	of	industries	following	ISIC	codes	(International	
Standard	of	 Industrial	Classification)	 to	 take	 care	of	 the	diversity	 of	 industrial	 activities	 and	 fuel	 use.	The	
method tries to capture the essential features of the production system through a detailed description of the 
technologies and practices prevalent in a region or country.
Various	determinants	of	the	end-use	demand	are	then	identified:	the	level	of	industrial	activity	(expressed	as	
value	added)	is	considered	to	be	the	main	factor.	Energy	demand	is	estimated	by	linking	the	output	from	the	
industry	to	specific	consumption	or	energy	intensity	as	it	can	be	seen	in	the	figure	below.
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The end-use model has been widely used in energy demand forecasting and analysis 

throughout the world. Some examples of end-use engineering models with rich 

technological representation are presented in table 3.

Table 3: Energy end-use models for industrial energy demand analysis 
Name of the model Country of origin Technology 

representation 
Modelling approach 

AMIGA US Explicit Simulation 
EERA New Zealand Unknown Simulation 
ENUSIM UK Explicit Simulation 
ENPEP US Explicit/ stylistic Simulation 
MAED Austria Explicit Simulation 
MEDEE France Explicit Simulation 
LEAP US Explicit Simulation 
Source: Worrel et al (2002) and Fletcher and Marshall (1995).

Fig. 2:  Industrial energy demand estimation in end-use method 

Source: UN (1991). 

Fletcher and Marshall (1995) present a study of industrial energy demand forecast of an 

English region using a disaggregated end-use model, ENUSIM. “This is a technology- 

based,  ‘bottom-up’ industrial energy use simulation model which considers both 

Figure 1: industrial energy demand estimation in end-use method [19]

In	 the	 next	 table	 are	 presented	 some	 examples	 of	 end-use	 engineering	 models	 with	 rich	 technological	
representation.
 

Name of the model Country of origin Technology repre-
sentation

Modelling approach

AMIGA US Explicit Simulation
EERA New	Zeland Unknown Simulation
ENUSIM UK Explicit Simulation
ENPEP US Explicit/stylistic Simulation
MAED Austria Explicit Simulation
MEDEE France Explicit Simulation
LEAP US Explicit Simulation

Table 1: energy end-use models for industrial energy demand analysis [20]

The end-use approach pays special attention to the technological aspect of the industrial sector. When a 
particular industry is being analyzed, the level of details is expected to be much greater compared to a study 
focusing	on	industry	as	part	of	an	economy-wide	analysis.	This	approach	also	allows	the	regional	dimension	
to	be	taken	into	consideration	and	the	analysis	can	be	performed	at	the	region-specific	level.	Additionally,	the	
focus	shifts	to	capturing	structural	changes,	technological	improvements	and	policy-induced	effects	rather	than	
devoting	entire	effort	to	elasticity	estimation	or	determining	the	correct	specification.	The	skill	requirement	is	
often not too onerous and the data can be developed using expertise and judgments.   

2.3.2.2 Trasport sector

2.3.2.2.1 Econometric approach
The single equation, reduced form of demand estimation either at the aggregate transport fuel level or for 
particular	fuels	(gasoline,	diesel,	etc.)	remains	the	basic	form	of	econometric	analysis.	Two	common	approaches	
used to estimate transport energy demand are the identity approach and the structural approach. Research from 
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as	early	as	1970s	has	recognized	the	importance	of	stock	of	cars,	car	utilization	and	the	average	car	efficiency	
in the transport energy demand. 
This is captured through the demand identity:

E C U Eff= ∗ ∗
Eq. 51

Where	E	is	the	fuel	demand,	C	is	the	stock	of	automobiles,	U	is	the	annual	utilization	rate	(km/year),	and	Eff	
is	the	vehicle	efficiency	(l/km).	The	fuel	demand	is	obtained	as	a	product	of	the	above	three	variables,	each	of	
which	is	estimated	using	a	function	of	other	explanatory	variables.	Accordingly,	the	demand	is	not	obtained	
from the utility or cost functions or from the perspective of any optimization process [17]. The implementation 
of	the	above	identity	for	estimation	purposes	can	take	alternative	paths.	It	is	presented	two	examples:	one	from	
Pindyck	[17]	and	the	other	from	Johansson	and	Schipper	[21].

Transport energy demand model in Pindyck [17]
The	study	used	the	identity	model	for	gasoline	demand	estimation.	Three	equations	were	used	to	determine	
stock	 of	 vehicles,	 while	 two	 other	 relations	 described	 the	 depreciation	 rate,	 transport	 volume	 and	 vehicle	
efficiency.	 	The	stock	of	vehicle	 is	obtained	 from	an	accounting	 identify	which	 reflects	 the	depreciation	of	
stock	and	addition	of	new	vehicles	to	the	stock.	This	is	written	as	in	Eq. 1:

STK r STK NRt t t= −( ) +−1 1

Eq. 52

Where	STK	is	the	stock	of	automobiles,	R	is	the	depreciation	of	the	stock	and	NR	is	new	registrations.	New	
registrations	bring	the	stock	to	the	desired	stock	level,	where	the	desired	stock	is	a	function	of	explanatory	
variables such as car price (Pc ), fuel price (Pf )	and	income.	Per	capita	new	registrations	can	be	expressed	as:
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Eq. 53

Assuming STK* to be a linear function of Pi , Pf 	and	Y,	equation	2	can	be	rewritten	as:
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Eq. 54

The	depreciation	rate	r	can	be	expected	to	increase	with	higher	per	capita	income	and	fall	with	higher	car	prices.	
This can be captured through a linear function as given in equation 4.

r b bY
POP

b Pc= ++0
1

2

Eq. 55

Equations	1,	3	and	4	define	the	stock	of	vehicles.	The	vehicle	utilization	is	normally	expressed	in	kilometers	
driven per year per car. It can be expected to depend positively on the per capita income but negatively on the 
price of fuel. This is captured through the log-linear relationship given in equation 5.

ln ln ln lnU c c Y
POP

c P c Ut f t( ) = + 





 + + −0 1 2 3 1

Eq. 55
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The	average	fuel	efficiency	is	expected	to	change	with	fuel	price	but	with	a	lag.	Another	log-linear	relationship,	
equation 6, captures this.

ln ln lnEff d d P d Efft f t( ) = + + −0 1 2 1

Eq. 55

Source: Pindyck (1979)

Johansson and Schipper [21] model
The	fuel	demand	is	defined	as	the	product	of	three	factors:

E S I D= * *
Eq. 56

Where	S	is	the	automobile	stock	per	capita,	I	is	fuel	consumption	per	kilometer	driven	(or	fuel	intensity),	and	
D	is	the	distance	travelled	per	year	per	car.	The	authors	have	chosen	a	recursive	system	approach	where	the	
variable D is estimated as a function of S and I and other variables, but I and S are estimated solely as functions 
of	other	variables.	Moreover,	they	estimate	all	three	demand	components	using	log-linear	relationships	which	
are	most	widely	used	 functional	 forms	 that	yield	 constant	 elasticities	 and	provide	 easy-to-interpret	 results.	
However,	for	tax	and	population	density,	semi-log	specification	was	used	to	avoid	the	problems	arising	from	
near	zero	values.	The	following	dynamic	pooled	model	relationships	were	estimated:

for	vehicle	stock			 ln ln ln ln
,

S S P Y T G uit i t it it i i it( ) = + + + + + +α α α α α α
0 1 1 2 3 4 5

Eq. 57

for fuel intensity      ln ln ln ln
,

I I P Y T G uit i t it it i i it( ) = + + + + + +β β β β β β
0 1 1 2 3 4 5

Eq. 58

for distance traveled     ln ln ln( ) ln ln,D D P I Y T G Sit i t it it it i i( ) = + + + + + +γ γ γ γ γ γ γ0 1 1 2 3 4 5 6� iit itu( ) +

Eq. 59

Where	P	 is	 the	fuel	price,	Y	is	 the	 income	(GDP)	G	is	 the	population	density.	The	authors	remark	 that	 the	
“distance	 traveled	 equation”	 is	 the	most	 difficult	 to	 estimate	 because	 there	 are	 a	 large	 number	 of	 possible	
explanatory variables. The estimated relationships can be used to forecast future demand.

Source: Johansson and Schipper (1997)

Miklius	et	al	(1986)	provides	an	early	example	of	a	more	common	approach	that	is	to	rely	on	the	market	shares	
and forecast the demand ensuring consistency.

A simple model for transport fuel demand estimation [22]
Consider	 that	 two	substitutable	fuels	diesel	and	gasoline	are	used	for	 transport	purposes.	The	market	share	
approach	 is	 used	 to	 estimate	 the	demand.	The	model	 has	 two	 components:	first,	 the	 total	 fuel	 demand	 for	
transport	is	estimated;	then,	the	demand	for	individual	fuels	is	estimated	using	their	market	share.	The	total	
demand	for	diesel	and	gasoline	is	considered	to	be	a	function	of	weighted	average	price	of	fuels	in	real	terms,	
real per capita GDP and the total consumption of both fuels in the previous year. The equation in log-linear 
form	can	be	written	as:

ln ln ln lnTC P GDP TC= + + + −α α α α
0 1 2 3 1

Eq. 60
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where		P	=	(DC/TC).DP	+	(GC/TC).GP,	TC	=	total	consumption	of	diesel	and	gasoline,	P	is	the	average	price,	
GDP is the real per capita GDP, DC is the diesel consumption, GC is the gasoline consumption, DP is the price 
of	diesel	and	GP	is	the	price	of	gasoline.	The	market	share	of	a	fuel	is	assumed	to	be	a	function	of	its	real	price,	
the price of the substitute fuel, the per capita GDP and the share of the fuel in the previous year. The equation 
for	gasoline	can	be	written	as	follows:

ln ln ln ln ln
GC
TC

DP GP GDP GC
TC







 = + + + + 
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β β β β β
0 1 2 3 4

1

Eq. 61

As	there	are	two	fuels	in	this	case,	the	total	share	has	to	be	100.	The	diesel	share	is	thus	obtained	
DC/TC	=	100	exp[–	ln(GC/TC)]

Source: Miklius et al (1986)

Like	 industrial	 energy	demand,	 recent	econometric	 studies	on	 transport	demand	 forecasting	have	 relied	on	
cointegration and error correction models. These models focus on the technical properties of the time series 
and	try	to	avoid	misspecification	of	the	models.	But	often	these	models	are	at	an	aggregated	level	and	do	not	
consider	the	efficiency	or	vehicle	stocks	explicitly.	Most	of	these	models	focus	on	a	particular	fuel	rather	than	
considering the entire set of transport fuels or modes, thereby ignoring the substitution possibilities. Studies 
that	consider	demand	at	the	aggregate	level	without	considering	the	growth	of	transport	vehicle	stocks	or	the	
modes of transport cannot really capture the developing country features.

2.3.2.2.2 End-use approach
The end-use approach has focused on forecasting demand by capturing the diversity of transport modes, types 
of	vehicles,	efficiency	and	other	drivers.	The	usual	disaggregation	of	the	transport	sector	is	shown	below	[1]:

 

Need Modes Vehicles Fuel use
Public passenger
transport

Road Taxis Gasolene, Diesel, LPG, CNG
Minibuses Diesel, CNG
Urban buses Diesel, CNG
Intercity buses Diesel
Others Gasolene, Diesel, LPG, CNG

Rail Tramways, tube rails Electric
Light rails Electric
Commuter trains Coal, Diesel, Elettric
Intercity trains Coal, Diesel, Elettric

Dom air Jet fuel
Dom water Fuel oil, Gasolene

Private passenger  
transport

Road Motorcycles
Cars

Freight transport Road Pick-ups Diesel
Light trucks Diesel
Heavy trucks Diesel

Rail Coal, Diesel, Elettric
Dom water Barges, ships Fuel oil, Gasolene

Table 2: disaggregation of the transport sector in end-use studies
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In the transport sector, energy is mainly used for passenger transport and freight transport. The determinants of 
passenger transport demand are:
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characteristics of the carriers and their conditions of use. Figure 4 presents these 

determinants in a schematic form.  

In the transport sector, energy is mainly used for passenger transport and freight 

transport. In less developed countries, the frequency of passenger trips and volume of 

shipment of freight are low. Moreover, traditional methods such as human and animal-

powered transport systems co-exist in these countries alongside modern systems. The 

energy demand both for passenger and freight transportation tends to increase rapidly, 

often at a rate higher than the growth rate of GDP, due to economic growth. This also 

leads to growth in ownership of cars and personalized transportation modes. The increase 

in demand for vehicles in turn causes higher demand for oil.  

Fig. 4: Determinants of passenger transport demand 
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of trips 

Number of trips 

Movement per 
capita (km/year) 

Population

Total passenger traffic 
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transport modes 
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The development of transport modes and the modal distribution of a country are greatly 

affected by energy as well as general economic policy. The energy consumption per 

passenger-km varies greatly by mode of transformation. The energy consumption per unit 

of driving (i.e. liters/km) is in principle a function of the power of the engine and of 

engine efficiency. The weight of the vehicle, traffic, speed, and driving style are further 

important factors affecting the energy intensity of the modes. If all these remain constant 

Figure 2: determinants of passenger transport demand

The	development	of	transport	modes	and	the	modal	distribution	of	a	country	are	greatly	affected	by	energy	
as	well	 as	 general	 economic	policy.	The	 energy	 consumption	per	 passenger-km	varies	 greatly	by	mode	of	
transformation	and	it	per	unit	of	driving	(i.e.	liters/km)	is	in	principle	a	function	of	the	power	of	the	engine	and	
of	engine	efficiency.	The	determinants	of	energy	demand	for	freight	transport	are:
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over time, the determinant of the energy intensity of each mode reduces the fuel 

consumption efficiency. 

Energy demand for freight transport depends on the volume of commodities, average 

distance of shipping, the modal structure of freight transport, and the economic and 

technical characteristics of each transport mode. The relationship among these variables 

is shown in Figure 5. 

Many policy-oriented forecasting studies of the transport sector have relied on the end-

use approach. Studies using the end-use related often rely on a standard model or 

computer package and contrary to the econometric studies end-use studies are hardly 

reported in the academic journals. However, examples of application of various popular 

models such as MEDEE, LEAP or other specially developed end-use applications can be 

found in, among others, Dhakal (2003) and Dakhal (2006), Dutton and Page (2007), and 

Zhou (2007). 

Fig. 5: Determinants of energy demand for freight transport 

Production 
of goods 

Production 
structure

Geogra
phic 
charact

Amounts of 
goods to be 
transported

Average 
distance 

Traffic structure 
per merchandise 
and distance 

Characteristics 
of transport 
modes 

Freight traffic 

Traffic 
by mode 

Transport 
energy 
demand 

Figure 3: determinants of energy demand for freight transport

The end-use oriented studies of transport demand attempt to capture the fuel demand by considering individual 
components contributing to demand and accordingly, they tend to cover the relevant demand drivers for the 
developing	countries.	The	disaggregated	approach	also	allows	a	detailed	representation	of	the	vehicle	stock,	
vehicle	vintages,	and	changes	in	the	fuel	mix,	modal	mix	and	technologies,	as	well	as	rural-urban	dichotomy.	
This	method	has	been	applied	to	the	developing	countries	in	the	past	but	do	not	consider	price-induced	effects,	
the problem may not be acute due to inelastic demand of transport fuels.
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2.3.2.3 Residential sector

2.3.2.3.1 Econometric approach
Residential energy demand studies have covered individual fuels (such as electricity, natural gas) or aggregate 
demand	or	the	entire	set	of	energies	used.	The	reduced-form,	single	equation	demand	specifications	are	quire	
common	for	fuel-level	analysis.	The	log-linear	specification	is	most	commonly	used	in	such	studies	for	the	
ease	of	estimation	and	simplicity.	Although	residential	energy	demand	depends	on	the	stock	of	energy-using	
appliances and other economic variables, in the short-run the demand is expected to be constrained by the 
existing	capital	stock,	which	in	turn	would	influence	the	consumer	response	to	any	changes	in	the	economic	
variables.	To	capture	 this	 aspect,	 some	attempts	were	made	 to	use	 two-stage	demand	analysis,	one	 for	 the	
short-term	and	the	other	for	the	long-run.	However,	 the	data	on	appliance	stocks	is	often	poor	and	leads	to	
problematic results. A large number of econometric studies exist for the developed countries, limited focus 
has been given on residential energy demand in developing countries and especially for rural areas. The main 
difficulty	often	faced	by	the	residential	and	commercial	sectors	in	analyzing	energy	demand	is	the	availability	
of	data,	especially	of	end-use	breakdowns	of	energy	consumption.	The	single	equation	models	or	aggregated	
analysis	do	not	capture	the	technological	diversity	and	the	spatial	difference	in	energy	demand.	The	problem	
can	be	worse	where	energy	prices	are	controlled	by	the	government	because	the	econometric	relations	may	not	
prove	statistically	significant	or	meaningful.

2.3.2.2.2 End-use models
Measuring	 residential	 activity	 is	difficult	because	 there	are	many	different	 energy-using	activities	 that	 take	
place	 in	 homes	 but	 no	 single	measure.	As	 there	 are	 different	 end-uses	 (e.g.	 space	 heating,	water	 heating,	
lighting,	electric	appliances,	 etc.)	 and	different	appliances	or	applications	within	end-uses,	 the	 total	 energy	
demand is obtained by summing all applications in an end-use and then adding demand in all end-uses. Total 
energy consumption for space heating and air-conditioning of a country for a given year is determined by 
the average energy consumption per household and per building for those purposes, and the total number of 
households	and	buildings	for	that	year.		Similarly,	energy	demand	for	cooking	is	related	to	unit	demand	per	
household and number of households. The lighting requirement can be expressed as a function of household 
area, lighting requirement per unit area and the number of households. As the demand pattern in households 
vary	with	income	level	and	geographical	location	(rural/	urban),	better	results	are	obtained	by	disaggregating	
the demand by income level and rural/ urban areas. The disaggregated approach to residential demand analysis 
allows	better	representation	of	the	specific	features	of	developing	countries.
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Capitolo 3 | Energy Forecast
The development of a State is closely related to its energy demand. It is therefore necessary to understand 
carefully	 the	possible	 future	 energy	 scenarios	based	on	different	variables	 to	make	choices	 appropriate	 for	
future	growth.	Since	the	early	1970s,	when	energy	caught	the	attention	of	policymakers	in	the	aftermath	of	the	
first	oil	crisis,	research	on	energy	demand	has	vastly	increased	in	order	to	overcome	the	limited	understanding	
of	the	nature	of	energy	demand	and	demand	response	due	to	the	presence	of	the	external	shocks	encountered	at	
that	time	[17].	The	lively	debate	between	engineers	and	economists	of	that	era	led	to	important	methodological	
developments	 that	 enriched	 the	 energy	decision-making	process	 as	 a	whole,	 and	a	wide	variety	of	models	
became available for analyzing and forecasting energy demand [18].
Energy demand forecasting is an essential component for energy planning, formulating strategies and 
recommending energy policies. It is a measurement and estimate of historic, current and projected patterns of 
energy	supply	and	demand	within	an	area	that	could	be	a	restricted	one	as	well	as	a	State	or	a	macro-region.	It	
starts	from	a	baseline	forecast	that	illustrates	what	State	energy	use	will	look	like	in	the	absence	of	additional	
policies	beyond	what	is	already	planned	and	consequently	it	is	a	reference	case	against	which	to	measure	the	
energy	 impacts	 of	 policy	 initiative	 or	 system	 shocks.	Other	 possible	 scenarios	 are	 therefore	 introduced	 to	
analyze	the	consequences	of	adopting	policies	respect	of	the	baseline	case	where	they	are	not	considered.
The	task	is	challenging	not	only	in	developing	countries	where	necessary	data,	appropriate	models	and	required	
institutions	are	lacking,	but	also	in	industrialized	countries	in	which	these	limitations	are	somewhat	less	serious.	
The	limitation	in	the	model	structure	or	inappropriate	assumptions	often	produce	a	deviation	from	what	was	
expected so it is important to have as much data as possible to create a complex model can be very accurate. 
The	main	reasons	[23]	why	the	energy	forecast	are	far	from	the	actual	demands	could	are	that:
• inaccurate	characterization	of	 the	behavior	of	economic	agents	(most	models	group	consumers	into	a	few	

representative agents to represent the “millions of decisions made by millions of individuals,” and provide 
relatively	stylized	descriptions	of	their	decision	making);

• incomplete coverage of social and environmental impacts;
• lack	of	adequate	technological	detail;
• unrealistic	 economic	 assumptions	 such	 as	 fully	 employed	 and	 efficiently	 allocated	 resources,	 rational	
individuals,	optimizing	firms	and	perfectly	functioning	markets.

Furthermore	is	very	important	to	consider	the	importance	of	developing	countries	in	the	world	energy	scene	
because	their	growth	has	become	significant	in	recent	decades.

3.1 Scope of energy forecast, steps and current analysis

Energy forecast are developed to [24]:
• Understand	how	energy,	within	the	current	policy	and	with	the	current	energy	situation,	economic	and	social,	
how	can	be	supplied	and	used.	Through	careful	study,	the	energy	forecast	determines	policies	and	investments	
in the energy sector.

• Estimate energy-related greenhouse gas and air pollution emissions
• Set	 specific	 targets	with	 respect	 to	 energy	 usage,	 such	 as	 renewable	 energy	 or	 energy	 efficiency	 targets,	

policies and programs about climate change (for example EU 202020 plan)
• Identify	specific	sectors	that	could	be	targeted	with	policies	and	programs
• Analyze actions and measures that could help achieve targets and goals
• Predict	alternative	future	energy	profiles	 that	can	ensure	 the	State	can	meet	 the	needs	of	 its	 residents	and	
industries	with	clean,	cost-effective	strategies.

