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Estratto della tesi

Nel 1959, presso i Laboratori Bell, Dawon Kahng e Martin Atalla realiz-
zarono il primo transistor metallo-ossido-semiconduttore a effetto di campo
(MOSFET). Dieci anni più tardi, i ricercatori Don Scharfetter e Hermann
Gummel, pubblicarono un articolo diventato una pietra miliare nella lette-
ratura della simulazione numerica dei dispositivi a semiconduttore [8]. Da
allora, il mondo dell’elettronica ha sub̀ıto un’evoluzione rapidissima, produ-
cendo e commercializzando dispositivi sempre più piccoli e veloci ad ogni
generazione: svariati miliardi di transistori vengono integrati in pochi centi-
metri quadrati e ognuno di essi è caratterizzato da una lunghezza di canale
di una quindicina di nanometri.

In tale contesto, i progressi effettuati nel campo della simulazione nu-
merica acquisiscono una rilevanza fondamentale: da un punto di vista eco-
nomico, la capacità di prevedere il comportamento di un dispositivo prima
della sua effettiva realizzazione porta enormi benefici, dati gli elevatissimi
costi di produzione dei prototipi. Allo stesso tempo, la possibilità di ottenere
informazioni di carattere quantitativo senza la necessità di effettuare misure
è estremamente preziosa in fase di progettazione.

Il lavoro svolto nell’ambito di questa tesi è stato dedicato all’estensione
di FEMOS-MP (Finite Element Method Oriented Solver - MultiPhysics) con
moduli relativi alla simulazione dei semiconduttori, migliorandone le presta-
zioni e aumentando l’integrazione della struttura del codice. Ciò ha permesso
di introdurre gli schemi di discretizzazione temporale Backward Euler e TRB-
DF2 [2] per la simulazione in transitorio del modello Drift-Diffusion. Inoltre
sono state gettate le fondamenta per la simulazione in temperatura, in vista
di un futuro accoppiamento con un opportuno modello termico. La bontà
dell’implementazione è stata poi validata conducendo svariate simulazioni e
confrontandone i risultati con quelli ottenuti da un codice commerciale.
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L’elaborato è organizzato come segue:

Capitolo 1 contiene una sintetica, ma rigorosa, trattazione matematica
del trasporto di carica nei semiconduttori: la presentazione
dell’approccio Drift-Diffusion viene arricchita dalla descrizione
e modellizzazione dei fenomeni di generazione/ricombinazione
e di degradazione della mobilità dei portatori.

Capitolo 2 vengono illustrate le tecniche numeriche utilizzate per la riso-
luzione del sistema di equazioni a derivate parziali che costitui-
scono il modello: le prime due sezioni sono dedicate al proble-
ma stazionario, mentre l’ultima affronta la discretizzazione del
modello tempo-dipendente, descrivendo gli schemi temporali
utilizzati.

Capitolo 3 sono presentati i risultati relativi alle simulazioni del modello
Drift-Diffusion stazionario per due strutture MOSFET, una di
tipo n e una di tipo p, e comprende l’analisi dei dispositivi in
polarizzazione diretta -con approfondimenti riguardanti l’im-
portanza dei vari modelli di mobilità, l’effetto body, la dipen-
denza dalla temperatura- e lo studio in regime di polarizzazione
inversa.

Capitolo 4 riporta i risultati ottenuti dalle simulazioni del modello tempo
dipendente per differenti impulsi di polarizzazione.

Capitolo 5 vengono tratte le conclusioni sul lavoro svolto e suggeriti i
possibili sviluppi futuri.
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Introduction

In 1959, at Bell Labs, Dawon Kahng and Martin Atalla realized the first
metal-oxide-semiconductor field-effect transistor (MOSFET). Ten years later,
the researchers Don Scharfetter and Hermann Gummel published an article
that has become a milestone in the literature numerical simulation for semi-
conductor devices [8]. Since then, the world of electronics has undergone
a tremendously rapid evolution, manufacturing and commercializing devices
which are smaller and faster at each new generation: billions of transistors
are embedded in a few squared centimeters, each of them being characterized
by a channel length of about fifteen nanometers.

In such a context, the progress made in numerical simulation acquires a
fundamental relevance: from an economical point of view, the ability to pre-
dict a device behaviour prior to its construction brings great benefits, given
the high production costs of early prototypes. At the same time, the possi-
bility of obtaining quantitative information without the need of performing
measurements is extremely valuable during the design phase.

The work done in this thesis has been devoted to the extension of FEMOS-
MP (Finite Element Method Oriented Solver - MultiPhysics) with modules
related to semiconductor simulation, by improving performance and enhanc-
ing the code framework integration. These efforts have made possible the in-
troduction of the Backward Euler and TRBDF2 time discretization schemes
for enabling the transient simulation of the Drift-Diffusion model. Moreover,
we have layed the foundations for the temperature dependent simulation,
in view of the coupling of the Drift-Diffusion model with a proper thermal
model.

The thesis is organized as follows:

Chapter 1 provides a synthetic, still rigorous, mathematical model of charge
transport in semiconductor materials: the Drift-Diffusion ap-

15



proach is theoretically obtained and enriched with the descrip-
tion and modeling of generation/recombination and carrier mo-
bilities degradation phenomena.

Chapter 2 discusses the numerical techniques employed for solving the
system of partial differential equations constituting the model:
the first two sections are dedicated to the discretization of the
stationary problems, whereas the latter one is devoted to the
discretization of the time-dependent model.

Chapter 3 reports the simulation results in the case of the stationary
Drift-Diffusion model for a n-channel and a p-channel MOS-
FET: we analyze these devices in forward bias conditions -
with deepenings regarding mobility models, the body effect,
the temperature dependence- and in reverse bias regime.

Chapter 4 illustrates the simulation results obtained by solving the time-
dependent Drift-Diffusion model with different bias pulses.

Chapter 5 presents our conclusions and suggestions for possible future
works.

16



Sommario

In questa tesi ci siamo dedicati alla simulazione di dispositivi a semicondut-
tore nell’ambito dello sviluppo del codice FEMOS-MP. Abbiamo esteso il
codice includendo modelli per nuovi fenomeni fisici (band-to-band tunneling,
riduzione del bandgap, degradazione della mobilità indotta dal campo elet-
trico) e implementando schemi di avanzamento temporale per le simulazioni
in transitorio.

La procedura adottata per risolvere il modello Drift-Diffusion sfrutta l’al-
goritmo della mappa di Gummel per disaccoppiare il sistema, dopodiché
l’equazione di Poisson viene risolta applicando il metodo di Newton e una
discretizzazione a elementi finiti lineari, mentre per le equazioni di conti-
nuità viene utilizzato il metodo EAFE. Per quanto riguarda le simulazioni in
transitorio, la derivata temporale è stata discretizzata utilizzando gli schemi
Backward Euler e TRBDF2.

Per verificare la correttezza dell’implementazione diversi test sono stati
effettuati su una struttura MOSFET: per il caso stazionario viene condotta
un’analisi in regime di polarizzazione diretta ed inversa, con approfondimenti
riguardanti la modellizzazione della mobilità, l’effetto body e la dipendenza
dalla temperatura, mentre le simulazioni in transitorio sono state effettuate
utilizzando svariati impulsi di polarizzazione.
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Abstract

In this thesis, we have addressed the 3D simulation of semiconductor
devices within the framework of the FEMOS-MP computer code.

We have extended the code by embedding models for additional physical
phenomena (band-to-band tunneling R/G mechanism, bandgap narrowing,
mobility degradation induced by the electric field) and including time dis-
cretization schemes for transient simulations.

The procedure adopted for solving the Drift-Diffusion model exploits the
Gummel map algorithm to decouple the system, after that the Nonlinear
Poisson equation is solved by applying the Newton method and a linear
finite element discretization, while for the continuity equations the EAFE
scheme is employed. As regards the transient simulations the time derivative
is discretized using either the Backward Euler or the TRBDF2 method.

To assess the correct implementation of model and numerical methods,
several tests have been performed on a MOSFET structure: a stationary
analysis has been provided in both forward and reverse bias regimes, with
deepenings regarding the moblity modeling, the body-effect and the tem-
perature dependence, while transient simulations have been conducted for a
wide variety of bias pulses.
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Chapter 1

Mathematical Models for
Semiconductors

The numerical simulation of seiconductor devices is based on the Drift-
Diffusion model, an incomplete parabolic nonlinear system of PDEs. In
this chapter we will describe in detail the Drift-Diffusion system and the as-
sumptions underlying its derivation. For further information we refer to [9],
[18] and [12].

1.1 The Drift Diffusion Model

The Drift-Diffusion model (DD) is made by three equations describing the
carrier conservation and the electrostatic potential distribution in the semi-
conductor device. The DD model can be derived from Maxwell’s equations
which are usually written as [9]:

∇ ·D = ρ (1.1)

∇ ·B = 0 (1.2)

∇× E =
∂D

∂t
(1.3)

∇×H = J +
∂D

∂t
(1.4)

having indicated by t the time variable [s], by ρ the space charge density
[C m−3], by E the electric field [V m−1], by B the magnetic field [N m−1 A−1]
and where J is the current density [A m−2], while D and H are the displace-
ment field [C m−2] and the magnetizing field [A m−1], respectively, and satisfy
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the following constitutive laws :

D = εE (1.5)

B = µH (1.6)

with ε and µ being the electric permittivity [F m−1] and magnetic permeabil-
ity [H m−1] of the considered medium, respectively. Exploiting the solenoidal-
ity of the magnetic field, a vector potential A can be determined in a such
way that

∇×A = B . (1.7)

Replacing (1.7) in Maxwell-Faraday’s law (1.3), we have

∇×
(

E +
∂A

∂t

)
= 0 . (1.8)

Relation (1.8) implies that there exists a scalar function ϕ such that

E +
∂A

∂t
= −∇ϕ . (1.9)

It is important to notice that the choice of A and ϕ is not unique, in fact,
given a regular scalar function ψ = ψ(x, t), the following expressions

A′ = A +∇ψ and ϕ′ = ϕ− ∂ψ

∂t
(1.10)

can replace their original counterparts. Multiplying (1.9) by ε and applying
the divergence operator we get

∇ ·
(

D + ε
∂A

∂t

)
= −∇ · (ε∇ϕ) (1.11)

so that, using (1.1), we have

− ε∂∇ ·A
∂t

−∇ · (ε∇ϕ) = ρ. (1.12)

Exploiting the degree of freedom on the choice of A, we impose the Coulomb
gauge-fixing condition ∇ ·A = 0, so that the Poisson equation for the elec-
trostatic potential ϕ can be finally obtained from (1.12):

−∇ · (ε∇ϕ) = ρ. (1.13)

The charge density distribution can be subdivided as:

ρ = q(p− n) + q(N+
D −N

−
A ) (1.14)
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where q is the electron charge (q = 1.602 × 10−19 [C]), n, p are the mobile
electron and hole densities, while N+

D , N−A are the effective donor and accep-
tor concentrations. These latter are fixed time invariant concentrations not
necessarily uniform in space.

To derive the carrier continuity equations, we fix an arbitrary control
volume V of boundary ∂V , centered at a point x and write the following
balance holding for the charge density ρ:

∂

∂t

∫
V

ρ dV +

∫
∂V

J · n dσ = 0. (1.15)

where n is the outward unit normal vector on ∂V . Thanks to Gauss theorem
and due to the arbitrary choice of V , we have the differential form of the
continuity equation (1.15):

∂ρ

∂t
+∇ · J = 0 . (1.16)

The total current density can be splitted by considering separately the elec-
tron and hole contributions:

Jdrift = Jn + Jp . (1.17)

Replacing (1.14) and (1.17) in (1.16) we can decompose the continuity equa-
tion in two distinct relationships:

−q∂n
∂t

+∇ · Jn = qR (1.18)

q
∂p

∂t
+∇ · Jp = −qR (1.19)

where we have introduced the scalar function R = R(x, t) which represents
the carrier net generation/recombination rate [m−3 s−1] and will be discussed
in detail in Sect. 1.3.2.

