

POLITECNICO DI MILANO

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in Telecommunication Engineering

Implementation and Performance of a SDN Cluster-
Controller Based on the OpenDayLight Framework

Author:
Esteban Hernandez

Supervisor:
Prof. Maier Guido Alberto

April 2016

2

Contents

1. Introduction .. 5

1.1. Outline ... 6

2. Software Defined Networking ... 8

2.1. SDN theory .. 9

2.2. SDN definition ... 11

2.3. OpenFlow .. 11

2.4. Distributed Controllers .. 12

3. OpenDayLight (ODL) .. 14

3.1. Architecture... 15

3.2. Services in ODL .. 16

4. Distributed systems ... 18

4.1. Cluster computing systems ... 21

4.2. Load balancing ... 22

4.3. High availability ... 22

5. Raft, consensus algorithm ... 23

5.1. Leader election .. 27

5.2. Log replication ... 30

5.3. Safety ... 32

5.3.1. Election Restriction ... 33

5.3.2. Committing Entries from Previous Terms ... 34

5.4. Summary (Raft) ... 34

5.4.1. Journal Replication .. 35

5.4.2. Snapshot Replication ... 36

5.4.3. Durability/Recovery... 36

6. Akka ... 38

6.1. Membership .. 38

3

6.2. Failure detector ... 39

6.3. Seed nodes .. 39

6.4. Membership lifecycle .. 40

6.5. Joining to seed nodes .. 41

6.6. Leaving .. 42

6.7. Node roles ... 43

6.8. Persistence module ... 43

6.9. Snapshots .. 44

7. Gossip protocol ... 45

8. Clustering in OpenDayLight ... 48

8.1. How is this build on? ... 49

8.2. Data synchronization ... 51

8.3. Communication ... 52

8.4. Data Distribution ... 52

8.5. High Availability (HA) ... 53

8.6. Data Store Flows ... 54

8.7. Startup ... 54

9. Set Up and Testing of the Cluster .. 56

9.1. Testing ... 61

10. Log Analysis ... 63

11. Messages between Controllers ... 69

11.1. Capture .. 69

11.1.1. Akka tool Part .. 70

11.1.2. Raft algorithm part .. 73

12. Bandwidth Usage Analysis .. 78

12.1. Experimentation Methodology ... 78

12.2. Mininet .. 78

12.3. Data capture and processing ... 81

12.4. Modeling ... 85

4

13. Conclusions ... 90

13.1. Future work ... 91

5

1. Introduction

In the last decade the world have witnessed as Internet traffic grows in a very fast

way, this is due to different factors such as More Internet Users, Proliferation of

Devices and Connections, Video Services, Mobility Momentum and many others [1].

This has resulted in the increase of large data centers with the aim of processing all

this information. Due to these factors computational complexity and storage have

increased tremendously, therefore making the networking complexity higher.

In response to this problem of very difficult networks to handle, a set of organizations

such as operators, researchers and equipment vendors got together and saw the

need of innovation, that’s why was formed in 2011 the Open Networking Foundation

(ONF) with the objective of promoting a new network propose, Software Defined

Networks (SDN).

The fundamental idea behind SDN is a network architecture where the Control Plane

is separate from the Data Plane [2], this architecture opens up the possibilities of

what there was before. This is because with SDN it is possible to have programmable

networks where network administrators can custom the network in order to satisfy

their needs. In the SDN paradigm there is a central software program called

controller, which handles the behavior of the entire network. Becoming the brain of

the network and, making network devices become simples forwarding devices.

This new way of managing networks leads to the need to communicate simple

forwarding devices with SDN controllers and, for this was created the

communications protocol called OpenFlow.

In the SDN architecture network devices only rely on a single controller, this gives

the system the weaknesses of having a single point of failure. This issue can be

6

solve by deploying a cluster of SDN controllers, which will give the system an

improvement in scalability, high availability and persistence of the information.

The principal goal of this thesis is to deploy and analyze different aspects as the

internal performing, messages exchanged between controllers and, the bandwidth

usage of a cluster of OpenDayLight controllers. For this was created a cluster with

three instances of the controller, subsequently it was connected a Mininet network

with a change in the topology size. One of the objectives was also to provide a cluster

with high availability (HA), for this purpose two nodes in the cluster are acting as

redundancy in case of failure. In OpenDayLight they act as followers and the other

node acts as the leader of the cluster. The leader is the one in charge of

communicate with all the network devices, in case of failure the system will select a

new leader. Network devices will be passed out to be controlled for it.

In order to maintain information persistency and HA in the cluster, there has to be a

continuous exchange of inter-controllers traffic with the aim of maintaining the other

nodes updated. Then with these information is built a model to predict how is the

bandwidth usage (Mbps) with the variation of the topology.

1.1. Outline

This report is organized in the following way: Chapter 2 contains some background

about software defined networking. Chapter 3 contains a brief introduction to the

OpenDayLight controller. Chapter 4 describes how a distributed system works.

Chapter 5 explains how Raft (the consensus algorithm) works and, why is so

important for the deployment of the cluster. Chapter 6 describes Akka, tool used in

the discovering part. Chapter 7 explains the gossip protocol. Chapter 8 describes

the cluster architecture in ODL. Chapter 9 explains the configuration of the cluster

and, how to check that the cluster is running properly. Chapter 10 explains the Logs

7

of the system. Chapter 11 shows the different messages used for ODL. Chapter 12

contains the Model for the bandwidth usage. Chapter 13 concludes the thesis and,

talks about future works.

8

2. Software Defined Networking

The idea behind SDN networks is to pull out the intelligence from the network

hardware, something that has been done in other fields of technology. Right now is

being using the same that was in 1999, router, switches, routing protocols, they are

faster, with bigger Backplane, more throughput, Qos and some more things were

added. But intelligence is basically the same.

Networking equipment have remained unchanged along the years. In SDN, network

equipment have become dumber. Allowing the creation of a management system in

order to make the whole system more intelligent by having control of the network

architecture. Before was only a matter of the size of the pipe, in other words speed

(ex, how much time does it takes to transport something from one point A to B). Now

with the arrival of new applications such as real-time communications (YouTube,

skype, VoIP) the really importance was the latency or jitter. Now there is the problem

of real-time communications, where is used Qos to make some kind of prioritization

with packages. For example making a packet VoIP more important than an FTP and

so sending it first through the network.

In the past was common to say that FTP traffic had lower priority than the SIP traffic.

Now that more devices are connected to the network, it may happen that under some

conditions the FTP traffic could be more important than SIP traffic. The problem with

the systems that are available in today days to manage Qos is that it cannot be

dynamically configured this information, this must be programmed statically. Is there

where SDN gets to play a very important role, traffic can be modeled and shaped

dynamically depending on what is needed, basically the control plane and the data

plane are separated.

Why to shape real time traffic?

9

Whenever a network is configured, this will be governed by its own limitation. Most

of the time an application uses the entire bandwidth allocated and sometimes only

part of it. But there are occasions in which another application needs to use the

bandwidth that is not being used for the other application and, unfortunately it cannot

be used. This is a clear example of how interesting would be if there was an

infrastructure where it could be possible to prioritize traffic in real time. For example

in a pipe of 1 Mb instead of sectioning the pipe for all the services by default, it would

be better to modify it dynamically according to the instant needs.

2.1. SDN theory

According to [3] traditional IP networks are complex and very hard to manage. It is

both difficult to configure the network according to predefined policies, and to

reconfigure it to respond to faults, load, and changes. To make matters even more

difficult, current networks are also vertically integrated: the control and data planes

are bundled together. Software-defined networking (SDN) is an emerging paradigm

that promises to change this state of affairs, by breaking vertical integration,

separating the network’s control logic (Control plane) from the underlying routers

and switches (data plane) as is shown in Figure 2-1, promoting logical centralization

of network control, and introducing the ability to program the network.

With this separation on the control plane and data plane, all the networking devices

have become dumber, they began to be only forwarding devices. The control plane

is now implemented in a centralized controller.

 Data plane: is where reside all the switches and routers (forwarding devices)

that allow a package to go from a point A to a point b.

 Control plane: is where reside a set of management servers which

communicate with all the forwarding devices and say how data should move

10

in the plane data. This can be changed dynamically over the time, allowing to

control the entire network from a single point. This is done by separating

different components of the network infrastructure, so being able to deal with

them separately.

Figure 2-1 – SDN architecture [3]

Now that the control plane and the data plane are separated, it is needed a new form

of communication for them. In SDN there is something called OpenFlow that is a

protocol for controlling all the network devices.

The principle characteristics in a SDN network are: 1) control plane and the data

plane are decoupled. 2) Forwarding decisions are flow based [3], a flow means a

sequence of packets from a point to another. 3) Now that control plane and data

plane are separated, then the logic control is moved to an external entity, In SDN

this external entity is called SDN controller. 4) SDN networks are highly

11

programmable through applications, these application are running on top of the

control plane.

All the above mentioned make the SDN architecture agile, centrally managed, direct

programmable and scalable [4].

2.2. SDN definition

In order to contextualize the reader, it will be explained the SDN terminology.

1) Forwarding Devices (FD): are the switches and routers that are in charge of

implement all the flow rules given for the controller. They are connected to the

controller through the southbound interface and, this is done by using the

OpenFlow protocol.

2) Data plane (DP): is where all the forwarding devices reside.

3) Control plane (CP): is the brain of the network, it is connected with the data

plane with the southbound interface and to the applications with the

northbound interface.

4) Southbound interface (SI): is the way in which the controller communicate

with the forwarding devices, the protocol used is the OpenFlow.

5) Northbound interface (NI): SDN architecture offer a way to program the

controller and modify thing inside the controller, this is done by using this

interface.

2.3. OpenFlow

This is a communication standard interface managed for the Open Networking

Foundation (ONF) that is used between the control plane and the data plane in SDN

network [2], basically allows the configuration of forwarding devices such switches

and routers.

12

This protocol eliminates the problem of having static network architectures [5]. With

OpenFlow is possible to create a single network control policy that can be spread

through the entire network, allowing a central controller to remotely manage the

forwarding information in all the forwarding devices of the data plane. This is an

amazing approach because this makes the network more automatic, eliminating the

problem of configure all the devices and interfaces manually one by one. Another

advantage is that it won’t differ from a vendor to another, making the process easier.

2.4. Distributed Controllers

In SDN networks is also available the distributed controller architecture, the fact of

distributing the control to a set of controllers gives the system the ability to have

multiple points of failures [6]. Not as before that the system had a single point of

failures. The implementation is shown in Figure 2-2.

13

Figure 2-2 - Distributed Controllers [6]

Having multiple controllers running at the same time and working together also gives

the network the ability to improve its scalability, persistency, share workload and,

work in a high availability mode.

Controllers have to exchange some control information in order to work in a

distributed way, this traffic is often called East-West traffic. In this traffic is include

information about the topology network, inventory, and some other control plane

parameters.

14

3. OpenDayLight (ODL)

OpenDayLight is a collaborative open source project that is hosted for The Linux

Foundation, it was founded in April 2013 but the first release was in February 2014.

It was created with the aim of reducing the known “vendor locking” and therefore

supporting more protocols than only OpenFlow.

The objective of OpenDayLight is to provide a centralized management system that

allows to have a programmable network. This can be achieve by using API

frameworks.