There are six steps involved in creating a baseline forecasting listed by EPA (US Environmental Protection 
Agency) [24]:
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Figure 4: scheme of steps involved in creating a baseline forecasting listed by EPA

1. Define objective and constraints of the forecast
It is important for States to understand the objective behind developing an energy forecast.  They should 
identify	the	use/purpose	of	the	forecast	(e.g.	to	obtain	a	general	energy	profile	or	conduct	a	detailed	analysis)	
and consider several factors as they begin. At a minimum, States should:
• Determine	if	the	forecast	will	be	short-term	or	long-term	and	bottom-up	or	top-down
• Establish the level of rigor necessary
• Consider	the	availability	of	financial,	labor	and	time	resources	to	complete	the	forecast
• Verify the amount of energy data that they can readily acquire to develop the forecast

2. Compile historical energy consumption and generation data into a baseline profile
A	comprehensive	energy	baseline	profile	includes	consumption	(demand)	by	sector	and	fuel	and	generation	
(supply) by fuel and/or technology. Energy consumption data is typically compiled by fuel type. A comprehensive 
baseline	includes	non-renewable	and	renewable	fuels.	Electricity	can	also	be	included	as	a	fuel.	Consumption	
data	is	often	broken	down	by	the	sectors	that	consume	the	fuels,	including	commercial,	residential,	industrial,	
transportation	and	utility	sectors.		This	top-down	baseline	helps	a	State	understand	the	large	and	small	consumers	
within	a	State	and	helps	target	sectors	for	policy	interventions.	Each	sector	can	also	be	further	disaggregated	
to	show	the	types	of	consumption	within.		For	example,	if	a	State	is	interested	in	targeting	residential	sector	
demand,	they	may	want	to	develop	a	bottom-up	baseline	that	depicts	the	amount	of	residential	consumption	
attributed	to	hot	water	heating	or	to	appliances	and	cooling.		This	type	of	forecast	would	be	very	data	intensive	
but	would	provide	more	 information	 than	 an	 aggregated	baseline	 that	 is	 useful	 if	 the	State	 is	 interested	 in	
understanding	trends	and	opportunities	within	a	specific	sector.	Historic	and	forecast	demand	for	energy	is	a	
product	of	the	economic	and	weather	conditions	of	the	State	as	well	as	the	types	and	efficiencies	of	end-use	
appliances and equipment. On the supply side, electricity generation data can also be categorized by fuel 
type and sector. A baseline energy forecast requires data about the types and amounts of fuel used to generate 
electricity.	Electricity	generation	data	typically	includes	electricity	generation	that	has	occurred	within	the	State	
and electricity imported into or exported out of the State under contractual arrangements. It also accounts for 
transmission and distribution losses. If using a forecast to estimate a State’s greenhouse gas or air pollution 
emissions, treatment of electricity imports and exports in a baseline is important to understand. Obtaining 
a clear emissions baseline that can be attributed to satisfying the electricity demand of a State requires an 
understanding	of	the	amount	of	electricity	consumption	which	is	generated	in-State,	the	amount	imported	from	
other	places	and	the	fuels	used	to	generate	either.	For	example,	if	a	State	generates	and	consumes	all	of	its	own	
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electricity	which	is	produced	using	only	hydropower,	its	emissions	footprint	will	be	quite	different	than	a	State	
that	generates	in-State	electricity	using	only	hydropower	but	imports	electricity	from	a	neighboring	State	that	
uses	coal	to	generate	its	electricity.		Understanding	where	and	how	all	of	a	State’s	electricity	is	generated	and	
consumed	will	provide	a	clear	reference	case	for	estimating	emissions.
Regarding the United States, consumption and generation data can be obtained from several sources, including:
• utilities, 
• public utility commissions, 
• State	energy	offices,	
• departments of transportation, 
• independent system operators (ISOs), 
• EPA’s Emissions & Generation Resource Integrated Database (eGRID) model,
• DOE’s Energy Information Administration (EIA) and 
• North American Electric Reliability Corporation (NERC) among others.
In	the	following	table	it	can	be	observed	an	example	about	possible	data	sources	for	BAU	forecasts.

Sources
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Utilities; by service territory x x x x x x
Public Utility Commissions;  
also State Energy Offices for Other Fuels x x x x x x

Indipendent System Operators/RTOs x x
North American Eletric Reliability Corporation (NERC) Electri-
city Supply and Demand database x x

EIA Electric Power Annual x x x
EPA Emission & Generation Resource Integrated Database 
eGRID x

EIA State Energy Data (SEDS) x x x

EIA Electric Sales, Revenue, and Price tables or EIA Annual 
Electric Utility data – EIA-861 data file x

EIAs Manufacturing Energy Consumption Survey (MECS); 
Commercial Buildings Energy Consumption Survey (CBECS); 
Residential En-ergy Consumption Survey (RECS) Consumption 
data

x x x

EIA Annual Energy Outlook (AEO) x x x x x x
NREL x

Table 3: sample energy data sources for BAU forecasts

3. Choose method to forecast the energy baseline
States can use basic or sophisticated modeling approaches to forecast their energy baseline and predict energy 
supply and demand based on the expectations of future population changes and economics.  Basic methods 
may require the State to adopt others’ assumptions about the projected population and the economy or compile 
and	 develop	 its	 own.	 	These	 approaches	 are	 generally	 appropriate	when	 conducting	 screening	 analyses	 or	
developing	highly	aggregated	forecasts,	when	the	amount	of	time	or	funding	to	support	a	forecast	is	limited,	
or	when	the	time	period	of	the	forecast	is	short.	More	sophisticated	models	can	be	used	for	short-term	or	long-
term	analyses.		They	provide	greater	detail	than	the	basic	methods,	can	capture	the	complex	interactions	within	
the	electricity	and	energy	system,	but	may	be	data,	 time	and	labor	 intensive,	 lack	transparency	and	require	
significant	technical	expertise.
Basic approaches for forecasting energy demand and supply generates high-level information about a State’s 
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energy	future	without	using	rigorous,	complicated,	and	sometimes	costly	software	models.	They	include:

 

Table 2-2 Comparison of Basic Methods for Forecasting Energy Demand and Supply 

Methods Advantages Disadvantages When to use 

Compilation of 
individual 
forecasts by 
others 

Easy to 
gather 

May not be compatible; proprietary 
concerns; possible short horizons; may 

or may not provide information on 
construction requirements, fuel use, 

emissions, and costs. 

High level, preliminary and quick 
analysis 

Adoption of a 
complete 
forecast used 
by others 

Easiest 
method 

May not have the long-term outlook High level, preliminary and quick 
analysis 

Linear and/or 
Nonlinear 
Extrapolation 
of Baseline 

Quick May not capture impact of significant 
changes (e.g., plant retirements) 

High level with simple escalation 
factors from history 

More robust 
data analysis 

Possible errors in formulas, inaccurate 
representation of demand and supply 

Knowledge in generation dispatch 
modeling by type of plant 

� Linear / Non Linear Extrapolation involves spreadsheet analysis where historical demand 
growth rates and electricity production are extrapolated.  The accuracy of this approach 
depends on the knowledge and experience of the analyst. An advantage to this approach 
is that it is easy to develop in a spreadsheet and use for preliminary forecasting.  A 
disadvantage is that the exclusion of important variables beyond demand growth factors 
and electricity, such as weather, season, plant retirements or construction, operation or 
capital costs, emissions or macroeconomic growth, may result in an inaccurate forecast. 

Sophisticated Forecast Methods 

Most states initiate a demand forecast using a basic approach, which may be due to the 
perception that the demand rate will more than likely follow historic trends and there are no 
foreseeable significant impacts to change the demand. However, some states have used 
sophisticated modeling for both its demand and supply forecasts.  These modeling approaches 
are discussed separately below. 

Demand Forecast 

Once the historic baseline is developed, states can choose from three model types to develop a 
forecast as shown in the gray boxes.  These include: time series, end use and econometric.  Each 
model has advantages and disadvantages as described below. 

� Time Series-based Models use inputs that are based on historic patterns relative to time, 
and forecast future events based on known past events and patterns.  Inputs require an 

State Energy Forecasting June 19, 2008 

6 

Table 4: comparison of basic methods for forecasting energy demand and supply

Compilation of individual forecasts by others: generally, current energy plans from utilities, ISOs, and 
regulatory	agencies	will	include	a	demand	forecast	that	is	reduced	by	estimated	energy	savings	from	energy	
efficiency	programs.		Likewise,	the	corresponding	supply	plan	may	include	renewable	energy	sources,	including	
combined	heat	and	power	plants,	 if	significant.	 	 	States	can	aggregate	 individual	 load	forecasts,	generation	
expansion	plans,	and	energy	efficiency	program	and	renewable	energy	evaluations	from	state	agencies,	utilities,	
ISOs, local educational institutions, and special interest groups, such as interveners in rate cases.  Compiling 
forecasts	created	by	different	entities	can	be	challenging	because	they	can	vary	significantly	from	each	other	
in terms of underlying assumptions, proprietary concerns, data transparency (e.g., unit generation, costs), and 
time frame.
Adoption of a forecast used by others:	in	some	states,	an	energy	office,	utility	commission,	revenue	department,	
or academic organization may have prepared a suitable energy forecast. Also, utilities and ISOs may have 
available	 forecast	 plans.	 A	 regulatory	 filing	 requirement	 (e.g,	 Integrated	 Resource	 Plan)	 will	 provide	 a	
comprehensive	 long-term	 plan	 that	 includes	 impacts	 from	 energy	 efficiency,	 reliable	 demand	 response,	 if	
any,	 and	 existing	 renewable	 energy	plans.	However,	 there	may	be	proprietary	 constraints	 to	obtaining	 this	
information.
Linear/Non Linear Extrapolation	 involves	 spreadsheet	 analysis	 where	 historical	 demand	 growth	 rates	
and	electricity	production	are	extrapolated.	 	The	accuracy	of	 this	approach	depends	on	 the	knowledge	and	
experience of the analyst. An advantage to this approach is that it is easy to develop in a spreadsheet and use 
for	preliminary	forecasting.	A	disadvantage	is	that	the	exclusion	of	important	variables	beyond	demand	growth	
factors	and	electricity,	such	as	weather,	season,	plant	retirements	or	construction,	operation	or	capital	costs,	
emissions	or	macroeconomic	growth,	may	result	in	an	inaccurate	forecast.

Regarding sophisticated forecast methods distinguish demand and supply separately:
• Demand Forecast
Once the historic baseline is developed, States can choose from three model types to develop a forecast:

 ○  Time Series-based Models use inputs that are based on historic patterns relative to time, and forecast 
future	events	based	on	known	past	events	and	patterns.	Inputs	require	an	analysis	of	historic	patterns	
in	demand	for	electricity.	It’s	easy	to	use,	fast	and	historical	data	are	widely	available	by	year,	fuel	
and end use sector but the disadvantages are that data may relate to a historical baseline that may 
have	undergone	major	structural	changes,	it	is	hard	to	reflect	future	structural	changes	even	if	they	are	
anticipated	and	it	cannot	reflect	supply-demand-price	feedbacks.
 ○ 	End	Use	models	develop	the	load	profiles	of	customer	types	by	analyzing	the	historical	consumption	
of	appliances	and	equipment	and	may	use	specific	surveys	from	customers	about	future	growth	and	
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contraction.	An	 advantage	 is	 that	 this	 approach	 uses	 a	 load	 profile	 for	 each	 customer	 class	 being	
served, providing a reasonable estimate of demand. A disadvantage is the time to collect the data and 
the cost to develop the data.
 ○ 	Econometric	 models	 provide	 a	 more	 complex	 and	 robust	 analysis	 that	 uses	 inputs	 for	 inflation,	
demographics, gross State product, consumer energy prices, gross/disposable income, housing starts, 
business starts/ failures, birth/death rates, surveys of business expansion plans, historical energy 
consumption, and other variables for structural changes and economic inputs. An advantage of using 
this	method	is	that	it	creates	a	robust	demand	forecast	consistent	with	a	robust	economic	forecast.	A	
disadvantage	is	the	time	and	cost	to	prepare	the	inputs	and	review	the	results.

• Supply Forecast
The models are used for hourly, daily, monthly, short-term and long-term forecasting.  Sophisticated supply 
forecasting models require large volumes of data on electricity production plants, transmission capabilities and 
a	demand	forecast.		As	with	any	model,	the	better	the	data,	the	better	the	results.	There	are	two	types	of	models:

 ○Electricity Dispatch models simulate dynamic operation of the electric system, generally on a least-
cost system dispatch.
 ○Capacity	Expansion	or	Planning	models	are	designed	to	make	decisions	on	how	the	electric	system	
builds capacity to meet demand.

4. Develop or review assumptions
After	 choosing	 the	 forecasting	 approach	 or	 model	 type,	 the	 next	 steps	 are	 determining	 or	 reviewing	 the	
assumptions about population and economic variables, such as energy prices, productivity, gross State product, 
and	the	labor	force	upon	which	future	projections	of	energy	demand	and	supply	depend.	At	this	point	in	the	
process,	it	may	also	be	necessary	to	“clean	the	data”	or	fill	in	any	missing	data	gaps.	If	data	points	are	missing	
for	particular	years,	it	may	be	necessary	to	interpolate	the	existing	data	to	fill	in	gaps.		This	will	minimize	the	
likelihood	of	generating	a	strange	forecast.

5. Apply the method
States can apply the selected model or approach to the historical baseline energy data based on the assumptions 
about future population, economic and energy expectations.

6. Evaluate forecast output
Once	generated,	 it	 is	 important	 to	evaluate	 the	output	 to	ensure	 that	 it	makes	sense	and	meets	 the	original	
objectives.

3.2 Energy demand forecasting approach

There	are	a	large	variety	of	techniques	used	by	different	sets	of	users.	For	examples	Werbos	[25]	presents	the	
distinction	between	modeling	approaches	very	succinctly:	let	us	assume	that	we	want	to	forecast	population	in	
the	following	year	based	on	present	year	information.	We	write	the	following	relationship:

POP t c POP t+( ) = ( )*
Eq. 62

Where	c	is	a	constant	and	POP	is	the	population,	t	is	the	time	period.	The	obtaining	of	different	“c”	generates	
different	models	[Werbos (1990)]:
• c	is	obtained	by	asking	the	experts,	the	forecast	is	based	on	the	judgmental	approach.
• c is obtained through small-scale studies of controlled population, the model can be called an engineering 

model
• c is obtained by analyzing the time series of historical population, the model can be called an econometric 

model or a model estimated using the econometric approach
On	 the	 other	 hand	 Lipinsky	 [26]	 suggested	 a	 three	 dimensional	 categorization	 of	 demand	 forecasting	
models based on complexity (simple-complex), dynamics (static-dynamic) and uncertainty (deterministic 
–	 probabilistic).	We	will	 consider	 two	 broad	 categories	 for	 a	 simple	 classification:	 simple	 approaches	 and	
sophisticated approaches.
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3.2.1 Simple approaches
The	simple	approaches	are	easy-to-use	indicators	that	can	provide	a	quick	understanding.	Four	such	simple	
indicators	commonly	used	for	forecasting	are:	growth	rates,	elasticities	(especially	income	elasticity),	specific	
or	unit	consumption	and	energy	intensity.	In	addition,	trend	analysis	that	finds	the	growth	trend	by	fitting	a	time	
trend line is also commonly used. All of these approaches rely on a single indicator and the forecast is informed 
by the assumed changes in the indicator during the forecast period. The attractiveness of these methods for 
any	long-term	work	is	rather	low	because	of	their	weaknesses	but	is	used	for	its	simplicity.	There	are	several	
examples	of	the	use	of	the	simple	approaches:	in	two	recent	reports	on	energy	policies	of	India	and	China,	
simple measures of GDP-elasticity and energy intensities have been used for demand forecasting for ten or 
more years. Some studies [e.g. in Armstrong [27], Craig et al [28], and Westoby and Pearce [10] argue that 
simple models can sometimes produce accurate results similar to those obtained from sophisticated ones. Many 
sophisticated models also retain simple techniques in some of their sub-components. For example, intensities 
or	gdp-elasticities	are	commonly	used	in	engineering-economic	models	while	growth	rates	and	elasticities	are	
often used for forecasting independent variables in econometric approaches. In addition, these techniques can 
be	used	both	at	the	aggregated	and	disaggregated	levels.	The	virtue	of	simple	models	is	that	the	skill	and	data	
requirement	is	low	and	such	models	are	more	tractable	rather	than	the	hidden	assumptions	of	complex	models	
[29].	This	is	further	supported	by	Craig	et	al	[28]	who	found	that	many	long-term	forecasts	using	sophisticated	
models	for	the	USA	produced	inaccurate	forecasts	in	the	past.	Armstrong	[27]	echoes	the	same	view	and	States	
that “simple models can sometimes yield results as accurate as more complicated techniques.” Simple methods 
can be applied for both commercial and traditional energies, can be used both in urban and rural areas and 
they	could	be	used	to	include	the	effects	of	informal	activities	and	unsatisfied	demand.	However,	they	neither	
explain	the	demand	drivers,	nor	consider	technologies	specifically.	They	only	rely	on	the	value	judgments	of	
the	modeler,	wherein	lies	the	problem.	Further,	these	methods	do	not	rely	on	any	theoretical	foundation	and	
accordingly, they are ad-hoc approaches.

3.2.1.1 Simple approaches for energy demand forecasting [1]
Growth-rate based method 
Let	g	be	the	growth	rate	in	demand	and	D0	is	the	demand	in	year	0,	then	Dt	can	be	obtained	by

Dt D g t( )0 1= +

Eq. 63
Elasticity-based demand forecasting

Elasticity	is	generally	defined	as	follows:
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Eq. 64

where		t	is	a	period	given,	EC	is	energy	consumption	,	I	is	the	driving	variable	of	energy	consumption	such	as	
GDP,	value-added,	price,	income	etc.,	Δ	is	the	change	in	the	variable.	In	forecasting,	output	elasticity	or	income	
elasticity is commonly used. The change in energy demand can be estimated by assuming the percentage 
change in the output and the output elasticity. Normally, the elasticity is estimated from past data or gathered 
using	judgment.	The	output	change	is	taken	from	economic	forecasts	or	planning	documents.		

Specific consumption method

Energy	demand	is	given	by	the	product	of	economic	activity	and	unit	consumption	(or	specific	consumption)	
for	the	activity.		This	can	be	written	as	
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U=
Eq. 65

Where	A	is	level	of	activity	(in	physical	terms),	U	is	the	energy	requirement	per	unit	of	activity.	These	two	
factors	are	independently	forecast	and	the	product	of	the	two	gives	the	demand.

Ratio or intensity method

Energy	intensity	is	defined	as	follows:	

EI=E/Q

Where	EI	–	 energy	 intensity,	E	=	 energy	demand	 ,	Q	=	output.	This	 can	be	 rearranged	 to	 forecast	 energy	
demand	E	=	EI	x	Q	.	Using	the	estimates	for	Q	for	the	future	and	assumptions	about	future	energy	intensity,	the	
future energy demand can be estimated.

3.2.2 Sophisticated approaches
Sophisticated	models	employ	more	advanced	methodologies.	Models	can	be	classified	such	as	top-down	models,	
that tend to focus on an aggregated level of analysis, and bottom-up models, that identify the homogeneous 
activities	or	end-uses	for	which	demand	is	forecast.	Another	classification	relies	on	the	modeling	philosophy:
• econometric models are grounded in the economic theories and try to validate the economic rules empirically
• engineering-economy models (or end-use models) on the other hand attempt to establish accounting coherence 

using detailed engineering representation of the energy system
• combined	or	hybrid	models	attempt	to	reduce	the	methodological	divergence	between	the	econometric	and	
engineering	models	by	combining	the	features	of	the	two	traditions

3.2.2.1 Econometric models
This	 is	 a	 standard	 quantitative	 approach	 for	 economic	 analysis	 that	 establishes	 a	 relationship	 between	 the	
dependent variable and certain chosen independent variables by statistical analysis of historical data. The 
relationship so determined can then be used for forecasting simply by considering changes in the independent 
variables	and	determining	their	effect	on	the	dependent	variable.	
This	 approach	 has	 the	 theoretical	 appeal	 because	 of	 its	 close	 link	 with	 the	 theory	 of	 consumers	 and	 the	
production	theory.	The	set	of	potentially	important	variables	to	be	tested	in	the	model	can	be	drawn	from	the	
appropriate	theory	and	the	influence	of	these	factors	is	evaluated	statistically.	Normally	the	statistically	relevant	
factors are considered and included in the estimated demand function. It is usual to test alternative functional 
forms to identify the most appropriate one but as the number of independent variables increases, the set of 
possible	combinations	increases	exponentially,	making	the	choice	more	difficult.	
The	degree	of	sophistication	of	econometric	estimations	varies	widely:	 the	single	equation	 forms	 the	basic	
level	of	analysis.	The	market	share	approach	 is	also	used	 in	certain	cases,	especially	for	 transport	 fuels.	 In	
such	a	case,	the	total	demand	is	estimated	jointly	through	one	equation	and	the	market	share	of	each	fuel	is	
then estimated separately through another set of equations. More complex estimations based on “simultaneous 
equation expenditure share models” are also used. This approach has been applied to total aggregate energy 
demand	as	well	as	demand	in	individual	sectors	(industry,	transport,	residential,	etc.).	Even	the	econometric	
analysis	has	been	applied	to	the	entire	energy	system	using	the	energy	balance	framework	(e.g.	Adams	and	
Shachmurove, [30]).
Several studies have generally focused on the aggregated demand and considered a limited driver variables 
such as GDP and price, and do not capture the technological changes or other non-price related policies. Even 
the	results	from	these	sophisticated	methods	seem	to	depend	on	model	specification	and	the	strategies	for	data	
analysis.	For	limited	sample	sizes,	these	methods	are	unlikely	to	produce	appropriate	results.	Consequently,	
simple OLS estimates still continue, perhaps in the belief that even if they are non-stationary, there exists a co-
integration relationship so that the simple regression yields super-consistent results.

3.2.2.1.1  Sample of statistical and econometric models [31]
In this section is presented some sample of statistical and econometric models.
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Autoregressive Model
Autoregressive	(AR)	models	are	useful	when	the	value	to	be	forecasted	is	correlated	to	the	previous	values	in	
the time series. The AR model is:

Y c Y Y Yt t t t p t p= + + + + +− − −ε ϕ ϕ ϕ
1 1 2 2

.

Eq. 66

Where Yt indicates the time series value at time t, Yt−1 	indicates	the	value	recorded	at	time	t-i,	φ	represent	the	
AR	coefficients,	c	is	a	costant	and	ε t a	time-dependent	normal	random	variable.	Equation	can	be	rewritten	as:

Y c Yt t
i

p

i t i= + +
=

−∑ε ϕ
1

Eq. 67

where	p	represents	the	number	of	previous	time	series	values	to	be	incorporated	into	the	model.	This	variable	
p	is	known	as	AR	model	order.

Moving Average Model
Moving average (MA) models are constructed by calculating the running average of the error generated at each 
point	of	time.	Generally,	the	average	values	are	weighted.	The	moving	average	model	has	the	form

Y ct t t t q t q= + + + + +− − −ε θ ε θ ε θ ε
1 1 2 2

.

Eq. 68

Where Yt 	is	the	forecasted	value	at	time	t,	which	is	a	weighted	average	of	the	error	at	previous	instances	of	
time.	The	θ	values	are	the	coefficients	of	the	moving	average	terms.	Equation	can	be	rewritten	as:

Y c Yt t
j

q

j t j= + +
=

−∑ε θ
1

Eq. 69

where	q,	representing	the	number	of	previous	error	terms	in	the	model,	is	known	as	the	MA	model	order.