Current densities Jn and Jp can be viewed as the result of two different
terms:

• the drift component, which considers the motion of carriers subject to
the electric field;

• the diffusion component, that takes into account the spontaneous ten-
dancy of carriers to spread from regions with high concentration to-
wards regions with a lower one.
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Using the semi-classical approach (Drude model), a carrier subjected to an
electric field has an average velocity given by:

vn = −qτnE
m∗e

, vp =
qτpE

m∗h

where τn, τp are the momentum relaxation times for electrons and holes [s]
and are related to the scattering that occurs between the carriers and the
other atoms nearby, while m∗e and m∗h [kg] are the conduction equivalent
masses depending on the energy-momentum relationship which characterizes
the band structure of the particular medium. Introducing the electron and
hole mobilities [m2 s−1 V−1]

µn =
qτn
m∗n

, (1.20)

µp =
qτp
m∗p

, (1.21)

it is possible to calculate the drift current densities as:

Jdriftn = −qnvn = qnµnE , (1.22)

Jdriftp = +qpvp = qpµpE . (1.23)

By adding together (1.22) and (1.23) the well-known Ohm’s law can be ob-
tained:

J = Jdriftn + Jdriftp = q(nµn + pµp)E = σE (1.24)

where σ is the total electric conductivity [S] of the electron and hole gas.
The diffusion current term can be otained using Fick’s law of diffusion as:

Jdiffn = −Dn∇(−qn) , (1.25)

Jdiffp = −Dp∇(+qp) (1.26)

where Dn and Dp are the electron and hole diffusivity coefficients [m2 s−1].
Combining equations (1.22)-(1.23) with (1.25)-(1.26) we obtain the following
expressions for Jn and Jp:

Jn = qnµnE + qDn∇n , (1.27)

Jp = qpµpE− qDp∇p . (1.28)

Therefore, collecting (1.1), (1.14), (1.18), (1.19), (1.5), (1.27), (1.28), we
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obtain the Drift-Diffusion model for semiconductors:

∇ ·D = q(p− n) + q(N+
D −N

−
A )

−q∂n
∂t

+∇ · Jn = qR

q
∂p

∂t
+∇ · Jp = −qR

D = εE = −ε∇ϕ

Jn = qnµnE + qDn∇n

Jp = qpµpE− qDp∇p .

(1.29)

The above set of equations is an incomplete parabolic nonlinear system in
the dependent variables ϕ = ϕ(x, t), n = n(x, t) and p = p(x, t).

1.2 Geometry, Boundary and Initial Condi-

tions

Let us consider Fig. 1.1 which depicts the 3D geometry of a MOSFET that is
commonly employed in industrial numerical simulation. The computational
domain, Ω, is the union of two disjoints open sets ΩSi and Ωox representing
the silicon and oxide region, respectively. The oxide portion is assumed to be
a perfect insulator, therefore no mobile charge is present in its volume and
no electric current can flow throughout it:{

n = p = 0

Jn = Jp = 0.
in Ωox (1.30)

The entire domain boundary, ∂Ω, is divided in two different subsets: ∂Ωa

and ∂Ωc. The set ∂Ωc includes the Ohmic contacts on the transistor -namely
the gate, drain, source and bulk contacts- while the set ∂Ωa is the artifi-
cial boundary and includes the remaining boundary parts, ∂Ωa = ∂Ω \ ∂Ωc.
Ohmic contacts are assumed ideal, i.e. they are equipotential surfaces at
which no voltage drops occur, thus they can be treated with Dirichlet con-
ditions for the variables ϕ, n and p:

ϕ = ϕD

n = nD

p = pD

on ΓD (1.31)
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Figure 1.1: 3D geometry of a MOSFET

having set ΓD = Ωc. To determine ϕD, nD and pD we enforce thermody-
namical equilibrium and charge neutrality that correspond to the following
system valid on ΓD:

{
np− n2

i = 0 (1.32a)

pD − nD +D = 0 (1.32b)

where D is the net doping concentration defined as D(x) = N+
D (x)−N−A (x)

whereas ni is the intrinsic carrier concentration of the semiconductor mate-
rial. Solving for nD and pD yields:

nD =
D +

√
D2 + 4n2

i

2
, (1.33)

pD =
−D +

√
D2 + 4n2

i

2
. (1.34)

It is important to point out that, from a numerical standpoint formulae
(1.33) and (1.34) should not be used directly in all cases: in fact, the doping
is typically orders of magnitude greater than the intrinsic concentration and
this may likely cause cancellation errors when resolving the outer algebraic
sum. A safer approach is to perform the computation on the equation having
the first term positive (so that it will be summed together with the result
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of the square root) and calculating the other using the law of mass action
(1.32a). For example, in a p-type region the datum pD is determined from
(1.34) while the minority carrier density nD is computed using (1.32a) and
obtaining nD = n2

i /pD.
Before computing the datum ϕD, let us introduce the Maxwell-Boltzmann
statistics for the electron and hole densities:

n = nie

ϕ− ϕn
Vth , (1.35)

p = nie

ϕp − ϕ
Vth , (1.36)

where Vth = kBT/q is the thermal voltage, kB and T denoting the Boltzmann
constant (kB = 1.3806 m2kgs−2K−1) and the absolute temperature [K], re-
spectively, and having denoted by ϕn and ϕp the electron and hole quasi
Fermi potentials, respectively.
The condition that has to be imposed on the electrostatic potential can be
recovered using the equilibrium local assumption, according to which that
Fermi potential ϕf is unique and equal to the externally applied voltage Vext:

ϕn = ϕp = ϕf = Vext . (1.37)

Then, the boundary value for the electrostatic potential potential ϕD can be
easily calculated exploiting relation (1.37) in (1.35) and (1.36):

ϕD = Vext + Vth ln

(
nD
ni

)
= Vext − Vth ln

(
pD
ni

)
. (1.38)

The treatment of the artifical boundary, ∂Ωa, follows from the need of per-
forming a self-contained simulation and prescribes no flux exchange with the
outer environment (homogeneous Neumann conditions):

D · n = 0

Jn · n = 0

Jp · n = 0

on ΓN (1.39)

where we have set ΓN = ∂Ωa. Given (1.30), the carrier continuity equations
have to be solved in the silicon domain only, thus the boundaries become:

ΓD,Si = ΓD ∩ ∂ΩSi

ΓN,Si = ΓN ∩ ∂ΩSi ∪ Γint
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Γint = ∂ΩSi∩∂Ωox denoting the interface between oxide and silicon. On these
sets the same boundary conditions for ΓD and ΓN have to be applied (i.e.,
(1.31) and (1.39)). Mathematically writing the Drift-Diffusion model for the
MOSFET structure, we end up with the following initial value/boundary
value system of equations:

∇ · (−ε∇ϕ)− q(p− n)− q(N+
D −N

−
A ) = 0 in Ω (1.40)

ϕ = ϕD on ΓD (1.41)

∇ϕ · n = 0 on ΓN (1.42)

−q∂n
∂t

+∇ · (−qnµnε∇ϕ+ qDn∇n) = qR in ΩSi (1.43)

n = nD on ΓD,Si (1.44)

∇n · n = 0 on ΓN,Si (1.45)

n(x, t = 0) = p0(x) x ∈ ΩSi (1.46)

q
∂p

∂t
+∇ · (−qpµpε∇ϕ− qDp∇p) = −qR in ΩSi (1.47)

p = pD on ΓD,Si (1.48)

∇p · n = 0 on ΓN,Si (1.49)

p(x, t = 0) = p0(x) x ∈ ΩSi (1.50)

Relations (1.46) and (1.46) are the initial conditions, n0(x) and p0(x) being
positive given data.

1.3 Physical Models for Semiconductors

As pointed out in Sect. 1.1, we need proper models for describing the mo-
bility and the generation/recombination terms. In this section we provide
a detailed analysis of these terms, also including a suitable modeling of the
intrinsic concentration, bandgap and carrier driving force.

1.3.1 Carrier Mobility

The following Einstein relation estabilishes a link between carrier mobilities
and their diffusivities

Dn =
µnkbT

q
, Dp =

µpkbT

q
. (1.51)
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Using (1.51) in equations (1.27) and (1.28) we can rewrite the current den-
sities as:

Jn = qnµnE + q
µnkbT

q
∇n

= −qnµn
(
∇ϕ− µnkbT

qn
∇n
)
, (1.52)

Jp = qpµpE− q
µpkbT

q
∇p

= −qpµp
(
∇ϕ+

µpkbT

qp
∇p
)
. (1.53)

These two relations give rise to the mathematical definition of the quasi Fermi
potentials ϕn and ϕp as:

ϕn := ϕ− Vth ln

(
n

ni

)
(1.54)

ϕp := ϕ+ Vth ln

(
p

ni

)
(1.55)

so that the current densities can be expressed in the equivalent form:

Jn = −qnµn∇ϕn , Jp = −qpµp∇ϕp . (1.56)

These latter relationships highlight the fundamental role played by mobilities
µn and µp in characterizing the conductive properties of a medium, thus great
effort has to be made for their modeling.

Lattice Scattering
Semiconductor matierials can be described as perfect crystalline structures
where the defects are completely ionized and occupy lattice positions. At
temperatures different from the 0 K crystal lattice vibrates, generating phonons.
These phonons are responsible for the scattering with the carriers travelling
in the crystal. Increasing temperature will cause more scattering to occur,
hence degradating mobility. In order to model the phonon scattering effect
the following expression has been proposed [11]:

µL = µ0

(
T

T0

)−β
(1.57)

where µ0 is the reference mobility and β a properly fitted parameter at T0 =
300K. Parameter values for electrons and holes, are reported in Tab. 1.1.
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Parameter Electrons Holes Unit of Measure

µ0 1417.0 470.5 cm2V−1s−1

β 2.5 2.2 1

Table 1.1: Phonon scattering - parameter values at T0 = 300K

Ionized Impurity Scattering
The presence of ions, used for obtain n/p-type region in an extrinsic semicon-
ductor, is responsible for degradating the carrier mobilities: the charged nu-
clei break the regularity of the silicon lattice, introducing local perturbations
to the electrostatic potential, thus interfering with the carrier trajectories.
A model for this phenomenon was proposed by Masetti et al. in [13] and can
be expressed as follows:

µLI = µmin1 exp

(
− Pc
Ntot

)
+

µL − µmin2

1 +

(
Ntot

Cr

)α − µ1

1 +

(
Cs
Ntot

)β (1.58)

where µL is the carrier mobility calculated by taking into account the sole
lattice scattering (namely, using (1.57)), while Ntot is the sum of acceptor
and donor densities, Ntot = Ntot(x) = N+

D (x) +N−A (x). Values for the other
parameters are reported for silicon in Tab. 1.2.

Parameter Electrons Holes Unit of Measure

µmin1 52.2 44.9 cm2 V−1 s−1

µmin2 52.2 0 cm2 V−1 s−1

µ1 43.4 29.0 cm2 V−1 s−1

Pc 0 9.23× 1016 cm3

Cr 9.68× 1016 2.23× 1017 cm3

Cs 3.43× 1020 6.10× 1020 cm3

α 0.680 0.719 1
β 2.0 2.0 1

Table 1.2: Ionized impurities scattering - parameter values

High-Field Carrier Velocity Saturation
The presence of an electric field in a working semiconductor device, accel-
erates the mobile charges, thus their velocities increase, but speed values
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cannot grow indefinitely. From a physical point of view, once the maximum
value has been reached, the carrier extra energy is emitted under the form
of optical phonons. To avoid unfeasible carrier velocities when |E| → ∞, an
upper bound must be provided. Mathematically, we require that:

lim
|E|→∞

µ|E| = vsat < +∞.

The Canali model [4] is a very common choice for implementing the afore-
mentioned specification:

µ =
µlow[

1 +

(
µlowFhfs
vsat

)β]1/β
(1.59)

where µlow is the low-field mobility, Fhfs is the carrier driving force (that will
be discussed in Sect. 1.3.4), while vsat and β are given by

vsat = v0 exp

(
300

T

)vexp
, β = β0

(
T

300

)βexp
. (1.60)

All parameter values are reported in Tab. 1.3.

Parameter Electrons Holes Unit of Measure

v0 1.07× 107 8.37× 106 cm s−1

vexp 0.87 0.52 1
β0 1.109 1.213 1
βexp 0.66 0.17 1

Table 1.3: Canali model - parameter values

Combining Mobility Models
To describe the carrier travelling as the result of different mechanisms, we
need to assume appropriate combining rules. At low electric field the distinct
contributions are assembled using the Mathiessen rule:

µ =

(
1

µ1

+ · · ·+ 1

µN

)−1

. (1.61)

The global mobility is thus computed as the harmonic average of the various
mechanisms taking place during carrier motion. In conditions of high electric
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field, once the low-field mobility has been determined using Mathiessen’s rule,
the resulting mobility is calculated by choosing a proper high-field model.
In conclusion, we can outline the process of characterizing carrier mobility
as:

• compute the constant mobility (1.57);

• evaluate the Masetti model (1.58) and other possible scattering mech-
anisms using (1.61);

• apply the Canali model (1.59).

1.3.2 Generation-Recombination Phenomena

In thermodynamic equilibrium no net generation or recombination process
can take place: in a typical semiconductor device under working conditions,
this assumption obviously does not hold, then a non-zero generation (G) or
recombination (R) rate must be calculated.
The general expression to evaluate the net R/G rate R is given by:

R(n, p) = (pn− n2
i )F (n, p) (1.62)

where the first term expresses the fact that, at equilibrium, the resulting rate
must be null, while the scalar function F (n, p) has to be provided according
to the effect that has to be modeled. Finally, when different mechanisms are
present, assembling many models is trivial: the separate contributions are
just added together.

Shockley-Read-Hall Recombination
In indirect bandgap semiconductors, such as silicon, the most relevant phe-
nomenon is the trap assisted generation-recombination, in which carriers can
move from valence to conduction band and viceversa. Even if, in principle,
carriers can jump up or down directly, the possibility of having enough energy
is extremely small (band minima and maxima are misaligned). Trap states
placed in the forbidden gap allow the particle momentum to change, hence
making transitions possible. These spurious energy levels are generated by
lattice imperfections -deep defect levels- that can significantly increase when
dopants are inserted.
The global mechanism can be decomposed in the following two processes:

• an electron in the conduction band relaxes to the valence band via a
trap state and there neutralizes a hole (RSRH);
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• a hole in the valence band jumps into the conduction band via a trap
state and there recombines with an electron (GSRH).

The Shockley-Read-Hall formula provides the function F

FSRH(n, p) =
1

τn (n+ n̄) + τp (p+ p̄)
(1.63)

with

n̄ = ni cosh

(
Et − Ei
kBT

)
, p̄ = ni cosh

(
Ei − Et
kBT

)
(1.64)

Parameters τn and τp are the carrier lifetimes [s−1], while the value Et rep-
resents the energy level [eV] of the trap state. The maximum recombination
rate occurs when Et = Ei (i.e. when the trap is placed on the intrinsinc
Fermi level) and typical values for carrier lifetimes lie in the range spanning
from 1 µs to 1 ms, as reported in Tab. 1.4.

Parameter Electrons Holes Unit of Measure

τ 1.0× 10−5 3.0× 10−6 s
Et 0.0 0.0 eV

Table 1.4: Shockley-Read-Hall model - parameter values.

Auger Recombination
The Auger recombination is a three-particle process in which electron-hole
pairs recombine in band-to-band transitions, giving the excess of energy to
another electron or hole, that eventually will lose its energy by colliding with
the lattice, hence relaxing to the bottom of the proper band.
Four different situations can occur:

• R2n,1p
Au , where high-energy electron in the conduction band recombines

with a hole in valence band, releasing the excess energy to another
electron in the conduction band;

• G2n,1p
Au , where an electron in the valence band jumps into the conduction

band acquiring the required energy from a higher energy electron in the
conduction band, consequently leaving a hole in the valence band;

• R2p,1n
Au , is the same as the R2n,1p

Au recombination, but the roles of electrons
and holes are exchanged;
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• G2p,1n
Au , is the same as the G2n,1p

Au generation, but the roles of electrons
and holes are exchanged.

The whole process is quantitatively expressed by the function:

FAu(n, p) = Γnn+ Γpp (1.65)

in which Γn and Γp take the name of Auger coefficients and represent the
proper event probability. Their values are reported in Tab. 1.5.
Substituting the expression of F in (1.62) leads to the polynomial terms
n2p and p2n, highlighting the three-particle interaction needed for the phe-
nomenon to happen.

As a final note we point out that, being the Auger coefficients usually
very small, the Auger effect becomes relevant only in case of very high dopant
concentration.

Parameter Electrons Holes Unit of Measure

Γ 2.9× 10−31 1.028× 10−31 cm6 s−1

Table 1.5: Auger model - parameter values

Phonon-assisted Tunneling
Under certain circumstances -such as high potential drops across small inter-
vals or narrow p-n junctions with high doping concentrations- the resulting
energy bands exhibit a steep gradient. In these scenarios, the distance be-
tween bands gets considerably reduced and the small spatial gap allows the
wavefunctions of electrons in valence and conduction to overlap, hence mak-
ing a transition possible. Even though no extra energy is required to perform
the transition, a change in the particle momentum is required; this occurs
via a phonon collision, as shown in Fig. 1.2.

In his work, Schenk [17] rigorously derives an expression for the phonon-
assisted tunneling and obtains a result that, coherently with equation (1.62),
reads as:

R(n, p) =
AF

7
2

(n+ ni)(p+ ni)

×

(F∓cr)
− 3

2 exp

(
−F

∓
cr

F

)
exp

(
−~ωph
kBT

)
− 1

+

(F±cr)
− 3

2 exp

(
−F

±
cr

F

)
1− exp

(
−~ωph
kBT

)
 (1.66)
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Figure 1.2: Representation of the phonon-assisted tunneling effect
in the E-k plane: colliding with the phonon (ph), the electron (e−)
is able to move from the valence to the conduction band crossing the
forbidden gap.

where we have denoted by F the electric field magnitude, while F±cr is the
critical field strength and is given by

F±cr = B (Egap ± ~ωph) , (1.67)

the quantity ~ωph being the acoustic phonon energy. The other parameters
are summarized in Tab. 1.6. The upper sign in (1.66) and (1.67) refers to
tunneling generation (np < n2

i ), while the lower one applies in the case of
recombination (np > n2

i ).

Parameter Value Unit of Measure

A 8.977× 1020 s
B 2.14667× 107 eV

~ωph 18.6 meV

Table 1.6: Schenk model - parameter values.
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Impact ionization
If the electric field magnitude is high, carriers can acquire enough kinetic
energy to generate an electron-hole pair by breaking a lattice bond when a
collision occurs. The three particles can in turn generate additional pairs
by impacting other atoms and ionizing them as well, causing an avalanche
generation effect.
Models describing impact ionization phenomena assume a slighlty different
form than (1.62). The generic expression relies on Chynoweth’s law [5]:

FII = αnn|vn|+ αpp|vn| . (1.68)

Coefficients αn and αp can be interpreted as the probability for unit length
for an electron or hole to collide with an atom and to ionize it. Among the
various possibilities, we choose the Van Overstraeten-De Man model [19],
which gives:

αν(Fava) = γaν exp

(
− γbν
Fava

)
ν = n, p (1.69)

with

γ =

tanh

(
~ωop

2kBT0

)
tanh

(
~ωop
2kBT

) . (1.70)

The quantity ~ωop is the optical phonon energy, while the scalar value Fava is
the avalanche field, that can be set as either equal to the quasi Fermi poten-
tial gradient or the electric field component parallel to the current density
(see Sect. 1.3.4). Parameter values are reported in Tab. 1.7 (notice the
dependency on the electric field magnitude).

Parameter Electrons Holes Valid Range Unit of Measure

E0 4.0× 105 4.0× 105 Vcm−1

ahigh 7.03× 105 6.71× 105 E0 ÷ 6.0× 105 cm−1

alow 7.03× 105 1.582× 106 1.75× 105 ÷ E0 cm−1

bhigh 1.231× 106 1.693× 106 E0 ÷ 6.0× 105 Vcm−1

blow 1.231× 106 2.036× 106 1.75× 105 ÷ E0 Vcm−1

~ωop 0.063 0.063 eV

Table 1.7: Van Overstraeten-De Man model - parameter values
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1.3.3 Bandgap Narrowing and Intrinsic Concentration

As many other quantities, such as the mobility values previously treated, the
energy bandgap is affected by temperature. Even though the nature of this
phenomenon still presents unclarified points (especially at low temperature),
it is believed that this dependence arises from two different effects:

• a shift in the relative position of conduction and valence bands due to
lattice dilatation/compression;

• a change induced by electron-phonon interaction;

It can be shown that the bandgap is related with temperature through:

∆Egap ∝ T 2 for T � Θ (1.71)

∆Egap ∝ T for T � Θ (1.72)

Θ being the material Debye temperature. According to (1.71) and (1.72),
Varshni [20], proposed the following expression:

Egap(T ) = Egap(0)− αT 2

T + β
(1.73)

where Egap(0) is the bandgap energy at 0 K, and α and β are properly fitted
parameters (values for silicon are reported in Tab. 1.8).

Parameter Value Unit of Measure

Egap(0) 1.1696 eV
α 4.74× 10−4 eVK−1

β 636 K

Table 1.8: Thermal bandgap model - parameter values.

Intrinsic concentration also depends on temperature and not only through
the energy gap, but also by means of the effective density of states NC and
NV

ni =
√
NC(T )NV (T ) exp

(
−Egap

2kbT

)
. (1.74)

A possibility for expliciting the temperature dependence is represented by
the following expressions:

NC(T ) = 2

(
2πm∗ekbT

h2

) 3
2

= NC(300K)

(
T

300K

) 3
2

, (1.75)

NV (T ) = 2

(
2πm∗hkbT

h2

) 3
2

= NV (300K)

(
T

300K

) 3
2

. (1.76)
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A second approach is to consider the expression of the effective mass. For
electrons we have:

m∗e = 6
2
3

(
mlm

2
t

) 2
3 , (1.77)

mt

m0

= a
Egap(0)

Egap(T )
(1.78)

and NC becomes

NC(T ) = NC,0

(
m∗e(T )

m0

) 2
3
(

T

300K

) 2
3

. (1.79)

For the holes, the effective mass expression is:

m∗h
m0

=
a+ bT + cT 2 + dT 3 + eT 4

1 + fT + gT 2 + hT 3 + iT 4
(1.80)

and the resulting density of states is

NV (T ) = NV,0

(
m∗h(T )

m0

) 2
3
(

T

300K

) 2
3

. (1.81)

Parameter values are shown in Tab. 1.9 for electrons and Tab. 1.10 for holes.

Parameter Value Unit of Measure

m0 9.109× 10−31 kg
ml 0.9163m0 kg
a 0.1905 1

NC,0 2.5094× 1019 cm−3

NC(300K) 2.89× 1019 cm−3

Table 1.9: Electron effective mass and density of states in conduc-
tion band - parameter values.

1.3.4 Driving Force

In some of the previous models, the driving force has been mentioned but
not specified. Two are the main approaches for evaluating it:

• the gradient of quasi-Fermi potential

Fd,ν = |∇ϕν | ν = n, p (1.82)
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Parameter Value Unit of Measure

m0 9.109× 10−31 kg
a 0.4435870 1
b 0.3609528× 10−2 K−1

c 0.1173515× 10−3 K−2

d 0.1263218× 10−5 K−3

e 0.3025581× 10−8 K−4

f 0.4683382× 10−2 K−1

g 0.2286895× 10−3 K−2

h 0.7469271× 10−6 K−3

i 0.1727481× 10−8 K−4

NV,0 2.5094× 1019 cm−3

NV (300K) 3.14× 1019 cm−3

Table 1.10: Hole effective mass and density of states in conduction
band - parameter values.

• the electric field component parallel to the current density

Fd,ν =
E · Jν
|Jν |

ν = n, p (1.83)

where Fd,ν indicates the carrier driving force. The choice of the approach
significantly affects the performance of a numerical simulation. A comparison
between (1.82) and (1.83) will be carried out in Chapt. 3.
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Chapter 2

Numerical Discretization and
Solution Algorithms

The Drift-Diffusion model is a highly nonlinear system of PDEs. An analyt-
ical solution is possible only under strong simplifications and/or in specific
working conditions, so that an accurate numerical approach is required to
treat the simulation of a realistic device. In this chapter we describe the
methodologies adopted for solving the stationary version of equations (1.40)-
(1.50) and, then, we analyze the techniques required in the time dependent
case.

2.1 Gummel Map

Originally proposed in [7], the Gummel map algorithm is an iterative method
used to solve (1.40)-(1.50) in stationary conditions. The solving procedure is
outlined in Algorithm 1.

For reading benefits, we now proceed with a detailed description of the
method: the nonlinearity is limited to the sole Poisson equation (1.40),
whereas the continuity equations are solved in a linearized form. Let us
start with (1.40): we replace the electron and hole concentrations with the
Maxwell-Boltzmann statistics (1.35)-(1.36), obtaining

∇ · (−ε∇ϕ)− qni
(

exp

(
ϕp − ϕ
Vth

)
− exp

(
ϕ− ϕn
Vth

))
− qD = 0 . (2.1)

Because of its nonlinearity, in order to solve equation (2.1) we use the New-
ton method, that can be formulated in a generalized abstract form as:
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Algorithm 1: Gummel Map

Input:
ϕ0, electrostatic potential initial guess;
n0, electron density initial guess;
p0, hole density initial guess;
tolNLP , Nonlinear Poisson tolerance;
tolGM , Gummel Map tolerance;

i = 0
tol =∞
while tol ≥ tolGM do

i = i+ 1
ϕi−1
n , ϕi−1

p ← compute quasi-Fermi potential(ni−1, pi−1)

k = 0
while tol ≥ tolNLP do

δϕk ← Solve NLP(ϕk−1, ϕi−1
n , ϕi−1

p )

ϕk+1 = ϕk + δϕk

tol← compute NLP tolerance (ϕk+1)
k = k + 1

end
ϕi = ϕk

ni ← solve LEC(ϕi, ni−1, pi−1)
pi ← solve LHC(ϕi, ni−1, pi−1)
tol← compute GM tolerance(ni, pi, ni−1, pi−1)

end
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Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be two Banach spaces and F : X 7→ Y a Frechét
differentiable function operator. Given an initial datum U0 ∈ X and a
positive tolerance tol > 0, for all k ≥ 0 solve the following linear problem:{

F ′(Uk; δUk) = −F (Uk)

Uk+1 = Uk + δUk
(2.2)

until
‖F (Uk+1)‖Y < tol (2.3)

Newton Method

In our case the operator F is given by the left-hand side of (2.1), hence cal-
culating the Frechét derivative we have

F ′(ϕ; δϕ) = −∇·(ε∇δϕ)+
qni
Vth

(
exp

(
ϕp − ϕ
Vth

)
+ exp

(
ϕ− ϕn
Vth

))
δϕ (2.4)

and the Newton method reads:
∇ · (−ε∇δϕk) + σkδϕk = fk in Ω

δϕk = 0 on ΓD

∇δϕk · n = 0 on ΓN

ϕk+1 = ϕk + δϕk

(2.5)

where

σk =


qni
Vth

(
exp

(
ϕp − ϕk

Vth

)
+ exp

(
ϕk − ϕn
Vth

))
in ΩSi

0 in Ωox

(2.6)

and

fk =

{
∇ · (−ε∇ϕk)− qni

(
exp

(
ϕp−ϕk

Vth

)
− exp

(
ϕk−ϕn

Vth

))
− qD in ΩSi

∇ · (−ε∇ϕk) in Ωox

(2.7)
After the Nonlinear Poisson (NLP) equation (2.1) has been solved, the elec-
trostatic potential is updated within the Gummel map

ϕi = ϕk̄

where i indicates the Gummel map iteration, while k is the index of Newton’s
algorithm at which the convergence criterion is satisfied. This potential is
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then fed into the linearized continuity equations using the technique known
as the lagging approach [10]. The main idea is to compute the R/G rate
R(n, p), written in the generic form (1.62), using the solution from the pre-
vious iteration. Therefore for a certain iteration i we set:

Ri
n = (nipi−1 − n2

i )F (ni−i, pi−1) for electrons,

Ri
p = (ni−1pi − n2

i )F (ni−i, pi−1) for holes.

Exploiting these expressions, we can write the problems for the steady-state
linearized electron and hole continuity equations (denoted by LEC and LHC,
respectively). Equation (1.43) becomes

∇ · (qniµnε∇ϕi − qDn∇ni) = −qRi
n in ΩSi

(LEC) ni = nD on ΓD,Si (2.8)

∇ni · n = 0 on ΓN,Si

while (1.47) is given by

∇ · (−qpiµpε∇ϕi − qDp∇pi) = −qRi
p in ΩSi

(LHC) pi = pD on ΓD,Si (2.9)

∇pi · n = 0 on ΓN,Si

It is useful to split the R/G term in (2.8) and (2.9) isolating the production
and reaction contributions:

∇ · (+qniµnε∇ϕi − qDn∇ni) + qσi−1
n ni = qf i−1

n (2.10)

∇ · (−qpiµpε∇ϕi − qDp∇pi) + qσi−1
p pi = qf i−1

p (2.11)

having set

σi−1
n = pi−1F (ni−i, pi−1) σi−1

p = ni−1F (ni−i, pi−1)

f i−1
n = n2

iF (ni−i, pi−1) f i−1
p = n2

iF (ni−i, pi−1)

Problems (2.8) and (2.9) are solved sequentially providing the carrier den-
sities n and p which are then used to recompute the quasi-Fermi potentials
ϕn and ϕp, needed by the Poisson equation, using (1.54) and (1.55). Then,
the Gummel map iteration counter is increased and the procedure continues
until convergence.
It is interesting to notice that the algebraic counterpart of the above treat-
ment of the R/G term corresponds to the Jacobi iterative method for linear
systems. Another possibility would have been to use the latest computed
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electron density (ni) in (2.11), instead of the previous one (ni−1), leading to
a Gauss-Seidel iterative approach.

The criteria that are used to monitor the convergence of the Gummel map
are based on the residual of the Nonlinear Poisson solver and the difference
between solutions of two successive iterates of the map, both evaluated using
suitable norms, as:

‖F (ϕk)‖L2 < tolNLP ,

‖ϕi − ϕi−1‖L∞ + ‖ni − ni−1‖L∞ + ‖pi − pi−1‖L∞ < tolGM .

where tolNLP and tolGM are positive predefined tolerances. With the above
choice, it has been proved in [10] that the Gummel map algorithm converges
to the exact solution of the Drif-Diffusion with a linear rate. Regardless such
theoretical results, in practice the method often exhibits a higher convergence
rate (superlinear).

The Gummel map is not the only viable choice for solving the station-
ary Drift-Diffusion system, another common approach is the so called fully
coupled Newton algorithm. Albeit the latter one attains a convergence rate
substantially higher (quadratic),the former one still has a few non negligible
advantages:

• lesser computational requirements, because at each iteration 3 linear
systems of dimension N2

dof have to be solved instead of a system of
dimension (3Ndof )

2;

• more insensitivity to the initial guess, which is an extremely valuable
feature especially in a 3D context, where the problem of finding a good
initial guess is often non trivial.

2.2 Weak Formulation

In order to numerically solve the above Gummel map, a finite element scheme
is adopted in our work. Let us now consider the treatment of each of the
three involved equations.

2.2.1 Nonlinear Poisson Equation

To discretize the NLP equation, that is a Diffusion-Reaction (DR) problem,
we need to introduce the Sobolev space H1(Ω)

H1(Ω) = {v ∈ L2(Ω) : ‖∇v‖L2(Ω <∞}
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and the associated subspace H1
ΓD

(Ω) composed by functions vanishing on the
boundary ΓD ⊆ ∂Ω:

H1
ΓD

(Ω) = {v ∈ H1(Ω) : v|ΓD
= 0} .

Multiplying equation (2.5) by a test function v ∈ V = H1
ΓD

(Ω) and integrat-
ing on the whole domain we obtain:∫

Ω

∇ · (−ε∇δϕk)v dΩ +

∫
Ω

σkδϕkv dΩ =

∫
Ω

fkv dΩ .

Applying Green’s theorem to the first term, we have:∫
Ω

∇ · (−ε∇δϕk)v dΩ =

∫
Ω

ε∇δϕk∇v dΩ−
∫
∂Ω

ε∇δϕk · nv dΓ

=

∫
Ω

ε∇δϕk∇v dΩ−
∫

ΓD

ε∇δϕk · nv dΓ−
∫

ΓN

ε∇δϕk · nv dΓ

=

∫
Ω

ε∇δϕk∇v dΩ

beacuse functions in H1
ΓD

(Ω) have null trace on ΓD and the homogeneous
boundary condition. We can therefore state the weak formulation for the
generic Newton iteration of the nonlinear Poisson equation as follows:

Find δϕk ∈ V s.t.:

ak(δϕk, v) = Lk(v) ∀v ∈ V (2.12)

where ak : V × V 7→ R and Lk : V 7→ R are defined as

ak(u, v) =

∫
Ω

ε∇u∇v dΩ +

∫
Ω

σkuv dΩ ,

Lk(v) =

∫
Ω

fkv dΩ .

Linearized NLP - Weak Formulation

The analysis of well-posedness can be carried out using Lax-Milgram theo-
rem. Physically consistent assumptions on the involved quantities imply
that:

• 0 < εm ≤ ε(x) ≤ εM a.e. in Ω ;

• σk ∈ L∞(Ω) and σk > 0 a.e. in Ω ∀k > 0 ;

• fk ∈ L2(Ω) ∀k > 0 .
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Using these relationships it is possibile to prove the following properties:

• Continuity of ak( · , · )

|ak(u, v)| ≤
(
εM + c2

P‖σk‖L∞(Ω)

)
‖u‖V ‖v‖V ∀ u, v ∈ V

• Coercivity of ak( · , · )

ak(u, u) ≥ εm‖u‖2
V ∀ u ∈ V

• Continuity of Lk

|Lk(v)| ≤ cP‖f‖L2(Ω)‖v‖V ∀ v ∈ V

where cP is the Poincaré constant associated with the domain Ω and the
norm ‖ · ‖V is defined as:

‖φ‖V = ‖∇φ‖2
L(Ω) ∀ φ ∈ V . (2.13)

2.2.2 Continuity Equations

In the following we consider the sole electron continuity equation, being the
one related to holes treated similarly. Equation (2.10) can be rewritten as a
diffusion-advection-reaction (DAR) problem in conservative form:

∇ · (−Dn∇n) +∇ · (βinn) + σi−1
n n = f i−1

n in ΩSi

ni = nD on ΓD,Si

∇ni · n = 0 on ΓN,Si

(2.14)

where the transport term coefficient βin is defined as:

βin = µn∇ϕi .

We multiply the first equation in (2.14) by a test function v ∈ V = H1
ΓD,Si

(ΩSi)

(note that both the domain and the Dirichlet boundary have been changed
according to the considerations made in Sect. 1.2) and integrate over the
domain ΩSi. This leads to the following weak formulation for the linearized
electron continuity problem:
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Find ni ∈ V = H1
ΓD,Si

(ΩSi) s.t.:

ai(n
i, v) = Li(v) ∀v ∈ V (2.15)

where ai : V × V 7→ R and Li : V 7→ R are defined as

ai(u, v) =

∫
ΩSi

Dn∇u∇v dΩ−
∫

ΩSi

βinu · ∇v dΩ +

∫
ΩSi

σinuv dΩ ,

Li(v) =

∫
ΩSi

f inv dΩ .

LEC - Weak Formulation

To carry out the anaysis of well-posedness it is useful to introduce the Slot-
boom variable un:

un := ni exp

(
−ϕn
Vth

)
(2.16)

which implies

n = ni exp

(
ϕ

Vth

)
un .

Notice that

∇un = exp

(
− ϕ

Vth

)
∇n− exp

(
− ϕ

Vth

)
n

Vth
∇ϕ

and hence, using Einstein relation (1.51), we get

∇ ·
(
−Dn exp

(
ϕ

Vth

)
∇un

)
= ∇ · (−Dn∇n+ µnn∇ϕ) .

We can then write (2.14) in self-adjoint form as
∇ ·
(
−Dn exp

(
ϕ

Vth

)
∇un

)
+ σi−1

n exp

(
ϕ

Vth

)
un = f i−1

n in ΩSi

un = nD exp

(
− ϕ

Vth

)
on ΓD,Si

∇un · n = 0 on ΓN,Si

(2.17)
Proceeding as before, the weak formulation associated with (2.17) reads as
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Find uin ∈ V = H1
ΓD,Si

(ΩSi) s.t.:

ãi(u
i
n, v) = L̃i(v) ∀v ∈ V (2.18)

where ãi : V × V 7→ R and L̃i : V 7→ R are defined as

ãi(u, v) =

∫
ΩSi

Dn exp

(
ϕ

Vth

)
∇u∇v dΩ +

∫
ΩSi

σin exp

(
ϕ

Vth

)
uv dΩ ,

L̃i(v) =

∫
ΩSi

f inv dΩ = Li(v).

Slotboom-LEC - Weak Formulation

We will furthermore require that ∀i > 0:

• 0 < dm ≤ Dn exp

(
ϕ

Vth

)
≤ dM a.e. in ΩSi ;

• σin exp

(
ϕ

Vth

)
∈ L∞(ΩSi) and σin ≥ 0 a.e. in ΩSi;

• f in ∈ L2(ΩSi).

Using the same arguments applied in the NLP case, it is possible to prove
that the hypothesis of the Lax-Milgram theorem are verified:

• Continuity of ãi( · , · )

|ãi(u, v)| ≤
(
dM + c2

P‖σin exp

(
ϕ

Vth

)
‖L∞(ΩSi)

)
‖u‖V ‖v‖V ∀ u, v ∈ V

• Coercivity of ãi( · , · )

ãi(u, u) ≥ dm‖u‖2
V ∀ u ∈ V

• Continuity of L̃i

|L̃i(v)| ≤ cP‖f‖L2(Ω)‖v‖V ∀ v ∈ V

Having proved that (2.18) is uniquely solvable, the existence and uniqueness
of the solution ni of (2.15) immediately follows from relation (2.16).
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2.3 Finite Element Approximation

Let {Th}h>0 be a family of simplicial partitions of Ω such that ∪K∈ThK =
Ωh ∼ Ω where, for simplicity, we assume that the approximating domain,
Ωh, coincides exactly with the original one, Ω (i.e., Ω is a polyhedron). The
positive parameter h represents the maximum simplex diameter:

h := max
K∈Th

hK , hK = max
x,y∈K

|x− y| .

Furthermore we assume that the following regularity condition holds for each
grid Th: there exists a positive constant δ such that

hK
ρK
≤ δ ∀K ∈ Th (2.19)

where ρK is the sphericity of K (namely, the diameter of the inscribed hy-
persphere). Given a suitable Sobolev space V , a generic elliptic problem can
be weakly formulated as:

find u ∈ V such that: a(u, v) = F (v) ∀v ∈ V (2.20)

Introducing the family of approximating finite-dimensional spaces {Vh}h>0

satisfying

Vh ⊂ V, dim(Vh) = Nh <∞ ∀h > 0

we are able to state the Galerkin formulation of problem (2.20), which reads:

find uh ∈ Vh such that: a(uh, vh) = F (vh) ∀vh ∈ Vh. (2.21)

From different choices for the discrete space Vh, different numerical schemes
arise. In this thesis we consider the choice leading to the finite element
approximation of (2.20).

2.3.1 Nonlinear Poisson Equation

In order to numerically solve the generic Newton iteration of the Nonlin-
ear Poisson problem (2.12), we discretize the Sobolev space V = H1

ΓD
(Ω)

with linear finite elements, namely the space of continuous piecewise linear
functions over Th:

Vh = X1
h(Ω) = {vh ∈ C0(Ω) : vh|K ∈ P1(K),∀K ∈ Th} . (2.22)
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We can hence state the finite element formulation of problem (2.12) as follows:

Find δϕkh ∈ Vh ∩H1
ΓD

(Ω) s.t.:

ak(δϕkh, vh) = Lk(vh) ∀vh ∈ Vh (2.23)

Linearized NLP - FE Formulation

Exploiting the usual Lagrangian basis composed by hat (or tent) functions
{ψ}Nh

j=1, where Nh = dim(X1
h(Ω), we can write each element of X1

h(Ω) in the
following way:

vh(x) =

Nh∑
j=1

vjψj(x) . (2.24)

Therefore, equation (2.23) becomes:

Nh∑
j=1

δϕkja
k(ψj, ψi) = Lk(ψi) ∀i ∈ {1, . . . , Nh}.

This leads to the algebraic counterpart of problem (2.23), which reads as:

Find δϕk ∈ RNh s.t.:
Akδϕk = bk (2.25)

where Ak ∈ RNh×Nh and bk ∈ RNh are defined as

[Ak]i,j = ak(ψj, ψi) ,

[bk]i = Lk(ψi) .

Linearized NLP - Algebraic Formulation

Expanding the expression for the matrix coefficients

[Ak]i,j = [Sk]i,j + [Nk]i,j =

∫
Ω

ε∇ψi∇ψj dΩ +

∫
Ω

σkψiψj dΩ

we can recognize the two separate contributions of the stiffness matrix Sk

and the mass matrix Nk to the global matrix. To attain better numerical
properties the latter one is evaluated using the trapezoidal rule, which results
in the lumping of matrix Nk. This approach is motivated by the fact that
with linear finite elements we expect a linear convergence rate ([15], Thm.
3.6), therefore such quadrature formula is accurate enough for our purposes.

Note that Dirichlet conditions are not explicitly present in (2.25), there-
fore they should be incorporated into the system matrix itself. A way to
achieve that is the diagonalization technique, in which the rows corresponding
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to Dirichlet boundary nodes are set identically to zero except for the diagonal
entry. Setting the right-hand side at the corresponding index equal to the
the associated boundary value will ensure Dirichlet condition to be satisfied
exactly. Namely, ∀i′ ∈ {i ∈ {1, . . . , Nh} : i is a Dirichlet boundary node}:

[Ak]i′,j =

{
0 if j 6= i′

γ if j = i′
, [bk]i′ = γϕD(xi′) . (2.26)

To ensure a good balancing of the stiffness matrix accounting for Dirichlet
boundary conditions the coefficient γ 6= 0 has been set equal to the orginal
diagonal entry.

Finally, to avoid overshoot issues arising from the Newton update step
(2.1), a damping procedure based on the Deuflhard criterion [6] is performed
as described in [3].

52



2.3.2 Continuity equations

It is a well-known fact that diffusion-advection problems are very often diffi-
cult to treat with the standard finite element discretization emanating from
the weak formulation (see [15], Chapter 5). In such a case, when the drift
component is dominant the computed solution may exhibit undesired spu-
rious oscillations. Reducing the grid step size will eventually eliminate this
numerical instability, but the computational effort required could be unaf-
fordable. To overcome this problem, several approaches have been proposed
in the literature: the one we have adopted is the edge-averaged finite element
(EAFE) scheme. Originally proposed in [21], under certain assumptions that
will be discussed later, this scheme enjoys several valuable properties, the
most important one being the fact that it is monotone. As done before, we
will limit ourselves to the case of electrons being the one related to holes
treated in the same way.

The EAFE scheme can be viewed as a particular kind of Generalized
Galerkin method, because it changes the bilinear form and the linear func-
tional of the original variational problem, but leaves unaltered the discrete
spaces (i.e. X1

h(ΩSi)). For the complete and detailed derivation of the scheme
we refer to [21] and [23]; here we report only the following:

Find nh ∈ X1
h(ΩSi) ∩H1

ΓD,Si
(ΩSi) s.t.:

aih(n
i
h, vh) = Li(vh) ∀vh ∈ X1

h(ΩSi) (2.27)

LEC - EAFE Formulation

being aih(·, ·) the EAFE bilinear form associated with problem (2.14) (see [21]
for its definition) and Li the linear functional defined as:

Li(v) =

∫
ΩSi

f inv dΩ ,

An advantage of this formulation comes from an implementation perspective:
the functional space X1

h(ΩSi) can be represented by a subset of the basis for
X1
h(Ω), hence, practically, just a single finite element space is required. Anal-

ogously for what done in the Nonlinear Poisson case, we can therefore exploit

the usual hat function basis {ψ}Nh,Si

j=1 to recover the algebraic formulation:
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Find ni ∈ RNh,Si s.t.:
Aini = bi (2.28)

where Ai ∈ RNh,Si×Nh,Si and bi ∈ RNh,Si are defined as

[Ai]i,j = aih(ψj, ψi) ,

[bi]i = Li(ψi) .

LEC - Algebraic Formulation

It has been proven that, if the simplicial partition Th satisfies a particular
geometrical condition, the matrix obtained with the EAFE scheme, Ai, is an
M-matrix, hence the scheme is monotone and satisfies the discrete maximum
principle. A similar result was already known for the 2D case, where the De-
launy property has to be required for the triangulation. The generalization
to the 3D case involves a more strict condition:

Theorem 2.1 (Zikatanov condition). The system matrix of the EAFE scheme
is an M-matrix iff for any fixed edge E of the partition Th the following in-
equality holds:

ωE =
1

d(d− 1)

∑
K⊃E

|kKE |cotθKE ≥ 0, (2.29)

where
∑

K⊃E means summation over all simplices K containing E, θKE is the
angle between the faces fi, fj ∈ Th such that fi

⋂
fj = E and kKE is the edge

in K which does not share any vertices with E.

Finally it has also been proven in [21], that such scheme converges to the
exact solution of problem (2.15) with a linear rate with respect to the mesh
size h.

2.4 Time Discretization

In this section we present time discretization schemes and we discuss how to
combine them with the Gummel map framework in order to deal with a time
dependent Drift-Diffusion model.
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2.4.1 One-step methods

Let us consider the generic initial value problem (IVP) for y : R 7→ Rn:
d

dt
y(t) = f(t,y(t)), t ∈ I = (t0, t0 + T )

y(0) = y0

(2.30)

where T > 0 (possibily T = +∞) and f : R×Rn 7→ Rn is uniformly Lipschitz
continuous in y and continuous in t, so that by the Picard-Lindelöf theorem,
problem (2.30) admits a unique solution.

Let us now partition I into the sequence of subintervals {In = (tn−1, tn)}Nn=1;
we can then identify the set of discretization nodes or time levels, {tn}Nn=0,
and the corresponding stepsizes {∆tn = tn− tn−1}Nn=1. Moreover, we indicate
with un the value of the discrete solution at time tn (i.e., un = u(tn)) and
with fn the evaluation f(tn,un).

One-step methods are a family of discretization schemes for IVPs that,
in order to compute the value of un+1, just employ the previous temporal
solution, un. Among these techniques, the best known is the Euler method,
which simply prescribes that the time derivative is discretized as

d

dt
y(t) ≈ y(t+ ∆t)− y(t)

∆t
(2.31)

which, thanks to (2.30), implies

y(t+ ∆t) ≈ y(t) + ∆tf(t)

At a generic time level n, the value un+1 can be therefore computed in two
ways:

(FE) un+1 = un + ∆tnfn (2.32)

(BE) un+1 = un + ∆tnfn+1 (2.33)

where, depending on the time level chosen for the evaluation of f , the ex-
plicit Forward Euler method (FE) or the implicit Backward Euler (BE) are
obtained. A more refined approach originates from the integration of (2.30)
between t and t+ ∆t as:

y(t+ ∆t) = y(t) +

∫ t+∆t

t

f(s,y(s)) ds (2.34)

from which we can notice that both of the two versions of Euler method can
be recovered by approximating the integral with a left (FE) or right (BE)
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endpoint integration rule. Evaluating the integral using the trapezoidal rule
(2.34) becomes:

y(t+ ∆t) = y(t) +

∫ t+∆t

t

f(s, y(s)) ds

≈ y(t) +
∆t

2
[f(t+ ∆t,y(t+ ∆t)) + f(t,y(t))] ,

thus leading to the Crank-Nicolson (or simply trapezoidal rule) method

(TR) un+1 = un +
∆tn

2
[fn+1 + fn] . (2.35)

A convenient way to express all of these three time discretization schemes in
a more compact manner is the θ-method:

(θ-method)
un+1 − un

∆tn
= θfn+1 + (1− θ)fn (2.36)

with θ ∈ [0, 1]. It can be immediately noticed that for θ = 0, 1, 1
2

we obtain
the FE, BE and TR methods, respectively.

As far as the numerical properties of these three methods are concerned,
both FE and BE converge with a linear rate O(∆t), while the TR scheme
attains a better result being O(∆t2) accurate. Regarding stability, instead,
BE and TR are A-stable, while FE is only conditionally stable. The BE
method is the only one that is also L-stable. These facts suggest that the
most suitable time discretization for the D.D. model is the BE scheme.

2.4.2 The TRBDF2 Scheme

The TRBDF2 method is a composite scheme proposed in [2], which combines
the trapezoidal rule (TR) and the second order Backward Difference Formula
(BDF2) in a two-step method. The rationale behind this coupling is to
simultaneously get the accuracy of the trapozoidal rule while keeping the
good stability properties of the BDF2 scheme. To obtain the BDF2 method
we need to start from (2.30) and directly approximate the value of the first
derivative of y at node tn+1 with the first derivative of the piecewise linear
polynomial interpolating y at nodes tn+1, tn and tn−1:

p(s) = y(tn+1) + (s− tn+1)
y(tn+1)− y(tn)

∆t
+

(s− tn)
y(tn+1)− 2y(tn) + y(tn−1)

2∆t
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whose derivative at tn+1 is

p′(tn+1) =
3y(tn+1)− 4y(tn) + y(tn−1)

2∆t
.

In (2.30) we approximate the derivative of y at time tn+1 with p′(tn+1)

3y(tn+1)− 4y(tn) + y(tn−1)

2∆t
= f(tn+1) ,

and expliciting y(tn+1) we obtain

y(tn+1) =
4

3
y(tn)− 1

3
y(tn−1) +

2∆t

3
f(tn+1) .

This motivates the second order Backward Difference Formula:

(BDF2) un+1 =
4

3
un −

1

3
un−1 +

2∆t

3
fn+1 . (2.37)

This method is both A-stable and L-stable, moreover it has a convergence
rate of O(∆t2). The way in which the TRBDF2 scheme arranges the two
methods is then the following: starting from tn, an intermediate solution at
time level tn+γ with γ ∈ (0, 1) is computed using the trapezoidal rule:

un+γ −
γ

2
∆tnfn+γ = un +

γ

2
∆tnfn . (2.38)

Afterwards, the algorithm marches to the timestep tn+1 using the BDF2
scheme:

un+1 −
1− γ
2− γ

∆tnfn+1 =
1

γ(2− γ)
un+γ −

(1− γ)2

γ(2− γ)
un . (2.39)

Except for being sufficiently regular, no other assumption has been made on
f , that can be a generic nonlinear function. An iterative method is hence
required to solve these two steps. In view of applying the Newton method
we set {

uk+1
n+γ = ukn+γ + δukn+γ

u0
n+γ = un

{
uk+1
n+1 = ukn+1 + δukn+1

u0
n+1 = un+γ

where k is the Newton iteration index. The equation for the linearized TR
substep is then[

1− γ∆tn
2

(
∂f

∂u

)k
n+γ

]
δukn+γ = −(ukn+γ − un) +

γ∆tn
2

(fkn+γ + fn) , (2.40)
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while the one for the BDF2 reads as[
1− 1− γ

2− γ
∆tn

(
∂f

∂u

)k
n+1

]
δukn+1 =

−
[
ukn+1 −

1

γ(2− γ)
ukn+γ +

(1− γ)2

γ(2− γ)
un

]
+

1− γ
2− γ

∆tnf
k
n+1 . (2.41)

Furthermore, it is worth noticing that the Jacobian matrices for these two
substeps are:

JTR = I− γ∆tn
2

(
∂f

∂u

)k
n+γ

, JBDF2 = I− 1− γ
2− γ

∆tn

(
∂f

∂u

)k
n+1

.

Requiring them to be equal and solving for the parameter γ, we find:

γ∗ = 2−
√

2 (2.42)

which can be considered optimal, in the sense that for this particular value,
not only the computational effort is reduced (a single Jacobian matrix has to
be inverted), but also the method is L-stable and the local truncation error
(LTE) is minimized [2].

2.4.3 Time-dependent Gummel map

The way to take into account the time dependency follows a very natural
idea: provided a suitable initial guess, (ϕ0, n0, p0), the discrete solution at
a certain instant tn is marched towards tn+1 by solving a modified version
of the Gummel map algorithm, in which the linearized continuity equations
embed a proper time-advancement scheme. The Nonlinear Poisson solving
procedure, instead, remains unchanged. The overall procedure can be syn-
thetically outlined as in Algorithm 2, where for each quantity involved we
have indicated with the subscript j the time level (for avoiding confusion with
the electron density n) and with the superscript i the Gummel map iteration
counter. The inclusion of the time derivative implies the construction of
a new weak formulation for the LEC equation. With this aim, we multiply
equation (2.8) by a test function v ∈ V = H1

ΓD,Si
(ΩSi) to obtain:

〈∂tn, v〉∗ + ai(n, v) = Li(v)

where a( · , · ) and Li( · ) are the same as in (2.15), while 〈 · , · 〉∗ indicates the
duality between V and its topological dual space V ∗. We can give to the
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Algorithm 2: Time-dependent Gummel Map

Input:
ϕ0, electrostatic potential initial condition;
n0, electron density initial condition;
p0, hole density initial condition;
T , ending time;
∆t0, initial stepsize;
tolNLP , Nonlinear Poisson tolerance;
tolGM , Gummel Map tolerance;

t = 0 ∆t = ∆t0
j = 0
while t < T do

t = t+ ∆t
i = 0
tol =∞
while tol ≥ tolGM do

i = i+ 1

ϕi−1
n , ϕi−1

p ← compute quasi-Fermi potential(ni−1
j , pi−1

j )

ϕij ← solve NLP(ϕi−1
j , ϕi−1

n , ϕi−1
p , tolNLP )

nij ← solve LEC(ϕij, n
i−1
j , pi−1

j , ϕj−1, nj−1, pj−1)

pij ← solve LHC(ϕij, n
i−1
j , pi−1

j , ϕj−1, nj−1, pj−1)

tol← compute GM tolerance(ni, pi, ni−1, pi−1)

end
ϕj = ϕij
pj = nij
nj = pij
∆t← compute timestep(. . . )
t = t+ ∆t
j = j + 1

end
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latter one a more explicit expression recalling that, in a distributional sense
(see [16])

〈∂tn, v〉∗ =
d

dt
(n(t), v)0 (2.43)

( · , · )0 being the inner product on L2(ΩSi). For our implementation purposes,
we focus on the Backward Euler scheme and approximate the time derivative
as in (2.33) to obtain

1

∆t

(
nij+1 − nj, v

)
0

+ ai(nj+1, v) = Li(v) (2.44)

so that the fully-discretized EAFE formulation can be recovered

Find nih,j+1 ∈ X1
h(ΩSi) ∩H1

ΓD,Si
(ΩSi) s.t.:

1

∆t

(
nih,j+1 − nh,j, v

)
0

+ aih(n
i
h,j+1, vh) = Li(vh) ∀vh ∈ X1

h(ΩSi)

(2.45)

BE-LEC - EAFE Formulation

Even though this formulation is slightly different from the one associated with
the stationary problem (2.15), it can be treated in the same way: the effect
of the time discretization just adds a reaction term that can be included in
the one already present. Moreover, exploiting again the Lagrangian basis
{ψl}Nh,Si

i=1 we are able to recover the algebraic counterpart of (2.45):

Find nij+1 ∈ RNh,Si s.t.:(
1

∆t
M + Ai

)
nij+1 = bi +

1

∆t
Mnj (2.46)

where Ai ∈ RNh,Si×Nh,Si and bi ∈ RNh,Si are defined as

[M]i,j = (ψj, ψi)0 ,

[Ai]i,j = aih(ψj, ψi) ,

[bi]i = Li(ψi) .

BE-LEC - Algebraic Formulation

where M is the mass-matrix originating from the time discretization and
boundary conditions are enforced by means of the diagonalization technique
applied to the global system matrix

Ai =
1

∆t
M + Ai . (2.47)

60



The TRBDF2 scheme is slightly more complex to treat because it involves
two steps, but the mathematical procedure needed to retrieve its associ-
ated EAFE formulation is exactly the same. Moreover, it is worth pointing
out that we consider the linearized continuity equations, so that Newton’s
method is not required and a direct solving approach is possible. Introducing
the weak residual of (2.27)

ri(uh, vh) = Li(vh)− aih(uh, vh) ,

and indicating with rj the residual at the previously converged time level j,
we can state the EAFE formulations for the two substeps of the TRBDF2
scheme as follows:

TR substep
Find nih,j+γ ∈ X1

h(ΩSi) ∩H1
ΓD,Si

(ΩSi) s.t.:

(
nih,j+γ, v

)
0
− γ∆t

2
ri(nih,j+γ, vh) (2.48)

= (nh,j, v)0 +
γ∆t

2
rj(nh,j, vh) ∀vh ∈ X1

h(ΩSi)

BDF2 substep
Find nih,j+1 ∈ X1

h(ΩSi) ∩H1
ΓD,Si

(ΩSi) s.t.:

(
nih,j+1, v

)
0
− 1− γ

2− γ
∆t ri(nih,j+1, vh) (2.49)

=
1

γ(2− γ)

(
nih,j+γ, v

)
0
− (1− γ)2

γ(2− γ)
(nh,j, v)0 ∀vh ∈ X1

h(ΩSi)

TRBDF2-LEC - EAFE Formulation

Using the usual finite element space basis, it is possible to retrieve the cor-
responding algebraic quantities. As done in (2.46), we set

[M]i,j = (ψj, ψi)0 ,

[Ai]i,j = aih(ψj, ψi) ,

[bi]i = Li(ψi) .

Moreover we define Aj and bj to be the EAFE matrix and the right-hand
side of the previous time level j, respectively. We can therefore proceed in
providing the algebraic formulation for the TRBDF2 discretization:
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TR substep
Find nij+γ ∈ RNh,Si s.t.:(

2

γ∆t
M + Ai

)
nij+γ =

(
bi + bj

)
+

(
2

γ∆t
M−Aj

)
nj (2.50)

BDF2 substep
Find nij+1 ∈ RNh,Si s.t.:(

2− γ
(1− γ)∆t

M + Ai

)
nij+1 = bi +

1

γ(1− γ)∆t
Mnij+γ −

1− γ
γ∆t

Mnj

(2.51)

TRBDF2-LEC - Algebraic Formulation
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Chapter 3

Stationary Drift-Diffusion
Model: Simulation Results

This chapter is devoted to illustrating the results obtained by numerically
solving the stationary Drift-Diffusion system (1.40)-(1.50) for both an n-
channel and a p-channel MOSFET using FEMOS-MP, a C++ code that
implements all of the numerical techniques and physical models described in
Chapt. 1 and Chapt. 2.
In the first part, we analyze the behaviour of the devices in forward bias
conditions, with particular attention to, the body effect and the temperature
dependence, whereas the last section is dedicated to the study of the reverse
bias regime.

3.1 Forward Bias

The geometry and mesh of the considered structure are shared by both the
n-channel and the p-channel MOSFET and are shown in Fig. 3.1: the bulk
region is 300 nm long, 270 nm and 40 nm thick, while the top oxide layer is
30 nm thick. The channel length is approximately 40 nm.

Material Width Height Thickness εr

Silicon 300 nm 40 nm 270 nm 11.6
Oxide 230 nm 40 nm 30 nm 3.9

Table 3.1: MOSFET geometry and parameters

To reproduce a realistic n-MOSFET, a p-substrate with a Boron acceptor
concentration of 1× 1017 cm−3 has been implanted with Arsenic and Phos-
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Figure 3.1: Device Geometry and Mesh

phorous ions to generate, respectively, the source and drain regions. In both
cases, the donor concentrations are given by an analytic Gaussian profile
with a peak of ∼1× 1018 cm−3 at the corresponding contact and vanishing
as going towards the bottom surface (bulk contact) as can be seen in Fig.
3.2a. Analogously, the p-MOSFET has a Phosphorous based n-substrate in
which Boron ions have been implanted in both the source and drain regions,
again following a Gaussian profile (Fig. 3.2b).

(a) n-MOSFET Doping (b) p-MOSFET Doping

Figure 3.2: Doping profiles

To assess the validity of the EAFE scheme combined with the Gummel
map decoupling algorithm, the aforementioned MOSFETs have been ana-
lyzed in various bias conditions. For reading benefits, the results obtained
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with FEMOS-MP have been compared with the ones provided by the com-
mercial tool [1].
The ID − VG characteristics for the n-channel device and IS − VG for the
p-channel one are reported, respectively, in Fig. 3.3a and Fig. 3.3b. In each
of these simulations, the mobility has been calculated using the low-field
Masetti model combined with the high-field Canali model (the driving force
has been set equal to the gradient of the quasi-Fermi potential), while car-
rier R/G is taken into account by activating Shockley-Read-Hall and Auger
mechanisms. Moreover, the devices are considered having a uniform constant
temperature of 300 K. Tab. 3.2 and Tab. 3.3 summarize the contact biases
and the physical models activated for both transistor types.

VD [ V ] VG [ V ] R/G Models Mobility Models

0.1, 0.2, −0.5÷ 1.5
SRH, Masetti

0.5, 1.0 Auger Canali (QF)

Table 3.2: Forward bias - n-MOSFET simulation settings

VS [ V ] VG [ V ] R/G Models Mobility Models

0.01, 0.02,
0.5÷−1.5

SRH, Masetti
0.1, 0.2, 0.5 Auger Canali (QF)

Table 3.3: Forward bias - p-MOSFET simulation settings

The agreement with the reference software is evident: in most cases the
two results match perfectly, just showing a little discrepancy under the most
intense working conditions.
Considering the n-MOSFET, as the gate terminal bias increases, electrons

start to accumulate right next to the oxide interface (substrate inversion).
This leads to the channel formation and brings the transistor in an on-state,
as shown in Fig. 3.4. The p-MOSFET case is analogous, but the mechanism
is actuated by holes (Fig. 3.5).
Snapshots for current densities streamlines are provided for both devices in
Fig. 3.6: in the n-MOSFET case we have set VD = 0.1V, VG = 1.5V, while for
the p-MOSFET we have considered VS = 0.1V, VG = −1.5V. As expected,
most of the current carried by the transistors flows in a small section adjacent
to the oxide layer. The computation has been performed using method A
proposed in [14].
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Figure 3.3: MOSFET forward bias: comparison between FEMOS
(lines) and ref [1] (dots).
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(a) VG = 0.0V

(b) VG = 0.5V

(c) VG = 1.0V

(d) VG = 1.5V

Figure 3.4: n-MOS channel
formation - electron density for
VD = 0.1V and different gate
voltages.

(a) VG = 0.0V

(b) VG = −0.5V

(c) VG = −1.0V

(d) VG = −1.5V

Figure 3.5: p-MOS channel
formation - hole density for
VS = 0.1V and different gate
voltages.
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(a) n-MOSFET - Jn
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(b) p-MOSFET - Jp

Figure 3.6: Current density streamlines.

3.2 Mobility Analysis

In the previous section, the I−V characteristics have been calculated activat-
ing all of the mobility models available. The following a posteriori analysis
has the purpose of proving the correctness of such choice or, equivalently, to
estabilish that in order to obtain reliable predictions none of the considered
mechanisms can be neglected. To do so, we have considered an n-MOSFET
with a fixed drain voltage of 1 V and ramped up the gate bias from −0.5 V
to 1.5 V (see Tab. 3.4). We have performed a simulation for each possi-

VG [ V ] VD [ V ] Mobility Models R/G Models

−0.5÷ 1.5 1.0
µn = 1417 cm2V−1s−1

SRH, Auger
µp = 470.5 cm2V−1s−1

−0.5÷ 1.5 1.0 Masetti SRH, Auger

−0.5÷ 1.5 1.0 Canali (QF) SRH, Auger

−0.5÷ 1.5 1.0 Masetti, Canali (QF) SRH, Auger

Table 3.4: Mobility analysis - simulation settings
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ble combination of the implemented models and collected the results in Fig.
3.7. It can be immediately noticed that the constant mobility assumption is
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FEMOS - Constant

Figure 3.7: n-MOSFET mobility analysis: ID − VG comparison
between FEMOS (lines) and ref. [1] (dots)

uncapable to provide a meaningful output: the introduction of either the ion-
ized impurities scattering phenomenon (Masetti) or the high-field mobility
degradation (Canali) induces a significant lowering of the maximum current
density. Activating both of the two physical mechanisms results in a further
decrease of the current peak value, indicating that none of these effects can
be left out.
As regards the comparison with the reference tool, the agreement is enough
satisfactory considering the rather intense bias applied: a few differences are
present in the subtreshold region, but almost vanish as approching saturation
condition.
For completeness, in Fig. 3.8 we show the I − V characteristics obtained
using different driving forces for the high-field model computation: at this
level a discrepancy exists, but is barely perceivable.

A more interesting comparison is instead reported in Fig. 3.9, that illus-
trates various 3D representations of the electron mobility throughout the
device. As expected, switching on the Masetti model will results in a great
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Figure 3.8: Mobility comparison - ID−VG for different driving forces
used in the Canali model computation

.

specular reduction within the highly doped source and drain regions and a
lesser, albeit still consistent, cut-off in the substrate (Fig. 3.9a). In contrast
with that, the Canali model (Fig. 3.9b) exhibits an unsymmetric behaviour:
the most interested device region is the one closer to the drain terminal,
where the external bias is applied and the device is far away from the equi-
librium. In this latter case, is it worth noticing that the mobility is highly
reduced in the region occupied by the channel, thus having a greater impact
in decresing the contact current. This fact can be verified in Fig. 3.7, where
the peak value attained is lower than the one associated with the activation
of the sole scattering from ionized impurities. Finally, the results obtained
employing the two models are supplied in Fig. 3.9c and 3.9d: the mobility
calculated using the quasi-Fermi potential driving force (QF) seems to be
more homogeneous than the one computed with the parallel electric field
approach (EP).
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Figure 3.9: Electron mobility for different models activated at VD
= 1V and VG = 1.5V.
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3.3 Body Effect

For practical reasons, in transistors composing integrated circuits source con-
tacts are grounded, but not connected to the substrate body which is instead
left in a“floating” state, thus allowing a voltage drop between the two termi-
nals to occur. The existence of a non-zero bulk-to-source potential difference
VBS is responsible for inducing a modification to the threshold voltage VT .
From a theoretical standpoint, the following expression for VT can be ob-
tained for a p-substrate [22]:

VT = Vfb + ψs +

√
2εsiqNa(ψs − VBS)

Cox
(3.1)

where Vfb is the flatband potential [V], ψs is the surface potential [V] and Cox
is the oxide specific capacitance [F m−2]. Even though this formula cannot
be directly applied to obtain accurate results in modern devices, it highlights
the fact that the consequence of a forward substrate bias is to reduce the
bulk depletion region and decrease the threshold voltage. For this reason,
such behaviour is commonly known as body or back-gate effect.
To numerically observe this phenomenon, we have performed a few simula-
tions considering an n-MOSFET and fixing everything but the body bias, as
indicated in Tab. 3.5.

VB [ V ] VG [ V ] VD [ V ] R/G Models Mobility Models

0.0, 0.1, −0.5÷ 1.5 0.1
SRH, Masetti

0.25, 0.5 Auger Canali (QF)

Table 3.5: Body effect study - simulation settings

The results are illustrated in Fig. 3.10: the obtained values are coherent with
both the theoretical intuition and the reference tool. The threshold voltage is
subjected to an increase as the potential applied to the body contact grows,
as predicted by equation (3.1). At the same time, the subtrhreshold slope
(STS) becomes slighly less steep, consequentially raising the leakage current
value (substrate sensitivity). The extreme scenario is represented by the char-
acteristic related to the 0.5 V bias (yellow line in Fig.3.10), where off-state
current is four order of magnitude greater than in the unbiased case.
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Figure 3.10: n-MOSFET body effect study: ID − VG comparison
between FEMOS (lines) and ref. [1] (dots).

3.4 Temperature Dependence

As pointed out in Sect. 1.3, many of the quantities involved in the simulation
of a semiconductor device are affected by temperature. In the following we
consider the thermal dependence of model solution through a uniform con-
stant temperature that assumes a few values covering the typical operational
range required in automotive applications, −40 ◦C to 125 ◦C. As previously
done, all of the mobility models available are activated (i.e. Masetti an Canali
with the quasi-Fermi gradient driving force), as well as the Shockley-Read-
Hall and Auger R/G mechanisms. The temperature dependent phenomena
include the phonon scattering (1.57), the bandgap narrowing (1.73) and the
density of states modification (1.79)-(1.81). These latter ones are summa-
rized in Tab. 3.6, together with the employed biases.

The results are reported in Fig. 3.12a for the n-MOSFET and Fig. 3.12b
for the p-MOSFET. As temperature grows, the current flowing in both de-
vices increases in the subthreshold region. Two are the main causes:

• the additional heat increases the value of the effective intrinsic concen-
tration ni;

• the energy bandgap gets reduced.
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T [◦C] VG [V] VD [V] Temperature Dependence Models

-40,
−0.5÷ 1.5 0.1

Lattice Scattering
26.85, 85, Bandgap Narrowing

125 Intrinsic concentration

Table 3.6: Temperature dependence analysis - n-MOSFET simula-
tion settings

T [◦C] VG [V] VS [V] Temperature Dependence Models

-40,
0.5÷−1.5 0.1

Lattice Scattering
26.85, 85, Bandgap Narrowing

125 Intrinsic concentration

Table 3.7: Temperature dependence analysis - p-MOSFET simula-
tion settings

These concurrent facts contribute in raising the number of available free car-
riers, hence the electric current.
On the contrary, as approaching the saturation condition, the current peak
value is related to the temperature through an inversely proportional rela-
tionship: the reason is that the mobility decay caused by phonon scattering
phenomena increase due to the silicon lattice being hotter, thus vibrating
more. This effect is present for any bias condition, but it becomes immedi-
ately noticeable at high voltages (or rather for high electric field magnitude)
because of the interaction with the carrier velocity saturation mechanism.
Snapshots for the electron mobility in the n-MOSFET case are provided in
Fig. 3.11a: albeit the shape of the two profiles is similar, the maximum value
at −40 ◦C (3.11a) is about four times greater than the one attained in the
simulation performed at 125 ◦C (3.11b).

Another important quantity of interest affected by temperature is the
threshold voltage. Using the Shichman-Hodges model, the following rela-
tionship can be derived for a n-channel transistor [22]:

d

dT
VT = −(2m− 1)

kb
q

[
ln

(√
NCNV

NA

)
+

3

2

]
+
m− 1

q

d

dT
Eg (3.2)

where

m = 1 +

√
εsiqNa/4ψB
Cox

(3.3)

and where ψB is the bulk potential. Recalling the explicit expression (1.73)
for Eg and (1.79) and (1.81) for the densities of states NC , NV , we can deduce
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Figure 3.11: n-MOSFET - electron mobility at different tempera-
tures

that to a temperature growth corresponds a threshold voltage decrease (it
is easy to verify that both terms in (3.2) are positive quantities), which is
in agreement with the output of our simulations. Moreover, a change in the
subthreshold slope occurs: in the hottest case (125 ◦C) the STS is significantly
less steep than the one associated with the simulations performed at lower
temperature, thus implying a raise of the leakage current and a degradation
in the transistor off-state performance.
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Figure 3.12: n-MOSFET temperature dependence analysis: com-
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3.5 Reverse Bias

Simulations conducted in reverse bias regime represent a real numerical chal-
lenge because of the contribution of the impact ionization generation term
that brings several difficulties, putting to the test the capability of the EAFE
framework.

In opposition to the forward bias case, minority carriers are not mainly
concentrated in the MOSFET channel but spread out in a much broader
region, due to the avalanche generation phenomenon (for example in an n-
channel MOSFET this happens in the so called drain end of the channel). In
order to solve the associated discretized continuity equation, the simplicial
partition considered must be much more refined towards the contact at which
the bias is applied. On the other hand, there is no need to add degrees of
freedom right next to the oxide layer, because no actual channel is present
and the current flow takes place in a wider portion of the substrate.
From a theoretical standpoint, provided that the Zikatanov condition (2.29)
is satisfied, we have the guarantee of the EAFE system matrix to be an
M-matrix (hence ensuring the non-negativity of the solution). In practice,
such condition is very unlikely to be verified for typical meshes employed
in a reverse bias condition. As a consequence, the computed solution can
present negative concentrations, that are not only unfeasible from a physical
point of view, but being propagated to the next iteration of the Gummel
map algorithm, may eventually cause the blow-up of the solution procedure.

The mesh employed for the n-MOSFETand p-MOSFET are illustrated in
Fig. 3.13: the first one is noticeably more refined around the drain contact,
while the second towards the source terminal. The doping is the same as in
the forward bias analysis (see Fig. 3.2a and Fig. 3.2b).

Computations are performed setting all of the contacts grounded except
the drain for the n-type transistor and the source for the p-type one. The
R/G term is calculated switching on all the models available, hence including
the band-to-band tunneling and impact ionization phenomena. As regards
mobility, both the scattering from ionized impurities and the carrier velocity
saturation effect are activated. The driving force (used in the Canali and
Van Overstraeten- De Man models) are calculated using the gradient of the
Quasi-Fermi potential.

The obtained results are quite aligned with the ones predicted by the
reference tool. With respect to the n-MOSFET case (Fig. 3.14a), we can
see how the two sets of current values match very well each other up until
a drain bias of about 2.5 V. Afer this value of the bias voltage, a significant
difference between the drain and source current is visible and the global cur-
rent balance is violated (i.e., Kirchhoff’s law does not hold). An inspection
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(a) n-MOSFET (b) p-MOSFET

Figure 3.13: Computational meshes for the reverse bias regime

VD [V] VG [V] R/G Models Mobility Models

0.0÷ 3.0 0.0
SRH, Auger, Band-to-Band, Masetti
Van Overstraeten - De Man Canali (QF)

Table 3.8: n-MOSFET reverse bias - simulation settings

VS [V] VG [V] R/G Models Mobility Models

0.0÷ 2.5 0.0
SRH, Auger, Band-to-Band, Masetti
Van Overstraeten - De Man Canali (QF)

Table 3.9: p-MOSFET reverse bias - simulation settings

of the electron density (Fig. 3.15) reveals the presence of zones with a nega-
tive concentration: such fact indicates the limit of the EAFE scheme, which
(w.r.t. the mesh employed here) is uncapable of providing an accurate result
as approaching the transistor breakdown.
The p-MOSFET case (Fig. 3.14b) is similar, but with some interesting dif-
ferences: until an applied potential of about 1 V, all currents rapidly grow
together and the main flow is from source to drain. From that point on, the
bulk current overcomes in magnitude the drain current, indicating that the
source current is now predominantly flowing out from the body contact. Af-
ter a bias voltage of 1.3 V all values settle on a plateau which extends up to
2.0 V, thereafter, the solution algorithm is not capable of converging (w.r.t.
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Figure 3.14: MOSFET in reverse bias: comparison between FEMOS
(lines) and Ref. [1](dots).
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Figure 3.15: MOSFET in reverse bias: electron density for different
drain biases.

the predefined tolerance), suggesting the occurrence of device breakdown.

For both devices, we have provided 3D snapshots of the impact ionization
phenomenon in Fig. 3.16 and Fig. 3.17, where a couple of different biases
have been selected for appreciating the high growth at which this quantity is
subjected. All of the other R/G phenomena assume values several orders of
magnitude lower, therefore making their contribution negligible in determin-
ing the conduction state of the transistor. In particular, almost no band-to
band tunneling occurs, because the electric field is not enough intense (i.e.,
no sufficient band bending) to make it happen.
It is worth noticing that the n-type case (Fig.3.16) exhibits a generation rate
which is confined in the drain region, while for p-type (Fig.3.17) both zones
surrounding the source and drain terminals are interested. The cause of
this discrepancy has its roots in the different paths that carriers take in the
two devices. As shown in Fig.3.18a, the current density in the n-MOSFET
flows in a relatively small region below the oxide layer, while in its p-channel
counterpart (Fig. 3.18b), streamlines spread throughout the whole substrate
due to the significantly more intense bulk current.
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Figure 3.16: n-MOSFET in reverse bias: impact ionization rates for
different drain biases.
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Figure 3.17: p-MOSFET in reverse bias: impact ionization rates for
different source biases.
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Chapter 4

Transient Drift-Diffusion
Model: Simulation Results

In this chapter, we present the simulation results obtained by the time de-
pendent Drift-Diffusion model. Computations have been performed using the
time discretization schemes illustrated in Sect. 2.4. The analysis is focused
on the n, p MOSFET and is subdivided in two sections: in the first one, the
forward bias regime has been analyzed studying the dynamic response in a
variety of scenarios, while in the second one the time dependent behaviour
in reverse bias conditions is addressed.

4.1 Forward Bias

In the following we consider the same n-channel and p-channel MOSFET
structures employed in Chapt. 3: Fig. 3.1 reports the description of the
mesh, while Fig. 3.2 illustrates the associated doping profiles.

For the sake of clarity, we briefly explain the common settings and method-
ology adopted in all of the time dependent simulations presented here. As
regards the semiconductor physics description, we compute carrier mobilities
taking into account the ionized impurities scattering and carrier velocity sat-
uration effects, while the R/G term is given by the Shockley-Read-Hall and
Auger mechanisms. The devices are supposed to be at a uniform tempera-
ture of 300 K.
The bulk contact is always assumed grounded, as well as either the source
in the n-MOSFET case or the drain terminal for the p-MOSFET. All the
transient simulations are obtained applying to a single contact a given pulse,
as shown in Fig. 4.1: the applied pulse is a piecewise linear polynomial (in
the time variable t) obtained by connecting an initial and a final value; the
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four involved parameters are defined as follows:

• V0, is the initial bias (i.e. at t = 0);

• V∞, is the target/final bias;

• tramp, needed to move from V0 to V∞;

• Tf , is the time duration of the simulation.

V∞

V0

Time [s]

Bias [V]

tramp Tf

Figure 4.1: A piecewise linear pulse profile used in the transient
contact

In order to prove the correctness of the implementation of the time dis-
cretization schemes, we have at first performed a few simulations to verify
that current at contacts match the ones obtained by solving the associated
stationary problems, when the simulation time is long enough. Both transis-
tors have been initially set in an on-state, with 0 V drain-to-source voltage
(i.e., all contacts are grounded except for the gate terminal), then, the proper
contact bias (drain for the n-type, source for the p-type) has been ramped
up to different target values in 1 s (see Tab. 4.1 and Tab. 4.2).

VG [V] VD,0 [V] VD,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

1.5 0.0
0.1

1 1× 102 BE, TRBDF20.2
0.5

Table 4.1: n-MOSFET transient forward bias - simulation settings
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VG [V] VS,0 [V] VS,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

−1.5 0.0
0.1

1 1× 102 BE, TRBDF20.2
0.5

Table 4.2: p-MOSFET transient forward bias - simulation settings

For the purpose of comparing the two time discretization schemes, each
simulation set-up has been run twice, one using the Backward Euler (BE)
and one with the TRBDF2 method. The simulation results showed in Fig.
4.2 clearly demonstrate how the computed currents at steady-state are in well
agreement with the expected value obtained with the stationary approach for
source and drain contacts.

We report the carrier densities obtained with the BE or TRBDF2 method
and those associated with the steady-state simulations in Fig. 4.3 for the n-
MOSFET and Fig. 4.4 for the p-MOSFET: the results are indistinguishable.
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Figure 4.2: Transient simulations in forward bias: comparison be-
tween asymptotic and stationary results in different bias conditions
and for different time discretization schemes.
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Figure 4.3: n-MOSFET transient
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Figure 4.4: p-MOSFET transient
simulations in forward bias: com-
parison between asymptotic and sta-
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We have pursued the transient analysis studying the device dynamic response
in further scenarios using only the BE method:

• gate step, starting from an off-state and a non zero drain-to-source
applied bias, the transistors are rapidly switched in the on-state;

• gate backward facing step, starting from an on-state and a non zero
drain-to-source applied bias, the transistors are rapidly switched off;

• drain/source step, starting from an on-state and a zero drain-to-
source applied bias, either the drain (n-MOSFET) or source (p-MOSFET)
potential is rapidly increased to a target value;

• drain/source backward facing step, starting from an on-state and
a non zero drain-to-source applied bias, either the drain (n-MOSFET)
or source (p-MOSFET) potential is rapidly decreased to zero.

The results are presented in Figs. 4.5–4.8 together with the associated
settings, which are summarized in Tabs. 4.3–4.10: the computed values are
always in good agreement with the outputs of the corresponding stationary
problems, except for the source/drain backward facing step (Fig. 4.8), where
both the drain and source currents tend to vanish but still have a higher
value than their steady counterpart.

It is interesting to notice the behaviour in the n-MOSFET in both the
gate switch on and off simulations: a discrepancy between source and drain
currents is present in the first case with the fastest ramp time (Fig. 4.6a),
while is less evident, but still present, in the second case (Fig. 4.5a). The
reason is related to the time needed for holes to flow in/out to/from the p-
substrate due to their mobility which is far lower than that of electrons. In
the p-MOSFET, the majority carriers in the substrate are electrons which,
thanks to their higher mobility, respond more rapidly to voltage variations.

From a computational perspective, we point out how the drain/source
switch off simulations are the more expensive: as shown in Fig. 4.8a-b, the
high number of timesteps required is evident.
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Figure 4.5: Gate step transient simulations: drain and source cur-
rents for different values of tramp

VD [V] VG,0 [V] VG,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

0.2 0.0 1.5
1× 10−3, 1× 10−4,

1 BE
1× 10−5, 1× 10−6

Table 4.3: n-MOSFET gate step - simulation settings

VS [V] VG,0 [V] VG,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

0.2 0.0 −1.5 1× 10−3, 1× 10−4,
1 BE

1× 10−5, 1× 10−6

Table 4.4: p-MOSFET gate step - simulations settings
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Figure 4.6: Gate backward facing step transient simulations: drain
and source currents for different values of tramp

VD [V] VG,0 [V] VG,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

0.2 0.0 1.5
1× 10−3, 1× 10−4,

1 BE
1× 10−5, 1× 10−6

Table 4.5: n-MOSFET gate backward step - simulation settings

VS [V] VG,0 [V] VG,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

0.2 −1.5 0.0
1× 10−3, 1× 10−4,

1 BE
1× 10−5, 1× 10−6

Table 4.6: p-MOSFET gate backward step - simulation settings
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Figure 4.7: Drain step transient simulations: drain and source cur-
rents for different values of tramp

VG [V] VD,0 [V] VD,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

1.5 0.0 0.2
1× 10−3, 1× 10−4,

1 BE
1× 10−5, 1× 10−6

Table 4.7: n-MOSFET drain step - simulation settings

VG [V] VS,0 [V] VS,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

−1.5 0.0 0.2
1× 10−3, 1× 10−4,

1 BE
1× 10−5, 1× 10−6

Table 4.8: p-MOSFET source step - simulation settings
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Figure 4.8: Drain backward facing step transient simulations: drain
and source currents for different values of tramp

VG [V] VD,0 [V] VD,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

1.5 0.2 0.0
1× 10−3, 1× 10−4,

1 BE
1× 10−5, 1× 10−6

Table 4.9: n-MOSFET drain backward step - simulation settings

VG [V] VS,0 [V] VS,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

−1.5 0.2 0.0
1× 10−3, 1× 10−4,

1 BE
1× 10−5, 1× 10−6

Table 4.10: p-MOSFET source backward step - simulation settings
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4.2 Reverse Bias

In order to perform a meaningful comparison in reverse bias conditions, the
mesh and doping profiles of the MOSFET structures are the same as in the
steady-state case (Sect. 3.5, Fig. 3.13 and Fig. 3.2). The considered physical
phenomena are the ionized impurity scattering and the carrier velocity satu-
ration, while the R/G term is computed by activating all of the implemented
models (see Tab. 4.11).

R/G Models Mobility Models Driving Force

SRH, Auger, Band-to-Band, Masetti Gradient of quasi
Van Overstraeten - De Man Canali Fermi potential

Table 4.11: Transient reverse bias - physical phenomena considered
for both MOSFETs

Simulations have been performed as follows: for both trasistors all con-
tacts are initially grounded, then the drain (n-MOSFET) or source (p-MOSFET)
bias has been raised to a target value. The choice of the time discretization
scheme has fallen upon the TRBDF2 method due to its higher convergence
rate. All of the temporal settings are summarized in Tab. 4.12 and Tab.
4.13.

Results for the n-MOSFET and p-MOSFET are provided in Fig. 4.9 and
Fig. 4.10, respectively: the agreement with the steady-state values is evident
once the transient is estinguished.

In Figs. 4.11–4.16 we report the asymptotic and stationary 3D represen-
tations of the impact ionization generation term, the electric field and the
minority carrier current densities for both devices: in all cases, the computed
profiles coincede without any appreciable difference.

VD,0 [V] VD,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

0.0
1.0 1.0× 10−3

1× 10−1 TRBDF21.5 1.5× 10−3

2.0 2.0× 10−3

Table 4.12: p-MOSFET transient reverse bias - simulation settings
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VS,0 [V] VS,∞ [V] tramp [s] Tf [s] Time Discr. Scheme

0.0
1.0 0.5× 10−3

1× 10−1 TRBDF21.5 0.75× 10−3

2.0 1.0× 10−3

Table 4.13: p-MOSFET transient reverse bias - simulation settings
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Figure 4.9: n-MOSFET transient simulations in reverse bias: com-
parison between asymptotic and stationary results for different values
of VD,∞. 95
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Figure 4.10: p-MOSFET transient simulations in reverse bias: com-
parison between asymptotic and stationary results for different values
of VS,∞. 96
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Figure 4.11: n-MOSFET transient simulations in reverse bias: com-
parison between asymptotic and stationary impact ionization gener-
ation terms at VD = 2.0 V
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Figure 4.12: p-MOSFET transient simulations in reverse bias: com-
parison between asymptotic and stationary impact ionization gener-
ation terms at VS = 1.0 V
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Figure 4.13: n-MOSFET transient simulations in reverse bias: com-
parison between asymptotic and stationary electric field profiles at
VD = 2.0 V
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Figure 4.14: p-MOSFET transient simulations in reverse bias: com-
parison between asymptotic and stationary electric field profiles at
VS = 1.0 V
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Figure 4.15: n-MOSFET transient simulations in reverse bias: com-
parison between asymptotic and stationary electron current densities
at VD = 2.0 V
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Figure 4.16: p-MOSFET transient simulations in reverse bias: com-
parison between asymptotic and stationary hole current densities at
VS = 1.0 V
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Chapter 5

Conclusions and Future Works

In this thesis we have dealt with the simulation of 3D semiconductor devices
by extending the FEMOS-MP computer code in order to improve perfo-
mance, flexibility and functionality of the dedicated modules. These coding
efforts have made it possible:

• to include models of new physical phenomena, such as the band-to-
band tunneling, the bandgap narrowing and the mobility degradation
induced by the electric field;

• to perform transient simulations using either the Backward Euler or
the TRBDF2 time discretization schemes;

• to perform simulations at different uniform temperatures.

The correctness of the implementation has been thoroughly tested in a
wide variety of scenarios, exhibiting a very good agreement with the reference
commercial software for stationary simulations and being self-consistent with
the steady-state results in the transient analysis.

Future activities will be devoted to the following objectives:

• the coupling of the Drift-Diffusion equation system with a proper ther-
mal model;

• the development of the doping profile setting with meshes generated
by Gmsh 1.

1http://gmsh.info
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