OpenDayLight is a modular open SDN platform for networks of any size and scale,

enabling network services across a spectrum of hardware in multivendor

environments. The micro services architecture allows users to control applications,

protocols and plugins, as well as to provide connections between external

consumers and providers [7].

In today days all the networks have to be modified manually in order to

accommodate them to the needs and workload of the moment. For this in SDN

networks the OpenDayLight controller can be used as a platform for configuring

different aspects of the network and solving different network challenges. ODL uses

open source integration standards and APIs to make the network more

programmable, intelligent and adaptable.

The controller is very adaptable to needs, this enable the ability of combine multiple

services and protocols to solve different problems.

The fact that ODL is open source has been the key for the rapidly growing of it,

making possible that many programmers around the world can contribute to develop

software for this management system [8].

15

3.1. Architecture

The OpenDayLight controller has 3 different layers that are separated into: Top layer,

middle layer and bottom layer as is show in Figure 3-1.

Figure 3-1 – OpenDayLight Architecture [8]

In the ODL architecture are included some components as a fully pluggable

controller [9], interfaces, protocol plug-ins and applications. For the helium release

which is the version that is being used for this thesis, will be explained the three

layers of ODL.

Top layer – Northbound interface:

16

In this layer the northbound interface provides controller services and common

REST APIs. This helps for the managing of the network infrastructure configuration.

Middle layer – Controller platform:

In this layer the controller communicates with the underlying network infrastructure

with help of the southbound plug-ins. This is in charge of provide basic networking

services, including topology manager and switch manager.

Bottom layer – Southbound interface:

In this layer is where all the protocols for manage and control the underlying

networking infrastructure reside. It has different plug-ins that also implement various

networking protocols which directly communicate with hardware. Here is where the

OpenFlow protocol reside.

3.2. Services in ODL

Topology manager: is in charge of store and handle all the information about

networking devices. It contain topology details as switches and links.

Statistics manager: is in charge of collecting all the statistic information, this can be

done by sending statistic requests to the nodes and storing the responses. The

statistic manager also communicates with northbound APIs to provide information

about nodes, flows, tables and group statistic.

Switch manager: provides information about switches and ports. It can also

communicates with northbound APIs to provide information.

17

Inventory manager: guarantees that the database of the inventory can be always as

updated as possible. It queries and updates information about switches and ports

managed by OpenDayLight.

18

4. Distributed systems

What is it?

In traditionally computation everything is performed in only one machine as is show

in Figure 4-1, it does not matter if it is a computer, a mobile phone or whatever other

computational device. The procedure is simple: an input is given to a computational

device in order to process it and, finally obtain a desired output.

Is truth that in today days this is actually enough, but in very large scale projects, for

example, while doing 3D graphics, video rendering or in fact in the even larger scale,

projects, for example, if a researcher is trying to correct a complicated scientific

problem. In such situations the processing power of a single computer may not be

enough.

Figure 4-1 – Single System

19

A single computer can be maybe too slow to solve a large problem, and that’s how

distributed computing comes it, the idea is pretty simple. It is taken a large complex

task and it is chopped up into little bits, distributing the workload over a large number

of computers so that each computer only needs to work in a small job. All the

computers are supposed to work in unity and as a result a solution will be obtained

in far less time than the last computation.

Taking this idea to the main work of the thesis, in which there are very large scale

services, and those services are getting lots of requests from people who are trying

to access them. Is there when comes out a big problem. If it is wanted to serve that

amount of people at the same time with only one machine, it will be basically

impossible. It cannot be built a computer that can serve anyone at the same time.

The idea is to distribute the load (number of requests) on interconnected computers

that talk to each other and run the applications together as is shown in Figure 4-2.

So there are computers on a network connected each other and they are handling

different portions of the load. In This way is possible to scale up when the system

gets more requests, just simply adding more computers to the distributed system.

Another massive advantage of this approach is, for example, when there is a failure

in one of the nodes, the other node will take the workload of that node. It allows to

scale up, be reliable and it is an approach that make sense and is feasible.

20

Figure 4-2 – Distributed System

The most suitable tasks for distributed systems are parallelizable tasks, it may

require a large number of complicated operations but many of these operations can

take place independently of each other. Which means that each task is distributed

and, since one task does not rely on the result of another different task all the tasks

can be done at the same time without regard of the other task.

The way this is done is simple, basically there is a host computer as well as an array

of computers that are going to help with the distributed system. The host computer

is where is set up the task and where is running the main program, this computer

has the task of defining all the little jobs and, distribute them out to the rest of the

computers. Then each computer does the processing of those little tasks and, sends

back the results of processing. The host computer takes all the results from the

individual tasks and then it puts them all together again to generate the final result.

In this project the main focus is the cluster computing system architecture.

21

4.1. Cluster computing systems

In this kind of architecture there are a collection of computers (also called nodes)

linked together through a network [10], this enables computers to have a

coordination of their activities and to share the resources of the system. Users

typically perceive this architecture to be a single system.

This systems are very efficient due to its scalability and fault tolerance characteristic.

They can easily allocate more users or respond faster to requests, just with adding

more nodes to handle that extra load. They also avoid the problem of having a single

point of failure, this is achieved by adding a good recovery and redundancy system.

Another characteristic of cluster computing is the transparency [11], users do not

know when there is a failure or if there is a replication process or where are actually

running different process.

Cluster mechanisms allow to have two or more process working together as a unique

entity. In OpenDayLight is possible to have multiple instances of the controller

working together as one entity.

Advantages:

 Scaling: if there is more than one controller running in a network, it will be

able to work more and process a higher amount of data. It is also possible to

have the data distributed across the cluster, this is known as sharding where

is possible to have different shards on each controller of the cluster.

 High Availability: if one of the controllers goes down, it can be possible to

continue running the network and being available.

 Data persistence: when a controller crash, it won't lose the data on it.

22

There are many uses and configurations, depending on the type of cluster that is

needed. They can go from web services to scientific computations.

4.2. Load balancing

In this configuration all the nodes are sharing the workload of the cluster, this means

that if there is a given service and it is receiving requests from many user then it can

share all the load amount all the nodes just exactly how was described before. This

configuration will provide a better performance of the network. If a node fails, the

cluster will redirect all the load from that node to the other nodes. In that way the

overall response time will be optimized.

4.3. High availability

They are also called HA cluster, the main idea is to create a redundant network to

improve the availability of the cluster approach. This is perform to guarantee the

service when a system component fails, giving multiple points of failures to the

network. In this work this is the one that is going to be used.

23

5. Raft, consensus algorithm

Raft is a consensus algorithm for managing replicated logs [12]. Before to start to

explain the algorithm it is necessary to define what consensus is?

Consensus is an algorithm which allows a set of nodes or servers to work together

as a unique coherent system that is able to handle failures of some of its nodes. This

can be done by replicating the state machine of the leader.

Each node has its own copy of the state machine but the system as a whole has the

illusion that there is only one coherent state machine as is shown in Figure 5-1, even

if some of the nodes are down. The distribution of the state machine can be used to

solve different problems in large scale systems with single leader.

A typical consensus cluster can recover from a server failure autonomously, there

are 2 cases for failures and they are the followings.

- Only the minority of servers fails. In this case the cluster can continue

operating in the same way without having any problem

- The majority of the servers fails. In this case the cluster won’t be available

anymore until that a new majority of the servers runs again, but even with not

availability the cluster will retain consistency of the information.

Replication is perform by using a replicate log, each node has its own log but they

have to be identical to the ones of the other nodes, even in the same order.

24

Figure 5-1 - Replicated state machine architecture. [12]

All the commands from clients are replicated in the other nodes, once those

commands are replicated and processed for the nodes then the leader can send an

answer to the client. For this reason nodes appear to be a single state machine.

All the consensus algorithms have the following characteristics:

- Safety is a big characteristic of consensus, this is because the system never

gives an incorrect answer to clients, not even in condition of delay or packet

loss.

- Availability is always guarantee when the majority of the nodes are

operational active. This means that if there is a cluster of 7 nodes, the system

can handle a failure of 3 nodes without losing availability.

- Not time dependent, ensuring the consistency of the logs in case of clock

failure

The consensus is implemented first by electing a leader for the system, after the

election the leader obtains all the responsibility for managing the replicated log. The

25

procedure is the following, the leader receives log entries from the clients and, then

it replicates them to the other nodes. When the majority receives and confirms the

log entries from the leader, it informs to all the nodes to apply those log entries to

their state machine or “commit the transaction”. If the leader fails for any reason,

there has to be place for a new election.

It was used the consensus module to ensure the proper log replication. As was

mentioned before, the system won’t make any progress as long as a majority of the

servers are down.

Raft algorithm is splitted into three parts, Leader election, Log replication and Safety.

It is going to be described every part of the algorithm in the same order.

In leader election the idea is to select one of the servers to act as a cluster leader

and, if that server goes down there has to be place for a new election.

In log replication, the leader task is to take commands from clients, appends those

commands to its log and, then replicate its logs to other nodes with the aim of make

match its logs with the ones in other servers. This is done in order to overwrite

inconsistencies.

In safety, the idea is to add restrictions to the leader election process, so only the

server with the more updated log can become leader.

In a cluster architecture the typical number of nodes is 5, this gives the system the

possibility to handle up to 2 failures. Raft implements 3 different states for the nodes

of the cluster, they are leader, candidate and, follower as is shown in Figure 5-2.

When a node is initiated it always starts at follower state that is a passive state, this

means that it does not issue any request, it only responds to requests from leaders

26

and candidates. The leader state handles all the requests from clients, if a client

contacts to a follower it has to be redirected to the leader. The candidate state is the

state in which a new leader is elected.

Figure 5-2 - Server states. [12]

Another characteristic of Raft is that it divides time into Terms with arbitrary duration

and, those terms are enumerated in a consecutive way as is shown in Figure 5-3.

Figure 5-3 – Time Division [12]

A term always starts with an election process, where one or more nodes in the

candidate state try to become leader. When one of the candidates wins the election

and became leader, the term is conserve until the leader fails. There are also some

27

situations, in which during a term there is not any leader election, this can be caused

for a split vote’s situation. When this happens the term will ends up without any

leader, then a new term starts in order to have a new election. This ensure that only

a node can become leader within a given term.

The term value plays an important role in Raft, it is used for the nodes in order to

detect obsolete information. The term is exchanged in any communication between

nodes, the idea is that when a given node receives a larger term, it will update its

term value to the one sent for the other node. When this happens the node

immediately comes back to the follower state. The other important part of the term

is when there is an election process, because when a node receives a vote request

from a node with a smaller term, it will reject it.

There are two different messages in Raft, one is the "Request Vote" and the other

is the "Append Entries", they both are RPC messages. The "Request Vote" is used

for the candidate nodes in order to obtain votes from the other nodes and, the

"Append Entries" is used for the leader in order to replicate log entries. When the

"Append Entries" message is empty, it is called "heartbeat" message.

5.1. Leader election

When nodes are started up, they begin in the follower state. They remain in that

state as long as they do not receive any message from a leader or candidate. If they

don’t receive any message over a period of time called "Election Timeout" as is

shown in Figure 5-4, then they will change their status to candidate, assuming that

there is no current leader.

28

Figure 5-4 – Election Timeout [13]

As was mentioned before if a node in follower state wants to start a new election,

after timing out it has to increment the term and change its state to candidate. When

election process starts, the candidate node always votes for itself and sends a

"Request Vote" message to try to obtain votes from the other members as shown in

Figure 5-5.

29

Figure 5-5 – Vote Requests [13]

The candidate node remains in that state until:

1 It gets the majority of the votes and becomes leader of the cluster.

When a candidate wins an election is because it got the majority of the votes, this is

done in a first come first served basic, as is describe in [12]. This ensure that only

one node can become leader in a given term. When it becomes leader it starts to

send "heartbeats" to the other nodes in order to inform that there is a leader and

prevent new elections.

2 Another node becomes leader by sending a “heartbeat” message.

If a candidate node receives a "Heartbeat" or an "Append Entries" message while it

is waiting for the votes, it will come back to follower state because there is still a

leader in the cluster.

3 No one gets the leadership and a new term has to start.

30

In the case of having multiples nodes changing their state to candidate at the same

time, it could ends up in a split vote situation. When this happens the candidates will

start a new election in the next term.

Figure 5-6 shows how nodes vote for a candidate.

Figure 5-6 - Granted Votes [13]

In the third case above mentioned it may be a situation with split votes indefinitely,

that’s why Raft uses extra measures to prevent this. It uses randomized election

timeouts in order to solve this problem. They are typically between 150-300 ms, in

this way only one server will timeout in a given term. It will also sends "Heartbeats"

and receives confirmation before another node timeout.

5.2. Log replication

After a leader is elected, it can start to serve clients. Those clients make requests

which contains commands to be append to the leader log, in parallel it is also sent

31

"Append Entries" to the other nodes in order to perform the replication. When that

entry is safety replicated to the majority, the leader can finally apply it to its state

machine. This process is also called “commitment process", which means that a

given command has been replicated and applied to the state machine and now is

safe. The entry is durable and will never be overwrite.

The way Raft organizes logs is the following, each log entry has a command along

with a term number which says when the entry was received by the leader. The term

number is really important because with it the system detects inconsistencies in logs.

Each log entry also has an integer index in order to identify its position in the log as

is shown in Figure 5-7.

Figure 5-7 – Log Entries [12]

Another properties of Raft are: log entries never change their position in the log in

order to have consistency and it also perform consistency check. This is done by

using "Append Entries" messages. Within the message is include the term and log

32

index of the entry preceding the new entry. This information is used for the follower

node. If the follower does not find any entry with that term and log index, then it will

drop the new entry. But if the follower finds the entry with that term and log index,

that means that the leader log and the follower log are exactly the same. It will return

a success "Append Entries" message to the leader.

When the system operates normally, the consistency check always returns a

success operation which means that the log of the leader and followers stays

consistent. In case of inconsistency in the operation of the system, it’s possible to be

in a situation of leader or followers crash, which leads to logs inconsistent.

Log inconsistency means that follower’s logs may be different to the logs in the

leader, it can be in different ways. Having extra entries or having missing entries,

those inconsistencies are solved by overwriting conflicting entries with entries from

the leader, this is a safe method but it has to be done with some restrictions that will

be explained in the safety part.

The procedure is the following: the leader has to figure out which was the last entry

where there is a match between its logs and the follower logs in order to delete the

other entries after that point in the follower node, then sends all the entries after that

point from the leader log.

Operating in normal conditions, a new entry is replicated within a single round of

messages to the majority of the nodes.

5.3. Safety

After describing how Raft performs leader election and how it replicates logs, it’s

also necessary to talk about some mechanisms to ensure that all the state machines

33

to be the same in all the nodes. For example, when a leader is committing log entries

while one of the nodes is unavailable and after sometime, that node is elected leader.

It starts overwriting the entries committed for the previous leader with new entries.

In the above case it may result in a loose of consistency and it is necessary to apply

some restrictions in order to ensure that the leader for any given term contains all

the entries committed in previous terms.

5.3.1. Election Restriction

in Raft all the committed entries from previous terms have to be present in new

leaders at the moment of its election, this means that there is no need to transfer

any entry to the leader, this follows the rule that log entries only flow from leader to

followers and not vice versa. A leader never overwrites log entries that are already

in its log.

They way in which Raft prevents candidates without previous committed entries to

become leader is during the voting process. When a candidate node makes contact

with other nodes in the system for a Request Vote, the message includes information

about the candidate log. This is used for the nodes in order to determine which log

entry is more up to date, the one of the leader or its own. If the follower has a log

more up to date with respect to the one in the leader, it will deny the vote and, if it

has the log less up to date then it will confirm the vote.

With this procedure is possible to ensure that the leader elected has all the log

entries committed in previous terms.

34

5.3.2. Committing Entries from Previous Terms

An entry is said to be committed once is replicated to the majority. When a node is

doing its replication duty and it crashes before it can commit a given entry. That entry

won’t be safe of being overwritten for future leaders. Future leaders will try to finish

replicating the entry, but unfortunately a new leader is not able to know if an entry

from previous terms is committed.

In order to solve this problem, Raft never commits log entries from previous terms.

Only the entries replicated from the current leader can be committed, this is a way

to ensure that prior entries are being committed too.

5.4. Summary (Raft)

In election when a shard starts up, it starts as a follower because it does not know

about anything else in the system. After that it waits for some time in terms of

heartbeats, if it doesn't receive any heartbeat from the leader in that time period then

it becomes a candidate and starts to send requests for votes. After that it waits for

the votes and of course it votes for itself and, if it gets the majority of the votes it’ll

become the leader.

Once it becomes the leader then it has the authority to replicate data to the other

nodes, it happens by sending "Append Entries" messages. Those messages can

also act as a "Heartbeat" when they don’t have any payload as a way to replicate

data, that’s how replication works.

The consensus works in the following way, if there is for example a leader and two

followers. It is necessary to be able to replicate to at least one follower and, see the

confirmation from it saying that the data has been stored. Then the leader can finally

35

commit it and put it into the data tree, if the leader doesn't get any response it cannot

put it into the data tree and that information stays in the journal.

5.4.1. Journal Replication

When there is a transaction process on the cluster and, it gets replicated, the

leader node needs to know if the majority of the nodes got the transaction before

that the leader can confirm it and put it into the data tree as is shown in Figure

5-8. The cluster cannot tolerate commit transactions while the majority of nodes

are down, in this case it will have all the transactions coming and they will be

stored into the journal but they will never be apply to the data tree.

Figure 5-8 – Journal Replication [14]

36

5.4.2. Snapshot Replication

Typically when a cluster brings up a node, it’s not very efficient to send one by one

the entries to that node for complete the replication because it will take too much

time. So essentially when a node restarts instead of sending "Append Entries" it just

sends the snapshot as is shown in Figure 5-9. So the whole data tree is sent, in

addition to this it also breaks up the data tree in smaller chunks to perform the

replication because normally this data tree can be really large. The size of those

chunks are typically fixed to 2 Mb.

Figure 5-9 – Snapshot Replication [14]

5.4.3. Durability/Recovery

Durability is useful in the recovery process, in Figure 5-10 there are two components:

the first one is the data tree that is stored in memory but there is also the journal

which is persisted and the reason for this is that when there is a restart, a node has

to recover from persistence. For example, if there is a configuration data and a bunch

of flows is added into the configuration then when there is a controller restart, it is

37

desired to see all those flows in there because otherwise it won’t be able to

reconfigure all the switches in the same way. So the journal is essentially all the

modification that were ever made and stored in the journal one by one and, the

snapshot is used because it’s so important to recover faster. For example, when

there are thousands of flows in the journal, it’s not so good to wait a long time for

each flow to be read from disk and then be added it into the data tree. It’s just better

to put all the data tree into a snapshot that is a disk file and, it will read all at once

and from it will be construct the data tree.

Figure 5-10 - Durability/Recovery [14]

38

6. Akka

According to its specification, Akka Cluster provides a fault-tolerant decentralized

peer-to-peer based cluster membership service with no single point of failure or

single point of bottleneck. It does this using gossip protocols and an automatic failure

detector [15].

It’s important to explain some definitions before get more in deep with Akka [16].

- Node: A logical member of a cluster.

- Cluster: A set of member nodes joined together through a service.

- Leader: A single node in the cluster which acts as a Master. When a node is

the leader, it has full access to the switch.

6.1. Membership

A cluster is compose for a set of logical nodes, each node is identified for its

hostname , port, and an identifier number UID that is given by the system with the

aim of differentiate all the members and provide a better control in join and death

process. The membership process is initiated by sending a "join message" to one of

the seed nodes in the system, this communication between members is performed

by using the Gossip Protocol. The current state of the cluster is gossiped in a

random way to the members in the cluster, with some priority to the members that

have not seen the updated version of the state.

39

6.2. Failure detector

The failure detector is in charge of detecting unreachable nodes within the cluster.

The way in which it acts is the following: the idea is to keep the history of failures

statistics. This is calculated from heartbeats received from other nodes, having that

in mind was created a threshold to count how many failures are necessary to declare

a node as unreachable, the variable is called the phi accrual failure detector and it

can be configurable by the user. It is an important thing for the system because with

a high threshold it may leads to a situation with few mistakes but it will need more

time to detect real crashes, instead with a low threshold it may generate more

mistakes but it will give a fastest detection. The default value for this variable is 8

failures and is appropriate for most situations.

In cluster architectures a node is typically monitored by a few of the other nodes, it

depends in the cluster size but normally the maximum number is 5 nodes that

monitors a single node. So when a given node detect that another node is

unreachable, it will send that information to the rest of the nodes by using the gossip

protocol, that’s why only one node needs to mark a node as unreachable to make

the rest of nodes to mark that node as unreachable too.

The other function of the failure detector is to detect when an unreachable node

becomes reachable again, this is again done with a gossip round.

6.3. Seed nodes

Seed nodes are in charge of being the contact points for all the new nodes that are

joining the cluster, its address and hostname have to be stored in all the nodes that

are willing to join the cluster. When a new node try to join a cluster the first thing to

40

do is to contact seed nodes, after that it has to send a join command to the seed

node which answered first. It is possible to configure many seed nodes in the cluster,

but with only one seed node the cluster can works pretty well.

Seed nodes do not have any influence in the cluster performance, they only act as

a contact point for new nodes.

6.4. Membership lifecycle

In Figure 6-1 is shown the membership lifecycle. When a node starts, it always starts

in the joining state. This happens until that all the nodes get to know that there is a

new node, this is done through gossip convergence. Once the convergence is

achieve the leader changes the status of the new node to up.

In the case which a node is leaving the cluster in a correct way, the leader changes

the status of that node to a leaving state and then when the system achieves

convergence, it will move the node to an existing state and then will mark it as

removed.

In the case of an unreachable node, the system won’t be able to achieve

convergence and therefore won’t be able to move forward. In this case the leader

waits for that node to become reachable again or definitely marks it as down.

41

Figure 6-1 – Membership Lifecycle [16]

Member states are the following: joining, up, leaving, exiting, down and, removed.

There are also some actions for the leader and users.

- User actions: join, leave and, down.

- Leader actions: joining and exiting.

6.5. Joining to seed nodes

In the cluster architecture it is necessary to configure initial contact points, this is

done with the aim of make an automatically joining for all the nodes that will try to

join the cluster. Those contact point are also called seed nodes. The idea is that

when a node starts. It has to go and read the seed node list in the configuration files,

42

this is done in order to obtain all the addresses of seed nodes and try to contact

them. When a "join node" gets an answer from any of the seed nodes, it has to send

a join command to the one that replied first, in this way is initiated the joining process.