Autoregressive and Moving Average Model
An autoregressive and moving average (ARMA) model combines both autoregressive and moving average 
terms. It is one of the most commonly used order, ηi  is the parameter of the exogenous input at time i and  ε t
is a time-dependent random value that represents model error.

Autoregressive	Moving	Average	with	Exogenous	Input	Model
The	autoregressive	moving	average	with	exogenous	 input	 (ARMAX)	model	 is	an	extension	of	 the	ARMA	
model.	It	is	similar	to	the	ARX	model	with	the	additional	moving	average	terms.	The	ARMAX	model	is:

Y c Y dt
i

p

i t i t
j

q

j t j
i

b

i t i= + + + +
=

−
=

−
=

−∑ ∑ ∑
1 1 0

ϕ ε θ ε η

Eq. 70

Where Yt  is the forecasted value at time t, c is a constant, p is the autoregressive orders, q is the moving 
average	order,	φ’s	are	the	autoregressive	parameters,	θ’s	are	the	moving	average	parameters,	d	is	the	exogenous	
inputs,	b	is	the	exogenous	input	order,	ηi	is	the	parameter	of	the	exogenous	input	at	time	i	and	 ε t  is random 
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model error. 

Linear Regression Model
Linear	regression	(LR)	models	represent	the	relationship	between	a	set	of	independent	variables	and	a	dependent	
variable.	The	 dependent	 variable	 is	 correlated	with	 each	 of	 the	 independent	 variables.	The	 relationship	 is	
represented as:

Y c x x xt n n= + + + +α α α
1 1 2 2

.

Eq. 71

Where Yt  is the dependent variable and x x1 2 ,	 …	 xn  are the independent variables. Each of these 
independent	variables	has	a	linear	relationship	with	the	dependent	variable	Y.	The	symbols	α α α

1 2
,� ,�n  present 

the	coefficients	for	respective	independent	variables	and	are	known	as	the	parameters	of	the	linear	regression	
model.	Variable	c	represents	a	constant	offset.	Equation	can	be	rewritten	as:

Y c Xt t= +α
Eq. 72

Where  α α α α= [ ]1 2 n
Eq. 73

3.2.2.2 End-use models
The	end-use	approach	or	engineering-economy	approach	(also	known	as	the	“bottom-up”	approach)	is	another	
widely	used	energy	demand	forecasting	tradition	that	focuses	on	end-uses	or	final	needs	at	a	disaggregated	
level.	Bottom-up	models	offer		such		an		alternative		option		for		capturing		different		policy	dimensions	more	
closely.	This	method	involves	the	following	general	steps	[32]:
• Disaggregation of total energy demand into relevant homogenous end-use categories or modules;
• A systematic analysis of social, economic and technological factors to determine the long-term evolution and 
the	identification	of	interrelationships;

• Organization of determinants into a hierarchical structure;
• Formalization of the structure in mathematical relationships;
• Snap-shot	view	of	Reference	year

 ○Foundation of the forecasting exercise
 ○All relevant data and mathematical relationships developed
 ○Reference	year	is	taken	as	the	most	recent	year	for	which	data	is	available

• Scenario design for the future;
• Quantitative	forecasting	using	mathematical	relations	and	scenarios;

These	steps	are	presented	in	a	visual	form	in	figure	below	[1]:
 

Efficiency of  
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Final energy  
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Figure 5: scheme of the end-use approach logic
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A	wide	variety	of	models	have	been	developed	following	this	alternative	approach	but	the	models	differ	in	
terms of their level of disaggregation, technology representation, technology choice, model goal, and the 
level	of	macro-economic	integration	[3].	Generally	end-use	models	either	follow	a	simulation	approach	or	an	
optimization	goal,	while	the	technology	representation	can	be	either	explicit	(where	specific	technologies	are	
considered)	or	stylistic.	The	macro-economic	linkage	is	often	restricted	to	ad-hoc	or	judgmental	use	of	key	
driver	variables	but	some	models	are	driven	by	a	separate	macro-model	that	captures	the	interaction	with	the	
macro-economy.
As	most	of	the	end-use	models	do	not	rely	on	the	neo-classical	economic	paradigm,	it	brings	a	very	different	
perspective on energy system analysis. These models are capable of capturing rural-urban divide and can 
include informal activities. They can also capture the diversity of actual processes and technologies of energy 
conversion and use, and accordingly do not need to rely on stylistic, aggregate and a single old representation 
of technologies. As these models do not rely only on past history or evolution, they can capture structural 
changes	and	new	technological	developments.	In	fact,	 this	is	one	of	the	major	strengths	of	this	category	of	
models.	 	Through	 the	 formulation	of	different	 scenarios	 these	models	 try	 to	 capture	different	development	
trajectories	and	the	influences	of	policies	on	economic	development.	However,	accounting-type	end-use	models	
suffer	from	their	inability	to	capture	price-induced	effects	alongside	non-price	policies,	thereby	reducing	their	
effectiveness	for	certain	policy	analyses.

3.2.2.3 Input-output models
The	 input-output	method	 provides	 a	 consistent	 framework	 of	 analysis	 and	 can	 capture	 the	 contribution	 of	
related	 activities	 through	 inter-industry	 linkages	 in	 the	 economy.	Thus	 the	 input-output	method	 is	 able	 to	
capture	the	direct	energy	demand	as	well	as	indirect	energy	demand	through	inter-industry	transactions.	This	
feature	makes	this	method	an	interesting	analytical	tool.
The data requirements of basic input-output analysis are very demanding. The assumption of constant 
input-output	 coefficient	which	 implies	 that	 the	 input	 and	output	 changes	 are	 both	 strictly	 proportional	 and	
invariant over time is a restrictive assumption. These restrictions prohibit an analysis of inter-fuel substitution 
possibilities	and	allowance	for	substitution	among	non-energy	inputs.	The	assumptions	implied	about	relative	
prices	remaining	constant	can	be	quite	restrictive	if	relative	prices	were	to	vary	significantly	in	practice.	This	
may or may not be crucial, depending on the particular developing country. The static input-output models do 
not contain theory of investment behavior or treatment of technical change behavior.
Although	this	is	a	disaggregated	approach,	the	details	normally	pertain	to	the	industrial	activities,	while	other	
actors or agents are normally represented by a single representative entity. Thus despite its detailed analytical 
structure,	the	rural-urban	divide	is	hardly	captured.	Similarly,	the	technological	diversity	is	difficult	to	capture	
within	a	given	sector	of	activity.	Moreover,	as	these	tables	are	based	on	national	accounting	information,	they	
exclude	 informal	 activities	 and	non-monetary	 transactions.	 It	 is	 also	difficult	 to	 use	 this	 approach	 for	 new	
demand	or	technologies	as	the	input-output	relations	have	to	be	established	across	sectors.	However,	price-
induced policies are easily captured through these models.

3.2.2.4 Scenario approach
Scenarios	refer	to	a	“set	of	illustrative	pathways”	that	indicate	how	“the	future	may	unfold”	[33].	They	do	
not	try	to	capture	all	possible	eventualities	but	try	to	indicate	how	things	could	evolve.	The	strength	of	the	
scenario approach is its ability to capture structural changes explicitly by considering sudden or abrupt 
changes in the development paths. The actual level of disaggregation and inclusion of traditional energies 
and informal sector activities depend on model implementation. Theoretically it is possible to include 
these	aspects	but	how	much	is	actually	done	in	reality	cannot	be	generalized.	Moreover,	the	development	
of	 plausible	 scenarios	 that	 could	 capture	 structural	 changes,	 emergence	 of	 new	 economic	 activities	 or	
disappearance	of	activities	is	not	an	easy	task.

3.2.2.5 Hybrid approaches
This	approach	relies	on	a	combination	of	two	or	more	methods	with	the	objective	of	exploring	the	future	in	a	
better	way.	The	hybrid	methods	have	emerged	to	overcome	the	specific	limitations	of	individual	approaches.
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3.3 Energy demand forecast methods [34]

The mathematical modeling of the energy demand is necessary to engage the forecast problem and to equip 
the	future	scenarios	of	a	country	with	the	best	models	possible	to	program	the	right	balance	between	supply	
and generation. It is impossible to build up an ‘exact’ physical model for the energy demand because of the 
large	number	of	influence	factors	and	their	uncertainty.	The	quality	of	the	demand	forecast	methods	depends	
significantly	on	the	availability	of	historical	consumption	data	as	well	as	on	the	knowledge	about	 the	main	
influence	parameters	on	the	energy	consumption.	These	factors	also	determine	the	selection	of	the	best	suitable	
forecast tool. Generally, there is no ‘best’ method, therefore it is very important to proof the available energy 
data basis and the exact conditions for the application of the tool.

3.3.1 General modeling aspects
The	quality	of	the	forecast	methods	mainly	depends	on	the	available	historical	data	as	well	as	on	the	knowledge	
about	the	factors	influencing	the	energy	demand.	The	historical	energy	consumption	data	are	divided	into	clusters	
depending	on	seasonal	effects.	Thus	the	modeling	process	must	be	specified	for	each	cluster.	Furthermore,	the	
time horizon of the forecast determines the type of the applied method (from short-term to long-term forecast 
tools).
The	figure	below	shows	an	overview	of	the	most	common	used	forecast	methods	which	are	described	in	this	
section.
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this schedule the generation process must be supervised by the energy control system using 
the data management illustrated in fig. 1.  
It is obviously that these processes require the detailed knowledge of the energy demand of 
the delivery system. Especially for cogeneration systems it is important to know the 
coincidence of the power and heat demand. CHP units are only able to generate electricity 
efficiently, when the produced heat is simultaneously used on the demand side.  

3. Energy demand forecast methods 

3.1 General modeling aspects 
As described in the previous section the quality of the forecast methods mainly depends on 
the available historical data as well as on the knowledge about the factors influencing the 
energy demand. With the help of the energy data analysis (see 2.1) the necessary data for the 
training, test, and validation sets are provided to realize the modeling process (see 2.3).  The 
historical energy consumption data are divided into clusters depending on seasonal effects. 
Thus the modeling process must be specified for each cluster. Furthermore the time horizon 
of the forecast determines the type of the applied method. Short- term forecasting calculates 
the power demand for the period of the next view minutes. This task plays an important 
role for the generation process, but also for the implementation of peak shifting applications 
at the consumer's side. The forecast of the day-ahead and of the weekly energy demand will 
be realized by medium-term methods. Based on the day-ahead forecast the operation 
schedule of the power plant units will be optimized (see 2.4). Finally long-term forecast tools 
estimate the future demand for periods of several month or years. These methods are 
necessary for the portfolio management and for the energy logistic (fig. 1).  
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Fig. 4. Forecast methods 

Fig. 4 shows an overview of the most common used forecast methods which are described 
in this section. The methods can be divided into the following three branching pairs: 
empirical and model-based, extrapolation and causal, and static and dynamic (Fischer, 
2008). Empirical methods are useful when only few or no historical data are available, when 
the past does not significantly affect the future, or when explanation and sensitivity analysis 
are not required. A popular approach is that of historical analogies implemented in the 

www.intechopen.com

Figure	6:	overview	of	the	most	common	used	forecast	methods

3.3.2 Reference method
The	pure	reference	method	works	without	a	mathematical	model.	The	basic	idea	of	this	simple	method	is	to	find	
a situation in an energy data base of historical data that is similar to the one that has to be predicted. A set of 
explanatory	variables	is	defined	and	similarity	between	situations	is	measured	by	these	variables.	The	method	
will	be	described	by	an	example:	to	calculate	the	heat	or	power	demand	for	a	Monday,	with	a	mean	predicted	
temperature	of	+5	deg	C	 the	 algorithm	 is	 simply	 looking	 in	 a	data	base	 for	 another	Monday	with	 a	mean	
temperature	close	to	+5	deg	C.	Thus	the	historical	consumption	data	for	that	day	are	used	as	the	prediction.	The	
advantage	of	the	method	is	that	it	is	simple	to	implement	and	the	results	are	easily	to	be	interpreted.	However,	
the	disadvantages	are	numerous.	Although	the	implementation	of	the	method	seems	to	be	straightforward,	it	
becomes complicated if the number of criterions increases. If for instance hourly temperatures are used instead 
of daily mean temperature the measures of similarity are no longer so obvious. With an increasing number of 
explanatory	variables,	the	probability	to	find	no	data	set	that	is	similar	according	to	all	criteria	increases	[35].	
In	 practical	 applications	 the	 reference	method	 is	 used	 in	 combination	with	 some	 other	 adaptation	 criteria	
depending on the behavior of the energy consumption in the past. Additionally, the reference method is 
supported	by	a	regression	model	describing	the	climate	influence	factors	and	time	dependent	energy	consuming	
impacts	caused	by	production	factors	in	industrial	enterprises.	On	the	other	side	the	knowledge	of	the	energy	
consumption of selected historical reference days can improve the quality of model based methods.
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3.3.3 Time series analysis
This	method	doesn’t	explain	how	the	values	of	the	variable	being	projected	are	determined.	The	variable	to	be	
predicted	is	purely	expressed	as	a	function	of	time,	neglecting	other	influence	factors.	This	function	of	time	is	
obtained as the function that best explains the available data, and is observed to be most suitable for short-term 
projections.	A	time	series	is	often	the	superposition	of	the	following	terms	describing	the	energy	demand	as	
time dependent output y(t):
• Long-term trend variation (T)
• Cyclical variation (C)
• Seasonal variation (S)
• Irregular variation (R)
The	trend	variation	T	describes	the	gradual	shifting	of	the	time	series,	which	is	usually	due	to	long	term	factors	
such as changes in population, technology, and economy. The cyclical component S represents multiyear 
cyclical movements in the economy. The periodic or seasonal variation in the time series is, in general, caused 
by	the	seasonal	weather	or	by	fixed	seasonal	events.	The	irregular	component	contains	the	residual	of	the	time	
series if the trend, cyclical and seasonal components are removed from the time series. These terms can be 
combined to mixed time series model:

Additive model     y t T t S t C t R t( )= ( )+ ( )+ ( )+ ( )�� �� �� ��
Eq. 74

Hybrid model    
y t T t S t R t( ) = ( ) ( )+ ( )

Eq. 75

In addition to the univariate time series analysis, autoregressive methods provide another modeling approach 
requiring only data on the previous modeled variable. Autoregressive models (AR) describe the actual output  
yt  by a linear combination of the previous time series yt−1 , yt−2 , . . . , yt p− and of an actual impact at:

y y y y at t t p t p t= + + + +− − −ϕ ϕ ϕ1 1 2 2

Eq. 76

The	autoregressive	coefficients	have	to	be	estimated	on	the	basis	of	measurements.	The	time	series	method	
has the advantage of its simplicity and easy use. It is assumed that the pattern of the variable in the past 
will	continue	into	the	future.	The	main	disadvantage	of	this	approach	lies	in	the	fact	that	it	ignores	possible	
interaction	of	the	variables.	Furthermore,	the	climate	impacts	and	other	influence	factors	are	neglected.		

3.3.3.1 Machine Learning Techniques [31]
Machine learning techniques can be used for input selection and for learning the model dimension and 
parameters.	It	is	possible	to	incorporate	this	to	forecast	a	time	series,	with	existing	statistical	and	econometrics	
modeling techniques and to combine the results using an ensembler. Machine learning techniques are capable 
of	translating	domain	knowledge	and	are	able	to	provide	equivalent	accuracy	in	forecasting	without	having	
complete	 domain	 knowledge	 compared	 to	 the	 accuracy	 obtainable	 by	 having	 domain	 knowledge.	 Several	
machine	solve	classification	problems,	but	they	also	can	be	applied	to	regression	problems.	

3.3.3.1.1 Ensemble Learning
Ensemble learning combines results from other learners to provide a summary of results. Majority voting treats 
each	member	(output	from	other	machine	learning	techniques)	equally	and	selects	one	output	as	a	winner,	that	
it is the output chosen by the majority of the members. The result is obtained once the outputs from all members 
are available. 
While majority voting selects a single output, ensemble-regression uses the outputs from all of the component 
models	 in	determining	 the	final	output.	 It	non	 linearly	 transforms	 the	component	model	outputs	and	 learns	
weights	for	each	of	 the	transformed	outputs.	If	component	model	outputs	were	not	 transformed,	ensemble-
regression	would	 be	 equivalent	 to	 linear	 regression,	where	 the	 component	model	 outputs	 are	 independent	
variables,	and	the	weights	are	regression	parameters.	Thus	it	combines	the	outputs	from	different	modeling	
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techniques.
The	figure	below	shows	outputs	from	N	forecasting	techniques	and	they	are	combined	using	linear	regression	
using a least square regression method
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Figure 7: ensemble regression

3.3.3.1.2 Regression Tree
Regression tree is used for forecasting and it is a special form of a binary decision tree used for building non-
linear	regression	models.	A	binary	decision	tree	is	a	machine	learning	technique	used	for	the	classification,	
and	a	 regression	 tree	 is	used	for	 regression.	Like	a	binary	decision	 tree,	 the	decision	nodes	 in	a	 regression	
tree represent a decision based on the value of a given attribute. The leaves of the tree are learned using the 
forecasted values and there are fast and reliable algorithms available to learn the nodes and leaves.

3.3.3.1.3 Support Vector Regression
Support vector regression (SVR) is a nonlinear regression technique built on top of the support vector machine 
technology	and	it	uses	quadratic	programming	to	find	the	optimized	margins	(i.e.,	the	margin	that	fits	the	data	
most accurately). SVR is easily implemented through the support vector machine library and commonly used 
for	energy	demand	forecasting.	It	is	possible	to	select	different	kernel	functions	which	allows	modeling	the	
nonlinearity. The target is to minimize:

1

2

2w

Eq. 77
Subject to

x bt = + ( )( ) +ϕ

Eq. 78
y w x bt i− + ( ) − <( ϕ 

Eq. 79
(w x b yi t+ ( ) + − <ϕ 

Eq. 80

where	ε	is	the	error	boundary.	This	SVR	is	called	ε-SVR.	An	example	of	that	is	showed	in	the	figure	below.
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Figure 2.5 – Support vector regressions 

Econometrics and statistical techniques are capable of building linear models. On 

the other hand, the machine learning techniques are suitable for modeling the nonlinearity. 

This thesis incorporates these techniques. The next chapter describes how these techniques 

are used in this thesis. 

2.3 Literature Review 

Econometrics and statistical models and machine learning forecasting techniques 

are presented in the previous two sections. This section provides a background on how 

these techniques are used by other researchers. This section also describes works that 

influence this thesis. This section contains two subsections. The first subsection describes 

previous works on model order searching of the autoregressive moving average (ARMA) 

models and autoregressive and moving average with exogenous inputs (ARMAX) models. 

Figure 8: support vector regressions

3.3.4 Regression models
Regression	models	describe	the	causal	relationship	between	one	or	more	input	variable(s)	and	the	desired	output	
as dependent variable by linear or nonlinear functions. In the simplest case the univariate linear regression 
model	 describes	 the	 relationship	 between	 one	 input	 variable	 x	 and	 the	 output	 variable	 y	 by	 the	 following	
formula:

y f x a a a a x, ,= ( )0 1 0 1= +

Eq. 81

Thus	geometrically	 interpreted	a	straight	 line	describes	 the	relationship	between	y	and	x.	The	shape	of	 the	
straight line is determined by the so called regression parameters a0 and a1. For given measurements x1 , x2 , . . 
. , xn   and y1 , y2 , . . . , yn  of the variables x and y the parameters are calculated such that the mean quadratic 
distance	between	the	measurements yi 	(i=1,	.	.	.	,n)	and	the	model	values	 yi on the straight line is minimized. 
That	means	the	following	optimization	problem	is	to	be	solved:

Q a a y f x a a Min
i

n

i i a
a

0 1

1

0 1

2

1

0, ( , , )( ) = − ( ) →
=
∑

Eq. 82

The	 calculated	 regression	 parameters	 represent	 a	 so	 called	 least	 squares	 estimation	 of	 the	 fitting	 problem	
(Draper & Smith, 1998).
The	 regression	model	 can	 be	 extended	 to	 a	multivariate	 linear	 relationship	where	 the	 output	 variable	 y	 is	
influenced	by	p	inputs	 x1 , x2 , . . . , xp :

y f x a a a x a x a xp p...= ( ) = + + +0 1 1 2 2

 
Eq. 83

We	define	the	following	notations:
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where	the	vector	y	contains	the	measurements	of	the	output	variable,	a	represents	the	vector	of	the	regression	
parameters, and the matrix X contains the measurements xij  of the  ith  observation of the input x j . Thus 
the	 least	 squares	 estimation	 of	 the	multivariate	 linear	 regression	 problem	will	 be	 obtained	 by	 solving	 the	
minimization	task:
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 Eq. 85

The least squares estimation of the regression parameter vector a represents the solution of the normal equation 
system referring to the minimization problem:

X Xa X yT T=
Eq. 86

Regarding	the	special	structure	of	this	linear	system,	adapted	methods	like	Cholesky	or	Housholder	procedures	
are available to solve X Xa X yT T= 	using	the	symmetry	of	the	coefficient	matrix	(Deuflhard	&	Hohmann,	
2003). The model output can be described as

a=y X
Eq. 87

where	 the	 vector	 ŷ	 contains	 the	model	 output	 values yi 	 (i=1,	 .	 .	 .	 ,	 n)	 and	 a	 ̂	 represents	 the	 vector	 of	 the	
estimated	regression	coefficients	a j (j=1,	.	.	.	,	p)	as	the	solution	of	 X Xa X yT T= .
The	 results	of	 the	 regression	analysis	must	be	proofed	by	a	 regression	diagnostic.	That	means	we	have	 to	
answer	the	following	questions:
• Does	a	linear	relationship	between	the	input	variables	 x1 , x2 , . . . , xp and the output y really exist?
• Which input variables are really relevant?
• Is	the	basic	data	set	of	measurements	consistent	or	are	there	any	“out	breakers”?
With	the	help	of	the	coefficient	of	determination	B	we	can	proof	the	linearity	of	the	relationship.
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Eq. 88

where	 yi represent the calculated model values given by y Xa= and y is the arithmetic mean value of the 
measured outputs yi . B ranges from 0 to 1. Values of B in the near of 1 indicate, hat there exists a linear 
relationship	 between	 the	 regarded	 input	 and	 output.	 To	 identify	 the	 most	 significant	 input	 variables	 the	
modeling	 procedure	must	 be	 repeated	 by	 leaving	 one	 of	 the	 variables	 from	 the	model	 function	within	 an	
iteration	process.	The	coefficient	of	determination	and	the	expression	s²	=	SSR/(n-p-1)	indicate	the	significance	
of	the	left	variable.	s²	represents	the	estimated	variance	of	the	error	distribution	of	the	measured	values	of	y.	
Finally the analysis of the individual residuals r y yi i i= − gives	some	hints	for	the	existence	of	“out	breakers”	
in the basic data set.
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Multivariate	 linear	 regressions	are	widely	used	 in	 the	field	of	 energy	demand	 forecast.	They	are	 simple	 to	
implement, fast, reliable and they provide information about the importance of each predictor variable and the 
uncertainty	of	the	regression	coefficients.	Furthermore	the	results	are	relatively	robust.	Nonlinear	regression	
models	are	also	available	for	the	forecast.	But	in	this	case	the	parameter	estimation	becomes	more	difficult.	
Furthermore	the	nonlinear	character	of	the	influence	variable	must	be	guaranteed.	Regression	based	algorithms	
typically	work	in	two	steps:	first	the	data	are	separated	according	to	seasonal	variables	(e.g.	calendar	data)	and	
then a regression on the continuous variables (meteorological data) is done. That means a regression analysis 
must	be	done	for	each	seasonal	cluster	following	the	algorithm:
1. Analysis of the available energy data
2. Splitting the historical energy consumption data into seasonal clusters
3. Identifying the main meteorological factors on the energy demand
4. Regression analysis
5. Validation of the model
6. Integration of the sub models

3.3.4.1 A Simple Regression Model for Electrical Energy Forecasting [36]
In this section is presented a simple Regression Analysis (RA) based model for long-term forecasting of India’s 
sector-wise	electrical	energy	demand	involving	per	capita	GDP	and	Population.	RA	is	a	technique	used	for	
analysing the numerical data.  The dependent variable yi 	is	a	linear	combination	of	the	parameters,	α,	and	the	
independent variables, yi 	,	which	could	be	linear	or	nonlinear.	The	simple	linear	and	multiple	linear	regressions	
are	the	two	basic	types	of	linear	regression.	For	instance,	in	simple	regression	of	N	data	points’modelling,	there	
is one independent variable, xi ,	and	two	parameters,	 	α0 and α1 ,	which	yield	a	straight	 line,	called	fitted	
regression line:

y x e i Ni i i i= + + = …α α
0

1 ,

Eq. 89

In multiple linear regressions, there are more than one independent variable or function of independent 
variables.	For	example,	the	preceding	regression	with	 xi

2 term gives a parabola:

y x x e i Ni i i i= + + + = …α α α
0 1 2

2
1 ,

Eq. 90

Although the right-hand side expression is quadratic, it is still considered to be linear regression, as it involves 
linear parameters, α0 , α1 and α2 .
In the general multiple RMs, there may be m independent variables:

y x x e i Ni i m mi i= + +…+ + = …α α α
0 1 1

2
1 ,

Eq. 91

Where ei 	is	the	error	term,	which	represents	the	unexplained	variation	in	the	dependent	variable	and	is	treated	
as a random variable. In practice, the performance of Regression Models depends on the form of the data-
generating	process	and	its	relation	to	the	regression	approach	used.		Typically,	the	best	fit	is	evaluated	by	using	
the least squares method, although other criteria are also used.
After	the	overview	of	regression	analysis,	it	can	be	moved	to	the	objective:	to	develop	a	simple	forecasting	
model	for	predicting	the	sector-wise	electrical	energy	demand,	unlike	existing	models	of	estimating	the	net	
energy	demand,	for	the	future	years	with	least	input	data.
Per	capita	GDP	and	population	are	linked	with	the	total	energy	consumption	of	any	country	and	can	be	predicted.	
They	are	used	as	inputs	in	the	long	term	forecasting	model	taken	into	account	in	this	section,	which	fails	to	
develop	a	tool	for	obtaining	the	required	input	data	for	the	future	years,	thereby	making	the	model	incomplete.
The	proposed	model	comprises	two	regression	models,	the	former	one	predicts	the	population	and	per	capita	
GDP	for	a	given	future	year	and	 the	 later	one	estimates	 the	sector	wise	energy	demand	by	considering	 the	
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output	of	the	former	as	input.	It	can	be	seen	in	the	figure	below.
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Figure 9: proposed forecasting model

The per capita GDP and the population data during the period of 1980-2012, are used to develop the model. 
The	RA	is	applied	to	relate	the	year	with	per	capita	GDP	and	population	growth.	Then	the	per	capita	GDP	
and	population	growth	are	related	with	sector	wise	electrical	energy	demand	through	RA	to	construct	RM-2.	
These	two	models	are	combined	to	form	the	proposed	model.	The	proposed	model	receives	the	year	of	forecast	
as	the	input	and	predicts	initially	the	population	growth	and	per	capita	GDP,	which	are	further	processed	to	
perform	forecasting	of	sector-wise	energy	demand.		The	intermediate	results	in	terms	of	per	capita	GDP	and	
the	population,	offered	by	RM-1,	for	four	different	previous	years	are	presented	with	the	actual	values	in	the	
following	table.
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Figure 10: results for previous years

The	 corresponding	 predictions	 of	 sector	 wise	 energy	 demand,	 obtained	 by	 RM-2,	 along	 with	 their	 mean	
absolute	percent	error	(MAPE)	are	also	included	in	the	same	table.	The	forecasted	sector	wise	energy	demand	
along	with	 intermediate	 per	 capita	GDP	 and	 population	 during	 the	 years	 2013-	 2025	 are	 presented	 in	 the	
following	table.
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Figure 11: results of the proposed model
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The	policy	makers	of	the	government	as	well	as	the	energy	utilities	should	take	appropriate	steps	for	construction	
of	new	power	plants	based	on	the	electrical	energy	requirement	by	the	year	2025.

3.3.5 Neural networks
Neural	networks	 represent	adaptive	systems	describing	 the	 relationship	between	 input	and	output	variables	
without	explicit	model	functions.	Neural	networks	are	widely	used	in	the	field	of	energy	demand	forecast	[37].	
The	basic	elements	of	neural	networks	are	the	neurons,	which	are	simple	processing	units	linked	to	each	other	
with	directed	and	weighted	connections.	Depending	on	their	algebraic	sign	and	value	the	connections	weights	
are inhibiting or enhancing the signal that is to be transferred. Depending on their function in the net, three 
types of neurons can be distinguished: 
• The	units	which	receive	information	from	outside	the	net	are	called	input	neurons.
• The	units	which	communicate	information	to	the	outside	of	the	net	are	called	output	neurons.
• The remaining units are called hidden neurons because they only send and receive information from other 

neurons and thus are not visible from the outside.

The	calculated	output	is	processed	by	an	activation	function,	and	the	final	output	is	generated.	The	calculation	
taking	place	in	a	single	neuron	is:
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Eq. 92

where	x	represents	the	input	vector,	y	is	the	output,	w	is	the	weight	vector,	b0 is the bias and f is the activation 
function. Most commonly, a sigmoid function is used as an activation function:
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Eq. 93

To	support	nonlinearity,	a	neural	network	with	more	than	one	neuron	is	needed.	Neural	networks	can	have	
multiple	 layers,	where	each	of	 the	 layers	consists	of	one	or	more	neurons.	The	neurons	from	one	layer	are	
connected	 to	 the	adjacent	 layer	neurons	and	a	multilayer	neural	network	contains	an	 input	 layer,	an	output	
layer	and	one	or	more	hidden	layers,	as	suggested	by	figure	below,	where	there	is	a	multilayer	artificial	neural	
network.
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with more than one neuron is needed. Neural networks can have multiple layers, where 

each of the layers consists of one or more neurons. The neurons from one layer are 

connected to the adjacent layer neurons. A multilayer neural network contains an input 

layer, an output layer and one or more hidden layers, as suggested by Figure 2.4. 

 

Figure 2.4 – Multilayer neural network 

Figure 2.4 shows a multilayer feed-forward artificial neural network. A multilayer 

artificial neural network consists of fully or partially connected neurons and often can 

perform as an effective nonlinear model. The weight of the connections between the 

neurons can be learned using a suitable training algorithm. ANNs are used widely for 

energy demand forecasting [2, 10, 12]. This thesis uses an artificial neural network to 

build nonlinear forecasting models. 
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Figure	12:	multilayer	neural	network
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Generally a neural net consists of one input and one output layer, but it can have several hidden layers.
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Figure	13:	structure	of	a	neural	network

The	pattern	of	the	connection	between	the	neurons	is	called	the	network	topology.	In	the	most	common	topology	
each	neuron	of	a	hidden	layer	is	connected	to	all	neurons	of	the	preceding	and	the	following	layer.	Additionally	
in	so-called	feedforward	networks	the	signal	is	allowed	to	travel	only	in	one	direction	from	input	to	output.
To	calculate	its	new	output	depending	on	the	input	coming	from	the	preceding	units	(or	from	outside)	a	neuron	
uses three functions [38]:
• the	inputs	to	the	neuron	j	from	the	preceding	units	combined	with	the	connection	weights	are	accumulated	to	

yield the net input.
• value is subsequently transformed by the activation function fact ,	which	also	takes	into	account	the	previous	

activation value and the threshold θ j 	(bias)	of	the	neuron	to	yield	the	new	activation	value	of	the	neuron.
• final	output	oj can	be	expressed	as	a	function	of	the	new	activation	value	of	the	neuron.

In most of the cases this function fout ,  is not used so that the output of the neurons is identical to their 
activation	values	like	in	the	figure	below.	
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Figure 14: structure of a neuron

Three sigmoid (S-shaped) activation functions are usually applied: the logistic, hyperbolic tangent and limited 
sine function. The formulas of the functions are given by:
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A	neural	network	has	to	be	configured	such	that	the	application	of	a	set	of	inputs	produces	the	desired	set	of	
outputs.	This	is	obtained	by	training,	which	involves	modifying	the	connection	weights.	In	supervised	learning	
methods,	after	initializing	the	weights	to	random	values,	the	error	between	the	desired	output	and	the	actual	
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output	to	a	given	input	vector	is	used	to	determine	the	weight	changes	in	the	net.	During	training,	input	pattern	
after	input	pattern	is	presented	to	the	network	and	weights	are	continually	adapted	until	for	any	input	the	error	
drops	to	an	acceptable	low	value	and	the	network	is	not	overfitted.	In	the	case	that	a	network	has	been	adjusted	
too many times to the patterns of the training set, it may in consequence be unable to accurately calculate samples 
outside	of	the	training	set.	Thus	by	overlearning	the	neural	network	loses	its	capability	of	generalization.	One	
way	to	avoid	overtraining	is	by	using	cross-validation.	The	sample	set	is	split	into	a	training	set,	a	validation	
set	and	a	test	set.	The	connection	weights	are	adjusted	on	the	training	set,	and	the	generalization	quality	of	
the	model	is	 tested,	every	few	iterations,	on	the	validation	set.	When	this	performance	starts	 to	deteriorate,	
overlearning	begins	and	the	iterations	are	stopped.	The	test	set	is	used	to	check	the	performance	of	the	trained	
neural	network	[39].	The	most	widely	used	algorithm	for	supervised	learning	is	the	backpropagation	rule	where	
it	trains	the	weights	and	the	thresholds	of	feedforward	networks	with	monotonic	and	everywhere	differentiable	
activation functions.
 

Figure	15:	backpropagation	learning	rule

Mathematically,	the	backpropagation	rule	is	a	gradient	descent	method,	applied	on	the	error	surface	in	a	space	
defined	by	the	weight	matrix.	The	algorithm	involves	changing	each	weight	by	the	partial	derivative	of	the	
error	surface	with	 respect	 to	 the	weight	 [40].	Typically,	 the	error	E	of	 the	network	 that	 is	 to	be	 reduced	 is	
calculated by the sum of the squared individual errors for each pattern of the training set. This error depends 
on	the	connection	weights:
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Where Ep is the error for one pattern p, t pj  is the desired output from the output neuron j and opj is the real 
output	from	this	neuron.	The	gradient	descent	method	has	different	drawbacks,	which	result	from	the	fact	that	
the	method	aims	to	find	a	global	minimum	with	only	information	about	a	very	limited	part	of	the	error	surface.	
To	allow	a	faster	and	more	effective	learning	the	so-called	momentum	term	and	the	flat	spot	elimination	are	
common	extensions	to	the	backpropagation	method.	The	great	disadvantage	of	neural	networks	is	the	large	
amount of computing time.
In	order	to	use	neural	networks	for	the	energy	demand	forecast	the	following	algorithm	must	be	realized:	
1. Preliminary	analysis	of	the	main	influence	factors	on	the	energy	demand
2. Design	of	the	topology	of	the	Neural	Network
3. Splitting the basic data into a training set, a validation set and a test set
4. Test and selection of the best suitable activation function
5. Application	of	the	backpropagation	learning	rule	with	momentum	term	and	flat	spot	elimination
6. Validation and comparison of the modeling results
7. Selection	of	the	best	suitable	network
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Capitolo 4 | Energy analysis and projections
In	this	chapter	it	is	begun	to	introduce	what	will	be	the	objective	of	this	thesis:	the	analysis	of	data	and	energy	
policies	of	a	State,	taken	as	a	case	study,	and	then	proceed	to	future	energy	projections	through	the	use	of	a	
specific	tool,	in	our	case	LEAP.	The	chapter	starts	with	the	presentation	of	an	example	of	analysis	and	energy	
projection,	 the	World	 Energy	Outlook,	 that	 contains	 the	 approach	 that	 has	 been	 followed	 for	 the	 creation	
of scenarios. It then goes on to describe LEAP and to emphasize the choice of the tool than other possible 
candidates, analyzing and comparing them.

4.1 World Energy Outlook [41]

The	annual	World	Energy	Outlook	(WEO)	is	the	International	Energy	Agency’s	flagship	publication	and	it	is	now	
the	world’s	most	authoritative	source	of	energy	market	analysis	and	projections,	providing	critical	analytical	
insights	 into	 trends	 in	 energy	 demand	 and	 supply	 and	what	 they	mean	 for	 energy	 security,	 environmental	
protection and economic development.
The	WEO	 projections	 are	 used	 by	 the	 public	 and	 private	 sector	 as	 a	 framework	 on	which	 they	 can	 base	
their	policy-making,	planning	and	investment	decisions	and	to	identify	what	needs	to	be	done	to	arrive	at	a	
supportable and sustainable energy future.
The	WEO	received	numerous	awards	from	governments	and	energy	industry	for	its	analytical	excellence	and	it	
represents	the	leading	source	for	medium	to	long-term	energy	market	projections,	extensive	statistics,	analysis	
and advice for both governments and the energy business. Using a Reference Scenario based on no change in 
current	policies,	it	enables	policy-makers	to	evaluate	their	current	path.
This	Outlook	incorporates	all	the	latest	data	and	developments	to	produce	a	comprehensive	and	authoritative	
analysis	of	medium-	and	longer-term	energy	 trends,	with	projections	for	 the	first	 time	extended	to	2040.	It	
complements	a	full	set	of	energy	projections	with	strategic	insights	into	their	meaning	for	energy	security,	the	
economy and the environment.
The	World	Energy	Outlook	makes	 use	 of	 a	 scenario	 approach	 to	 examine	 future	 energy	 trends	 relying	 on	
the	World	Energy	Model.	For	the	Outlook	2014,	detailed	projections	for	three	scenarios	were	modeled	and	
presented:	the	New	Policies	Scenario,	the	Current	Policies	Scenario	and	the	450	Scenario.	The	scenarios	differ	
with	respect	to	what	is	assumed	about	future	governments	policies	related	to	the	energy	sector.	
The	 Current	 Policies	 Scenario	 embodies	 the	 effects	 of	 only	 those	 government	 policies	 and	measures	 that	
had	been	enacted	or	adopted	by	mid-2014.	The	New	Policies	Scenario	takes	into	account	those	policies	and	
measures	that	countries	are	currently	considering	and	are	assumed	to	adopt	and	implement,	taking	account	of	
technological	and	cost	factors,	the	political	context	and	market	barriers.	IEA	use	an	often	cautious	method	of	
the	extent	to	which	policy	proposal	will	be	implemented	and	it	considers	institutional,	political	and	economic	
obstacles	 as	well	 as,	 in	 some	 cases,	 a	 lack	 of	 detail	 in	 announced	 intentions	 and	 about	 how	 they	will	 be	
implemented.
The	450	Scenario	illustrates	what	it	would	take	to	achieve	an	energy	trajectory	consistent	with	limiting	the	
long-term increase in average global temperature to 2°C by limiting the concentration of greenhouse gases 
in the atmosphere at a level above 450 parts per million(ppm) [11]. The basis of the 450 scenario is therefore 
different.	Rather	than	being	a	projection	influenced	by	policy	actions,	it	deliberately	selects	a	plausible	energy	
pathway	to	achieve	the	objective	of	the	GHG	emissions	reduction.
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Current Policies 
Sce-nario

New Policies Scenario 450 Scenario

Definitions Government policies that had 
been enacted or adopted by 
mid- 2014 continue un-chan-
ged

Existing policies are maintai-
ned and recently announced 
commit-ments and plans, 
includ-ing those yet to 
be for-mally adopted, are 
im-plemented in a cautious 
manner

Policies are adopted that put 
the	world	on	a	path-way	that	
is	consistent	with	having	
around a 50% chance of 
limiting the global increase in 
av-erage temperature to 2°C 
in the long term, com-pared 
with	pre-industrial	levels

Objectives Provide	a	baseline	that	shows	
how	energy	markets	would	
involve if underlying trends 
in energy demand and supply 
are not changed

To	provide	a	benchmark	to	
assess the potential achieve-
ments (and limitations) of re-
cent developments in energy 
and climate policy

To demonstrate a plausible 
path to achieve the climate 
target

Table	5:	definitions	and	objectives	of	WEO	scenarios

4.1.1 WEO Model
The WEM is a simulation model covering energy supply, energy transformation and energy demand. The 
majority	of	the	end-use	sectors	use	stock	models	to	characterise	the	energy	infrastructure.	In	addition,	energy-
related	CO2	emissions	and	investments	related	to	energy	developments	are	specified.	Though	the	general	model	
is	built	up	as	a	simulation	model,	specific	costs	play	an	important	role	in	determining	the	share	of	technologies	
in	satisfying	an	energy	service	demand.	In	different	parts	of	the	model,	Logit	and	Weibull	functions	are	used	to	
determine	the	share	of	technologies	based	upon	their	specific	costs.	This	includes	investment	costs,	operating	
and maintenance costs, fuel costs and in some cases costs for emitting CO2.
The	main	exogenous	assumptions	concern	economic	growth,	demographics	and	technological	developments.	
Electricity	consumption	and	electricity	prices	dynamically	link	the	final	energy	demand	and	transformation	
sector.	Consumption	of	the	main	oil	products	is	modelled	individually	in	each	end-use	sector	and	the	refinery	
model	links	the	demand	for	individual	products	to	the	different	types	of	oil.	Demand	for	primary	energy	serves	
as input for the supply modules. Complete energy balances are compiled at a regional level and the CO2 
emissions of each region are then calculated using derived CO2 factors. The time horizon of the model goes 
out	to	2040	with	annual	steps	in	between.	The	model	is	each	year	recalibrated	to	the	latest	available	data	point	
(for	WEO-2014,	this	is	typically	2012	although	2013	data	is	included	where	available).
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Figure 1:  World Energy Model Overview 

2 Technical aspects and key assumptions 
Demand side drivers, such as steel production in industry or household size in dwellings, are estimated 
econometrically based on historical data and on socioeconomic drivers. All end-use sector modules base their 
projections on the existing stock of energy infrastructure. This includes the number of vehicles in transport, 
production capacity in industry, and floor space area in buildings. The various energy service demands are 
specifically modelled, in the residential sector e.g. into space heating, water heating, cooking, lighting, 
appliances, space cooling. To take into account expected changes in structure, policy or technology, a wide 
range of technologies are integrated in the model that can satisfy each specific energy service. Respecting the 
efficiency level of all end-use technologies gives the final energy demand for each sector and sub-sector 
(Figure 2). Simulations are carried out on an annual basis. The WEM is implemented in Vensim 
(www.vensim.com), but makes use of a wider range of software tools. 
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Figure	16:	schematic	representation	of	the	World	Energy	Model	2014,	showing	input	and	output	for	each	category
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Demand	 side	 drivers,	 such	 as	 steel	 production	 in	 industry	 or	 household	 size	 in	 dwellings,	 are	 estimated	
econometrically based on historical data and on socioeconomic drivers. All end-use sector modules base their 
projections	on	the	existing	stock	of	energy	infrastructure.	This	includes	the	number	of	vehicles	in	transport,	
production	capacity	 in	 industry,	and	floor	space	area	 in	buildings.	The	various	energy	service	demands	are	
specifically	 modelled,	 in	 the	 residential	 sector	 e.g.	 into	 space	 heating,	 water	 heating,	 cooking,	 lighting,	
appliances,	space	cooling.	To	take	into	account	expected	changes	in	structure,	policy	or	technology,	a	wide	
range	of	technologies	are	integrated	in	the	model	that	can	satisfy	each	specific	energy	service.	Respecting	the	
efficiency	level	of	all	end-use	technologies	gives	the	final	energy	demand	for	each	sector	and	sub-sector	(Figure	
2).	Simulations	are	carried	out	on	an	annual	basis.	The	WEM	is	implemented	in	Vensim	(www.vensim.com),	
but	makes	use	of	a	wider	range	of	software	tools.
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Figure 2:  General structure of demand modules 

 

The same macroeconomic and demographic assumptions are used in all the scenarios, unless otherwise 
specified. The projections are based on the average retail prices of each fuel used in final uses, power 
generation and other transformation sectors. These end-use prices are derived from projected international 
prices of fossil fuels and subsidy/tax levels. 

2.1 Population assumptions 

Rates of population growth for each WEM region are based on the medium-fertility variant projections 
contained in the United Nations Population Division report (UNDP, 2013). In WEO-2014, world population is 
projected to grow by 0.9% per year on average, from 7.0 billion in 2011 to 9.0 billion in 2040. Population 
growth slows over the projection period, in line with trends of the last three decades: from 1.0% per year in 
2012-2025 to 0.8% in 2025-2040 (Table 2). Population expanded by 1.6% from 1980 to 2012. 

Estimates of the rural/urban split for each region have been taken from UNDP (2012). This database provides 
percentage of population residing in urban areas by country in 5 yearly intervals to 2050. By combining this 
data2 with the UN population projections an estimate of the rural/urban split may be calculated. In 2012, 
slightly more than half of the world population was estimated to be living in urban areas. This is expected to 
rise to 64% by 2040. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 
2 Rural/Urban percentage split is linearly interpolated between the 5 yearly intervals. 

Figure 17: general structure of demand modules

The	 same	 macroeconomic	 and	 demographic	 assumptions	 are	 used	 in	 all	 the	 scenarios,	 unless	 otherwise	
specified.	The	projections	are	based	on	the	average	retail	prices	of	each	fuel	used	in	final	uses,	power	generation	
and other transformation sectors. These end-use prices are derived from projected international prices of fossil 
fuels and subsidy/tax levels.
Population assumptions
Rates	 of	 population	 growth	 for	 each	WEM	 region	 are	 based	 on	 the	 medium-fertility	 variant	 projections	
contained	in	the	United	Nations	Population	Division	report	(UNDP,	2013).	In	WEO-2014,	world	population	
is	projected	to	grow	by	0.9%	per	year	on	average,	from	7.0	billion	in	2011	to	9.0	billion	in	2040.	Population	
growth	slows	over	the	projection	period,	in	line	with	trends	of	the	last	three	decades:	from	1.0%	per	year	in	
2012-2025 to 0.8% in 2025-2040 (Table 2). Population expanded by 1.6% from 1980 to 2012.
Estimates	of	the	rural/urban	split	for	each	region	have	been	taken	from	UNDP	(2012).	This	database	provides	
percentage of population residing in urban areas by country in 5 yearly intervals to 2050. By combining this 
data2	with	 the	UN	population	 projections	 an	 estimate	 of	 the	 rural/urban	 split	may	be	 calculated.	 In	 2012,	
slightly	more	than	half	of	the	world	population	was	estimated	to	be	living	in	urban	areas.	This	is	expected	to	
rise to 64% by 2040.
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Table 2:  Population growth by region  

 
Population growth  

(compound annual average) 
Population 

(million) 
Urbanisation rate 

(%) 

 2012-25 2025-40 2012-40 2012 2040 2012 2040 
OECD 0.5% 0.3% 0.4% 1258 1403 80% 86% 
Americas 0.8% 0.6% 0.7% 488 594 82% 87% 
  United States 0.8% 0.6% 0.7% 318 383 83% 88% 

Europe 0.3% 0.2% 0.2% 566 604 75% 82% 

Asia Oceania 0.1% -0.1% 0.0% 205 205 89% 94% 

  Japan -0.2% -0.5% -0.4% 128 115 92% 97% 

Non-OECD 1.1% 0.8% 1.0% 5783 7601 47% 60% 
E. Europe/Eurasia 0.0% -0.3% -0.2% 341 326 63% 69% 

  Russia -0.3% -0.5% -0.4% 144 127 74% 80% 

Asia 0.8% 0.4% 0.6% 3678 4382 42% 58% 

  China 0.4% -0.1% 0.1% 1358 1416 52% 74% 

  India 1.1% 0.7% 0.8% 1237 1566 32% 46% 
Middle East 1.7% 1.1% 1.4% 213 313 68% 74% 

Africa 2.4% 2.1% 2.2% 1083 1998 40% 52% 

Latin America 1.0% 0.6% 0.8% 468 581 79% 85% 

  Brazil 0.7% 0.4% 0.5% 199 229 85% 90% 

World 1.0% 0.8% 0.9% 7042 9004 53% 64% 

European Union 0.1% 0.0% 0.1% 507 516 74% 81% 

Source: IEA (2014a). 

2.2 Macroeconomic assumptions 

Economic growth assumptions for the short to medium term are based largely on those prepared by the 
OECD, IMF and World Bank. Over the long term, growth in each WEM region is assumed to converge to an 
annual long-term rate. This is dependent on demographic and productivity trends, macroeconomic conditions 
and the pace of technological change. 

In WEO-2014 world GDP (expressed in year-2013 dollars at purchasing power parity [PPP] terms) is expected 
to grow on average by 3.3% per year over the projection period (Table 3). That rate is similar to the last two 
decades (3.3% in 1990-2012). Growth is assumed to drop from 3.7% in 2012-2020 to 3.6% in 2020-2030 and 
3.0% in 2030-2040. India and Africa are expected to grow faster than all other regions, followed by China and 
the Brazil. The economies of many regions are expected to shift away from energy-intensive heavy 
manufacturing towards lighter industries and services, though the pace of this process, which is well 
advanced in the OECD and some emerging economies, varies. Industrial production growth over the next 
decades is going to come mainly from countries outside the OECD.  

 

 

 

 

 

Table	6:	population	growth	by	region	[41]
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4.1.2 Macroeconomic assumptions
Economic	growth	assumptions	for	the	short	to	medium	term	are	based	largely	on	those	prepared	by	the	OECD,	
IMF	and	World	Bank.	Over	the	long	term,	growth	in	each	WEM	region	is	assumed	to	converge	to	an	annual	
long-term rate. This is dependent on demographic and productivity trends, macroeconomic conditions and the 
pace of technological change.
In	WEO-2014	world	GDP	(expressed	in	year-2013	dollars	at	purchasing	power	parity	[PPP]	terms)	is	expected	
to	grow	on	average	by	3.3%	per	year	over	the	projection	period	(Table	3).	That	rate	is	similar	to	the	last	two	
decades	 (3.3%	 in	1990-2012).	Growth	 is	assumed	 to	drop	 from	3.7%	 in	2012-2020	 to	3.6%	 in	2020-2030	
and	 3.0%	 in	 2030-2040.	 India	 and	Africa	 are	 expected	 to	 grow	 faster	 than	 all	 other	 regions,	 followed	 by	
China	and	the	Brazil.	The	economies	of	many	regions	are	expected	to	shift	away	from	energy-intensive	heavy	
manufacturing	towards	lighter	industries	and	services,	though	the	pace	of	this	process,	which	is	well	advanced	
in	 the	OECD	and	some	emerging	economies,	varies.	 Industrial	production	growth	over	 the	next	decades	 is	
going to come mainly from countries outside the OECD.
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Table 3:  Real GDP growth by region (compound average annual growth rates) 

  1990-2012 2012-20 2020-30 2030-40 2012-40 

OECD 2.2% 2.2% 2.0% 1.7% 1.9% 
Americas 2.6% 2.6% 2.2% 2.0% 2.1% 

  United States 2.5% 2.6% 2.0% 1.9% 1.9% 

Europe 1.9% 1.7% 1.9% 1.6% 1.7% 

Asia Oceania 1.9% 1.9% 1.8% 1.3% 1.5% 

  Japan 0.9% 1.1% 1.1% 0.8% 0.9% 

Non-OECD 4.9% 5.3% 4.9% 3.7% 4.3% 
E. Europe/Eurasia 0.8% 2.8% 3.5% 2.7% 3.1% 

  Russia 0.7% 2.2% 3.5% 2.5% 3.0% 
Asia 7.5% 6.3% 5.4% 3.9% 4.7% 

  China 9.9% 6.9% 5.3% 3.2% 4.2% 

  India 6.5% 6.2% 6.6% 5.3% 5.9% 

Middle East 4.4% 3.7% 3.9% 3.3% 3.6% 

Africa 4.0% 5.1% 4.8% 4.4% 4.6% 

Latin America 3.4% 3.1% 3.5% 3.0% 3.2% 

  Brazil 2.9% 2.9% 4.0% 3.3% 3.6% 

World 3.3% 3.7% 3.6% 3.0% 3.3% 

European Union 1.7% 1.6% 1.8% 1.5% 1.7% 

Note: Calculated based on GDP expressed in year-2012 dollars in PPP terms. 

Source: IEA (2014a). 

3 Energy demand 
All 25 model regions are modelled in considerable sectoral and end-use detail. Specifically: 

 Industry is separated into five sub-sectors, 
 Buildings energy demand is separated into six end-uses. 
 Transport demand is separated by four modes with considerate detail for road transport. 

Total final energy demand is the sum of energy consumption in each final demand sector. In each sub-sector 
or end-use, at least six types of energy are shown: coal, oil, gas, electricity, heat and renewables. The main oil 
products – liquefied petroleum gas (LPG), naphtha, gasoline, kerosene, diesel, heavy fuel oil (HFO) and ethane 
– are modelled separately for each final sectors. 

In most of the equations, energy demand is a function of activity variables, which again are driven by: 

 Socio-economic variables: In all end-use sectors GDP and population are important drivers of sectoral 
activity variables. 

 End-user prices: Historical time-series data for coal, oil, gas, electricity, heat and biomass prices are 
compiled based on the IEA database Energy Prices & Taxes and several external sources. Average 
end-user prices are then used as a further explanatory variable ― directly or as a lag (for more detail 
on end-user prices see section 9.3). 

Table	7:	real	GDP	growth	by	region	(compound	average	annual	growth	rates)	[41]

4.2 Choice of the tool to conduct the study
The	software	chosen	 to	conduct	 this	 study	 is	LEAP,	a	model	based	on	 the	end-use	approach	 (described	 in	
paragraph	3.2.2.2).	The	method	used	by	this	software	is	the	Time	Series	Analysis	described	in	paragraph	3.3.3.	
The purpose of this thesis is to be able to analyze all energy aspects of a case study to analyze energy futures 
with	current	policies	and	produce	a	plausible	optimization	on	the	same	data.	Beyond	a	remarkable	collection	
specific	data,	the	innovation	that	reveals	this	work	is	to	have	a	reliable	basis	from	which	to	build	all	possible	
scenarios	 of	 interest,	 to	 be	 able	 to	 analyze	 the	 effectiveness	 or	 not	 of	 certain	 corrective	 actions	 in	 area	 of	
interest.	With	the	skills	to	adapt	to	any	geographic	level,	to	cover	both	demand	and	supply	side	using	an	end-
use	approach,	to	analyze	at	a	disaggregated	level	(where	the	level	of	disaggregation	can	be	decided	by	users),	to	
develop a consistent storyline of the possible paths of energy system evolution, LEAP model has been chosen 
among	the	models	based	on	the	end-use	approach.	A	brief	summary	of	LEAP	characteristics	is	shown	in	the	
following	table:
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Type Purpose Approach Geographical 
coverage

Activity  
coverage

Bottom-up Energy system 
analysis Accounting Flexible Demand and supply 

sec-tors
Level of dis-aggre-
gation

Technology  
coverage Data need Skill Versatility

Industry, tran-
sport, house-hold 
and service

Both conventional 
and	renewable

Historical, so-
cio-economic, 
techno-logical and 
other information

Medium High general model

Portability to 
another coun-try Documentation

Capability to analy-
ze price-induced 
policies

Capability to 
analyze non-price 
policies

Rural energy

Easy Excellent Does not exist High Can be included

Table 8: brief summary of LEAP characteristics

4.2.1 Integrated models

4.2.1.1 Description of the tool used: LEAP software
LEAP	[42],	the	Long	range	Energy	Alternatives	Planning	System,	is	a	widely-used	software	tool	for	energy	
policy	analysis	and	climate	change	mitigation	assessment	developed	at	the	Stockholm	Environment	Institute.	It	
has	been	adopted	by	thousands	of	organizations	in	more	than	190	countries	worldwide.	LEAP	is	an	integrated	
modeling	tool	that	can	be	used	to	track	energy	consumption,	production	and	resource	extraction	in	all	sectors	of	
an economy.  It can be used to account for both energy sector and non-energy sector greenhouse gas emission 
sources	and	sinks.
It	is	a	flexible	modeling	environment	that	allows	building	specific	applications	suited	to	particular	problems	at	
various geographical levels (cities, State, country, region or global). As an integrated energy planning model 
LEAP	 covers	 both	 the	 demand	 and	 supply	 sides	 of	 the	 energy	 system.	The	model	 follows	 the	 accounting	
framework	 approach	 to	 generate	 a	 consistent	 view	 of	 energy	 demand	 (and	 supply)	 based	 on	 the	 physical	
description of the energy system. It also relies on the scenario approach to develop a consistent storyline of the 
possible paths of energy system evolution. Thus for the demand forecasting, the model does not optimize or 
simulate	the	market	shares	but	analyses	the	implications	of	possible	alternative	market	shares	on	the	demand.		
The	demand	analysis,	following	the	end-use	approach,	is	carried	out	as	follows	[43]:
• The	analysis	is	carried	out	at	a	disaggregated	level,	where	the	level	of	disaggregation	can	be	decided	by	the	

users.
• The	disaggregated	structure	of	energy	consumption	is	organized	as	a	“hierarchical	tree”,	where	the	total	or	
overall	activity	is	presented	at	the	top	level	and	the	lowest	level	reflects	the	fuels	and	devices	used.

• The	socio-economic	drivers	of	energy	demand	are	identified	and	developed.
• The product of activity and the energy intensity determines the demand at the disaggregated level. The model 
allows	alternative	options:	

 ○ at the end-use level, useful energy can be considered to forecast the demand.
 ○ 	Stock	analysis	allows	the	possibility	of	capturing	the	evolution	of	the	stock	of	appliances/	devices	or	
capital equipment and the device energy intensity.
 ○ 	For	the	transport	sector,	the	fuel	efficiency	of	the	vehicle	stock	and	distance	traveled	can	be	used	to	
determine the demand.

The	demand	relationships	are	indicated	below	[43]:
• Final	energy	analysis:	E	=		A	x	I,	where	A	=	activity	level,	I	=	final	energy	intensity.
• Useful	energy	analysis:	E	=	A	x	(U/η),	where	U	=	useful	energy	intensity,	η	=	efficiency.
• Stock	analysis:	E	=	S	x	D,	where	S	=	stock	and	D	=	device	intensity.
• Transport	analysis:	E	=	S	x	(M/Fe),	where	M	=	vehicle	miles	and	Fe	=	fuel	economy.
The	model	can	be	run	independently	on	a	stand	alone	mode	and	can	be	used	for	specific	sector	analysis	or	for	
analyzing the energy system of a given geographic region.
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The	 supply-side	of	 the	model	does	not	 try	 to	find	 the	 least	 cost	 solution	or	 system	configuration	as	 in	 the	
optimisation	model	but	uses	accounting	and	simulation	approaches	to	provide	answers	to	“what-if”	type	of	
analysis	 under	 alternative	 possible	 development	 scenarios.	This	 spreadsheet	 like	 tool	 is	 flexible	 enough	 to	
consider various data requirements and supports some econometric and simulation features in addition to basic 
energy	accounting	framework.
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Figure	18:	LEAP	framework	[43]

LEAP	is	not	a	model	of	a	particular	energy	system,	but	rather	a	tool	that	can	be	used	to	create	models	of	different	
energy	 systems,	where	 each	 requires	 its	 own	unique	data	 structures.	 	 It	 supports	 a	wide	 range	of	different	
modeling methodologies: on the demand side these range from bottom-up, end-use accounting techniques to top-
down	macroeconomic	modeling.		LEAP	also	includes	a	range	of	optional	specialized	methodologies	including	
stock-turnover	modeling	for	areas	such	as	transport	planning.	On	the	supply	side,	LEAP	provides	a	range	of	
accounting	and	simulation	methodologies	that	are	powerful	enough	for	modeling	electric	sector	generation	and	
capacity	expansion	planning,	but	which	are	also	sufficiently	flexible	and	transparent	to	allow	LEAP	to	easily	
incorporate data and results from other more specialized models. LEAP’s modeling capabilities operate at 
two	basic	conceptual	levels.		At	one	level,	LEAP’s	built-in	calculations	handle	all	of	the	“non	controversial”	
energy,	emissions	and	cost-benefit	accounting	calculations.		At	the	second	level,	users	enter	spreadsheet-like	
expressions	that	can	be	used	to	specify	time-varying	data	or	to	create	a	wide	variety	of	sophisticated	multi-
variable	models,	thus	enabling	econometric	and	simulation	approaches	to	be	embedded	within	LEAP’s	overall	
accounting	 framework.	 	The	 newest	 versions	 of	 LEAP	 also	 support	 optimization	modeling	 that	 allow	 the	
construction of least cost models of electric system capacity expansion and dispatch, potentially under various 
constraints such as limits of CO2 or local air pollution.
LEAP is intended as a medium to long-term modeling tool.  Most of its calculations occur on an annual time-
step, and the time horizon can extend for an unlimited number of years.  Studies typically include both a 
historical	period	known	as	the	Current	Accounts,	in	which	the	model	is	run	to	test	its	ability	to	replicate	known	
statistical	data,	as	well	as	multiple	forward	looking	scenarios.		Typically,	most	studies	use	a	forecast	period	of	
between	20	and	50	years.
LEAP is designed around the concept of long-range scenario analysis.  Scenarios are self-consistent storylines 
of	how	an	energy	system	might	evolve	over	time.		Using	LEAP,	policy	analysts	can	create	and	then	evaluate	
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alternative	 scenarios	 by	 comparing	 their	 energy	 requirements,	 their	 social	 costs	 and	 benefits	 and	 their	
environmental	impacts.		The	LEAP	Scenario	Manager	can	be	used	to	describe	individual	policy	measures	which	
can	then	be	combined	in	different	combinations	and	permutations	into	alternative	integrated	scenarios.		This	
approach	allows	policy	makers	to	assess	the	marginal	impact	of	an	individual	policy	as	well	as	the	interactions	
that	occur	when	multiple	policies	and	measures	are	combined.

4.2.1.1.1 LEAP and the optimization [42]
LEAP includes the capability to automatically calculate least cost capacity expansion and dispatch of supply 
side	transformation	modules.		This	capability	works	through	integration	with	the	Open	Source	Energy	Modeling	
System	(OSeMOSYS)	which	has	been	developed	by	a	coalition	of	organizations	including	the	Royal	Technical	
University	 (KTH)	 in	 Sweden,	 SEI,	 the	 International	Atomic	 Energy	Agency	 (IAEA),	 and	 the	UK	Energy	
Research	Center.	 	OSeMOSYS	 in	 turn	depends	on	 the	GNU	Linear	Programming	Kit	 (GLPK),	a	 software	
toolkit	intended	for	solving	large	scale	linear	programming	problems	by	means	of	the	revised	simplex	method.	
Both OSeMOSYS and GLPK are open source and freely distributed tools.  Both are included as part of LEAP’s 
standard	installation	and	both	are	fully	integrated	into	LEAP’s	user	interface.	No	additional	software	is	needed	
to use optimization in LEAP.
Optimization	can	be	used	 to	calculate	 the	 least-cost	expansion	and	dispatch	of	power	plants	 for	an	electric	
system,	where	optimal	is	defined	as	the	energy	system	with	the	lowest	total	net	present	value	of	the	social	costs	
of the system over the entire period of calculation (from the base year through to the end year). In calculating 
the	 optimal	 system	LEAP	 takes	 into	 account	 all	 of	 the	 relevant	 costs	 and	 benefits	 incurred	 in	 the	 system	
including:
• The	capital	costs	for	building	new	processes.
• The salvage values (or decommissioning costs) for decommissioning processes
• The	fixed	and	variable	operating	and	maintenance	costs
• The fuel costs
• The environmental externality values (i.e. pollution damage or abatement costs).
A	least	cost	system	can	optionally	be	calculated	subject	to	a	number	of	user	specified	constraints	including	
maximum annual levels of emissions for any given pollutant (CO2, SOx, NOx, PM10, etc.) and minimum or 
maximum	capacities	for	certain	plant	types.		For	example,	an	expansion	pathway	for	an	energy	system	could	
be	calculated	that	met	a	minimum	renewable	portfolio	standard	(RPS)	whilst	also	staying	within	a	target	for	
reducing greenhouse gas (GHG) emission.

4.2.1.2 POLES
The	POLES	(Prospective	Outlook	on	Long-term	Energy	Systems)	model	is	a	recursive,	disaggregated	global	
model of energy analysis and simulation. It covers both the demand and the supply sides of the energy systems 
and has been used for long-term energy policy analysis by the European Union and the French government. 
The	model	captures	 the	entire	energy	system	and	 it	has	four	main	modules:	final	energy	demand,	new	and	
renewable	energy	technologies,	conventional	energy	transformation	system	and	fossil	fuel	supply.
The	demand	is	analyzed	at	a	disaggregated	level	in	each	country	or	region	following	the	bottom-up	approach.	
The	model	is	disaggregated	into	five	sectors	(industry,	transport,	residential,	service	and	agriculture)	to	ensure	
homogeneous levels of activities. To capture the importance of the industrial sector and the transport sector, 
industry is further disaggregated in four groups, namely steel, chemical, non-metallic minerals and other 
industries,	while	 four	modes	 of	 transport,	 namely	 road,	 rail,	 air	 and	water	 are	 considered.	The	 demand	 is	
analysed	using	a	disaggregated	end-use	approach	in	which	demand	is	broken	down	into	homogeneous	groups	
to	allow	for	separate	treatment	of	energy	intensive	and	non-intensive	uses.
The general structure of the POLES model is:
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The model considers twelve renewable and new technologies and simulates the role they 

are likely to play using the concepts of learning curves and niche markets. The 

conversion fossil fuel is analysed at an aggregated level using losses and conversion 

efficiencies. The electricity system is captured in more detail and uses the screening 

curve approach to identify the role of different electricity technologies. The supply of oil 

and gas is analysed using a detailed production model of main producers using the 

resource, cumulative production and depletion information.  

While the regional and country level analyses generate the respective energy balances, 

they are horizontally linked through an energy market module which is used to clear the 

market. For oil, a single global market is considered while for coal three regional markets 

have been used. For gas, bilateral trade flows are considered. This price-driven 

formulation of the model makes it different from others of its kind (i.e. accounting, end-

use models). Figure A1.5 presents the general structure of the POLES model. 

Fig. A1.5: POLES model structure 

Source: Criqui (2001).  
Figure 19: POLES model structure [44]

The	 model	 uses	 a	 polynomial	 lag	 structure	 of	 variable	 duration	 to	 capture	 stock	 adjustment	 process	 and	
dissipation	of	reaction	to	exogenous	shocks:
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Where 
FC	–	final	energy	consumption,	
AP – average price of energy, 
ES – short-term price elasticity of energy demand, 
EL – long-term price elasticity of energy demand, 
EY – income elasticity of demand, 
ACT – activity variable, 
F(EL,	DI,	I)	–	function	capturing	long	term	price	effect,	where	DI	is	price	asymmetry	effect,	
DP	–	duration	of	long-term	price	effect,	
TR – autonomous technological trend, and  
the subscripts indicate the lag periods.
Although	the	demand	model	is	deeply	rooted	in	the	accounting	framework	and	follows	the	bottom-up	approach,	
unlike	other	end-use	models,	the	POLES	model	has	a	few	special	features	to	whom	can	be	considered	a	hybrid	
model:
• it	generates	the	what	on	a	yearly	basis,	as	opposed	to	a	snapshot	picture	at	the	end	of	a	forecasting	period;
• incorporates	the	price	variable	as	a	demand	driver	and	thus	can	analyse	the	effects	price	and	tax	influences	

on demand;
• uses	econometric-style	relationships	that	are	quite	different	from	other	standard	end-use	models.

