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Abstract

The real-time integration of huge volumes of dynamic data from het-
erogeneous sources is getting more and more attention, as the number
of data-stream sources is keeping growing and changing at very high
pace. Cities and the Internet of Things are perfect illustrations of such
need. For instance, in the urban setting, semantic interpretation of
road sensors and social networks can supply (directly and indirectly)
continuous and up-to-date information about the traffic causes and
their impacts, the progress of city-scale events or the trending activi-
ties around a user. While Data Stream and Event Processing deal with
data streams and reactiveness, reasoning is a potential solution for the
data heterogeneity: ontologies are key to access the data streams from
the different sources and to make explicit hidden information. Stream
Reasoning aims at bringing together those areas, with techniques to
perform continuous reasoning tasks over data streams.

In this context, the problem I investigate is how to unify the cur-
rent Stream Reasoning techniques, as they substantially differ from
each others. This fact is evident when these techniques are designed
to reach different goals, e.g. aggregating data in the stream vs. de-
tecting events. However, it happens even when they perform the same
task and final users may expect the same behaviour. Understanding
peculiarities and common points is mandatory in order to compare,
contrast and integrate them.

My research begins with the analysis of the state of the art in the
area of Stream Reasoning, and in particular RDF Stream Processing
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(RSP), i.e. systems that focus on the continuous query answering task.
Next, I build a formal model to capture their behaviour and their
evaluation semantics. I proceed iteratively starting with a core set of
features from Data Stream Processing and Semantic Web and, next,
extending that by integrating concepts from Complex Event Processing
and reasoning.

The main outcome of my research is RSEP-QL, a formal reference
model to describe the evaluation semantics of Stream Reasoning sys-
tems in the context of continuous query answering. RSEP-QL ex-
tends SPARQL by adding operators to manage streams such as sliding
windows (also known as RSP-QL fragment of RSEP-QL) and event
patterns. Similarly to SPARQL, RSEP-QL works under entailment
regimes, which introduce deductive inference in the continuous query
answering process.

I show the value of RSEP-QL through an application in the area of
comparative testing. I formalise a notion of correctness of the query
answering process with regards to RSP-QL. The definition is at the
basis of CSRBench, an extension of the SRBench benchmark to assess
the correctness of existing RDF Stream Processing operators. CSR-
Bench is composed by input data streams, continuous queries and an
oracle that automatically verify if an answer provided by a system is
correct.

II
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Sommario

L’integrazione in tempo reale di enormi flussi di dati da fonti etereoge-
nee sta diventando un bisogno sempre più centrale nella realizzazione
di servizi avanzati.

Gli scenari delle smart city e dell’Internet of Things esemplificano
alla perfezione questo bisogno. Nell’ambiente urbano, combinare i dati
che vengono prodotti dalla città ha un grande valore: dai sensori che
rilevano i passaggi d’auto fino ai messaggi sui social network dei cit-
tadini. L’integrazione e l’elaborazione di questi dati può portare allo
sviluppo di nuovi sistemi per studiare il traffico, per monitorare l’evo-
luzione di eventi di larga scala o per scoprire quali sono le attività di
tendenza in corso.

Se da un lato le tecniche di Data Stream Processing e Complex
Event Processing offrono soluzioni per gestire questi flussi di dati in
maniera reattiva, dall’altro le tecniche di reasoning sono una base per
gestire l’eterogeneitá di questi dati. L’utilizzo di ontologie abilita l’ac-
cesso ai flussi di dati esposti dalle diverse sorgenti, esplicitando le in-
formazioni nascoste in essi. L’area di ricerca dello Stream Reasoning
studia come combinare le tecniche di queste aree, con soluzioni per
eseguire reasoning in maniera continua sui flussi di dati.

Il problema che affronto in questa tesi è come unificare le attuali
tecniche di Stream Reasoning. Capita infatti che queste tecniche pos-
sano essere molto diverse le une dalle altre. Ciò è evidente quando i
compiti che svolgono sono differenti (ad esempio aggregare dati o iden-
tificare sequenze rilevanti di eventi), ma può accadere anche quando gli
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obiettivi sono comuni e ci si potrebbe quindi attendere comportamenti
simili. Capire le peculiarità e in punti in comune è importante per
poter confrontare e integrare queste soluzioni.

La mia attività di ricerca inizia con un’analisi dello stato dell’arte
nell’area dello Stream Reasoning e in particolare in quella dell’RDF
Stream Processing (RSP), sistemi che valutano query in maniera con-
tinua all’arrivare di nuove informazioni sui flussi di dati. Successiva-
mente, la tesi costruisce un modello formale per catturare la semantica
operazionale e il comportamento di tali sistemi. Per fare ciò, segue
un approccio iterativo, iniziando con un insieme di concetti base di
Data Stream Processing e Semantic Web, per poi integrare i concetti
di Complex Event Processing.

Il risultato principale della mia ricerca è RSEP-QL, un modello
di riferimento per descrivere la semantica operazionale dei sistemi di
Stream Reasoning nel contesto di compiti di interrogazione continua.
RSEP-QL estende SPARQL aggiungendo operatori per gestire finestre
e pattern di eventi. Come SPARQL, RSEP-QL opera considerando gli
entailment regime, che introducono processi di inferenza deduttiva nel
calcolo delle risposte.

Per mostrare il valore di RSEP-QL, la tesi presenta un’applicazione
nel dominio del test comparativo. Dopo aver formalizzato la nozione
di correttezza per un frammento di RSEP-QL, costruisce CSRBench,
un’estensione del benchmark SRBench. L’obiettivo di CSRBench è
quello di verificare il corretto funzionamento dei sistemi basati sulle
finestre di tipo sliding. CSRBench è composto da un insieme di dati in
ingresso, da una serie di query continue e da un sistema (chiamto ora-
colo) per verificare automaticamente se la risposta fornita dal sistema
è corretta.

IV
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CHAPTER1
Introduction

Logical reasoning in real time on multiple, heterogeneous, gi-
gantic and inevitably noisy data streams in order to support
the decision process of extremely large numbers of concurrent
users.

With this sentence, Stuckenschmidt, Ceri, Della Valle and van Harme-
len defined the notion of Stream Reasoning [98]. The goal of this
research trend, started in 2008 [45], is to study if and how reasoning
techniques are valid solutions to solve the problem of integrating huge
amounts of rapidly changing and heterogeneous data in real time.

This problem is contemporary and present in a multitude of use
cases, such as Smart Cities, Social Media analytics and Internet of
Things. In the Smart City context, where different stakeholders supply
data, as traffic sensor detections, public transport service statuses and
user positions, data integration plays a key role in order to build novel
and advanced services. The idea behind Social Media analytics is to
listen and capture the thoughts of the crowd through social networks
and blogs, inferring new and non-trivial knowledge to improve existing
solutions such as recommender systems, surveys and big scale event
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Chapter 1. Introduction

monitors. The rise of the Internet of Things [10] stressed even more
the problem, as it requires interconnection of embedded computing
devices and sensors, and integration of large, high-speed data streams
across the Web.

Stream Reasoning aims at tackling the integration of high dynamic
and heterogeneous data by putting together Data Stream and Complex
Event Processing [39] with Semantic Web [26]: while the former ones
proved to be valid solutions to cope with data velocity, the latter shown
to be a valid solution to integrate heterogeneous data on a Web scale.

Even if the goal can be easily stated, bridging those two worlds
together is not straightforward: there are multiple ways on which these
approaches can be combined. The combination can bring problems at
both theoretical level – to create comprehensive data and processing
models – and practical level – to guarantee the reactiveness, satisfying
the real time computation requirements.

Since 2008, Stream Reasoning has moved forward [78]. Different
research groups proposed (i) data models and vocabularies to capture
data streams through RDF and ontologies [21, 65]; (ii) continuous
query models, languages and prototypes [6, 22, 31, 73], inspired by
SPARQL [63] and collected under the RDF Stream Processing (RSP)
label; (iii) extensions of the reasoning tasks over streams, as consistency
check and closure [74, 93? ]; (iv) applications built on top of the
aforementioned results [23, 68, 99].

The growth of Stream Reasoning brought several positive results,
but also some drawbacks that can bring new challenge to be addressed
in the future research.

Most of the solutions have been designed and proposed w.r.t. differ-
ent use cases and input data. Rigorous comparisons are missing, and
as a result, the connections among current approaches are missing as
well. This fact drastically limits the possibility to determine when one
approach is preferable to another one. Moreover, it is an obstacle to
interoperability, making hard, if not impossible, to let these different
solutions interoperate in complex architectures.

Even when solutions seems to be comparable, i.e. they operate
on the same input, the query languages are similar and consequently
the user may expect the the same outputs, we observe that actually
it does not happen. In other words, two RSP engines with similar
query models can produce different results given the same continuous
query that processes the same data stream. And, surprisingly, the
same system can produce different results while processing the same

2
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1.1. Research Questions

input in different runs.
The main goal of this research is to study how to unify current

Stream Reasoning results. A comprehensive framework to describe
continuous query answering and reasoning over stream of RDF data
is missing. In addition to comparison and interoperability, mentioned
above, such framework would be a basis to study RDF Stream Process-
ing related problems and a candidate to build a standard RSP query
language.

1.1 Research Questions

To investigate this problem, hard to tackle in its entirety, we asked
ourselves two main research questions, related to different but still
connected) parts of the problem. The first question states:

RQ.1 How can the behaviour of existing RDF Stream Processing
systems be captured and compared when reasoning processes
are not involved?

At the beginning of the research, we work under the assumption of
absence of reasoning tasks. SPARQL, the language for querying RDF
repositories, defines this setting as query answering under the simple
entailment regime [59]. The goal is to verify if it is possible to capture in
a common formalism the semantics of existing RDF Stream Processing
engines: if we do not succeed in absence of inference processes, it
follows that we cannot do it when we relax this constraint. We break
down RQ.1 in the two following sub questions:

RQ.1.1 Is it possible to create a formal continuous query model
that can be used to describe existing RSP systems based
on Data Stream Processing features?

RQ.1.2 Is it possible to create a formal continuous query model
that can be used to describe existing RSP systems based
on Complex Event Processing features?

The answer of those questions require to put together elements from
Data Stream Processing, Complex Event Processing, SPARQL seman-
tics and current state of the art on RDF Stream Processing. If both
answers are affirmative, it is possible to design a reference model that
captures the query models of the different systems.

3
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Chapter 1. Introduction

Figure 1.1: The RSEP-QL model

At this point, we can move a step forward and consider entailment
regimes different from the simple one. We do it through the following
question:

RQ.2 What is the correct behaviour of a continuous query en-
gine while processing a semantic stream under entailment
regimes?

To investigate the question, we investigate how SPARQL entailment
regime can be used in this context of continuous query answering over
semantics streams.

1.2 Summary of Contributions

This section summarizes the main outcomes of the thesis.

RSEP-QL. RSEP-QL is a reference model to continuously query
RDF streams. It extends SPARQL by introducing operators to process
and produce streaming data.

RSEP-QL is built in a modular way, as depicted in Figure 1.1. The
left block, RSP-QL (Chapter 5), is a model that defines the continuous
evaluation semantics; the sliding windows – a typical data Stream Pro-
cessing operator to manage subsequences of the stream and limit the
amount of data to be queried; a new dataset – that extends SPARQL
dataset to include also streams; a set of streaming operators – used to
build the output stream. The model extends the SPARQL semantics
and is inspired by two Data Stream Processing models, CQL [9] and
SECRET [29].

4
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RSEP-QL (Chapter 6), extends RSP-QL by adding Complex Event
Processing operators. That means, it defines (i) a new window opera-
tor, the landmark window, used to have a large view over the underly-
ing stream; and (ii) event pattern operators to identify complex events
on the stream. The evaluation semantics of the new operators is built
on the results of RSP-QL.

Finally, the block on the right defines the entailment regimes in
RSEP-QL (Chapter 7). It extends the SPARQL entailment regimes to
take into account the presence of streams in the dataset and of event
pattern operators. We adopt the ontology stream notion [66] to capture
the portion of the stream to be considered and to describe the inference
processes w.r.t. a conceptual model. At the same time, RSEP-QL
entailment regimes maintain the compatibility with description logics
without time extensions, e.g. EL++ and DL − LiteHcore. This fact is
important with regards to computational complexity.

CSRBench. To supply evidence on the fact that RSEP-QL captures
the semantics of existing systems, we use it in the context of correctness
assessment (Chapter 9). We show that RSP-QL captures the semantics
of a set of existent RDF Stream Processing solutions, and we propose
CSRBench, a benchmark that extends SRBench [104] with correctness
tests. We also designed and implemented an open source framework
to automatically run the correctness tests.

Triple Wave. To fill an existent gap on RDF stream availability on
the Web, the last contribution is Triple Wave (Chapter 4), a reusable
and generic tool to spread and exchange RDF streams on the Web.
The features of Triple Wave have been derived from requirements of
real use-cases, and consider a diverse set of scenarios, independent of
any specific RSP implementation. Triple Wave is fed with existing Web
streams (e.g. Twitter and Wikipedia streams) It can also be invoked
through both pull- and push-based mechanisms, thus enabling RSP
engines to automatically register and receive data from Triple Wave.

1.3 Outline

This thesis is organised in three parts.
In the first part, Problem Setting, we set the basis for the research.

In Chapter 2, we present the basic concepts on Semantic Web and
reasoning that are used in the rest of the document: RDF, SPARQL,

5
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Chapter 1. Introduction

description logics and inference processes. Next, in Chapter 3, we
review the state of the art, from Data Stream and Complex Event
Processing to Stream Reasoning, where we describe different paradigms
to process data streams, as querying and deductive reasoning.

In the second part, titled A Reference Model for RDF Stream Pro-
cessing, we provide the core contribution of the thesis and we investi-
gate the two Research Questions RQ.1 and RQ.2. In Chapter 4, we
add the time dimension in the RDF data model in two ways: RDF
streams to model rapidly changing information; time-varying RDF
graphs to model quasi-static RDF graph and their evolution over time.
We also propose Triple Wave, a system to publish RDF streams on
the Web. In Chapters 5 and 6, we describe respectively RSP-QL and
RSEP-QL, introduced in the previous section. We then study the Re-
search Question RQ.2 in Chapter 7: we complete the RSEP-QL stack
in Figure 1.1 by introducing the non-simple entailment regimes.

The third part, Effectiveness of RSEP-QL: coverage and testing, fo-
cuses on studying if RSEP-QL addresses the Research Question RQ.1.
Chapter 8 presents a qualitative analysis about the coverage of RSEP-
QL w.r.t. exiting RDF Stream Processing query languages and en-
gines. Chapter 9 describes CSRBench, where we formalise the notion
of correct answer with regards to RSP engines captured by RSP-QL.
Moreover, we present the CSRBench data and queries, our test frame-
work implementation, named oracle, and our main findings in applying
CSRBench to existing RSP implementations.

Chapter 10 closes with a review of the research questions, a descrip-
tion of the future work and final remarks.

1.4 Publications

This thesis is based on the articles [17, 19, 42, 43, 47, 48, 49, 50, 51,
52, 79], listed above. I describe my contribution in each article at the
beginning of the chapters.

• Daniele Dell’Aglio, Marco Balduini and Emanuele Della Valle:
“Applying Semantic Interoperability Principles to Data Stream
Management”. Data Management in Pervasive Systems, 2015:
135-166.

• Daniele Dell’Aglio, Jean-Paul Calbimonte, Emanuele Della Valle,
Óscar Corcho: “Towards a Unified Language for RDF Stream
Query Processing”. ESWC (Satellite Events) 2015: 353-363

6



i
i

“thesis” — 2016/6/25 — 19:29 — page 7 — #19 i
i

i
i

i
i

1.4. Publications

• Andrea Mauri, Jean-Paul Calbimonte, Daniele Dell’Aglio, Marco
Balduini, Emanuele Della Valle, Karl Aberer: “Where Are the
RDF Streams? On Deploying RDF Streams on the Web of Data
with TripleWave”. International Semantic Web Conference (Posters
& Demos) 2015

• Soheila Dehghanzadeh, Daniele Dell’Aglio, Shen Gao, Emanuele
Della Valle, Alessandra Mileo, Abraham Bernstein: “Approxi-
mate Continuous Query Answering over Streams and Dynamic
Linked Data Sets”. ICWE 2015: 307-325

• Soheila Dehghanzadeh, Daniele Dell’Aglio, Shen Gao, Emanuele
Della Valle, Alessandra Mileo, Abraham Bernstein: “Online View
Maintenance for Continuous Query Evaluation”. WWW (Posters
& Demos) 2015: 25-26

• Daniele Dell’Aglio, Emanuele Della Valle, Jean-Paul Calbimonte,
Óscar Corcho: “RSP-QL Semantics: A Unifying Query Model to
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CHAPTER2
Preliminary concepts: Managing Semantic

Data on the Web

2.1 RDF and SPARQL

RDF is a W3C recommendation for data interchange on the Web [40].
RDF data is structured as directed labelled graphs, where the nodes
are resources, and the edges represent relations among them. Each
node of the graph can be a named resource (identified by an IRI), an
anonymous resource (a blank node) or a literal. We identify with I, B
and L respectively the sets of IRIs, blank nodes and literals. We define
an RDF term as an element of the set I ∪B ∪ L.
Definition 2.1 (RDF statement and RDF graph). An RDF statement
d is a triple (s, p, o) ∈ (I ∪ B) × (I) × (I ∪ B ∪ L). A set of RDF
statements is an RDF graph.
Example 1. The Sirius Cybernetics Corporation offers real-time geo-
marketing services to shop owners to increase their sales by distributing
instantaneous discount coupons to potential shoppers nearby. Alice and
Bob, who respectively own shops A and B, decided to try that service.
We can represent those facts in the following RDF graph Gshops:
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1 :a rdf:type :Shop .
2 :b rdf:type :Shop .
3 :alice :owns :a .
4 :bob :owns :b .

Given an RDF graph, it is possible to query it through the SPARQL
query language [63], another W3C Recommendation. A SPARQL
query typically contains one or more triple patterns called a basic
graph pattern. Triple patterns are similar to RDF triples except that
they may contain variables in place of resources. These patterns may
match a subgraph of the RDF data, by substituting variables with
RDF terms, resulting in an equivalent RDF subgraph.

Definition 2.2 (Triple pattern and Basic Graph Pattern). A triple
pattern tp is a triple (sp, pp, op) such that

(sp, pp, op) ∈ (I ∪B ∪ V )× (I ∪ V )× (I ∪B ∪ L ∪ V ),

where V is the infinite set of variables. A basic graph pattern is a set
of triple patterns.

Graph patterns in a SPARQL query can include basic graph pat-
terns and other compound expressions defined recursively as1:

1. A set of triple patterns is a basic graph pattern;

2. If P1 and P2 are graph patterns, then (P1 AND P2), (P1 OPT P2)
and (P1 UNION P2) are graph patterns;

3. If P is a graph pattern and u is a symbol in IUV , (GRAPH u P )
and (SERVICE u P ) are graph patterns;

4. If P is a graph pattern and R is a SPARQL built-in condition,
then (P FILTER R) is a graph pattern.

A SPARQL built-in condition is composed of elements of the set
I∪L∪V and constants, logical connectives (¬, ∧, ∨), ordering symbols
(<,≤,≥, >), the equality symbol (=), unary predicates like bound,
isBlank, isIRI and other features.

To define the semantics of the evaluation of a SPARQL query, we
summarise the notion of solution mappings, and evaluation of SPARQL
graph patterns, as detailed in [63, 88].

1We present the subset of SPARQL needed to understand the rest of the thesis, and we refer
to [63] for the complete language syntax and semantics.
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Definition 2.3 (Solution mappings). A solution mapping µ is a par-
tial function µ : V → I ∪ B ∪ L. It maps a set of variables to a set of
RDF terms. A mapping has a domain dom(µ) which is the subset of
V over which it is defined. We denote as µ(x) the RDF term result-
ing by applying the solution mapping to variable x. We denote as Ω a
multiset of solution mappings, and as Ψ a sequence of solution map-
pings. Typical relational algebraic operators can be applied to multiset
of solution mappings:

Ω1 1 Ω2 = {µ1 ∪ µ2|µ1 ∈ Ω1 ∧ µ2 ∈ Ω2 ∧ µ1 ∼ µ2} (2.1)
Ω1 ∪ Ω2 = {µ|µ ∈ Ω1 ∨ µ ∈ Ω2} (2.2)
Ω1 \ Ω2 = {µ|µ ∈ Ω1∧ 6 ∃µ′ ∈ Ω2 : µ ∼ µ′} (2.3)
Ω1 d|><| Ω2 = (Ω1 1 Ω2) ∪ (Ω1 \ Ω2) (2.4)

In Formula 2.1, µ1 ∼ µ2 expresses the mapping compatibility, i.e.,
mappings µ1 and µ2 are compatible if ∀x ∈ dom(µ1) ∩ dom(µ2), then
µ1(x) = µ2(x).

The input data is organized in RDF datasets, collections of one or
more RDF graphs, namely RDF datasets.
Definition 2.4 (RDF dataset). An RDF dataset DS is a set:

DS = {G0, (u1, G1), (u2, G2), ...(un, Gn)}

where G0 and Gi are RDF graphs, and each corresponding ui is a
distinct IRI. G0 is called the default graph, while the others are called
named graphs. During the evaluation of a query, the graph from the
dataset used for matching the graph pattern is called active graph.
Multiple graphs can become active during the evaluation, but only one
at time.

SPARQL defines four query forms: ASK, SELECT, CONSTRUCT
and DESCRIBE. The most common query form, SELECT, produces a
result of variable bindings matching the graph pattern; a CONSTRUCT
produces a new RDF graph with the query solutions; ASK produces a
boolean value that is true if at least a solution exists; and DESCRIBE
produces an RDF description of resources in the solution. For instance,
a select query is declared as follows:

query → SELECT v1, ..., vn WHERE P

where v1, ...vn is a list of variables, subset of the variables of the graph
pattern P .

13
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There are other constructs such as solution modifiers (e.g. LIMIT,
DISTINCT, and ORDER BY) that are applied after pattern match-
ing. These and other modifiers can be found in the SPARQL Query
Language specification [63]. With all these concepts at hand, we can
define a SPARQL query as follows.

Definition 2.5 (SPARQL Query). A SPARQL query is defined as a
tuple (E,D,QF ), where E is a SPARQL algebraic expression, D is an
RDF dataset, and QF is a query form.

Example 2. We are interested in querying the graph in Example 1 to
find out who owns the shop :a. In this case the dataset is formed by
the default graph containing the graph in Example 1, the query form
is SELECT and the algebraic expression is composed of a single triple
pattern.

1 SELECT ? person WHERE {? person :owns :a }

Given a SPARQL query over an RDF graph, a query solution can
be represented as a bag of solution mappings, each of which assigns
terms of RDF triples in the graph, to variables of the query. The
evaluation semantics of a SPARQL query algebraic expression w.r.t.
an RDF dataset is defined for every operator of the algebra, and it is
expressed through an evaluation function.

Definition 2.6 (SPARQL evaluation semantics). The SPARQL eval-
uation semantics of an algebraic expression E is denoted as JEKD(G),
where D(G) is the dataset D with active graph G.

We present now the evaluation semantics of a basic graph pattern.
In order to do it, we need to introduce some blank nodes related con-
cepts. Blank nodes can lead to infinite solutions, due to the fact that
two solution mappings µ1 and µ2 can be equal but for the blank nodes
they contain, leading to a situation of duplicate results. SPARQL
treats the problem through RDF instance mappings and scoping graph:

Definition 2.7 (RDF instance mapping). An RDF instance mapping
σ is a partial function σ : B → I∪B∪L. It maps a set of blank nodes to
a set of RDF terms. An RDF instance mapping has a domain dom(σ)
which is the subset of B over which it is defined. A Pattern Instance
Mapping M is a combination of an RDF instance mapping σ and a
solution mapping µ: M(x) = µ(σ(x)).

14



i
i

“thesis” — 2016/6/25 — 19:29 — page 15 — #27 i
i

i
i

i
i

2.2. Description logics and reasoning

Pattern instance mappings are used in order to define the evaluation
semantics of a basic graph pattern.
Definition 2.8 (Basic Graph Pattern evaluation). Let P be a basic
graph pattern and G an RDF graph. The solution mapping µ is a
solution of JP KG if there exists a pattern instance mapping M such
that M(P ) = µ(σ(P )) ⊆ G.

In the context of the evaluation of a basic graph pattern P over
the active graph D(G) of a dataset D, P is matched against a special
RDF graph SG named scoping graph. The scoping graph SG is graph-
equivalent to the active graph D(G) and it does not share blank nodes
with the dataset D and the basic graph pattern P . For the sake of
simplicity, when not needed, in the following we will not consider RDF
and pattern instance mappings, and we will consider µ as a solution of
JP KD(G) when µ(P ) ⊆ G.

The evaluation of most of other SPARQL operators is defined through
algebraic operation. For example, given two graph patterns P1 and P2
the evaluation of the join operator on the active graph D(G) is given:

JJoin(P1, P2)KD(G) = JP1KD(G) 1 JP2KD(G)

2.2 Description logics and reasoning

Description Logics are fragments of First Order Logic (FOL) [54]; they
aim to be more expressive than Propositional Logic maintaining the
decidability on the reasoning tasks (FOL is semi-decidable). Descrip-
tion Logics define a proper syntax, different by the one used in FOL:
in general it imposes constraints limiting the expressiveness (i.e., it is
not possible to have the same expressiveness of FOL).

Description Logics have three main elements: concepts, roles and
individuals. Concepts (or classes) denote relevant sets of elements (in-
dividuals). Concepts can be partitioned in atomic and complex con-
cepts. An atomic concept is a concept defined through a name, e.g.,
Female and Person; we denote with NC the set of the atomic con-
cepts of the ontology we are considering. A complex concept is a con-
cept defined through a composition of other concepts (atomic and/or
complex) through specific operators, e.g., Woman is the intersection of
Female and Person. In the following, we indicate atomic concepts
with A,A1, A2, . . . ∈ NC, while complex concepts with C,D,C1, C2, . . ..
Each DL provides different rules on how complex concepts can be com-
posed and which operators can be used. Two special (atomic) concepts
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are top (>), that indicates the whole set of elements of the universe,
and bottom (⊥), that refers to the empty set of elements of the universe.

Roles (or properties) are binary relations between elements. Simi-
larly to concepts, roles can be classified in atomic roles, defined by a
name (e.g., parentOf), and complex roles, defined through a combi-
nation of other roles (e.g., motherOf is a sub relation of parentOf).
We denote with NR the set of the atomic role names in the ontology
we are considering. Additionally roles can be characterized by domain
and range, expressed as sets of concepts. These two sets provide in-
formation about individuals that are involved in relations and their
inclusion in domain (and range) concepts. We indicate atomic roles
with P, P1, P2, . . . ∈ NR, and generic roles (both atomic and complex)
with R,R1, R2, . . .. Additionally, roles can have properties, such as
transitivity, symmetry, function. Each description logic indicates if
and how complex roles are defined, and which properties can be used
in the role definitions.

Individuals are instances of concepts and they can be related each
other through roles. Individuals are constants and they are defined
through a name. In DLs, and in particular in the context of studying
their complexity, an important assumption is the Unique Name As-
sumption (UNA): it states that each individual cannot have more than
one name. In the recent years, the research community has studied
DLs without UNA. For example, OWL languages [60] do not assume
UNA (so two names can refer to the same individual). We indicate
individuals with a, a1, a2, . . . ∈ NI.

Concepts, roles and individuals are related through axioms. There
are two kind of axioms: terminological axioms and assertional axioms.
Terminological axioms describe the concepts and the roles through the
inclusion (v) and the equivalence (≡) operators. Equivalence can be
seen as a particular case of inclusion: given two concepts C and D,
C ≡ D is equivalent to C v D and D v C. The set of terminological
axioms composes the TBox, the set of intensional knowledge (the log-
ical statements that describe the model in a formal way). An example
of TBox is the one that contains the following statements:

1 Student v >
2 Course v >
3 dom(subscribe) v Student
4 ran(subscribe) v Course

The first two lines state that Student and Course are two concepts,
while Lines 3 and 4 define the subscribe property by defining respec-
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tively its domain (Student) and range (Course). If the considered
ontological language supports the ∃ and ∀ operators, the domain and
range restrictions can be alternatively expressed as ∃subscribe.> v
Student and > v ∀subscribe.Course.

Assertional axioms describe the individuals. This is done through
concept assertions and role assertions. A concept assertion states that
an individual is in a concept, while a role assertion states that two
individuals are related through a role. This knowledge is known as
extensional knowledge, and it compose the ABox. An example of ABox
is the following:

1 adam : Student
2 math : Course
3 (adam, math) : subscribe

Line 1 introduces the individual adam as member of the class Student
(i.e., adam is a Student); similarly, Line 2 defines math as member of
the class Course (i.e., math is a Course). An alternative notation
to represent the class membership is C(a) (e.g., Student(adam) and
Course(math)). Finally, Line 3 expresses the fact that adam subscribes
to the math course (alternatively written subscribe(adam, math), or in
a OWL-like syntax: 〈adam subscribe math〉).

Given a TBox T and an ABox A (w.r.t. T ), we define Knowledge
Base K the repository composed by T and A, i.e., K = (T ,A). Given
a KB, it is possible to perform different inference tasks, known as
reasoning problems (described in Section 2.2.1).

Finally, the semantics of a DL is defined through an interpretation
I. An interpretation is a model composed by a pair 〈∆I , ·I〉, where
∆I is a non-empty set known as domain and ·I is the interpretation
function. This function maps:

• each individual name a to an element aI ∈ ∆I ;

• each concept C to a set CI ⊆ ∆I ;

• each role R to a set RI ⊆ ∆I ×∆I ;

Each DL defines its own interpretation function, depending on the
constructs and operators it admits.

2.2.1 Reasoning Problems
We present the most common reasoning problems in DLs are: ontol-
ogy consistency, concept satisfiability, concept subsumption, instance
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checking and query answering. Given a knowledge base K = (T ,A),
we define the following problems.

Ontology consistency. Also known as knowledge base satisfiability,
it verifies if K does not contain contradictions, e.g., given a concept C
and an individual a, at the same K |= a : C and K |= (a:¬C) (respec-
tively a is an instance of C and a is not an instance of C w.r.t. K). In
other words, this task verifies if there exists a valid interpretation I of
K;

Concept satisfiability. It verifies if a concept C is satisfiable, i.e., it
exists an instance a in C. Formally, a concept C is satisfiable w.r.t. T
if there exists an interpretation I of T such that CI 6= ∅;

Concept subsumption. It verifies if a concept C is a subset of an-
other concept D, i.e., each instance of C is also an instance of D.
Formally, a concept C is subsumed by a concept D (C v D) w.r.t. T
if, in every interpretation I of T , is true that CI ⊆ DI ;

Cnstance checking. It verifies if it is always true that an object a is
an instance of the concept C. Formally, an individual a is an instance
of the concept C (a : C) w.r.t. K if, in every interpretation I of K, is
true that aI ∈ CI ;

An interesting property of the aforementioned problems is that, if
the considered DL is expressive enough, they can be reduced among
them.

Conjunctive query answering. Let V denote the set of variable
names, and let x, y, x1, x2, . . . indicate some of its members (i.e., vari-
ables). Let’s also define the query atoms: they can be concept query
atoms in the form t : Ck, and role atoms in the form (t1, t2):Rk, where
t, t1, t2 are elements of the set NI ∪ V (i.e., the union set of individual
and variable names). A conjunctive query q is a formula composed by
the conjunction of query atoms.

We denote with var(q) the set of variable names in q (var(q) v V).
We define the function π as a function associated to an interpretation
I = 〈∆I , ·I〉. π relates the elements of var(q)∪NI with the elements of
the domain δI (i.e., π : var(q)∪NI → δI). Given an individual a ∈ NI,
π(a) = (a)I = aI (in other words, π relates the individual names to the
elements of the interpretation domain as defined by the interpretation
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function). Given a variable in var(q), π maps it with an element of
the domain. Given I, π:

• I, π |= t : Ck if π(t) ∈ CIk

• I, π |= (t1, t2):Rk if (π(t1), π(t2)) ∈ RIk
If t is an individual a, then I, π |= Ck(a) is true if aI ∈ CIk ; if t is a
variable x and π(x) = aIx ∈ ∆I , then I, π |= Ck(a) is true if aIx ∈ CIk .

If there exists a function π such that for all the atoms Ck and Rk

in the query q, the query is satisfied by the interpretation and π and
we denote it in the following way: I, π |= Ck and I, π |= Rk.

Finally, the conjunctive query answering is the problem to verify if,
given a knowledge base K and a query q, there exists a function π such
that I, π |= q for every interpretation I of K (if it is true, we write
K |= q).

2.2.2 The EL++ logic

As example of DL logic, we present EL++. The language EL++ is
defined by the following rules:

C ::= > | ⊥ | A | ∃R.D | C1 u C2 | {a1, . . . , an}
R ::= P | R1 ◦ . . . ◦Rk

The two definitions are recursive: the first states that C can be
an atomic concept (>,⊥, A,∃R.C1), an union of two concepts C1 and
C2 (C1 and C2 can be atomic or complex concepts), or an instance
enumeration {a1, . . . , an} (e.g., {male, female} represents the gender
concept). The second definition states that a role R can be an atomic
predicate or a composition of predicates.

A EL++ TBox allows the following terminological axioms:

C v D

R1 ◦R2 ◦ . . . ◦Rk v R

dom(R) v C

ran(R) v C

The first axiom is the General Concept Inclusion (GCI), the second
is the Role Inclusion (RI), while the other two axioms are the domain
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and range restrictions (respectively DR and RR). In RI, the k param-
eter can be zero (ε v R). It is worth to note that EL++ allows to
define:

disjoint classes: C uD v ⊥
role hierarchies: R v S

transitive roles: R ◦R v R

reflexive roles: ε v R

right-identity rules: R ◦ S v R

left-identity rules: S ◦R v R

As we will see below, to maintain the tractability of EL++ is nec-
essary to impose a restriction on the TBox [11]. In particular, it is
necessary to limit the ways on which role inclusions and range restric-
tions interact. This restriction imposes that if the TBox T contains
R1 ◦R2 ◦ . . . ◦Rn v S (n ≥ 1) and T implies a range restriction on S,
then Rn will have the same range of S, i.e., if R1◦R2◦ . . .◦Rn v S ∈ T
(with n ≥ 1) and T |= ran(S) v C, then T |= ran(Rn) v C.

The interpretation I = 〈∆I , ·I〉 for this individuals, concepts and
roles of EL++ is defined in the following way:

(a)I = aI(∈ ∆I)
(>)I = ∆I

(⊥)I = ∅
(A)I = AI(⊆ ∆I)

(∃R.C)I = {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
(C uD)I = CI ∩DI

({a1, . . . , an})I = {aI1 , . . . , aIn}
(P )I = P I(⊆ ∆I ×∆I)

(R1 ◦ . . . ◦Rk)I = RI1 ◦ . . . ◦RIk

Additionally, terminological axioms (CGIs, RIs, DRs and RRs) and
assertion axioms (concept and role assertions) are interpreted in the
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following way:

(C v D)I = CI ⊆ DI

(R1 ◦ . . . ◦Rk v R)I = RI1 ◦ . . . ◦RIk ⊆ RI

(dom(R) v C)I = RI ⊆ CI ×∆I

(ran(R) v C)I = RI ⊆ ∆I × CI

(a : C)I = aI ∈ CI

((a1, a2) : R)I = (aI1 , aI2 ) ∈ RI

Complexity of the EL++ reasoning tasks. The importance of
EL++ is strictly related to its complexity properties. Baader et al.
in [12, 14] set a milestone on this topic, proving that the complexity of
the concept subsumption problem is P-complete. To do it, they defined
a polynomial time algorithm that classifies the TBox, i.e., computes
the subsumption relationships between all the concepts of the TBox.
The algorithm is a milestone in the study of the EL++ logic, and it
is at the basis of most of the current EL++ reasoners (able to outper-
form by orders of magnitude the classical Tableau-based reasoners), as
CEL [13] and ELK [67].

An overview over the complexity of the reasoning tasks associated
to the EL++ logic is available in Table 2.1, where the four complexity
dimensions are :

• Data complexity: only the ABox is part of the input, the TBox
and the query (if it is a conjunctive query answering problem) are
fixed;

• Taxonomic complexity: the variable part is the TBox;

• Query complexity: the query is the input, while the knowledge
base if fixed;

• Combined complexity: the whole knowledge base and the query
are variable, and consequently, they are input.

The EL++ logic is expressive enough to reduce concept satisfiability,
ontology consistency and instance checking problems to the concept
subsumption one (Section 2.2.1), and vice-versa. That means, the four
problem shares the same complexity results, P-complete.
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Table 2.1: Summary of the OWL 2 EL problem complexities (source: [83])

Problem Data Taxonomic Query Combined

concept subsump-
tion P-complete P-complete P-complete
concept satisfiabil-
ity
ontology consis-
tency
instance checking

conjunctive query
answering

P-complete
EXP

NP-
complete

PSPACE-
complete
EXP

Regarding the EL++ conjunctive query answering problem, in gen-
eral, th problem is undecidable, as proved in [95]. To demonstrate it,
the author reduces the emptiness problem for intersection of context-
free messages to a EL++ conjunctive query answering problem. Any-
way, by the introduction of a set of constraints to the logic, it is possi-
ble to have the P-completeness for data and taxonomic complexities,
NP-completeness for query complexity and PSpace-completeness for
combined complexity. These complexities have been studied mainly by
Krötzsch et al.. in [70, 71].

As reported in Table 2.1, the EL++ conjunctive query answering
problem is PSpace-complete in the combined complexity, NP-complete
in the query complexity and P-complete in the taxonomic and data di-
mensions.

2.2.3 Reasoning in SPARQL

SPARQL manages the presence of ontological languages through the
entailment regimes extension [58, 59]. In addition to the elements
defined in Definition 2.5, an entailment regime E is added: it indicates
the ontological language semantics to be considered in the context of
interpreting the RDF graphs in the data set. That means, certain
terms in the graphs acquire special meanings and can be used in the
context of inference processes, to make explicit knowledge implicitly
present in the graphs.

The introduction of logical inference in the query answering process
introduces the challenges of determining which are the ontologies asso-

22



i
i

“thesis” — 2016/6/25 — 19:29 — page 23 — #35 i
i

i
i

i
i

2.2. Description logics and reasoning

ciated to the RDF graphs, and of determining which is the answer the
SPARQL engine should provide. The core of the entailment regime
extension focuses on the basic graph pattern evaluation: intuitively,
the idea is that the evaluation of a BGP P over the active graph G
under the entailment regime E should produce answers that can be
entailed from G and P under E.

The introduction of the entailment regime should satisfy a set of re-
quirements to guarantee that, when the input graph is compliant to the
entailment regime (well-formed), the answer is finite and correct (i.e.
sound and complete). The problems arise mainly from the presence of
blank nodes, that the solution has to take into account. Glimm and
Krötzsch in [58] elaborate the entailment regime conditions defined in
SPARQL 1.0 [90]. An entailment regime E should satisfy the following
conditions:

1. for any active graph D(G), the entailment regime E specifies a
unique E-equivalent scoping graph to D(G);

2. for any basic graph pattern P , scoping graph SG and solution
mapping µ ∈ JP KSG under entailment regime E, µ(P ) is well
formed for E;

3. for any basic graph pattern P , scoping graph SG and for any
solution mapping µ ∈ Ω = JP KSG under entailment regime E,
there exists a family of RDF instance mappings σµ such that:

SG |= SG
⋃
µ∈Ω

µ(σµ(P ));

4. the entailment regime E must prevent trivial infinite solutions.

The SPARQL entailment regime recommendation [59] defines the
entailment regimes for semantics, such as the one of RDFS, OWL 2
RL, EL and QL.
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CHAPTER3
Background: Processing Dynamic Data

3.1 Data Stream and Event Processing

The rise of data stream sources introduced new problems about how
to manage, process and query infinite sequences of data with high
frequency rate [39]. Two proposed approaches are Data Stream Pro-
cessing [9] and Complex Event Processing [76].

3.1.1 Data Stream Processing

Data Stream Processing (or Data Stream Management Systems, short-
ened DSMS) solutions transform data streams in timestamped rela-
tions to be processed with well known techniques such as algebras [9].
In the following, we present CQL and SECRET. The first is a model
that describes the algebra and a processing model of a Data Stream
Processing engine, while the latter focuses on the behaviour of window
operators.

CQL. The CQL stream processing model were proposed by the DB
group of the Stanford University [9] and defines a generic Data Stream

25



i
i

“thesis” — 2016/6/25 — 19:29 — page 26 — #38 i
i

i
i

i
i

Chapter 3. Background: Processing Dynamic Data

Figure 3.1: The CQL model.

Management System through three classes of operators, depicted in
Figure 3.1.

The stream-to-relation operators manages the data stream: due to
the fact that a stream is a potentially infinite bag of timestamped
data items (also known as stream items and information items), those
operators extract relations (as finite bags). One of the most studied op-
erators of this class is the sliding window. Given a stream S, a sliding
window dynamically selects subsets of the data items of S. The intu-
ition behind this operator is that the more recent the data is, the more
relevant. That means, it selects the most recent items in the stream
and queries them, repeating this operations as the time goes ahead.
The windows are the basic elements of the sliding windows. Given
a stream S, a time-based window W defined through two parameters
o and c selects the data items d of S with associated timestamp in
(o, c]. A sliding window generates multiple windows (at different time
instants) to create a time-varying view over the stream. Time-based
sliding windows and tuple-based sliding windows are two of the most
relevant sliding windows.

A time-based sliding window generates a sequence of windows at
regular time intervals (e.g. a window every two seconds). Then, it
selects the contents of the streams accordingly to each window (o, c]
(where o and c are the opening and the closing time instants). The o
and c values change (slide) periodically, modifying the content of the
sliding window. A time-based sliding window is described through two
parameters, width ω (the dimension of the window, c− o) and slide β
(the distance between two consecutive windows).

Tuple-based sliding windows select a fixed number of data items.
Similarly to time-based sliding windows, they are described by the
width and the slide parameters, but the width indicates the number
of data items that are collected in the current view, while the slide
indicates how many data items are removed/added at each window
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3.1. Data Stream and Event Processing

slide. Consequently, the difference between the closing time instant
and the opening time instant of the generated windows is not constant.

When the slide parameter is equal to the width parameter, the
sliding-window is also known as tumbling window: it is important be-
cause it partitions the stream: each data item would only in one win-
dow.

After that sliding window computes a finite relation from the stream,
it may be transformed in another relation through a relation-to-relation
operator. Relational algebraic expressions are a well-known cases of
this class of operators.

Finally, the system outputs. If the output of the query proces-
sor should be a stream, it is necessary to include a relation-to-stream
operator. When applied, it appends the set of relations to the out-
put stream. At each time instant at which the continuous query is
evaluated, the set of relations is processed by the relation-to-stream
operator, which is in charge to determine which data items have to be
streamed out. RStream, IStream and DStream are the three relation-
to-stream operators defined in CQL.

RStream streams out the computed timestamped set of relations at
each step. Rstream answers can be verbose as the same relation can
be computed at different evaluation times, and consequently streamed
out. IStream streams out the difference between the timestamped set
of relations computed at the current step and the one computed at
the previous step. Answers are usually short (they contain only the
differences) and consequently this operator is used when data exchange
is expensive.

DStream does the opposite of Istream: it streams out the difference
between the computed timestamped set of relations at the previous
step and at the current step. Dstream is normally considered less
relevant than Rstream and Istream, but it can be useful, e.g. to retrieve
attractions that are no more popular.

SECRET. SECRET [29] supports the task of integrating streaming
data processors, by means of explaining the different behaviour of ex-
isting stream processing engines.

SECRET associates two time instant to each stream item, the ap-
plication and system time. Application time, denotes the time instant
associated to the event represented by the stream element. It can be
shared by multiple elements (introducing contemporaneity) and con-
sequently defines a partial order among the stream elements. System
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Chapter 3. Background: Processing Dynamic Data

time is the “wall-clock” time, which must be unique, thus introducing
a total order in the stream. Even if the application time is the relevant
information from a conceptual point of view, it is important to take
into account the system time to explain the correct behavior of stream
processors.

The SECRET framework focuses on the window operator specifica-
tion, by exploiting the notions of scope, content, report and tick.

Scope is a function that associates an evaluation time instant t to
the time interval of the active window at t. Key to the computation
of the scope is the t0 parameter, which is the application timestamp
when the first active window starts. It is an absolute time instant
and depends on both the query (its registration time) and the Data
Stream Processing engine (how it processes the query and instantiates
the window).

The Content function identifies the set of elements of S in the ac-
tive window. This function depends not only on the scope (and conse-
quently the application time), but also on the system time: it means
that asking for the content of the active window at the same application
time at two different system time instants can produce two different
results.

Report is a function that defines the required conditions to pass
the window content to the relation-to-relation operators. SECRET
identifies four reporting strategies (Data Stream Processing systems
may use combined strategies as well):

• Content change: system reports if the content changes.

• Window close: system reports if the active window closes.

• Non-empty content: system reports if the active window is not
empty.

• Periodic: system reports only at regular intervals.

The Tick function defines the conditions under which the input can
be added to the window, becoming processable by the query engine.
SECRET defines different strategies: tuple-driven and time-driven.
Systems with tuple-driven tick strategy add input tuples in the window
operator as soon as they arrive, while systems with time-driven tick
strategy add sets of tuples to the window at each (application) time
instant.
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3.1. Data Stream and Event Processing

3.1.2 Complex Event Processing

Beyond data streams in Data Stream Processing, Complex Event Pro-
cessing (CEP) focuses on events, which Luckham defines as an object
that represents, or records an activity that happens, or is thought of as
happening [76].

While Data Stream Processing operators are well suited in tasks
that require aggregations or assessing occurrence in intervals, CEP op-
erators provide the possibility to compose complex event by means of
temporal relations among the event occurring in the stream. CEP oper-
ators allow to express several types of relationships between events [80]
which may include simultaneousness, precedence [77], absence (as form
of negation) [24].

Examples of temporal relations are depicted in Figure 3.2, that
informally shows the application of operators between two temporal
intervals as defined in Allen’s Algebra [3, 96]. Assume that compatible
relations exist for three event patterns P1, P2, and P3 in the time
intervals shown in Figure 3.2, the horizontal bars represent the result
of evaluating the operators on the relations at the different time units
depicted with vertical dashed lines.

Temporal operators in Complex Event Processing can be viewed
as special types of joins that add to the boolean semantics of the join
operator, the temporal semantics of the specific temporal relation of the
operator. For instance, the relations of P1 SEQ P2 from a membership
perspective are those of (P1 JOIN P2), but the SEQ operator keeps
only the relations of the JOIN operator for which a relation of P2
starts after the end of a relation of P1.

In the following, we present two Complex Event Processing solu-
tions, Tesla and Esper.

Tesla. Tesla [38] proposed a complete set of operators including selec-
tion of primitive events, definition of sequences, negation, aggregation,
and recursive rules. Notably, it also allows customizable selection and
consumption policies for event matching. The selection policy deter-
mines if a pattern matches once or multiple times for each selected
stream item, while the consumption policy determines if a pattern
consumes the statements it matches (i.e., once it is matched it is not
available for the next evaluation).
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Chapter 3. Background: Processing Dynamic Data

Figure 3.2: Temporal relations between two temporal intervals as defined in Allen’s
Algebra.

Esper. The open-source system Esper1 also includes CEP features in
its query language, EPL. In particular, it supports a series of pattern
operators such as followed-by (A → B), which looks for an event A
and if encountered, looks for B. Esper allows more flexibility through
the EVERY operator, which indicates that the pattern should restart
after it is matched on the stream. For instance EVERY (A → B)
detects an event A followed by a B. When this pattern matches, the
matching restarts and looking for the next A. On the other hand
EVERY A→ EVERY B matches for every event A followed by a B.

3.2 RDF Streams and RDF Stream Processing Engines

When moving from relational data streams to RDF Stream Processing,
one of the most notable differences relies on the data model: instead
of traditional relational data, it uses the RDF data model. The rest of
the section first introduces the RSP data and query models proposed
in the literature.

3.2.1 RDF streams

Different definitions of RDF streams were proposed. It is useful to
introduce two axes to classify them: the data item and the time anno-
tation.

1Esper: http://www.espertech.com/esper/index.php
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3.2. RDF Streams and RDF Stream Processing Engines

Data item dimension. The data item is the minimal informative
unit in the stream. Existing work in RSP considers two alternatives
for this role: RDF statements and RDF graphs, as in Definition 2.1.
The simplest case is the one where the stream is composed of RDF
statements [44]. Even if the RDF statement stream model is easy to
be managed, the amount of information that a single RDF statement
carries may be not enough when modelling real use cases. For this rea-
son, recent work [21] proposes to use as informative unit RDF graphs.

Example 3. For example, let us consider this RDF stream on which
each triple states the presence of a person in a room of The Louvre:

1 :alice :detectedAt :monaLisaRoom [1] .
2 :bob :detectedAt :parthenonRoom [2] .
3 :conan :detectedAt :monaLisaRoom [5] .
4 :bob :detectedAt :monaLisaRoom [5] .

Turtle2-like syntax is adopted: in each row there is an RDF statement
enriched with the time annotation (the fourth element between square
brackets). When adopting this data model, each statement may contain
enough information to be processed as informative unit.

Example 4. Let us consider the following RDF stream, expressing
check-in operations in a social network:

1 :g1 {
2 :alice :posts :c1 .
3 :c1 :where :monaLisaRoom .
4 :c1 :with :conan .
5 } [1]
6 :g2 {
7 :bob :posts :c2 .
8 :c2 :where :parthenonRoom .
9 :c2 :with :diana .

10 } [3]
11 :g3 {
12 :conan :posts :c3 .
13 :c3 :where :monaLisaRoom .
14 } [3]

This example adopts a Trig-like syntax3: RDF resources :g1, :g2 and
:g3 identify three RDF graphs with the relative time annotations (the
number between squared brackets). The blocks of RDF statements (en-
closed in {}) are the contents of the graphs. As it is possible to observe,

2Cf. http://www.w3.org/TR/turtle/.
3Cf. http://www.w3.org/TR/trig/.
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Chapter 3. Background: Processing Dynamic Data

in this example single RDF statements are not enough to represent a
whole informative unit (e.g. a check-in post).

Time annotation dimension. The time annotation is a set of time
instants associated with each data item. The choice to consider the
time as an annotation on data items, and not as part of the schema,
is inherited by the DSMS research [15], and it is motivated by both
modelling and technical reasons: the time information could be part
of the schema, but it should not be mandatory (i.e. there are scenarios
on which it is not). Moreover, DSMSs and CEPs usually do not allow
explicit accesses to the time annotations through the query languages:
conditions are usually expressed with time relative constraints, e.g.
select events that happen before a given one, or identify the events
that hold in the last five minutes.

The term application time refers to the time annotation of a data
item [29]. Usually, application time is represented through sets of
timestamps, i.e. identifier of relevant time instants. The classification
along the time annotation axis depends on the number of timestamps
that compose the application time.

In the simplest case, the application time consists of zero times-
tamps: in other words, there is not explicit time information associated
with the data items. It follows that the RDF stream is an ordered se-
quence of elements that arrive to the processing engine over time, like
in the stream S represented in the Figure 3.3.

Figure 3.3: Example of stream with zero timestamps per data item.

Rounds labelled with ei (i in [1, 4]) represent the data items of the
stream; the time flows from left to right, e.g. item e1 happens before
item e2. Even if the data items do not have explicit timestamps, it is
possible to process those streams by defining queries that exploit the
order of the elements, such as:

q1. Does Alice meet Bob before Conan?

q2. Who does Conan meet first?
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3.2. RDF Streams and RDF Stream Processing Engines

Let us consider now the case on which the application time is mod-
elled introducing a metric [96] and each data item has one timestamp
like in Figure 3.4.

Figure 3.4: Example of stream with one timestamp per data item.

In most of the existing works, the timestamp used in the application
time represents the time instant at which the associated event occurs,
but other semantics are possible, e.g. time since the event holds. Due
to the fact that data items are still ordered by recency (as in the
previous case), it is possible to issue queries of the previous case, as
q1 and q2. Additionally, it is possible to write queries that take into
account the time, such as:

q3. Does Diana meet Bob and then Conan within 5m?

q4. How many people has Alice met in the last 5m?

It is worth to note that q3 and q4 do not refer to absolute time instants,
but on relative ones w.r.t the time instant of another event (as in q3)
or the current time instant (as in q4).

As a final case, let us introduce the application time composed of
two timestamps. The semantics that is usually associated to the two
timestamps is the time range (from, to] on which the data item is
valid, as shown in Figure 3.5.

Figure 3.5: Example of stream with two timestamps per data item.
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Chapter 3. Background: Processing Dynamic Data

Each square represents a data item, and the application time is
represented by the initial and the final timestamps, e.g. e1 has appli-
cation time (1, 5), so it is valid from the time instants 1 to the time
instants 5. Similarly to the previous case, it is still possible to process
to the queries presented in the first two cases (e.g. q1, . . . , q4), and
additionally more complex constraints can now be written, such as:

q5. Which are the meetings that last less than 5m?

q6. Which are the meetings with conflicts?

Other cases exist, where the application time is composed of three
or more timestamps, or where the application time semantics has other
meanings. Even if they can be useful in some use cases, they are still
under investigation in RSP research and no relevant results have been
reached, yet.

3.2.2 RSP query languages and systems

After the presentation of the RDF stream definitions, this section dis-
cusses the problem of processing these kinds of data. As for the data
model, the RSP query model is inspired by research in Data Stream
and Complex Event Processing: RSP solutions rely on the key idea
that existing Data Stream and Complex Event Processing operators
can be combined with Semantic Web ones to enable advanced tasks as
inference, and heterogeneous data integration over data streams.

Table 3.1 lists the RSP available in the state of the art, and classify
them according to the data model they manage and on the operators
they support. Analysing the table, it is possible to observe that most
systems focus on RDF streams with RDF statement as data item and
the application time is composed of one timestamp. The C-SPARQL
engine [20], CQELS [73] and Morphstream [31], adopting respectively
the C-SPARQL, CQELS-QL and SPARQLstream languages, manage
data streams where data items are RDF statements. Their query mod-
els are similar, but they are designed in different ways and they target
different use cases.

The data model with one timestamped RDF statements is the one
on which the initial RSP research focused, and novel trends started
to consider data model variants. The SLD platform [18] has features
similar to C-SPARQL, CQELS and SPARQLstream, but it is able to
process RDF streams with RDF graphs as data items. INSTANS [94]
follows a completely different approach: it takes sequences of RDF
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Table 3.1: Comparison of RSP systems. ∼ indicates that C-SPARQL and SLD
have a limited support to Complex Event Processing operators, through a func-
tion named timestamp.
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Chapter 3. Background: Processing Dynamic Data

statements without timestamps as input and processes them through
the RETE algorithm. Finally, ETALIS and EP-SPARQL [6] work on
RDF streams with application time composed of two timestamps: they
use CEP concepts and are able to perform Stream Reasoning tasks. We
review them in the rest of the section.

C-SPARQL. Continuous SPARQL (C-SPARQL) [20] is a language
for continuous queries over streams of RDF data that extends SPARQL
1.1 by adding Data Stream Processing inspired operators, as sliding
windows and streaming operators.

The language is implemented in the C-SPARQL engine, an open-
source software that allows to register queries that are continuously
evaluated over time. The C-SPARQL engine is built on top of two
sub-components, ESPER4 and Jena5. The former is responsible of
executing continuous queries over RDF streams, producing a sequence
of RDF graphs over time, while the latter runs a standard SPARQL
query against each RDF graph in the sequence, producing a continuous
result. This result is finally formatted as specified in the Query Form.

C-SPARQL has a limited support to Complex Event Processing
operators through the timestamp function, that allows to retrieve the
most recent time instant associated to a RDF statement. Timestamps
can be compared in the context of the FILTER clause, enabling the
expression of simple sequence patterns.

CQELS. The Continuous Query Evaluation over Linked Streams –
shortened CQELS – accepts queries expressed in CQELS-QL [73], a
declarative query language that, similarly to C-SPARQL, extends the
SPARQL 1.1 grammar with operators to query RDF streams. The
main difference between C-SPARQL and CQELS-QL is the relation-
to-stream operator they support: CQELS-QL supports only Istream,
whereas C-SPARQL supports only Rstream.

Differently from the C-SPARQL engine that uses a “black box” ap-
proach which delegates the processing to other engines, CQELS pro-
poses a “white box” approach and implements the required query op-
erators natively to avoid the overhead and limitations of closed system
regimes. CQELS provides a flexible query execution framework with
the query processor dynamically adapting to the changes in the input
data. During query execution, it continuously reorders operators ac-

4Cf. http://espertech.com/.
5Cf. http://jena.apache.org/.
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cording to heuristics that improve query execution in terms of delay
and complexity.

SPARQLstream. SPARQLstream [31] is another extension of SPARQL
that supports operators over RDF streams such as time windows. Un-
like CQELS and the C-SPARQL engine, SPARQLstream supports all
the streaming operators.

The language is implemented in morph-streams: it is an RDF stream
query processor that uses Ontology-Based Data Access techniques [32]
for the continuous execution of SPARQLstream queries against virtual
RDF streams that logically represent relational data streams. Morph-
streams uses R2RML6 to define mappings between ontologies and data
streams. SPARQLstream queries are rewritten first in a relational al-
gebra expression extended with time window constructs, that is op-
timized, and then translated in the Data Stream Processing target
language, e.g. SNEE7, Esper and GSN8.

INSTANS. The Incremental eNgine for STANding Sparql [94], IN-
STANS, takes a different perspective on RDF Stream Processing. Users
model their task as multiple interconnected SPARQL 1.1 queries and
rules. Next, INSTANS performs continuous evaluation of incoming
RDF data against the compiled set of queries, storing intermediate re-
sults into a Rete-like structure. When all the conditions are matched,
the result is instantly supplied. In this sense, INSTANS does not re-
quire continuous extensions to RDF or SPARQL.

ETALIS and EP-SPARQL. ETALIS (Event TrAnsaction Logic In-
ference System) [7] is a Complex Event Processing inspired RSP en-
gine. At the best of our knowledge, this is the only RSP engine that
processes RDF streams with application time composed by two times-
tamps. Users can specify event processing tasks in ETALIS using two
declarative rule-based languages, ETALIS Language for Events (ELE)
and Event Processing SPARQL (EP-SPARQL) [7]. The former lan-
guage is more expressive than the latter, even if it is less usable. A
common point is that complex events are derived from simpler events
by means of deductive prolog rules.

6Cf http://www.w3.org/TR/r2rml/.
7Cf. http://code.google.com/p/snee/.
8Cf. http://lsir.epfl.ch/research/current/gsn/.
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ETALIS is a pluggable system that can use multiple prolog engines
such as YAP9 and SWI10. ETALIS supports three different policies [4]:

• unrestricted: all input elements are selected for matching the
event patterns.

• chronological: only the earliest input that can be matched are
selected for matching the event patterns; then, they are ignored
in the next evaluations.

• recent: only the latest input that can be matched are selected for
matching the event patterns; then, they are ignored in the next
evaluations.

Notably, the EP-SPARQL query does not change in the three cases, as
the setting is a configuration parameter set at the startup of the engine.
Moreover, independently on the setting, all the system outputs happen
as soon as they are available.

SLD. The Streaming Linked Data (SLD) framework [18] is not a
proper RSP engine, but it wraps the C-SPARQL engine and it adds
new features. SLD offers: a set of adapters that transcode relational
data streams in streams of RDF graphs (e.g. a stream of micro-posts
as an RDF stream using the SIOC vocabulary [30], or a stream of
weather sensor observation using the Semantic Sensor Network vocabu-
lary [37]), a publish-subscribe bus to internally and externally exchange
RDF streams (following the Streaming Linked Data Format [21]), fa-
cilities to record and replay RDF streams, and extendible layer to plug
components that decorate RDF streams (e.g. adding sentiment anno-
tations to micro-posts).

3.3 Stream Reasoning

In this section we introduce the most relevant work in the area of
Stream Reasoning. We grouped them in three categories. In Con-
tinuous Query Answering under Entailment Regimes, we collect the
work focusing on the query answering problem in presence of streams
and logical based inference processes. Materialization and Incremental
Maintenance presents contributions in computation of the closure of
streams of axioms and the techniques to make them work incrementally

9Cf. http://www.dcc.fc.up.pt/~Evsc/Yap/.
10Cf. http://swi-prolog.org/.
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(i.e. without restarting from scratch every time the ontology changes).
Finally, in Formal Semantics we describe two recent work on providing
foundations on Stream Reasoning.

3.3.1 Continuous Query Answering under Entailment Regimes

ETalis, EP-SPARQL. Most of the system we presented in Sec-
tion 3.2 evaluates query under simple regime, where basic graph pat-
terns are evaluated in terms of subgraph matching against the data in
the active graph of the dataset. One of the exceptions is ETalis/EP-
SPARQL, that supports back-ward temporal reasoning over RDFS.

For example, as CEPs, it allows to check for sequences such as
A SEQ B; however, it also allows stating that C is a subclass of A.
Therefore the condition A SEQ B is matched also if an event of type
C is followed by an event of type B, because all events of type C are
also of type A.

Stream Reasoning with ASP. Answer Set Programming (ASP) [53]
is a declarative problem solving paradigm. Its roots can be found in de-
ductive databases, logic programming and knowledge representation.
The problem is modelled through a set of logic rules (a logic program)
and the solution is composed by the set of answers. ASP is character-
ized by a rich modelling language, e.g. it captures integrity constraints,
weak constraints, negations. At the same time, ASP solvers proved to
have very high performance in solving the tasks, by exploiting tech-
niques from constraint solving.

One limit of ASP is the fact that its programs are written to work
with static knowledge, and results has to be recomputed every time
the underlying data changes. Incremental ASP [56] overcomes this
limit, and extends ASP in order to incrementally compute the solu-
tions. Stream Reasoning and Incremental ASP are connected through
the Time-Decaying Logic Programs [57], that introduce the notions of
emerging and expiring data.

Results are used in StreamRule [81], an approach to compute contin-
uous queries under ASP entailment regime. StreamReuls is a two-layer
approach: the first layer is composed by an RSP engine acting as filter,
to reduce the amount of data to be considered in the inference process.
The second layer is the logic program, based on Incremental ASP, that
computes the answer set.
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3.3.2 Materialization and Incremental Maintenance

The origin of incremental maintenance approach can be found in main-
tenance of materialized views in active databases [34, 97]. In these
works, authors researched on how to generate a materialized view in
active databases and how to maintain it incrementally through set of
updates. They proved that when the number of modification in the
database is under a threshold, the incremental maintenance techniques
perform orders of magnitude faster than the whole re-computation of
the view.

Ontology Maintenance with DRed. Volz et al. [101] proposes an
algorithm to incrementally maintain an ontological entailment. It does
not focus explicitly on streaming data, its presence in this list is moti-
vated by the relevance with the following algorithms. This technique
is a declarative variant of the Delete and Re-derive (DRed) algorithm
of [97]. The general idea of DRed is a three-steps algoritm:

1. Overestimate the deletions: starting from the facts that should
be deleted, compute the facts that are deducted by them;

2. Prune the over-estimated deletions: determine which facts can be
rederived by other facts;

3. Insert the new deducted facts: derive facts that are consequences
of added facts and insert them in the materialization.

The version of DRed proposed in [101] is written in Datalog¬. The
materialization is in a Datalog predicate T and the goal of the algo-
rithm is the computation of two predicates, T+ and T−, when updates
occur. T+ and T− should be respectively added and removed to T to
obtain a new correct materialization.

IMaRS. The Incremental Materialization for RDF Streams algorithm
(IMaRS) [48? ] is a variation of DRed for the incremental main-
tenance of the window content materializations. In general, the main
problems of the incremental maintenance are the deletions: it is a com-
plex task to determine which consequences are not valid anymore when
statements are removed from the knowledge base. IMaRS exploits the
window mechanism in order to cope with this problem: it allows to
determine when a statement is going to expire and should be deleted
from the materialization. IMaRS, when axioms are inserted in the
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window, computes their expiration time instants. This allows IMaRS
to work out a new complete and correct materialization whenever a
new window should be computed by dropping explicit statements and
entailments that are no longer valid.

The ontological language targeted by IMaRS is RDFS+ [2], an ex-
tension of RDFS with transitive and inverse properties and without
concrete domains. Experiments showed that in the streaming scenario
it outperforms DRed.

Sparkwave. Sparkwave [69] is a solution to perform continuous pat-
tern matching over RDF data streams under RDFS11 entailment regime.
It allows to express temporal constraints in the form of time windows
while taking into account RDF schema entailments. It is based on the
Rete algorithm [55] which was proposed as a solution for production
rule systems, but it offers a general solution for matching multiple pat-
terns against multiple objects. The Rete algorithm trades memory for
performance by building two memory structures that check intra- and
inter-pattern conditions over a set of objects, respectively. Sparkwave
adds another memory structure, which computes RDFS entailments,
in front of the original two. Under the assumption that the ontology
does not change, RDFS can be encoded as rules that are activated by
a single triple from the stream. Therefore, each triple from the stream
can be treated independently and in a stateless way. This guarantees
for high throughput. Moreover, Sparkwave adds time windows support
to Rete in an innovative way. While the state of the art [103] uses a
separate thread to prune expired matchings, Sparkwave prunes them
after each execution of the algorithm without risking deadlocks and
keeping the throughput stable.

Sparkwave is very similar to IMaRS on a conceptual level. However,
the approach proposed by Sparkwave can hardly be extended to more
expressive languages. As stated above, RDFS can be encoded as rules
that are activated by a single triple from the stream, whereas others,
like owl:transitiveProperty, are activated by multiple statements from
the stream. This means that the stateless approach of Sparkwave is
no longer sufficient.

Streaming Knowledge Bases. Streaming Knowledge Bases [102]
is one of the earliest stream reasoners. It uses TelegraphCQ [35] to
efficiently handle data stream, and Jena rule engine to incrementally

11In particular, its description logic fragment
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materialise the knowledge base. The architecture of Streaming Knowl-
edge Bases is similar to the one of the C-SPARQL Engine. It supports
RDFS and owl:inverseOf construct (i.e., rules that are activated by a
single triple from the stream), therefore the discussion reported above
for Sparkwaves also applies to it. Unfortunately, the prototype has
never been made available and no comparative evaluation results are
available.

Truth Maintenance System. Ren and Pan [92] take a different
perspective; they investigate the possibility to optimise Truth Main-
tenance Systems so to perform expressive incremental reasoning when
the knowledge base is subject to a large amount of random changes
(both updates and deletes). They optimise their approach to reason
with EL++, building a directed graph to track the inferences and con-
sequently the justifications. Removals are performed by traversing the
graph and removing the nodes. On the contrary, addition operations
generate new nodes and edges in the graph. Authors provide experi-
mental evidence that their approach outperform re-materialisation up
to 10% of changes.

DynamiTE. Urbani et al. [100] propose DynamiTE, a framework to
efficiently compute a materialization and to keep it up to date. The
approach differentiates by the previous ones for the introduction of
parallelization, that drastically improve the performance.

The use cases targeted by DynamiTE is similar to the one of DRed
and Truth Maintenance System: an ontology modified by a huge num-
ber of frequent update operations, similar to transactional settings in
data base systems. On additions, DynamiTE re-computes the ma-
terialization to add the new entailments through a parallel Datalog
evaluation. On removals, it deletes the explicit and entailed axioms no
longer valid. Several algorithms can perform this action: authors con-
sidered DRed and a “counting” algorithm they defined, that exploits
the idea of counting the number of justifications that entailed it.

Despite DRed and Truth Maintenance System, that targets expres-
sive ontological languages, DynamiTE focuses on ρDF [84], a fragment
of RDFS. In this setting, Experiments show that the “counting” algo-
rithm outperforms DRed by orders of magnitude.
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3.3.3 Formal semantics
LARS. The Logic-based framework for Analyzing Reasoning over Streams
(LARS) [25] defines a logic for capturing typical operations of the
Stream Reasoning context. Regarding the data, they model the notion
of stream as sequence of time-annotated formulas. In addition to the
usual boolean operators (and, or, implies, not), authors define the two
temporal logic operators � and �, to express the fact that a formula
holds respectively at some time in the past and every time in the past.
Additionally, it introduces the @ and �: the former is used to state
that a formula holds at a specific time instant, while the latter is the
window operator, that restricts the scope on which the enclosed for-
mula applies. Authors proved that LARS captures the CQL language
(including aggregates) and ETalis semantics.

STARQL. In parallel with the development of LARS, the Spatial and
Temporal ontology Access with a Reasoning-based Query Language [85,
86] (STARQL) proposes an alternative view on Stream Reasoning. The
framework is designed to access and query heterogeneous sensor data
through ontologies, in a OBDA approach similar to the SPARQLstream
one.

STARQL is structured as a two-layer framework, expressed through
the STARQL(OL,ECL) notation, where OL denotes an Ontology
Language to model the data and its schema, and ECL is an Em-
bedded Constraint Language to compose the queries. For example,
STARQL(DL − LiteHcore, UCQ) indicates that the ontology is mod-
elled in the DL − LiteHcore description logic and queries are expressed
as union of continuous queries. STARQL offers window operators,
clauses to express event matching and a layer to integrate static and
streaming data.
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Part II

A Reference Model for RDF
Stream Processing
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CHAPTER4
Extending the RDF model for RDF Stream

Processing

Several works studied how to add the temporal dimension to RDF [61,
62, 82, 91], for instance by adding a fourth element to the triple to
express the validity time. In the context we are studying, we have to
take into account the time by two different points of view. On the
one hand, there are streams, as flows of timestamped data items that
are served on sequences potentially infinite, as for example the Twitter
streaming API, or the Wikipedia update change. On the other hand,
there is the background data (e.g. data stored in repositories), that
evolves and changes, as it is possible for example observe in DBPedia
live.

The two cases require different time-related extensions, and we
present them in this chapter: in Section 4.1, we formalize the notion
of RDF stream that we are going to consider in the rest of this work;
Section 4.2 formalises the background data through time-varying and
instantaneous RDF graphs. Section 4.3 describes Triple Wave, a pro-
totype to provide RDF streams, to give an example of RDF stream
serialization and publishing over the Web.
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Chapter 4. Extending the RDF model for RDF Stream Processing

Section 4.3 is based on “Where Are RDF Streams? On Deploy-
ing RDF Streams on the Web of Data With TripleWave”, a poster
published at the 14th International Web Conference. A. Mauri im-
plemented and deployed the prototype, while J.P. Calbimonte and I
drove the writing: J.P. Calbimonte defined with the part of R2RML
mappings, while I wrote the rest of the paper. Prof. Della Valle and
M. Balduini shared with us their experience in creating and consuming
RDF streams inside the SLD framework, and helped us in deciding how
to publish RDF streams as Linked Data. Prof. K. Aberer supervised
the work.

4.1 Streaming extension of the RDF model

In this section, we formalise the notion of RDF stream associating a
time instant to each RDF statement, as in [20, 32, 69, 73, 100]We start
by defining the notion of time as in [9].

Definition 4.1 (Time). A time line T is an infinite, discrete, ordered
sequence of time instants (t1, t2, . . .), where ti ∈ N. A time unit is the
difference between two consecutive time instants (ti+1 − ti) and it is
constant.

It is now possible to associate temporal annotations to RDF con-
cepts (as statements and graphs) and, consequently, define RDF streams
as sequences of them.

Definition 4.2 (RDF data stream). An RDF data stream S is a data
stream where information items are RDF graphs:

S = (d1, t1), (d2, t2), (d3, t3), (d4, t4), . . .

The pair (di, ti) represents the i-th RDF graph di and ti ∈ T is the
relative time annotation.

As learnt in Section 3.2.1, existent models assume RDF streams
where the information item is either RDF graph or RDF statement.
We adopt the former, due to the fact it can capture the latter, e.g. by
grouping all statements with the same time annotation, or by defining
a graph for every single statement.

Example 5. The Sirius Cybernetics Corporation offers for free-download
a mobile App that delivers instantaneous discount coupons to shoppers
while they are near by shops like A and B. The shoppers Carl, Diana
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and Eve have such an App on their mobiles. When they are within 200
meters from shops a or b, the App records it on the RDF stream Snearby
with the timestamped RDF graphs (we use a TriG [33] like notation,
where graphs are enriched with the time relative instant) in Listing 4.1.

1 :dn1 {:diana :isNearby :a} [2] .
2 :dn2 {:eve :isNearby :b} [2] .
3 :dn3 {:carl :isNearby :a} [5] .
4 :dn4 {:eve :isNearby :a} [7] .
5 :dn5 {:diana :isNearby :b} [12] .
6 :dn6 {:carl :isNearby :b} [19] .
7 :dn7 {:carl :isNearby :b} [21] .

Listing 4.1: The RDF stream Snearby

The statements assert that Diana, Carl and Eve are nearby the shop A
respectively at the time instants 2, 5 and 7; Eve, Diana are nearby the
shop B at time instants 2 and 12; Carl is near shop B at time instants
19 and 21.

4.2 Time-varying and Instantaneous RDF Graphs

Introduction of RDF streams does not exclude the presence of static
and quasi-static data (background data). An additional extension is
required, due to the fact that RDF does not capture the evolution over
time, as explained in the RDF 1.1 primer:

The RDF data model is atemporal: RDF graphs are static
snapshots of information.

We introduce now the concepts of the time-varying RDF graph and
instantaneous RDF graph. Intuitively, time-varying graphs capture
the dynamic evolution of a graph over time, while instantaneous graphs
represent the content of the graph at a fixed time instant.

Definition 4.3 (Evolution of RDF graphs over time). A time-varying
graph G is a function that relates time instants t ∈ T to RDF graphs:

G : T → {G |G is an RDF graph}

An instantaneous RDF graph G(t) is the RDF graph identified by the
time-varying graph G at the given time instant t.

We indicate with the capital letterG (G,G1, G2, . . .) the RDF graphs
and with d (d, d1, d2, . . .) the RDF graphs that act as information items
in a stream. Moreover, we adopt the bar capital letter G to indicate the
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Chapter 4. Extending the RDF model for RDF Stream Processing

Figure 4.1: Time-varying and instantaneous graph

time-varying graphs (G,G1, G2, . . .). Figure 4.1 helps in understand-
ing the difference between the two concepts: it shows two time-varying
graphs, G1 and G2. Each time-varying graph associates time instants
to RDF graphs; for each time instant t at which G1 (G2) is defined,
G1(t) (G2(t)) refers to an instantaneous RDF graph; being G1 (G2)
a function, each time instant is associated to one and only one RDF
graph. It is worth to note that the instantaneous graph contains RDF
statements (without any timestamp). It follows that instantaneous
graphs can be queried through the SPARQL query language without
any continuous extension.

Example 6. The Sirius Cybernetics Corporation manages to convince
both Alice and Bob to use its instantaneous discount coupon service
from the time instant 2 to the time instant 13. After that, Alice
leaves the service, and only Bob keeps using it. The time-varying graph
Gshops, which captures the shops using the instantaneous coupon ser-
vice, is built as follows:

• at time t < 2, Gshops(t) is the empty graph;

• at time t ∈ [2, 13], Gshops(t) is the graph Gshops presented in Ex-
ample 1 including both shops;

• at time t > 13, Gshops(t) is the RDF graph G′shops in Listing 4.2,
that includes only shop b.

1 :b rdf :type :Shop .
2 :bob :own :b .

Listing 4.2: RDF graph G
′

shops
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4.3 On Publishing RDF Streams on the Web

While time-varying graphs capture existing RDF graphs, we asked our-
selves if RDF streams are available on the Web. Surprisingly, public
RDF Streams are generally missing in the landscape of RDF stream
processing. Existing RSP engines have circumvented this issue in dif-
ferent ways, e.g. the SLD framework has internal components to lift
data streams in RDF streams, while SPARQLstream uses the notion of
virtual RDF streams. Other engines, like C-SPARQL and CQELS, ex-
pose programmatic APIs and delegate to the users the task to manage
the streams and to feed the system through the relative API.

Inspired by the experience of the community in publishing static
data sets as RDF data sets, we built Triple Wave1, a framework to
transform existing streams in RDF streams and publish them on the
Web. The high velocity on which the data is generated makes it dif-
ficult to to permanently store the whole data stream and to publish
it as Linked Data. To overcome this limit, we extend the initial pro-
posal about publishing RDF streams in [21], defining two types of triple
graphs: stream graphs and instantaneous graphs, as detailed in Section
4.3.2: the former represents a time-varying graph with the list of the
recent content of the stream; the latter represents a data item of the
stream. Triple Wave produces a JSON stream in the JSON-LD format,
compliant with the model described in Definition 4.2. An advantage of
using JSON-LD is on the possibility to process RDF streams not only
with RSP engines, but also with existing frameworks and techniques
for RDF processing (e.g. SPARQL engines).

As a case study, we consider the change stream of Wikipedia2. This
stream features all the changes that occur on the Wikipedia website.
This stream is characterized by heterogeneity: it comprehends not only
elements related to the creation or modification of pages (e.g., articles
and books), but also events related to users (new registrations and
blocked users), and discussions among them.

1 {
2 "page": "Naruto: Ultimate Ninja",
3 "pageUrl": "http://en.wikipedia.org/wiki/Naruto:_Ultimate_Ninja",
4 "url": "https://en.wikipedia.org/w/index.php?diff=669355471&oldid

=669215360",
5 "delta": -7, "comment": "/ Characters /",
6 "wikipediaUrl": "http://en.wikipedia.org",

1Cf. https://streamreasoning.github.io/TripleWave/.
2Cf. https://en.wikipedia.org/wiki/Special:RecentChanges

51

https://streamreasoning.github.io/TripleWave/
https://en.wikipedia.org/wiki/Special:RecentChanges


i
i

“thesis” — 2016/6/25 — 19:29 — page 52 — #64 i
i

i
i

i
i
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7 "channel": "#en.wikipedia", "wikipediaShort": "en",
8 "user": "Jmorrison230582", "userUrl": "http://en.wikipedia.org/wiki/User/

Jmorrison230582",
9 "unpatrolled": false, "newPage": false, "robot": false,
10 "namespace": "article"
11 }

Listing 4.3: A fragment of the change stream of Wikipedia

Listing 4.33 shows a fragment of the stream of changes of Wikipedia.
In particular, it shows that the user Jmorrison230582 modified an
article of the English Wikipedia about Naruto: Ultimate Ninja.
Furthermore, the delta attribute tell us that the user deleted some
words, and the url attribute refers the to the Wikipedia page that
describes the event.

4.3.1 R2RML to create RDF streams

Streams on the Web are available in a myriad of formats, so to adapt
and transform them to RDF streams we use a generic transforma-
tion process that is specified as R2RML4 mappings. Although these
mappings were originally conceived for relational database inputs, we
can use light extensions that support other formats such as CSV or
JSON (e.g. as in RML5). The example below specifies how a Wikipedia
stream update can be mapped to a graph of an RDF stream6. This
mapping defines first a triple that indicates that the generated subject
is of type schema:UpdateAction. The predicateObjectMap clauses
add two more triples, one specifying the object of the update (e.g.
the modified wiki page) and the author of the update. The graph is
specified using the graphMap property.

1 :wikiUpdateMap a rr:TriplesMap; rr:logicalTable :wikistream;
2 rr:subjectMap [ rr:template "http://131.175.141.249/TripleWave/{time}";
3 rr:class schema:UpdateAction; rr:graphMap :streamGraph ];
4 rr:predicateObjectMap [rr:predicate schema:object; rr:objectMap [ rr:column

"pageUrl" ]];
5 rr:predicateObjectMap [rr:predicate schema:agent; rr:objectMap [ rr:column

"userUrl"] ];.

Additional mappings can be specified, as in the example below, for
providing more information about the user (e.g. user name):

3Data collected with the API provided by https://github.com/edsu/wikistream
4R2RML W3C Recommendation: http://www.w3.org/TR/r2rml/
5RML extensions: http://rml.io
6We use schema.org as the vocabulary in the example.
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1 :wikiUserMap a rr:TriplesMap; rr:logicalTable :wikistream;
2 nlyyrr:subjectMap [ rr:column "userUrl";
3 rr:class schema:Person; rr:graphMap :streamGraph ];
4 rr:predicateObjectMap [ rr:predicate schema:name; rr:objectMap [ rr:column

"user" ]];.

A snippet of the resulting RDF Stream graph, serialized in JSON-
LD, is shown in in Listing 4.4.

1 {
2 "http://www.w3.org/ns/prov#generatedAtTime": "2015-06-30T16:44:59.587Z",
3 "@id": "http://131.175.141.249/TripleWave/1435682699587",
4 "@graph": [
5 { "@id": "http://en.wikipedia.org/wiki/User:Jmorrison230582",
6 "@type": "https://schema.org/Person",
7 "name": "Jmorrison230582"
8 },{
9 "@id": "http://131.175.141.249/TripleWave/1435682699587",

10 "@type": "https://schema.org/UpdateAction",
11 "object": {"@id": "http://en.wikipedia.org/wiki/Naruto_Ultimate_Ninja

"},
12 "agent": {"@id": "http://en.wikipedia.org/wiki/User:Jmorrison230582

"}
13 }
14 ],
15 "@context": "https://schema.org/"
16 }

Listing 4.4: Portion of the timestamped element in the RDF stream.

4.3.2 Publishing stream elements as Linked Data

Triple Wave is implemented in Node.js and streams out the RDF
stream using HTTP with chunked transfer encoding. Consumers can
register at the endpoint http://131.175.141.249/TripleWave/wiki.
json and receive the data following a push paradigm. In cases where
consumers may want to pull the data, Triple Wave allows publishing
the data accordingly to the Linked Data principles [27]. Given that
the stream supplies data that changes very frequently, data is only
temporarily available for consumption, assuming that recent stream
elements are more relevant. In order to allow the consumer to dis-
cover which are the currently available stream elements, we use and
extend the framework proposed in [21]. According to this scheme,
Triple Wave distinguishes between two kinds of Named Graphs: the
Stream Graph (sGraph) and the Instantaneous Graphs (iGraphs). In-
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tuitively, an iGraph represents one stream data item, while the sGraph
is an index to the recent content of the stream.

1 tr:sGraph sld:contains (tr:1435682699954 tr:1435682699587) ;
2 sld:lastUpdate "2015-06-29T15:46:05"^^xsd:dateTime .
3 tr:1435682699587 sld:receivedAt "2015-06-30T16:44:59.587Z"^^xsd:dateTime .
4 tr:1435682699954 sld:receivedAt "2015-06-30T16:44:59.954Z"^^xsd:dateTime .

Listing 4.5: The sGraph pointing to the iGraph described in Listing 4.4.

As an example, for the Wikipedia RDF stream, the sGraph is pub-
lished at the address http://131.175.141.249/TripleWave/sGraph.
By accessing the sGraph, consumers discover which are the stream el-
ements (identified by iGraphs) available at the current time instants.
The sGraph in Listing 4.5 describes the sGraph and the current con-
tent that can be retrieved. The ordered list of iGraphs is modeled as an
rdf:list with the most recent iGraph as the first element, and with
each iGraph having its relative timestamp annotation. Next, the con-
sumer can access the iGraphs dereferencing the iGraph URL address.
As example, when the consumer accesses the graph7 at http://131.
175.141.249/TripleWave/1435682699587, it retrieves the content of
the graph reported in Listing 4.4.

4.4 Remarks

In this section, we formalized the main concepts related to data in
the RDF Stream Processing context, RDF Streams and Time-varying
graphs. The former ones model infinite sequences of timestamped data
items, that are the main input of RSP engines; the latter ones model
the evolution of RDF graphs over time.

We then presented Triple Wave, a system that allows deploying
RDF Streams on the Web, taking existing streams of non-RDF data
and converting them to stream graphs using declarative mappings.
Triple Wave allows publishing these streams as Linked Data, as well
as a live stream of RDF graphs. We have implemented and deployed
a use-case that feeds from a live stream of Wikipedia updates. This
constitutes a first step towards ubiquitous deployment of RDF streams,
based on the ever-increasing amount of data streams available on the
Web and the upcoming Internet of Things. Moreover, the provision of
RDF stream data will prompt new challenges to existing Linked Data
solutions, and will contribute to the maturity of RSP technologies.

7This iGraph is expired at the time of submission. It is possible to consult the sGraph to get
the list of the non-expired graphs.
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CHAPTER5
RSP-QL: A Continuous Extension of

SPARQL to Unify Existing RSP Languages

In the previous chapter, we defined the RSP data model by adding the
temporal dimension in the RDF model in three different ways: times-
tamped RDF statements (graphs) are RDF statements (graphs) with a
time annotation; RDF streams are ordered sequences of timestamped
RDF statements (graphs) and time-varying and instantaneous RDF
graphs capture the evolution of RDF graphs over time. In this sec-
tion, we present RSP-QL, an extension of the SPARQL language to
unify existing RSP languages. The two main requirements that drive
the design of RSP-QL are: 1) the evaluation of a query over an input
data should produce a unique solution; 2) RSP-QL should capture the
operational semantics of the most relevant extensions of SPARQL for
RDF streams, i.e. C-SPARQL, CQELS and SPARQLstream.

This chapter is based on “RSP-QL Semantics: A Unifying Query
Model to Explain Heterogeneity of RDF Stream Processing Systems”,
published on the International Journal of Semantic Web Information
Systems. I drove this work. I wrote the first draft of the paper under
the supervision of Prof. Della Valle, that supported me in finding a
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Chapter 5. RSP-QL

clear and readable way to expose the concepts in the paper, and pro-
vided the running example scenario. The article was later on edited by
J.P. Calbimonte, that reviewed the draft and improved the running ex-
ample across the paper. Finally, Prof. Óscar Corcho further improved
the clearness and the style of the work.

5.1 From SPARQL to RSP-QL

One of the main differences between SPARQL and RSP-QL is the way
in which queries are evaluated. Adopting the DSMS nomenclature [16,
36], SPARQL allows to issue one-time queries, i.e. queries that are
evaluated once by the SPARQL engine. In contrast, RSP-QL allows
to register continuous queries, queries issued once and continuously
evaluated [16], i.e. they are evaluated multiple times and the answer is
composed by emitting over time the results of each evaluation iteration.

Example 7. (cont’d). The instantaneous discount coupon service of-
fered by the Sirius Cybernetics Corporation allows shop owners to pro-
pose discounts to shoppers nearby, who use the App associated to the
service, e.g., when their shops are empty. Those instantaneous coupons
are published in a social network and the RDF stream Ssocial in List-
ing 5.1 shows two of them.

1 :ds1 {:post1 :author :alice ; :contains :c1 .
2 :c1 :in :a ; :on :armadillo ; :reduce 30 } [8] .
3 :ds2 {:post2 :author :bob ; :contains :c2 .
4 :c2 :in :b ; :on :panda ; :reduce 25 } [15] .

Listing 5.1: The RDF stream Ssocial

The first item, ds1, states that Alice publishes at time instant a
message with a coupon for a 30% discount on Armadillo shoes, while
the second item reports on a offer from Bob at the time instant 15 for
a 25% discount on Panda glasses.

Sirius Cybernetics Corporation monitors: (i) the streams Snearby
(the shops with shoppers nearby) and Ssocial, and (ii) the time-varying
graph Gshops (the shops that use the service, which are changing over
time). It sends instantaneous coupons proposed by the shop owners to
shoppers nearby their shops. This query requires a continuous evalu-
ation, because it has to notify coupons to shoppers, who are nearby a
shop, every time that a shop proposes a new coupon and it has to notify
shoppers, who get nearby a shop, with the most recent coupons of that
shop.
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Figure 5.1: From SPARQL (left) to RSP-QL engine (right)

We present the definition of RSP-QL query, which extends the no-
tion of SPARQL query presented in the Section 2.1.

Definition 5.1 (RSP-QL query). An RSP-QL query Q is defined as
(SE, SDS,ET,QF ) where

• SE is an RSP-QL algebraic expression

• SDS is an RSP-QL dataset

• ET is the sequence of time instants on which the evaluation occurs

• QF is the Query Form

The continuous-evaluation paradigm influences the definition of RSP-
QL query. We go in depth in the remaining of the section, but we pro-
vide now some intuitions about this model. We refer to Figure 5.1 to
highlight the difference of the RSP-QL query model w.r.t the SPARQL
one.

First, the dataset has to take into account time, both to manage the
RDF streams and to cope with time-varying RDF graphs. Next, we
need to define the continuous query evaluation semantics. It requires
two main operations: we need to extend the one-time SPARQL eval-
uation semantics, and we need to let the SPARQL operators process
time-changing data. Regarding the first point, we exploit the ET time
instant sequence and push it in the evaluation process of SPARQL. To
maintain backward compatibility with the SPARQL query model, we
do not modify the SPARQL operators, but we work on their inputs
and outputs. As we see above, most of the RSP-QL operators are
compliant with the relative SPARQL ones. The intuition behind this
choice is that the continuous evaluation can be viewed as a sequence of
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instantaneous evaluations, so, fixed a time instant, the operators can
work in a time-agnostic way.

Last, we need to work on the output of the query, in order to gen-
erate streams as output. We do it by introducing the new class of
*streaming operators that takes as input sequences of solution map-
pings and produces sequences of timestamped solution mappings; fi-
nally, we extend the SPARQL query forms to be able to convert a
sequence of time-annotated solution mappings into a RDF stream.

5.2 Assumptions

In the rest of this section, we make the two assumptions. The first
assumption is related to the time required for query evaluation: we
assume that the time required to evaluate the query over the current
input and to produce the portion of answer is lower than the time
unit. It is a common assumption made in this kind of work [39], so
as to guarantee that the stream processor works without accumulating
delays in the continuous-evaluation process.

We also assume no duplicates in the same window. This assumption
is made for the sake of simplicity and to describe the RSP-QL model
exploiting the notion of RDF graph, that is a set of RDF statements
(and not a bag, like relations in DSMS). This constraint influences the
result of query processing with some queries (such as the ones with
aggregations). Anyway, as we explain in Section 5.10, this constraint
can be relaxed by introducing simple bookkeeping information, i.e.
statement counters.

5.3 RSP-QL dataset

The addition of the time dimension and the presence of RDF streams
requires a new notion of RDF dataset that determines the input data
of the RSP-QL query. We introduce the concept of window over a
stream, that creates RDF graphs by extracting relevant portions of
the stream.

Definition 5.2 (Fixed window). A fixed window (or window) W (S)
is a set of timestamped RDF graphs extracted from a RDF stream S. A
time-based window W (o,c] is a fixed window defined through two time
instants o, c (respectively named opening and closing time instants)
such that:

W (o,c](S) = {(d, t)|(d, t) ∈ S ∧ t ∈ (o, c]}
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A time-based window selects a portion of the data contained in the
stream.

Example 8. (cont’d) Listing 5.2 shows content of the time-based win-
dow W (4,8] over Snearby with opening time o = 4 and c = 8.

1 :dn3 {:carl :isNearby :a} [5] .
2 :dn4 {:eve :isNearby :a} [7] .

Listing 5.2: Content of the window W (4,8](Snearby)

In order to be able to process the content of the stream at differ-
ent time instants, we need an operator that creates multiple (fixed)
windows over the stream. This operator is called time-based sliding
window, and it operates by creating a sequence of time-based windows
(with different opening/closing time instants) over the stream.

Definition 5.3 (Time-based sliding window). A time-based sliding
window W takes as input a stream S and, given a time instant t pro-
duces a time-based windowW (o,c](S) (Figure 5.2). W is defined through
a set of parameters (α, β, t0), where:

• α is the width parameter

• β is the slide parameter

• t0 is the time instant on which W starts to operate
We denote with W(S) the application of sliding window W on the
stream S, and with W(S, t) the time-based window produced at time
instant t

The above definition explains which are the inputs and outputs
of the sliding window. In the following, we refer to time-based win-
dow (Definition 5.2) with the term fixed window, to make clearer the
distinction between them and the time-based sliding windows (Defini-
tion 5.3). To distinguish the fixed windows from the time-based sliding
windows we use the capital letter, e.g. W (o,c], W (o,c]

1 , and W (o,c]
2 for the

former and the blackboard bold letter, e.g., W, W1 and W2 for the
latter. For the sake of readability, we omit the superscript interval
(o, c] in the time-based windows when not strictly required. Next, we
provide the description of how time-based sliding windows work.

Given a time-based sliding window W defined by α, β and t0, the
RSP engine generates a sequence of fixed windows (W1,W2, . . .), de-
fined through the following constraints:
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Figure 5.2: Fixed window and sliding window.

• the opening time of the first window W
(o1,c1]
1 is t0 = o1

• each window has width α, i.e. for each window Wi of W defined
through (oi, ci], i ∈ N+, it holds:

ci − oi = α

• the difference between the opening time instants of two consecu-
tive windows is β, i.e. given two windows W (oi,ci]

i and Wi+1 of W,
defined respectively in the time intervals (oi, ci] and (oi+1, ci+1],
holds:

oi+1 − oi = β

Given a time instant tnow, we name present window1 the window
Wp of W defined with (op, cp] such that op is the most recent opening
time, i.e.

6 ∃Wj of W defined in (oj, cj] : op < oj < tnow

It is now possible to describe the interval of the fixed window pro-
duced by a time-based sliding window W at time tnow. The window
W (S, tnow) is a sub-window of the present window W (op,cp]

p :

W(S, tnow) = W (op,tnow] ⊆ W (op,cp]
p

1In DSMS literature this window is known as active window; we changed its name in order to
clearly distinguish it from the active graph notion as in Definition 2.4
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Example 9. (cont’d) The time-based sliding window W1 over Snearby
defined through (α = 5, β = 2, t0 = 1) generates the following fixed
windows: W1 between (1, 6], W2 between (3, 8], W3 between (5, 10] and
so on. If W1 is evaluated at the time instant 9, the present window is
W3 and W1(Snearby, 9) contains:

1 :dn4 {:eve :isNearby :a} [7] .

To summarise, given a time instant t and a time-based sliding win-
dow W defined through the parameters (α, β, t0), W takes as input a
stream S, produces a fixed window W(S, t) = W (o,c]

p with a sequence
of timestamped items (di, ti) of S such that o < ti ≤ c. Finally, we can
define the concept of RSP-QL dataset.

Definition 5.4 (RSP-QL dataset). An RSP-QL dataset SDS is a set
composed by an (optional) default element A0, n (n ≥ 0) named time-
varying graphs and m (m ≥ 0) named sliding windows over o ≤ m
streams:

SDS ={(def, A0),
(u1, G1), . . . , (un, Gn),
(w1,W1(S1)), . . . , (wj,Wj(S1)),
(wj+1,Wj+1(S2)), . . . , (wk,Wk(S2)),
. . .

(wl,Wl(So)), . . . , (wm,Wm(So))} (5.1)

where

• def 6∈ I is a special symbol used to denote the default element A0

• up, wq are IRIs (up, wq ∈ I) for each p ∈ [1, n] and q ∈ [1,m]

• (up, Gp) identifies a time-varying named graph, for each p ∈ [1, n]

• (wq,Wq(Sr)) identifies a named time-based sliding window over
an RDF stream, for each q ∈ [1,m] and r ∈ [1, o]

When composing a SPARQL query, it is possible to declare different
graphs that will be merged to compose the default graph. In this case,
the default graph notion is replaced by the default element one, denoted
A0: it is a collection of time-varying graphs and sliding windows. In
the evaluation process, the A0 is processed to generate a RDF graph
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to be queried. Intuitively, it merges the content of the unnamed time-
varying graphs at time t and the RDF graphs contained in the present
windows of the unnamed sliding windows.
Example 10. (cont’d) One of the RSP-QL dataset that can be built
to answer the query presented in Example 7 is:

SDS ={(def,Gshops),
(w1,W1(Snearby)), (w2,W2(Ssocial))}

where the default graph is the time-varying graph describing the shops
that use the instantaneous discount coupon service, w1 and w2 identify
respectively the sliding window W1 over the stream Snearby, and the
sliding window W2 over the stream Ssocial. W2 is defined as (α =
2, β = 2, t0 = 0).

5.4 Time-varying collections of solution mappings

After defining the notion of RSP-QL dataset, we move to the query
evaluation process. In this section, we treat the problem of processing
data that change over time; in the next section, we extend the SPARQL
evaluation semantics in order to support the continuous evaluation.

As explained in Section 5.1, the continuous query evaluation consists
in evaluating the query multiple times at different instants. At each
iteration, fixed a time instant, the RSP-QL engine can determine on
which data the algebraic expression should be evaluated and from now
on, the evaluation process is atemporal. In other words, we need to
push the time dimension in the data types exchanged by the operators
and we do not need to redefine the existing SPARQL 1.1 operators to
work with timestamped data. This approach is different from the one
in [28], where the authors redefine the SPARQL algebraic operators in
order to cope with streaming data.

As explained in the background section, SPARQL algebra operators
work on RDF graphs or on collections of solution mappings [63]. For
example, BGPs receive as input the active RDF graphs and produce as
output multisets (bags) of solution mappings; JOIN, UNION and DIFF
operators consume and produce multisets of solution mappings; and
ORDER BY and DISTINCT operators work on sequences of solution
mappings.

In the previous section, we introduced the notions of time-varying
and instantaneous RDF graphs, to take into account the time dimen-
sion: the time-varying RDF graph G is a mapping between the time
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and the RDF graph set, and given a time instant t the instantaneous
graph G(t) identifies an RDF graph. A BGP operator, as defined in
the SPARQL specification, can operate over an instantaneous RDF
graph (since it is an RDF graph). Generalising, in our model each
operator processes instantaneous inputs and produces instantaneous
outputs; the sequence of instantaneous inputs (outputs) at different
time instants are time-varying inputs (outputs). It follows that we
need to define the time-varying and instantaneous extensions for mul-
tisets (identified respectively by Ω and Ω(t)) and on sequences (iden-
tified by Ψ and Ψ(t)) of solution mappings. It is worth noting that we
are modifying the concept of collections of solution mappings and not
the definition of solution mapping itself: it is a key-point to guarantee
that the existing SPARQL 1.1 operators continue to work as by their
original definition.

Definition 5.5 (Time-varying collections of solution mappings). A
time-varying sequence of solution mappings Ψ maps time instants t ∈
T to the set of solution mapping sequences:

Ψ : T → {Ψ |Ψ is a
sequence of solution mappings}

Given a time-varying sequence of solution mapping Ψ, we use the term
instantaneous sequence of solution mappings Ψ(t) to refer to the se-
quence of solution mappings at time t.

A time-varying multiset of solution mappings Ω maps the time T
to the set of solution mapping multisets

Ω : T → {Ω | Ω is a
multiset of solution mappings}

Given a time-varying multiset of solution mappings Ω, we use the
term instantaneous multiset of solution mappings Ω(t) to refer to the
multiset of solution mappings at time t.

The RSP-QL model ensures that existing SPARQL 1.1 operators
continue to work on RDF statements and solution mappings. As ex-
ample, in the following, we show the Join definition adjusted to take
into account time-aware collections of inputs (outputs). The differ-
ences w.r.t. SPARQL 1.1 Join definition presented in Section 2.1 are
underlined.
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Example 11. For a given time instant t, let Ω1(t) and Ω2(t) be instantaneous
multisets of solution mappings. We define RSP-QL Join as:

Join(Ω1(t),Ω2(t)) = {µ1 ∪ µ2)|
µ1 ∈ Ω1(t) ∧ µ2 ∈ Ω2(t) ∧ µ1 ∼ µ2}

Notably, fixed a time instant t, Ω1(t) and Ω2(t) are two bags of
solution mappings: the Join operator works on their content (solution
mappings) as in the original definition.

5.5 Continuous evaluation semantics

At this point, RSP-QL operators can process instantaneous inputs and
produce instantaneous outputs. What we need to do now is to model
the continuous evaluation process. To do it, we include the evaluation
time in the SPARQL evaluation semantics; then, we explain that the
continuous query answering is done by executing the query at each
time instant of the sequence ET (the evaluation time instants defined
in the RSP-QL query presented at the beginning of the section).

We now extend the definition of SPARQL evaluation semantics
(Definition 2.6) to take into account the time dimension: we add a
third parameter, evaluation time t, in the eval function signature.

Definition 5.6 (RSP-QL evaluation semantics). Given an RSP-QL
dataset SDS, an algebraic expression SE and an evaluation time in-
stant t, we define

JSEKtSDS(A)

as the evaluation of SE at time t with respect to the RSP-QL dataset
SDS having active element A (that can be either a time-varying graph
or a window operator).

This new concept requires a revision of the definitions of the existing
SPARQL evaluation of algebraic operators. For the sake of brevity, we
show the continuous evaluation semantics of BGP and Join operators.

Definition 5.7 (Evaluation of BGP). The evaluation of a Basic Graph
Pattern operator is defined in the following way:

JBGPKtSDS(A) = JBGPKSDS(A,t)

The solution of the BGP is computed with regard to the RSP-QL
dataset SDS having G as active element A at time t, i.e. SDS(A, t)
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denotes a RDF graph. The output of the evaluation is an instantaneous
multiset of solution mappings Ω(t).

If A is a time-varying graph G, SDS(A, t) refers to the instanta-
neous graph G(t) at time t; otherwise, if A is a sliding window W over
a stream S, SDS(A, t) is an RDF graph obtained by merging all the
graphs of the time-based window W(S, t). To sum up:

SDS(A, t) =

G(t), if A is a time-varying graph G⋃
(Gi,ti)∈W(S,t) Gi, if A is a sliding window W(S)

The above evaluation of the BGP is important because it shows that
the BGP is evaluated over an RDF graph. The evaluation definitions
of the other existing SPARQL 1.1 algebraic operators propagates the
evaluation time to the evaluation of the algebraic expressions.

It is worth noting what happens when A is a sliding window. At
time t, the sliding window produces a present window. All the stream
items (i.e. RDF graphs) in the present window are merged together
according to the RDF merge operation2 [64]. The result is a RDF
graph. When the active element is the default element A0, for each
time-varying graph and sliding window a RDF graph is computed;
finally, the graphs are merged together in a new RDF graph.

The next definition presents the evaluation of the join operator.
Definition 5.8 (Evaluation of Join). The evaluation of Join is defined
as follows:

JJoin(P1, P2)KtSDS(A) = Join(JP1KtSDS(A), JP2KtSDS(A))
where SDS(A) indicates the active element A in the RSP-QL dataset
SDS and P1, P2 are graph patterns.

In the algebraic tree the Join operators have two children, repre-
sented by the two graph patterns P1 and P2. The evaluation of the
Join operator consists in applying the Join (Definition 11) to the two
multisets of solution mappings computed by evaluating P1 and P2 at
time t with regards to the RSP-QL dataset with active element A.

5.6 Streaming operators

In previous sections, we extended the query model of SPARQL to con-
sume dynamic data (data that changes over time) and to process it

2It follows that that blank nodes cannot be shared across stream items. We plan to investigate
in future work if and how unnamed resources can be shared among stream items.
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in a continuous fashion. Now, we need to define what is the output
of the query: our model should produce not only time-varying RDF
graphs, but also RDF streams. To enable this feature, we add a set
of *streaming operators, that are similar to the relation-to-stream op-
erator described in Section 3.1.1. The *streaming operators take as
input sequences of solution mappings and produce sets of timestamped
solution mappings. As we see above, in the RSP-QL model the times-
tamped solution mappings can be processed only by the Query Form
operators. That means, the *streaming operators are thought to be
the outer elements of the algebraic trees.

Despite other RSP-QL operators that are inherited by SPARQL,
the *streaming operators require a time instant as input parameter be-
cause they are time-aware: they need to know the current evaluation
time in order to produce their outputs. They reintroduce the tempo-
ral dimension in the data, appending a time instant on the solution
mappings; *streaming operators can be considered the dual operators
of sliding windows, that process timestamped RDF graphs removing
the time annotation. We maintain the relation-to-stream names and
we redefine them to work in the RSP-QL setting. We start by defining
the RStream operator.

Definition 5.9 (RStream). Let Ψ be a time-varying sequence of so-
lution mappings and t ∈ T the evaluation time instant. We define
RStream in the following way:

RStream(Ψ(t), t) = {(µ, t)|µ ∈ Ψ(t)}

We define the RStream evaluation semantics as follows:

JRStream(L)KtSDS(A) = RStream(JLKtSDS(A), t)

where L is a solution sequence.

The RStream operator is the simplest one among the three that
we present in this section. It takes as input a sequence of solution
mappings Ψ(t) and annotates each of them with the evaluation time
t. This operator allows streaming out the whole answer produced at
each evaluation iteration.

Definition 5.10 (IStream). Given a time-varying sequence of solution
mappings Ψ and two consecutive time instants tj−1 and tj in the ET
sequence (i.e. there is no time instant t ∈ ET such that t ∈ (tj−1 <

66



i
i

“thesis” — 2016/6/25 — 19:29 — page 67 — #79 i
i

i
i

i
i

5.7. Query Form

tj)3), we define the IStream operator as follows:

IStream(Ψ(tj−1),Ψ(tj), tj) =
{(µ, tj)|µ ∈ Ψ(tj) ∧ µ 6∈ Ψ(tj−1)}

and we define the IStream evaluation semantics as follows:

JIStream(L)KtjSDS(A) = IStream(JLKtj−1
SDS(A), JLKtjSDS(A), tj)

IStream streams out the difference between the answer of the cur-
rent evaluation and the one of the previous iteration. IStream generally
produces shorter answers and it is used in cases where it is important
to put the focus on what is new.

Definition 5.11 (DStream). Given a time-varying sequence of solu-
tion mappings Ψ and two consecutive time instants tj−1 and tj in the
ET sequence, we define the DStream operator as follows:

DStream(Ψ(tj−1),Ψ(tj), tj) =
{(µ, tj)|µ 6∈ Ψ(tj) ∧ µ ∈ Ψ(tj−1)}

We define the DStream evaluation semantics as following:

JDStream(L)KtjSDS(A) = DStream(JLKtj−1
SDS(A), JLKtjSDS(A), tj)

The output produced by DStream is the part of the answer at the
previous iteration that is not in the current one (for example, a con-
tinuous query over Gshops to stream out which discount coupons end).

5.7 Query Form

Depending on the presence of the *streaming operator, the output of
each evaluation of the algebraic expression E of the query can be a
either a sequence of solution mappings or a sequence of timestamped
solution mappings.

If the algebraic expression SE does not contain the *streaming op-
erator, a case allowed by C-SPARQL and SPARQLstream, at each it-
eration the query produces a compliant SPARQL answer, i.e. a vari-
able binding for SELECT, a boolean value for ASK and a set of RDF

3Consequently, Ψ(ti) and Ψ(tj) exists and Ψ(tk) is undefined ∀tk ∈ T such that tj−1 < tk < tj .
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statements for CONSTRUCT and DESCRIBE. This decision preserves
interoperability between RSP systems and SPARQL engines.

When the *streaming operator is in the algebraic expression the
output of the RSP-QL engine is a stream: at each instantaneous evalu-
ation, the engine appends a new set of elements at the output stream.
Similarly to the first case, the output format depends on the query
form. In the SELECT case, the output is a relational data stream,
in the case of ASK is a stream of boolean values, and finally, in the
case of CONSTRUCT/DESCRIBE, the output is an RDF stream. It
is worth noting that only in the last case the output can be consumed
by another RSP-QL engine; in the case of SELECT/ASK query forms,
the output stream can feed a relational stream processor.

5.8 Evaluation time instants

We defined ET as the sequence of time instants at which the evalu-
ation occurs. It is an abstract concept which is key to the RSP-QL
query model and its continuous-evaluation semantics, but it is hard to
use it in practice when designing the RSP-QL syntax. In fact, the ET
sequence is potentially infinite, so the syntax needs a compact repre-
sentation of this set. Moreover, the ET set could be unknown when
the query is composed: the time instants on which the query has to
be evaluated could depend on the data that is streaming through the
RSP engine, e.g. the query should be evaluated every time the window
content changes. In other words, query designers can be interested in
associating the query evaluation to some relevant events, that can be
known a priori (e.g. periodical evaluation) or not (e.g. status of the
window content).

To address this issues, we introduce in RSP-QL the notion of policy
to express the time instant set ET . The concept was initially proposed
by Botan et al. in SECRET [29].

Definition 5.12 (Evaluation Time Instant Set). A policy P is a com-
bination of one or more boolean conditions (shortly strategy, according
to the SECRET model) that allow identifying the potentially infinite
set of time instants ET . Each strategy is associated to a window and
could set constraints to the window content or its parameters. Given a
policy P , the evaluation time instant set ETP is the set of time instants
on which the policy in P is satisfied, i.e.

t ∈ ETP iff P is satisfied at time t
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We can now indicate with Q = (SE, SDS,ETP , QF ) the RSP-
QL query where ETP is represented through the policy P . The four
strategies presented in SECRET are:

CC Content Change: the sliding window reports if the content changes.

WC Window Close: the sliding window reports if the present window
closes.

NC Non-empty Content: the sliding window reports if the present
window is not empty.

P Periodic: the sliding window reports only at regular intervals.

Each window can have zero or more policies associated to it, and
the policy P is a combination of them, as we show in the next example.

Example 12. (cont’d) Let’s define the policy P for the query described
in Example 7: it should detect the shoppers recently spotted in nearby
shops that offer instantaneous discount coupons. The query involves
two streams (Snearby and Ssocial) and for each of them there is an as-
sociated sliding window W1(Snearby) and W2(Ssocial) with parameters
(α1 = 5, β1 = 2, t01 = 1) and (α2 = 2, β2 = 2, t02 = 0). As policy P ,
we set the Window Close and the Non-empty Content to W2(Ssocial):

P = WC[W2(Ssocial)] ∧NC[W2(Ssocial)]

As a result, the ETP set contains pair time instants such that the win-
dow content of W2(Ssocial) is not empty. There fact that there are no
conditions over Snearby implies that it does not contribute to the report
strategy. When the policy triggers, the instantaneous evaluation starts,
and the content of the present window of Snearby is retrieved.

5.9 RSP-QL query evaluation

We can now put all the pieces together and explain how an RSP-QL
query is evaluated by an engine.

Definition 5.13 (Continuous Evaluation). Let Q a continuous query
Q = (SE, SDS,ET,QF ), where SE is an RSP-QL algebraic expres-
sion, SDS is an RSP-QL dataset (Definition 5.4), ET is the sequence
of evaluation time instants (Definition 5.12) and QF is the query form.
The continuous evaluation of Q produces an output Ans(Q) and it is
computed in the following way: for each t ∈ ET ,
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1. evaluate the algebraic expression E over the RSP-QL dataset, as
explained in the continuous evaluation semantics:

JSEKtSDS(A0)

2. each operator works on instantaneous collections of inputs (e.g.
RDF statements, solution mappings) and produce instantaneous
collections of outputs accordingly to the definition of time-varying
solution mappings.

3. format the output of evaluation according to the Query Form QF:
if the algebraic expression has as outer element a *streaming op-
erator the output is a stream; otherwise it is a SPARQL compliant
answer.

Example 13. (cont’d) We can now sum up and formalise the query
described in Example 7. The query Qex is defined through the four
parameters (SE, SDS,QF,ET ). The RSP-QL dataset of Qex is the
one described in Example 26:

SDS ={G0 = Gshops,

(w1,W1(Snearby)), (w2,W2(Ssocial))},

where W1 and W2 are defined respectively through (α = 5, β = 2,
t0 = 1) and (α = 2, β = 2, t0 = 0).

Instead of the RSP-QL algebraic expression, we write the WHERE
clause in a SPARQL-like syntax shown in Listing 5.3

1 WHERE {
2 WINDOW :w1 { ? shopper : isNearby ?shop }
3 WINDOW :w2 { ?post : author ? shop_owner ; : offers ? coupon }
4 ? shop_owner :owns ?shop
5 }

Listing 5.3: WHERE clause capturing the conditions of the running example.

For simplicity, we set RStream as *streaming operator, SELECT as
Query Form, all the variables are projected. The clause matches shop-
pers nearby shops whose owner is offering an instantaneous discount
coupon. The sequence of solution mappings are streamed out using the
RStream operator.

The evaluation time instant set is defined through the policy:

P = WC[W2(Ssocial)] ∧NC[W2(Ssocial)]
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5.10. Relaxing the no duplicate data assumption

?shopper ?shop ?post ?shop_owner ?coupon timestamp

:carl :a :post1 :alice :c1 8
:eve :a :post1 :alice :c1 8
:diana :b :post2 :alice :c2 16

Table 5.1: Timestamped solution mappings computed in the continuous evaluation
process.

Now, we can apply Definition 5.13 and determine which is the unique
correct answer of Qex. First, the ET set is determined; given the policy
P , the input data and the sliding window definitions, it follows that the
evaluation occurs at time 8 and 16. At these time instants, the alge-
braic expression is evaluated over the RSP-QL dataset. The computed
timestamped solution mappings are shown in Table 5.1. Finally, the
timestamped solution mappings are appended at the Ans(Qex) stream.

5.10 Relaxing the no duplicate data assumption

To close this section, we explain how to relax the assumption presented
at the beginning of this section: the input data does not contain dupli-
cates. We made this assumption to explain the RSP-QL model using
concepts familiar to the reader, in particular the one of RDF graph.
We use RDF graphs to represent the content of the sliding windows
over the streams and this choice allowed us to use well-known opera-
tions such as RDF graph merging and basic graph pattern evaluation.
Anyway, RDF defines the concept of RDF graph as a set of RDF state-
ments, and consequently no duplicates are admitted.

Relaxing the constraint, we can cope with the presence of dupli-
cates by introducinga simple bookkeeping mechanism and by annotat-
ing RDF statements with the number of repetitions in the windows. To
put this new annotation, it is necessary to extend several components
of the RSP-QL model. For example, sliding windows should initialise
the counter; the evaluation semantics of aggregates and joins has to
take the counters into account; in RDF graph merging, if both RDF
graphs to be merged contain the same statement, then the relative
counters have to be summed up.
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CHAPTER6
RSEP-QL: Complex Event Processing

Operators in RSP-QL

Luckham [76] proposes one of the first definitions of event in the context
of CEP, as:

an object that represents, or records an activity that hap-
pens, or is thought of as happening to.

After him, several definitions were proposed, with several level of de-
tails (distinguishing simple/primitive events and complex events). In
this section, we keep a general notion of event and we consider as event
as a set of statements captured in one information item of the stream.
That means, an event is a set of one or more statements in one of the
items (i.e., an RDF Graph) of an RDF stream.

In this chapter, we study how to integrate CEP opreators in RSP-
QL. In particular, we stud the SEQ operator, being the most basic
building block in CEP. Even if it may seem straightforward to formal-
ize this operator, its execution in different engines produces different
and hardly comparable results. We therefore register the presence of
this operator is two systems, EP-SPARQL and C-SPARQL. Interest-
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ingly, the two SEQ operators behave in different ways, and we aim at
capturing all of them.

As explained in Section 3.2.2, EP-SPARQL is the RSP language
with largest support for CEP features, with a wide range of operators
to define complex events, e.g., SEQ, OPTIONALSEQ, EQUALS and
EQUALSOPTIONAL. EP-SPARQL supports three different policies –
unrestricted, recent and chronological – that determine its behaviour.

On the other hand, C-SPARQL is based on DSMS techniques, but it
has a naive support to some CEP features. C-SPARQL implements a
function, named timestamp, which takes as input a triple pattern and
returns the time instant associated to the most recent matched triple.
This function can be used inside a FILTER clause to express time
constraints among events. The evaluation in C-SPARQL strictly relies
on the notion of time-based sliding window, which selects a portion
of the stream to be used as input and the time instants on which
evaluations occur.

While EP-SPARQL is an engine built and modeled to perform CEP
operations, C-SPARQL is a DSMS-inspired RSP engine that offers a
naive support to event pattern matching. As shown above, even when
the event pattern to be matched is simple, the two systems behave
in completely different ways, and none of them is able to capture the
other. It is out of the scope of this paper to determine which system
is the most suitable to be used given a use case and the relative set
of requirements. Our goal is to build a model able to capture the
behaviour of both engines.

Example 14. The Sirius Cybernetics Corporation aims at improving
their mobile application with a social recommender. Shop owner dis-
counts are published as micro-post in a social network, and the user
App finds out whether the coupons are socially relevant by checking
whether someone whom the user follows repost about the coupons. If
yes, it delivers the coupons to the user.

The Gfollowers graph captures the following relation between the users
in the social network. Listing 6.1 shows Gfollowers: Carl follows both
Diana and Eve, while :evefollows :carl. It holds that Gfollowers(t) =
Gfollowers for every t in [0, 20].

1 :carl :follows :diana .
2 :carl :follows :eve .
3 :eve :follows :carl .

Listing 6.1: The Gfollowers graph.
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As shown in Example 7 the stream Ssocial describes the publications
of two coupons, respectively at time instant 8 by Alice and at time 10
by Bob. Listing 6.2 shows the portion of Ssocial after 15. There are two
new items at time 16 and 18, stating that Diana and Eve mentions the
Bob’s coupon in two new micro-posts.

1 :ds3 {:post3 :author :diana ; :mentions :c2 .
2 :c2 :in :b ; :on :panda ; :reduce 25 } [16] .
3 :ds4 {:post4 :author :eve ; :mentions :c2 .
4 :c2 :in :b ; :on :panda ; :reduce 25 } [18] .

Listing 6.2: Portion of the Ssocial stream.

Carl has the App installed on his mobile phone and he is walking
near shop b at time 18 (as described in Snearby in Example 5). The
application of Carl monitors the social network to discover if some of
the users he follows retweet any coupon (event E1) of a shop nearby
him (event E2). The two events should be in a temporal sequence (i.e.
E1 before E2): in this case, there are matchings (both the content of ds3
and ds4 can verify the pattern). To reduce the number of messages, the
application should produce only one notification per social event: given
the situation above, one notification has to be produced at the first time
Carl goes near the shop aafter 16 and one at the first time Carl goes
near the shop bafter 18. Carl is nearby shop B at time 19 and 21, as
described in Snearby, so one matching has to be produced at 19 and no
notification should be produced at 21.

In the following, we first introduce the landmark windows in Sec-
tion 6.1, a class of window operators typical of the Event Processing
domain. Then, Section 6.2 then move to the syntax of the operators
needed to express event patterns in RSEP-QL queries in , and we then
define their semantics in Section 6.3. We close with final remarks in
Section 6.6

This chapter is based on a joint research with M. Dao-Trao, J.P.
Calbimonte, E. Della Valle and D. Le Phouc. M. Dao-Trao and I drove
the work. We defined the syntax and the semantics of the operators.
M. Dao-Trao and J.P Calbimonte wrote the running examples along
the article; D. Le Phouc and E. Della Valle edited and improved the
draft.

6.1 Landmark window operators

Before moving on the definition of the semantics of the event patterns,
we introduce two new window operators, the landmark windows and
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the within windows. These operators are typical of CEP world: the
former captures the whole stream from a starting point, while the latter
defines a time-based fixed window in the context of an event pattern.

Definition 6.1 (Landmark window). A landmark window L takes as
input a stream S, and given a time instant t produces a time-based fixed
window W (t0,t]. L is defined through a parameter t0, that represents the
time instant on which L starts to operate. We denote with L(S) the
application of the landmark window L on the stream S, and with L(S, t)
the time-based window produced at time t.

The idea behind landmark window is to select a large portion of
the stream, over which event patterns are usually evaluated. An inter-
esting fact of this operator is that the size of the generated windows
always increase. That means, while the sliding windows has an intrin-
sic mechanism to consume the data (data exists the sliding window,),
landmark windows should usually be associated to external consum-
ing mechanism. In this sense, their application in Event Processing
is natural, due to the fact that it is possible to implement them us-
ing mechanisms as load shedding and removing data after that event
pattern matches.

6.2 Syntax

To capture and process events, we introduce the notion of event pat-
terns, recursively defined as follows.

1. If P is a Basic Graph Pattern, w ∈ I, then the expressions
(EVENT w P ) is an event pattern, named Basic Event Pattern
(BEP);1

2. If E1 and E2 are event patterns, then the expressions (FIRST E1)
and (LAST E1) are event patterns;

3. If E1 and E2 are event patterns, then the expression (E1 SEQ E2)
is an event patterns.

Finally, we define the MATCH operator to integrate event patterns
into SPARQL: given an event pattern E, the expression (MATCH E)
is a graph pattern. Being MATCH E a graph pattern, it can be used
in combination with SPARQL syntactical rules [63] to build queries.

1 We do not tackle here the case where w ∈ I ∪ V , which is one of our future works.
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6.3 Semantics

We now define the semantics of the event patterns introduced in Sec-
tion 6.2. Event patterns are defined in the context of event graph
patterns (i.e., by using MATCH). The main difference w.r.t. the eval-
uation semantics given in Chapter 5 is that this decomposition process
should take into account the temporal aspects related to event match-
ing, i.e., the evaluation should (i) produce time-annotated solution
mappings, and (ii) control the time range in which a sub-pattern is
processed. We address (i) by introducing the notion of event mapping,
defined as follows.

Definition 6.2 (Event mapping). An event mapping is a triple (µ, t1, t2),
composed by a solution mapping µ and two time instants t1 and t2, rep-
resenting the initial and the final time instants that justify the match-
ing, respectively.

We assume that we are given a partial order ≺ to compare the pair
of timestamps in event mappings. Depending on particular applica-
tions, specific ordering can be chosen. Regarding (ii), we propose a
new evaluation function. Before proceeding with its presentation, we
introduce the notion of window composition. We explained in Defini-
tion 5.2 that a fixed window defines a sequence of timestamped RDF
graphs, i.e. a substream. Being it a substream, it is possible to apply
a new fixed window on it. In other words, fixed windows can nest.
Intuitively, the result is the portion of the stream in the intersection
of the two windows. We formalise it in the next definition.

Definition 6.3 (FixedWindow Composition). LetW (o1,c1] andW (o2,c2]

be two fixed windows. The composition ofW (o1,c1] andW (o2,c2], denoted
W (o1,c1] •W (o2,c2], produces a fixed window W (o3,c3] in the interval:

(o3 = max{o1, o2}, c3 = min{c1, c2}]

Window composition is key for the definition of the event pattern
evaluations, as it restricts the area on which the event pattern can
match. If W (o2,c2](S) indicates the application of the fixed window
W (o2,c2] to a stream S, W (o1,c1] •W (o2,c2](S) denotes the application of
W (o1,c1] to the substream identified by W (o2,c2](S), alternatively writ-
ten as W (o1,c1](W (o2,c2](S)). If two windows do not overlap, it follows
that their composition is empty and the application to a stream pro-
duces an empty sequence. Finally, it is worth to note that composition
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commutes, i.e.

W (o1,c1] •W (o2,c2] = W (o2,c2] •W (o1,c1]

The following definition defines the identity window, as the identity
value of the window composition.
Definition 6.4. An identity fixed window (or identity window), de-
notedW id, is the identity element of the window composition operation,
i.e.

W id •W (o1,c1] = W (o1,c1]

The application of the identity fixed window to a stream identifies the
stream itself:

W id(S) = S

We now have the elements to proceed in the definition of event pat-
tern evaluation semantics. The following definition introduces a new
evaluation function. It is worth noting that while RSP-QL function
J·Kt

G
(Definition 5.6) is still used to evaluate graph patterns, this new

one is intended to be used in the context of event pattern evaluation.
Definition 6.5 (Event Pattern Evaluation Semantics). Given an event
pattern E, a window function W (active window), and an evaluation
time instant t ∈ ET, we define

LEMtW
as the evaluation of E in the scope defined by W at t .

The function associates the evaluation with an active fixed window
that sets the boundaries of the valid ranges for evaluating event pat-
terns. Important in the evaluation of event patterns is the role of the
contextual window. The contextual window denotes a fixed window
W to be composed with the ones produced by the window operators
defined in the dataset SDS . We use the contextual window to restrict
intervals of time in matching sub-event-patterns, to guarantee correctly
computing complex event patterns, as we explain below. By default,
the contextual window is the identity window, that does not impose
any time restriction over the window on which it is applied.

The next definition presents the evaluation of Basic Event Patterns.
Similar to BGPs, (BEP) are the simplest building block. The idea
behind their semantics is to produce a set of SPARQL BGP evaluations
over the stream items from a window of SDS , restricted by the active
window.
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Definition 6.6 (Basic Event Pattern evaluation). Let P be a Ba-
sic Graph Pattern and wi a window identifier. The evaluation of
FIRST EVENT wi P is defined as:

LEVENT wi P MtW = {(µ, tk, tk) | µ ∈ JP KGk
∧

(Gk, tk) ∈ W •Wi(Sj, t)∧
(wi,Wi(Sj)) ∈ SDS} (6.1)

It is worth comparing the evaluation semantics of a BEP with the
one of a BGP as defined in Section ??. They both exploit the SPARQL
BGP evaluation, but while the former defines an evaluation for each
stream item (i.e., an RDF graph), the latter is a unique evaluation over
the merge of the stream items in one RDF graph.

Example 15. Let’s start to build the query of Example 14. The RSP-
QL dataset SDS contains the time-varying graph Gfollowers to retrieve
the follower relations between users and two time-based sliding windows
W3 and W4 over the streams Snearby and Ssocial, defined through the
parameters (α = 30, β = 1, t0 = 0). To summarize:

SDS ={(gf , Gfollowers),
(w3,W3(Snearby)), (w4,W4(Ssocial))}

Let E1 be the event that identifies when Carl is detected close to a
shop. That means,

E1 = EVENT w3 {carl :isNearby ?shop}

We show how to evaluate LE1M20
W id . First of all, the content of the

window W3 at time 22 (W3(Snearby, 22)) is the whole stream depicted in
Listing 4.1. The content of the composed window W id •W3(Snearby, 22)
is the same.

Now we evaluate J:carl :isNearby ?shopKdn,k
for 1 ≤ k ≤ 22. The

graphs dn5, dn19 and dn21 have matches, which are µa = {?shop 7→:a}
and µb = {?shop 7→:b}. Combining with the timestamps 5, 19 and 21
when dn5, dn19 and dn21 respectively appear in Snearby, we have:

LE1M22
W id = {(µa, 5, 5), (µb, 19, 19), (µb, 21, 21)}.

Next is the semantics of other event patterns, starting with those
that identify the first and last event matching a pattern, based on the
ordering ≺.
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Definition 6.7 (FIRST and LAST event patterns). Let E be an event
pattern. The evaluation semantics of FIRST E and FIRST E is de-
fined as:

LFIRST EMtW = {(µ, t1, t2) ∈ LEMtW |
6 ∃(µ′, t3, t4)∈LEMtW : (t3, t4)≺(t1, t2)} (6.2)

LLAST EMtW = {(µ, t1, t2) ∈ LEMtW |
6 ∃(µ′, t3, t4)∈LEMtW : (t1, t2)≺(t3, t4)} (6.3)

The next definition presents the definition of the SEQ operator.

Definition 6.8 (SEQ event pattern). Let E1 and E2 be two event
patterns. The evaluation of E1 SEQ E2 is defined as:

LE1 SEQ E2MtW = {(µ1∪µ2, t1, t4) |
(µ2, t3, t4)∈LE2MtW∧
(µ1, t1, t2)∈Lµ2(E1)MtWt[0,t3−1]•W} (6.4)

Intuitively, for each event mapping (µ2, t3, t4) that matches E2,
Equation (6.4) seeks for (a) compatible and (b) preceding event map-
pings matching E1. The two demands are guaranteed by introducing
constraints on the evaluation of E1:

• (a) is imposed by, in E1, substituting the shared variables with E2
for their values from µ2, denoted by µ2(E1).

• (b) is ensured by restricting the time range on which input graphs
are used to match µ2(E1): we only consider graphs appearing
before t3, thus Wt[0, t3 − 1] •W .

Example 16. The event E2 that looks for the posts related to a shop
is defined as follows:

E2 = EV ENT w4 {?post :author ?following .
?post :mentions ?c .
?c :in ?shop}

We show how LE2 SEQ E1M22
W id is evaluated. In Example 15 we

computed the result of LE1M22
W id . Applying the function in Definition 6.8,

it follows that the result of the evaluation is:

80



i
i

“thesis” — 2016/6/25 — 19:29 — page 81 — #93 i
i

i
i

i
i

6.3. Semantics

LE2 SEQ E1MtW =
{(µ∪µa, t1, 5) | (µ, t1, t2)∈Lµa(E2)MtWt[0,4]•W4} (6.5)

∪ {(µ∪µb, t3, 19) | (µ, t3, t4)∈Lµb(E2)MtWt[0,18]•W4} (6.6)
∪ {(µ∪µb, t5, 21) | (µ, t5, t6)∈Lµb(E2)MtWt[0,20]•W4} (6.7)

The set in (6.5) is empty, due to the fact that Wt[0, 4] • W4(t)
is empty. The sets in (6.6) and (6.7) are not empty, as the evalua-
tion of Lµb(E2)MtWt[0,18]•W4

and Lµb(E2)MtWt[0,20]•W4
produce three event

mappings (µc = {?post 7→: post2, ?author 7→: bob, ?c 7→: c2}, 15, 15),
(µd = {?post 7→:post3, ?author 7→:diana, ?c 7→:c2}, 16, 16) and (µe =
{?post 7→:post4, ?author 7→:eve, ?c 7→:c2}, 18, 18).

It follows that the result of the evaluation is

LE2 SEQ E1MtW = {(µc ∪ µb, 15, 19), (µc ∪ µb, 15, 21),
(µd ∪ µb, 16, 19), (µd ∪ µb, 16, 21)
(µe ∪ µb, 18, 19), (µe ∪ µb, 18, 21)}

Finally, we define the semantics of the MATCH operator. It re-
moves the time annotations from event mappings and produces a bag
of solution mappings. Thus, the result of this operator can be com-
bined with results of other SPARQL graph pattern evaluation (i.e.,
other bags of solution mappings).

Definition 6.9 (MATCH evaluation). The evaluation of MATCH E
is defined as:

JMATCH EKtSDS(A) = {µ | (µ, t1, t2) ∈ LEMtW id} (6.8)

The MATCH clause encloses the search of event patterns. Its prece-
dence w.r.t. other operators is the lowest: this operators is the last
one that has to be evaluated, to ensure the correct identification of the
event patterns.

Example 17. The evaluation of MATCH E2 SEQ E1 is the follow2:

JMATCH E2 SEQ E1K22
G0 =

{µ | (µ, t1, t2) ∈ LE2 SEQ E1M22
W id} =

{(µc ∪ µb),(µd ∪ µb), (µe ∪ µb)}
2As in Chapter 5, we assume set semantics.
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The resulting set of solution mappings can be combined with other
graph pattern results. Following Example ??, the query contains the
graph pattern P1 = GRAPH gf {:carl :follows ?follower}. It is possi-
ble to join it with the MATCHgraph pattern above on the ?following
variable.

The evaluation of the graph pattern is the set {(?follower 7→ :
diana), (?follower 7→ : eve)}. It follows that the evaluation of the
graph pattern P1 JOIN MATCH E2 SEQ E1 produces the set of map-
pings {(µd ∪ µb), (µe ∪ µb)}.

6.4 Event Selection Policies

Evaluating the SEQ operator as in Equation (6.4) takes into account all
possible matches from the two sub-patterns. This kind of evaluation
captures only the “unrestricted” behaviour of EP-SPARQL and C-
SPARQL. With the purpose of formally capturing the CEP semantics
of C-SPARQL and EP-SPARQL, we introduce in this section different
versions of the sequencing operator that allows different ways of select-
ing stream items to perform matching, known as selection policies.

Firstly, for C-SPARQL’s naive CEP behaviour, Equation (6.9) sim-
ply picks the two latest event mappings that match the two sub-
patterns and compare their associated timestamps.

LE1 SEQn E2MtW = {(µ1 ∪ µ2, t1, t4) | (t1, t2) ≺ (t3, t4)∧ (6.9)
(µ1, t1, t2) ∈ LLAST E1MtW ∧ (µ2, t3, t4) ∈ LLAST E2MtW}

For the chronological and recent settings from EP-SPARQL, we need
more involved operators SEQc and SEQr . In the sequel, let W ? =
Wt[0, t3 − 1] •W .

LE1 SEQc E2MtW = {(µ1 ∪ µ2, t1, t4) | (µ2, t3, t4) ∈ LE2MtW∧ (6.10)
Lµ2(E1)MtW ? 6= ∅ ∧ (µ1, t1, t2) ∈ LFIRST µ2(E1)MtW ?∧
(6 ∃(µ′2, t′3, t′4)∈LE2MtW : Lµ′2(E1)MtW ? 6=∅ ∧ (t′3, t′4)≺(t3, t4))}.

Compared to (6.4), Equation (6.10) selects an event mapping (µ2, t3, t4)
of E2 that:

• has a compatible event mappings in E1 which appeared before µ2.
This is guaranteed by the condition Lµ1(E2)MtW ? 6=∅ and the win-
dow function W ?=Wt[0, t3 − 1] •W ;
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• is the first of such event mappings. This is ensured by stating
that no such (µ′2, t′3, t′4) exists, where (t′3, t′4) ≺ (t3, t4).

Once (µ2, t3, t4) is found, (µ1, t1, t2) is taken from LFIRST µ2(E1)MtW ? ,
which makes sure that it is the first compatible event that appeared
before (µ2, t3, t4). Finally, the output event matching E1 SEQc E2
is (µ1 ∪ µ2, t1, t4).

Equation (6.11) follows the same principle as Equation (6.10), ex-
cept that it selects the last instead of the first event mappings.

LE1 SEQr E2MtW = {(µ1 ∪ µ2, t1, t4) | (µ2, t3, t4) ∈ LE2MtW∧ (6.11)
Lµ2(E1)MtW ? 6= ∅ ∧ (µ1, t1, t2) ∈ LLAST µ2(E1)MtW ?∧
(6 ∃(µ′2, t′3, t′4)∈LE2MtW : Lµ′2(E1)MtW ? 6=∅ ∧ (t3, t4)≺(t′3, t′4))}.

6.5 Event Consumption Policies

Selection policies are not sufficient to capture the behaviour of EP-
SPARQL in the chronological and recent settings. As described in
Section ??, under these settings, stream items that contribute to an
answer are not considered in the following evaluation iterations. We
complete the model by formalizing this feature, known as consumption
policies.

Let ET=t1, t2, . . . , tn, . . . be the set of evaluation instants. Abusing
notation, we say that a window function wj appears in an event pat-
tern E, denoted by wj∈̂E, if E contains a basic event pattern of the
form (EVENT wj P ).

Consumption policies determine input for the evaluation. Our next
two definitions cover this aspect. Definition 6.10 is about a possible
input for the evaluation while Definition 6.11 talks about the new in-
coming input. We first define such notions for a window in an RDF
streaming dataset, and then lift them to the level of structures that
refer to all windows appearing in an event pattern.

Definition 6.10 (Potential Input & Input Structure). Given an RDF
streaming dataset SDS, we denote by Ii(wj) ⊆ SDSwj

(ti) a potential
input at time ti of the window identified by wj. For initialization pur-
poses, we let I0(wj) = ∅.

Given an event pattern E, an input structure Ii of E at time ti
is a set of potential inputs at ti of all windows appearing in E, i.e.,
Ii = {Ii(wj) | wj∈̂E}.

83



i
i

“thesis” — 2016/6/25 — 19:29 — page 84 — #96 i
i

i
i

i
i

Chapter 6. RSEP-QL

Definition 6.11 (Delta Input Structure). Given an RDF stream-
ing dataset SDS and two consecutive evaluation times ti−1 and ti,
where i > 1, the new triples arriving at a window wj are called a delta
input, denoted by ∆i(wj) = SDSwj

(ti)\SDSwj
(ti−1). For initialization

purposes, let ∆1(wj) = SDSwj
(t1).

Given an event pattern E, a delta input structure at time ti is a set
of delta inputs at ti of all windows appearing in E, i.e., ∆i = {∆i(wj) |
wj∈̂E}.

We can now define consumption policies in a generic sense.
Definition 6.12 (Consumption Policy & Valid Input Structure). A
consumption policy function P takes an event pattern E, a time in-
stance ti ∈ ET, and a vector of additional parameters ~p depending on
the specific policy, and produces an input structure for E.

The resulted input structure is called valid if it is returned by ap-
plying P on a set valid parameters ~p, where the validity of ~p is defined
based on each specific policy.

This generic notion can be instantiated to realize specific policies in
practice. For example, the policy Pu that captures the EP-SPARQL’s
unrestricted setting requires no further parameters, thus ~p = ