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Abstract

Despite the progressive improvements in terms of simulation capabil-
ities and techniques, some challenging problems still remain infeasible,
or at least too much expensive, in most of the real world applications.
Many techniques were developed in the last decades in order to reduce the
computational costs, such as the Reduced Basis (RB) or the Proper Or-
thogonal Decomposition (POD) method. In this thesis a third technique,
known as Proper Generalized Decomposition (PGD) method, is analysed
as an alternative Reduced Order Modelling (ROM) technique. The PGD
method is based on the assumption of separability for the unknown field,
and it has demonstrated its capability in dealing with high dimensional
problems. In particular, it represents a highly-performing method in the
context of an offline-online splitting scheme, without the necessity of an a
priori knowledge of the solution. It allows to compute, once and for all,
a general convolution solution of a multidimensional framework offline —
where model parameters can be set as extra-coordinates — and then to
evaluate a new solution online — for new specific values of the coordinates,
physical or parameters — at very low computational cost, achievable even
on average performance platforms.



Sommario

Malgrado i progressivi sviluppi in termini di capacita computazionali
di simulazioni e delle relative tecniche di approssimazione, alcuni problemi
complessi rimangono ancora irrisolvibili o troppo costosi nella maggio-
ranza delle applicazioni realistiche. Molte tecniche numeriche sono state
sviluppate negli ultimi decenni al fine di ridurre il costo computazionale,
come il metodo Reduced Basis (RB) o Proper Orthogonal Decomposition
(POD). In questo lavoro di tesi un terzo metodo, noto in letteratura
come Proper Generalized Decomposition (PGD), viene analizzato come
tecnica alternativa di Reduced Order Modelling (ROM). II metodo PGD
si basa sull’assuzione di separabilita del campo incognito, e ne sono state
dimostrate le potenzialita nell’ambito di problemi ad alta dimensionalita.
Ne risulta un metodo molto performante in un contesto di separazione
offline-online dello schema numerico, senza avere la necessita di una cono-
scienza a priori della soluzione. 11 metodo PGD permette di calcolare, una
volta sola, offline una soluzione di convoluzione generale di un problema
nel contesto multidimensionale — dove i parametri del modello sono visti
come coordinate extra — e di valutare poi una nuova soluzione online — per
specifici valori delle coordinate, siano esse fisiche, temporali o parametri —
in tempo reale a basso costo, anche mediante 1'utilizzo di piattaforme a
medie prestazioni.
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Introduction 1

Motivations

Scientific computing and numerical simulations have been gaining more and
more importance during last decades. The progressive growth of modelling
techniques, numerical analysis and discretization techniques leads to the possi-
bility of simulating several phenomena in science and engineering. However,
the main limitations of numerical simulations lie into the computational power
despite of the increasing availability due to the complexity of many models or
to specific constraints such as real-time processing.

The amount of applications where the increasing computational costs
represent the main issue ranges over different applications. High dimensional
models are increasingly common, and they are used in order to describe
structure and mechanics of materials in quantum chemistry [10], or even in
the kinetic theory description of complex fluids [7]. Indeed, modelling social
dynamics and economic systems requires high dimensionality, as well as the
description vehicular traffic or congested and panic flows phenomena. Surely,
there are many applications where complex models could be defined, even if the
practical applications are limited by the so-called curse of dimensionality which
characterizes the high dimensional models. For example, if a D-dimensional
problem is considered, wherein M nodes are used in order to discretize each
coordinate space, the resulting number of degrees of freedom reaches the
number of MP. In case of a problem with M ~ 10% — a very coarse description
—and D = 30 — relatively simple parametric models — the numerical complexity
results 10°° which is a very large number, specially considering that the total
number of elementary particles in the universe is presumed to be on the order
of 108°. Even if the model dimensions could be considered as one of the
main issue related to not affordable computational costs, the growing necessity
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of interfacing with real-time applications is more and more frequent thanks
to the increasing technology developments. In these cases it is evident the
necessity of quick response and then high computational performances, even
using low-performance platforms such as smartphones. Moreover, interfacing
with problem sensitivity analysis with respect to parameters or considering
optimization problems under constrains — such as in the case of optimal control
or shape optimization — leads to the necessity of the direct computation of a huge
number of solutions — i.e. many-query simulations — of the concerned model for
particular values of the problem parameters [31]. Overall, there are different
more scenarios where the computational effort appears to be a discriminant for
the feasibility of the considered approach. A particular attention is deserved to
the numerical methods for Computational Fluid Dynamics (CFD) which are
essential in many engineering applications [30]. These range among different
applications, from aerodynamics in the aeronautical or in the automotive fields,
to hydrodynamic in the naval or in the industrial fields, coming to the more
recent studies of physiological flows in the health care field [4].

Despite the progressive improvements attained by simulation capabilities
and techniques, some challenging problems remain infeasible, or at least too
much expensive for most of applications, possibly involving up to O(10°-10%)
degree of freedom and several days of CPU time also on parallel hardware.
Indeed, classical numerical approaches require too much computational efforts
making both real-time and many-query simulations unaffordable. For these
reasons, it has become necessary to develop suitable Reduced Order Models
(ROM) with the aim to reduce both CPU efforts and storage capacity in order
to open the horizons to new possibilities in the field of numerical simulations.

ROM: State of the Art

Models defining physical problems are often represented by a set of Partial
Differential Equations (PDEs) with parametric dependence, which can either
be physical or geometrical, leading to high computational cost simulations.
The goal of ROM techniques is to capture the main behaviour of a model
while reducing the computational effort with the constrain of controlling the
propagation of the error between the reduced-order approximation and the
full-order solution [31, 23]. Several techniques were developed in order to
reduce the computational cost needed by simulations, such as greedy-based
Reduced Basis (RB) methods or Proper Orthogonal Decomposition (POD)
[13].

The earliest attempt of reduction approximation can be considered the
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truncated Fourier series (1807) for the purpose of solving the heat equation in
a metal plate [19], where a small number of trigonometric functions or modes
were used in order to approximate the solution. During the last three decades,
several investigations on theoretical approaches and numerical methods in the
context of ROMs have allowed to approach many fluid dynamics problems with
the aim of bypassing the computational effort arising from growing demand of
applications and the complexity of the involved models. The main idea standing
at the basis of the reduction strategies is that the behaviour of a system is often
well described by a small number of dominant modes. A general solution is
then computed by several methods as a convolution solution involving different
coordinates and/or parameters and obtained retaining the dominant modes.
Subsequently this general solution is particularized specifying the values of the
coordinates and/or parameters. This kind of approach allows the offline-online
splitting of the solution process and the consequent low-cost computation in
the (online) evaluation process, giving the chance to meet the requests of
high-response algorithms in the real-time context as well as permit several
multi-query applications. The consequent necessity of a reduced computational
cost not only leads to an academic interest on this methods but also should
lead to an engineering pragmatic interest addressed to industrial applications.

The POD can be considered as the best known ROM technique, where the
dominant modes retained are selected applying a Singular Value Decomposition
(SVD) to a snapshot matrix containing the solutions of the system for different
values of the parameters the model depends on. This method is usually
applied to choose a new basis to build the ROMs typically for time-dependent
problems, transforming the original problem unknowns into a set of variables
with a reduced dimensionality — the POD principal components — which retain
the most of the system energy. Firstly introduced in statistics as principal
component analysis by Pearson (1901) [35], it is possible to appropriately refer
to POD after the advent of electronic computers, when it was proposed as
computational reduction tool by Lumley (1967) and Sirovich (1987) in the
context of turbulent flows [45]. Considering last decades studies, it is interesting
to recall the Kunisch et al. works [25, 26] and the Ravindran paper [40] in
the context of parabolic equations, general equations in fluid dynamics and
optimal control of fluids respectively, which are particularly significant in the
aeronautical field.

During last decade an increasing effort has been aimed to the development
of a posteriori error estimation procedures, based for instance on the well-
known greedy algorithms. In this class we can classify the RB method which is
usually applied to build bases for parameter-dependent problems. This popular
strategy is based on the idea of selecting, at each step, the locally optimal
element (refer to [30, 23] for more details on the algorithm). This approach
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is less expensive compared with the POD method. Other methods for the
reduction of the computational cost are base on low rank, balanced truncation,
and other approaches (see [42, 6]).

A new generation of ROM simulation strategies consists in the Proper
Generalized Decomposition (PGD) method. This method follows the idea
of the separated representation, based on finite sum decomposition which
leads to a drastic reduction of the number of degrees of freedom [14]. In the
context of offline-online splitting and considering a generic modelled problem
dependent on different parameters, the PGD method can be easily used to
obtain a convolution solution for different values of the parameters during the
offline stage. The parameters, which could either be space and time or any
kind of model and geometrical parameters, are treated as generic coordinates
for which a specific space is defined, allowing this approach to investigate on
combined time and parameter-dependent problems. Separated representation
was firstly introduced in the 80s by P. Ladeveéze who proposed a first space-time
separation for strong nonlinear problems [27, 29]. Later, the method was used
in the context of stochastic high-dimensional problems [34].

Thests Structure

This work investigates the performance of the PGD method. In particular,
we develop a double comparison between the PGD solution, a reference full-
order solution and a reduced-order convolution solution obtained with a POD-
Galerkin method. A finite element approximation is implemented for the chosen
benchmark problems using the libMesh open-source library [2] which provides a
framework for numerical simulation on parallel architectures. The POD method
implementation considered consists in a library! able to directly interface with
the libMesh library. Similarly, the PGD method was implemented from scratch
as an extension of libMesh, allowing to use the built in Finite Element Method
(FEM) tools.

In Chapter 2 the POD-Galerkin method is described in order to define the
reference reduced-order solution. In particular, a general approach is described
to set a comparison tool for a generic problem, emphasizing the construction
of the method instead of the application of the method to a particular problem
(for which it is possible to find several different articles in the literature, e.g.,

[4])-

Tmplemented by Francesco Ballarin, SISSA mathLab, International School for Advanced
Studies, http://mathlab.sissa.it/, in the framework of the new open access library ITHACA


http://libmesh.github.io/index.html
http://mathlab.sissa.it/

1.3. Thesis Structure

In Chapter 3 the PGD method is described. Firstly, the PGD offline
stage is defined for a generic problem in weak formulation with the aim of
providing a general description in order to underline the strengths of such
an approach. After the definition of the separated representation which is
the starting point of the method, the PGD progressive construction iterative
routine is described as well as each of the issues related to it. Afterwards,
boundary and initial conditions are treated in a general way, defining a problem
which combines Boundary Value Problems (BVPs) and Initial Value Problems
(IVPs), to outline the PGD approach for a generic space-time problem. Then,
the possible parameter dependence is tackled. Finally, the PGD offline modulus
is generalized to define the separated form of an analytic function in a multi-
dimensional space, which represents one of the pragmatic key points in applying
the method.

Then, the benchmark problems used as comparison tests are defined in
Chapter 4. The choice is of defining preparatory problems with an increasing
degree of complexity starting from a parametric transient diffusion equation in
Section 4.2 which can be considered as one of the simplest time and parametric-
dependent problems. For this problem, homogeneous boundary conditions are
considered, without lack of generality, in order to focus on the construction
steps of the PGD solver for the defined problem. Then, parametric Graetz
problem is considered in Section4.3. This increases the computational effort
adding to the previous equation the term of transport. In the resulting equation
no attention is focused on stability issues. Such issues can be considered by
the reader as the object for a future investigation on the PGD method. Finally,
in Section 4.4, a linear bidimensional vectorial problem is considered in order
to take into account problems with a dimension greater than 1. This problem,
can be seen as a simple problem in the context of the structural analysis, which
represents an interesting field of research in the aeronautical engineering. For
each of the chosen benchmark problems, the implementations of the PGD,
POD and standard FE methods are performed and the results are compared
to establish the performance of the PGD method.

In Chapter 5 the results of the analysed problems are commented to draw
some conclusion on the thesis investigation and the detected issues. Moreover,
possible future development are suggested.

This thesis has been developed in the framework of a collaboration between
SISSA, International School for Advanced Studies, mathlab laboratory (Prof.
G. Rozza’s group) and Politecnico di Milano, MOX (Prof. S. Perotto’s group).
An internship at SISSA has been spent in 2015, thanks to the contribution of
the Mathematics Area of SISSA.






2.1

2.2

Proper Orthogonal Decomposition 2

Introduction

The Proper Orthogonal Decomposition (POD) method is based on the idea
that, in many cases, a problem solution can be defined in a subspace of smaller
dimension with respect to the space dimension of the original full-order model.
Indeed, it is possible to identify a certain number of dominant modes associated
with most of the energy of the system. For this aim, the POD begins with the
construction of a snapshot matriz generated by a discrete evaluation of the
problem solution for different values of the problem parameters, as well as for
the time coordinate. The snapshot set is determined using a costly, large-scale,
high-fidelity method [9], e.g., finite elements, with the result of a reduced-order
model built a posteriori by means of an already-computed discrete field. The
original problem unknowns are transformed in a reduced dimensionality set of
variable called POD principal components, where the reduced basis generated
is obtained applying a SVD to the snapshot matrix. The POD basis is then
given by the left singular vectors corresponding to the most meaningful singular
values of the snapshot matrix.

POD-Galerkin Constructor: Offline Phase

In this work a POD-Galerkin ROM is considered as reference reduced-order
approximation and it will be used as comparison.
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Consider a generic differential problem defined by the operator A such that:
Alutxp)) = tep) in 2p)

where f is a given distributed source term. In (2.1) the domain €2 is defined
as the Cartesian product between the spatial domain Q, C R, with d spatial
dimension, and the domain associated with a generic set of parameters the
spatial domain depends on. Denoting this set by pu € Q,, C R, with P the
number of parameters, any parameter may characterize either geometrical
configurations or physical properties of the problem. The set space is in turn
the Cartesian product between the spaces associated to each parameter. The
domain is then defined as:

It is evident the privileged role of the spatial coordinate x with respect to the
parameter set p, highlighted also in the expression of the unknown field u.
Indeed, in a POD framework the spatial coordinates can be viewed as “master”
coordinates and the corresponding dominant modes are sought in order to
retain the most energetic information. As explained in Chapter 3, in the PGD
there are no privileged coordinates and each variable — either spatial, temporal
or a parameter — is considered as a “generic” coordinate.

In order to derive the algebraic formulation of (2.1) we firstly write the weak
form of the problem. To do this, we define the unknown space V' over a reference
spatial domain Qy such that the parametrized space domain Qx () can be
obtained as the image of {2, through a parametrized map T'(-; ) : R — R%
ie, Qx(p) = T(Qx; p). The space V' is a Hilbert space equipped with a norm
associated with its inner product (-, -)y.

The weak formulation is then obtained by multiplying problem (2.1) by a
test function v € V, integrating over the spatial domain — eventually integrating
by parts the diffusion term in order to reduce the solution regularity order
required — and then tracing back to the reference domain 2. For example,
if a linear operator is considered, then a bilinear form is associated with the
operator, as well as a functional is associated with the source term, leading to
the weak formulation of the problem:

find u € V such that a(u,v;pn) = F(v;p) VweV.

Introducing then a finite-dimensional space Vj, C V of dimension N,
being h > 0 the computational mesh size, a Galerkin-Finite Element (FE)
approximation is considered. Then, denoting by {(,0?}24:1’_“7 nh a (Lagrangian)

(2.1)

(2.2)
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basis of V},, the FE approximation of (2.3) reads
find vy, € Vj, such that a(up, vp; ) = F(vp;p) Vvp € V). (2.4)

Problem (2.4) can be written as the equivalent algebraic linear system

Ap) u(p) = £(p) (2.5)
for the vector of the unknowns u(u) = (ugl), e uEINh))T and where
(Aw) = aleh,elim); (£(m). = Flelin). (2.6)

i %

Then, we introduce the inner product matrix X for the space V}, whose elements
are given by

h h
(X)ij = (¢}, 0l)y, €RV, (2.7)

(+,*)v, denoting the discrete inner product defined over the space Vj,.

The POD here described aims to find a reduced order space Vy C Vj
collecting a combination of “snapshots”, i.e., of FE solutions. We denote by
S =upul,...,u"C Q,, a training sample of n points in {2, such that it is
possible to define the snapshot matrixz as:

S = [uy(ph)]. . [uy(u")] € RN (2.8)

which demands the computation of n FE problems, where n < N,

A POD basis for the unknown field u can be obtained considering the
Singular Value Decomposition (SVD) of the following matrix:

X'rs = uswT, (2.9)

where U € RN"*" is a matrix containing the first n left singular vectors,
W € R™ " is an orthogonal matrix containing the right singular vectors, and
3 € R™™ is a diagonal matrix containing the singular values of S. For any
N < n the POD basis is given by the functions ¢; for ¢ =1 : N which are the
with the first N columns of U (left singular vectors). We underline that the left
multiplication by X'/ guarantees the basis to be orthogonal with respect to
the inner product (-, -)y, , while considering only the snapshot matrix S would
lead to a basis orthogonal with respect to the product defined in RV " Then,
it is possible to define the POD basis matrix as

h
Z = [p]...|p,] € RN"*N (2.10)
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and the basis functions of the space are Viy = spanesq, ..., pN.

A different approach — which however might conduce to a worst conditioning
— leads to solve eigenproblem for the two-point correlation matrix

C = STXs e R

and to define the POD basis for the space Vi as the set constituted by the
first N eigenvectors of (2.11) expressed as

1

5TUA

S j=1,...,N

being
C’Qj = )‘jﬁj j=1,....,N

and

o= (05)°

It is easy to verify that the basis functions are by construction orthonormal.
For more detailes the readers can refer to [45].

Notice that the dimension N of the reduced space is chosen as the smallest
integer for which the “energy” of the retained modes

N (5:)2
E(¢1,---, ¢N) :z{fl#

j:l(aj)Q

is greater than 1 — €, for a prescribed (small) tolerance €.

The interested reader can refer to [23] and [22] for more details about the
method.

Affine Parametric Dependence

A key point for an efficient ROM evaluation is the capability to decouple the
construction stage of the reduced-order space (once and offline) from the para-
metric evaluation stage (online), i.e., the so called offline/online decomposition.
In order to reach this goal, further assumptions on the linear algebraic system
(2.5) are needed, requiring that matrices and vectors fulfil the assumption of
affine parametric dependence [41]. Thus, they can be written in a form

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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like
Qa Qy
Alp) = Z@f(u) AT f(p) = z_:@f;(u)iq

and similarly for the other terms. We remark that the parametric dependence
is only in the @?(u) € R and @f(u) € R functions while the coefficients
A7 € RN"XN" and f7 ¢ RV " are computed once. When dealing with affine
parametrization, expressions like (2.16) are straightforward to be obtained,
while, in case of nonaffine parametrizations, an appropriate affine expansion
can be recovered by means of the Empirical Interpolation Method (EIM) [5].

POD Online Phase

As shown in section Section 2.2, an orthonormal set of basis functions for the
space Vy is obtained performing a POD over each set of snapshots. Then, a
reduced-order approximation for the unknown field up is obtained such that

u(p) = Zuy(p)

where the reduced-order approximation uy € RY is determined performing
a Galerkin projection. In order to achieve this projection, the residual
associated with up is imposed to be orthogonal to the columns of the basis
matrix (2.10), i.e.,

27 |t~ Alw) Zun ()] = |0

Thus, once the reduced basis is built — during the offline stage — for any new
value p of the parameter in the set 2, the reduced-order approximation is
obtained solving — at the online stage — the following reduced-order problem

Ay () uy(p) = fy (1)

where the N-th reduced terms are defined as

An(p) = ZV A(p) Zz e RV fy(n) = ZTf eRVY.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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3.1

Proper Generalized Decomposition 3

Introduction

The Proper Generalized Decomposition (PGD) method can be viewed as an
a priori reduced-order approximation, i.e. which does not need to know the
solution of the complete problem. Ideally, one would be able to assess the
accuracy of the reduced-order solution and to define if a successive enrichment
of the reduced approximation basis is needed. An approximated solution of a
field can be often written via a separated representation involving few terms
(e.g. a combination of shape functions in the framework of a finite element
method). Reduced order methods, such as POD, demonstrate how a small
number of basis functions ®(x) could lead to a sufficiently accurate numerical
solution. These functions are obtained by solving an eigenvalue problem
associated to the snapshots of the complete solution computed for different
values of the coordinates — such as physical and/or geometrical quantities. In
particular, the more the field evolves smoothly, the more the magnitude of
the ordered eigenvalues a; decreases fast with the index ¢, and the fewer are
the modes needed to approximate the evolution of the field with a desired
accuracy. Defining a cutoff value € in order to decide what eigenvalues «; (and
so the corresponding modes) are relevant, only a small number N of modes are
usually retained (with N < M, where M is the number of the discretization
mesh nodes), such that «; > €, for i < N. Thus, in the case of a general space
and a time dependent scalar field u(x,t), it is possible to write

N
u(x,t) ~ Y O(x)Ti(t) .
i=1

Equation (3.1) represents a natural separated representation and consists in

13
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a finite sum decomposition: the solution is approximated by a sum of function
products where each function depends on only one of the variables involved in
the model. The use of this separated representation is the core of the PGD
method where the solution is computed via an enrichment loop of the sum.
It results that the n-th enrichment step provides the n-th term of the sum,
considering known the previous (n — 1) terms. Then, the n-th approximation
of the unknown field is

n—1

u'(x,t) = D (x)T(t) + Z D, (x)T;(t)
i=1

where it is clear that the unknown functions identify a nonlinear problem.
Ideally, the functions involved should be computed simultaneously by applying
a suitable algorithm to guarantee robustness and optimality [14]. A suitable
iterative process is then needed in order to compute each function of the
nonlinear problem. This issue persists even in the case when the original
problem is linear.

The first advantage in terms of performances is appreciable when consid-
ering, for example, a transient problem defined in a d-dimensional physical
space. Use of a common incremental strategy with T time steps requires the
solution of T' d-dimensional problems, one for each time step. On the other
hand, a space-time separated representation as in (3.1) leads to the solution of
N d-dimensional problems for each nonlinear iteration p needed to compute
each term of the finite sum (3.1). With the assumption of a constant number
Q@ of nonlinear iteration for each term of the sum we have a total of N - Q
d-dimensional problems to be solved. For many problems this total number is
significantly less compared to the total number of problems to be solved with
a common incremental method, i.e., T'> N - @Q (see Section 3.2.4).

This different approach allows to split the space-time problem into a series
of decoupled Boundary Values Problems (BVP’s) and Initial Value Problems
(IVP’s) thanks to the separated representation of the solution (see Section3.2.4).
This leads to different decoupled problems for each coordinate to be solved
with different and independent strategies. Thus, the PGD can be viewed as an
outer shell which organizes a series of solvers for the decoupled sub-problems
allowing the use of the preferred — or most convenient — solver available for
the particular BVP or IVP. For example, it is possible to solve a transient
parametric diffusion equation by the use of first order finite differences for the
IVP’s and by the use of finite elements for solving the BVP’s (see Section 4.2).

The optimality of the PGD method is not expected when the differential
operator defining the model is non-symmetric, for example in the transient
diffusion equation — as it contains a first order time derivative — in particular
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with small diffusivity k. Indeed, the number of modes involved in the separated
representation could increase significantly. Alternative PGD strategies can be
used in order to alleviate this difficulty, as expressed in [14, p. 104]. Moreover,
a possible simple approach consists in a data post-compression of the computed
PGD solution by invoking once again the PGD, as described in Section 3.3.1.
The reader can find more details on the separated representation in [20].

The PGD approach is developed in a context of online-offline splitting
of a high dimensional model. In order to do that a convolution solution is
computed once and offline, with respect to the variation of the value of each
parameter, considered as a possible coordinate moving in its own space. Then,
a particular solution — for specific values of the parameters — can be evaluated
at low cost — online — allowing the computation on any also low performing
platform — such as smartphones or tablets — or in high frequency applications —
such as real time simulations — as described in [8, 33].

PGD Offline Phase

In order to provide a PGD constructor which computes a convolution solution
of a problem, we firstly need to define the solution dependencies. Consider a
problem dependent on a certain number of physical coordinates (i.e. space and
time) and on a certain number of parameters, either geometrical or physical
properties of the problem. In the PGD framework all the physical coordinates
and parameters are denoted as generic coordinate.

Thus, a generic linear problem is dependent on N¢ coordinates defined in
the spatial coordinate space €2, and time ¥, and in the space of a generic set
of parametric coordinates u, each defined in its own space Ilg, with £k =1 : N
being N the number of the components of p. The solution u is thus defined
in the space 2 = ), x ¥ X Hg:’“l 11, where the total number of coordinates
is No = Ni + 2. For a more compact notation, the whole coordinates are
grouped into the generic coordinate vector x where each coordinate is defined
in its own space 1;, with j = 1 : Ng. Accordingly with the connotation of
coordinates in the PGD context, each one of the N¢ coordinates can either be
physical or parametric, as well as scalar or vectorial. Indeed the physical space
coordinate is denoted by s and it coincides with the first PGD coordinate, i.e.,
x1 = s and 1 = €, while the time coordinate is zo = t such that Qo = 3,
and so on.

Defining the problem operator A as a sum of Ny linear operators and

15
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denoting by f the source term, it is possible to write the problem as:
Np
Aw) =Y Alu) = f inQ
=1

with the addition of the desired boundary and initial conditions.

A weak formulation of problem (3.3) is firstly needed in order to derive its
algebraic formulation. Denoting by U the unknown space defined over 2, such
that

U =Hgpo, () x L*(S¢ x [ W)
k=1

the weak formulation can be obtained multiplying (3.3) for the test function
u* and integrating (by parts) over the whole domain €. The following weak
formulation of the problem is obtained:

Np
find u € U such that: Zal(u, u*) = F(u*)
=1

where a! represent the bilinear forms associated to the linear operators A’.

Separated Representation

The separated form of the solution consists in a finite sum of products of N¢
functions, each one dependent on only one coordinate. Considering the solution
approximation as a N-term finite sum, the PGD yields the separated form for

the solution u?¥
N ) ) N Nc¢ ‘
uV(x) = Y Ul(s)oUj(t)o--- = > [ Ul(x;),
i=1 i=1 j=1

where, for the generic vectorial unknown field u, the product sequence is defined
as a sequence of Hadamard products (known as Schur product [17]), which
consists in an element-wise product. In this way the representation of u results
in a separation of each element of the unknown vector. With U;- we denote
the functions of the separated representation depending on the j-th coordinate
associated with the i-th term of the sum.

Then, the generic linear operator A can be defined in a separated form. Each
one of the Ny, linear operators in (3.3) is written as a product sequence which
involves N¢ linear operators Lé- dependent on the corresponding coordinates,

(3.4)

(3.5)
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with j =1 : Np. Then, it is possible to rewrite (3.3) as:

N No

Y HLU) =f inQ (3.7)

=1 j=1

where the products involved in the sequences are defined as Hadamard products.

Consider a problem defined by the separated operator (3.7) and consider
the unknown field, approximated with the separated representation (3.6). In
virtue of the linearity of the bilinear forms of the weak problem (3.5), it is
possible to write the bilinear form associated with the whole operator A for

the N-term approximation u? as:

N N, /Ne Ne
a(u¥,u*) = lezlal<F[1U}(xj), F{Uj(mﬂ) . (3.8)

where the bilinear form a' can be expressed by the means of the bilinear forms

related to the whole linear operators Cé, called aé.. Thus, we can define a
product sequence intended as a sequence of convolution products, i.e., tensor
products, such that

N¢ ‘ Ne No
H d(Ui(x), Us(z))) = al<HU;<wj>, HU}f(wﬁ) : (3.9)
j=1 j=1

j=1

and we can rewrite (3.8) as

N N, /Ne Ne
a(u¥,u*) = ZZ@(HUE(@), HUj(xj)> . (3.10)
i=11=1 \j=1 j=1

The test function u* can be defined in the general separated form, accordingly

to (3.6), and it results
Ne

u(x) = J[ Uj(x;) . (3.11)

=1

The problem unknowns are represented by all the U; each of one multiplied
by the associated test function U;f, as well as multiplied together, resulting in
a nonlinear problem to be solved.

17
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The separated approximation (3.6) is a sum of N function products, each
involving N¢ functions U;(xj), unknown a priori. The construction of the ap-
proximation is made by a successive enrichment loop where each unknown
function product at the current step is computed, and the process continues
until a defined accuracy is reached [15]. Thus, at the n-th enrichment step, the
functions U;- (z;) are known for i < n, from the previous steps, while U7 (z;)
are the unknown of the current step, for j = 1 : N¢. The solution (3.6) can be
expressed in a form which underlines the n-th unknown terms:

N¢o n—1 N¢ )
u'(z) = U (z;) + > ] Ujay) .
j=1 i=1 j=1

The nonlinear character of this unknown function products is the price to
pay for the separated representation and it requires a nonlinear loop which
implies m iterations in order to compute the unknown functions U?(acj), for
each coordinate j, i.e., it requires a number of m iterations in order to reach
convergence. It is important to point out that the nonlinearity resulting from
the separated approach is independent from the nonlinear character of the
operator A, so that we have a nonlinear PGD problem even if the original
problem is linear.

The main advantage of this construction process in terms of costs consists
in the splitting of the problem into a number of sub-problems equal to the
number of coordinates N¢, so that each problem is a low-dimensional problem
defined in its own coordinate space and thus much less expensive. In fact,
even if the computation of a solution is needed for each nonlinear step and for
each of the N enrichment steps, the computational reduction is due to the fact
that the number of the enrichment steps is typically low. Moreover, most of
sub-problems are one-dimensional — for each parameter coordinate and for the
time coordinate — and the d-dimensional space problem is time independent,
resulting in a set of low-cost subproblems. Sometimes, it could be convenient
to separate also the physical space [14, p. 15], such as in case of plate, shell
or extruded geometries, as well as in case of composite laminate analysis or
in the general case of dominant-direction contexts. A mere quantification of
cost reduction can be obtained in the simple case of the same number of nodes
M used to discretize each coordinate with a total number of N enrichment
steps. The PGD leads to a total number of N - M - N¢o unknowns, instead
of the MM¢ degrees of freedom — the exponential dimensionality growing
is the so-called curse of dimensionality — involved in standard mesh-based
discretizations. Thus, for low N and high-dimensional N¢o and high-resolution
M approximations in the computational cost is significantly reduced.

(3.12)
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A simple nonlinear iterative method to be used during the computation
of the n-th enrichment step consists in a fixzed point alternating direction
strategy, as proposed in [14, p. 27]. Accordingly to this algorithm, each
unknown function U?(:vj) is separately computed in the space of its coordinate,
considering known and fixed the other coordinates.

Remark

The advantage of applying the PGD separated approach to
the problem resides in the ability to split the original problem
with the consequent possibility to use different numerical
methods for each subproblem.

During the generic p-th nonlinear step each subproblem has to be sequen-
tially solved considering the other subproblems at the last computed value, i.e.
the value at the p-th step for the just solved subproblems and the value at the
(p — 1)-th step for the not-yet solved subproblems. The loop starts from an
appropriate initial guess which must be chosen accurately. In fact, a null j-th
solution, chosen in order to evaluate the corresponding problem, would lead to
a null coefficient that multiplies the bilinear form of the considered subproblem,
resulting into a singular problem. One possibility resides in choosing the initial
condition as unitary for each known-considered function at the first enrichment
step, and then use the separated solution of the previous enrichment (n — 1)-th
step as initial guess for the current n-th nonlinear loop. The practice suggests
that this choice leads to a faster convergence of the nonlinear loop with respect
to the choice of a unitary initial guess for each nonlinear loop. On the other
hand, in case of strong non-symmetric operators this could lead to a worse
result.

At the n-th enrichment step and p-th nonlinear step, in virtue of the linearity
of the bilinear forms (3.10) and considering the solution representation (3.12),
the associated bilinear form can be defined as:

n—1

a(u™? u*) = F(u*) — Z a(u’,u*) .
i=1
which consists, at the p-th linearization step, of the nonlinear problem associated
with the n-th enrichment step.
Every nonlinear loop consists in the computation of the whole unknowns,

one for each coordinate subproblem. Thus, during each subproblem solution
the bilinear form (3.13) has to be specified to the related coordinate. Then, the

(3.13)

19



3.

PROPER GENERALIZED DECOMPOSITION

20

test function associated to the j-th subproblem, i.e., u}, is the multiplication
between the test function U} and the trial functions U, for k =1: N¢
with k& # j. The trial functions are solutions of the associated suproblems
computed during th g-th nonlinear step. Note that with -; are denoted the
quantities specified to the j-th subproblem, for which only the j-th component
is considered unknown, as said just before. There are two possibilities for the
choice of uj:

o consider the solution of each subprobem at the previous (p — 1)-th nonlinear
step:

No

W (o) = H (02" (o0) o (U () 5
(=

e consider the solution associated to the previous nonlinear step for the
not-yet-solved problems and the current p-th nonlinear step solution the
just-solved problems:

Jj—1 Ng
j(zj) = P[ULP (2m) 0 Uj(z;) 0 UG
m=1 M=j+1

The two choices share the same spirit as the Jacobi and the Gauss-Seidel
method, respectively, where in the first case the computation is based on all
the previous values, while in the second one the just-computed values are
exploited[32]. Approach (3.15) has been chosen resulting in a fast convergence
of the method. Although this approach may not be easily parallelizable, the
most expensive part from the computational point of view resides in solving
each single subproblem, operation which can be often parallelized. For these
reasons the second choice seems to be the smart one. Anyway, in both cases
the only unknown resulting is the one associated with the n-th enrichment step
and the j-th coordinate function, U} (z;).

Similarly to (3.10), omitting the dependency coordinate z; of the j-th
coordinate functions for a more compact notation, the bilinear form can be
written as:

NL NC n—1 NL NC . .
a(",w) = 3 Ha(U3.05) + 14U}, 0)
=1 j=1 i=1 =1 j=1

where the only unknown is related to the n-th step. Thus, considering known
the bilinear form evaluated at the previous enrichment steps, i.e., for i < n, and

(3.14)

(3.15)

(3.16)
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underlining that the only unknown is related to the j-th coordinate problem of
the p-th nonlinear step, it is possible to specify the bilinear form (3.16) with
respect to the j-th subproblem. This provides a form a; defined as:

Np j—1
a;(UTP, U3) = > Hal, (UnP) ® ds (UTP, U7) ®Ha unh
I=1m=1 M=j+1
+ Z > Hd (Ui, Ul
=1 [=1 j=1
where the abuse of notation af(U}?) is used to indicate bilinear forms with re-
peated input arguments in order to simplify the notation. Note, once again, that
the bilinear form in (3.17) only depends on the j-th test function component,
considering unknown the only U}
Similarly to the separated solution in (3.6) and to the separated bilinear
form in (3.16), the source function has to be considered in separated form
as well (see Section 3.3), and analogously any other function involved in the
problem, such as Dirichlet data or Neumann fluxes for the space subproblem
and initial condition function for the time subproblem (see Section 3.2.5). For
example, a source function which consists of a constant part fo and of a
non-constant part fyo known via a Np-terms of a finite sum
Np Ng
fvo(x) = Y H Filzy) (3.18)
i=1 j=1
leads to the separated functional:
No Np Ng o
NC,i
u) =fo- [c(U) + Y H FVN(U) (3.19)
j=1 i=1 j=1
where:
_ /Q Ulda; ; FNGi(u? / U’ - Fida; . (3.20)
i

Analogously to the bilinear form in (3.17), the functional specification for
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the j-th subproblem becomes:

_ i-1 Ne
Fy(U3) = fe - (Hen(U) 0 ¢;(U5) 0 Hew (U3 )
m=1 M=j+1
- NC Ne
+ > (AN Uy e 1Y Uy) @ H ENC(U3)
i=1 m=1 M=j+1

where the product sequences related to the constant source term are intended
as a sequence of Hadamard products to be scalar multiplied for the constant
source term fg, in order to obtain a correct reconstruction of the separated
functional F'(u®).

The single p-th nonlinear step could be generalized as the solution of the

whole N¢ subproblems, where the j-th problem related to the coordinate x;,
is defined as:

n—1
a;(U7P,UF) = F;(U5) — Y a; (U5, U3)
=1

Remark

The total amount of problems is equal to the number of coor-
dinates D. The dimension of each j-th subproblem is equal
to the dimension of the considered coordinate space, dim(€;).
Therefore, it is evident that the mazimum dimension of the
single sub-problem results lower than the one obtained in the
case of the full-order problem.

The process continues in an iterative loop until a defined accuracy is reached.

The evaluation of the accuracy is performed by a specific nonlinear stopping
criterion and the end of the fixed point loop determines also the end of the
n-th enrichment iteration, which ends with the assignments U7 (z;) < U;""(x;)
for each j < D. The enrichment loop continues until a chosen enrichment
stopping criterion is satisfied and its end determines also the end of the PGD
offline phase.

However the optimality of the described process is not guaranteed because
of the general presence of non-symmetric differential operators involved in
the model and the presence of strong nonlinearities, advection terms or extra
coordinates, which may cause the fixed point alternating direction strategy to
converge too slowly or fail. In this case it is necessary to consider a different

(3.21)

(3.22)
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strategy such as a residual minimization, as described in [16, 15], where an
iterative alternating direction scheme is applied in order to minimize the
square of the norm of the residual in a strong form. This approach was
firstly described in the context of the LATIN method for structural problem
[29, 15] and was successively treated via a more efficient strategy [36] and in a
generalized procedure for multidimensional models [12]. Despite the fact the
residual minimization approach is more efficient when the problem concerns
non-symmetric operators, it is far from being optimal and the number of terms
computed in the separated representation of the solution contains more terms
than strictly needed.

Stopping Criteria

The PGD constructor leads to the solution of a nonlinear problem for each
enrichment loop. Thus a nonlinear loop proceed until reaching a fixed point
within a user-specified tolerance e/P. The fixed point loop ends when a stopping
criterion error £fP(p) is small enough, i.e. e/P(p) < e/P. A possible nonlinear
stopping criterion proposed in [14, p. 27] is to consider the error defined by:

n, n,p—1
_ | H j’V:CIUj Plxj) — H ;‘VzclUj P ()|

fp
er (p) N
I H 55057 ()]
where || - || is a suitable norm, for example the L2-norm.

This particular stopping criterion underlines another motivation why a null
initial guess for the fixed point loop is not suitable. In fact, in that case the
residual computed by criterion (3.23) would not be defined due to the null
denominator.

As mentioned in [20], another possibility lies in computing the stopping
criterion error as:

N¢
=", —n,p—1
e(p) = YU (a) — TP ()2
j=1

where ﬁ;l denotes the normalization of the j-th function. This criterion allows
to define a residual which is more sensitive to the local variations of the j-th
coordinate, for each coordinate, instead of a global behaviour stopping criterion
as in (3.23).

The experience suggests that the second stopping criterion is more accurate
and it is monotonic, while the first is only decreasing in average but oscillating,
leading to a slower convergence, less accuracy and less stability. In fact, we

(3.23)

(3.24)
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can notice that the fist stopping criterion involves the normalized difference
between two consecutive composed solutions (multiplication of the functions of
each coordinate). Thus, this quantity is sensitive to the decrease of a product
of more terms and the high difference — in norms — between two multiplied
terms leads to high numerical errors.

On the other hand, the PGD constructor produces an enrichment sequence
of function products until a defined accuracy is reached. The evaluation of the
accuracy is performed by an appropriate enrichment stopping criterion
which measures the n-step enrichment error €*(n), so that the enrichment loop

ends when £°*(n) is smaller than a user-defined tolerance €, i.e., € (n) < €.

Following the possible choices proposed in [14, p. 30], some stopping criteria
are proposed. Each of them is based on a suitable norm || - ||. Without loosing
generality, in the following we adopt the L?-norm — as in the case of the
stopping criterion associated to the fixed point loop — leading to the evaluation

of integrals of dimension less than or equal to three, as described in Section 3.2.

A first stopping criterion could be the relative weight of the last-computed
mode with respect to the entire PGD expansion. Thus

_ IHYUE)
IS H Ui

e7"(n)

Since u™(x) is expressed in a separated form, its square will be also expressed in

a separated form having nntl) terms, involving the evaluation of D + n(nQH)D

2
integrals.

A similar, but less expensive, criterion is based on the relative weight of
the last-computed mode with respect to the first one, i.e.

_H 35U
| B Ul

er(n)

This second criterion requires the computation of only 2 - D integrals.

More accurate error estimators can be defined in terms of the residual
Ry (u*) obtained from the bilinear form (3.10), i.e. considering unknown all
the N¢ coordinates x;. This leads to the weak form of the residual:

Rn(u*) = Zn: <§Lj (ﬁ%(@(%)ﬂ?(%)))) — F;(Uj())) -

(3.25)

(3.26)

(3.27)
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Non-Incremental Time

As said, the PGD constructor allows to approximate the field u(zq,...,xp)
with the separated representation (3.6) leading to D independent sub-problems.
A space-time problem is considered as defined in the coordinates s € €25 and
t € ¥ in order to investigate the time-dependence approximation of the PGD
problem. This approach leads to a non-incremental algorithm where the
time dependence is decoupled from the space dependence, in contrast to a
standard incremental method where the temporal evolution is associated to
the spatial solution increment. The IVPs defined over the time space X,
have a computational complexity which is negligible compared to that of
the BVPs associated with the physical space €2, even if small time steps are
considered. Moreover, in contrast to a standard incremental solution procedure,
the separated representation allows to consider also big time steps without
causing significant stability issues on the numerical scheme [14, p. 62].

In case of @),, nonlinear iterations for each enrichment step, we have a total
number of Q = Q1 + --- + Qn decoupled problems to identify the N-term
approximation (3.6). Numerical experiments suggest that @,, rarely exceed ten
while N is O(10). Thus, the complexity of the complete PGD solution results
in few hundreds of BVP’s in €2,. This is generally several orders of magnitude
less than the total number of BVP’s obtained with a standard incremental
procedure.

It is important to emphasize that the time step choice for the IVPs integra-
tion is ‘ndependent from the mesh size used in the BVPs problems. Indeed,
the non-incremental approach leads to the possibility to bypass the stability
CFL condition [43] that links the time step with the space mesh size. Obvi-
ously, if the space and/or time resolution of these decoupled problems is too
poor, the PGD will compute an inaccurate solution, but this issue regards the
convergence rather than stability on the whole procedure.

In conclusion, we can state that the non-incremental time approach leads
to the possibility of choosing the desired numerical method for the treatment of
the time dependence without any constrain related to the spatial discretization.
This freedom in selecting the numerical schemes leads to a reduction of several
orders of the number of BVPs.

Boundary and Initial Conditions

The separated nature of the PGD approach leads to consider decoupled prob-
lems with respect to each of the D coordinates. Analysing the spatial BVPs
defined in 25 and the IVPs defined in ¥4, it turns out to be not trivial to deal
with the boundary and initial conditions associated with the original model.
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They have to be properly related to the sub-problems generated by the PGD
process.

In the following, a space-time problem with generic boundary and initial
condition is considered. We introduce the Dirichlet data in a set of functions
gy defined on I'p, x ¥; with I'p, C 9€), for each d = 1 : Np, the Neumann
fluxes in a set of functions qy, defined on I'y;, x 3; with I'y, C 0€, for each
h =1: Ng. We consider a source term f defined in {25 x 3; an initial condition
ug defined in ;. The problem can be written as:

Au(s, 1)) = f(s, 1) in Q, x 3
u(s,t) = gy(s,t) onT'p, x%¥ Vd=1:Np

agh (u(s,t)) =au(s,t) onTy, x%  Vh=1:Ng

u(s,0) = up(s) in Q4

where aglglls denotes the elliptic part of the bilinear form — where the elliptic
character is intended to be with respect to the spatial coordinate s — restricted
to the boundary of the spatial domain ), i.e., after integrating by parts. Notice
that the possible presence of more coordinates — such as problem parameters —
is irrelevant for the assumptions we are going to formulate. In order to take into
account non-homogeneous Dirichlet boundary conditions, a lifting approach is
considered. Thus, the requirement on the Dirichlet data is that the functions
g4 — which have to be strictly defined on the Dirichlet boundary I'p, for each
d =1 : Np — have to be regular enough to guarantee the existence of the
operator A(gg,, t) — defined on the whole domain Q = Qg x ¥; — and thus have
to be defined on the whole domain 2 as well. For the same reason, we require
that they are regular enough to guarantee the same values at the interfaces
between Dirichlet boundaries, if any. In other words, the functions g, have to
be extended to the whole domain 2 with continuity, i.e., g; € CY(). At the
same time, the requirements on the initial condition is that, at the Dirichlet
boundaries, it has the same value of the Dirichlet data, i.e. ug(s € I'p,)
which consists again in a continuity requirement. It follows that a regularity

(3.28)
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condition is demanded on g and ug so that we have:

Jg(s,t) € Q such that

g(S, t) = gd(sv t)

ug(s) = g(s, 0)
Np
forseI'p with I'p = U FDd
d=1

Note that this condition implies that the “extended Dirichlet boundary
function” g(s,t) has to properly extend the Dirichlet data g,;. Such function is
the lifting function, and the simplest way to define it consists in computing
the solution of a simple Laplace problem completed with the same boundary
conditions as the original problem, in order to find a function regular enough
to satisfy many linear operators. A possibility is to consider the solution of
the following problem:

Vig =0 in Qg x X4

g(s,t) = gy(s,t) onI'p, x X

The regularity of the function g is subordinated to the existence of A(g,),
so that problem (3.30) may differ to guarantee the constrain of regularity or
to be less computationally expensive as possible.

Experience suggests that the assumptions (3.29) are sufficiently general to
describe most of the problems of physical interest in engineering and industrial
processes.

Is now possible to apply the lifting with a simple variable change, by
rewriting u(s,t) as u(s,t) = v(s,t) + g(s,t), so that we obtain a problem
similar to (3.28) but with homogeneous initial and boundary conditions, i.e.,

(3.29)

(3.30)
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A(vis,t)) = f(s,t) = A(g(s,t))  in Oy x %

v(s,t) =0 onI'p, x X Vd=1: Np
agh (v(s, 1)) = qp(s,t) onl'y, x¥; Vh=1:Ng
v(s,0) =0 in Q,

Note that the lifting approach guarantees that the initial solution is null,
allowing to assume a null initial condition for the IVPs independently to the
initial condition of the original problem.

The solution of the original problem (3.28) is then reconstructed as

u(s,t) = v(s,t) +g(s,t)

v(s,t) being the solution to the homogeneous problem (3.31).

Seeking for a separated representation of the function g(s, t) with N¢g terms
(as in Section 3.3) and applying the PGD solver to compute the unknown field
v(s,t) allow us to achieve an approximated solution of the original problem of
the form

u¥(s,t) = Y [ Gi(s) 0 Gi(t) + Y Vi(s) o Vi(t)
i=1 j=1 i=1

where the terms G;(:L'j) associated with the function g(s,t) ensure the satisfac-
tion of the Dirichlet boundary conditions of the original problem (3.28), while
the functions V;(ac]) — coming from the enrichment process of the homogeneous
problem (3.31) and thus null on the Dirichlet boundary I'p(€25) — allow the
complete solution (3.33) to verify both the partial differential equation and
the natural (Neumann) boundary conditions (c¢f. [14, p. 40]). Then, the lifting
function g coming from the non-homogeneous Dirichlet boundary conditions
can be treated as part of the enrichment process and the reconstructed N-term
solution can be written as:

G+N

u¥(s,t) = Y Ui(s) Uy(t)
=1

If the problem depends on more coordinates and not only on the spatial
and temporal ones, the considerations are the same with the only difference

(3.31)

(3.32)

(3.33)

(3.34)
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that each term of the function products in the previous separated forms
are multiplied by a function dependent on each other coordinate x;, with
j = 3 : N¢. Considering, for example, (3.34) the summed products are
H UZ fori =1: G+ N. In particular, if the lifting function g(s,t) is not
dependent on z;, the term related to that coordinate does not provide any
contribution to the definition of the function itself, and thus it is possible to

take into account that coordinate setting Gg (xj) =1, for each finite sum term.

When Neumann boundary conditions are specified, we integrate by parts
the bilinear form and introduce the Neumann fluxes in the formulation. Seeking
for a separated representation of the functions q;, in (3.28) (as in Section 3.3)
each defined by Ng, terms, a linear form ¢ associated with ae” is defined
similarly to (3.10) via a separated representation:

Ng Ng,, D

ZZHq'”U*

h=1 =1 j=1

where:

hvi * * ]’L,l
2w - [ v
)

and Q;” are the functions defining the separated representation of the Neumann
flux functions qj,.

In case of a generic differential operator defining the problem, the process
is the same with only additional care to treat all the boundary terms as shown
before.

Extra Coordinates

In the PGD framework the notion of coordinate is enlarged to any parameters
which may characterize the problem, either in terms of geometrical configuration
or physical properties. In this work some property parameters are taken into
account in the benchmark tests. This is the case of the diffusivity parameter
k, the reaction constant ¢, and the transport velocity vector b characterizing
for instance a standard advection-diffusion-reaction problem. The parameters
are set as new coordinates of the problem. It is also possible to introduce
boundary and initial conditions as new coordinates, as well as the geometrical
domain, by means of different approaches. In [15, Chap. 2.3] it is presented an
application of the finite element interpolation in order to compute convolution
solutions with respect to boundary and initial conditions. This approach is
suitable for frameworks where the space subproblem solution is computed

(3.35)

(3.36)
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by a finite element solver and there is a coupling between different problems
defined on the same mesh discretizing the domain. Indeed, in this case we have
that the “function-coordinate” of a problem is the output of another problem,
giving the exact nodal values needed by the finite element interpolation. In [15,
Chap. 19] it is presented an approach to change the computational domain,
where the spaces on which to consider geometrical parametrizations are referred
to reference domains by means of a coordinate transformation. This approach
results suitable for different geometrical parametrization methods defining
the deformation of the domain — such as Free-Form Deformation [44, 24],
Radial Basis Functions [18], Inverse Distance Weighting [46, 47] or its reduced
counterpart — and this could be useful in the context of the Fluid Structure
Interaction (FSI) and shape optimization problems.

Separated Approximations of Functions

In order to take into account a non-constant source term or, generically, a non-
constant function — such as non-homogeneous essential boundary conditions
and initial condition, or natural boundary conditions (see Section 3.2.5) — it
is possible to use PGD as a tool for finding a separated representation of the
function.

The procedure explained in the following is referred to a scalar problem
without lack of generality. Consider the simple algebraic problem for the
unknown scalar field u defined as

u(;vl,...,:np) = f(l’l,. . .,xD)

defined in Q = Q1 x --- x Qp, and apply the PGD constructor as in Section 3.2
to (3.37) in order to obtain a separated approximation of a given function

f(xlv"' 7xD)'

The resulting N-term approximation of the function f(z1,---,xp) reads
N D
fN('xl) 7xD):ZHFJZ(xJ)
i=1j=1

In this way, it is possible to define a integral form of the subproblem to be
solved for each coordinate involved in the approximation process. The bilinear
form associated with the linear operator defining the integral formulation of

(3.37)

(3.38)
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the problem reduces to

N Np

a™ (W, u) = "] / UNU;dx; (3.39)
i=1j=1 7%
and the functional of the right hand side of the formulation becomes
F(u*) = /7910dot5 flx1,...,zn,)day .. deyy, (3.40)
Qp

Note that the functional requires a multi-space integration over the whole
domain 2. This cause the evaluation of a huge number of integrals, which
becomes computationally expensive when the problem dimensionality increases.
For example, for a space-time separated problem the functional specified to
the space subproblem is

F.(UY) :/Q U;/E UM f(x,t) dE dx (3.41)
x t

which implies to evaluate the function f(x,¢) and integrate it over the
domain for each of the xj, points in the 2, domain.

Then, it is possible to define the j-th subproblem in the weak form in order
to apply the PGD strategy and compute the separated form of function (3.22).
It is easy to understand that the number of integral evaluations increases
exponentially with the increase of the number of coordinates involved in the
separation process [14, Sec. 3.3].

It is possible to assume that, in many cases, the function which requires to
be defined in a separated form in order to define the PGD constructor can be
considered dependent only on a certain number of coordinates. For example,
in case of a transient diffusion problem with the diffusivity parameter as extra
coordinate, it is reasonable to fix a context where the source function can be
considered only dependent on space and time. If a separated representation
depending on np variables is computed with this kind of assumption, with
np less than the number of coordinates for the PGD framework, Np, then it
suffices to impose unitary value for the component of the sum (3.38) associated
with the missing Np — np coordinates, which the considered function was not
considered to depend on. In this way, it is possible to reduce the number of
integral evaluations and thus the numerical complexity.

Another possibility lies in considering a framework where the behaviour
of the function to be approximated in separated form is assumed to be a
combination of some separated functions, in a FEM enrichment-like procedure
as explained in [15, Cap. 8.1]. These functions fx(x1,---,xp) are depen-
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dent on all the coordinates but are supposed known in their separated form.
Their combination, for some unknown coefficients ¥, leads to the following
approximation of the function

Ng NFrx Np .
f(xh'" 7xND) ~ fsep(xla"' 7$ND) - Zak Z HF;k’z(xJ)
k=1  i=1 j=1

where Ff’i are the components of the known separated form of the functions
fx- Once the functions are chosen, i.e., fixed the number N4 of functions and
their separated form Npj components, with £ =1 : Ny, it is possible to define
the best N4 coefficients a which minimize a certain error, for example by the
mean of a least square minimization of the residual. Moreover, it is possible to
consider an approach such as (3.42) where the separated functions are defined
as function series — for example, polynomial functions — truncated at the term
N 4 a priori unknown. Even if this approach is not suitable for generic functions
— particularly if not enough smooth — it could be versatile for some cases where
the function to be approximated can be considered as non-arbitrarily complex.

Finally, it is interesting to note that some techniques like Empirical Inter-
polation Method (EIM) [5] or its discrete counterpart, the Discrete Empirical
Interpolation Method (DEIM) [11], can be useful in order to reduce the com-
putational effort for the definition of a separated approximation of a function.

“A Posteriori” Data Compression

The PGD solver allows the construction of an approximated solution in sepa-
rated form (3.1) and can be viewed as an on-the-fly compressed representation
of the model solution. In case of a 2D model involving a symmetric and
coercive differential operator, the number N of modes produced by the PGD
constructor corresponds to the number obtained by applying a singular value
decomposition (SVD) which consists in an optimal separated representation
[14, p. 47]. In particular, when the differential operator involved in the model
is non symmetric, the separated approximation obtained is suboptimal and the
number of terms in the finite sum is higher than the one obtained by applying
the SVD (in 2D). So that an “a posteriori” decomposition is needed in order
to gain a “better optimality” of the solution, even if the idea of the offline
computation and online evaluation makes the optimality not crucial. Thus,
with respect of an hypothetical optimal solution involving N terms with
a computed number N of terms, with N > N°! one can compute an “a
posteriori” data compression in order to reduce the computational cost of the
online phase as much as possible. This may be crucial in real-time applications

(3.42)
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where high response frequency can be required. Then, the solution of the
problem can be approximated by

enh(

so that one looks for an enhanced representation u""(x1,...,zp)

that verifies

uenh(

Z1,...,xp) = u(z1,...,Tp) .

This is done by applying the PGD to problem (3.45). This approach leads to a
more compact representation of the solution with N < N allowing a substantial
storage saving and a significant CPU saving when performing online evaluations
or post-processing tasks. However, the order of magnitude of this reduction in
terms of enrichment steps, is difficult to predict because it strongly depends
on the problem definition, similarly to the optimality trend.

PGD Online Phase

Once the complete convolution of solutions is computed during the previous
offline phase, then the evaluation for particular values of the coordinates is
performed in an online phase. In this case the computational saving is the
main target of the phase, in order to allow the computation on low performance
devices, or even more in order to be able to compute quickly a solution for
real-time applications — such as training surgery in the medical field [33] — or
for optimization processes — where a huge number of solutions is required in
order to find an optimal result [8, 28].

Online Solution Reconstruction

The online evaluation of a separated approximation of the solution is performed
via the evaluation of the functions U?(x;) related to the associated coordinate
x;, at each enrichment step ¢ = 1 : N. Thus, imposing the defined values x;

(3.43)

(3.44)

(3.45)
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for each coordinate j = 1 : D, we obtain the evaluated solution
U (x1,....xp) =Y HUlI(x)).
i=1 j=1

In contrast to the POD approach, where a Galerkin projection is needed (see
Chapter 2), with the PGD approach the computational cost is reduced because
only the evaluations of functions Ug (x;) is needed. Since a total number of
N (D — 1) products and N — 1 sums is demanded, the online phase turns out
to be very computationally cheap and suitable for portable platforms and high
frequency applications.

Conclusion

Summarizing the PGD algorithm phases, we can firstly divide the procedure
into the main phases, offline and online. This division allows us to build an
affordable tool in terms of computational costs distribution, via the offline-
online splitting.

The offline phase starts with the choice of the problem, the definition of
its dependencies, and the selection of the PGD coordinates. These define the
desired separation of the original problem variables. Sometimes it should be
convenient to separate also the physical space as in [8]. Once the coordinates
are defined, the PGD algorithm leads to the construction of a nonlinear loop
— containing one different subproblem for each selected coordinate — whose
solution define one step of the offline enrichment loop presented in Section3.2.2.
The selection of appropriate stopping criteria for these loops identify the
reduced order basis.

Then, once the information of the convolution solution are obtained in the
offline phase, the online phase simply consists in the (computationally cheap)
reconstruction of the desired solution — for a new value of the coordinates
defined — which, in case of the PGD, it reduces to a sum between different
terms (see Section 3.4).

(3.46)
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Implementation and Benchmark Tests 4

Introduction

In order to investigate the performances of the PGD method as proposed in
Chapter 3, a twofold comparison with a reference full order solution and a
reference reduced order solution is performed on different problems.

The implementation of the different problems is performed with the aid
of the open-source C++ library libMesh [2]. This software library provides a
framework for the numerical simulation of PDEs using arbitrary unstructured
discretizations on both serial and parallel platforms, using the finite element
method in 2D and in 3D, with steady and unsteady settings. Moreover, this
library makes use of advanced and efficient computational libraries such as
PETSc, LASPack, and SLEPc. This is crucial in view of a general MOR
framework where the cost reduction is the main issue. In the same way, the
PGD implementation developed in this work has led to a library extension,
with the target of being a useful and well-organized tool to be interfaced with
different kinds of solvers, underlining the outer shell role of the PGD method
(see Section 3.1).

The chosen test problems include a first pilot example in order to better
explain the PGD constructor action. This first problem consists in a transient
two-dimensional diffusion parametric problem where the temporal variable and
the diffusivity parameter are considered as extra coordinates, as described in
Section3.2.6. Afterwards, a generic heat diffusion equation is taken into account
with the addition of linear transport. Finally, a two-dimensional elasticity
parametric problem is considered where the elasticity parameters are defined
as extra coordinates, in the context of a structural analysis.

35


http://libmesh.github.io/index.html
http://www.mcs.anl.gov/petsc/
http://www.mgnet.org/mgnet/Codes/laspack/html/laspack.html
http://www.grycap.upv.es/slepc

4.

IMPLEMENTATION AND BENCHMARK TESTS

4.2 A Parametric Transient Diffusion Equation
4.2.1 Problem Definition

36

We consider as first test the parametric transient heat equation, where the time
coordinate ¢ and the diffusivity parameter k, are considered extra coordinates,
so that the unknown field u(x,t,k) is defined in Q = Q, x X; x II, with
Q, CR?, ¥; C R and II;, C R, where the problem is defined in a 2-dimensional
space. Without loss of generality, only Dirichlet boundary conditions are
considered on the whole boundary. The mathematical problem can be written
as

o kViu=f in Q x ¥ x I
u(x,t, k) = g(x,t,k) on 0N, x ¥y x I, >

u(x,0,k) = up(x, k) = g(x,0, k) on Q, x I

whose associated integral formulation reads as

ou

®* Y 2, —
/Qu <0t kV*u f) dxdtdk = 0

for any suitable test function u*.

According to Section 3.2.5 non homogeneous Dirichlet data results in the
lifting process which, in turn, leads to a homogeneous Dirichlet problem, while
the Neumann fluxes results in a functional to be added at the right hand side of
weak formulation. However, the flux functions have to be known in a separated
form. Analogously, in case of a non-constant source term it is necessary to
define a separated form of such a function, as described in Section 3.3. In
order to simplify the explanation of the PGD constructor homogeneous initial
and boundary conditions and a constant source term f are considered, i.e.,
g(x,t,k) =0 on 99, x ¥y x [T and f = 0.

The computational domain coincides with the L-shaped in Figure4.1. The
mesh is generated with Gmsh, an open-source finite element grid generator
[1]. For each of the considered solving strategies we adopt the same mesh in
order to be unbiased by the mesh when comparing the performances. The
FEM approximation is based on P2 elements combined with a fifth-order
quadrature approximation for the space integral evaluation, resulting in a total
of 1641 degrees of freedom for the considered mesh. The time coordinate is
uniformly discretized in the range [0;0.1]s with 40 time steps and the time
dependence is discretized via a theta method for 8 = 0.5, i.e., via the second
order Crank-Nicolson finite difference scheme [39, p. 237-265]. The diffusivity

(4.1)

(4.2)
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Figure 4.1: 2-D mesh generated with Gmsh

parameter coordinate k is defined in the range 1 to 5 and uniformly discretized
via 10 steps.

Full-Order Solution

The discretization of the coordinates for the full-order solution is defined in
Section 4.2.1. In order to compare the full-order solution with the reduced-
order ones, the considered parametric unsteady problem is evaluated for each
different values of the diffusivity parameter k£ in the considered range. We
obtain a space-time solution for each value of k, which can be compared with
the reduced-order solutions evaluated for the same values of the parameter. As
described before, the time dependence is managed with a theta method, while
the physical space is discretized by the means of FEM. Accordingly to [37], a
low Courant Friedrichs Lewy (CFL) number is not required for the stability of
the numerical scheme. However, it is required for numerical accuracy. During
this work, no attention was paid to the optimality of the solution in terms
of accuracy, ignoring issues such as stabilization. The reason is that the full
order solution is considered as reference solution in order to investigate the
behaviour of the POD and the PGD methods, and we do not investigate the
approximation quality of the single numerical scheme. So, we refer to the
full-order solution as to the truth solution, in analogy with the Reduced Basis
context [38].
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In the POD context, the solutions constituting the snapshot set are computed
for different value of the parameters. In particular, the space coordinate is the
privileged one, the time variation is discretized again through the #-method
used in Section 4.2.2, and the only parameter considered is the diffusivity
coefficient. To obtain comparable solutions, not only the time dependence but
also the diffusivity parameter discretization coincide with ones employed on
the full order problem.

It is simple to verify that the eigenvalue magnitude decreases fast in
correspondence with the first 4 POD basis functions, namely the most of the
system energy is retained by this limited number of modes. This is the number
of basis functions used in order to reconstruct the reduced solution during the
POD online phase.

PGD Reduced-Order Solution

The PGD constructor leads to an approximated solution for the field u(x,¢, k)
in a separated form (see (3.1)), which reads as:

u(x,t, k) ZU’ Ult) Ui (k).

Following the process described in Section 3.2.2, at the n-th enrichment
step, the approximated solution reads

(x,t, k) ZU’ Ui (t) Ui(k) + UMx) UM E) UR (k) -

The alternated direction strategy (fixed point loop) provides the computa-
tion of the unknown functions starting from initial guesses for the ¢ coordinate
and for the k coordinate, say U;/"°(t) and U,?’O(k:), and computing U} (x).
Then, the scheme computes alternately the unknown associated to the other
coordinates from the already known functions (as described in Section 3.2.2).

Each iteration of the fixed point loop consists in the following three steps
(one for each coordinate):

« Computation of the unknown U™P(x) from U?~*(t) and U,?’p_l(k).
The simplest choice of the test function to be used in (4.2) is

(%, k) = Up () U (0 U (k)

(4.3)

(4.4)

(4.5)
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where U™*(x) is the only test function while U;"?~'(t) and U"*~" (k) are
the trial functions known from the previous (p — 1)-th nonlinear iteration.
Substituting (4.3) and (4.5) in (4.2) yields

aUt,p 1

/Ux * Ut,p 1 Uk,p 1 (U:v,p
" ot

- [upr vt Ut R axdedi
(4.6)
where R~ is the residual related to (n — 1)-th enrichment step, defined as

8U oozl o
LUL =Y kVPULU UL — f . (4.7)
=1

Z

Since all t-dependent and k-dependent functions are known, it is possible
to integrate (4.6) over the spaces ¥; and II. This process can be achieved
integrating separately the functions depending on the single coordinates on
the correspondent spaces due to the separated nature of the solution (4.3).
Defining the known quantities integrated over the time domain ¥; as

K{:/Z (- 1) dt
t

_ourrt
KL = et 22t
2 s, t at

K = Ut PPelae (4.8)
Kl = /Ut’p 16Utdt

K, = / U Uldt
¢

dt

and similarly the known quantities integrated over the diffusivity domain
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II; as
2
Kk — / U1 dk
b=, @)
2
Kk = / k(UrP~t) dk
f= ), k(o)
Kk = / urrtar (4.9)
Q
Kk, = / UrPT Uldk
) Qk
Kgi:/ kUMY ULdE
) Qk
equation (4.6) becomes

/ Ur* <U§’p KiKY — v2Un? Kt K;f) dx
Qg

n—1 (410)
- _ / un* ( > <U; K, Kfﬁi — VUL KL, K@f) — KL Kk f) dx .
Qu =1

It is then possible to numerically solve the sub-problem (4.10) with the
selected discretization technique, i.e, via a finite element method.

Computation of the unknown U;"?(t) from UMP(x) and U,?’p_l(k).
The test function to be used in (4.2) becomes

W, 1, 1) = UP(2) U2 (o0) U7 (1) (411)
Replacing (4.3) and (4.11) in (4.2) yields

* n,p— aUmp n,p— n n,p—
/ Ut U g 1<U§’p T@ UrrTt - g vRUmTP UMt Ul? 1) dx dt dk
@ (4.12)
=— / U umPUpt Tt RV dx de dik
Q

As in the previous step, all the x-dependent and k-dependent functions
are known so it is possible to integrate (4.12) over the spaces 2, and I,
separately. Defining the known quantities integrated over the spatial domain
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K? = /Q I (U;L’pfdx

K§ = / Un v2Unrdx
Qg
K§ = / UMPdx (4.13)
Qg
K§; = /Q U vAULdx
Ki, = /Q UrP Uldx

and exploiting quantities in (4.9), equation (4.12) becomes

/ Ut (Kx O fet gy K’“)dt
t 1 ot 1 2 -t 2
3¢

n—1 i (414)
- t ‘ 5,1 ot 4.3 4,4 %t 125, 3 3 :
PN =1

This is the integral form of an IVP for the unknown U;"? that can be
numerically solved via different discretization techniques. It could be useful
to consider the corresponding strong form

n7p
K¥ 3%; KY — K§UM Kk
- A 4.15
_ = x BUtZ k x 1 k x k ( )
- Z K5,i ot K4,i - K4,i Ut K5,i - K3 K3 f
=1

and solve it via any suitable method for ordinary differential equations, such
as a theta-method [37].

 Computation of the unknown U;"P(k) from U;""(t) and UP(x).
The test function to be used in (4.2) becomes

u*(x, 8, k) = UM (k) UM (x) UPP (L) (4.16)
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Replacing (4.3) and (4.16) in (4.2) yields

n7p
/ Ut U Uy (U;“p 8%; UpP — k2R U U,?’p) dx dt dk
Q

=— / UrrusP U R dxdedk
Q

Once again all the x-dependent and t-dependent functions are known and
we can integrate (4.17) over the domains €2, and ¥, separately. Defining
the known quantities integrated over the time space ¥; as in (4.8) using
the just computed functions, i.e., replacing with the index p the old index
p — 1, and exploiting quantities in (4.13), equation (4.17) becomes

/ U (Kf KiU™ — KEK'k U;“P> dk
Q

n—1
_ / U ( > (Kgf Kl — kK2, K§> Ui — K% K} f> dk |
&, i=1

This equation does not involve any differential operator since the model
of the problem (4.2) does not contain any derivative with respect to the
diffusivity parameter k. So that the corresponding strong form

n—1
<Kf K!— K% K{k) UpP = — ( Z <K§7iKii—K§f’i Kg) Ui~k K3 Kb f)
=1

leads to an algebraic equation that can be simply solved.

Iterating the above procedure until reaching a fixed point for the nonlinear
loop by the satisfaction of a specific stopping criterion (see Section 3.2.3) leads
to the solution of the n-th enrichment functional product U} (x) U*(t) U} (k) by
the assignment of the last non-linear iteration solution, i.e., U}(x) + U}P(x),

U (t) < UM (t) and UPM(k) < UM (k).

A Cross Comparison

The parametric transient diffusion problem (4.1) is solved considering a constant
source term f = 1, while the lifting function (accordingly to Section 3.2.5) is
defined by:

g(x,t,k) =0

(4.17)

(4.18)

(4.19)

(4.20)
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corresponding to homogeneous Dirichlet boundary conditions and null initial
data.

The full-order solutions require to solve different problem, one for each value
of the discretized diffusivity coefficient. In order to compare the time needed
to compute the full-order solutions with the time needed by the reduced-order
methods, we reconstruct the online solutions for each value of the (diffusivity)
parameter used during the full-order computation. In this way we compare
the time needed by the three different approaches during the computation of
the same number of solutions.

In Table 4.1 the results obtained via serial simulations are presented. The
full-order model performance is evaluated via the total time required by all the
simulations, as well as the average time required by the 11 simulations needed
to discretize the diffusivity range into 10 steps. The POD performance indices
considered are the time required by the POD offline stage, the time required by
the POD online reconstruction, the ratio between the total time needed by the
POD and the full-order FEM to compute the same number of simulations. The
same performance indices are considered for the PGD approach with additional
details on the number of enrichment steps and average nonlinear steps needed
during the PGD offline stage.

During the PGD offline computation of the solution the tolerances used for
both the non-linear loop and the enrichment loop are le — 4 (see Section 3.2.3
for more details on the stopping criteria).

The computational time needed for the PGD offline construction and the
online evaluation has an order of the magnitude which is 20% of the total time
needed to perform the classical incremental simulations, for the same number
of simulations, while the average computational time needed to reconstruct
online the solution is 15% of the average time demanded by the full-order
simulations.

The computational saving is evident with a low number of degrees of
freedom due to the non-incremental nature of the PGD method in tackling
the time dependence (see Section 3.2.4) and to the generic decoupled nature
of the diffusivity sub-problems. In fact, even if the nonlinear nature of the
PGD leads to a priori coupled problems, it is evident that the physical nature
of the transient diffusion equation — considering the diffusivity as parameter —
leads to an algebraic dependence with respect to the diffusivity coefficient, as
detailed in Section4.2.4.

The results of the numerical simulations are now qualitatively compared at
3 different times and for k = 5. The solutions obtained with the full-order FEM,
the reduced-order POD solutions and the corresponding pointwise errors with
respect to the reference solution, and the reduced-order PGD solutions with
the associated error with respect to the reference solution, are plotted at times
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Table 4.1: Test 1 performance comparison among full-order solution, POD reduced-order
solution, and PGD reduced-order solution. Results on Linux 4.2.0-27-generic
z86_64 on Intel® Core™i5-2500K CPU @ 3.30 GHz.

Full-order single simulation average time 1.3727 s
Full-order total time 15.0093 s
POD reduced-order simulation offline time 24.9106 s
online total time 1.1796 s
online average time 0.1072 s
POD reduced-order total time 26.0902 s
PGD reduced-order simulation offline time 0.6658 s
online total time 2.6340 s
online average time 0.2395 s
PGD reduced-order total time 3.2008 s
PGD number of enrichment steps 3
PGD average number of nonlinear steps 1
PGD total time over full-order total time ratio 0.2185

PGD average online time over full-order

. . 0.1745
average time ratio

t = 0.025s, t = 0.0625s, and ¢t = 0.1s. The pointwise error defined is simply
the absolute value of the difference between the full order solution and the
reduced-order solutions. We consider the final time and two intermediate times
between the final and the initial time, because the solutions at the initial time
are all coincident with a null solution in the whole space domain, being assigned
homogeneous initial and boundary conditions. In particular, in Figure4.2 the
full order solutions are presented, in Figure 4.3 and in Figure 4.4 the POD
reduced-order solutions and their errors are represented, while in Figure 4.5

and in Figure 4.6 the PGD reduced-order solutions and their errors are plotted.

From the obtained results, we can assert that the PGD solution leads to an
approximation error — with respect to the full-order solution — which is greater
with respect to the POD counterpart, even if is more homogeneously distributed
in the spatial domain. However, the computational saving in computing the
PGD reduced order solution is clearly evident, and sometimes it can be more

convenient a PGD approach at the expense of a more accurate POD solution.
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4.3. Graetz Problem
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Figure 4.7: Duct domain for the considered Graetz problem

Graetz Problem

Problem Definition

The second benchmark test considered is a classical problem in the literature
[21] and consists in a steady advective-convective problem modelling heat
conduction in a duct where the walls are at different temperatures. A first
segment considered “cold” with a zero temperature is followed by a second
“hot” segment where a higher temperature is imposed, i.e., we impose u = ¢
on I'¢ portion of the boundary with null temperature and v = h on 'y the
second portion of the boundary. The flow has an imposed cold temperature
at the inlet, and is subject to a known convection field, directed as the duct
axis and defined by a parabolic velocity profile with the maximum value on
the axis and vanishing at the walls. This problem models many aspects of
steady convection-diffusion phenomena such as heat transfer into a channel,
forced convection with an imposed velocity profile, heat conduction through
walls, insulation [3]. From a physical point of view, the Péclet number is the
dimensionless number relevant in the study of transport phenomena and it
coincides with the ratio between the advective and the diffusive transport rate,

being defined as
L|b]]
Pe = ——
T T2k

where L is a characteristic length of the problem, b is the local advective field,
and k is the diffusivity coeflicient.

In this problem the physics is complex and it changes with the Péclet
number, starting with the presence of thermal boundary layers, which are
firstly separated and then interact each other, and arriving to their absence.

We considered a problem where the transport velocity profile is known
while the diffusivity coefficient is a problem parameter. It follows that the
Péclet number changes due to the diffusivity variation. The considered spatial
domain and the subdivision of the boundary are defined in Figure4.7.

(4.21)
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Figure 4.8: 2-D mesh generated with Gmsh for the considered Graetz problem

The governing equation the a transport-diffusion equation
— kVu(x,k) + b-Vu(x,k) = 0 in Qy x O (4.22)

where the diffusivity coefficient is a problem parameter and the domain is
Q = Oy x Q, with Qy spatial domain and €2; the domain associated with
the parameter k. The considered boundary conditions are the imposed “cold”
temperature on the first segment of the duct, i.e., on I'c =1'1 UT'y U T, the
imposed “hot” temperature on I'y = I'3 UI'5, and null flux on I'y. The problem
can be stated in a generic integral formulation by means of integration by parts,
thus obtaining

/ EVu* - Vu + / u'b-Vu =0 (4.23)
Q Q

for any suitable test function u*, where

wel= {u € H' () suchthat u(x €'¢) =c, u(x €lTy) = h}
(4.24)

(S H&,FCUFH ()

The 2D spatial domain is discretized via Gmsh, obtaining the mesh in
Figure 4.8, the diffusivity domain is the range [1;5] uniformly discretized in
Nk steps, and the (constant) transport velocity is defined by the parabolic
profile with a maximum value equal to 10. Note that none of the problems
associated with the different values of k is dominated by the transport term,
i.e., we have low Péclet number. This avoids any investigation on stability to
more deeply analyze the robustness of the reduced order models.


http://gmsh.info/

4.3. Graetz Problem

Table 4.2: Greater POD eigenvalues in decreasing order for the considered Graetz problem,
with N = 100 snapshots computed.

A; = 9.88¢ — 01
X2 = 5.74e — 03
A3 = 6.84e — 05
Ay = 1.26e — 06
X5 = 1.49¢ — 08
g = 2.22e — 10

A = 2.03e — 12

4.3.2 Full-Order Solution

In order to compute the full-order solution, the parametric problem is evaluated
for each value in the range [1;5] after a subdivision in Ng steps. We analyze
the solver performances for different values of Nx — as detailed in Section4.3.5
— obtaining a set of transport-diffusion problems where the diffusion coefficient
is constant — and consequently the Péclet number — for each choice of k.
Even if the considered problems are characterized by different Péclet numbers,
none of the considered value requires a stabilization. For this reason, the
implementation of the full-order solution is performed by the means of a
standard FEM, computed on the mesh in Figure 4.8. We choose P2 finite
elements combined with a fifth order quadrature rule, dealing to a total number
of 12545 degrees of freedom.

4.3.3 POD Reduced-Order Solution

The POD reduced-order solution is computed by assuming the diffusivity
coefficient the only parameter of the problem. In order to compare the reduced
solutions obtained with the PGD method, the POD is performed using N
training samples to compute the basis functions during the offline phase.
Looking at the eigenvalue magnitude in Table 4.2, we can recognize that it
decreases very fast, i.e., most of the energy of the system is retained by the
first modes. Indeed, once we define a tolerance of 10e — 12, the number of the
POD basis functions to be considered during the online phase results to be 4
(see Section 2.2 for the tolerance definition).
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The PGD reduced-order solution is obtained for a discretization of the diffu-
sivity parameter range defined by Nk steps. Accordingly to (3.1), the PGD
constructor leads to an approximated solution for the field u(x, k) in a separated
form, which reads:

N

u(x, k) ~ ZU;(X) U,é(k:) .
i=1

Following the process described in Section 3.2.2, at the n-th enrichment
step the approximated solution is

n—1
u(x,k) = Y Uy (x) U(k) + Uz (x) U (k) -
i=1

The alternated direction strategy (fixed point loop) provides the computa-
tion of the unknown function starting from initial guesses for the k coordinate,
say U} ’O(k:). Then, the scheme computes, alternately, the unknown from the
already known functions.

Each iteration of the fixed point loop consists in the following steps, one
for each coordinate:

o Computation of the unknown U?(x) from U:’p_l(k).
The simplest choice of the test function to be used in (4.23) is

ut(x. k) = U™ (x) U (k)

Substituting (4.25) and (4.27) in (4.23), yields

/ (k: VU vurr Uttt upt Tt 4 Ut - vore o U,;W‘l) dx dk
Q

)

n—1
== / <k VUt - VULUPMP T UL 4+ Uptb - VULURP U,g‘) dx dkz
i=1 7%

where the right-end side is the residual related to the (n — 1)-th enrichment
step. Since all k-dependent functions are known, it is possible to integrate
(4.28) over the space II;. This process can be achieved integrating separately
the functions depending on single coordinate on their own space due to
the separated nature of the solution (4.25). Defining the known quantities

(4.25)

(4.26)

(4.27)

(4.28)
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integrated over the diffusivity domain II; by

2
Kl = / Uty dk
b=, )
2
Kb = / B (Upt) dk
2 : (4.29)

Kk, = / U Uidk

i~ o

Kk, = / kUM UL dE
) Qk
equation (4.28) becomes

/ <VU§’* VUM KY + UMb - VUDP Kf) dx
Qg

- . (4.30)
= - Z/ (VU;’}’* -VULKY;, + U"Db - VU! K§) dx

/[/_1 Q K K

It is then possible to numerically solve the sub-problem (4.30) with the
preferred discretization technique.

« Computation of the unknown U*P (k) from UZP(x).
The test function to be used in (4.23) becomes

u (x,k) = U (k) UMP(x) . (4.31)
Using (4.25) and (4.31) in (4.23), yields
/ (k: VU -vUPP U UMY 4+ UPPb - VUP U™ U,?’p> dxdk
Q

n-1 (4.32)
== / (k VUR? - VUL U Up + UpPb - VU U U,g) dx dk
i=1 7%

As in the previous step all the x-dependent functions are known. So it is
possible to integrate (4.32) over the space €2,. Defining the known quantities
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integrated over the spatial domain €2, by

e = / VUM . VUM dx
Qy

K3 — / UMb . VU™ dx
e , (4.33)

K%, = / VU™ . VU dx
El Qz
K§, = / UlPb - VULdx
’ Qz
equation (4.32) becomes

/ (k U U KT 4 U g K2) dk

Q

- : (4.34)

=-> / (k Ut Uy K3, + U U, Kjf) dk
i=1 79

This equation does not involve any differential operator since the model of
problem (4.23) does not contain any derivative with respect to the diffusivity
parameter k. So, the corresponding strong form

n—1

(K;“ + k:Kf) Uil =->" (Kf}i + kK§> U (4.35)
=1

leads to an algebraic equation for the unknown U,"” that is simply solvable.

Iterating the above procedure until reaching a fixed point for the nonlinear
loop by the satisfaction of a specific stopping criterion (see Section 3.2.3)
leads to identify the n-th enrichment function product U} (x) U}'(k) by the
assignment of the last nonlinear iteration solution, i.e. U}(x) < U"P(x) and
Ulr(k) « UP(K).

4.3.5 Performance Comparisons

The considered Graetz parametric problem is a transport-diffusion problem
with non-homogeneous boundary conditions. Accordingly to Section 3.2.5,
the lifting function has to be a function which satisfy the problem boundary
conditions and smooth enough in the physical space domain €. For this
purpose, we choose to define the lifting function g(x, k) as the solution of
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the Laplace problem associated with the domain 2« with the same boundary
conditions as the Graetz problem. Since the boundary conditions do not depend
on any parameter, the lifting function results to be the solution of the problem

Vzug =0 in Qy

u(x) = 0 on MU'y UTg

u(x) =1 on 'sUTs
obtaining

g(X, k) = ug(x) .

The full-order solutions require to solve different problems, one for each value
of the discretized diffusivity coefficient. In order to compare the time needed
to compute the full-order solutions with the time needed by the reduced-order
methods, we reconstruct the online solutions for each (diffusivity) parameter
value used during the full-order computation. In this way we compare the time
needed by the three different approaches during the computation of the same
number of solutions.

In Table 4.3 the results obtained for Nx = 100 via a sequence of serial
simulations are presented. The full-order performance is evaluated with the
total time required by the simulations, together with the average time required
by the 101 simulations needed to discretize the diffusivity range into Ng
steps. The POD performance indices are the time required by the POD offline
construction, the time required by the POD online reconstruction, the ratio
between the total time needed by the POD and the full-order FEM to compute
the same number of simulations. The same performance indices are considered
for the PGD with the addition of details on the number of enrichment steps
and average nonlinear steps needed by the PGD offline phase.

During the PGD offline computation, the tolerances used for both the
nonlinear loop and the enrichment loop are set to le — 4 (see Section 3.2.3 for
more details on the stopping criteria).

The computational time needed to perform the PGD offline construction
and the online evaluation turns out to be approximately 40% of the total time
needed by the classical FEM. It is reasonable to tribute this behaviour to the
nonlinear nature of the PGD problem. The PGD online average computational

time is about the 1% of the average time needed by the full-order simulations.

Comparing the PGD performances with the reference reduced-order POD
simulation, whose total time is about the same as the one demanded by FEM

(4.36)

(4.37)
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Table 4.3: Performances comparison among full-order solution, POD reduced-order solution,
and PGD reduced-order solution for the considered Graetz problem with Nk = 100.
Results on Linuz 4.2.0-27-generic z86_64 on Intel® Core™i5-2500K CPU @

3.30 GHz.

Full-order simulation average time on 101 0.47211 s

Full-order total time 47.68280 s

POD reduced-order offline time 45.61237 s
online average time  0.00259 s
online total time 0.26169 s

POD reduced-order total time 45.87406 S

POD total time over full-order total time ratio 96.21 %

POD average online time over full-order

average time ratio 088 %

PGD reduced-order offline time 17.40050 s
online total time 0.25910 s

online average time  0.00257 s

PGD reduced-order total time 17.65960 s
PGD number of enrichment steps 5
PGD average number of nonlinear steps 2
PGD total time over full-order total time ratio 37.04 %

PGD average online time over full-order

. . 054 %
average time ratio

performance, we observe that the computational saving of the PGD method
is significant. The online time to reconstruct both the POD and the PGD
solutions exhibits, as expected in the view of the offline-online separation, a
drastic reduction of the “on-the-fly” computational cost.

The qualitative results of the numerical simulations are proposed for two
different values of the diffusivity coefficient k, in particular, we pick the extremes
of the considered range, i.e., k = 1 and k = 5. The corresponding Péclet number
is computed considering the total length of the duct L = 6 and the maximum of
the transport velocity b = 10, located along the centerline. For the considered
values of the diffusivity parameter, via (4.21), we obtain Pegx—; = 60 and
Pep—_5 = 12, respectively.

Comparing the performance indices when the number Ng increases, we
can draw some conclusions on the performance of the PGD method for the
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examined problem. We performed the computation with five different number
of the parameter discretization steps: 100, 169, 225, 289 and 400. We present
the solutions for the only two extreme values, i.e., 100 and 400. In Figure4.9
and in Figure4.10 we show the solutions of the computations for Nxg = 100
and for the chosen values of the parameter and their corresponding pointwise
errors, simply computed as the absolute value of the difference between the full
order solution and the reduced-order solutions. Then, in Table 4.4 the results
of the same computation for Ng = 400 are presented. The computational time
needed to perform the PGD offline construction and the online evaluation is
approximately the 10% of the total FEM time, and the PGD online average
computational time is less then the 1% of the average time needed by the
full-order simulations. The computed solutions and the reduced-order model
errors are presented in Figure4.11 and Figure4.12. We notice that the PGD
reduced order solution is affected by an error which is more then twice the
error produced by the POD approximation. In Figure4.13 we plot in the same
graph the total time needed by the two reduced-order methods divided by the
time required by full-order method. Notice that, for the POD solutions, the
total time needed is of the same order of magnitude as for the reference one,
while it decreases considerably for the PGD solutions, at the expense of the
solution accuracy.

From the obtained results, it is evident that the PGD algorithm is more
convenient compared to the proposed POD reduced-order counterpart. The
fact that the computational time of the PGD results lower than the POD
counterpart for a high number of discretization steps of the parameter is due to
the nonlinear nature of the PGD method which adds to the original problem
a computational cost negligible only for a high dimension of the discretized
parameter space. Indeed, when we choose Nx = 400 the POD method results
more expensive from a computational point of view, because of the nature
of POD which requires to evaluate offline a number of problem equal to the
(high) number of snapshots. In case we have only one parameter this number
coincides with the number of the considered values of the parameter. The
computational cost reduction given by the PGD — with respect to the POD — is
clear even in case of one parameter, and it is reasonable to expect an increase
of the computational saving when dealing with high-dimensional models and
with more complex problems. In fact, considering, for example, Nx = 100
where the POD requires the solution of 100 problems, we have that the PGD
requires the solution of a number of problems of one order of magnitude less,
namely 30 problems. If the complexity of these problems increases we have
that the PGD nonlinear additional cost is very little compared to the cost of
each problem resolution. For example, this is the case of time dependence
(see Section4.2.5) which considerably increases the computational cost of each
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Figure 4.9: Graetz problem numerical solutions for k=1 with Nx = 100.
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Figure 4.10: Graetz problem numerical solutions for k=5 with Nx = 100.
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Table 4.4: Performances comparison among full-order solution, POD reduced-order solution,
and PGD reduced-order solution for the considered Graetz problem with Nk = 400.
Results on Linuz 4.2.0-27-generic z86_64 on Intel® Core™i5-2500K CPU @

3.30 GHz.
Full-order simulation average time on 4o1 0.4803 s
Full-order total time 192.5005 s
POD reduced-order offline time 189.8819 s
online average time 0.0026 s
online total time 1.0518 s
POD reduced-order total time s
190, 9337
POD total time over full-order total time ratio 99.14 %
POD average online time over full-order
average time ratio o84 %
PGD reduced-order offline time 16.3494 s
online total time 1.0364 s
online average time 0.0026 s
PGD reduced-order total time 17.3858 s
PGD number of enrichment steps 5
PGD average number of nonlinear steps 2
PGD total time over full-order total time ratio 9.03 %
PGD average online time over full-order oss %

average time ratio

problem making the PGD more convenient compared with the reference POD
reduced-order method.
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Figure 4.14: Bidimensional domain for the considered vectorial problem

4.4 A Vectorial Problem
4.4.1 Problem Definition

The last test problem is a vectorial diffusion equation in two dimensions.
This equation can be can be assumed to model a linear elasticity problem
in three dimensions, specified for a bidimensional plate of an orthotropic
material. In particular, for the considered equation, the unknown represents
the displacement field u(x), while the source term f represents the applied
body forces.

The diffusion equation considered is characterized by the parametric diffu-
sivity matrix K, such that

- KViu(x) = f in Q. (4.38)

The bidimensional matrix K has 4 components — namely ki1, k12, k21, and
k11 — but it is be symmetric, thus being characterized by only 3 independent
components. Additionally, in order to ensure that the problem (4.38) is solvable,
the matrix is chosen to be positive defined. In this way we ensure the coercivity
of the problem.

In this context, we consider problem (4.38) where the components of the
matrix are considered variable parameters. The spatial domain {2y is a the
square [—1;1]? shown in Figure4.14. Exploiting the symmetry of K, we can
formulate the parametric problem as

ki k| [Vl A .
B lku km] {V2u2} B {fQ} Q2 (4.39)

where the domain is defined as
Q= Qx X lel X ka X ka . (4.40)

The considered boundary conditions are defined by the displacement u imposed
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L

Figure 4.15: 2-D mesh generated with Gmsh for the considered vectorial problem

to be null on the boundary I'e, while the body force term f has an imposed
value on the whole domain. Thus, the problem models a 2D plate fixed at
one of the edges while it is subject to an applied force. Note that the force
is coplanar to the plate. The problem can be stated in a generic integral
formulation, by means of integration by parts, as

[ {77 v7us) [Q; Z;ﬂ {gg;}dﬁ = [ fuins) {g}dn (1.41)

for any suitable test function u*, where
u, ut e H&,Fg (Qx) X lel X Qk22 X lez (4.42)

The 2D spatial domain is discretized via Gmsh [1] obtaining the mesh in
Figure4.15. Each of the three diffusivity parameters varies in a certain range
so that the diffusivity matrix K is symmetric positive defined. In order to do
so, the parameter ki is chosen to vary from 1 to 4, while the parameters ki1
and kog are chosen to vary in the range [5;10].

4.4.2 Full-Order Solution

The full-order reference solution is computed for the vectorial parametric
problem, discretizing the ranges of the involved parameters. In particular, we
consider all the possible values assumed by the parameters k11, koo, k12 after
uniformly discretizing the corresponding ranges in 8 steps. The discretization of
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Table 4.5: Greater POD eigenvalues in decreasing order for the considered vectorial problem.

A = 8.17e — 02
A, = 8.66e — 04
A3 = 3.93e — 17

As = 1.78e — 17

the problemsis performed via a standard FEM based on the mesh in Figure4.15
for the spatial discretization. Note that, with the chosen discretization, we
obtain 729 different problems, which, even in case of coarse spatial discretization,
require a considerable computational capability. The chosen finite elements are
piecewise quadratic combined with a fifth order quadrature rule, thus dealing
with a total number of 32282 degrees of freedom, for each subproblem for a
fixed parameter. Thus, we deal with a total number of degrees of freedom of
the order of magnitude of 107 for the whole parametric problems.

POD Reduced-Order Solution

The POD reduced-order solution is built by considering different combinations
of the diffusivity matrix components. In more detail, the POD is performed
using 729 training samples during the offline phase, the same adopted in the

full order setting. The same discretization of the space €2 as in Section 4.4.2.

Checking the eigenvalue magnitude in Table4.5, we have that it decreases very
fast, so that most of the energy of the system is retained by the first modes.
Indeed, for a tolerance of 10e — 12, the number of the POD basis functions to
be considered during the online phase is only 2 (see Section2.2 for the tolerance
definition).

PGD Reduced-Order Solution

The PGD method applied to (4.39) assumes, as usual, that the unknown field
can be approximated by a separated form. The separated form for the field
u(x, K) reads as

N
U(X, K) ~ Z U; (X) © U%ﬁ?n (kll) © U}Cu (k12) © U;€22 (k22) ’
=1

(4.43)
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where the unknown functions associated with each subproblem are multiplied
via the Hadamard product, accordingly to (3.1). In particular,the defined
product reflects a separated form of its components and the coupled nature of
the vectorial problem is represented by the matrix K. In order to guarantee K
to be positive defined, we chose the parametric discretized spaces such that
ki1koo > k‘%Q, for each considered value of k11, k12, and kos. In particular, we
choose:

ki1 € [5; 10] ; k1o € [1;4] ; koo € [5; 10] . (4.44)

Following the process described in Section 3.2.2, at the n-th enrichment
step, the approximated solution reads

un<x’ k11, k12, k22> - Z U;, (X) ° U;Cn (kll) ° U;Cu (k12) ° U§'<322 (k22)

(4.45)
+ U3 (x) 0 Uy, (k1) 0 Uy, (k12) o UF,, (k22)

The alternated direction strategy provides the computation of the un-
known function starting from initial guesses for the parametric coordinates,
say UZ;? (k11), Uzlg(k‘lz) Uzgg (k92). Then, the scheme computes, alternately,
the unknown from the already known functions.

Each p-th iteration of the fixed point loop consists in one step for each
coordinate. We define ¢ as the index associated to the “known” function, which
is equal to p — 1 for the not yet solved subproblem in the current iteration, and
equal to p for the just solved ones.

The step associated with the physical space x consists in computing the
unknown Uy? from Up?, U2 and Ul The simplest choice of the test
function in (4.41) is

u* (X, kll, k‘12, ]{322) Un’* o Uk11 Uk12 Uk11 . (4.46)
Replacing (4.43) and (4.46) in (4.41), yields
mn,* 7p
/ (VUJ?, VU Uk’u ZUku ZUk22 i k” Ukll ]Uk12 ]Uk22 ]) df2
nA TG TG g
/ (U Ukl k12,z k‘22 7 fl (447)

N % e g g g . e rTe Jre
Z VUx,i VUI,] Ukll,iUk12,iUk227i kl] Uklh] Uk127] Uklh])dQ
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where we use the Einstein notation to simplify the notation. Since all k;;-
dependent functions are known, it is possible to integrate (4.47) over the spaces
Qk,y Qyy, and Qy,,, respectively. This process can be achieved integrating,
separately, the functions dependent on the single coordinates on the corre-
spondent spaces due to the separated nature of the solution (4.43). For each
(i,7)-th term in (4.47), we can define the integrated quantities over the domains
Qg,; as
K = Up? ol Ut - dki,

Im»? ij
Im

Kk = / Ut Ak , (4.48)
lem

Kyl = /lem Uyt 3 05" Uf,,, 5 Wi
where the terms corresponding to (I,m) = (1,2) and to (I,m) = (2,1) are
dependent on the same variable k12, due to the symmetry of the matrix K.
In this way, the terms of (4.48) evaluated for (I,m) = (2,1) are written with
inverted (I,m) indexes, for example the first one becomes K f;ll =K fgf The
coefficient « is defined as

Ry i (5,9) = (Lm)
m J ’ ’
v { 1 otherwise (4.49)

where the index (I, m) can assume only the values which define the problem
parameter, i.e., [ = 1,2 and m = 2. Then, we obtain 3 terms varying (I, m)
— defined for each parametric coordinate — and for each one of this we have
4 terms associated with each of the 4 terms of the implicit sum in (4.47).
Introducing expressions (4.48) in (4.47), we obtain:

/. (vu*;ﬁ;.* VU KK Kfff) dx
-, (UZ%* Ky! Ky Ky fi . (4.50)
3ij5,€

n—1
n,* e k11 k12 ko2
- > VUL VU, K3l K )dx
e=1

Then, it is possible to numerically solve the sub-problem (4.50) with the
preferred technique, such as a finite element method.

The subsequent three steps for the current p-th nonlinear loop iteration
require the sequential solution of three different problems depending on each



4.4. A Vectorial Problem

parameter, i.e., k11 , k12, and koo. First, consider the (1,1)-th diffusivity
component as unknown, i.e., UZﬁ (k11), and compute it from the previously
computed U?P(x) and UZZ;](kU) — with (4, 7) # (1,1) — considered known. The
test function to be used in (4.41) becomes

u* (X, k‘) = [IZS< (k‘n) o Ug,p (X) o Uzg (k‘lg) o UZ’q (ng) . (451)

22

Combining (4.43) and (4.51) in (4.41) yields

n,p . n,p Uz n,q n,q L. n,q n,q n,q
,/Q <VUx,i VUx,j Ukll,i Uk12,’i Ukzg,i kU Ukn,j UleJ Ukzmj)dg

-/ <U;"’Z?’U,Z’f7i U U, . (4.52)
n—1
- Z VUgf ’ VU;]' Ul?fl,i U:{g,i Ulggq,i kij Ulsn»j Ulslzyj Ulszz,j)dﬂ
e=1
Similarly to (4.47), all the x-dependent and k;;-dependent functions, for (4, j) #
(1,1), are known. So it is possible to integrate (4.52) over the spaces €2, and

Q,;- Then, defining the known quantities integrated over the spatial domain
Q. as

T n,p n,p
xT

K3 = / UMPdx , (4.53)
Qy ’

K50 = [ VUL VUL jdx
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and using (4.48), equation (4.52) becomes

J

% n,p T k12 prkoo n,p T k12 koo
<Uk11,1 ki1 Uku,l K111 Klu K111 + Ukn 1 Uku,2 K112 K112 K112
k11

+ Ul o (UY1K, K2 K12 + Uiy 2 K1, K2 Klm)) dkw

122
/Q

k k k k
(Uku 1K21 K 12 22 fl + U ku 2K22K 12 f 12 f

k11
n—1
e T k12 ko2 e T k12 ka2
o Z (Uku 1k Ukll»l K311,€ K311,€ K311,6 Uku 1 Uk11,2 K312,6 K312,€ K312,e
e=1

e xT k12 koo xT k12 ka2
+ Ukzu Q(Uku,l K32176 K321,6 K321,6 Ukn 2 K32275 K K. ))> k11

322,e "1 322,
(4.54)
We repeat the same computations, to highlight the dependence on k2. The
resulting problem will be
U2 n,p k n,p k k
/Q <Uk2272 k2o Uk22,2 K1$22 Kl 2 K12121 + Uk22 2 Uk22,1 Kfﬂ K12112 1{12111
ka2
) k ) k k
U (U K5, KA KA+ U K, KA ) ) b
k k k k k
= [ (v K5 KB w4 Db K, KSR R
an
— Z koo Uf,, 0 K5, (K52 KE2 4+ UM UL K, K52 K52
kzz 2 M22 Ulkpp,2 39,6 13355,e Freanse k22 2 Y k22,1 T*321,e “*321,e 1 321,e
k k k k
U Ut K e KES ST+ U B3, K52 KEL)) ) e
(4.55)

Considering now the extra-diagonal term, we have the presence of two different
terms depending on the unknown ki2 due to the imposed symmetry. The
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associated problem, similarly to the other terms, results

.

T, % n,p T k11 koo n,% n,p x k11 grkoo
+ Uk12,1 U, 1 Ky, Ky Ki72 + U, U 5 Ky, K122 K122>dk12

12,1 111 M 12,2 7 k12,2
A

n—1
n,% e x k11 koo T,% e T k11 ko2
- Z ((Uk12,1 Uk1272 K212,€ K K. + Uk12,2 Uk12,1 K22176 K K. )
e=1

(k)lg (U]?l’:’l U]?’p

T k11 grkoo % n,p x ki1 gokeo2
w2 K Kl K17+ Uply o Uy 1 KT, K1) K37)

112 121

1 2

n,* x k11 koo % T k11 prko2
(Ukl%l K21 K2 21 fl + Uk12,2 K22 K2 29 f2

k12

212, 77 212,€ 221, 77 291,€

% e T k11 ko2 % e T k11 ko2
+ Uk312,1 Uleal KQllae K K. + Uk12,2 Uk12,2 K222,e K. K. )> dklZ

211,e "1 211,e 222, 71 292,€

(4.56)

For each one of the three subproblems associated with the diffusivity matrix
components, we obtain an equation which does not involve any differential
operator, since (4.41) does not involve any derivative with respect to k;;. So,
we can formulate the strong form associated with (4.54), (4.55), and (4.56),
obtaining, for each of the unknown an algebraic equation which can be easily
solved.

Iterating the above procedure until reaching a fixed point for the nonlinear
loop by satisfying a specific stopping criterion (see Section 3.2.3) leads to
identify the n-th enrichment function product

UZ (x) U (k1) U (k12) U2 (koo) (4.57)

by the assignment of the last non-linear iteration solution, i.e. UZ(x) «
UZ”’(X), le(kll) — UZ;ZI)(]{:H), le(klg) — Uzg(lﬂilz), and Uzm(kzg) —
Uyt (a2).

4.4.5 Performance Comparisons

The full-order solutions require to solve different problems, one for each value
of the discretized diffusivity coefficient. In order to compare the time needed
to compute the full-order solutions with the time needed by the reduced-order
methods, we reconstruct the online solutions for all the (diffusivity) parameter
values used during the full-order computation. In this way, we compare the
time needed by the three different approaches to compute the same number of
solutions.
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In Table 4.6 the results obtained with a sequence of serial simulations
confirming that the reduced models provide a reduction of the computational
costs with respect to the full-order solution. The performance is evaluated
via the total time required by all the simulations, and via the average time
required by each simulation associated with one of the 729 possible choices for
the parameters. The POD performance indices are the time required by the
POD offline stage, the time required by the POD online stage, and the ratio
between the total time needed by the POD and the full-order FEM to compute
the same number of simulations. The same performance indices are considered
for the PGD with the addition of details on the number of enrichment steps
and average nonlinear steps required during the PGD offline stage.

During the PGD offline phase the tolerances used for both the nonlinear
loop and the enrichment loop are set to le —4 (see Section 3.2.3 for more details
on the stopping criteria).

The computational time needed to perform the PGD offline construction
and the online evaluation is about the 1% of the total time needed to perform
the classical FEM simulations. This huge computational reduction underlines
the potentialities of the PGD method in the context of parametric problems,
even if the error of the PGD reduced order solution is meanly high compared
to the POD reduced order reference solution (see Figure 4.17). The PGD
online average computational time is about the 0.1% of the average time
needed by the full-order simulations, like in the previous tests. Comparing
the PGD performances with the reference reduced-order POD simulations we
notice that the computational saving of the PGD method is considerable for
both the offline and the online phases. Even if the total time needed by the
POD is about one third of the reference classical FEM, which represents a
great computational saving, the PGD method compute the same amount of
information in about one third of the time demanded by the reference POD
method. In particular, concerning the online time required to reconstruct the
reduced solutions, we notice that PGD performs in a lower time, confirming
its capability for a drastic reduction of the “on-the-fly” computational cost.

The qualitative results of the numerical simulations are compared for a
possible combination of the diffusivity coefficients. In particular, from the
729 possible combinations of the 3 parameters, we choose the values k11 = 10,
koo = b, and k12 = 1. The results are shown in Figure4.16, and the associated
errors in Figure4.17, where the solution and the pointwise error associated with
the different model reduction techniques are plotted for both the components,
namely v and v. The pointwise error defined is simply the absolute value of
the difference between the full order solution and the reduced-order solutions.
It is evident that the excellent performance of PGD are paid with an accuracy
of the solution which is two order of magnitude lower.
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Figure 4.16: Linear elasticity problem for ki1 = 10, k22 = 5, and k12 = 1.
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Table 4.6: Performances comparison among full-order solution, POD reduced-order solution,
and PGD reduced-order solution for the considered linear elasticity problem.
Results on Linuz 4.2.0-27-generic z86_64 on Intel® Core™i5-2500K CPU @

3.30 GHz.

Full-order simulation average time on 729 2.64339 s

Full-order total time 1927 s

POD reduced-order offline time 629.4290 s
online average time  0.01247 s
online total time 9.08844 s

POD reduced-order total time s

638.51744

POD total time over full-order total time ratio 33.13 %

POD average online time over full-order

average time ratio oar %

PGD reduced-order offline time 21.1754 s
online total time 2.16451 s

online average time  0.00297 s

PGD reduced-order total time 23.33991 s
PGD number of enrichment steps 3
PGD average number of nonlinear steps 1
PGD total time over full-order total time ratio 112 %

PGD average online time over full-order
average time ratio

Thus, the PGD algorithm confirms its better computational performances
compared to the POD reduced-order approach, demanding, in particular, a
reduced computational time during both the offline and the online phases.
Analogously to the Graetz problem, we expect that the computational cost
saving given by PGD — with respect to POD — increases when dealing with
parametric discretized spaces of higher dimension.
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Conclusion 5

The PGD approach introduces a computational cost adding a nonlinearity to
the problem (see Section 3.2). During the implementation of the method we
noticed that the nonlinear loop is one of the key issues of the PGD method.
Indeed, the solution of this loop requires to pay a particular attention in finding
the stopping criterion which is sensitive to variations in the problem, even if the
computational cost added by the presence of this loop is negligible compared
with the benefits led by the construction of the reduced order basis during
the offline phase. Moreover, the problem computed with the PGD method is
subject to numerical stability issues in case of coarse discretizations, and, in
this case, the computational cost added by the nonlinear loop is not negligible.
However, thanks to the separated nature of the method, it is possible to solve
a parametric problem for a huge number of parameter discretization steps,
obtaining a global reduced computational cost — offline plus online phases —
which is competitive compared with the one demanded by the well-established
POD method. This feature has been noticed in the numerical assessment, in
particular in (Section4.3) where the results show the drastic computational
saving when increasing the number of the discretization steps. Also the physical
space discretization affects the results, even if we focus on the dependence of
the method on the parametric discretization.

It is evident that the PGD method has strong potentialities despite the
introduced nonlinearity. The pointwise error — defined simply as the absolute
value of the difference between the full order solution and the reduced-order
solutions — characterizing the PGD solutions are likely associated with the lack
of an “a priori” error estimator which does not help in selecting an appropriate
stopping criterion for the enrichment loop. As a consequence, it is difficult to
limit the error generated during the computation of the PGD reduced-solution,
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at least with a general approach based on simple implementations of the single
subproblems (see Chapter 3). Indeed, we develop an implementation of the
method oriented at the role of “outer shell”, thinking at the possibility of
deciding the preferred and independent solver for each subproblem as well as
the solver of the nonlinear loop. The last one — implemented as a simple fixed
point alternating direction scheme in Section 3.2.2 — is one of the crucial points
we find to be responsible of the low robustness of the PGD. A further analysis
on the nonlinear solver could probably lead to results with a lower error.

The results obtained underline the very low computational costs required by
both the POD and the PGD reduced order methods during the online solution
reconstruction, which is a fundamental requirement in the ROM oriented to
an offline-online splitting of the algorithm and it allows the online phase to
be performed also on low performance devices. However, if we compare the
computational cost needed to perform the offline computation with the POD
and the PGD methods, we notice a drastic reduction of the PGD offline time
with respect to the POD reduced order method, in particular way for high
parameter discretization dimensions. Then, assuming that this behaviour
characterizes the method performances even for more complex problems, the
PGD method offline computational cost can be much more than competitive
with respect to a classical reduced order approach. Indeed, the PGD allows the
computation to be achievable at a lower computational performance platforms,
making the computational cost reachable for a greater number of industrial
applications.

In general, from the mathematical point of view, a lot of work needs to
be done in order to develop a reliable and effective tool to be used in parallel
with reliable well-tested methods like the POD. In view of the results obtained
during this work, we can assert that a “raw” PGD method can be a good
starting point for investigating this family of methods. Indeed, the separated
character of the method allows to define the appropriate arbitrary method for
the single subproblem in order to best solve the issues — are either associated
to the physics or to the numerical complexity — introduced by its variable
dependence. The key point is that this target can be achieved using well-
tested solvers, alternatively called as “black boxes”, by the PGD outer shell,
concentrating the attention on the behaviour of these solvers for the specified
subproblems and on the coupling effects of the different selected solvers.
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