4.2.2 Country-specific models

4.2.2.1 NEMS
The	National	Energy	Modeling	System	(NEMS)	was	designed	and	primarily	used	by	the	US	Department	of	
Energy	for	preparing	the	Annual	Energy	Outlook.	It	is	a	model	of	energy-economy	interaction	that	is	used	to	
analyze	the	functioning	of	the	energy	market	under	alternative	growth	and	policy	scenarios.	The	model	uses	a	
time horizon of about 25 years.
The	model	employs	a	technologically	rich	representation	of	the	energy	sector	and	covers	the	spatial	differences	
in energy use in the US. The demand-side is disaggregated into four sectors, namely industry, transport, 
residential	and	commercial	but	both	industry	and	transport	are	further	disaggregated	to	capture	the	specific	
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features of energy intensive users and alternative modes of transport. This is a hybrid model because it uses the 
details	found	in	engineering-economic	models	but	retains	the	behavioural	analysis	found	in	topdown	models.
The	model	structure	is	presented	in	the	next	figure:
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Fig. A1.4: NEMS model structure 

Source: EIA (2000)

POLES [Prospective Outlook on Long-term Energy Systems] 

POLES is a recursive, disaggregated global model of energy analysis and simulation. It 

covers both the demand and the supply sides of the energy systems and has been used for 

long-term energy policy analysis by the European Union and the French government. The 

model has four main modules: final energy demand, new and renewable energy 

technologies, conventional energy transformation system and fossil fuel supply. 

Accordingly, the model captures the entire energy system. 

The demand is analysed using a disaggregated end-use approach in which demand is 

broken down into homogeneous groups to allow for separate treatment of energy 

intensive and non-intensive uses. The global demand is generated from country and 

regional demands where all large consumers are separately considered.  

Figure 20: NEMS model structure [45]

The	model	is	fairly	detailed	and	explicitly	represents	the	economic	decision	making	at	various	levels	(production,	
consumption,	 etc.)	 as	well	 as	 technologies.	The	 demand	 analysis	 component	 is	 divided	 into	 four	modules	
(residential, commercial, industrial and transport) and each module captures the diversity at the regional level 
to a great extent.
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NEMS [National Energy Modeling System] 

The National Energy Modeling System (NEMS) was designed and primarily used by the 

US Department of Energy for preparing the Annual Energy Outlook. It is a model of 

energy-economy interaction that is used to analyze the functioning of the energy market 

under alternative growth and policy scenarios. The model uses a time horizon of about 25 

years (up to 2030 for the present version).

The model is fairly detailed and explicitly represents the economic decision making at 

various levels (production, consumption, etc.) as well as technologies. The demand 

analysis component is divided into four modules (residential, commercial, industrial and 

transport) and each module captures the diversity at the regional level to a great extent 

(see table 7). 

Table 7: Demand representation in NEMS  

Energy 
activity 

Categories Regions 

Residential
demand 

Sixteen end-use services 
Three housing types 
Thirty–four end–use technologies 

Nine Census 
divisions

Commercial 
demand 

Ten end–use services 
Eleven building types 
Ten distributed generation technologies 
Sixty–four end-use technologies 

Nine Census 
divisions

Industrial
demand 

Seven energy–intensive industries 
Eight non–energy–intensive industries 
Cogeneration

Four Census regions, 
shared to nine 
Census  divisions 

Transportation
demand 

Six car sizes 
Six light truck sizes 
Sixty–three conventional fuel-saving technologies 
for light–duty vehicles 
Gasoline, diesel, and thirteen alternative–fuel 
vehicle technologies for light-duty vehicles 
Twenty vintages for light-duty vehicles 
Narrow and wide–body aircraft 
Six advanced aircraft technologies 
Medium and heavy freight trucks 
Thirty–seven advanced freight truck technologies 

Nine Census 
divisions

Source: EIA (2003). 
Table 9: demand representation in NEMS [45]
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The	 residential	 demand	module	 forecasts	 energy	demand	using	 a	 structural	model	based	on	housing	 stock	
and	the	appliance	stock.	It	is	driven	by	economic	and	demographic	factors,	structural	effects,	technology,	and	
market	effects.	The	commercial	sector	demand	module	projects	energy	demand	in	the	commercial	sector	by	
taking	into	account	building	and	non-building	demand.	It	also	captures	the	appliance	stock	and	technological	
advancements	and	their	effects	on	energy	demand	for	 three	major	fuels,	namely	electricity,	natural	gas	and	
distillate oil. The industrial demand module projects energy demand in the industrial sector using a hybrid 
approach: it uses the technological representation found in the end-use method and incorporates the behavioral 
aspects	of	a	top-down	approach.	The	transport	demand	module	projects	the	fuel	demand	in	the	transport	sector	
by mode and includes alternative energy demand. A disaggregated approach is used in demand forecasting 
where	personal	car	usage,	light	truck,	freight	transport,	air	transport	and	miscellaneous	transport	are	considered	
separately.
The	use	of	NEMS	has	remained	confined	to	government	agencies	and	a	limited	number	of	research	laboratories	
because	of	the	model’s	reliance	on	costly	proprietary	software	packages	and	complex	model	design.

4.2.2.2 ERASME
ERASME is a short-term energy model that is used by the European Commission for quarterly forecasting of 
energy demand at the Community level (Deimeizis [46]). It also has a supply-side forecasting and the model 
produces	the	forecasts	of	energy	balance.	The	results	of	the	model	feed	into	the	Short-Term	Energy	Outlook	
of the Commission. The model contains 55 behavioral relations and a large number of identities capturing the 
European	energy	system.	The	model	uses	the	data	obtained	from	the	Statistical	Office	of	the	Community	and	
the	equations	are	re-estimated	twice	a	year.
The	logic	of	the	model’s	demand	side	is	that	final	energy	prices	are	considered	to	be	a	function	of	international	oil	
prices,	coal	import	prices,	exchange	rate,	changes	in	the	fiscal	regime	and	seasonal	factors.	Energy	demand	by	
fuel is considered to a function of exogenous macro and sectoral variables (such as GDP, private consumption, 
industrial production, etc.) and real energy prices.  

4.2.3 Generic energy forecasting models

4.2.3.1 MAED
MAED	(Model	for	Analysis	of	Energy	Demand)	is	a	widely	used	bottom-up	model	for	forecasting	medium	to	
long-term	energy	demand.	The	earlier	versions	of	the	model	were	built	around	a	pre-defined	set	of	economic	
activities	and	end-uses.	The	model	follows	the	end-use	demand	forecasting	steps	typical	for	an	engineering-
economy model and it relies on the systematic development of consistent scenarios for the demand forecasts 
where	 the	 socio-economic	and	 technological	 factors	are	explicitly	 taken	 into	consideration.	The	demand	 is	
first	 calculated	 in	 useful	 energy	 form	 and	 the	 final	 demand	 is	 derived	 taking	market	 penetration	 and	 end-
use	efficiency	into	consideration.	The	model	does	not	use	pricing	and	elasticity	information	for	the	inter-fuel	
substitution as is common in the econometric tradition. The energy demand is aggregated into four sectors 
(industry, transport, households, service) and it is essentially determined by relating the activity level of an 
economic	activity	to	the	energy	intensity.	The	demand	is	first	determined	at	the	disaggregated	level	and	then	
added	up	using	a	consistent	accounting	framework	to	arrive	at	the	overall	final	demand.
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Fig. 7: MAED Framework of analysis  

Source: IAEA (2006) 

The demand is first determined at the disaggregated level and then added up using a 

consistent accounting framework to arrive at the overall final demand. The model focuses 

only on the final demand and does not cover the energy used in the energy conversion 

sector. The general framework of analysis of the MAED model is presented in Fig. 7. The 

detailed list of principal equations used in the model is provided in IAEA (2006).  

Breakdown of the economy by sector: transport, industry, households and service 

Scenario assumptions 

Socio-economic scenarios Technological evolution  

Social needs Level of economic 
activity 

Technological 
determinants 

Non-substitutable 
demand 

Substitutable demand 

Useful energy demand 

Fuel penetration level 

Efficiency of appliances and processes 

Final energy demand 

Electricity demand Non-electricity demand 

 

Figure	21:	MAED	framework	of	analysis	[32]

The	MAED	model	 described	 above	 is	 essentially	 derived	 from	 the	MEDEE	model.	 The	 main	 difference	
between	MAED	and	MEDEE	 is	 that	MAED	was	 based	 on	 an	 earlier	 version	 of	MEDEE	which	 has	 been	
further	developed	by	IAEA	into	its	present	form,	while	MEDEE	remains	the	model	of	the	original	authors	and	
is	supported	by	their	energy	consulting	firm	ENERDATA.	Thus	the	modeling	approach	remains	the	same	but	
the	development	of	the	two	products	has	taken	different	paths	in	the	recent	times.

4.2.4 Comparison of selected energy demand models
In	this	section	is	presented	a	table	to	review	the	main	features	of	the	of	the	models	seen	and	some	observation	
from	scientific	literature.
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Table 8: Comparison of energy demand forecasting models 

Criteria Kuwait model DTI ERASME NEMS MAED/
MEDEE

LEAP POLES

Type Top-down Top-Down Top-down Hybrid Bottom-up Bottom-up Hybrid
Purpose Energy demand 

forecasting
Energy system 
analysis 

Energy demand 
forecasting

Energy market 
analysis 

Energy demand 
forecasting

Energy system 
analysis 

Energy market 
analysis 

Approach Econometric Econometric Econometric Econometric 
with rich 
technology 
representation 

Accounting  Accounting Accounting 
with
econometric-
style equations 

Geographical
coverage

National National Regional level 
but aggregated 

National Flexible Flexible Global

Activity 
coverage

Main end-use 
sectors

Demand and 
supply sectors 

Main demand 
and supply 
sectors

Supply and 
demand sectors 

Demand sectors Demand and 
supply sectors 

Demand and 
supply sectors 

Level of 
disaggregation

Industry, 
residential,
transport,
commercial and 
others

Domestic, 
transport,
service and 
industry 

? Industry, 
residential,
commercial and 
transport

Industry, 
transport,
household and 
service

Industry, 
transport,
household and 
service

Industry, 
transport,
household,  
service and 
agriculture

Technology 
coverage

Conventional Both renewable 
and
conventional 

? Both
conventional
and renewable 

Both
conventional
and renewable 

Both
conventional
and renewable 

Both
conventional
and renewable 

Data need Time series 
data for 
econometric
estimation 

Time series 
data and 
technology data 

Time series 
data for 
econometric
estimation 

Time series 
data,
technology 
data, survey 
and census data 

Data and 
survey/ 
estimates for 
base year 
information and 
estimation 
parameters 

Historical,
socio-
economic, 
technological
and other 
information 

Time series, 
socio-economic
data,
technological
data and 
survey/ 
estimates for 
various
parameters 

Skill High for High for High High for Low Medium High for 

Table 10: comparison of energy demand forecasting models

The	scientific	literature	agrees	on	the	following	observations	from	the	comparison:
• Large	national	or	global	models	are	purpose-built	and	require	considerable	skills	and	lack	versatility,	irrespective	
of	modeling	 approach	used	 (econometric	or	 hybrid).	They	 also	 lack	 transferability	or	 transportability.	As	
a consequence, these models tend to be used by a limited number of dedicated user groups and are not 
accessible	to	wider	users.

• Only	MAED/	MEDEE	and	LEAP	have	the	generic	capabilities	to	be	used	in	a	wider	context.
• While	econometric	models	can	be	used	for	price-based	policy	analyses,	many	such	models	lack	the	capability	

to capture non-price based policies. Moreover, being aggregated demand models, they fail to capture the 
technological diversity and possibilities adequately.

• On the contrary, end-use models do not capture price signals and price-based policy analysis cannot be 
captured.	Moreover,	the	issue	of	consistency	with	the	macro-economic	performance	of	the	country	or	region	
is	not	verified	in	these	models.	However,	 their	rich	scenario	capabilities	allow	them	to	consider	non-price	
policies and structural changes in detail.

• Data requirement is generally a major issue for any demand model. All varieties of models require large data 
inputs	and	can	pose	problems	for	developing	countries.	However,	simple	end-use	models	can	be	developed	
with	limited	information	and	LEAP	intends	to	introduce	such	a	limited	data	version	model	for	developing	
countries.

• Rural	energy	demand	tends	to	be	more	difficult	to	capture	through	econometric	models	but	end-use	models	
can	include	them	if	relevant.	Hybrid	models	can	also	include	them	if	they	use	geographically	differentiated	
information.

requirement econometric 
estimation 

econometric
analysis 

econometric
analysis 

running a 
complex model 

running a 
global model 

Versatility Low – country 
specific

Low – country 
specific

Low – region 
specific

Low – country 
specific

High – general 
model 

High-general
model 

Low – specific 
global model 

Portability to 
another country 

Difficult Difficult Difficult Difficult Easy Easy Difficult

Documentation Limited Limited Limited Excellent Excellent Excellent Poor
Capability to 
analyse price-
induced policies 

High High High High Does not exist Does not exist High 

Capability to 
analyse non-
price policies 

Low Good Low Good High High High

Rural energy Not covered 
separately 

Not covered 
separately 

Not covered 
separately 

Included
through 
geographical
coverage

Can be 
included

Can be 
included

Not covered
specifically 
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Capitolo 5 | Case Study: United Kingdom
In	this	chapter	is	presented	the	case	study	of	this	thesis,	The	United	Kingdom.	This	is	the	heart	of	this	work,	
where,	through	the	software	tool	LEAP,	the	current	energy	situation	of	the	UK	is	analyzed	and	then	the	future	
energy	context	is	forecasted.	The	choice	fell	on	this	State,	which	belongs	to	the	sphere	of	the	industrialized	
countries,	for	the	possibility	of	finding	complex	official	data	with	greater	ease	and	accuracy.	In	the	first	part	the	
general context is presented, then energy forecast and scenario analysis is performed.

5.1 The general context

Figure 22: Great Britain [47]

The	United	Kingdom	[47]	of	Great	Britain	and	Northern	Ireland,	commonly	known	as	the	United	Kingdom	
(UK) or Britain, is a sovereign State in Europe. The country has an area of 93,800 square miles (243,000 
km2),	making	it	the	80th-largest	sovereign	State	in	the	world	and	the	11th-largest	in	Europe.	This	State	is	the	
22nd-most	populous	country,	with	an	estimated	64.5	million	inhabitants.	It	is	a	constitutional	monarchy	with	a	
parliamentary system of governance.
The	UK	is	a	developed	country	and	has	the	world’s	fifth-largest	economy	by	nominal	GDP	and	tenth-largest	
economy	by	purchasing	power	parity.	It	is	considered	to	have	a	high-income	economy	and	is	categorised	as	
very	high	in	the	Human	Development	Index,	currently	ranking	14th	in	the	world.
The	United	Kingdom’s	HDI	value	[48]	for	2014	is	0.907—	which	put	 the	country	 in	 the	very	high	human	
development	category—positioning	it	at	14	out	of	188	countries	and	territories.	Between	1980	and	2014,	the	
country’s HDI value increased from 0.738 to 0.907, an increase of 22.9 percent or an average annual increase 
of	about	0.61	percent.	The	table	below	reviews	the	United	Kingdom’s	progress	in	each	of	the	HDI	indicators.	
Between	1980	and	2014,	The	UK’s	life	expectancy	at	birth	increased	by	7.2	years,	mean	years	of	schooling	
increased by 5.6 years and expected years of schooling increased by 3.3 years. Its GNI per capita increased by 
about	92.7	percent	between	1980	and	2014.
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Life 
expectancy 
at birth

Expected 
years of 
schooling

Mean years 
of schooling

GNI per 
capita (2011 
PPP$)

HDI value

1980 73.5 12.9 7.5 20,381 0.738
1985 74.6 13.2 7.7 22,570 0.753
1990 75.6 13.6 7.9 26,310 0.773
1995 76.6 14.9 11.4 28,255 0.837
2000 77.7 16.1 11.6 32,732 0.865

2005 79.0 16.6 12.2 37,518 0.890

2010 80.1 16.8 13.1 36,641 0.906

2011 80.2 16.2 13.1 36,973 0.901

2012 80.4 16.2 13.1 36,425 0.901

2013 80.5 16.2 13.1 36,576 0.902

2014 80.7 16.2 13.1 39,267 0.907

Table 11: life expectancy at birth, expected years of schooling, mean years of schooling, GNI, HDI in Britain [47]

The	figure	below	shows	the	contribution	of	each	component	index	to	the	United	Kingdom’s	HDI	since	1980.

 

Figure 23: contribution of Life Expectancy, Education and GNI per capita to the United Kingdom’s HDI since 1980

5.2 Analysis of the current state

The	analysis	of	the	UK	case	study	in	Leap	begins	from	the	productive	structure’s	construction	of	the	two	main	
sections,	Demand	of	Energy	and	Transformation.	After	 that	 the	Resources	 section	 is	built	with	 the	data	of	
production, import, export and cost. Each of these categories is explained and analyzed in the next chapters. The 
initial	hard	work	to	get	along	the	results	expressed	in	this	thesis	started	from	collecting	official	data	with	which	
fill	all	subcategories	of	the	main	branches,	making	a	more	accurate	analysis	possible.	On	this	point	it	is	correct	
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to	spend	some	words:	collect	so	much	accurate	data,	both	about	consumption	and	energy	transformations	and	
about	the	policies	implemented	and	being	implemented,	was	a	demanding	activity.
The	base	 year	 chosen	 is	 2010	 for	 reasons	of	 data	 accuracy.	 In	 the	first	 part	 of	 the	 analysis,	 in	 addition	 to	
showing	the	UK	productive	structure,	all	the	data	collected	and	their	related	sources	are	described.	
Appendix 1 illustrates the policies adopted or planned by United Kingdom that determined the trends of 
the	“current	policies”	scenario,	from	which	were	built	optimized	scenarios,	treated	after	the	current	policies’	
analysis.
The	analysis	of	the	case	study	will	be	carried	out	by	describing	the	scenarios	created	through	the	LEAP’s	results,	
with	graphs	and	tables.	The	results	of	the	program	include	energy	data	and	the	emissions	of	the	case	study,	
analyzed	in	depth	between	2010	and	2040.	Some	charts	may	not	arrive	until	2040	because	of	the	difficulty	of	
being able to accurately predict the results until that date.
The	main	scenario,	from	which	they	are	born	after	all	the	other	optimized,	is	the	Current	Policies.	This	is	loosely	
based	on	the	scenario	of	the	New	Policies	Scenario	of	the	World	Energy	Outlook,	described	in	paragraph	4.1.	
The	Current	Policies	used	in	this	paper	takes	into	account	both	the	policies	implemented	until	2014	as	well	as	
those	that	have	only	been	announced	(as	of	2014)	but	will	definitely	be	implemented	shortly	afterwards.
The	scenarios	created,	inherited	from	Current	Policies,	are	the	following	three:
• Optimize	CP,	which	optimizes	the	Current	Policies	from	a	purely	economic	point	of	view.
• Carbon	Tax	opt30,	which	adds	to	the	optimization	of	a	£	30	fee	on	the	use	of	coal	as	a	fuel	in	power	generation.
• Carbon	Tax	opt40,	which	adds	to	the	optimization	of	a	£	40	fee	on	the	use	of	
coal	as	a	fuel	in	power	generation

5.2.1 Input data and resources: the “Current Accounts”
In	this	section	it	will	be	described	the	data	entered	in	the	base	year,	2010.	A	
hierarchical structure is used to create and organize data under four major 
categories:
•	Key	Assumptions:	under	which	independent	variables	are	imposed	and	used	
to “drive” the calculations. 
•	Demand:	 under	which	 the	 disaggregated	 structure	 of	 the	 energy	 demand	
analysis is created.
• Transformation: it simulates the conversion and transportation of energy 
forms	 from	primary	 resources	 and	 imported	 fuels	 to	 the	point	 of	final	 fuel	
consumption. 
• Resources: they include the production of indigenous resources and the 
import and export of secondary fuels.

In	the	figure	24	the	productive	structure	for	the	case	of	the	UK	is	divided	into	
the categories described above. In the Key Assumptions a list of all constant 
was	created	to	allow	to	attribute	some	calculations	to	these	reference	points.

Figure 24: LEAP productive structure
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5.2.1.1 Demand
The Demand is structured through the consumption’s analysis of Households, 
Industry, Service, Transport and Energy Transformation.

5.2.1.1.1 Households
The	 households	 data	 are	 taken	 directly	 from	 the	UK	 government	website	 [49]	
and they are based on research by Department of Energy and Climate Change 
and	Market	Transformation	Programme	and	analysis	by	Cambridge	Architectural	
Research	Ltd.	The	analyzed	areas	are	visible	in	the	tree	diagram	in	the	figure	25	
and	include	in	consumption	of	light,	cold	appliances,	wet	appliances,	consumer	
electronics,	 home	 computing,	 cooking,	 space	 heating	 and	 water.	 The	 first	
five	 categories	 contain	 a	 list	 of	 the	main	 electrical	uses.	As	 for	 cooking,	 space	
heating	and	water	uses,	it	was	decided	to	list	the	technologies	related	to	energy	
consumption.	This	due	to	the	fact	that,	unlike	the	previous	categories,	these	uses	
don’t involve only electric energy.
In	 the	 following	 pie	 diagram	 (figure	 26)	 the	 categories	 described	 are	 showed,	
proportional to their energy consumption.
 

Figure 26: household energy demand, current accounts

Consumption	derived	from	the	space	heating	and	the	use	of	hot	water	is	greater,	because	are	the	categories	with	
the highest energy demand.

Figure 25: households structure
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5.2.1.1.2  Industrial Sector and Services
For	each	industry	the	energy	consumption	was	analyzed	between	the	
four	most	used	fuels:	electricity,	natural	gas,	oil	and	coal.	The	figure	
27	shows	all	industries	analyzed	and	then	the	category	of	services.

Even	 Industrial	 energy	 consumption	 data	 are	 taken	 directly	 from	
the	UK	 government	website	 [49]	 and	 exactly	 from	Department	 of	
Energy	and	Climate	Change.	The	industrial	energy	analysis	was	done	
based on the economic value added by energy intensive industries in 
United	Kingdom.	According	to	The	World	Bank	[50]	data,	industries	
contributed	to	22%	of	UK	2010	total	GDP	PPP	which	resulted	to	a	
total	added	value	of	505,01	billion	USD.	Each	sector	of	the	following	
table	presents	the	values	of	final	energy	intensity.

In	the	figure	28,	the	proportional	consumption	of	all	industrial	sectors	
referred	to	2010	is	shown.	It	may	be	noted	that	the	industrial	sectors	
that	consume	most	energy	are	 the	manufacture	of	coke	and	refined	
petroleum products, the manufacture of chemicals, the manufacture 
of non-metallic mineral products, the manufacture of food products, 
the manufacture of basic metals and the manufacture of rubber and 
plastic product.

Unit:	Terawatt-hours

Figure	28:	industrial	sector	energy	demand	final	units,	current	accounts

 Figure 27: industry and services structure
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Figure	29:	industrial	sector	energy	demand	final	units,	current	accounts,	divided	by	fuels

Regarding	fuels,	figure	29	shows	the	share	of	energy	consumption	of	the	industrial	sector	by	type	of	fuel.	It	can	
be noticed that approximatively 60% of the overall consumption refers to fossil fuels.

The	service	sector	energy	analysis	was	done	based	on	the	floor	area.	For	a	given	207746	square	meter	[51]	of	
services space in UK it is considered the total energy consumed. As for the industrial sector, it has been used the 
mechanism	of	calculating	the	energy	intensity,	this	time	based	on	floor	area	[Tonnes	of	oil	equivalent/square	
meters]. The source data derive from Digest of UK Energy Statistics Annex, created by Department of Energy 
and	Climate	Change,	available	from	the	government	web	site	[49].	Here	the	most	widely	used	fuels	are	natural	
gas	and	electricity	(figure	30).

Unit:	Terawatt-hours

Figure	30:	services	sector	energy	demand	final	units,	current	accounts
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5.2.1.1.3 Transport and Energy Trasformation
In	this	section	four	large	areas	were	divided:	Road,	Rail,	Water	and	Air.	In	the	section	of	road,	the	distinction	
was	made	between	energy	used	to	transport	people	and	freight	(figure	31).

Figure 31: transport and energy transformation tree

Regarding	the	transport	sector,	data	result	more	accurate	if	taken	from	analysis	of	data	supplied	by	AEA	Energy	
and	Environment	 [49].	 It	may	be	noted	 from	 the	 following	diagrams	 that	 the	greatest	amount	of	energy	 is	
consumed	on	the	road	section	and,	consequently,	the	most	widely	used	fuel	in	the	United	Kingdom	are	diesel	
and	gasoline	(figure	32-33).

Unit:	Terawatt-hours

Figure	32:	transport	energy	demand	final	units,	current	accounts
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Figure	33:	transport	energy	demand	final	units,	current	accounts,	divided	by	fuels

Energy	transformation	data	are	taken	from	Digest	of	United	Kingdom	Energy	Statistics,	a	National	Statistics	
publication by Department of Energy and Climate Change [52]. This sector includes all energy consumption of 
the industry transformation that normally is not considered but is right to include because it represents a good 
part of consumption.

Unit:	Terawatt-hours
 

Figure	34:	energy	transformation	demand	final	units,	current	accounts
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5.2.1.2 Transformation
Transformation sector includes transmission, production, conversion and distribution of energy. This sector 
includes	(see	figure	36)	the	transmission	and	distribution	losses,	the	processes	of	electric	generation,	the	oil	
refinement,	the	coal	mining	product	and	the	charcoal	production.	It	is	important	to	have	a	fair	idea	of	all	energy	
flows	in	the	UK	energy	supply.	In	the	next	Sankey	diagram	the	intertwining	of	all	flows	can	be	observed.
 

Figure	35:	Sankey	diagram	for	UK	energy,	current	policies

On	the	left,	all	resources	from	which	to	derive	energy	are	shown,	while	on	the	right	all	end-uses	already	described	
in	the	section	of	the	energy	demand	(5.2.1.1)	are	presented.	The	path	of	the	flows	report	all	transformations	
that	raw	materials	undergo	before	arriving	to	end-use.	The	division	between	imports	and	exports	is	also	put	in	
evidence.

The technical losses are due to energy dissipated in the conductors and equipment 
used	for	transmission,	transformation,	sub-	transmission	and	distribution	of	power.	
The commercial losses are caused by pilferage, defective meters, and errors in 
meter reading and in estimating unmetered supply of energy. The information 
about	T&D	loses	is	taken	from	Data	World	Bank	[50].
Concerning	 Oil	 Refinement,	 Coal	Mining	 and	 Charcoal	 production	 ,	 data	 are	
taken	from	DUKES	[52].

5.2.1.2.1 Electricity Generation
The	generation	data	are	taken	from	Digest	of	United	Kingdom	Energy	Statistics	
[52]. The electricity generation in UK is generally done by the traditional fossil 
fuels	 coal	 and	 gas,	 but	 there	 is	 significant	 portion	 wind,	 hydro	 and	 biomass	
capacity	installed.	Generation	by	nuclear	plant	represents	a	significant	percentage.	
In	the	figure	37	the	share	percentage	of	the	current	capacity	installed	is	shown	and	
in	the	figure	38	the	production	of	electricity	is	presented.
 

Figure 36; transformation structure
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Figure 37: capacity of electric generation, current accounts, divide by processes
 

Figure 38: electric generation, current accounts, divide by processes
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Figure 39: electric generation, current accounts, divide by fuel

In	figure	39	can	be	noticed	that	approximatively	75%	of	the	overall	production	of	electric	refers	to	fossil	fuels.
The	efficiency	of	every	plant	is	the	following,	taken	from	DUKES	[52]:
 

Figure	40:	processes	efficiency

It	is	also	needed	to	specify	the	performance	of	the	system	load,	which	describes	how	the	electric	load	varies	
every	year.	The	division	of	the	year	was	made	into	four	parts,	as	in	the	DUKES	data,	and	has	specified	the	
energy load for each quarter [52]. 
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Figure 41: energy load shape

Concerning	the	costs,	the	data	are	taken	from	Department	of	Energy	and	Climate	Change	website	[49]	and	
from the E.I.A. [45].
 

Table 13: plant characteristics and costs
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5.2.1.3 Resources assessment
The	data	resources	are	taken	from	the	IEA	(international	energy	agency)	website	[41],	primary	and	secondary.	
The	costs	are	also	taken	from	EIA	publication	[45].	In	the	diagrams	it	can	be	noticed	the	import-export	flows	
refer to 2010.
 

  
Figure 42: resources exports, current accounts Figure 43: resources imports, current accounts
 

 
Figure 44: secondary resources exports, current accounts Figure 45: secondary resources imports, current accounts

In	Figures	42	and	43	the	commercial	exchange	of	primary	resources	can	be	observed.	The	graphs	show	that	the	
trade	balance	leans	towards	a	predominance	of	imports	of	coal,	natural	gas	and	oil.	Figures	44	and	45	show	that	
secondary	resources,	including	gasoline	and	diesel,	are	almost	equal	in	the	trade	balance	between	exports	and	
imports.	This	implies	that	domestic	consumptions	are	satisfied	by	refineries,	for	the	case	study.

5.2.2 The “Current Policies” Scenario
The	analysis	starts	from	the	baseline	scenario,	called	“current	policies”.	Here	we	have	analyzed	the	policies	
undertaken	and	planned	in	recent	years	for	UK,	entering	into	every	sector	the	possible	effects	that	such	actions	
should	take	in	the	future.
The Current Policies Scenario is based on those government policies and implementing measures that had been 
formally	adopted	as	of	mid-2014.	The	policies	adopted	can	be	found	on	UK	government	website	[49]	and	on	
policy	database	of	WEO	[53].	The	documents	consulted	are	the	following:
• Low	carbon	Transition	Plan	-	2008-09	[54]
• Renewable	Energy	Strategy	-	2009	[55]
• Renewable	Transport	Fuels	Obligation	-	2009	[56]
• Energy White Paper - 2011 [57]
• UK 2012 Policies [58]
• WEO 2014 [41]
• Updated energy and emissions projections 2014 [59]
 To see the description of the various policies refer to Appendix 1.

5.2.2.1 Demand of Energy
Energy demand includes all domestic consumption due to Households, Industrial sector, Service sector, 
Transport sector and all the energy needed for the Transformation sector.
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Figure	46:	energy	demand	final	units,	current	policies	scenario,	divide	by	sector
 

Figure	47:	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel

From	these	graphs,	the	performance	of	UK’s	internal	energy	consumption	between	2010	and	2040	can	be	easily	
observed:	the	effects	of	actions	on	energy	efficiency	yield,	despite	a	population	growth	of	0.75%	per	annum,	
resulted	in	a	lower	consumption	until	year	2025,	when	consumption	starts	increasing	steadily.		This	is	because	
many	objectives,	shared	with	the	European	Union,	seek	to	produce	concrete	results	by	2020,	but	also	because	
the	policies,	with	a	demographic	growth	and	an	increase	in	consumption,	become	insufficient	after	a	certain	
date. Some objectives for 2020 for example are, regarding households, the reduction of consumption for the 
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space	heating,	while,	for	the	transport	sector,	the	reduction	of	car	emissions	from	130	g/km	in	2013	to	95	g/km.
The performance of the various sectors and the fuels used can also be seen. These data could be used to focus 
attention on other goals. It can also be seen that the areas that use more energy are those of Transports and 
Households.	Policies’	effects	on	 these	areas	are	also	evident.	On	 this	matter,	 the	most	decisive	policies	are	
contained	in	“Energy	White	Paper”	[57]	and	in	“UK	2012	Policies”	[58].	The	effects	of	energy	efficiency	are	
noticed	in	all	sectors	excluding	the	small	part	related	to	Energy	Trasformation	and	in	a	less	invasive	way	in	
Services.	Although	developments	graphics	are	descendants,	the	Households	sector	is	showing	the	best	effects	
of	the	policies	undertaken,	especially	in	the	early	years.
The performance of the various sectors and the fuels used can also be seen, data that could be used to focus 
attention on other goals. The areas that use more energy can be observed, Transport and Households, and the 
policies’	effects	on	them.	About	this	the	most	decisive	policies	are	contained	in	‘’	Energy	White	Paper	‘and	
in’	“UK	2012	Policies”.	The	effects	of	energy	efficiency	are	noticed	 in	all	 sectors	excluding	 the	small	part	
related	to	Energy	Trasformation	and	in	a	less	invasive	way	in	Services.	Although	developments	graphics	are	
descendants,	 the	Households	sector	 is	showing	the	best	effects	of	 the	policies	undertaken,	especially	 in	 the	
early years. 

5.2.2.1.1  Households
The number of households continually increases over the years, from approximately 26.5 million to almost 33 
million in 2040. That suggests consumers, and therefore consumption, is expected to increase, especially in the 
absence of suitable energy policies.
 

Figure	48:	households	energy	demand	final	units,	current	policies	scenario,	divide	by	sector
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Figure	49:	households	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel

The	largest	consumption	in	this	area	is	due	to	the	space	heating	and	water.	The	graphs	show	how	the	consumption	
due	to	the	space	heating	is	subjected	over	the	years	to	a	considerable	reduction,	only	to	follow	an	increasing	
trend	after	2025.	This	 is	due	 to	 the	special	attention	 to	 the	space	heating	and	domestic	hot	water	usage,	as	
explained	in	 the	previous	section.	The	attention	to	 these	two	aspects	of	consumption	is	due	to	 the	fact	 that	
they	are	the	sectors	that	have	the	largest	consumption,	but	also	to	the	fact	that	they	are	the	areas	that	show	the	
greatest	potential	for	increasing	energy	efficiency.	The	most	used	fuel	is	natural	gas,	due	precisely	to	the	large	
amount	of	energy	needed	for	heating,	followed	by	electricity.
The next list analyzes in detail all the consumption items of households over the coming years:

• Lightening
The	 progressive	 replacement	 of	 standard	 light	 bulb,	 more	 expensive	 in	 terms	 of	 energy,	 with	 lamps	 that	
consume	less.	The	process	lasted	a	few	years	and	it	can	not	fully	appreciate	in	the	graph	because	the	life	of	
the	bulbs	is	usually	a	few	years.	The	LED	lamps,	the	best	in	terms	of	energy,	beginning	to	appear	but	with	the	
current	cost	data	it	can	not	predict	a	large	diffusion.

• Cold appliances
Despite the progressive increase of households, consumption of cold appliances are set to fall due to the 
attention	placed	on	the	policies	for	appliances	with	low	energy	cost.

• Wet, Consumer Electronics, Home Computing
The	 trend	 of	 this	 consumption	 results	 in	 growing	 because	 of	 the	 increase	 in	 households	 and	 access	 to	
technological	solutions	to	be	part	of	a	growing	number	of	people.

• Cooking
For	cooking	logically	the	households	are	mostly	using	gas	and	electric	stoves.	The	graph	shows	a	reduction	in	
consumption	for	energy	efficiency	research.	Efforts	are	maximum	in	the	first	period	of	the	analysis	and	then	
decrease over time for the progressive increase of the households and population
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Figure	50:	cooking	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel

• Space	and	water	heating
The	great	work	policy	is	concentrated	on	the	energy	efficiency	of	space	and	water	heating	because	are	aspects	
where	energy	expenditure	is	greater.	As	for	cooking,	efforts	are	maximum	in	the	first	period	of	the	analysis	
and	then	decrease	over	time,	after	2025.	The	more	fuel	used	is	undoubtedly	the	natural	gas,	followed	by	the	
electricity.
 

Figure	51:	space	heating	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel
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5.2.2.1.2 Industrial sector
The	industrial	energy	analysis	was	done	based	on	the	economic	value	added	by	energy	intensive	industries	in	
United	Kingdom.	According	to	The	World	Bank	[50]	data,	industries	contributed	to	22%	of	UK	2010	total	GDP	
PPP	which	resulted	to	a	total	added	value	of	505,01	billion	USD.	This	added	value	is	growing	in	the	early	years	
of	the	analysis	around	0.5%	due	to	the	recent	financial	crisis.	Subsequently	it	settles	around	the	growth	of	2%.
As	presented	in	the	following	graphs,	the	industrial	sector	has	been	the	subject	of	aggressive	policies,	which	
promote	a	reduction	of	the	use	of	primary	energy	from	fossil	fuels	and	a	strong	increase	in	energy	efficiency.	
Initially,	 as	 an	 effect	 of	 these	 aggressive	 policies,	 the	 reduction	 of	 consumption	 should	 be	 about	 15%.	
Afterwards,	the	reduction	becomes	less	effective	and	by	2030	the	reduction	is	about	25%	compared	to	2010.
 

Figure	52:	industrial	energy	demand	final	units,	current	policies	scenario,	divide	by	sector
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Figure	53:	industrial	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel

It	was	 chosen	 as	 the	date	 range	2010-2030	because	 there	 are	not	 available	 enough	data	 to	go	beyond	 this	
time.	The	industrial	sectors	that	consume	the	most	energy	are	the	manufacture	of	coke	and	refined	petroleum	
products, the manufacture of chemicals, the manufacture of non-metallic mineral products, the manufacture of 
food products, the manufacture of basic metals and the manufacture of rubber and plastic product.
As	regards	the	use	of	fuels	in	the	following	graphics	it	can	be	noted	how	the	utilization	percentage	changes	over	
the years. In particular, it decreases the use of natural gas, oil and coal dropped respectively by 30.4%, 17.3%, 
15.4%	to	26.8%,	13.6%,	13.2%	in	2030.	Increase	the	percentage	of	the	use	of	electricity,	whose	generation	will	
be discussed in the transformation sector, from 33% to 39,4%.

 

Figure	54:	industrial	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel,	2030
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5.2.2.1.3  Services
The	growth	of	the	Services	is	around	0.7%	per	annum	which	it	is	similar	to	the	growth	of	the	population.	The	
first	part	of	the	graph	shows	an	adjustment	due	to	the	consequences	of	the	global	crisis.	In	the	second	there	is	a	
decrease	in	energy	use	until	2025,	when	the	trend	started	to	rise.	At	the	same	time	the	percentage	of	electricity	
use	grows	instead	of	natural	gas	and	oil.
 

Figure	55:	services	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel

5.2.2.1.4  Transport
The transport sector in the UK sees a preponderance for the road transport of passengers and freight. 
Consequently	the	use	of	gasoline	and	diesel	is	significant.
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Figure	56:	transport	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel

Policies	in	place,	like	seek	to	minimize	emissions	despite	the	number	of	road	passengers	increases	every	year	
due	to	steady	population	growth.
 

Figure	57:	road	transport	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel

Use	of	Gasoline	and	Diesel	will	diminish	over	the	years	but	current	efforts	do	not	appear	to	produce	significant	
results.	Also	around	2028	consumption	will	rise	again,	a	sign	that	the	current	policies	are	insufficient	for	long-
term	projects.	Appears	on	the	scene	the	use	of	biofuel	vehicles	that	are	encouraged	and	seen	a	strong	growth	
until 2020 before stabilizing after that.
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The	increase	of	efficiency	in	the	sector	of	road	transport	is	a	delicate	and	complex	issue.	Only	strong	actions	
aimed	at	revolutionizing	it,	such	as	the	introduction	of	electric	vehicles,	would	bring	lasting	positive	effects.	
In Figures 56 and 57 the increase in the use of electricity in transport can be observed, but such an increase is 
still	too	low,	in	particular	on	road	which	is	the	dominant	sector.	The	electricity	in	transport	is	increased	in	rail,	
as	shown	in	figure	58.
 

Figure	58:	rail	transport	energy	demand	final	units,	current	policies	scenario,	divide	by	fuel

The	railway	sector	is	subject	to	a	major	modernization	through	the	introduction	of	the	power	lines	on	the	rail	
network	in	order	to	replace	old	and	polluting	diesel	locomotives.	The	growth	trend	in	consumption	is	a	sign	of	
encouragement	in	the	use	of	the	rail	network	instead	of	the	road	network.

5.2.2.1.5 Energy Transformation
This sector includes all energy consumption in the industry transformation that usually is not considered but it 
represents a good part of consumption.
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Figure	59:	energy	trasformation	demand	final	units,	current	policies	scenario,	divide	by	sector

The	consumption	for	electricity	generation	are	uphill	because	it	increases	over	the	years	analyzed	while	oil	and	
gas extraction decreased for the reduction of extractions.

5.2.2.2 Transformation
The	sector	that	was	the	most	impacted	by	the	energy	policies	is	the	production	of	electricity.	The	Low	Carbon	
Transition	Plan	[54],	Renewable	Energy	Strategy	[55]	and	the	Energy	White	Paper	[57]	seek	to	establish	the	
foundations for an energy development less dependent on fossil fuels. The main objectives are the production 
of	30%	of	electricity	from	renewable	sources	by	2020,	 the	reduction	of	22%	in	CO2	emissions	by	2020,	a	
reduction	of	10%	in	fossil	fuel	demand,	the	closure	of	old	nuclear	plants,	for	18	GW,	by	2018	in	favor	of	new	
plants,	 for	20	GW	of	power,	and	the	 introduction	of	2025	carbon	capture	storage	(CCS)	to	reduce	by	90%	
the	emissions,	by	2025.	The	logic	behind	this	 is	based	on	the	increase	in	efficiency	and	a	growth	in	power	
production	based	on	renewables,	promoting	their	use	and	penalizing	the	consumption	of	fossil	fuels.
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5.2.2.2.1 Electric Generation

Figure 60: electric generation by output fuel, current policies, divide by processes

The electric generation over the years analyzed changes considerably, as can be seen from the graph. Policies 
analyzed in Appendix 1 provide a substantial reduction in the use of fossil fuel plants. Initially this concerns 
the	coal	plants	 that	are	gradually	decreased	without	open	new	ones.	Simultaneously	with	 the	promotion	of	
renewable	energy,	particularly	wind	energy,	power	generation	becomes	less	and	less	dependent	on	fossil	fuels.	
From	2018-20	are	also	put	into	operation	a	number	of	new	nuclear	power	plants	currently	under	construction	
that	will	generate	by	2035	about	30%	of	the	total	energy.	From	2025	began	to	produce	energy	the	first	coal	
carbon	capture	storage	plant	that	should	not	release	CO2	into	the	air	and	will	have	an	increasingly	important.
As	far	as	the	renewable	sources,	wind	power	plants	are	those	having	a	major	evolution.	Initially	the	aim	is	on	
wind	energy	offshore	but	is	gradually	achieved	and	exceeded	by	wind	onshore:	together	is	expected	that	in	
2035	will	produce	about	35%	of	total	power.	Too	few,	however,	benefits	from	solar	energy	than	the	UK	does	
not	see	a	great	evolution.	The	role	of	energy	produced	from	biomass	grows	in	the	early	years	to	settle	back	
down	generation	values	stable.
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Figure 61: capacity of electric generation, current policies, divide by processes

The electricity generation capacity, as already said, varies considerably over the years. It ‘important to note that 
the	largest	installed	capacity	in	2035	is	made	up	of	about	45%	of	renewable	energy,	but	energy	being	aleatory	
and	not	programmable	need	to	be	supported	by	gas	plants,	nuclear	power	plants	and	CCS.
The electricity generation capacity, as already said, varies considerably over the years. It’s important to note 
that	the	largest	installed	capacity	in	2035	is	made	up	of	about	45%	of	renewable	energy,	which	is	characterized	
by being aleatory and not programmable, therefore leading to the need of being supported by gas plants, nuclear 
power	plants	and	CCS.	From	2010	to	2035	the	majority	of	plants	put	into	operation	for	are	based	on	wind.	In	
the	years	between	2015	and	2020	the	installed	wind	power	plants	are	mostly	offshore.	From	2020	the	onshore	
plants	have	a	considerable	increase	and	outweigh	the	offshore’s	for	installed	capacity.	The	solar	power	plants	
have	a	first	significant	increase	in	the	first	5-year	period.	Afterwards,	however,	the	United	Kingdom	prefers	to	
focus	on	wind	energy,	which	at	that	latitude	is	much	more	efficient	than	solar.	From	2018	new	nuclear	plants	
start operating, replacing the old ones that are dismissed. The only fossil fuel plants that survive are those based 
on	gas,	which	have	the	ability	to	switch	on	and	off	in	a	very	short	time,	providing	electricity	to	mend	the	issue	
of	scarcity	of	production	from	aleatory	renewables	sources.	The	other	plants	based	on	fossil	fuels,	such	as	coal,	
are	gradually	abandoned	and	not	rebuilt.	From	2025,	however,	carbon	capture	storage	plants	star	operating.	
These	type	of	plants,	although	with	coal,	don’t	produce	emissions.

5.2.2.2.2  Oil refinement and Coal mining
The	production	of	 the	products	of	 refinery	undergoes	a	 reduction	over	 the	years,	especially	 for	 the	smaller	
demand	for	gasoline	and	diesel.	This	will	happen	if	it	be	come	into	circulation	vehicles	with	less	environmental	
impact.
As	for	oil	refinement,	in	the	analysis	on	the	power	generation,	coal,	very	polluting,	is	gradually	abandoned	in	
favor	of	less	polluting	technologies.	From	2025	the	request	grows	again	for	the	entry	into	operation	of	the	plant	
carbon capture storage.

5.2.2.3 Environmental impact
Below	are	presented	graphs	of	the	environmental	effects	from	pollutants.	In	the	first	chart	are	shown	all	the	
effects	in	order	to	realize	the	relationship	between	pollutants.	Then	analyzes	the	major	polluting	and	source	of	
the greatest environmental problems.
In	Figure	62	 the	strong	 impact	of	CO2	compared	 to	other	pollutants	can	be	noticed.	However,	 this	 impact	
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decreases	over	the	years,	initially	significantly	and	then	becomes	stable.	This	happens	because	they	are	not	yet	
planning important actions after 2030.
 

Figure	62:	all	environmental	effects,	grouped	by	year

In	figure	63	and	64	the	difference	of	the	actions	explained	in	the	preceding	paragraphs	from	the	demand	and	
the trasformation can be observed. In the area of demand there is a drop in the CO2 emissions, but it is in the 
transformation	sector	 that	have	 remarkable	 results.	This	 is	because	 the	attention	of	 the	UK	government	on	
energy	focuses	more	on	the	aspect	of	power	generation	to	reduce	emissions,	with	energy	efficiency	and	use	of	
renewable	sources.
 

Figure 63: carbon dioxide (non-biogenic) from demand and trasformation, current policies
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Figure 64: carbon dioxide (non-biogenic), current policies, divide by origin

In	Figure	65	 the	demand	 is	divided	between	 the	four	main	sectors.	 In	 this	way,	emissions	by	category	can	
be observed. The transport sector results to be one that produces more CO2 emissions and, although these 
emissions	decrease,	them	are	still	significant.	The	category	of	households	presents	an	initial	decrease	and	then	
even	return	to	rise.	This	trend	could	produce	a	starting	point	from	which	to	take	corrective	actions.	The	industry	
and the services have CO2 emissions decrease.
 

Figure 65: carbon dioxide (non-biogenic), current policies, divide by demand sector
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5.2.2.4 Validation of results
Although	free	information	on	future	energy	projections	are	relatively	few,	in	this	section	the	results	obtained	
by	comparison	with	the	annual	“Updated	energy	and	emissions	projections”,	a	document	of	the	Department	
of	Energy	and	Climate	Change	(DECC)	that	update	annually	the	estimates	of	demand,	power	generation	and	
emissions	of	United	Kingdom,	want	briefly	to	validate	the	work.
As	for	the	energy	demand,	it	can	be	compared	the	following	charts:
 

Figure	66:	grouped	charts	of	final	energy	demand	by	DECC

If the results obtained in LEAP are compared, it is observed that the trends and the data are very similar:

 
Figure	67:	grouped	charts	of	final	energy	demand	by	“Current	Policies	Scenario”
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As	for	electricity	generation	it	is	observed	slight	differences	but	the	trends	are	also	very	similar	overall.	
 

Figure	68:	comparison	of	electric	generation	and	capacity	in	UK,	between	DECC	and	“Current	Policies	Scenario”

In	the	following	charts	it	can	be	observed	the	trends	on	emissions.	The	output	provided	by	LEAP	is	definitely	
more	positive	than	the	British	government	estimates,	but	the	trend	is	still	confirmed.
 

Figure	69:	comparison	of	GHG	emissions	in	UK,	between	DECC	and	“Current	Policies	Scenario”
The	results	obtained	from	the	model	are	therefore	in	line	with	government	reports,	thus	validating	the	work	
conducted.

5.3 The optimized scenarios
In	the	analysis	carried	out	in	leap	three	more	scenarios	were	created.
The	first	scenario,	called	“Optimize	CP	scenario”,	is	inherited	directly	from	“current	policies”	and	is	taking	
advantage of an optimization algorithms LEAP based on data cost included. LEAP, thus, creates an alternative 
scenario,	 taking	 into	 account	 the	 guidelines	 inherited,	where	 it	 finds	 the	 balance	with	 the	 costs	 of	 various	
generation systems.
The other scenarios, called “Carbon Tax opt30” and “Carbon Tax opt40”, are inherited from “current policies” 
and	 they	 are	 based	 on	 the	 same	optimization	 process	 of	 scenario	 “Optimize	CP	 scenario,”	 but	 taking	 into	
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account a tax on the use of fossil fuels in the production of electricity. The fee, therefore, interests coal, gas, oil 
and	as	the	scenarios’	name	suggests,	it	is	calculated	by	putting	£	30	or	£	40	per	tonne	of	CO2	produced	in	the	
2020,	raising	the	tax	steadily.	Then	tax	increases	further	until	2030.	The	production	data	of	CO2	per	kWh	were	
taken	from	the	following	table	[45],	considering	the	value	of	one	pound	equal	to	1.56	dollars:
 

Table 14: added costs from carbon tax for carbon tax scenarios

The	following	graphic	shows	different	electric	generations	in	the	three	new	scenarios.	In	order	to	observe	the	
differences	was	again	added	the	generation	graph	of	the	“current	policies”.
 

Figure 70: electric generation by output fuel, current policies, divide by processes
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Figure 71: electric generation by output fuel, optimize CP scenario, divide by processes

In the optimized scenario become obvious that the generation through coal plants is preferred than the other, 
and	the	program	tries	to	use	every	megawatt	of	installed	capacity.	This	is	because	electricity	generation	through	
coal	is	cheaper	than	the	other	and	the	cost	/	benefit	ratio	it’s	better.	The	generation	through	gas	plants	decreases,	
because	it’s	more	expensive	but	necessary,	while	disappears	the	generation	through	biomass	plants.
 

Figure 72: electric generation by output fuel, carbTAXopt30 scenario, divide by processes
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Figure 73: electric generation by output fuel, carbTAXopt40 scenario, divide by processes

As	for	the	scenarios	with	the	carbon	tax	can	be	observed	that	as	soon	as	the	costs	become	not	convenient	the	
generation	through	coal	is	cut	cleanly.	The	plants	that	make	up	for	the	lack	of	coal	plants	generation	are	those	
gas	plants	which,	although	they	are	powered	by	fossil	fuels,	emit	fewer	pollutants	in	the	air,	and	above	all	less	
CO2	than	other	fossil	fuel	plants.	Obviously	a	break	so	sharply	it	is	impossible	to	apply	in	practice	but	the	
graphs	give	an	idea	of	the	time	that	is	necessary	to	take	different	decisions	than	for	example	as	programmed.
The	change	in	the	CO2	emissions	of	the	different	scenarios	can	be	observed.	

 
Figure 74: carbon dioxide (non-biogenic), divide by scenario
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The scenario “Optimize CP” even increases emissions than the “Current Policies” because the economic aspect 
is	considered,	while	the	scenarios	with	Carbon	Tax	require	major	economic	investment	but	decrease	emissions	
significantly.

Cumulative Costs & Benefits: 2010-2040. Relative to Scenario: Current Policies.
Discounted at 5,0% to year 2010.  Units: Million 2010 U.S. Dollar

Current Policies Optimize CP CarbTAXopt30 CarbTAXopt40
Transformation -                         -10.590,8       53.383,5            69.763,5            
   Electric Generation -                         -10.590,8       53.383,5            69.763,5            

GHG Savings (Mill Tonnes CO2e) -                         -1.001,6         188,7                 383,3                 

Table	15:	cumulative	cost&benefits	relative	to	current	policies	scenario

The	table	shows	the	values	of	the	cost	compared	to	the	scenario	“current	policies”.	Obviously	the	costs	change	
substantially in the transformation and consequently the required resources. “Optimize CP” scenario has 
accordingly	lower	costs	than	the	“current	policies”,	while	scenarios	with	the	carbon	tax	obviously	have	higher	
costs.	As	regards	the	emissions,	the	situation	is	reversed:	scenario	“Optimize	CP”	emits	significantly	more	than	
the	“Current	Policies”,	while	scenarios	with	carbon	tax	have	definitely	positive	results.	
The	following	table	shows	the	costs	relative	to	KWh	produced.

Net Present Value relative to
Current Policies Scenario

Additional cost to KWh  
produced

Optimize CP 45432,9 M$ 0,0006130	$/Kwh
CarbTAXopt30 96814,9 M$ 0,0013062	$/Kwh
CarbTAXopt40 109112,1 M$ 0,0014721	$/Kwh

Cumulative KWh
2010-2040

74.118.354,506 
MKWh

Table 16: Additional cost to KWh produced

The	data	concerning	 the	“Optimize	CP”	scenario	 is	positive	because	 it	 shows	an	 increase	 in	 the	 import	of	
fossil fuels, especially coal and gas. These resources are for the most part imported and therefore have a cost. 
Regarding	the	scenarios	with	the	carbon	tax,	the	cost	per	kilowatt	increases	especially	due	to	the	higher	cost	
required	by	power	generation,	whose	production	mainly	depends	on	the	renewable	energies.
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Capitolo 6 | Conclusion
The	thesis	presents	an	accurate	work	about	energy	forecasting	related	to	the	case	study.	The	LEAP	instrument	
was	used	to	structure	the	complex	energy	apparatus	of	the	United	Kingdom.	The	tree	structure	created	well	
represents	the	demand	side	and	the	transformation	side,	while	analyzing	the	resources	involved	as	well.	The	
analysis	of	the	results	and	the	software	output	graphics	give	a	clear	idea	of	the	direction	towards	which	the	
energy	policies	considered	will	push.	Such	an	analysis	could	be	used	as	the	starting	point	on	which	to	base	the	
creation of other future scenario, depending on the objectives that arise.
For the study, in part 1 a literature research on the theme of energy forecast has been conducted, in order to 
evaluate the methodology and the appropriate tools to apply for the context. The positive aspects and limits of 
LEAP	have	also	been	highlighted.	The	collection	of	official	data,	a	hard	work	carried	out	for	a	long	time,	has	
been	crucial	to	make	the	study	as	accurate	as	possible:	without	reliable	data,	forecasts	could	be	very	far	from	
reality.
The	usefulness	of	the	software	LEAP	in	the	energy	analysis	was	evident,	especially	in	its	ability	to	structure	
the	 complex	energy	context	of	 a	 country	 and	 to	 create	different	 energy	 scenarios,	 according	 to	 the	 chosen	
constraints.	The	scenarios	created	were:	the	“Current	Policies”	scenario,	based	both	on	current	energy	policies	
and	on	those	policies	that	are	now	being	implemented,	loosely	inspired	by	the	New	Policies	Scenario	of	the	
WEO;	 the	“Optimize	CP”,	a	 scenario	derived	 from	 the	“Current	Policies”	 scenario,	 to	which	an	economic	
optimization	was	applied,	and	scenarios	based	on	a	carbon	tax,	“Carbon	Tax	opt30	“	and	“Carbon	Tax	opt40	
“,	which	allowed	to	observe	the	evolution	of	the	side	transformation	in	case	of	clear	choices	about	fossil	fuels.
The results obtained in the baseline scenario, the “Current Policies” (built by analyzing various energy policies 
fully	explained	in	Appendix	1),	validated	by	comparison	with	government	reports,	clearly	the	future	of	 the	
energy	 sector,	 both	 from	 the	 demand	 side	 point	 of	 view	 and	 transformation	 side.	 The	 United	 Kingdom’s	
commitment to reduce its emissions and to target an energy future less dependent on fossil fuels is evident. The 
use of the optimization function on the basic scenario led to the ‘’ Optimize CP” scenario, characterized by 
the	same	energy	demand	of	all	the	other	scenarios	and	by	a	modified	transformation	side,	based	on	economic	
convenience.	In	particular,	the	production	of	electricity,	while	respecting	the	constraints	of	retirement	of	fossil	
fuels	based	power	plants	and	the	growth	of	power	generation	capacity	from	renewables,	has	changed	in	favor	
of	plants	 that	guaranteed	a	 lower	cost	of	production,	 that	 is	 fossil	 fuel	plants,	 increasing	 the	emissions.	 In	
the	other	two	scenarios,	that	introduced	the	so-called	carbon	tax,	and	in	fact	increasing	the	cost	of	electricity	
generation from coal, the optimization led to a general increase in production costs but at the same time also to 
a substantial reduction in greenhouse gas emissions. The use of these scenarios has brought a clear example of 
how,	once	created	the	foundation,	different	energy	futures	can	be	built,	according	to	various	constraints	chosen,	
obtaining an accurate prediction of energy analysis.
Through	this	work,	an	appropriate	and	efficient	instrument	for	energy	forecast	was	therefore	developed.	This	
new	tool	allowed	to	observe	the	effects	of	different	kinds	of	energy	management	for	a	case	study,	through	the	
use	of	different	scenarios.
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Capitolo 7 | Appendix 1
The Current Policies Scenario is based on those government policies and implementing measures that had been 
formally	adopted	as	of	mid-2014.	The	policies	adopted	can	be	found	on	UK	government	website	[49]	and	on	
policy	database	of	WEO	[53].	The	documents	consulted	are	the	following:
• Low	carbon	Transition	Plan	-	2008-09	[54]
• Renewable	Energy	Strategy	-	2009	[55]
• Renewable	Transport	Fuels	Obligation	-	2009	[56]
• Energy White Paper - 2011 [57]
• UK 2012 Policies [58]
• WEO 2014 [41]
• Updated energy and emissions projections 2014 [59]

A.1 Low carbon Transition Plan

The	UK	Low	Carbon	Transition	 Plan	 [54]	was	 a	white	 paper	 outlining	 how	 the	British	 economy	will	 be	
transformed to ensure the UK meets its emission reduction targets, secures its energy supplies for the future, 
maximises	the	economic	opportunities	for	jobs,	skills	and	investment	as	well	as	ensuring	policies	are	fair	to	
protect the most vulnerable in society. It set out the then government’s long-term strategy to radically cut the 
nation’s	carbon	emissions	by	2020	-	18%	from	2008	levels	(over	one	third	from	1990	levels)	and	meet	its	first	
three carbon budgets. It Is not a statement of current Government policy.

A.2 Renewable Energy Strategy

The	UK	Renewable	Energy	Strategy	2009	[55]	is	a	white	paper	outlining	how	the	UK	will	meet	its	legally-
binding	target	to	ensure	15%	of	energy	comes	from	renewable	energy	sources	by	2020.	Under	the	2008	Climate	
Change Act, the UK must meet legally binding carbon “budgets”, committing the UK to cuts its emissions by 
34% by 2020 and 80% by 2050. The Strategy comprises three primary 2020 targets:

• Over	 30%	 of	 electricity	 to	 be	 generated	 from	 renewable	 energy	 sources,	mostly	 from	wind	 power,	with	
biomass,	hydro,	wave	and	tidal	power	playing	important	roles;

• 12%	of	heat	to	be	generated	from	renewable	energy	sources,	from	a	large	range	of	sources	(biomass,	biogas,	
solar, heat pumps);

• 10%	of	transport	energy	to	come	from	renewable	energy	sources.
• The	key	measures	to	achieve	the	targets	are:
• An	expansion	and	extension	of	the	Renewables	Obligation,	requiring	energy	suppliers	to	sell	larger	amounts	
of	renewable	energy.	New	measures	to	increase	financial	support	for	offshore	wind	will	also	be	considered.

• Introducing	payment	schemes	to	support	the	production	of	renewable	heat	and	small-scale	clean	electricity	
generation by households, industry, businesses and communities.

• New	 guaranteed	 payments	 will	 be	 provided	 through	 feed-in	 tariff	 schemes	 from	 2010	 onwards,	 and	 a	
Renewable	Heat	Incentive	from	2011	onwards.	Before	the	schemes	take	effect,	GBP	45	million	in	grants	have	
been committed.

• The	Renewable	Transport	Fuel	Obligation	will	be	amended	or	replaced,	 taking	into	account	sustainability	
issues,	to	ensure	transport	fuels	contain	a	rising	amount	of	renewable	biofuels.

The	Strategy	also	creates	 an	Office	 for	Renewable	Energy	Deployment	 (ORED)	within	 the	Department	of	
Energy	&	Climate	Change	(DECC)	to	take	forward	the	commitments	outlined	in	the	Strategy.
In addition, the Strategy sets out areas for action in four areas.

1. The	first	aims	to	improve	planning	processes	to	be	swifter	and	more	strategic.
2. The	 second	 for	measures	 to	 strengthen	 the	UKs	 renewable	 energy	 industry,	 including	 through	 greater	

investment	and	work	with	the	financial	sector.
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3. The third targets improvements and investments in the electricity grid, including improved grid access, 
more	strategic	investments	(including	in	an	offshore	grid	and	a	smarter	grid).

4. Finally,	the	government	outlines	commitments	for	sustainable	bioenergy	development	and	use.	This	will	
act	on	 the	supply-side	 (woods	management,	energy	crops,	use	of	waste),	 focus	on	better	sustainability	
criteria, and measures to facilitate use of biofuels and innovative bioenergy (for example, better fuel 
quality standards, injection of biogas into the grid, capacity of road and transport for greater biofuel use).

The	Strategy	also	commits	 to	using	part	of	GBP	405	million	of	funding	for	key	emerging	technologies	for	
renewable	energy	technologies,	such	as	wave	and	tidal	generation,	offshore	wind,	and	advanced	biofuels.	The	
government	estimates	that	the	Strategy	will	provide	cumulative	savings	of	755	MtCO2	between	now	and	2030,	
535	MtCO2	of	which	will	help	the	UK	meet	EU	Emissions	Trading	System	(EU-ETS)	caps,	and	220	MtCO2	
will	provide	additional	CO2	reductions.	Within	the	additional	savings,	73	MtCO2	will	be	saved	over	the	third	
carbon budget period (2018 - 2022) and deliver about a sixth of the abatement needed to meet this third budget.

A.3 Renewable Transport Fuels Obligation

In	November	2005	the	Government	announced	it	would	introduce	a	Renewable	Transport	Fuel	Obligation	[56]
(RTFO) - a long term mechanism requiring transport fuel suppliers to ensure a set percentage of their sales are 
from	a	renewable	source.	The	Obligation	also	requires	suppliers	to	publicly	report	on	the	carbon	savings	and	
sustainable	production	of	biofuels	supplied.	Non-complying	suppliers	will	pay	a	penalty.
Backed	 by	 tradable	 offset	 certificates	 -	 Renewable	 Transport	 Fuel	 Certificates	 (RTFCs),	 the	 Obligation	
programm	aligns	with	 the	EU	Directive	2003/30/EC	on	 the	promotion	of	biofuels	and	 renewable	 fuels	 for	
transport.

Fuel obligation levels  
  2008/2009 2009/2010 2010/2011 2011/2012 2012/2013 2013/2014
Obligation	levels	for	renewable	transport	 2.50%	 3.25%	 3.50%	 4%	 4.50%	 4.75%

Table 17: fuel obligation levels
 

A.4 Energy White Paper

The UK White Paper [57] presents the overall reform of the UK electricity system, aiming at designing a smart, 
flexible	and	responsive	electricity	system	that	provides	for	secure,	low-carbon	and	affordable	electricity	supply.	
The	UK	power	system	needs	to	tackle	5	main	challenges,	namely:

• Supply security, as old and polluting generation plants are bound to close (20GW by 2020) and as the system 
needs	to	adapt	to	higher	levels	of	intermittent	(wind)	and	inflexible	generation	(nuclear).

• The need for electricity mix decarbonisation to reach 2020 RE targets -15% of primary energy needs from 
RE.

• The	increase	in	generation	capacity	to	meet	rising	demand	(transport	sector	electrification	needs)	in	parallel	
with	energy	savings	and	efficiency	practices.

• Great	need	for	cost-efficient	investments	to	avoid	high	increases	in	cost	of	electricity,	considering	that	carbon	
price	and	environmental	policies	are	likely	to	lead	to	higher	bills	in	the	future.

The	 government	 has	 identified	 several	 key	 tools,	 central	 to	 the	 reform	 strategy,	 that	 would	 allow	 for	 the	
transition to a decarbonised energy system to happen, namely:

-	 The	Feed	in	tariffs	with	Contract	for	Difference,	expected	to	start	by	2014,	will	provide	a	clear,	stable	
and	predictable	revenue	stream	for	investors.	None	of	the	tariff	adjustments	are	retroactive.
-	 The	Carbon	Price	Floor,	expected	to	be	in	force	by	2013,	would	guarantee	a	fair	price	on	carbon	and	
provide	a	stronger	incentive	to	encourage	investment	in	low	carbon	generation.
- The Emission Performance Standard (EPS) expected to be in force by 2013, equivalent to 450g CO2/
kWh	at	baseload,	to	limit	the	amount	of	carbon	new	fossil-fuel	power	plants	can	emit.
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Engaging	with	energy	consumers	to	reduce	demand	will	also	become	a	priority	both	in	the	electricity	and	the	
heating	sectors,	where	the	Green	deal	will	help	to	reduce	cost	and	carbon	emissions	in	buildings,	with	smart	
electricity	and	gas	meters.	On	the	short	term,	the	market	design	reform	shall	allow	for	a	smooth	transition	and	
investments	 to	 continue.	Therefore,	 the	 existing	Renewables	Obligation	will	 continue	 for	 existing	projects	
supported	by	the	scheme	(principle	of	no	retrospective	change)	and	new	ones	until	March	31st	2017.	Between	
2011	and	2017	new	renewable	energy	generators	will	have	a	one-off	choice	between	Renewable	obligation	
support	of	feed-in	tariff.	The	reform	will	also	be	included	in	the	devolution	process	at	the	national	scale.

A.5 UK 2012 Policies

This	is	United	Kingdom	review	by	Energy	policies	IEA	Countries	[58].	It	is	available	on	IEA	website,	in	the	
publication section [58].

A.6 WEO 2014

The	annual	World	Energy	Outlook	(WEO)	[41]	is	now	the	world’s	most	authoritative	source	of	energy	market	
analysis and projections, providing critical analytical insights into trends in energy demand and supply and 
what	they	mean	for	energy	security,	environmental	protection	and	economic	development.
The	WEO	 projections	 are	 used	 by	 the	 public	 and	 private	 sector	 as	 a	 framework	 on	which	 they	 can	 base	
their	policy-making,	planning	and	investment	decisions	and	to	identify	what	needs	to	be	done	to	arrive	at	a	
supportable and sustainable energy future.

A.7 Updated energy and emissions projections 2014

The Department of Energy and Climate Change (DECC) updates projections of energy demand, supply and 
greenhouse	gas	(GHG)	emissions	annually	[59].		These	projections	are	an	important	way	of	assessing	whether	
current	and	planned	policies	are	consistent	with	achieving	UK	carbon	budgets	in	future	years.	This	publication	
is	available	from	Department	of	Energy	and	Climate	change,	in	the	UK	government	website	[49].
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