If no one answered, the node has to continue contacting seed nodes until it gets an

answer or until it shutdown.

Seed nodes can be started in any order, but the only condition is that the first node

in the seed node list has to be the first one to start in the cluster. Otherwise it won’t

be able to initialize other seed nodes. The reason for this is to avoid the creation of

separated islands in the cluster. There is not any restriction on how many seed

nodes have to be started, but it’s needed at least 2 seed nodes to start the cluster.

Once there are more than 2 seed node running, it will possible to shut down the first

node in the seed node list

When the cluster is formed, a new node can try to join the cluster to any member

node. Even if that node is not a seed node.

The first node in the seed node list will join itself in case in which it cannot contact

any other seed node

6.6. Leaving

In Akka there are only two ways to remove members from the system. The first is

stopping the node and then wait the other nodes to detect the node as unreachable,

after that the leader will mark it as removed. The second one is informing the system

that a given node has to leave.

43

6.7. Node roles

In distributed systems all the nodes have different roles, this means that the workload

can be distributed in any way to each member of the system. For example, one node

can be in charge of the Data Store, another of the architecture and another of the

inventory. But there is also the possibility to give the same role to all the members

by having redundancy, this can be done by replicating all the duties among the

members in order to gain availability in the system. The roles are defined in the

configuration files.

6.8. Persistence module

The persistence module of Akka allows nodes to persist their internal states, this is

done in order to allow recovery when a node is started or restarted after a crash. In

reality only changes to the internal state are saved, so the changes are persisted but

never its current state (except when there is also the snapshot implemented). Those

changes are saved in memory but they are never mutated, this make a highest

transaction rate and more efficient replication. All the persisted changes are saved

into a journal in order to be replayed later with the aim of recover the internal state

from all the messages.

When a node needs to recover, it has to replay all the stored changes in order to

rebuild the internal state. It can start to rebuild the internal state from zero or start

from a snapshot which will make the process fastest, reducing the recovery time.

A node is automatically recovered by default on start or restart, this is done replying

all the messages in the journal. If during the recovery phase new messages are sent

44

to the node, they won’t interfere with replayed process. They are stored in cache and

when the recovery phase ends they will be processed.

6.9. Snapshots

With the use of snapshots the system can reduce dramatically recovery time. The

system saved snapshots of the internal state in order to use it later during recovery.

This snapshot is offered when a node is about to start or restart with the aim of

initialize the internal state. If there are several snapshots in the system, it will take

the youngest version.

45

7. Gossip protocol

Akka uses a version of gossip call push-pull [16], this is with the aim of reducing the

information sent in the cluster. This means that it only sends current versions but not

actual information. In the answer to a gossip message a node sends another value

that represents if that node has an updated version or an outdate version. This is

done with help of the vector clock for the versioning, making possible only to pull the

information as needed.

Each node has the bucket or version information for all the other nodes as is shown

in Figure 7-1. For example in a cluster with 3 members, member one has the

information of member two and three. In this way when a member does a gossip

with another node, it can say if it has an older or a newer version with respect to the

other nodes. The gossip mechanism works in the following way, every second all the

members send status messages to each other, saying which version of the bucket

they know. Then with based on that information, nodes can decide to send back their

status if their version are lower or otherwise they send an update. Every time that

something changes in the bucket is changed also the version of the bucket.

46

Figure 7-1 – Gossip Protocol [14]

Messages are exchanged normally every 1 second and the decision of where to

send next the gossip message is random, but there is still some priority to those

nodes who have not seen the last version.

Another concept that needs to be explained is the concept of gossip convergence.

It is possible to talk about convergence when a member of the cluster can surely

prove that the cluster state that he is observing has been observed for all the other

members of the cluster. This information can be pass from node to node, each time

a node receives a gossip message it reads which members have already seen the

cluster state and, it also marks it before to send a new gossip message. In order to

have gossip convergence it is necessary to have all the nodes available, it is

impossible to achieve convergence while there is a node as unreachable.

When the cluster is in a convergence state, the system only sends small gossip

messages containing only the gossip version. But when there is a change in the

cluster and there is not convergence then the system goes back.

47

Gossip protocol also makes use of an algorithm for the data structure, this is called

Vector clock and it does a partial ordering of events and detection of violations in

distributed systems. Gossip uses the vector clock in order to note differences in the

cluster state when there is a gossiped exchange. A vector clock is a couple of (node,

counter) pair, so every time the cluster state change, then the vector clock also has

to update.

The vector clock is used to determine the following:

- If the sender has a newer version, in this case it sends back a message in

order to request the new version.

- If the sender has an outdated version, in this case the recipient sends back

its gossip state.

- If there Is a conflicting gossip versions, in this case those versions are merged

and sent back.

48

8. Clustering in OpenDayLight

Starting with the architecture

Essentially there are 2 subsystems implemented, in the cluster implementation:

- Data Store

The idea behind the Data Store implementation is that it is allows for high availability

and scalability, where all the members are talking to each other distributing the data

as shown in Figure 8-1.

Figure 8-1 – Data Store [14]

- Rpc

If there is a router RPC and it is trying to registerer in a node, it is invoked that RPC

either from RestConf or from any node in the cluster regardless of where is been

invoked from.

49

Figure 8-2 – RPC [14]

8.1. How is this build on?

At the high level architecture, both the Distributed Data Store and the RPC connector

have more or less the same foundation, everything was built based on Akka actors

as shown in Figure 8-3. That is a way to ensure that these components can reside

on any node in the cluster, the actors can be run anywhere and it is possible to

invoke these actors or send messages to these actors from any node in the cluster

without build the intelligence of where exactly the actor reside.

50

Figure 8-3 – Akka Actors [14]

The Akka persistence module, gives the ability to store data and in case of restart,

the node gets back the data and it reconstructs the state of the tree, it has 2 different

things:

- The Journal, is essentially a file with all the modification that you ever made

in the data tree.

- Snapshots, is where the whole state of the tree is stored.

The Akka remoting module, is a module in which an actor system in one node

communicates to another actor system in another node, that’s the main idea.

The Akka clustering module, is used for the discovery of nodes. For example, if there

are 2 nodes and it is wanted to know where the other node is or which is the ip

address or where is hosted. Akka clustering will give that information. It also gives

information about the status of members, for example, if “is the member alive, dead,

reachable or not reachable”.

51

8.2. Data synchronization

In the data store there are trees and the objective is to have all the trees

synchronized as is shown in Figure 8-4. There are different data trees like inventory,

topology, Toaster. These trees are allocated in a big tree, which is synchronized for

high availability. For this is used an algorithm called "RAFT the consensus algorithm"

to make sure that all these trees look the same on each node.

Figure 8-4 – Synchronized Data Tree [14]

For RPC, there is a synchronization of the RPC Registry for each node that gets

registered, for example, an open flow switch who wants to add a RPC flow on node

1, it is important to know exactly how to invoke the added flow on that switch. That

information goes into the registry and it gets also replicated as shown in Figure 8-5.

52

Figure 8-5 - Synchronized RPC Registry [14]

8.3. Communication

The way in which the "distributed data store" communicates with the data tree, is

putting an actor around the data tree. So when is desired to have communication

with the data tree, it is just necessary to send a message to the actor and wait for

that message to be processed, leading to a modification of the data tree.

8.4. Data Distribution

Once it is possible to access data remotely, the next thing to do is to not have all the

data in the same place. In the case of a big data tree, it is broken up into smaller

trees and distributed across the cluster as is shown in Figure 8-6.

53

Figure 8-6 – Sharding [14]

8.5. High Availability (HA)

With the distributed data store architecture it is possible to distribute all the data, for

example, inventory can go on one node and topology in another node. But what

would happen if inventory is in one node and that node fail?. Then the system would

lose access to the inventory data.

The solution for this problem is to distribute also the data across the cluster in a

replicated way as is shown in Figure 8-7. For example, member 1 is the leader of a

given shard and, member 2 and 3 act as followers, these followers have exactly the

same data. So that if member 1 goes down one of the other two nodes will take the

role of leader in order to guarantee high availability. The way it works is again

governed by RAFT algorithm.

54

Figure 8-7 – Distribute Data Store [14]

8.6. Data Store Flows

There are 2 modules in the data store, one is de Config data store and the other is

the operational data store.

8.7. Startup

Once the cluster starts up, it comes created an instant method of the distribute data

store and then it has to wait until it gets ready. The problem here is that when there

is a distributed data store, it is difficult to know when it is ready for use?. For example,

with the "In Memory" data is quite clear, it creates the "In Memory" data store and, it

is immediately available for work, it can start creating transactions and so on. Instead

In the "Distribute" data store, that’s not possible because if there is one instance of

the controller started and the other instances have not started then consensus will

not be there. For example, as who is the leader.

55

So after the system has created the distribute data store there is a waiting time until

it gets ready, normally for 90 seconds trying to find the leader. It’s enough time to

start another node and for the creation of its shards, this in order to select the leader.

If that happens within 90 second then it will move forward, otherwise it will block for

90 seconds. Once it is create the distribute data store, it creates two classes: one is

the ACTOR CONTEXT that allows to communicate with actors, this is necessary

because distribute data store is not an actor and, the other one is SHARD

MANAGER which is the parent of all the shards. Shards are created in base on a

configuration file called module-shards.conf, so for all those shards is necessary to

find the leader within the 90 seconds as is mentioned above. As a result if a

transaction is created before a leader is found, that transaction will fail.

When shards are created, the first thing they do is to read and recover the

information from disk. It can happen either from the journal or the snapshot, it goes

and reconstruct the data tree and then it sets its behavior to follower, after that it

says "I am ready for communications" to continue with the process of elections in

order to choose the leader. Once the leader is found, the countdown and the wait

until it gets ready happens. It can move forward, this procedure needs to happen for

both ConfigDataStore and OperationalDataStore.

56

9. Set Up and Testing of the Cluster

In this chapter is going to be shown which is the configuration needed to deploy a

cluster architecture with the OpenDayLight controller.

The idea is to have multiple instances of the controller working together as if they

were a single entity, in order to achieve a better scaling, persistence and, high

availability in the system. In this case it will be a 3 node cluster as shown in Figure

9-1, in which the base distribution is Helium-SR4

Figure 9-1 - 3 Nodes Cluster

Before getting more in deep with the cluster deployment, it is necessary to make

some considerations.

When it is wanted to build a clustered system, it is really important to have in mind

that it will be needed an odd number of controllers. This is because OpenDayLight

is using the Raft algorithm and it always needs to have a majority of the members

available, in order to maintain the system in a high availability fashion. This means

that the minimum cluster size to maintain the HA feature is 3 nodes. If it is built a

cluster of less than 2 nodes, it can be possible to make some functional test but it

will never be in high availability.

57

Another thing that is needed to have in mind is what is the role that every node is

going to play, this is important because it has to be configured previously to the

running. In this case as the main objective is to create a HA cluster all the members

are going to play the same role.

The last consideration is to know which is the data needed for the system, this data

is allocated among different shards. By default OpenDayLight brings some shards

already created and they are: Inventory, Topology, Toaster and a default one for the

other kind of information. In this thesis are going to be used only these shards

because for the thesis purposes is not necessary to create a new one.

The first thing to do is to create a Virtual Machine (VM) where to host the controller,

in this case it is used a version of Ubuntu 14.04 [17] and VirtualBox 5.0.6 [18].

Now that there is a machine where to host the controller, the next step is to get the

OpenDayLight controller for this parte there are two options: the first is to download

a version that is already modified with all the features needed, this version can be

found in some OpenDayLight repositories. The second option is to download the

original version and add manually all the features needed for the cluster deployment,

this version can be found from the OpenDayLight webpage [8].

For this case was used an original version downloaded directly from the

OpenDayLight webpage. Here is not going to be explained how to install and

configure the VM [19]. The features that are going to be needed are odl-restconf,

odl-l2switch-switch, odl-mdsal-clustering, odl-openflowplugin-flow-services.

In the cluster architecture it is going to be needed at least 3 VM, one for each

controller. Then is possible to run the controller in each node, this can be done by

entering in the distribution folder and, looking for the <Karaf-distribution-location>/bin

directory.

58

In order to run the controller it is necessary to execute the file Karaf like this ./Karaf.

This will run the controller and will appear a command window as is shown in Figure

9-2.

Figure 9-2 – Command Window

In this window is possible to perform some actions, like install features, consult which

features are already installed and also to see some of the internal process of the

controller. For example, when a switch is requesting a connection to the controller.

Now that the controller is in operation it is possible to install the features, the way it

is done is the following: In the command window is typed feature: install and the

name of the feature desired.

59

In this case the most important feature is the odl-mdsal-clustering, this will install

the Akka toolkit and more characteristics in the controller and it will be the one

making possible the cluster functionality. This feature will also create some initial

configuration and, some files that are going to make possible the manual

configurations. Those files are stored in the folder "configuration/initial" and they are

named akka.conf and module-shards.conf.

It’s also necessary to install the odl-openflowplugin-flow-services, this feature is

the in charge of the communication with Open Flow equipment and in general of the

communication between controllers.

Once the features mentioned above are installed, it is possible to start with the

manual configurations of the nodes.

First, it is needed to go to the akka.conf file and make some modifications, the

changes needed to do is to set the ip address and port in which the node will be

listening, configure all the seed nodes and define the role of that node.

The ip address and port that are in the initial configuration are the following.

Then it is necessary to modify only the hostname address for the current ip address

of the node, the port is the same. This configuration tells the system that it will be

listening in the ip address 192.168.56.101 and port 2500, this is important because

in this address and port will be received all the requests from joining nodes.

60

For the seed node list, initially there is the following.

In this part it is also necessary to modify the address of the seed node because

initially it is configured to contact itself to the localhost address. It is possible to

configure more than 1 seed node in the system, there is not limitation on how many

seed nodes have to be in the cluster.

For the role of each node, initially it comes by defect as the following.

In this part it has to be modified only when the configured node is not the first node,

but if it is the second it has to be changed to member-1 or member-2.

These are all the changes that are needed in the akka.conf file.

Then is also needed to modify the second file module-shards.conf. In this file it is

need to specify if any shard will be replicated in other nodes. In this will be shown

the case of the inventory shard, the initial file is like the following.

61

It is possible to run the cluster without change any of this file, but if is looked to

implement the case of High availability, it is need to make replicas of all the shards

in all the nodes that are going to be part of the cluster like the following.

Once is done the previous configuration in all the nodes, then is possible to restart

again all the controllers and start with the clustering services.

9.1. Testing

After the cluster configuration is necessary to implement some mechanism that

allows to validate that the setup is right. Validate means to prove that the cluster is

running properly, like validate that there is a leader for each shard and that the

system is making the right operations like shard replication and committing actions.

62

For this purpose is going to be used "Postman" that is an application for making

HTTP requests, with this app is possible to ask the controller for information about a

specific shard. The command to do that is the following.

GET

http://192.168.56.101:8181/jolokia/read/org.opendaylight.controller:Category=Shar

ds,name=member-1-shard-inventory-config,type=DistributedConfigDatastore

This request gives back information about the state of the cluster as is shown in

Figure 9-3.

Figure 9-3 – Testing Response

In this answer is possible to obtain valuable information as the last log index, current

term, failed transactions, committed transactions and the current leader.

63

10. Log Analysis

In this part is going to be analyzed which are the actions that are performed for the

controller in every node. When a controller starts its operation, it creates a text file

which specifies all the steps that are made, this file is located in the folder "data" and

the name is Log.txt. This means that this file contains all the information about

actions, notifications and modifications made in the controller. Logs can help to

understand what is really happening in the system.

In order to focus in the main goal that is the clustering part, is going to be analyzed

only the information related to that feature.

Node 1

Let’s start with the first node in the seed node list (Node 1). Once the controller starts

and execute all the default features, it has to initialize itself as a cluster node. It’s an

automatically process as is shown in the following.

2016-01-19 18:04:11,359 | INFO | ult-dispatcher-2 | Remoting | 266 - com.typesafe.akka.slf4j - 2.3.10 | Remoting started;

listening on addresses :[akka.tcp://opendaylight-cluster-data@192.168.56.101:2550]

2016-01-19 18:04:11,480 | INFO | ult-dispatcher-2 | kka://opendaylight-cluster-data) | 266 - com.typesafe.akka.slf4j - 2.3.10

| Cluster Node [akka.tcp://opendaylight-cluster-data@192.168.56.101:2550] - Starting up...

2016-01-19 18:04:11,625 | INFO | ult-dispatcher-3 | kka://opendaylight-cluster-data) | 266 - com.typesafe.akka.slf4j - 2.3.10

| Cluster Node [akka.tcp://opendaylight-cluster-data@192.168.56.101:2550] - Registered cluster JMX MBean

[akka:type=Cluster]

2016-01-19 18:04:11,626 | INFO | ult-dispatcher-3 | kka://opendaylight-cluster-data) | 266 - com.typesafe.akka.slf4j - 2.3.10

| Cluster Node [akka.tcp://opendaylight-cluster-data@192.168.56.101:2550] - Started up successfully

Once Node 1 is successfully initialized, the Akka Clustering module starts working.

It sends join messages to all the seed node configured in the configuration files. At

this point as it is the only node initialized it won’t get any answer back, this can be

64

evidenced in the log, where is possible to see node 1 contacting other nodes but

with not answer. The connection is refused as is shown in the following.

2016-01-19 18:04:12,321 | WARN | ult-dispatcher-4 | ReliableDeliverySupervisor | 266 - com.typesafe.akka.slf4j - 2.3.10 |

Association with remote system [akka.tcp://opendaylight-cluster-data@192.168.56.102:2550] has failed, address is now

gated for [5000] ms. Reason: [Association failed with [akka.tcp://opendaylight-cluster-data@192.168.56.102:2550]] Caused

by: [Connection refused: /192.168.56.102:2550]

2016-01-19 18:04:12,343 | INFO | ult-dispatcher-4 | rovider$RemoteDeadLetterActorRef | 266 - com.typesafe.akka.slf4j -

2.3.10 | Message [akka.cluster.InternalClusterAction$InitJoin$] from Actor[akka://opendaylight-cluster-

data/system/cluster/core/daemon/firstSeedNodeProcess-1#645930444] to Actor[akka://opendaylight-cluster-

data/deadLetters] was not delivered. [1] dead letters encountered. This logging can be turned off or adjusted with

configuration settings 'akka.log-dead-letters' and 'akka.log-dead-letters-during-shutdown'.

Having this in mind the next move is to join itself by sending a "Join message" to its

direction and specifying its configured role “member - 1”. After that the node is set

as up and the operation can start, this is possible only if it is the first node in the first

node list.

2016-01-19 18:04:17,300 | INFO | lt-dispatcher-19 | kka://opendaylight-cluster-data) | 266 - com.typesafe.akka.slf4j - 2.3.10

| Cluster Node [akka.tcp://opendaylight-cluster-data@192.168.56.101:2550] - Node [akka.tcp://opendaylight-cluster-

data@192.168.56.101:2550] is JOINING, roles [member-1]

2016-01-19 18:04:17,681 | INFO | config-pusher | StatisticsManagerModule | 241 - org.opendaylight.controller

md.statistics-manager - 1.1.4.Helium-SR4 | StatisticsManager module initialization.

2016-01-19 18:04:17,729 | INFO | ult-dispatcher-5 | kka://opendaylight-cluster-data) | 266 - com.typesafe.akka.slf4j - 2.3.10

| Cluster Node [akka.tcp://opendaylight-cluster-data@192.168.56.101:2550] - Leader is moving node

[akka.tcp://opendaylight-cluster-data@192.168.56.101:2550] to [Up]

In general when a node is started, it goes to memory to see if there is a module

stored, if there is one it goes and read it from disk. These modules depends on which

features are installed in the controller. In the case of clustering, the modules are the

ShardManager-Operational and the ShardManager-Config.

2016-01-19 18:04:11,723 | INFO | config-pusher | DistributedDataStore | 280 - org.opendaylight.controller.sal-

distributed-datastore - 1.1.4.Helium-SR4 | module shards config file exists - reading config from it

65

2016-01-19 18:04:11,754 | INFO | config-pusher | DistributedDataStore | 280 - org.opendaylight.controller.sal-

distributed-datastore - 1.1.4.Helium-SR4 | modules config file exists - reading config from it

2016-01-19 18:04:12,226 | INFO | config-pusher | DistributedDataStore | 280 - org.opendaylight.controller.sal-

distributed-datastore - 1.1.4.Helium-SR4 | module shards config file exists - reading config from it

2016-01-19 18:04:12,241 | INFO | config-pusher | DistributedDataStore | 280 - org.opendaylight.controller.sal-

distributed-datastore - 1.1.4.Helium-SR4 | modules config file exists - reading config from it

If there are still some modules missing in the system, then it will create them.

Normally this always happen when a node is started for the first time. In this case it

has to create the modules because it is the first time the controller runs.

2016-01-19 18:04:11,960 | INFO | config-pusher | DistributedDataStore | 280 - org.opendaylight.controller.sal-

distributed-datastore - 1.1.4.Helium-SR4 | Creating ShardManager : shardmanager-operational

2016-01-19 18:04:12,263 | INFO | config-pusher | DistributedDataStore | 280 - org.opendaylight.controller.sal-

distributed-datastore - 1.1.4.Helium-SR4 | Creating ShardManager : shardmanager-config

When the modules are fully operated, this means that the system have read it from

disk or it created from zero then the system gives a notification in the Log as the

following.

2016-01-19 18:04:13,544 | INFO | lt-dispatcher-19 | ShardManager | 280 - org.opendaylight.controller.sal-

distributed-datastore - 1.1.4.Helium-SR4 | Recovery complete : shard-manager-config

2016-01-19 18:04:13,550 | INFO | ult-dispatcher-4 | ShardManager | 280 - org.opendaylight.controller.sal-

distributed-datastore - 1.1.4.Helium-SR4 | Recovery complete : shard-manager-operational

Now that all the modules are running in the system, the next step is to go to the initial

configuration files in order to read which are the shards who need to be created. In

this case are only the shards: inventory, topology, toaster and, default.

In this log explanation is only mentioned the shard-inventory-operational, but the

process is the same for all the shards. Once the system creates the shards it goes

and put them into the “InMemoryDataTree”.

66

2016-01-19 18:04:14,208 | INFO | lt-dispatcher-20 | Shard | 273 - org.opendaylight.controller.sal-akka-raft -

1.1.4.Helium-SR4 | Shard created : member-1-shard-inventory-operational persistent : true

2016-01-19 18:04:14,209 | INFO | lt-dispatcher-20 | InMemoryDataTree | 151 - org.opendaylight.yangtools.yang-

data-impl - 0.6.6.Helium-SR4 | Attempting to install schema contexts

Now that the shards are in the "InMemoryDataTree" it’s possible to recover the

information from the journal and after that, it gives a notification which tells that the

shard in ready.

2016-01-19 18:04:14,279 | INFO | lt-dispatcher-20 | Shard | 273 - org.opendaylight.controller.sal-akka-raft -

1.1.4.Helium-SR4 | member-1-shard-inventory-operational: Starting recovery with journal batch size 1

2016-01-19 18:04:14,281 | INFO | lt-dispatcher-20 | RoleChangeNotifier | 272 - org.opendaylight.controller.sal-

clustering-commons - 1.1.4.Helium-SR4 | RoleChangeNotifier:akka.tcp://opendaylight-cluster-

data@192.168.56.101:2550/user/shardmanager-operational/member-1-shard-inventory-operational/member-1-shard-

inventory-operational-notifier#-1968314382 created and ready for shard:member-1-shard-inventory-operational

When a shard is ready to operate it always starts in the Follower state as is defined

in the Raft algorithm. In the Log is possible to see how the node switchs the state of

the shard to follower. After this step the system starts to perform the leader election

process.

2016-01-19 18:04:14,350 | INFO | lt-dispatcher-19 | Shard | 273 - org.opendaylight.controller.sal-akka-raft -

1.1.4.Helium-SR4 | Recovery completed - Switching actor to Follower - Persistence Id = member-1-shard-inventory-

operational Last index in log=-1, snapshotIndex=-1, snapshotTerm=-1, journal-size=0

Node 2

In this node is also observed the same procedure than in node 1. It starts and

immediately try to communicate with seed nodes, in this case as node 1 is already

in operation and it is the first one in the seed node list, there must be an answer for

it. So the communication between both nodes is the following. First, node 2 sends a

"Join message" to node 1 and it replies with a "Welcome message". This

67

automatically creates a connection and allows to continue with the cluster

deployment.

2016-01-19 18:04:59,926 | INFO | lt-dispatcher-19 | kka://opendaylight-cluster-data) | 266 - com.typesafe.akka.slf4j - 2.3.10

| Cluster Node [akka.tcp://opendaylight-cluster-data@192.168.56.101:2550] - Node [akka.tcp://opendaylight-cluster-

data@192.168.56.102:2550] is JOINING, roles [member-2]

2016-01-19 18:05:01,869 | INFO | lt-dispatcher-15 | kka://opendaylight-cluster-data) | 266 - com.typesafe.akka.slf4j - 2.3.10

| Cluster Node [akka.tcp://opendaylight-cluster-data@192.168.56.102:2550] - Welcome from [akka.tcp://opendaylight-cluster-

data@192.168.56.101:2550]

2016-01-19 18:05:00,753 | INFO | ult-dispatcher-2 | kka://opendaylight-cluster-data) | 266 - com.typesafe.akka.slf4j - 2.3.10

| Cluster Node [akka.tcp://opendaylight-cluster-data@192.168.56.101:2550] - Leader is moving node

[akka.tcp://opendaylight-cluster-data@192.168.56.102:2550] to [Up]

When all the nodes in the cluster are up and the shards have created in each node

then it’s time to start with the leader election for each shard, this is done with the

implementation of the Raft algorithm.

As was explained before, all the shards start as followers and wait for a "heartbeat"

in a determinate time, it they don’t receive anything they can change their status to

candidate and try to obtain votes from other nodes. So they send request vote

messages and if the majority vote for a node, that node can changes its status to

leader.

In the log is possible to observe when a shard change its status from follower to

candidate after waiting for a determinate time “timeout”. In this case is the shard of

node 1 which changes the status to candidate.

2016-01-19 18:04:24,425 | INFO | lt-dispatcher-20 | Shard | 273 - org.opendaylight.controller.sal-akka-raft -

1.1.4.Helium-SR4 | member-1-shard-inventory-operational (Follower) :- Switching from behavior Follower to Candidate

2016-01-19 18:04:24,425 | INFO | lt-dispatcher-20 | RoleChangeNotifier | 272 - org.opendaylight.controller.sal-

clustering-commons - 1.1.4.Helium-SR4 | RoleChangeNotifier for member-1-shard-inventory-operational , received role

change from Follower to Candidate

68

Once the votes are received, it is possible to set a leader for a determinate shard as

following.

2016-01-19 18:05:05,241 | INFO | ult-dispatcher-3 | Shard | 273 -

org.opendaylight.controller.sal-akka-raft - 1.1.4.Helium-SR4 | member-1-shard-inventory-operational

(Candidate) :- Switching from behavior Candidate to Leader

2016-01-19 18:05:05,244 | INFO | ult-dispatcher-5 | RoleChangeNotifier | 272 -

org.opendaylight.controller.sal-clustering-commons - 1.1.4.Helium-SR4 | RoleChangeNotifier for member-1-

shard-inventory-operational , received role change from Candidate to Leader

The part above described is very important because doing this analysis is the only

way to actually understand what is really happening in the system internally. And

this will give us also an idea of how to solve problems.

69

11. Messages between Controllers

It was already explained how the system works internally, but still there has to be

explained how the nodes are interacting each other. Interacting means the actual

data exchange between controllers. Having that in mind, is performed a packet data

capture in order to determine how is the structure of an OpenDayLight packet and

also the different messages that are implemented.

This is going to be one of the most important parts of the project because it will set

some parameters for future interactions with different controllers, having the tools for

building a proxy between the OpenDayLight controller and another kind of controller.

This will allow for future clustering architectures in which the cluster can be compose

for different kind of controllers working together.

For this packet capture was used Wireshark [20] that is a packet analyzer tool, with

these tool was possible to filter all the packets needed and also to separate only the

desired information contained in the payload.

11.1. Capture

Once the controllers start, they try to communicate with seed nodes as was

explained before, first by establishing a TCP channel. If the node that is being

contacted is alive then it will allow the connection. Otherwise the connection will be

refused. This TCP channel is built with the three handshake mechanism.

During the first part of the clustering the Akka tool is in charge of all the

communication and then the Raft algorithm takes place.

70

11.1.1. Akka tool Part

After the handshake and with the channel established, nodes try to join seed nodes

by sending a message, the message basically contains its direction as is shown in

the following.

...D.B...>3.opendaylight-cluster-data..192.168.56.102...".tcp.........

After the first contact, the joining node has to wait until any of the seed nodes answer

to that first contact. This answer is very simple, it contains its address.

...D.B...>3.opendaylight-cluster-data..192.168.56.101...".tcp.].......

When the first contact is done, the joining node can start with the joining process.

This is done by initiating an internal action call "Join Action". This process also has

an identifier number that is included in the message. The message is like the

following.

...%.....;9akka.tcp://opendaylight-cluster-

data@192.168.56.101:2550/.gc........system......cluster......core.....daemon",akka.cluster.InternalClusterAction$InitJoin$(..."w

uakka.tcp://opendaylight-cluster-data@192.168.56.102:2550/system/cluster/core/daemon/joinSeedNodeProcess-1#-

2021912680

Once the seed node has received the previous initialize message, it sends back an

acknowledgment of that join process in order to continue with the joining. The whole

communication is performed with the help of the identifier number, with that number

is possible to identify different processes.

uakka.tcp://opendaylight-cluster-data@192.168.56.102:2550/system/cluster/core/daemon/joinSeedNodeProcess-1#-

2021912680.l8.opendaylight-cluster-data..192.168.56.101...".akka.tcp....akka.cluster.InternalClusterAction$InitJoinAck"`

^akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/system/cluster/core/daemon#1239809082

71

After the acknowledgment, the joining node has to send information about its

configuration (member or role in the cluster). This is done because there are some

configurations in which each member have a different role. In this case the role

defined in the initial configuration is “member-2”.

...V.....;9akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/.....K?8.opendaylight-cluster-data..192.168.56.102..."

.akka.tcp....v..member-2.......system......cluster......core.....daemon"'akka.cluster.InternalClusterAction$Join(..."`

^akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/system/cluster/core/daemon#2118301878

Now that the seed node is aware of the role of the joining node, it can finish the

initiation process by changing the status of the joining node to up. It also has to

inform the joining node that it is up, this is done with a welcome message.

^akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/system/cluster/core/daemon#2118301878................r...../

H.KI...L.(.M.)-.I-.MI,I..3.4.34..35.340..&.......W.\ p....|B...(6......PM....L.#757.....2.R00M206JJMKL.L25.HJ.01I2.4M5LLL3KU

..`.`.`TbdP..`.......J..ZL..F...B,@.......&......*akka.cluster.InternalClusterAction$Welcome"`^akka.tcp://opendaylight-cluster -

data@192.168.56.101:2550/system/cluster/core/daemon#1239809082

From this point on, the joining node starts to be part of the cluster. This procedure is

the same for all the nodes who want to join the cluster. After the joining process all

the members in the cluster can start to exchange information, this is achieved with

the help of the Akka clustering module.

There are still 2 more messages that are part of this module, one is the heartbeat

and the other is the gossip message.

Heartbeat is a really important message it’s used in order to maintain the up state

of the members in the cluster, that’s why it’s repeated during the whole operation of

the cluster. If a heartbeat message is not answered it means that some node is not

reachable and the system marks it like that. That node stays as a part of the cluster

72

as far as it does not reach the Phi accrual fail detector threshold, otherwise it has

to be removed from the system.

A heartbeat message also has integrated a heartbeat sender number and it is useful

to identify different actors. It looks like the following.

9akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/.....8.opendaylight-cluster-data..192.168.56.101...".akka.tcp...

....system......cluster......heartbeatReceiver"-akka.cluster.ClusterHeartbeatSender$Heartbeat(..."qoakka.tcp://opendaylight -

cluster-data@192.168.56.101:2550/system/cluster/core/daemon/heartbeatSender#-1807478239

Every heartbeat message has to be answered or acknowledged, otherwise the node

will reach the value of the phi accrual fail detector. A heartbeat answer message

looks like the following

...Y.....qoakka.tcp://opendaylight-cluster-data@192.168.56.101:2550/system/cluster/core/daemon/heartbeatSender#-180747

8239.u?8.opendaylight-cluster-data..192.168.56.102...".akka.tcp....v...0akka.cluster.ClusterHeartbeatSender $HeartbeatRsp

"geakka.tcp://opendaylight-cluster-data@192.168.56.102:2550/system/cluster/heartbeatReceiver#-1251842346

Gossip message are also really important for the system, inside this message there

is useful information about the cluster as the state and versioning. This is the key to

try to build a convergence system, gossip messages are exchanged every second

and, they are random in the sense that they don’t have a fixed destination. The

message is like the following.

9akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/.......@8.opendaylight-cluster-data..192.168.56.101...".akka.tcp

....?8.opendaylight-cluster-data..192.168.56.102...".akka.tcp....v..............r...../H.KI...L.(.M.)-.I-.MI,I..3.4.34..35.340..&.......W.\

p....|\...`.j....eB....I@..p.....i...QRjZb.e...ER...I...i.abb.Y..'.......#../.... `.`Pbd.b.`0..`.b..`.....T...........system......cluster......core.....da

emon".akka.cluster.GossipEnvelope(..."`^akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/system/cluster/core/

daemon #1239809082

The gossip message also has to be acknowledged as the following

73

...,.....`^akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/system/cluster/core/daemon#1239809082.....?8.open

daylight-cluster-data..192.168.56.102...".akka.tcp....v.@8.opendaylight-cluster-data..192.168.56.101...".akka.tcp................

....r...../H.KI...L.(.M.)-.I-.MI,I..3.4.34..35.340..&.......W.\p....|\...`.j....eB....I@..p.....i...QRjZb.e...ER...I...i.abb.Y..'.......#../....

`.`Pbd.b.`.`4..`........>.........akka.cluster.GossipEnvelope"`^akka.tcp://opendaylight-cluster-data@192.168.56.102:2550

/system/cluster/core/daemon#2118301878

Up to here acts the Akka clustering tool, and from now on the principal role will be

under the supervision of the raft algorithm.

11.1.2. Raft algorithm part

When the clustering services start, it is time to begin with the leader election for all

the shards implemented in the system. As was explained before in Raft algorithm

description, the first node that times out will become a candidate and will send

request votes. This is with the aim of obtain the approbation of the majority of the

nodes and change the status to leader of a given shard.

As before it will be shown only the case of the Shard-Inventory-Operational message

as an example, but all the others are completely the same. The message brings

information about the current term and candidate ID. The request vote message

looks like the following.

9akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/...........sr.=org.opendaylight.controller.cluster.raft.messages.

RequestVotem[}.a.)&...J..lastLogIndexJ..lastLogTermL..candidateIdt..Ljava/lang/String;xr.Aorg.opendaylight.controller.cluste

r.raft.messages.AbstractRaftRPC......l ...J..termxp........................t.$member-1-shard-inventory-operational........user......sha

rdmanager-operational.(...$member-2-shard-inventory-operational(..."....akka.tcp://opendaylight-clusterdata@192.168.56.101

:2550/user/shardmanager-operational/member-1-shard-inventory-operational#-1784895488

The answer for this messages is really similar and in addition it brings information

about if the vote was granted or not. The message looks like the following.

74

.............akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/user/shardmanager-operational/member-1-shard-

inventory-operational#-1784895488.........sr.Borg.opendaylight.controller.cluster.raft.messages.RequestVoteReply

..._.......Z..voteGrantedxr.Aorg.opendaylight.controller.cluster.raft.messages.AbstractRaftRPC......l ...J..termxp..........."..

..akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/user/shardmanager-operational/member-2-shard-inventory-

operational#-870461665

Once a candidate node receives the majority of the votes, it will become the leader

of a given shard during a given term. After that moment it starts to replicate data to

the other nodes. In this case of Akka, that kind of message is called “Append Entries"

message and, it can also be used as a way of heartbeat message. This is with the

aim of establish if a given leader is up or down, if the leader is down there has to be

another election turn. A typical append entries message is like the following.

9akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/.....T...$member-1-shard-inventory-operational...........

..........0..........8..................user......shardmanager-operational.(...$member-2-shard-inventory-operational"_org.opendaylight

.controller.protobuff.messages.cluster.raft.AppendEntriesMessages$AppendEntries(..."....akka.tcp://opendaylight-cluster-

data@192.168.56.101:2550/user/shardmanager-operational/member-1-shard-inventory-operational#-1784895488

The answer to this message is the following.

...`.........akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/user/shardmanager-operational/member-1-shard-

inventory-operational#-1784895488.........sr.Dorg.opendaylight.controller.cluster.raft.messages.AppendEntriesReply...Y.N.

....J..logLastIndexJ..logLastTermZ..successL.followerIdt..Ljava/lang/String;xr.Aorg.opendaylight.controller.cluster.raft.messag

es .AbstractRaftRPC......l ...J..termxp.........................t.$member-2-shard-inventory-operational.."....akka.tcp://opendaylight-

cluster-data @192.168.56.102:2550/user/shardmanager-operational/member-2-shard-inventory-operational#-870461665

In this case is very easy to note that the "Append Entries" message is empty, this is

because when there is not information to exchange the message is used as a

heartbeat message.

In this work was also done a different test, in which a small network simulated in

Mininet was connected to the cluster of controllers. This was made with the aim of

75

put some information about inventory and topology to the controller. As a result the

system creates a transaction and starts to replicate all the data from the shard

leaders to the followers. An example of that message will be the following.

9akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/..........#member-1-shard-topology-operational.. .*.........iorg.

opendaylight.controller.cluster.raft.protobuff.client.messages.CompositeModificationByteStringPayload.....Rclass org.open

daylight.controller.cluster.datastore.modification.MergeModification........ .0..Y....... .0. .b+urn:TBD:params:xml:ns:yang:

network-topologyb2013-10-21b.network-topology..Rclass org.opendaylight.controller.cluster.datastore.modification.Merge

Modification........ .0....... .0..c....... .0. .b+urn:TBD:params:xml:ns:yang:network-topologyb2013-10-21b.topologyb. network-

topology..Rclass org.opendaylight.controller.cluster.datastore.modification.WriteModification.8...... .0....... .0........ "......

...flow:1..0............ ."...... ...flow:1..0. .2........ .0. .:.flow:1H.b+urn:TBD:params:xml:ns:yang:network-topologyb2013-10-

21b.topologyb.topology-idb.network-topology......50.8..................user......shardmanager-operational.'...#member-2 -shard-

topology-operational"_org.opendaylight.controller.protobuff.messages.cluster.raft.AppendEntries Messages$AppendEntries

(..."....akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/user/shardmanager-operational/member-1-shard-topology-

operational#-1971300728

In response to the above message, follower’s replies with a “Create Transaction”

message and send it to the leader. The message is the following

...c.....;9akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/.......member-2-txn-0....user......shardmanager-

operational.'...#member-1-shard-topology-operational"eorg.opendaylight.controller.protobuff.messages.transaction.

ShardTransactionMessages$CreateTransaction(..."B@akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/temp/$a

Then the leader answers with an acknowledgement like the following.

@akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/temp/$a.......akka.tcp://opendaylight-cluster-data@192.168

.56.101:2550/user/shardmanager-operational/member-1-shard-topology-operational/shard-member-2-txn-0#1175605301

..member-2-txn-0.....jorg.opendaylight.controller.protobuff.messages.transaction.ShardTransactionMessages$

CreateTransactionReply"....akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/user/shardmanager-operational

/member-1-shard-topology-operational#-1971300728

The above mentioned is due to a modification in a given shard, so there has to be a

transaction creation that is generated for a given actor. After the creation of the

transaction and once the followers have received all the information then they replies

76

to the leader with a message that means that the information received is going to be

merged with the old information in the shard. The message is like the following.

.........;9akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/.....i....... .0..Y....... .0. .b+urn:TBD:params:xml:ns:yang

:network-topologyb2013-10-21b.network-topology........user......shardmanager-operational.'...#member-1-shard-topology-

operational.#....shard-member-2-txn-0#1175605301"]org.opendaylight.controller.protobuff.messages.transaction.Shard

TransactionMessages$MergeData(..."B@akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/temp/$b

Then the leader reply with an acknowledgment of that merge operation, as the

following.

@akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/temp/$b.h....borg.opendaylight.controller.protobuff

.messages.transaction.ShardTransactionMessages$MergeDataReply"....akka.tcp://opendaylight-cluster-data@192

.168.56.101:2550/user/shardmanager-operational/member-1-shard-topology-operational/shard-member-2-txn-

0#1175605301

When the followers have the merged information, now is possible to write it in

memory. They have to tell the leader that they will apply all the changes in the shard

to memory. The message is the following.

...F.....;9akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/.......8...... .0....... .0........ ."...... ...flow:1..0............ .".

..... ...flow:1..0. .2........ .0. .:.flow:1H.b+urn:TBD:params:xml:ns:yang:network-topologyb2013-10-21b.topologyb. topology-

idb.network-topology........user......shardmanager-operational.'...#member-1-shard-topology-operational.#....shard-member-2-

txn-0#1175605301"]org.opendaylight.controller.protobuff.messages.transaction.ShardTransactionMessages$WriteData(..."B

@akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/temp/$d

It also has to be acknowledged for the leader and, the message is the following.

@akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/temp/$d.h....borg.opendaylight.controller.protobuff

.messages.transaction.ShardTransactionMessages$WriteDataReply"....akka.tcp://opendaylight-cluster-data@192. 168.56

.101:2550/user/shardmanager-operational/member-1-shard-topology-operational/shard-member-2-txn-0#1175605301

77

Once all the followers have the information in memory they notify the leader that the

information can be committed into its data tree. The message is like the following.

...p.....;9akka.tcp://opendaylight-cluster-data@192.168.56.101:2550/.......member-2-txn-0........user......shardmanager-

operational.3.../member-1-shard-topology-operational#-971300728"lorg.opendaylight.controller.protobuff.messages.c

ohort3pc.ThreePhaseCommitCohortMessages$CanCommitTransaction(..."B@akka.tcp://opendaylight-cluster-

data@192.168.56.102:2550/temp/$f

The leader sends back an acknowledgment, as the following.

@akka.tcp://opendaylight-cluster-data@192.168.56.102:2550/temp/$f.y......qorg.opendaylight.controller.protobuff.messages

.cohort3pc.ThreePhaseCommitCohortMessages$CanCommitTransactionReply"....akka.tcp://opendaylight-cluster-

data@192. 168.56.101:2550/user/shardmanager-operational/member-1-shard-topology-operational#-1971300728

Finally the leader can have an idea of which of the followers have a given

information. If that number of followers is the majority, it goes into its data tree and

commits the information. After this point that information will never be overwritten,

that means that will be durable and persistent.

78

12. Bandwidth Usage Analysis

This chapter contains objective of the thesis, the evaluation of the traffic exchanged

between controllers or “east-west traffic”. In this work was implemented a cluster

topology in which was also implemented a Mininet network [21], this virtual network

was varied in size with the aim of analyze the bandwidth usage for the network under

different situations. Here will be also described the methodology of experimentation

and all the steps during the analysis.

12.1. Experimentation Methodology

The methodology for this work will be the following. For this part was performed a

data packet capture, was used a network protocol analyzer, in this case "Wireshark"

[20]. Then with the data obtained was performed a data processing in order to obtain

useful information and graphs of the bandwidth, for this process was used Matlab

[22].

12.2. Mininet

As described in [21], Mininet is a network emulator which creates a network of virtual

hosts, switches, controllers, and links. Mininet hosts run standard Linux network

software, and its switches support OpenFlow for highly flexible custom routing and

Software-Defined Networking. It creates a realistic virtual network, running real

kernel, switch and application code, on a single machine (VM, cloud or native), in

seconds, with a single command. It supports research, development, learning,

79

prototyping, testing, debugging, and any other tasks that could benefit from having

a complete experimental network on a laptop or other PC.

Mininet for default brings its own controller, but there is also the possibility to use a

remote one. This is exactly the kind of network emulator needed for the

experimentation, the Mininet network will be connected to a SDN controller

“OpenDayLight” through a TCP/IP connection. The simplest network in Mininet is

composed for a single switch and 2 hosts and, it can be executed with the following

command.

There are also some other configurations pre-established with a single line of

command like: linear, single and tree topology, but there is also the possibility to

create custom topologies with help of python scripts.

In this case it will be used the linear topology that can be run in the following way.

The command above has always to start with “mn” along with some parameters to

define the kind of topology and controller to be use. Here it will be used only the

remote controller, in order to test the OpenDayLight controller.

In the linear topology all the switches are connected in a linear fashion and each

switch has its own host as is shown in Figure 12-1.

80

Figure 12-1 – Linear Topology

After running the command for the network creation, it will be shown how is been

created and right after the system will open a Mininet terminal as is shown in Figure

12-2 in which can be executed some command related with the network.

81

Figure 12-2 - Mininet terminal

In this terminal is possible to perform connectivity tests, pinging and also get

information about the network like: nodes, links and addresses.

12.3. Data capture and processing

In this section will be described how was captured and processed all the information

exchanged between OpenDayLight controllers, this information will be used also in

the last part of the work with the aim of estimate an experimental model for the

bandwidth usage in a cluster architecture.

During the whole work, the cluster architecture was composed for three nodes or

instances of the OpenDayLight controller. For simplicity purpose in this part will be

analyzed the traffic between only two of them, it will be named node1 as controller

A and, node2 as controller B. with these two nodes is going to be performed the data

82

capture by using Wireshark tool. This traffic will be captured in both directions from

A → B and, from b → A.

The Wireshark capture contains a lot of information, but for obvious reasons in this

part it will focus in the amount of kbps transferred between the controllers A and B.

with these information it will be possible to make further estimations and analysis,

unfortunately Wireshark does not have an exportation format that can be directly

used for Matlab. That’s why some Linux commands are going to be used to export

the data needed from the Wireshark file, basically it is filtered all the original

information and then the important one is selected. The above mentioned is

performed with the following command.

tshark -q -nr source_file.pcapng -z "io,stat,0.1,ip.src==10.0.1.101 && ip.dst==10.0.1.102" | tail -n +13
| head -n -1 | awk '{print $2,$12}' > result.txt

The above command filters the source file and then it uses a sample frequency in

order to obtain a matrix with some data that can be differentiated for time, from this

matrix are used the Linux commands as tail, head and, awk as is shown in Figure

12-3.

83

Figure 12-3 – Data matrix Capture

In this case is only selected the column of time and bytes. The last part of the

command is used to save a file containing the information needed for the analysis,

in this case the result file is a two columns file, containing time and bytes that can be

subsequently loaded in Matlab.

For the experimentation, a Mininet network was connected to the cluster at the time

of 60s and subsequently removed at 120s. After this part the data obtained will be

processed in Matlab.

84

In order to graph the bandwidth usage in more suitable way, it’s needed to do some

processing, for this thesis was used the sliding window approach [23]. This

approach is basically take all the bytes exchanged between controllers and sum

them and, then perform a normalization with the sample time that was implemented

before.

As describe in [23] the sliding window approach is performed in the following way.

 A window size (W) is chosen with width more than the sampling interval.

 The window is centered on the starting sample of the signal and the mean of

the signal values in the window is calculated and assigned to the center value.

 In the next iteration, the window moves one sample to the right and computes

mean in the same way in the current window as in previous step and this is

continued till the end of signal. Overlapping occurs between windows in each

iteration.

In the end of the processing there will be a smoother signal than the original one,

but still the data can be used to construct the model. In Figure 12-4 is shown the

bandwidth usage for a Mininet network with size of 3 nodes, with different values of

Ts and, W.

85

Figure 12-4 – Bandwidth Usage Graph A → B

12.4. Modeling

Once the capture it is finished is possible to use that data to build an experimental

model for the traffic exchange between OpenDayLight controllers, this model can be

used for the evaluation of scalability in SDN networks. With this model can be easily

86

predicted different scenarios in a SDN network with the OpenDayLight controller, the

model makes use of all the experimental captures in order to create an estimation

for all the possible cases.

The procedure is the following, first it’s necessary to obtain the needed data. For this

purpose a Mininet network was connected to the controllers, this Mininet network

has a linear architecture and, it will vary in size.

It will be deployed a linear topology with sizes of: 1,3,5,7,9,12,15,20,25,30,40,50

switches. Unfortunately after 50 nodes our computational resources are not able to

run in a properly way, that’s why the topology is only vary up to 50 nodes. However

the fitting curve will be expanded up to 100 nodes. The set up for the modeling is

shown in Figure 12-5.

During the experimentation the procedure was repeated 5 times for each topology

size, this is with the aim of having a more accurate measurement. The process is

the following.

1. Start all the controllers that are going to be part of the network.

2. Set the topology wanted and make the connection to the controller.

3. Start the packet capture during 180s, while the virtual network is connected

to the controllers.

4. Stop the virtual network after the established time.

5. Stop the packet capture 60s after the stopping of the virtual network.

6. Shutdown all the controllers in the cluster.

7. Extract all the useful data from the packet capture, this is performed by using

the Tshark tool. The information is extract in a .txt file. It contains 2 variables,

one is the time and the other is the number of bits used.

8. Open the .txt file in Matlab for processing.

87

9. Generate the model and graphs.

Figure 12-5 - Test setup for Modeling

The model is generated by using the amount of bytes transferred “Bandwidth” from

A → B and, from B → A. there is also needed the topology size. These information

is passed to a Matlab function called Polynomial curve fitting [24], which uses the

least squares method to find a best fit curve. As a result Matlab gives a fitted curve

on the mean values. Figure 12-6 shows the results for the model from A → B and,

from B → A.

88

Figure 12-6 – Bandwidth Usage Modeling

In the previous graph it’s possible to evidence the variation in bandwidth with respect

to the number of nodes in the network.

In the first case from A → B, it is possible to observe that the bandwidth is increasing

in a linear way with respect to the number of nodes.

For the second case from B → A, is also possible to observe the same linear

increasing, but in this case consuming way less bandwidth that in the previous one.

The explanation to the behavior shown in the previous graph is because in the

clustering with OpenDayLight the information only flows from leader to followers,

that’s why there is more bandwidth usage from A to B than from B to A. the leader

has to send all the information about Topologies, Inventory and also the information

89

related to the membership between controllers. Instead other nodes has to exchange

information only about membership, that’s why it consume less bandwidth.

90

13. Conclusions

The idea of migrating traditional networks into Software Defined Networks is being

supported for most of the greatest vendors and companies, therefore is needed a

further research in the field of the SDN controllers in order to determine which one

is the most efficient for the network. SDN networks have demonstrated that can be

more flexible and reliable in shaping traffic along the network, making use of its

decoupled architecture.

In this thesis was discussed the importance of having a distributed SDN network, in

order to avoid the problem of having a single point of failure and also because with

a distributed system is possible to achieve high availability, scalability and,

persistency of the information. Was also analyzed the behavior of the OpenDayLight

controller under the cluster architecture schema, with the aim of having a better

understandability of how is acting the controller. One of the biggest part of the work

was the research for the protocols that were being used for the network in the

communication between controllers, in this part was also explained the different

messages exchanged between controllers. This was performed with help of

Wireshark, making traffic captures along the interfaces involved and analyzing the

packets with the aim of understand the communication.

For the last part of the thesis was performed a bandwidth usage analysis by making

a traffic capture between controllers. Was again implemented Wireshark for the data

capture and then implemented Matlab for the data processing. In this chapter was

implemented an experimental model for the bandwidth usage in different scenarios.

The process consisted in vary the topology size of the network, this was

implemented with a liner topology in Mininet and, then it was connected to the master

controller.

91

With the model was possible to observe the behavior of the bandwidth usage with

respect to the topology size, and then the final result was that the bandwidth grows

in a linear fashion with the topology size.

13.1. Future work

In the seeking for a migration into SDN networks is really important to prove and test

all the different controllers that are currently available in the market, because so far

there is not any standard defined for SDN networks. For this was performed an

analysis in the messages exchanged between ODL controllers, in order to set some

parameters for the understandability of the system. This can be later used in future

integrations with different controllers, building a proxy between the ODL controller

and a different one. For that was also explain all the protocols used in the clustering

architecture.

Another future work could be the implementation of the cluster in real equipment,

this because the deployment was performed in a virtualized environment and it can

lead to some changes in the real implementation. This would be the possibility to

verify the result obtained and compare the bandwidth usage model in real networks.

92

References

[1] C. Technical Report, "Forecast and Methodology, 2014-2019 White Paper.," Cisco Visual

Networking Index, 2015.

[2] O. N. Foundation, "Software Defined Networking: The New Norm for Networks," ONF, White

Paper, 2012.

[3] F. M. V. R. P. E. V. C. E. R. S. A. S. U. Diego Kreutz, "Software-defined networking: A

comprehensive survey," IEEE, 2015.

[4] L. Faughnan, "Software Defined Networking," TechEntral, 2013.

[5] i. s. &. i. group, "Software Defined Networking Primer + Deep Dive into Big Switch

Networks," Technology Research, 2012.

[6] L. D. J. Q. H. Z. Ying Li, "Multiple controller management in software defined," IEEE,

Symposium on Computer Applications and Communications, 2014.

[7] L. Foundation, "Opendaylight Platform Overview," 2016. [Online]. Available:

https://www.opendaylight.org/platform-overview-beryllium.

[8] L. Foundation, "OpenDayLight Definition," 2016. [Online]. Available:

https://www.opendaylight.org/.

[9] D. A. Liubov Efremova, "What is in OpenDaylight," 2015. [Online]. Available:

https://www.mirantis.com/blog/whats-opendaylight/.

[10] J. Ogando, "Distributed control: another choice for multi-station loading systems," Plastics

technology, 1995.

[11] U. o. P. Insup Lee, "Introduction Distributed Systems, Lecture Notes," 2014. [Online].

Available: http://www.cis.upenn.edu/~lee/00cse380/lectures/ln13-ds.ppt.

[12] J. O. Diego Ongaro, "In Search of an Understandable Consensus Algorithm," Stanford

University, 2014.

[13] J. O. Diego Ongaro, "Raft Visualization," 2014. [Online]. Available: https://raft.github.io/.

93

[14] M. Raja, «MD-SAL Clustering Internals, Linux Foundation,» 2015. [En línea]. Available:

http://events.linuxfoundation.org/sites/events/files/slides/MD-

SAL%20Clustering%20Internals.pdf.

[15] Akka, "Akka Definition," 2011. [Online]. Available: http://akka.io/.

[16] Akka, "Cluster Specification Akka," 2011. [Online]. Available:

http://doc.akka.io/docs/akka/snapshot/common/cluster.html#cluster.

[17] Ubuntu, "Ubuntu Documentation," [Online]. Available: http://www.ubuntu.com/.

[18] Oracle, "virtualbox Documentation," [Online]. Available: https://www.virtualbox.org/.

[19] L. Foundation, "OpenDayLight User Guide - Helium Release," 2015. [Online]. Available:

https://www.opendaylight.org/software/release-archives.

[20] W. Foundation, "wireshark Documentarion".

[21] M. Org, "Mininet Walkthrough," [Online]. Available: http://mininet.org/.

[22] Mathworks, "Matlab Documentation," [Online]. Available: http://www.mathworks.com/.

[23] A. S. Muqaddas, "Evaluation of Distributed ONOS Controllers," Master Thesis - Politecnico di

Torino, 2015.

[24] Mathwork, "Polynomial Curve Fitting," [Online]. Available:

http://www.mathworks.com/help/matlab/math/polynomial-curve-fitting.html.

