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Abstract

Nowadays, despite the constant technological growth of the last twenty years, Com-
putational Fluid Dynamics (CFD) problems represent a hard challenge for scientific
computing because of their large demand on computational resources. In fact, in the
context of aerodynamics optimization and design, CFD applications require to simulate
many different possible realizations of a system which can become prohibitive in terms
of computational and memory effort. These considerations have produced an intensive
development of reduced order methods to provide high-fidelity simulations via efficient
and low-dimensional models.

In this thesis we focus on an efficient and flexible technique, namely the Inverse
Distance Weighting (IDW). This strategy can be used to solve mesh motion problems
in a Fluid-Structure Interaction (FSI) framework.

IDW is an interpolation strategy which computes the displacement of the grid nodes
starting from the movement of some data points, called control points. The original for-
mulation of IDW uses as control points the nodes of the grid belonging to the interface
and requires assembling a matrix [Ns×Nc], whereNs is the number of values to be in-
terpolated andNc indicates the number of control points. Since the number of interface
nodes for a typical mesh motion problem can be very large (of the order of hundreds of
thousands), the system to solve assumes significantly high dimensions.

In order to reduce the computational and the memory load due to these huge dimen-
sions, we implement an ad hoc algorithm which performs a geometrical and a model
order reduction of the system: the former reduction is based on an iterative procedure
which selects some relevant control points among the initial ones, while the latter re-
duction is inspired by the Proper Orthogonal Decomposition (POD) strategy to exploit
the advantages of an Offline-Online splitting between ROM construction and evaluation
of the solution.

The implemented algorithm is validated on some examples, from benchmark cases
to more complex three dimensional configurations such as a wing or a hull.

All the reduction strategies developed are implemented using an efficient C++ ob-
ject oriented code and an open-source Finite Element library (libMesh), while the pro-
cessing of the grids is performed by the open-source visualization software Paraview.
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Sintesi

In questo lavoro di tesi abbiamo analizzato e sviluppato una tecnica di interpo-
lazione, nota in letteratura come Inverse Distance Weighting (IDW), utilizzata tipica-
mente nel contesto di interazione multifisica fluido-struttura come tecnica di parametriz-
zazione di forma, per risolvere problemi inerenti la deformazione della griglia di cal-
colo (mesh).

A partire da una deformazione della struttura, questa tecnica permette di studiare e
produrre lo spostamento della mesh, tipicamente quella relativa al fluido, attraverso una
interpolazione basata sulla media pesata delle distanze tra i nodi interni alla griglia e
alcuni punti di controllo preventivamente assegnati.

L’obiettivo del lavoro è stato quello di ridurre il carico computazionale e di memoria
legato all’implementazione della tecnica mediante una riduzione di tipo geometrico
sui parametri in gioco, nel nostro caso i punti di controllo, in vista di una riduzione
computazionale attraverso l’utilizzo di un metodo di ordine ridotto.

L’idea fondamentale nella realizzazione dell’intero processo di riduzione risiede,
prima di tutto, nella riduzione dei punti di controllo attraverso una logica standardiz-
zata che permetta di ottenere una distribuzione efficiente dei punti noti che, tipicamente,
giacciono sull’interfaccia tra i due sottodomini.

L’algoritmo di riduzione elaborato può essere ulteriormente inserito all’interno di un
processo che, servendosi della Proper Orthogonal Decomposition (POD), ha portato
alla costruzione di un metodo di ordine ridotto, permettendo, cosı̀, di risolvere rapida-
mente il problema e di abbatterne i costi computazionali. In questo modo, la soluzione
può essere ottenuta attraverso la combinazione di un insieme di soluzioni calcolate per
valori dei parametri assegnati. A valle dell’esecuzione della procedura implementata, il
numero necessario di queste soluzioni, indicate come funzioni di base, risulta decisa-
mente esiguo poichè l’energia del sistema può essere catturata in pochi modi che ne
descrivono in modo opportuno il comportamento.

Il vantaggio fondamentale fornito dall’utilizzo di un tale metodo risiede nella possi-
bilità di suddividere la risoluzione del problema in due fasi di calcolo ben distinte:

◦ Fase Offline: la fase più onerosa in cui lo sforzo computazionale è volto alla
costruzione dello spazio ridotto, ottenuto, a partire dai valori dei parametri asseg-
nati, mediante il calcolo delle funzioni di base.
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◦ Fase Online: la fase meno costosa nella quale, per ogni nuovo valore dei parametri,
viene calcolata molto rapidamente la soluzione attraverso una proiezione sullo
spazio ridotto precedentemente costruito.

Questa metodologia risulta essere di notevole utilità per l’ottenimento della soluzione
di processi in tempo reale, per esempio nel caso di problemi di ottimizzazione di forma,
per i quali è necessario ottenere la soluzione del sistema al variare, anche in modo sig-
nificativo, dei valori dei parametri.

In primo luogo, la tecnica IDW si serve dell’assemblaggio di una matrice all’interno
della quale vengono memorizzati, pesati mediante un parametro p, i reciproci delle dis-
tanze tra i nodi interni e i punti di controllo. La tecnica permette di calcolare il valore di
una qualsiasi grandezza fisica o geometrica, relativa ai problemi di interazione fluido-
struttura, a partire da valori assegnati della stessa grandezza nei punti di controllo. Nella
forma originale della tecnica questi ultimi risultano essere tutti i nodi appartenenti alla
mesh che giacciono sull’interfaccia.

Nel nostro caso, la strategia racchiusa nella IDW viene utilizzata per ricavare la
deformazione della griglia computazionale relativa al fluido, noti i valori di spostamento
dei punti di controllo. Il movimento dell’interfaccia, infatti, può essere ottenuto a partire
dal risultato del solutore strutturale, il quale fornisce la nuova posizione dei punti di
controllo e permette di ricavare l’ampiezza dello spostamento di tutti i restanti nodi del
reticolo.

È ben noto che la difficoltà principale nell’utilizzo di questa tecnica è data dall’elevato
numero di nodi che costituiscono tipicamente una griglia di calcolo di interesse aeronau-
tico e/o navale, per esempio. Non è irrealistico, infatti, considerare reticoli dell’ordine
di centinaia di migliaia di nodi per studi di tipo fluidodinamico.

Parte di questi nodi, come anticipato, assume il ruolo di punti di controllo con-
tribuendo all’assemblaggio di una matrice le cui dimensioni aumentano all’aumentare
del numero di punti di controllo. Il risultato della tecnica, inoltre, prevede l’utilizzo
di questa matrice in prodotti matrice-vettore che producono un carico computazionale
proibitivo per simulazioni in tempo reale o di ottimizzazione di forma, nonostante il
costante aumento della disponibilità di risorse computazionali a cui stiamo assistendo
negli ultimi anni.

Per le ragioni di cui sopra, ai fini di migliorare le prestazioni computazionali del
metodo, sono state implementate diverse procedure di riduzione che hanno prodotto
risultati soddisfacenti in termini di tempi di calcolo contenendo l’errore prodotto rispetto
alla formulazione standard della stessa tecnica IDW.

Le fasi di sviluppo hanno richiesto l’analisi di due aspetti fondamentali: la geome-
tria del reticolo e la modellistica del sistema. Per quel che concerne le caratteristiche
geometriche della mesh sono state proposte due procedure differenti:

• riduzione dei punti di controllo;
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• applicazione in cascata dimensionale.

L’algoritmo di riduzione del numero dei punti di controllo è stato implementato sec-
ondo una logica di eliminazione che prevede la definizione di aree circolari, lasciando
la possibilità all’utente di selezionarne il raggio R. A partire da uno qualsiasi dei punti
di controllo e tracciato un cerchio di raggio R centrato in esso, il processo elide iterati-
vamente tutti i punti che giacciono al suo interno, per poi selezionare un punto esterno
e ripetere la procedura di eliminazione.

L’esigenza di conoscere lo spostamento dei nodi di bordo che non appartengono
all’interfaccia e la necessità di permettere all’utente di spostare un qualsiasi nodo della
mesh, hanno prodotto lo sviluppo di una procedura di esecuzione in cascata dimension-
ale.

Con il termine cascata dimensionale si intende un’applicazione che prevede, in
primo luogo, lo studio dello spostamento dei nodi di vertice e di spigolo della griglia di
calcolo, per poi calcolare la nuova posizione dei nodi appartenenti alle facce del bordo
e quindi, una volta ottenuto l’intero bordo deformato, utilizzare i valori di spostamento
dei punti di controllo per il calcolo della soluzione nei nodi interni.

Sebbene i risultati, frutto dello sviluppo di tipo geometrico, siano già alquanto
promettenti (si arriva a considerare circa il 40% dei punti di controllo rispetto alla formu-
lazione IDW originale), si è deciso di potenziare ulteriormente le prestazioni della tec-
nica annettendo una riduzione di modello. Sfruttando interamente la potenzialità della
suddivisione tra fase offline e fase online, la modellistica ha ridotto ancor più i tempi
di calcolo, con un errore sullo spostamento dei nodi interni (relativo alla formulazione
standard) che non ha mai superato pochi punti percentuali. Il processo di riduzione
è passato attraverso la costruzione di un metodo ispirato alla Proper Orthogonal De-
composition. In modo simile alla POD, infatti, nella fase offline è stata assemblata una
matrice di funzioni di forma, cioè di soluzioni per differenti spostamenti dell’interfaccia,
che ha permesso di ricavare uno spazio ridotto di soluzione. È mediante una proiezione
su questo spazio che, nella fase online, è stato possibile ottenere la soluzione per valori
arbitrari dei parametri.

A valle di queste implementazioni sono stati presentati e confrontati i risultati ot-
tenuti per differenti applicazioni, con particolare contestualizzazione nell’ambito aero-
nautico e navale.

All’aumentare della complessità delle griglie di riferimento, i vantaggi della tec-
nica hanno prodotto effetti molto significativi sulla riduzione dei costi computazionali
e della dimensione delle matrici assemblate, permettendo, cosı̀, di ampliare l’utilizzo
della tecnica per problemi di ottimizzazione di forma e calcoli in tempo reale che, come
avevamo anticipato, in precedenza risultavano davvero proibitivi.

Ad oggi la tecnica continua ad essere oggetto di sviluppo al fine di renderla sem-
pre più performante nell’ambito della Fluidodinamica Computazionale (CFD) e della
Aeroservoelasticità Computazionale (CA) anche, e non solo, mediante i metodi di or-
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dine ridotto (vedi, ad esempio, POD, Proper Generalized Decomposition (PGD) e Re-
duced Basis Methods (RBM) per un approfondimento sui quali rimandiamo a [24]).
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Chapter 1

Introduction

In this Master Thesis we want to present a work, realized in the framework of col-
laboration between mathLab team of SISSA (International School of Advanced Studies)
in Trieste and MOX laboratory at Politecnico di Milano, about the development of an
efficient and flexible technique used for mesh motion applications in Fluid-Structure
Interaction (FSI) multi-physics problems.

The main idea is to exploit a well-known shape representation technique called In-
verse Distance Weighting (IDW) [77], in order to find the displacement of each node
starting from the position of some control points, and to reduce its computational load
and memory effort in order to efficiently represent the deformation of the fluid grid
following a structural sub-domain movement.

Figure 1.1: Example of an aeronautical mesh.
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1.1 Motivations
In several engineering fields, the interest for FSI problems has known a significant

growth in the last twenty years, particularly for biomedical, aerospace and maritime
industry, but not limited to.

First of all, it is important to say that, tipically, we deal with a fluid-structure in-
teraction problem when the effect of fluid dynamics on elastic bodies and vice-versa is
of primary interest. The solution of this kind of problems is necessary to several engi-
neering applications: aero-elasticity [75], turbomachinery design, modelling of the car-
diovascular system [56], high performance boat dynamics [52, 51], etc. Fluid-Structure
interaction phenomena require an unsteady computation of the dynamics of different
physical domains (i.e. multiphysics) and their coupling with moving boundary condi-
tions and meshes. This kind of simulations starts from a mesh generation to enter in
a loop of computations divided in two parts: the structural solver and the fluid solver.
The link between these two parts is the so-called interface, the only object that allows
to transfer physical information (stresses, pressure, displacement).

Generally, any variation in one or both the two parts produces a displacement that
has to be represented in the algorithm by an efficient implementation of the mesh mo-
tion computation. The algorithm for a generic FSI simulation process is represented in
Figure 1.2.

We can formulate the problem as follows: denoting by Ω̂F ⊂ R3 and Ω̂S ⊂ R3 the
initial domain configuration for the fluid and the structure, respectively, thanks to the
solution of the structural sub-problem, we obtain the displacement field ς ∈ DS leading
to a structural deformed domain ΩS:

ς : Ω̂S −→ ΩS (1.1)

with DS := H1(Ω̂S) the space of kinematically admissible structural displacements.
At this point, once we update the structural configuration, we also need to deform the
fluid subdomain accordingly, before advancing the FSI simulation in time. Therefore,
indicating byDF := H1(Ω̂F ) the space of kinematically admissible fluid displacements,
such a problem could be set as:

find the fluid displacement field ζ : Ω̂F → ΩF , with ζ ∈ DF , that guarantees
no compenetrations at the interfaces between fluid and structure domains,

that is ΓF = ΓS, where ΓF and ΓS indicate the fluid and structure interfaces

in the deformed configuration, respectively, and ΩF is the new fluid configuration.
(1.2)
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Figure 1.2: Scheme of a FSI simulation process.

Figure 1.3: Schematic visualization of the condition to be satisfied at the fluid-structure
interface.

In other words, extracted ς from the structural solver, the problem becomes: find ζ
employing a shape parametrization technique.

Before introducing the shape parametrization techniques suited for these problems,
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for the sake of clarity, we summarize here some important theoretical and numerical
notions inherent to discretizations and energy conservation for FSI problems.

To solve a FSI problem, we need to deal with different discretization schemes used
for the two domains: fluid and structure.

The main idea relies on the energy conservation principle valid at the interface: the
virtual work δW performed by fluid loads and by structural forces has to be preserved
by the coupling scheme [12, 56]. Thus, it is possible to write:

δW = δςT fS = δζT fF , (1.3)

where δς and δζ indicate nodal values of virtual displacements for structure and fluid
domains, while fS and fF represent the structural and fluid loads.

We can express a relation between the two displacements by introducing a transfer
matrix H as follows:

ζ = Hς. (1.4)

If we assume that the virtual work is null for each arbitrary δς , the relation written
above becomes:

δζ = H δς, (1.5)

so:

fS = HT fF . (1.6)

Thus, it is possible to obtain the so-called conservative coupling approach, relying
on the energy conservation at the interface, when a transfer matrix H exists.

In order to find the coupling matrix H, a very wide range of methods can be used,
the simplest Nearest Neighbor Interpolation (NNI) strategy [79], Weighted Residual
Methods (WRM) [22] and Radial Basis Functions (RBF) [12, 17], for example.

Among the strategies cited above, Radial Basis Functions are surely the most used
for problems involving the data-transfer across non-matching discretization schemes.

RBF is a well-known and tested method that allows to approximate both multivariate
functions and scattered data by a real-valued function whose values depend only on the
distance from the origin. Thus, a radial basis function is a function φ that satisfies the
following property:

φ(x) = φ(‖x‖), (1.7)

or, alternatively, on the distance from another point c, called center, such that:
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φ(x, c) = φ(‖x− c‖), (1.8)

where the norm considered is, usually, the Euclidean distance.
RBF strategy has several advantages: versatility due to the applicability in almost

any dimension, little restrictions on the way the data are prescribed, high-accurancy of
the results, wide range of applications in different fields like aero-elasticity [75], sail
boat design [52, 51, 29], haemodynamics [56, 7], etc.

Another goal to achieve when we deal with FSI problems is to solve the governing
equations for both fluid and structure moving domains under deformation.

The mesh motion part of FSI problems can be summarized in the following defini-
tion:

to update the fluid mesh configuration on the basis of the motion computed
for the nodes lying on the interface Γ.

(1.9)

Due to the multiphysics interaction between the fluid and the structure, in fact, dur-
ing the FSI simulation the computational grids will move, resulting in geometrically
deformed boundaries (see Figure 1.4). The displacement of the interface nodes is con-
sidered to be given as solution of the structural sub-problem.

Figure 1.4: Example of mesh deformation: starting configuration (black) and final de-
formed mesh (blue)

In the framework of mesh motion strategies for FSI problem, it is necessary to de-
scribe a particular class of techniques that involve the solution of a partial differential
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equation given on the fluid-structure interface and defined on the fluid mesh region.
Among these strategies are worth of note the most commonly adopted ones : Laplacian
[36] and Solid Body Rotation Stress (SBRS) [30]. The former is given by the solution
of the following Laplace equation:

∇ · (γ∇u) = 0. (1.10)

It allows to assign large displacement values close to the moving boundaries, while
small ones are assigned at larger distances. The vector u represents the displacement
of the grid nodes, while γ indicates the diffusivity coefficient, in order to control the
magnitude of the nodal displacement for best performances. The diffusivity coefficient
has to be inversely proportional to the Euclidean norm of the distance from the deformed
boundary. So, a common choice is :

γ =
1

‖x‖α
, (1.11)

where α is usually chosen to be equal to two to guarantee a quadratic decrease.
SBRS, instead, uses the linear elasticity equation:

∇ · σ = f , (1.12)

with σ denoting the stress tensor and f the body forces. Equation 1.12 can be rearranged
using the elastic constitutive law and including the Lamé constants λ and µ defined as
follows:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (1.13)

where E is the Young’s modulus and ν is the Poisson’s ratio, while the kinematic law
between the strain and displacement is provided by:

ε =
1

2
(∇u +∇uT +∇uT · ∇u). (1.14)

Particular attention has to be reserved to the term (∇uT ·∇u) that allows to include
rigid rotations of the mesh.

Finally, the solid body rotation stress equation becomes:

∇ · [µ(∇u +∇uT )− λ∇ · u ] = 0. (1.15)
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It is possible to show that the role played by the diffusivity coefficient in the Lapla-
cian method is here played by the Lamé constants for which a tuning operation is nec-
essary.

Also in this context, it is possible to include the RBF strategy. In fact, the RBF
interpolation procedure is based on the adoption of a set of interpolation sites, or control
points, whose displacement values are known, in order to get the ones related to the inner
fluid mesh. A first choice of the interpolation sites can fall on all interface boundary
nodes. Nevertheless, in order to reduce memory and computational costs, it is suitable to
construct an automated and standardized selection process for the control point number
and locations.

To achieve a reduction of the costs, first of all, we need to introduce some shape
parametrization strategies used for FSI and mesh motion problems [52, 68, 31, 32, 8].

They rely on mapping a reference domain, Ω ⊂ R3, through suitable parametric
maps T (x,µ), x ∈ Ω, based on a small set of control points, whose possible displace-
ments µ ∈ R3 induce the shape deformations. In this way, thanks to control point
displacements, it is possible to represent efficiently a family of admissible shape config-
urations. Thus, their goal is to reduce the complexity in the description of the geometry
of solid objects, as well as their deformations, such that we can represent them through
low dimensional spaces, instead of using geometrical properties themself, always com-
patibly with, and adaptable to, various numerical analysis issues in the FSI framework
and the dynamic mesh handling.

Shape parametrization strategies like Free-Form Deformation, Radial Basis Func-
tions and Inverse Distance Weighting, give the possibility to describe complex structural
configurations, reducing significantly the complexity of the geometrical model. In this
way, we may achieve a great reduction in the computational effort, within the updates
of fluid or structural mesh configuration, since to impose shape deformations we have
to move only few control points. Moreover, other ideas of cost reduction are applica-
ble to shape parametrization techniques, for example the ones proposed by Forti and
Romanelli [31, 68], where the global structural displacement has been sub-divided into
two parts: a small deformative component and a large rigid one. Known, in fact, the
possibility to correctly identify the entity of rigid translations and/or rotations as output
of the structural solver, the shape parametrization technique can be reduced only to the
part subject to deformation.

To apply Free-Form Deformation (FFD) [76, 42, 8, 7] to mesh motion problems
for FSI, means not to operate directly on the geometrical properties. In fact, the eval-
uation of local and/or global shape deformations is obtained using a parametric map
TFFD(·,µ) on a reference and parameter-independent domain configuration Ω, with a
small set of control points playing the role of the parameters µ. In this way, the shape
deformation is computable perturbing (displacing) the control points.

Radial Basis Functions (RBF) shape parametrization technique [28, 17] is still
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based on the use of a set of parameters, the so-called control points, as for FFD. Nev-
ertheless, RBF is also interpolatory: the function values computed at the control points
are exactly the ones of the function to be interpolated. This is due to the definition of a
map,M(x) : Rn → Rn, which is a sum of basis functions φ, centered at each control
point XC , that allows to recover the exact function values at least over the interpolation
sites. The map introduced is defined as:

M(X) = p(X) +
Nc∑
i=1

γi φ(‖ X−XCi
‖), (1.16)

where p(X) is a low-degree polynomial term, γi are the weights, corresponding to the
a-priori selected Nc control points and associated with the basis functions, while φ(‖
X − XCi

‖) is a radial basis function based on the Euclidean distance between the
control point position XCi

and X. This method allows the possibility of trasferring data
across non-matching grids and facing the dynamic mesh handling.

The Inverse Distance Weighting (IDW) technique [77, 83, 84, 23] is an average
moving interpolation strategy. Its main idea lies in the computation of all the interpolated
values by averaging the weighted sum of the distances between data points and grid
nodes. The influence of a data point on each interpolated value is inversely proportional
to the distance of the former from the mesh nodes. In this way, moving away from the
considered data points, they affect progressively less the computed values.

This point-to-point interpolation technique is characterized by a particular flexibil-
ity in handling arbitrary mesh topologies. Furthermore, it combines the ideas and the
advantages proposed above in the Laplacian method (mean of diffusivity coefficient and
its relation with the Euclidean distance) and with the RBF strategy (control points and
interpolation concepts), remaining robust in case of large deformations.

For these reasons, we will use IDW interpolation technique for our analysis and
we will try to make it more efficient in terms of computational and memory effort, by
implementing an ad hoc algorithm of geometric and model order reduction.

In the next chapters, after a brief background summary, a detailed presentation of
the IDW technique, explanations about geometric and model reduction strategies and
finally some applications to different FSI cases are presented.

1.2 Focus

All the interest in FSI problems is principally justified by the reduction of the sep-
aration between rigid and elastic modes of aircrafts and ships, with a consequent re-
quirement of an integrated environment where, from the very beginning of the design
process, both static and dynamic problems have to be taken into account. The main
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drawback of this field of study is the expensive cost of tests and simulations. So, es-
pecially in the aerospace field, everyday needs of complex numerical simulations of
physical phenomena are more and more increasing.

Thanks to the availability of more powerful computing resources and improved
numerical algorithms, everyday techniques are faster and more accurate, with results
unimaginable years ago. This trend allows to pursue the adoption of high-fidelity math-
ematical models and numerical methods such as Computational Structural Dynamics
(CSD) for structural sub-systems and Computational Fluid Dynamics (CFD) for aero-
dynamic sub-systems (see Figure 1.5), until to the more sophisticated Computational
Aeroelasticity.

Figure 1.5: Examples of CSD (left) and CFD (right) post-processing visualizations. 1

From almost twenty years, CFD is massive used in the aeronautical industry and its
use is now extended from simplified cases up to the most complex configurations and
geometrical shapes (see Figure 1.6).

Since the mid-1990s, efforts are underway to fully incorporate the existing body
of CFD knowledge into methods and routines used in aircraft design. Thus, numeri-
cal simulation has become a principal element in the aircraft design process, because
of the flexibility it provides for rapid and comparatively inexpensive evaluation of al-
ternative designs and because it can be integrated in a simulation environment treating
concurrently both multidisciplinary analysis and optimization.

Nowadays, in fact, with the increasing fidelity of mathematical modelling and nu-
merical methods within the fruitful research field of CFD, the role of the wind tunnel
is changing: it is moving from being a design tool to becoming a tool to validate the
designs obtained through the use of CFD, thus producing significant savings in terms of

1Realized with MATLAB (R2015b) FEATool toolbox.
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time and budget. CFD, in fact, through its three-dimensional volumetric results can sig-
nificantly help to understand the flow physics at very detailed levels, information that,
often, are expensive and not easy to obtain from wind tunnel tests.

Figure 1.6: Post-processing visualization example of aeronautical CFD application. 2

Also in the motor-sport industry, as Formula 1 (Figure 1.7), CFD is used to optimize
the shape of a given part of the car in order to reduce drag and increment the down-
force or to study the heat exchange between the brake-disks and the air flowing around
them.

In the maritime industry, instead, the most common simulations today are carried
out to evaluate static and dynamic properties of a given hull shape in flat or wavy sea by
simulating the wave pattern around the boat and the forces generated by the fluid (Figure
1.8). CFD and numerical simulations play a fundamental role for yacht designers since
they allow to obtain accurate prediction of the kinematic and dynamic properties and
a quantitative comparison between different designs. These tools become crucial for
racing boats, like in the America’s Cup sailing competitions, where a gain of a few
percent of performance makes the difference between a winning design and an average
one.

The desire and, at the same time, the necessity to analyze more detailed fluid dy-
namic phenomena increases everyday the number of cases considered and consequently
the amount of CFD simulations.

2Available online at www.dlr.de/DesktopDefault.aspx/tabid-4551/84_
read-9166/gallery-1/gallery_read-Image.1.3497 (03/04/2016).
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Figure 1.7: Example of fluid flow visualization around a Formula 1 car obtained by
CFD application. 3

Figure 1.8: Example of CFD visualization of fluid flow around a hull. 4

Despite the constant increase in available computer power and in improvement of
numerical methods and algorithms, some problems and/or applications can still be very
demanding. This effort is even more substantial whenever we are interested in repeated

3Available online at www.bitmat.it/blog/news/17536 (03/04/2016).
4Available online at www.leadingedge.it/fluidodinamica.html (03/04/2016).
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solution of the fluid equations such as in flow control or optimal design problems (many-
query contexts), or in real-time flow visualization and output evaluation [71].

These problems represent a remarkable challenge to classical numerical approxima-
tions techniques and require huge computational efforts. For this reason, we need to
rely on suitable Reduced Order Methods (ROMs) – that can reduce both the amount
of CPU time and storage capacity – in order to enhance the computational efficiency.

During the last three decades, intense efforts in theoretical foundation, numerical
investigation and methodological improvements of reduced order models have allowed
to tackle many problems arising in fluid dynamics with different classes of methods
(look at [13, 24, 37, 74] for a general overview on reduction methods).

Today, the construction of a reduced order method is crucial to obtain results with
an acceptable accuracy depending on a more and more ambitious approximation degree
with a reduced computational cost.

The general idea behind ROMs is the reconstruction of the approximate solution by
the combination of solutions of the full-order (high-fidelity) problem for some parame-
ter values, properly selected.

Starting from the assumption that the behaviour of a system can be well described by
a small number of dominant modes, it is possible to split the numerical approximation in
two stages: in the former, we solve the full-order problem for some selected parameter
values to compute the reduced space of basis solutions (offline stage); then, in the latter
phase, we find the solution for new instances of the parameter values performing a very
inexpensive reduced-order simulation (online stage). The expression of the resulting
reduced solution is a linear combination of the basis solutions and is computed, for
instance, through a Galerkin projection onto this reduced space.

In this work, we describe and use a very popular variant of the reduced basis method
(RBM) according to which the basis used to build the reduced order model are selected
via the Proper Orthogonal Decomposition (POD). The main idea of POD method is
that the solution of a problem can be obtained by a linear combination of well-chosen
solutions for specific choices of the parameters (the control points positions in our case).
In particular this technique reduce the dimensionality of a system by trasforming the
original unknowns into new variables – called POD modes or principal components –
such that the first few modes retain most of the energy of the system.

POD was introduced in several contexts such as turbolence by Lumley [14], fluid
dynamics applied to optimal control by Ravindran [66] and blade optimization by Kun-
ish et al. [44, 45] and Aubry et al. [4, 5]. Since, in the past, RBM did not fully exploit
the Offline-Online procedure, much effort has been devoted to the efficient splitting of
these two steps in the last decade.

Most of the RBM applications deal with physical or engineering parameters, such
as viscosity, transport velocity, Peclet number, Biot number, Young modulus or thermal
conductivity. There are, instead, just a few applications dealing with simple geometri-
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cal parameters, such as length or thickness that characterize the problem ([63]). Hence,
the application to complex geometry parametrization is quite innovative and very re-
cent. Among these applications, the employment for shape optimization of racing car
components by Günther [33], the treatment of potential flows by Rozza [69] and the
coupling of isogeometric analysis and ROMs by Salmoiraghi et al. [73] achieve signifi-
cant importance.

Thus, the main idea behind ROM techniques, specially for FSI problems, is to re-
duce as most as possible the computational effort. Shape parametrization represents an
important task for ROM to guarantee efficient computation, versatility of the approach
and automatic geometrical representation by:

i) reducing the complexity in the description of the shapes and their deformations,

ii) representing geometrical properties by means of low dimensional spaces (control
points),

iii) reducing the computational effort by simplifying the deformation procedure and
its management.

The goals introduced are valid also for shape optimization (e.g., in industrial and
bioengineering applications), shape reconstruction (e.g., in biomedicine) and, in gen-
eral, for problems with multiphysics interfaces which require multiple iterative evalua-
tions in real-time and many query contexts.

For these reasons, the use of shape parametrization techniques like FFD, RBF and
IDW has become mandatory in order to deal with more involved problems such as 3D
complex applications [43, 52, 58]. The shape parametrization schemes have allowed to
use reduced order methods also in the geometrical parametric space [32], not only in
time and physics, and to realize optimization of complex industrial and bioengineering
shapes.

In this thesis we present the advantages of the use of IDW interpolation technique in
combination with ROMs, describing its characteristics and some possible improvements
in order to reduce computational and memory effort, by preserving an acceptable quality
of results, according to the goals sought by CFD.

1.3 Thesis Structure
The thesis has been organized as follows.
In Chapter 1 we have described the context where the cited technique is developed.

First of all, we have presented Fluid-Structure Interaction problems and cited some of
the common strategies adopted to parametrize and solve them. In these procedures,
in particular concerning mesh motion aspects, shape parametrization techniques play a
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very important role, i.e., the reduction of the system parameters. For this reason, the
discussion has been moved to the real focus of this work: the shape parametrization
techniques, their advantages, bottlenecks and possible developments for mesh motion
problems. Furthermore, known the increasing reliability and recent massive use of Com-
putational Fluid Dynamics and Computational Structure Dynamics for aeronautical and
naval applications, we have briefly described the evolution and the new challenges of
these numerical methods for which mesh motion problems represent an important load
on the performances. Thus, among the requirements to operate in a CFD or a CSD
framework, the most important one is the cheapness in terms of CPU time and memory
effort for which, techniques like the common RBF, FFD and IDW have to be improved
considerably. Looking to the conclusions of some previous works [68, 31, 32, 8] and
starting from them, we have decided to improve the computational performances of
Inverse Distance Weighting, a very used shape parametrization strategy, in terms of
flexibility and simplicity of implementation.

In Chapter 2 we introduce the standard formulation of IDW and its advantages
and drawbacks. In order to use IDW technique for mesh displacement computation,
the classic formulation is extended to a matrix form where the system unknowns are
the displacement vectors of mesh internal nodes. Following this transformation, we
present some IDW applications starting from the simplest square example up to the
more complex 3D aeronautical and naval cases. As anticipated, the results in terms of
CPU time and matrix dimensions suggest a radical improvement.

Since the parameters for IDW technique are represented by some known data points
(control points) lying typically on the interface, in Chapter 3 we realize an ad hoc
algorithm to reduce the number of these parameters defining a corresponding smart
distribution based on concentric annuli of user-defined width. Moreover, to solve prob-
lems related to the violation of interpenetration constraint and to increase the number
of admissible interface displacements, we introduce a ‘dimensional cascade’ procedure
which provides for the IDW application in succession of steps. It starts with a 1D de-
formation (vertices and edges), then a 2D displacement of the boundary nodes (faces),
to finally compute the 3D (internal) final mesh configuration. This new process, namely
the Reduced Inverse Distance Weighting (RIDW), is validated on the same examples
used for the standard formulation in the previous chapter. The results show that RIDW
strategy allows to considerably reduce the memory storage and, almost for the most
complex cases, the CPU time with respect to the ones required by the standard IDW
technique.

In Chapter 4, we further reduce the computational time of the RIDW application.
In order to achieve this goal, we exploit the advantages of Reduced Order Methods and
their process of splitting between Offline and Online phases. Inspired by Proper Orthog-
onal Decomposition, in the expensive but one-time Offline phase, our algorithm collects
a sampling of RIDW solutions for several given values of control point displacements
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and extract the solution from the reduced space by a Galerkin projection. In this way, in
the Online stage, it is possible to quickly find the solution for an arbitrary assigned in-
terface movement by a simple projection on the reduced space of the solution. Also for
this new development, the validation is realized on the same examples analyzed in the
previous chapters with very promising results. The CPU time decreases of two orders
of magnitude for 3D complex applications.

The innovative reduction process implemented in this thesis has obtained great re-
sults in terms of memory effort reduction and solution velocity, two crucial aspects of
CFD applications.

Our geometric tool of reduction has allowed to work with a very small number of
parameters containing the error in the displacement computation. Furthermore, the user
can decide the solution accuracy degree by the width of annuli of reduction and the type
of interface displacement.

The construction of a new Reduced Order Method for RIDW strategy has consider-
ably accelerated mesh motion solution computation so that RIDW technique can be used
also in real-time and optimization problems, where it is required a repeated evaluation
of the solution for different values of parameters.

This work is a first attempt to improve IDW technique. First of all, a validation of
the benefits of this strategy can be furnished via a CFD example with a complete mesh
motion and fluid dynamics analysis. Many additional ideas can be investigated for the
realization of a smart standard procedure for the control points choice and reduction by
considering, for example, physical and geometrical aspects like main stream direction
or the gradient of the displacement. Furthermore, the advent of new numerical methods,
e.g., Proper Generalized Decomposition (PGD), can represent elements of inspiration
also for the construction of other Reduced Order Methods and to introduce performance
improvements of the IDW and RIDW strategies.
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Chapter 2

Standard Inverse Distance Weighting

This Chapter introduces the shape parametrization technique chosen to deal with
the fluid-structure interface as well as the mesh motion problems, namely the Inverse
Distance Weighting (IDW) approach.

First of all, we define a shape parametrization map to be a parametric function
T (x;µ) from a reference domain Ω ⊂ Rd, with d = 2, 3 to a deformed one Ωo ⊂ Rd,
by displacing a small set of control points, the so-called parameters µ ∈ Rd. These dis-
placements induce the shape deformations Ωo(µ) = T (Ω;µ). In this way, it is possible
to efficiently represent a large family of admissible shape configurations [50].

A first simple solution leads us to identify the parametric map T (x;µ) via an inter-
polation method. In fact, assuming that a finite number N of couples (xi, di) are given,
where xi is the position of the data point Di and di is the corresponding data value, we
look for an interpolation function d = f(x) to assign a value to any location x in the
space. This function has to interpolate the data di of the points xi, (i.e., f(xi) = di), and
meet the user expectation about the phenomenon under investigation. Furthermore, the
function should be accurate and, at the same time, suitable for computer applications at
a reasonable computational cost, all features typical of IDW interpolation strategy.

2.1 An introduction to Inverse Distance Weighting

Several methods to solve interpolation problems have been developed in the last
years for rectangular and triangular grids [12, 17, 35, 53, 79]. The current exact in-
terpolation methods are of two kinds: global or local ones. The former use a global
function to interpolate data. However, often the complexity to find a global function
which interpolates exactly all the data becomes unmanageable and not viable. The lat-
ter, in contrast, are based on a suitably-defined collection of local functions which match
appropriately at their extremities. Inverse Distance Weighting (IDW) technique belongs
to the latter class and it is constructed so that the sub-domain for each local function is
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automatically defined and the function is globally continuous differentiable.
The IDW strategy has been used for the first time for two-dimensional interpolation

problems in [77] and later extended to three-dimensional applications in [29]. It is based
on the construction of a surface related to a weighted average of the values at the data
points, and the weighting is a function of the distances to the points. Thus, today IDW
has extended its applications in three-dimensional cases, representing one of the most
common used techniques to solve mesh motion and FSI problems [23, 53, 84, 83].

The simplest form of IDW interpolation was proposed by Shepard [77] for the in-
terpolation of a scalar function u : Ω → R. In his original formulation, the value of u
at any point x in the plane was a weighted average of Nc values at the data points xk.
Thus, givenNc control points located at xk, with k = 1, 2, ...,Nc, the IDW interpolation
of a set of samples uk = u(xk) is given by:

û(x) =
Nc∑
k=1

w(x,xk)
Nc∑
j=1

w(x,xj)

uk, (2.1)

where w(x,xi) represents the weighting function:

w(x,xi) =‖ x− xi ‖−p, (2.2)

being ‖ x − xi ‖≥ 0 the Euclidean distance between x and the data point xi, and p an
integer number.

It is clear that the terms w(x,xi) can be easily collected in a matrix. Consequently
the IDW technique can be expressed in a matrix formulation:

u(xs) =
Nc∑
k=1

IDW (s, k)∑Nc

j=1 IDW (s, j)
uk ∀s = 1, ...,Ns (2.3)

where Ns represents the number of data to be interpolated and IDW represents the
[Ns ×Nc] matrix, whose generic (s, k)-component is given by:

IDW (s, k) = w(xs,xk) (2.4)

The matrix IDW allows to save once and for all the weighted distances between the
control points and the interpolation nodes with respect to the undeformed configuration.

Among the several benefits of IDW, the first one to be underlined is the easiness
of implementation. The strategy, in fact, can be simply expressed by the algebraic
formulation (2.3), thus requiring just to assemble the matrix IDW that collects all
the distances between control and internal points and compute matrix-vector products.
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Nevertheless, considering that the standard formulation of IDW technique suggests to
select as control points all the nodes belonging to the boundaries of the mesh, the
IDW matrix can assumes considerable dimensions, particularly for complex meshes
(i.e., aeronautical and naval ones). This consideration makes the control point selection
a crucial phase of the IDW technique.

Another important advantage of IDW is the possibility of dealing withN -dimensional
spaces. In fact, in order to compute the solution, the IDW technique uses the distance be-
tween points without any restrictions about the dimensionality of the space they belong
to. The interpolated value depends on a ratio between norms of vectors representing
distances. In this way, the dimensionality of the space of the points does not influence
in any way the solution.

For the same reason, IDW allows to work with any type of grid, resulting a winning
strategy in the context of mesh motion problems.

On the other hand we have, within the original Shepard formulation, low perfor-
mances due to high costs of the interpolation (which are of the order of O(Nc)). A too
large weight is assigned also to distant nodes by considering, with reference to (2.1),Nc
as the number of data points. When the number of data points is large, the calculation
of u becomes proportionately longer. Eventually, the method becomes inefficient and
impractical. Furthermore, only the distance from the data points xi to x, and not the di-
rection, is considered. Therefore, the following two configurations of collinear points,
for example, would yield identical interpolated values at P:

(a) D1−−−−−−−−D2−−−−−−−−P−−−−−−−−−−−−−−−−−−D3;

(b) D1−−−−−−−−−−−−−−−−−−P−−−−−−−−D2−−−−−−−−D3.

We expect that the value at P in the configuration (a) should be closer to the value
at D3 than in configuration (b), and, conversely, for the value at D1, because the pres-
ence of an intermediate data point should be expected to screen the effect of the most
distant point. On the other hand, the zero directional derivatives obtained at every data
point Di represent an arbitrary and undesiderable constraint on the interpolated surface
and the computational error can become significant in the neighborhood of points Di.
For these reasons, the standard IDW technique can be modified by the introduction of
some correction terms that take into account the direction and the computational error
as proposed in [77].

A first observation about (2.3) and (2.4) suggests the similarity between the IDW
strategy and Laplacian method. In both cases, in fact, the influence of data point dis-
placement on the interior points decreases as the distance between them increases.
Moreover, for IDW technique, the Euclidean norm is weighted by a number, p, that
has the same meaning as α in the definition of the diffusivity coefficient in (1.11). In
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general, the value of p is, often but not always, equal to 2 to guarantee a quadratic de-
creasing dependence between control and interior points. However, it is interesting to
study the effects of varying p, from a geometrical point of view, since the selected value
produces considerable variations on the displacement of the interior nodes.

In particulars, the value of p plays a very important role, influencing the constraint of
no-compenetration between fluid and structure. Thus, the choice of this value is funda-
mental to avoid that some nodes of the fluid grid, for example, locate over the interface
as a result of the IDW computation. This is the case of large value of displacement for a
single control point. A fine tuning process for p, as the one realized for α in (1.11) and
Lamé constants in (1.13), has to be performed to prevent these phenomena.

In Figure 2.1 we show the results obtained for a simple mono-dimensional case for
different values of p. We highlight the geometrical effects due to these variations on the
interior node displacements computed by IDW technique.

We observe that, as the value of p increases, the curves obtained are less and less
sharp. Accordingly to the role of p, this trend shows that, if we increase the value of
p, we weight less and less the influence of the furthest data points. The negative power
in the definition (2.2) denotes, in fact, an inversely proportional relation between the
Euclidean distance ‖ x− xi ‖ and the weighting function w(x,xi).

In order to further understand the role played by p, it is possible, for example, to
compute the internal node displacement of a rod, imposing one of its natural vibra-
tion modes at the boundaries. The undeformed configuration of the mesh considered is
provided in Figure 2.2.

By computing the internal node displacement of a three-dimensional rod, while im-
posing to the boundary faces the motion described by the function:

y(x) =
cos(x)

2
, (2.5)

we observe that using a value for p equal to 2 the result is the one represented in Figure
2.3, where it is evident that the internal nodes across the boundaries (in the red ellipsis),
locating out of the domain. Since this configuration violates the no-compenetration
constraint, we perform a tuning of the value of p, according to which the adopted value
is equal to 4.

Indeed, contrary to the case for p = 2, by choosing p = 4, the motion of the nodes
closer to the boundary affects more effectively the internal nodes displacement, reducing
the effect of the null displacement associated with the (fixed) more distant nodes. The
result for p = 4 is represented in Figure 2.4.
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

(e) p = 5 (f) p = 6

Figure 2.1: Displacements obtained for different values of p
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Figure 2.2: Undeformed 3D rod mesh.

Figure 2.3: No-compenetration constraint violation for p value equal to 2.

The example just seen has driven us to choose the value for p equal to 4 for all the
considered applications. This value, in fact, turnes out to be correct for all the cases
analysed, avoiding the violation of the no-compenetration constraint.

As anticipated, a fundamental aspect is represented by the control points selection,
in order to represent, in the best possible way, the deformation of the interface.

In fact, the control points have a crucial role in preserving the mesh quality. In
the IDW computation, we have to consider that not only the nodes moved are impor-
tant, but also the ones with null displacement. These ones, in fact, are included in the
computation of the interior node displacement by the denominator of (2.1). Since the
denominator is characterized by the sum of the distances between the node located at x
and all the control points xk. The choice of the Nc control point positions, in addition
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Figure 2.4: Rod mesh deformed configuration computed by IDW assuming p equal to
4.

to the optimal description of interface displacement, has to take into account the parts
that are not moved in order to respect the constraints imposed by the fixed boundaries.

In this way, a good choice for the control point position allows to respect the con-
strain about the admissible displacements and to obtain smoother solutions.

In this chapter we comply with the common use of the IDW technique, considering
as control points all the nodes belonging to the mesh boundaries. In the next chapter
we will explain a reduction procedure of the number of the control points, in order to
limit the memory storage and the computational effort required by the standard IDW
formulation.

2.2 IDW for engineering applications
After introducing about the principal characteristics and potentialities of IDW, we

discuss its important role in engineering fields such as mesh motion and shape opti-
mization problems.

For mesh motion cases the IDW algorithm is used to obtain the displacement of
mesh nodes starting from the motion of some control points via an average moving
interpolation. The main idea of this strategy lies in the possibility of estimating the
local trends by analyzing a moving average of nearby data points, also highly variable.
The IDW technique, therefore, computes a value for each grid node by the average
of the weighted sum of all the surrounding data point distances. Due to the inverse
proportionality, all the data points lying progressively further from the considered grid
node influence less than the closer ones. This kind of point-to-point interpolation allows
to analyze arbitrary mesh topologies and remains robust in case of large deformations,
leading to a very useful flexibility in the applications.

It can be estimated that, in large-scale three-dimensional applications, the computa-
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tional costs of the mesh motion are dominated by the system solution step. Therefore, in
order to significantly reduce the computational costs of mesh deformation it is necessary
to focus on reducing the computational cost for solving the system of Ns equations. In
this case, differently from the other techniques, IDW provides a good advantage lead-
ing to an algebraic expression for the internal point displacements as function of the
boundary deformation (e.g., where the boundary can be the structural interface). In fact,
for general geometries, IDW results automatically in a global parametrization that can
handle translations and rotations.

In many fields of engineering applications (aero-elasticity, turbomachinery design,
modelling of cardiovascular system, high performance boat dynamics, etc.) the IDW
strategy plays an important role as well as in shape optimization applications. Several
works in literature use this technique to obtain optimized mesh and shape for aerody-
namic profiles [83] and catamaran geometry [29].

The main advantage of IDW technique is the ability of solving problems through a
‘small’ number of parameters. Although rarely, it is possible to use some parameters
like camber, thickness, width, etc. to obtain and test several configurations and sizes
for the same shape of the object under investigation, especially in the first phases of a
project. In this way, it is possible to optimize the shape of wings, hulls and other fluid
dynamic and aerodynamic objects.

In order to obtain the optimized shape in an FSI framework, the new mesh con-
figuration will be provided, change after change, to the fluid solver for the physical
variables computation as long as the optimum fluid dynamic shape is not found. The
shapes achievable as a result of a deformation are of widely different kinds. An example
can be the achievement of a ‘segment of wing’ based on lozenge profile (see the frontal
face in Figure 2.6) from a rod with a square base (Figure 2.5).

We will present in the following sections several applications of the standard IDW
to investigate the effects in terms of internal node displacements.

We have decided to use both two-dimensional and three-dimensional cases, using
triangular and tetrahedral meshes, respectively. Some of these will be compared with
innovative and reduced IDW implementations, described in Chapter 3, to observe the
differences in terms of CPU time and the variations on the internal node displacements.

We have realized all the algorithms in C++ language, using the open source library
libMesh [38] which provided some tools and functions for the mesh management, par-
ticularly for the nodes identification. Furthermore, we have decided to use Paraview
[2], a widely used visualization software, in the post-processing phase to observe and
compare the initial configurations to the ones obtained at the end of the mesh motion
computed by IDW. In this way we are able to detect graphically the displacement of
the internal nodes and verify the control nodes movement. As anticipated, for this kind
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Figure 2.5: Undeformed mesh of a rod used to apply IDW technique for a shape opti-
mization.

Figure 2.6: 3D wing with a lozenge profile.

of implementation we have used all the boundary nodes as control points. This is a
choice as simple as delicate in terms of the memory load for the IDW matrix allocation
that, in this case, can demand large memory space.
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2.2.1 Deformation of a square
First of all we consider a very simple case: the square (0, π)2 in (x,y)-plane with

deformable upper boundary. We impose to the upper boundary a movement based on
the following function:

y =
sin(x)

2
. (2.6)

The triangular mesh in Figure 2.7 represents the reference configuration, while Fig-
ure 2.8 shows the deformed mesh.

Figure 2.7: Square undeformed mesh.

The properties of the mesh and the results obtained are summarized in Table 2.1.

In Figure 2.8 we observe the representation of the internal node displacements. As
expected, the internal nodes far enough from the control points are not affected by the
boundary motion. We can also observe the new position of all internal nodes on the
deformed configuration. In particular, the internal nodes close to the boundary have
followed the movement of the boundary nodes with an amplitude of displacement de-
creasing as the distance increases. Particularly, in the middle of the moved boundary,
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Figure 2.8: IDW computed square mesh deformation following the upper boundary
motion in (2.6).

Length of square side π m
Number of elements 450

Number of nodes 256
Number of control points (boundary nodes) 60

Number of internal nodes 196
CPU Time 0.0972 s

Table 2.1: Quantitative information related to the deformation of the square in Figure
2.7.

where the amplitude of the displacement is greater, the internal nodes have been shifted
more intensely.

The results, summarized in Table 2.1, show a relative small CPU time value (0.0972
s) because of the coarse discretization (just 256 nodes).

Unfortunately, the same result is very hard to obtain for finer meshes. Geometrically,
more complex shapes require finer discretizations to avoid substantial losses of domain
data with the consequent demand of longer CPU time as well as the assembling of a
larger IDW matrix.
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2.2.2 An airfoil
As second test case, we consider an hypothetical flow domain around a 2D NACA0012

airfoil, a symmetric and very used aerodynamic profile [1]. The choice of the profile
shape is completely indifferent for the IDW procedure due to the versatility of this inter-
polation technique. In fact, our choice has been driven only by its simplicity and wide
use in aerodynamics.

NACA0012 is a symmetric NACA aerodynamic profile typically used for wings,
fan, propeller and helicopter blade. Its shape is, like others 4-digit profiles, represented
by the following function:

y(x, t, c) = 5tc
[
0.2969

√
x

c
−0.1260

(x
c

)
−0.3516

(x
c

)2
+0.2843

(x
c

)3
−0.1015

(x
c

)4]
,

(2.7)

where:

• c is the chord length;

• x is the abscissa position along the chord;

• t is the maximum thickness expressed as percent fraction of the chord (0.12 in our
case);

• y(x, t, c) is the half of profile thickness in x.

Mirroring the curve resulting from the function in (2.7) with respect to the axis x,
we obtain the geometrical shape represented in Figure 2.9.

Figure 2.9: NACA0012 profile.

We use the profile in Figure 2.9 to build a rectangular flow domain characterized by
a hole with the NACA profile shape. In this way, we have the possibility to investigate
the displacement of the internal nodes of the fluid mesh, simulating a profile movement
or a size variation by modifying the hole. As for the previous case, we provide the two
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Figure 2.10: Fluid mesh around a NACA0012 profile with null angle of attack.

configurations, the undeformed one (Figure 2.10) and the deformed one yielded by the
IDW application (Figure 2.11). Table 2.2 summarizes the quantitative results.

Mesh dimensions 6 m ×4 m
NACA0012 chord length 1.01 m

Number of elements 7798
Number of nodes 4049

Number of control points (boundary nodes) 300
Number of internal nodes 3749

CPU Time 2.0257 s

Table 2.2: Quantitative information related to the deformation of the mesh in Figure
2.10.

In particular, the deformed configuration is obtained via a rotation around axis z of
NACA0012 profile of an angle equal to π/5 with respect to origin, fixed in the profile
leading edge. This is a typical case of aerodynamics study, where the flow grid varia-
tions for different angle of attack of a certain profile are investigated. In order to analyze
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Figure 2.11: IDW computed fluid mesh deformation around a NACA0012 with angle
of attack equal to π/5.

the consequence of a finer mesh on the required time, although the two grids are of com-
pletely different shape, we can appreciate the difference on the CPU time respect to the
mesh in Figure 2.7. The CPU time is considerably increased due to the larger num-
ber of grid nodes (4049 versus 256). This increase underlines the direct proportionality
between the number of values to be interpolated and the required computational effort.

Moreover, it is possible to observe that, also the nodes lying ahead to the profile
leading edge are affected by the boundary movement.

2.2.3 A 2D mesh motion around a moving rectangular structure

The following test case mimics a study operated in the wind tunnel.
As for the applications previously described, if we want to investigate the flow grid

node motion when the structure deforms, we need to create a mesh around it and repro-
duce its movement by considering its boundary as an interface, to observe the resulting
motion of the internal nodes.

We fix a wing segment or, more simply, a cantilever beam to the wind tunnel left
wall. In the 2D case, the analysis about internal node displacement is performed on
a plane (two-dimensional mesh). It is possible to have a more realistic view in the
next three-dimensional test case. In a 3D space, in fact, the object is reproduced in its

48



complete shape and, consequently, the extraction of information depends on the position
of the plane we want to project the deformed mesh on.

Also in this case, Figures 2.12 and 2.13 reproduce the undeformed configuration and
the one resulting after the motion.

Figure 2.12: Undeformed 2D fluid mesh around a cantilever beam.

The properties of the triangular mesh used in this case are listed in Table 2.3.

Mesh dimensions 6π m ×16 m
Rectangular hole dimensions 2π m ×1 m

Number of elements 1360
Number of nodes 761

Number of control points (boundary nodes) 160
Number of internal nodes 601

CPU Time 0.255 s

Table 2.3: Quantitative information related to the fluid mesh motion around the can-
tilever beam in Figure 2.12.
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Figure 2.13: IDW computed 2D fluid mesh deformation following the motion of the
beam.

Also for this application, the CPU time is quite low (0.255 s), due to the relative
coarse grid composed of 761 nodes only. It is very important to see how all the internal
nodes around the moved boundary are displaced alongside the direction of the motion,
thus conserving a good mesh quality and avoiding stretched triangular elements. Ac-
cordingly to the discussion in Section 2.1, the nodes far enough from the displaced
boundary are not affected by the motion. We remark that, since all the boundary nodes
are considered as control points, the boundary nodes that are not displaced are fixed
in their position due to the null displacement imposed to them in the algorithm. Any-
way, they are influencing the internal node movement through the denominator of (2.1)
where their distance from any internal points is considered with the same weight of the
moved control points.

2.2.4 A 3D mesh motion around a deformed NACA0012-based wing

We are going to present a three-dimensional case, starting from the three-dimensional
extension of the previously considered 2D configuration.

We have applied the same kind of displacement as in the previous section on a
parallelepiped holed. The shape of the hole reproduces a wing, supposed clamped to
the left at the wall of a test chamber in a wind tunnel. Imaging this scenario, we keep,
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also in this case, fixed the six parallelepiped external faces while displacing the top,
bottom and right faces of the wing. Figures 2.14 and 2.15 show the 3D shape described
above.

Figure 2.14: Undeformed 3D fluid mesh around a NACA0012-based wing.

In this case, the mesh is composed by tetrahedral elements and characterized by the
values in Table 2.4.

Mesh dimensions 10 m ×5 m ×4π m
Wing longitudinal dimension 2π m

NACA0012 profile chord length 1.01 m
Number of elements 169598

Number of nodes 36036
Number of control points (boundary nodes) 14126

Number of internal nodes 21910
CPU Time 446.485 s

Table 2.4: Quantitative information about the 3D fluid mesh represented in Figure 2.14.

The results in Figures 2.14 and 2.15 and listed in Table 2.4 denote the complex
increase in terms of shape representation and discretization. The number of nodes is
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Figure 2.15: IDW computed fluid mesh deformation following the motion of the
NACA0012-based wing.

clearly grown (36036 nodes) and consequently the CPU time (446 seconds), emphasiz-
ing the inadequacy of the standard IDW strategy for applications to real-time problems.

The discretization of a 3D shape and the generation of a 3D mesh grid require cer-
tainly an important computational effort with an evident effect on the number of vari-
ables that we want to limit.

2.2.5 A naval application

So far we have essentially presented typical aerodynamic configurations used for
CFD study of wings. To corroborate the versatility of IDW technique, we present a test
case related to a different field, the naval framework.

It is possible to apply IDW to fluid grid inherent to naval studies, as test tank appli-
cations or reproductions of hull conditions in the water. Under the assumption of ideal
conditions, for the purpose of grid node displacement computation, it is not fundamental
to know the physical properties of the fluid, independently by its nature (air or water).
As a result of this consideration, we have operated the IDW displacement computation
on the internal nodes of a flat top fluid grid around a hull with simple geometrical char-
acteristics. The starting undeformed fluid grid and the deformed one are shown in the
Figures 2.16 and 2.17, respectively.
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Figure 2.16: 3D undeformed fluid mesh around a hull.

Figure 2.17: IDW computed 3D fluid mesh deformation following the 5o rotation of the
hull.

We have operated a rotation of the hull respect to the z axis of an angle equal to−5o,
thus obtaining the result in Figure 2.17 with the numerical results listed in Table 2.5.

Also for this 3D naval case, the results summarized in Table 2.5 denote an exces-
sive CPU time (almost 20 seconds), which makes prohibitive the use of standard IDW
technique for applications where a repeated computation of the solution (real-time and
shape optimization problems, for example) is required.
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Mesh dimensions 50 m ×25 m ×10 m
Hull length 2.50 m

Number of elements 30265
Number of nodes 7186

Number of control points (boundary nodes) 3864
Number of internal nodes 3322

CPU Time 19.955 s

Table 2.5: Quantitative information about the 3D fluid mesh showed in Figure 2.16.

Looking to the deformed three-dimensional mesh in Figure 2.17, we observe that
just the boundary nodes belonging to the hull interface are displaced, producing a reduc-
tion of the mesh quality for the elements close to the top fluid boundary. The structural
solver, in fact, will provide the displacement of nodes belonging only to the structure,
ignoring the new position of nodes of the fluid boundaries neighboring (in this case the
upper face of fluid mesh). Moreover, since the overlap is localized to the plane of the
top face of the mesh, its visualization turn out to be difficult to understand by Figure
2.17 and impossible to extract by observing the phenomenon from different points of
view.

This represents a result as unacceptable as difficult to correct analytically. In fact, it
is very hard to know a priori the movement to impose to the boundary nodes belonging
to the upper face of the fluid mesh.

From this consideration it follows the idea of decomposing the process of motion of
the grid in three steps, computing primarily the displacement of the not moved boundary
nodes as a function of the displaced ones in 1D and 2D (thus analyzing vertices, edges
and faces) and then switching to the internal node displacement computation. Thus, all
these steps require an IDW application, accordingly to an ad hoc algorithm that will be
detailed in Section 3.2.

2.2.6 Structural mesh motion

In all the previous cases, we have applied the IDW interpolation technique to com-
pute the displacement of the internal nodes of a fluid grid. However, nothing prevents
to apply IDW to typical structural domains, always considering that no assumption is
made about the physical properties of the material used to realize the structure.

Same results of those obtained for fluid grids, in fact, can be obtained for several
shapes of structures: hulls, wing, etc.

For the sake of clarity, we report here the results obtained for a wing of the same
shape of the one used in Figure 2.14, imposing to it a movement similar to the one
applied in the previous case, via the function:
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y(z) = 0.01(z)2. (2.8)

Figure 2.18 and 2.19 show the initially undeformed mesh and the corresponding
deformed one.

Figure 2.18: Undeformed mesh for a 3D wing based on NACA0012 profile.

Figure 2.19: IDW computed mesh for a deformed 3D NACA0012-based wing.
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2.3 IDW and possible extensions
Nowadays, a number of more advanced IDW formulations have been developed to

improve on the limitations of the standard IDW interpolation. For example, spatially
non-uniform p parameter distributions based on data density have been used in adaptive
IDW [53] and through a Fourier integral representation [9]. Some applications pro-
pose also the using of Genetic Algorithm to optimize IDW in order to find the optimal
parameter values for the IDW function [23]

We want to underline here that, since IDW is an Extremum Conserving (EC) inter-
polation method, an EC-IDW mesh deformation method can be constructed by applying
IDW interpolation directly to the location of the boundary nodes and at internal mesh
points. This is, however, only applicable to translations and not to rotations. For a more
practical EC-IDW formulation, please refer to [21].

Another possibility to solve the problem is to separate the ‘large’ translation and
rotation contributions from the ‘small’ deformations. It is important to remark here that
the deformations classified as large and small represent the rigid and elastic components
of the displacement, respectively, since the former involves a perturbation of the whole
structural domain, while, the latter, generally leads to localized shape deformations.

This kind of approach derives from the idea that, to solve efficiently mesh motion
problems, we should know the entity of both the two (rigid and deformative) displace-
ment components. Indeed, the structure would be subject to both deformations and rigid
movements due to the effect of the fluid forces acting on the structural external surfaces.
Thus, next goal is to set up a methodology, in the next chapter, to identify both rigid
translation and rotations, while, for the recovery of the deformative component, it will
be employed the shape parametrization technique introduced here. In fact, the motion
of the fluid mesh, when considering free-body movements, can be known a priori (i.e.,
consider the case of imposed oscillations of an airfoil, aileron deflections, etc.) or it can
be the output returned by the structural sub-system. In the next chapter we will discuss
this new approach by focusing on the possibility of knowing the rigid displacement of
the fluid mesh by the output of the structural solver.

To summarize, we have studied the results of applying the IDW technique on several
fluid and structural meshes for different boundaries and interface displacements. We
have also underlined the effects on internal node displacements due to the selected value
of p. We said that IDW strategy, as RBF, can use as control points all the nodes lying
on the interface and boundaries, but we added that this kind of choice produces a very
large computational cost in the extraction of the value of the interior node displacement.

We have highlighted the influence of the number of nodes on the CPU time and
the memory storage by assembling the [Ns × Nc] IDW matrix. Thus, the goal is to
obtain a strategic and reduced distribution of N̂c control points with N̂c � Nc. Finally
we have noticed that the results obtained are not so satisfactory for CFD uses due to
the long CPU time and the excessive memory effort. For this reason, we are going to
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present some important innovations and improvements in order to optimize the standard
IDW interpolation technique and to extend its usage to CFD applications.
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Chapter 3

Geometrical reduction for IDW

In this chapter we overcome some of the limitations that characterize the standard
IDW strategy proposed in Chapter 2, within its applications to the mesh motion prob-
lems. In particular, the first issue to be faced is the choice of the control points, i.e., their
number and location. As seen in Chapter 2, the distribution of the control points has a
large impact on the accuracy and on the computational costs of the mesh motion proce-
dure. We show how it is possible to standardize the procedure, leading to a reduction of
the memory costs too. In order to improve the standard IDW approach, a wide range
of strategies is presented in the literature [31, 77]. Basically, the goal in the FSI frame-
work is to establish a procedure to automatically choose a reduced set of control points
in order to represent both the initial shape configuration and its deformation during the
fluid-structure interaction process. Moreover, another important issue to be taken into
account when dealing with FSI problems, is related to the possibility of studying the
multiphysics interaction between fluid and structure when the latter consists of a rigid
body. In fact, during the simulation process the structure can be not only deformed,
but, it can be subject also to rigid translations and/or rotations. Overall, to estimate
the entity of such a movement can be a possible solution in order to treat correctly the
mesh motion problem and to be able to update the fluid mesh according to the structure
deformation and rigid behaviour.

3.1 RIDW: Reduced Inverse Distance Weighting

In the previous chapter we have observed that the number of control points plays a
very important role in the mesh motion computation via IDW. In fact, as it is evident
in the applications previously considered, the CPU time increases with the number of
control points. However, since all boundary nodes are selected as control points, the
user has not chance to act on the method in order to decrease the computational cost.
Thus, in this section we propose a reduced version of the IDW technique to automate
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the selection of the most relevant control points. We exploit, here, the simple example
of the square domain in Section 2.2.1, observing how the CPU time changes with an
increasing number of nodes, namely of control points, that coincide with the boundary
nodes. Obviously, diminishing the number of grid nodes, the shape representation may
suffer of a not optimal discretization producing a possibly significant loss of information
about movement and displacement, depending on the required accuracy. Assuming to
use a mesh with 5 elements along both the directions (see Figure 3.1), for a sinusoidal
motion of the upper boundary as in 2.2.1, the resulting CPU time demanded by the
standard IDW is equal to 0.0624 s.

Figure 3.1: Square with upper boundary deformed dicretized by 5 elements for side.

Using the same square but with 10 (Figure 3.2) and 15 (Figure 3.3) elements for
each side, the CPU time increases to 0.0814 s and 0.09723 s, respectively.

The most expensive part of the IDW technique, stringly related to the number of
control points, is represented by the memory allocation for the IDW matrix. It is
a [Nc × Ns] matrix that can be of very large dimensions when Nc and Ns increase
considerably.

In agreement with the previous considerations, to cut computational and, in par-
ticular, memory costs, it is possible to set a strategy in order to reduce the number
of the control points. However, a particular attention in the selection of these points
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Figure 3.2: Square with upper boundary deformed dicretized by 10 elements for side.

Figure 3.3: Square with upper boundary deformed dicretized by 15 elements for side.

is required to avoid an important loss of information which can produce unacceptable
computational errors.
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To reduce the number of the control points, we have implemented an ad hoc algo-
rithm which implements the reduction procedure proposed by Shepard [77], and used in
some subsequent works (e.g., [31]). In particular, we build a subset Îc of control points,
such that Îc ⊂ Ic, where Ic denotes the original set of all the control points.

Each control point x̂k ∈ Îc satisfies the following relation:

‖ x− x̂ ‖≤ R (3.1)

where R is the user-defined radius of a sphere of influence adopted to improve the
performances of the standard method, and x represents the position of each point con-
sidered.

However, using this relation in case of large displacements for some control points,
it is possible to overweight the displacement of the closest control points and neglect the
information about the boundary limits, up to locating the internal nodes over the bound-
ary ones. This means to violate the no-compenetration constraint, with the consequence
of producing an unacceptable mesh motion similar to the one observed in the previous
chapter for low values of p (see Figure 2.3).

Thus, to preserve the boundary information, we have decided to retain each control
point movement while using just some of them for the internal mesh displacement.

The technique presented here, which we name Reduced Inverse Distance Weight-
ing (RIDW), selects the control points to be considered for the internal displacement
computation with the idea of reducing their number while preserving a uniform distri-
bution of them on the grid. For this reason, we have revisited the idea proposed by
Shepard by employing the same relation and by using as reference the distance between
two neighboring control points. Thus, we evaluate each distance between theNc control
points and, starting from a randomly chosen control point, we erase from the global set
of control points the ones that lie inside a circle of radius R around the selected one, in
order to identify the subset Îc ⊂ Ic.

The algorithm consists of the following two phases: initialisation and selection.
Given a user defined radius R and an empty set Îc, the algorithm can be summarized via
the following steps.

RIDW algorithm

Initialisation phase

1) Choose randomly the node P ∈ Ic; Îc → Îc ∪ {P};

2) Erase all the points P̃ ∈ Ic belonging to the circle of radius R centered at P ;

3) Define n sets αi (i = 1, · · · , n) which collect the nodes belonging to concentric
annuli of thickness 0.8R, always centered at P ;
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Figure 3.4: Visualization of the first phase of RIDW algorithm for 1000 points randomly
distributed on the square (0, 10)2.

Figure 3.4 provides an example of this first phase for n = 10.

Selection phase

1) Define the sets of nodes β = α1 and γ = ∅;

2) Initialise k = 1;

3) do

{

do
{
◦ β = {all points P̄ belonging to αk and to the annulus centered in P

with internal radius Ri = R and external radius Re = 1.3R};
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◦ γ = αk \ β;
◦ Choose P ∈ β and Îc → Îc ∪ {P};
◦ β → β \ {all points P̃ belonging to β and to the circle of radius R

centered in P};
◦ γ → γ \ {all points P̃ belonging to γ and to the circle of radius R

centered in P};
◦ αk → αk \ {all points P̃ belonging to αk and to the circle of radius R

centered in P};
◦ if exists αk+1 → αk+1\{all points P̃ belonging to αk+1 and to the circle

of radius R centered in P};
◦ if exists αk+2 → αk+2\{all points P̃ belonging to αk+2 and to the circle

of radius R centered in P};
} while (β 6= ∅ ∧ γ 6= ∅);
k = k + 1;

} while (k 6= i+ 1);

In the Figures 3.5, 3.6 and 3.7 we provide a visualization of the first steps of the the
RIDW second phase.

The procedure described above allows to loop just on the grid nodes that play the role
of control points and which lie on some, not all, external annuli at every step. In fact,
depending on the specific radius R, we can take into account only the annuli erasable
control points belong to. In this way we reduce the computational effort required for a
process that has to loop on all the remaining points, at every reduction step. Continuing
in the selection process, we jump, step by step, around and gradually farther from the
first data point selected. This method produces a control point distribution quite uni-
form, conserving the most of information about the motion of data points and reducing
considerably their number.

For the sake of completeness, we show in Figures 3.8 and 3.9 the starting distribution
of points the RIDW process is applied to and the resulting reduced set, respectively. The
starting configuration is characterized by 1000 randomly distributed points on the square
(0, 10)2.
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Figure 3.5: Second control point selected and its areas of erasing and reordering.

Figure 3.9 shows a considerable reduced distribution of control points almost uni-
form, clearly depending on the radius R selected. More interesting configurations will
be provided for more complex applications in the following sections.

We underline that the deformation of the data points is totally conserved. Further-
more, at the end of the reduction process the new RIDW matrix has only N̂c columns,
with N̂c equal to the resulting number of control points.

The most important role for the application of the RIDW algorithm is played by the
radius R.

Moreover, it is important to consider that the discretization of each part of the bound-
ary can be generally different from the others. As a consequence, it is advisable a diver-
sification of the radius value along boundary so that, a priori, the user has to select as
many values ofR as the number of parts the boundary is divided in. For example, a cube
is composed by a boundary divided into six parts (the six faces). Then it is necessary to
select six values for R to execute the reduction process.

Certainly, the choice of these values not can be random. Depending on the accuracy
required for the internal node displacement, the user can properly choose the values for
R. The higher the value ofR, the larger the expected computational error on the internal
node displacement. In fact, when the value of the radius increases, the circle of erasing
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Figure 3.6: Third control point selected and its areas of erasing and reordering.

becomes larger. Thus, less and less control points are taken into account for the internal
node displacements with the consequence of a discrete increasing of the computational
error.

Obviously, the RIDW technique can be applied to meshes of any spatial dimension.
Following this consideration, we will present at the end of this chapter several applica-
tions for different spatial dimensions, as we have done in the previous chapter for the
standard IDW approach.

3.2 An IDW application in dimensional cascade

As anticipated in Chapter 2 (see Figure 2.17), it is very difficult to solve mesh mo-
tion problems where only the displacement of the fluid-structure interface is assigned
and the displacement of the other boundaries of fluid mesh is unknown. With the pre-
vious implementation of the IDW technique it is possible to impose a displacement to
the boundary nodes as a function of the interface motion. Nevertheless, if there is a
structural object immersed in the fluid domain and the structure solver provides us the
new position only of the interface nodes, it becomes our prerogative to move the other
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Figure 3.7: Fourth control point selected and its areas of erasing and reordering.

fluid mesh boundary nodes according to the movement of the interface. However, it is
not always simple to obtain an analytical function that describes the movement of the
other boundary nodes.

From this difficulty, we have the necessity to compute the overall displacement of
the fluid mesh boundary nodes, following the movement of the structure immersed in
the fluid domain. We have found a solution to this issue by the implementation of the
Dimensional Cascade IDW (DC-IDW).

The idea is to use IDW interpolation technique to compute at first the movement of
the boundary nodes of the fluid mesh which do not belong to the interface in function of
the nodes of the interface. Then, the process can move to the computation of the internal
node displacement depending on the position of all the boundary nodes that, now, are
correctly moved.

For example, let us suppose to move several nodes belonging to the external edges
and faces of the mesh as in Figure 3.10.
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Figure 3.8: Starting random distribution of 1000 points on the square (0, 10)2

The DC-IDW strategy is divided in to three phases.

◦ First phase: 1D analysis of the evolution of each boundary edge.

In this first phase the DC-IDW process computes the displacement of the
boundary nodes belonging to each edge via IDW technique. Vertices and
the originally moved nodes belonging to each edge play the role of control
points, while the other nodes lying on the selected edge are the ‘internal’
(slave) nodes.
In Figure 3.11 the configuration obtained by IDW application to each edge
is shown.

◦ Second phase: 2D analysis of the evolution of each boundary face.

Starting from the configuration obtained after the first phase of DC-IDW
procedure, it is possible to move to the update of the position of the nodes
belonging to boundary faces. In this case, all the nodes lying on the edges of
the considered face and the originally moved nodes belonging to the same
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Figure 3.9: Distribution of the control points selected by RIDW process

face are selected as control points, while the other nodes of the selected face
play the role of slave nodes.
At the end of this second phase, the position of each node on the boundary
faces is updated in agreement with the displacement initially imposed, as
shown in Figure 3.12.

◦ Third phase: 3D displacement computation of the internal nodes of the mesh.

All the boundary nodes of the mesh are correctly displaced now. In this
last DC-IDW phase the standard IDW technique, or eventually the RIDW
formulation, can be applied. The control points are all the boundary nodes
or possibly the RIDW selected ones, while all the internal nodes of the mesh
play the role of the slave nodes.
An internal view of the resulting configuration is represented in Figure 3.13

For the sake of completeness, we show the result obtained with the DC-IDW for the
challenging case of the hull described in the previous chapter. The deformed configura-
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(a) Three-dimensional view

(b) Orthogonal projection

Figure 3.10: The starting configuration in which the only boundary nodes displaced are
the ones selected by the user.

tion obtained with a standard implementation of IDW is provided in Figure 2.17, while
the new configuration obtained via DC-IDW is shown in Figure 3.14.

Now, all the boundary nodes of the upper face of the fluid mesh have been moved
following the motion of the hull walls.
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(a) Three-dimensional view

(b) Orthogonal projection

Figure 3.11: The configuration obtained after the first phase of the DC-IDW application.

DC-IDW process allows also the user to impose a given displacement to any node
belonging to the boundary mesh and to compute the resulting configuration not only for
the internal nodes, but also for all the boundary nodes. In this way the scope can be
considerably extended and the IDW technique may become an important resource for
several kinds of studies.
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(a) Three-dimensional view

(b) Orthogonal projection

Figure 3.12: The updated boundary nodes position after the second phase of the DC-
IDW application.

3.3 RIDW: applications and comparisons

In this last section, we repeat some of the applications presented in the previous
chapter applying the RIDW technique, to analyse the advantages and the drawbacks of
the new procedure.

Notice that, in all the following applications, just in the last phase of the DC-IDW
strategy, in addition to the control points selected by RIDW, we will consider all the
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(a) Three-dimensional view

(b) Orthogonal projection

Figure 3.13: Internal view of the mesh nodes displaced at the end of the DC-IDW
application.

vertices and, in particular, for three-dimensional applications we add to the reduced set
of control points, all the nodes belonging to the edges of the boundary. The reduced
distribution is preserved on the faces.

We have done this choice to preserve the information about the deformation limits
imposed by the boundary node position, to observe the no-compenetration constraint.

73



Figure 3.14: Correct boundary nodes motion around a rotating hull.

3.3.1 The RIDW square test case
To begin, we consider the example in Section 2.2.1.
A visualization of the starting configuration and the deformed resulting one in Fig-

ures 3.15 and 3.16. We have included in the undeformed configuration the control points
selected by RIDW algorithm, via small red spheres.

While respect to the mesh shown in Section 2.2.1, now the control points do not
coincide with all the boundary nodes but just with a subset of them. We can summarize
the quantitative information of the RIDW procedure in Table 3.1.

We can observe a sensible increase of the CPU time, from 0.097 s to 0.126 s, due to
the time spent for the reduction procedure.

Nevertheless, we aim at reducing the memory effort demanded by the IDW tech-
nique, properly resizing the IDW matrix. In the specific case, the number of control
points has dropped drastically from 60 (all the boundary nodes for the standard IDW
technique) to 24. Consequently, the matrix will be characterized by the same number of
rows (the number of internal points has not changed), but by only 24 columns instead
of 60, with a considerable saving of memory.
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Figure 3.15: Undeformed configuration of the square test case with the control points
(red spheres) selected by RIDW process.

Lenght of square side π m
Number of total elements 450

Number of total nodes 256
Number of control points 24

Radius of reduction

Rtop = 0.5 m
Rbottom = 0.5 m
Rright = 0.5 m
Rleft = 0.5 m

Number of internal nodes 196
Number of boundary nodes 60

CPU Time 0.126 s
Relative error respect to the displacement 1.85 %

Table 3.1: Quantitative information related to the RIDW deformation of the square in
Figure 3.15.
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Figure 3.16: Deformed square with internal nodes displacement computed via RIDW.

As expected, the reduction procedure introduces an error on the internal node dis-
placement with respect to the standard IDW result, expressed as

e =

Ns∑
s=1

(‖ uIDW (xs) ‖ − ‖ uRIDW (xs) ‖)

Ns∑
t=1

‖ uIDW (xt) ‖
(3.2)

which, however, remains limited (about 1.85 %).

3.3.2 The RIDW cantilever beam test case
Another interesting application of RIDW is the bidimensional grid around the rect-

angular hole of Section 2.2.3. The starting configuration is the same as in Section 2.2.3,
for the standard IDW. Nevertheless, in this section, the value of the internal displace-
ments are computed according to the RIDW technique to reduce the number of control
points.
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Figure 3.17: Undeformed starting mesh and control points selected by RIDW process
for a deformable cantilever beam immersed in a fluid domain.

Figure 3.18: Quantitative information related to the RIDW obtained fluid mesh motion
around the cantilever beam in Figure 3.17.

From the quantitative results collected in Table 3.2 and from Figures 3.17 and 3.18,
we remark that also for this application the CPU time is greater than the one required by
the standard IDW. In fact, the CPU time is increased from 0.255 s to 0.280 s. However,
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Mesh dimensions 6π m × 16 m
Rectangular hole dimensions 2π m × 1 m

Number of total elements 1360
Number of total nodes 761

Number of control points 66

Radius of reduction

Rtop = 2 m
Rbottom = 2 m
Rright = 2 m
Rupleft = 2 m
Rdownleft = 2 m
Rtophole = 2 m
Rbottomhole = 2 m
Rrighthole = 0.03 m

Number of internal nodes 601
Number of boundary nodes 160

CPU Time 0.280 s
Relative error respect to the displacement 4.60 %

Table 3.2: Quantitative information related to the fluid mesh motion around the can-
tilever beam in Figure 3.17 computed via RIDW.

the reduction of control points, from 160 (all boundary nodes) to 66 points, implies an
IDW matrix of size [601 × 66], fairly smaller with respect to the one computed via
standard IDW ([601 × 160]). Operating the reduction on the number of control points,
it has been produced an error equal to 4.60 % compared with the result obtained with
standard IDW technique.

3.3.3 Fluid mesh motion around a wing via RIDW strategy
We focus now on the three-dimensional configuration presented in Section 2.2.4.

The RIDW applicated to a three dimensional case (see Figures 3.19 and 3.20) be-
come more interesting because it better validates the advantages of the RIDW in terms
of complexity reduction, also for cases closer to actual FSI and CFD studies. The fea-
ture which emphasizes the RIDW advantages is represented by the reduced number of
control points. In fact, as shown in Table 3.3, the number of the data points diminishes
from 14126 to 3611, with a considerable memory saving in assembling the IDW matrix,
which now assumes a dimension of [21910× 3611].
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Figure 3.19: Undeformed configuration internal view of the mesh representing a wing
in a wind tunnel with the control nodes (red spheres) selected by RIDW process.

Figure 3.20: Mesh deformation internal view obtained at the end of RIDW application
for a shape representing a deformed wing in a wind tunnel.
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Mesh dimensions 10 m × 5 m × 4π m
Wing longitudinal dimension 2π m

NACA0012 profile chord length 1.01 m
Number of elements 169598

Number of nodes 36036
Number of control points 3611

Radius of reduction

Rtop = 0.5 m
Rbottom = 0.5 m
Rright = 0.25 m
Rleft = 0.25 m
Rfront = 0.5 m
Rrear = 0.5 m

Rtophole = 0.25 m
Rbottomhole = 0.25 m
Rrighthole = 0.25 m

Number of internal nodes 21910
Number of boundary nodes 14126

CPU Time 151.392 s
Relative error respect to the displacement 5.64 %

Table 3.3: Quantitative information about the RIDW deformed 3D fluid mesh repre-
sented in Figure 3.20.

In this case the reduction process has produced also a decrease of the CPU time, from
446.479 s required by the standard IDW process to 151.392 s for the reduced approach.
This balances the time spent for the reduction procedure. However, the results obtained
are affected by a relative error on the displacement of the internal nodes equal to 5.64
%.

3.3.4 Mesh motion around a hull by RIDW technique
To investigate the potentialities of RIDW also in the naval field, we have to come

back to the hull example presented in Section 2.2.5.
The trend of the resulting values, summarized in Table 3.4, is the expected one. The

number of the control points is considerably decreased, from 3864 to 712 (despite all
the boundary edge nodes are included), influencing the internal node displacement with
an error equal to 2.42 %.
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Figure 3.21: Undeformed mesh for hull walls immersed in a fluid domain with control
points selected by RIDW algorithm (red spheres).

Figure 3.22: Mesh motion obtained via the RIDW applied to the mesh in Figure 3.21.
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Mesh dimensions 50 m × 25 m × 10 m
Hull length 2.50 m

Number of elements 30265
Number of nodes 7186

Number of control points 712

Radius of reduction

Rtop = 2 m
Rbottom = 2 m
Rright = 2 m
Rleft = 2 m
Rfront = 2 m
Rrear = 2 m

Rrighthole = 2 m
Rlefthole = 2 m

Number of internal nodes 3322
Number of boundary nodes 3864

CPU Time 8.976 s
Relative error respect to the displacement 2.42 %

Table 3.4: Quantitative information about the RIDW computed 3D mesh motion showed
in Figure 3.22.

Furthermore, the reduction on the number of the control points allows to obtain the
good results in Figures 3.21 and 3.22, with a lower CPU time (8.976 s) with respect to
the standard IDW (19.9525 s).

3.3.5 RIDW for structural mesh motion: the wing
We complete investigation of the performances of RIDW by considering the struc-

tural mesh in Section 2.2.6. We use the three-dimensional mesh of the wing to integrate
the knowledge about the RIDW application on the mesh motion of a typical aeronautic
structural mesh.

The mesh motion operated by the RIDW technique on the structural grid shown in
Figures 3.23 and 3.24, requires 1.760 s, using 308 control points. As for the previous
cases, the price to pay to reduce the dimension of the IDW matrix is an error on the
internal node displacement equal to 1.10 % with respect to the IDW standard method.

In Figure 3.23 it is possible to observe the distribution of the control points (red
spheres). Also in this case, the nodes belonging to the edges are all selected as control
points in the last phase of the DC-IDW process.
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Figure 3.23: Undeformed mesh of a wing where the control points selected by RIDW
are represented by th red spheres.

Figure 3.24: Mesh motion obtained via the RIDW process for a structural mesh repre-
senting a wing of NACA0012 profile.
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Wing longitudinal dimension 2π m
NACA0012 profile chord length 1.01 m

Number of elements 8850
Number of nodes 2463

Number of control points 308

Radius of reduction

Rtop = 0.7 m
Rbottom = 0.7 m
Rright = 2.5 m
Rleft = 2.5 m

Number of internal nodes 797
Number of boundary nodes 1666

CPU Time 1.760 s
Relative error respect to the displacement 1.10 %

Table 3.5: Quantitative information about the 3D wing mesh showed in Figure 3.23.

3.4 Identification of rigid movements
The consequences of rigid movements of an interface (such as, the hull test case

of Section 2.2.5) significantly affect the solution of mesh motion problems from the
beginning. Recently in the literature, a decomposition strategy has been proposed by
Romanelli [68] in order to split the rigid roto-translation and the small deformation
analysis starting from the solution obtained by the structure solver.

In this section we provide the main steps of the strategy proposed in [68] to empha-
size its capability to manage fluid-structure interaction problems involving, free-bodies
(not constrained ones) as structure.

During the simulation process, the structure may be subject to both deformations
and rigid movements, due to the effect of the fluid forces acting on the external surfaces
of the structure. In the presence of free-bodies, in order to efficiently solve the mesh
motion problem, we should be able to know the amplitude of both the two displacement
components (rigid and deformative). Therefore, we can split the structure displacement
into two different components: a global large one, related to structural rigid transla-
tions and/or rotations and, a local one, due to small elastic deformations. If we denote
by ς ∈ ΩS the total structural displacement field, we can decompose ς as:

ς = ςR + ςD (3.3)

where:

• ςR, represents the structural rigid movements;

• ςD, indicates the small deformative component.
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It is important to remark that we have classified as large and small, the rigid and
the elastic component of the displacement, respectively, since the first one involves a
perturbation of the whole structural domain, while, the second one generally leads to
localized shape deformations.

The goal is to set up a methodology in order to identify both rigid translations and
rotations, while, for the recovery of the deformative component, the shape parametriza-
tion technique introduced in Chapter 2 will be employed.

In particular, we can observe that the motion of the fluid mesh, when considering
free-bodies, can be known a priori (e.g., in the case of imposed rotations of an airfoil,
aileron deflections, etc.) or it can be the output returned by the structural subsystem.
Here, we focus on the latter case, that leads to an identification problem of the structural
translations and rotations.

In Figures 3.25 and 3.26, we illustrate the idea of separating the global displacement
in to two different components: starting from an initial reference configuration of a
wing, we obtain the final one by simulating wing deformations and applying a rigid
pitch rotation.

Figure 3.25: Initial (left) and target (right) shape configurations of a wing.

Figure 3.26: Visualization of the different displacement components defining the final
configuration: deformative (left) and rigid (right) components.

Thus, in order to analyse this kind of problems and, at the same time, to achieve the
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best compromise among accuracy, robustness and efficiency, the strategy proposed in
[68] uses a hierarchical mesh deformation strategy, based on a modified version of the
IDW multivariate interpolation kernel.

The basic idea of this deformation procedure consists of adding in the kinematic
description of the grid motion a convenient intermediate frame between the reference
and the target configurations.

Figure 3.27: Mesh deformation problem with focus on the rigid and deformative com-
ponents.

As shown in Figure 3.27, the problem can be decomposed into two parts: the identi-
fication of the large rigid rotation-translation contribution between the reference and the
intermediate configurations, and the update of the mesh according to the residual small
elastic displacement field with a small computational effort and an improved robustness.
Thus, such a procedure allows to rewrite the structural problem decoupling the rigid and
the elastic degrees of freedom. In particular, it is possible to subdivide the grid motion
process into three steps.

First of all, using the information about the interpolated structural displacement field
∆xj , relative to the reference undeformed configuration xj of each j− th boundary de-
gree of freedom, it is possible to identify by means of a Weighted Least Squares (WLS)
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strategy only the rigid translation-rotation part of the overall general big displacements
field as

∆xj = s+ Txj + εj = s+ (R− I)xj + εj ∀j = 1, ...,Nc. (3.4)

The mean translation vector is indicated by s and the linear map tensor with T .
This choice leads to an easier implementation with respect to the identification of the
mean rotation tensor R, since it is not necessary to include within the formulation the
orthogonality constraintsRTR = I by means of Lagrange multipliers. In fact, the same
result can be retrieved a posteriori using the Euler-Rodriguez formula to split the mean
rotation tensor R into two contribution: an emisymmetric one given by the tensor E
and a symmetric one,S, so that

(R− I) = sinφKx + (1− cosφ)KxKx = E + S, (3.5)

where φ is the magnitude of the rotation vector ψ = φk̂ in the direction k̂, whileKx is
the emisymmetric tensor representing the linear cross-product operator k̂×. Requiring
that the emisymmetric part of the linear map tensor T matches E, given by E = (T −
T T )/2, it is straightforward to retrieve ψ and assemblyR with (3.5). The limit of such
a procedure lies in the fact that the residual linear deformation tensor D = T (R − I)
is always symmetric.

As a result of the identification procedure, in the second step of this procedure, the
mesh is adjusted only to the smaller residual εj of each j − th boundary degree of free-
dom, with a computational effort which is expected to be significantly small. In fact,
rather than using algorithms that require solving a system of equations (expensive in
terms of computational cost and memory occupation for realistic simulations), it is pos-
sible to use an IDW multivariate interpolation scheme. For each k − th internal degree
of freedom the displacement ∆xk relative to the reference undeformed configuration xk
can be evaluated by performing the following matrix-vector multiplication, similarly to
(2.3):

∆xk =
Nc∑
j=0

IDW (k,j)

| IDW (k,:) |
εj ∀k = 1, ...,Ns. (3.6)

Finally, to achieve the best trade-off between memory-efficiency and time-efficiency,
one of the modifications applied to the original implementation of IDW technique and
proposed in [68] is the so called Sparse Inverse Distance Weighting (SIDW). In this
version the IDW matrix is stored in a sparse format as follows:

SIDW (k,j) = IDW (k,j) if
IDW (k,j)

| IDW (k,:) |
> ξ (3.7)

where ξ is a threshold set by the user. Particular attention is required for the tuning
of parameter ξ, generally chosen close to 0.005. In fact, if its value is too large and
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consequently there is not any active j − th column for the k− th row, the internal node
displacement can be significantly affected by the missed contribution of the neglected
nodes.

The algorithm of the described hierarchical mesh deformation toolbox can be sum-
marized by tackling the simple but representative test problem of computing the inter-
nal mesh of an arbitrary object given the reference configuration and the new boundary
nodes position in the target configuration. The prescribed displacement field is com-
posed by both large rigid rotation-translation and small deformative contributions. It is
worthwhile to compare the results of the Weighted Least-Squares (WLS) identification
of the mean translation vector s and linear map tensor T with those of the a-posteriori
recovery of the rotation tensorR using the Euler-Rodriguez formula. Not only the iden-
tification of the mean linear map tensor T is computationally more efficient than that of
the rotation tensor R, but the intermediate configuration is also significantly closer to
the target one. Therefore, the additional effort requested to go from the intermediate to
the target configuration can be expected to be smaller. In other terms, the mesh quality
after applying the IDW interpolation can be expected to be higher, improving the ro-
bustness of the overall procedure. For examples and further discussion please refer to
[68].

3.5 Conclusions and perspectives about RIDW
As shown in all the applications of this chapter, the RIDW algorithm produces a

considerable decrease of the number of the control points. Moreover, for more complex
meshes, typically with a very large number of boundary nodes, the selection procedure
of the control points allows to compute the internal node displacement with a very lower
(about 80% less) number of parameters, leading to an important gain in terms of CPU
time with respect to standard IDW. This is the case, for instance, of the test cases de-
scribed in Sections 3.3.3 and 3.3.4, where the CPU time is almost 70% less of the one
required by the standard IDW strategy.

On the other hand, the relative error results significantly influenced by the value of
the reduction radius R. High values of R, in fact, will lead the RIDW technique to
eliminate a lot of control points whose contribution will be not taken into account for
the computation of the internal node displacement. For these reasons, the radius choice
has to be operated by considering the degree of accuracy required for the analysis and
by avoiding an important loss of information.

The operation of tuning of the parameter R is not always easy, especially when it
is necessary to have different values R for differently discretized boundaries. For this
reason, a future perspective is to make the tuning process automatic, starting for instance
from the local mesh characteristic dimension (i.e., the mean distance between two nodes
belonging to the considered boundary). The goal is to take into account a moderate
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number of control points for each boundary, without neglecting excessive information
about the boundary movement, property required for an accurate computation of the
internal node motion.

Several kinds of selection of control points can be realized, also depending on the
physical phenomenon described with the considered mesh motion. One among these
applies a procedure similar to the one described above but substituting the circles with
ellipsis drawn in the fluid main stream direction, in order to extract information, dis-
cretized but not redundant, about the fluid motion. Another possibility is to thicken
the control points distribution in the maximum interface displacement zones to mostly
weight the displacement localized in specific parts of the domain.

Obviously this kind of implementation assumes to analyse geometrically the inter-
face motion to point out the parts of the domain with maximum displacement and the
direction of fluid motion. However, often it is not easy to extract these information
about the domain, especially when the displacements are not amenable to analytical
functions. In addition, the risk to overweight the displacements of some control points
and inevitably neglect other points can become source of high errors on the internal
nodes displacement computation.

The RIDW technique implementation here presented allows to obtain good results
in terms of accuracy and of limited CPU time, nevertheless, the time required remains
too large for complex engineering applications. For this reason, we resort to a ROM
implementation where we use the RIDW technique or the standard IDW approach.
Doing so, it will be possible to distinguish the Offline phase, which collects data about
possible and admissible mesh movements, from the Online phase which, starting from
the data collected, computes rapidly the internal mesh motion in function of an imposed
boundary movement.
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Chapter 4

IDW and Reduced Order Methods

In this chapter we discuss all the details related to the construction of a Reduced
Order Method (ROM) for IDW interpolation techniques.

Since the matrix formulation (2.3) leads to a system of parametrized equations, we
focus on the reduction procedure used for parametrized Partial Differential Equations
(PDEs) [37] which has inspired our implementation of ROM for IDW. First of all, in
Section 4.1, we introduce the basic components of a ROM for PDEs. In particular,
the algebraic version of a reduced order method which allows to obtain a problem of
reduced dimensions is showed in Section 4.1.1 (see also [37]). Section 4.1.2 describes in
detail the Offline-Online computational splitting procedure. In Section 4.1.3 a possible
strategy to choose the basis functions that span the reduced order space is discussed.
This strategy is based on Proper Orthogonal Decomposition (POD), one of the most
common and suitable techniques used for parametrized problems.

Finally, in Section 4.2 we show how to build a procedure for deformations by im-
plementing a POD-based ROM for RIDW interpolation preserving an efficient Offline-
Online computational splitting process. Section 4.3 presents the results obtained by the
new procedure for the examples shown in the previous chapters, highlighting a partic-
ular efficiency in terms of computational and memory effort. In the last section some
conclusions about the IDW and RIDW in a ROM context are drawn.

4.1 Reduced Order Methods for parametrized PDEs:
main ingredients

The goal of a ROM is to compute in an inexpensive way a low-dimensional approx-
imation of the expensive high-fidelity (parameter dependent) solution. The reduced so-
lution is obtained by a projection onto a small subspace, constituted by global (specific)
basis functions, instead of a large space of local (generic) basis functions. In fact, we
can assume that the family of the full-order solutions, obtained for different values of

91



the parameter µ through a suitable high-fidelity approximation technique, is accurate.
Therefore, we expect any high-fidelity solution (that is, for any value of µ belonging
to a defined domain D) to be well approximated in terms of these (global and specific)
basis functions. In particular, referring to parametrized PDEs, we can summarize the
main ingredient of a ROM as follows:

i. High-fidelity method: ROMs do not aim at replacing the high-fidelity method,
rather, they build upon it approximating a ‘given’ solution. The full-order problem
reads: find uh(µ) ∈ V h such that

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ V h, (4.1)

where V h is a finite dimensional space of (possibly large) dimension N . The
solution of (4.1) can be kept as close as desired to the physical solution u by
choosing a suitable discretization space.

ii. Galerkin projection: a ROM consists in selecting few basis functions {ζi}Ni=1 and
finding the reduced order solution uN(µ) as a linear combination of these basis
functions. The choice of the basis functions differs for the different methods.
After choosing the basis functions, the space where we seek the reduced solution
is

V N = span {ζi, i = 1, . . . N} ∈ V h, (4.2)

with N = dim(V N) � N . Therefore, the reduced order problem becomes: find
uN(µ) ∈ V N such that

a(uN(µ), vN ;µ) = f(vN ;µ) ∀vN ∈ V N (4.3)

iii. Offline-Online computational splitting: the most important goal is to perform an
extensive snapshots generation only once (Offline stage), followed by a rapid eval-
uation of the solution for any new valueµ (Online stage). Unfortunately, although
problem (4.3) is nominally of small size N , assembling its structures (matrix and
right hand side) involves entities associated with ourN -dimensional interpolation
space. However, the matrix assembly procedure is confined in the Offline stage
thus, does not affect the rapidity of solution evaluation performed in the Online
stage.

4.1.1 From high-fidelity to reduced order methods

In this Section, we first introduce a reduced order method to discuss the algebraic
connection between the reduced order problem and the high-fidelity one [70].
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As shown in the previous section, we assume that the reduced order solution is given
by

uN(µ) =
N∑
m=1

umN(µ)ζm. (4.4)

Inserting (4.4) in (4.3) and choosing vN = ζn, for n = 1 . . . N , we obtain the
reduced order algebraic system

N∑
m=1

a(ζm, ζn;µ)umN(µ) = f(ζn;µ), n = 1 . . . N. (4.5)

Hence, we can write the problem as

AN(µ)uN(µ) = bN(µ), (4.6)

where, in particular {
(AN(µ))nm = a(ζm, ζn;µ),
(bN(µ))n = f(ζn;µ)

and uN(µ) = (u1N(µ), . . . , uNN(µ))T is the vector of the degrees of freedom related to
the reduced order solution. Since each basis function ζn belongs to the space V h, we
can express each of them as:

ζn =
N∑
i=1

ζni ηi, n = 1 . . . N, (4.7)

that is, as a linear combination of the high-fidelity space basis functions {ηi}Ni=1. Then,
by inserting (4.7) in (4.5), and after denoting by

Z = [ζ1, . . . , ζN ] ∈ RN×N (4.8)

the matrix of the N degree of freedom ζ related to each reduced basis function, we have
that

AN(µ) = ZTA(µ)Z
bN(µ) = ZTb(µ),

(4.9)

where A(µ) and b(µ) are the structures given by the discretization of the full-order
problem (4.1):

A(µ)u(µ) = b(µ). (4.10)

A graphical sketch related to the assembling of matrixA is provided in Figure 4.1.
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Figure 4.1: Schematic representation of the reduced matrix assembly procedure.

We can now characterize the error between the reduced order solution and the high-
fidelity one

eN(µ) = u(µ)−ZuN(µ) (4.11)

in terms of the high-fidelity residual of the approximated solution, given by

r(µ) = b(µ)−A(µ)ZuN(µ). (4.12)

In fact, the following relation holds:

A(µ)eN(µ) = r(µ) (4.13)

4.1.2 Offline-Online computational procedure
System (4.6) is nominally of small size coinciding with a set of N linear equations

in N unknowns. However, the assembling of the matrix and of the right hand side,
involves entities associated with the N -dimensional approximation space as required
by (4.9). To obtain an efficient model for the Offline-Online procedure [37], we can rely
on affine parameter dependence by assuming that:

A(µ) =
∑L

l=1 γ
l(µ)Al(µ)

b(µ) =
∑M

m=1 τ
m(µ)bm(µ).

(4.14)

Thus, we can substitute this expression in (4.9) to compute:

Al
N = ZTAlZ, bmN = ZTbm. (4.15)
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At this point, system (4.6) can be expressed in matrix form as(
L∑
l=1

γl(µ)Al
N

)
uN(µ) =

M∑
m=1

τm(µ)bmN . (4.16)

In this way, computation entails an expensiveµ-independent Offline stage performed
only once, and just an Online stage for any chosen value of the parameter µ ∈ D. Dur-
ing the former phase, the structures {Al

N}Ll=1 and {bmN}Mm=1, as well as the basis matrix
Z , are computed and stored. In the latter phase, for any given µ, all the γl(µ) and
τm(µ) coefficients are evaluated, and the N ×N linear system (4.16) is assembled and
solved, in order to get the reduced basis approximation uN(µ).

The Online operation cost isO(LN2) to assemble the matrix, O(N3) to invert it and
O(MN) to get the right hand side in (4.16). The Online cost to evaluate uN(µ) is thus
independent of N .

4.1.3 Reduced space construction by Proper Orthogonal Decompo-
sition (POD)

In the last decades a considerable progress has characterized in strategies for the
construction of reduced order spaces [13]. We limit to the Proper Orthogonal Decom-
position (POD) method [21, 20]. Among the several reduced order modelling tech-
niques proposed in the literature [32, 60, 59, 67, 78, 34, 3], one of the most popular and
suitable for the aeronautical and naval engineering applications is surely POD and for
this reason has inspired our ROM implementation.

The Proper Orthogonal Decomposition (POD) technique reduces the dimensionality
of a system by transforming the original variables into a new set of uncorrelated vari-
ables (called POD modes, or principal components), so that the first few modes ideally
retain most of the ‘energy’ present in all of the original variables. For this reason,
POD relies on the use of the singular value decomposition (SVD) algorithm (see, e.g.,
[82, 62, 25]). Consider a discrete set of ntrain values for the parameters and assemble the
snapshot matrix U ∈ RN×ntrain as follows:

U = [u(µ1), · · · ,u(µntrain
)], (4.17)

where the columns are the solution vectors for the ntrain selected values for the parame-
ters. The SVD of U reads

VTUW =

(
Σ 0
0 0

)
, (4.18)

where
W = [ζ1, ζ2, · · · , ζN ] ∈ RN×N (4.19)
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and
V = [Ψ1,Ψ2, · · · ,ΨN ] ∈ Rntrain×ntrain (4.20)

are orthogonal matrices, whereas

Σ = diag(σ1, · · · , σr) (4.21)

with σ1 ≥ σ2 ≥ · · · ≥ σr; here r ≤ ntrain is the rank of U .
For any N ≤ ntrain, the POD basis, of dimension N, is defined as the set of the first

N left singular vectors [ζ1, · · · , ζN ] of U . Thus, the basis matrix is given by

Z = [ζ1, · · · , ζN ] ∈ RN×N . (4.22)

By construction, the POD basis is orthonormal. Furthermore, it can be shown that
the energy contained in the N −N neglected modes is

E(Z) =
N∑

i=N+1

σ2
i , (4.23)

so that, the error associated with the POD approximation is equal to the sum of the
squares of the singular values corresponding to the neglected POD modes. In this way,
we can select N so that E(Z) ≤ ε∗tol, for a prescribed tolerance ε∗tol. To do this, it is
sufficient to choose N such that

I(N) =

∑N
i=1 σ

2
i∑N

i=1 σ
2
i

≥ 1− δ, (4.24)

which means to require that the energy retained by the last N − N modes is at most
equal to δ, being δ as small as desired. Quantity I(N) is referred to as the relative
information content of the POD basis.

Thus, the POD approach requires to compute ntrain high-fidelity candidate snapshots,
as well as the solution of a SVD problem, while (4.23) provides information about the
amount of energy neglected by the selected POD modes.

4.2 A ROM for IDW interpolation technique
As anticipated, solving a problem via IDW or Reduced IDW techniques allows to

obtain good results for the computation of the solution at the grid points, but, also with
the application of a geometrical reduction it is computationally expensive.

To limit this drawback, we adapt reduced order modelling to the IDW framework
(and, in particular, to its geometrically reduced version RIDW), carrying out, first of
all, an Offline stage inspired by the POD strategy. In this way, during the Offline phase,
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the algorithm extracts the POD modes from the displacement solutions for several val-
ues of the parameters. At this point, a specific displacement evaluation for a given set
of parameters can be performed in the Online phase, exploiting the reduced model ad-
vantages with an important reduction in terms of computational effort and demanded
time.

In our specific case, the decomposition applied to the snapshot matrix U allows
to reconstruct the solution for a generic parameter variation that affects the data point
position. The main role in the solution reconstruction is represented by the sum of the
basis functions, suitably weighted, that allows to preserve important information. So,
denoting by xkundef

the original position of the k − th point and with xkdef the position
of the same point after the deformation, it is possible to write:

xkdef ≈ xkundef
+

N∑
i=1

βidi (4.25)

where N is the number of POD basis functions chosen to represent any deformation, di
are the POD basis functions and βi are the weight coefficients, our unknowns.

It is possible to rewrite Eq. (4.25) in matrix form as

xkdef ≈ xkundef
+ Zβ (4.26)

where Z is the matrix collecting the POD basis functions selected by POD and β is
the vector of the weights. In this way we perform the generalization of the reduction
strategy applied to PDEs in Section 4.1 to the construction process of a ROM to describe
mesh deformations.

Considering the matrix formulation of IDW in (2.3), to improve the notation, we in-
troduce a new matrix denoted byCIDW to express the ratio in (2.1), whose elements
are defined by the following relation:

CIDW k,j =
IDW (k, j)∑N
j=1 IDW (k, j)

, (4.27)

where IDW (k, j) is defined as in (2.4). Thus, it is possible to define the matrix com-
posed by the elements in (4.27) as the product of a diagonal matrix, of dimensions
[Ns × Ns], whose k − th entry coincides with the inverse of the sum of the entries
IDW (k, j):

CIDW = Diag

[
1∑N

j=1 IDW (k, j)

]
IDW for k = 1, ...,Ns. (4.28)

Furthermore, we have decided to assemble a CIDW matrix considering all the
nodes of the mesh, control points included. Thus, after the first Ns rows, where Ns is
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the number of slave nodes, a [Nc ×Nc] identity matrix is added to CIDW so that the
resulting [(Ns +Nc)×Nc] matrix is defined by

TIDW = [CIDW ; INc ] (4.29)

TIDW is assembled as shown in Figure 4.2. .
This choice allows to obtain, after the Galerkin projection [16], basis functions in-

fluenced by all the grid points. Indeed, the snapshots matrix includes the control points
displacement.

Figure 4.2: Schematic representation of the TIDW matrix

Thus, it is possible to write the IDW formula for all the mesh nodes as follows:

δ = TIDW δc (4.30)

where δ denoted the displacement column vector (xdef − xundef ) of all the (Ns +Nc)
points and, similarly, δc is the displacement column vector of (Nc) control points. The
similarity between the expressions (4.30) and (4.26) is evident:

xkdef = xkundef
+ TIDW δc

xkdef ≈ xkundef
+ Zβ. (4.31)
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Now we aim at obtaining a value for β in order to have results as similar as possible
for both these expressions.

To reach this goal we resort to the Galerkin projection using a least squares approach.
First of all, we have to pre-multiply Eq.(4.30) by TIDW T in order to obtain:

TIDW Tδ = TIDW T TIDW δc (4.32)

and thus we express δc in terms of δ as

δc = (TIDW T TIDW )−1 TIDW T δ (4.33)

so that, denoting by IDW+ the matrix [(TIDW T TIDW )−1 TIDW T ], we have

δc = IDW+ δ, (4.34)

having a form very similar to (4.10). Here, IDW+ plays the role of A(µ), δ the one
of u(µ), while δc replaces the right-hand side b(µ).

Moreover, if we exploit the second equation of system (4.31), we can approximate
δ with the product Zβ so that

δc ≈ IDW+Zβ (4.35)

The term multiplying vector β is a Galerkin projection, so that multiplying (4.32)
on the left side by ZT (IDW+)T , we obtain:

ZT (IDW+)T TIDW Tδ ≈ ZT (IDW+)T TIDW T TIDW δc (4.36)

i.e., using relation δ ≈ Zβ written in (4.31),

ZT IDW ∗Z β ≈ ZT IDW ∗ TIDW δc (4.37)

where the product (IDW+)T TIDW T is denoted by IDW ∗.
At this point, the Offline phase is finished with the assembling of system (4.37) and

the storage of all the matrices which compose it.
Information collected in the different matrices involved in (4.37), will be used, after

the assignment of a control points displacement vector δc, in the execution of the two
steps representing the Online computational phase, i.e.,

• computation of β vector;

• solution reconstruction.
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To compute β, we have to solve a system with a very reduced dimension (N ) with
respect to the original one (N ). To solve the solution at each grid point, we exploit
relation (4.26), simply correcting the original position of grid points with the update
vector Zβ.

At the end of this model order reduction, the computational effort of the Online
phase has been considerably reduced (N << N ) and, for a given and generic (admissi-
ble) control point displacement, it is possible to evaluate the displacement solution for
all the mesh nodes by the vector δ.

4.3 Relevant applications
We show in this section the results obtained with the ROM technique for IDW for

some of the examples considered in the previous chapters.
In particular, these examples allow to numerically evaluate the computational ad-

vantages obtained by the implementation of the reduced order method.
As in the previous sections, the most relevant parameter to evaluate the numerical

benefits is the CPU time, without neglecting the importance of the error value with
respect to the solution computed by standard IDW.

The Offline-Online computational splitting plays a very important role in this as-
sessment, thus, the CPU time spent to execute the entire algorithm, will be provided
split into two values:

1) the Offline phase CPU time: this is the time spent to collect the snapshots and to
compute all the matrices which will be used in the next (Online) phase to evaluate
the final solution;

2) the Online phase CPU time: this is the time spent to evaluate the final solution. In
this phase, the algorithm evaluates the vector δc of the control point displacement
and then computes β using the matrices assembled in the previous phase and the
relation (4.37). This allows to extract the final solution for any given parameter
variation.

It is possible to use both the strategies to compute the snapshot solutions in the
Offline phase: the standard IDW and the reduced IDW. However, to corroborate the
advantages of the conjunction between RIDW and reduce order models, we are going
to show only the results associated with RIDW.

In the following applications, the reduction radius R is chosen as in the previous
examples. We will specify its value in the quantitative tables.

Finally, we remark that for a prescribed tolerance ε∗tol = 10−5, for each of the fol-
lowing examples, it turns out that it is sufficient to consider at most the first two POD
modes to obtain accurate results, with a neglected energy content E(Z) very small (of
the order of the machine epsilon).
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4.3.1 The ROM-RIDW square test case
We exactly refer to the configuration in Section 2.2.1. A visualization of the unde-

formed and deformed configurations is furnished in Figures 4.3 and 4.4, respectively. In
particular, Figure 4.4 shows the deformation recovered by the ROM-RIDW strategy.

Figure 4.3: Undeformed configuration of the square with control points (red spheres)
selected by RIDW process.

The mesh obtained is very similar to the ones in the previous chapters. The main
features are summarized in Table 4.1.

We immediately recognize more data in the table with respect to the previous vali-
dation, i.e., we have

◦ the set of values for the parameter used as training set during the Offline stage;

◦ the CPU time distinguished into the Offline time and the Online time;

◦ the δc vector size;

◦ the number of considered POD modes, i.e., the size of the vector β.
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Figure 4.4: Deformed square with internal node displacement computed via ROM-
RIDW.

Concerning the first information, with reference to the specific test case, we parametrize
the movement of the boundary used in the POD snapshot collection as

y(x) = µisin(x) i = 1, ..., 10, (4.38)

where µi is the i-th value of the parameter. As anticipated, in the Online phase, for the
δc assignment required to find β, we use the given target configuration identified by the
law y(x) = 0.5sin(x) (see Figure 2.8 in Chapter 2).

The sizes of the vectors δc and β allow to numerically quantify the reduction of the
system dimension: from N̂c (number of control points considered by RIDW) to N (β
size). In this case, the energy of the system is almost contained in the first POD mode
(N = 1).

The results obtained in terms of CPU time and error are promising.
The time demanded to compute the same solution using the RIDW strategy is 0.126

s against 0.034 s of the ROM-RIDW approach, while the error does not change signif-
icantly (1.85% for RIDW versus 1.98% for ROM-RIDW). The price to be paid is the
Offline CPU time equal to 0.792 s. However, we have to consider that this part of the
algorithm is executed once and allows to find the solution for several new parameter
values requiring a very short time. In fact, the advantage of this ROM approach is the
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Lenght of square side π m
Number of total elements 450

Number of total nodes 256
Number of internal nodes 196

Number of boundary nodes 60

Radius of reduction

Rtop = 0.5 m
Rbottom = 0.5 m
Rright = 0.5 m
Rleft = 0.5 m

Number of control points 24
δc size [24× 2]

Parameter values
{0.05, 0.04, 0.08, 0.03, 1,

0.09, 1.3, 0.06, 0.07, 0.01} m
Number of POD modes selected 1

Offline CPU Time 0.792 s
Online CPU Time 0.034 s

Percentage of error respect to the displacement 1.98 %

Table 4.1: Quantitative information related to the deformation computed by ROM-
RIDW of the square in Figure 3.15.

fast computation in the case of several repeated deformations (as for real-time or shape
optimization problems). If we want to know just the displacement solution for a single
assigned interface movement, the simple standard IDW or the new RIDW strategies
result fast enough, without using ROM, which in such a case simply slows down the
evaluation of the solution without any gain in terms of accuracy.

4.3.2 The ROM-RIDW beam test case
We consider the configuration in Section 2.2.3.
As previously remarked, the structure is not meshed. The mesh considered is the

fluid one, and part of the boundary constitutes the interface with the structure. In this
case the target configuration used for the Online phase is the one which moves the
interfaces between the structure and the fluid according to function y(x) = 0.01x2. We
provide the undeformed starting mesh in Figure 4.5 and the deformed mesh obtained by
merging RIDW with ROM in Figure 4.6.

We furnish in Table 4.2 the setting adopted for the test case and the obtained results.
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Figure 4.5: Undeformed configuration for the cantilever beam test case.

Figure 4.6: Deformed fluid domain mesh of the cantilever beam test case computed via
ROM-RIDW.

The parameters used in the snapshot collection are identified by the function:

y(x) = µix
2 for i = 1, ..., 10 (4.39)

where µi is the i-th value for the parameter.
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Mesh dimensions 6π m × 16 m
Rectangular hole dimensions 2π m × 1 m

Number of total elements 1360
Number of total nodes 761

Number of internal nodes 601
Number of boundary nodes 160
Number of control points 66

δc size [66× 2]

Radius of reduction

Rtop = 2 m
Rbottom = 2 m
Rright = 2 m
Rupleft = 2 m
Rdownleft = 2 m
Rtophole = 2 m
Rbottomhole = 2 m
Rrighthole = 0.03 m

Parameter values
{0.001, 0.02, 0.018, 0.03, 0.07,

0.015, 0.009, 0.005, 0.0013, 0.003} m
Number of POD modes selected 1

Offline CPU Time 2.893 s
Online CPU Time 0.045 s

Percentage of error respect to the displacement 4.80 %

Table 4.2: Quantitative information related to the fluid mesh motion around the can-
tilever beam in Figure 4.5 obtained by ROM-RIDW.

The results underline the advantages of using the RIDW strategy and, in particular,
its reduced order model implementation.

In fact, also in the previous test case, the Online CPU time is very small (just 0.045
s) while the RIDW computation requires 0.280 s to compute the solution of the same ex-
ample. The percentage of error with respect to the displacement computed by standard
IDW remains under 5%, as for the RIDW method.

Such a gain in terms of CPU time is due to the twofold reduction process: the reduc-
tion of the number of control points by RIDW strategy and successively the reduction
of the dimension of the system to be solved via ROM, from the initial N̂c dimension (δc
size) to the smaller one N (β size).

The efficiency and the accuracy of the ROM-RIDW approach justify the employ-
ment of such a strategy. The Offline phase requires about 3 s, a very long time with re-
spect to the solution evaluation of the Online phase. However, as previously remarked,
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in the Offline phase the algorithm computes ten solutions, one for each parameter value.
Furthermore, the Offline steps are executed just one time, allowing to find several solu-
tions for several new value of µ with a considerable saving of CPU time.

4.3.3 Mesh motion around a deformed wing via ROM-RIDW
A more complex, but very interesting, application is represented by the configuration

in Section 2.2.4, i.e., the NACA0012-based wing immersed in a tridimensional fluid
domain. The geometry considered is a parallelepiped with a wing-shaped hole fixed at
the left wall towards the center of the domain. The interface between fluid and structure
in the target configuration results moved according to function y(z) = 0.01z2.

First of all, we show the undeformed, i.e., the initial, configuration in Figure 4.7,
and the deformed one obtained via RIDW combined with the ROM in Figure 4.8.

Figure 4.7: Undeformed configuration of the fluid domain around a 3D NACA0012-
based wing.

Table 4.3 collects the setting adopted for the validation and the results obtained
during the computation of the deformed structure.

Also for this example, the results show the potentialities of the joint use of RIDW
and ROM.

The error is about the same as the one characterizing the simple RIDW strategy, i.e.,
5.66% for ROM-RIDW against 5.64% for RIDW.
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Figure 4.8: Deformed tridimensional fluid mesh computed via ROM-RIDW algorithm.

The Online CPU time is very lower with respect to the time required by RIDW: only
2.200 s for the ROM application versus 151.392 s demanded by RIDW.

The parametric function is the same as the one used for the previous bidimensional
example, namely,

y(z) = µiz
2 for i = 1, ..., 10 (4.40)

The µi parameters are shown in Table 4.3 and the solutions collected in the snapshots
matrix are associated with these values.

The considerable saving of CPU time, also for this more complex application, to-
gether with the reduced memory demand represent the significant advantages of the
ROM-RIDW process and balance the Offline CPU time (751.410 s).

For this example, we explicitly provide the first singular values identified by the
POD process to check their decay.

λ1 = 518944; λ2 = 7.005e−11; λ3 = 2.948e−11; · · · (4.41)

The first eigenvalue, λ1, is significantly higher with respect to the other ones. This
means that most of the ‘system energy’ is contained in the first POD mode. Thus, to
accurately describe the system, it is sufficient to consider only the first mode in the
ROM-RIDW algorithm.

Moreover, since the energy content of the neglected POD modes is meaningless, the
error (5.66%) in Table 4.3 is entirely due to the RIDW process. In fact, repeating the
algorithm execution in a ROM-IDW version (instead of the ROM-RIDW combination),
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Mesh dimensions 10 m × 5 m × 4π m
Wing longitudinal dimension 2π m

NACA0012 profile chord length 1.01 m
Number of elements 41152

Number of nodes 9172
Number of internal nodes 4972

Number of boundary nodes 4200
Number of control points 3611

δc size [3611× 3]

Radius of reduction

Rtop = 0.5 m
Rbottom = 0.5 m
Rright = 0.25 m
Rleft = 0.25 m
Rfront = 0.5 m
Rrear = 0.5 m

Rtophole = 0.25 m
Rbottomhole = 0.25 m
Rrighthole = 0.25 m

Parameter values
{0.05, 0.04, 0.08, 0.03, 1,
0.1, 1.3, 0.06, 0.07, 0.5} m

Number of POD modes selected 1
Offline CPU Time 751.410 s
Online CPU Time 2.200 s

Percentage of error respect to the displacement 5.66 %

Table 4.3: Quantitative information about the deformed 3D fluid mesh represented in
Figure 4.8 computed by ROM-RIDW approach.

the error on the displacement with respect to the solution computed by a single standard
IDW evaluation is comparable to the machine epsilon.

4.3.4 A ROM-RIDW naval application

The target configuration considered in this naval case is the same as the one com-
puted in Section 3.3.4, i.e., the one yielded by a rotation of the hull with respect to the z
axis of an angle equal to −5o. The starting undeformed configuration and the deformed
one obtained by the ROM-RIDW algorithm are furnished in Figure 4.9 and Figure 4.10,
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Figure 4.9: Undeformed configuration of a fluid domain around a hull.

Figure 4.10: Deformed 3D mesh for the domain computed by ROM-RIDW.

respectively.
In the Table 4.4 the setting used for this application and the numerical results ob-

tained are gathered.
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Figure 4.11: A detail representation of the final configuration of the 3D fluid domain
represented in Figure 4.10.

In this case, the parameter values µi (with i = 1, ..., 10) are ten possible angles of
rotation for the hull.

The CPU time required to execute the Online phase is very reduced, shorter (about
one quarter) than the one demanded by the RIDW application on the same example (see
Table 3.4). Furthermore, the percentage of error (respect to the solution computed by a
standard IDW technique) is quite close to the same obtained with RIDW: 2.43% versus
2.42%.

For this application, the neglected energy contentE(Z) remains below the tolerance
ε∗tol by considering only two POD modes (N = 2).

The Offline execution requires a long time (about 432.314 s), but it is fully justified
by the reduced memory storage and computational effort achieved by this ROM-RIDW
implementation.

To be consistent with the same application considered in the previous chapters, we
have applied a rigid rotation to the hull. Clearly, rotations are not the only deforma-
tions computable with the proposed algorithm. Alternatively, we can apply interface
movements similar to the one considered for the wing example in Section 4.3.3.

Thus, for the sake of completeness, we show in Figures 4.12 and 4.13 the configura-
tion obtained using the ROM-RIDW algorithm when considering a hull interface target
movement given by y(x) = 0.01x2.
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Mesh dimensions 50 m × 25 m × 10 m
Hull length 2.50 m

Number of elements 30265
Number of nodes 7186

Number of internal nodes 3322
Number of boundary nodes 3864
Number of control points 712

δc size [712× 3]

Radius of reduction

Rtop = 2 m
Rbottom = 2 m
Rright = 2 m
Rleft = 2 m
Rfront = 2 m
Rrear = 2 m

Rrighthole = 2 m
Rlefthole = 2 m

Parameter values
{− π

20
,− π

50
,− π

40
,− π

18
,− π

80
,

− π
60
,− π

100
,− π

10
,−π

5
,− π

30
} m

Number of POD modes selected 2
Offline CPU Time 432.314 s
Online CPU Time 1.420 s

Percentage of error respect to the displacement 2.43%

Table 4.4: Quantitative information about the deformation obtained by ROM-RIDW
strategy of the 3D mesh showed in Figure 3.22.

The deformed fluid mesh in Figure 4.12 is obtained spending 1.44 s for the Online
phase. The parameter values used for the construction of the snapshot matrix are the
same used for the wing example (see Table 4.3) and the percentage error, after selecting
a single POD mode, is equal to 3.41% with respect to the displacement solution obtained
via the standard IDW interpolation technique.

4.3.5 A wing structural mesh motion via ROM-RIDW

We finally apply the ROM-RIDW method to the structural mesh of the wing in
Section 4.3.3. Thus, the target configuration is represented by the boundaries of the wing
when moved according to the function y(z) = 0.01z2. The undeformed mesh is the
one shown in Figure 4.14, while the deformed configuration obtained by the combined

111



Figure 4.12: Deformed 3D mesh for the fluid domain computed by ROM-RIDW
method.

Figure 4.13: A detail view of the internal nodes of the 3D fluid domain shown in Figure
4.12.

ROM-RIDW method is provided in Figure 4.15.
We present the adopted setting and the obtained results in Table 4.5.
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Figure 4.14: Undeformed configuration of a tridimensional wing based on a NACA0012
airfoil.

Figure 4.15: Deformed 3D wing structural mesh computed via ROM-RIDW process.

The same conclusion drawn for the examples presented in the previous sections
can be repeated for this structural case. The memory effort is reduced by the RIDW
application, so that each solution to be collect in the snapshot matrix is based only on
308 control points.

Moreover, the computational time to evaluate the displacement of internal nodes
of the mesh, given a target deformation of the interface, is considerably reduced. In
fact, with ROM, the algorithm requires 0.35 s to complete the Online phase providing
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Wing longitudinal dimension 2π m
NACA0012 profile chord length 1.01 m

Number of elements 8850
Number of nodes 2463

Number of internal nodes 797
Number of boundary nodes 1666
Number of control points 308

δc size [308× 3]

Radius of reduction

Rtop = 0.7 m
Rbottom = 0.7 m
Rright = 2.5 m
Rleft = 2.5 m

Parameter values
{0.05, 0.04, 0.08, 0.03, 1,
0.1, 1.3, 0.06, 0.07, 0.5} m

Number of POD modes selected 1
Offline CPU Time 40.640 s
Online CPU Time 0.352 s

Percentage of error respect to the displacement 1.12 %

Table 4.5: Quantitative information about the mesh deformation of the 3D wing showed
in Figure 4.15.

an acceptable error (1.12%) with respect to the deformed solution computed by the
standard IDW technique.

Also for this example, the number of POD modes required to obtain accurate results
is the minimum possible, being equal to one (N = 1).

4.4 Conclusions and perspectives of IDW in the ROM
context

As noted in this chapter, a ROM construction for RIDW interpolation in the context
of mesh motion problems gives considerable advantages in terms of computational and
memory effort.

On the one hand, the RIDW strategy, discussed in Chapter 3, allows to compute
accurate solutions used to assemble the snapshot matrix with a reduced number of con-
trol points, with a consequent lower memory effort. On the other hand, the POD-based
Reduced Order Method, in conjunction with RIDW, produces an important decrease of
CPU time via the Offline-Online computational splitting. In fact, the Offline CPU times
are compensated by the reduced Online CPU times, considering that the former process
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takes place only once while the latter is the CPU time actually required to compute the
displacement of the mesh nodes.

In Table 4.6 the estimate of the costs of the different strategies implemented with
respect to the standard IDW formulation.

Strategy Online CPU time Error Number of control points
RIDW 40 % 3.1 % 20 %

ROM-IDW 8.5% 0 % 100 %
ROM-RIDW 0.6% 3.2 % 20 %

Table 4.6: Summary table of comparison between the estimated costs of the different
startegies implemented with respect to the standard IDW formulation.

The Table 4.6 highlights the ability of the ROM-RIDW process to exploit the advan-
tages of the RIDW strategy (reduced number of control points) and of the Offline-Online
computational splitting procedure (CPU time considerably reduced), containing, at the
same time, the error on the displacement of the nodes.

The capabilities of the ROM-RIDW strategy becomes particularly evident in the last
examples, when dealing with more complex 3D configurations. Further improvements
are clearly possible, for instance, with reference to the choice of the position of the
control points.
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Conclusions

The main goal of the present work has been the development of an Inverse Distance
Weighting (IDW) within a parametrization strategy for efficient mesh motion applica-
tions.

The advantage of using shape parametrization technique for this kind of problems
is due to the possibility of representing shape deformations via low dimensional spaces
(control points). In particular, the IDW technique shows good properties in terms of
mesh quality conservation and ease of implementation.

Despite these important qualities, its computational cost and memory requirement
are often prohibitive, particularly for complex meshes as the ones characterizing aero-
nautical and naval applications due to the large number of involved nodes.

For these reasons, we have developed and implemented a new toolbox which im-
proves the performances of a standard IDW technique so that it can become useful also
for problems too demanding so far.

After a brief introduction about the state of art of the shape parametrization strate-
gies and the motivation behind this work, in Chapter 2 we have detailed the original
formulation of the IDW technique, highlighting in particular the corresponding benefits
and drawbacks.

In Chapter 3 we have proposed two different strategies of geometrical reduction in
order to reduce the number of the control points involved in the solution computation
and to exploit the IDW advantages. The first new approach is based on a geometric
user-driven procedure to reduce the control points used to compute the internal node
displacement, by user-definable circular annuli. The second procedure, instead, allows
to use IDW technique in ‘dimensional cascade’, i.e., to apply IDW technique in three
different phases (1D, 2D and 3D) to compute, first of all, the movement of the interface
starting from the displacement of some specific nodes, and then the deformation of the
whole mesh.

Since the geometrical reduction has produced good results in terms of memory effort
(by guaranteeing a reduction up to one third with respect to the original formulation),
but it is still characterized by excessive CPU times, in Chapter 4 we have focused on the
construction of a Reduced Order Method to exploit the advantage of a possible splitting
between Offline and Online phases. Inspired by a Proper Orthogonal Decomposition,
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in the Offline stage we have assembled a matrix of solutions (snapshots) for several
interface movements to obtain a reduced solution space. Thus, by a projection on this
space, in the Online stage we have extracted the solution for new arbitrary values of the
parameters.

This procedure has reduced the computation time of about an order of magnitude,
so that the IDW technique turns out to be now available also for real-time and shape
optimization applications, in aeronautical and naval fields that, typically, require almost
instantaneous solutions.

Each development of the original IDW formulation has been successfully tested on
different configurations, starting from simple benchmark test cases to complex meshes
typical of aeronautical and naval settings.

Concerning the future developments of this work, an extensive testing of the entire
mesh motion toolbox on a real CFD application could fully certificate the capabilities of
the new IDW formulation. Moreover, since the code is optimized to work for the serial
computing, in order to further improve the algorithm performances we are thinking to
reorganize it for the parallel computing. Also the geometric reduction of the number of
the control points could be more deeply investigated, driven, for instance, by the physics
of the problem under investigation. A possibility could be realizing a reduction process
based on the gradient of the interface displacement, rather than on the main direction
of the fluid. Furthermore, ROMs are more and more increasing their potentialities in
scientific computing and new challenges arise each day, pushing the researcher to inno-
vative ideas to solve complex problems. Reduced order methods are spreading and very
soon it will be possible to associate their efficient computational properties also with
parametric interfaces management algorithms like the one presented in this thesis.
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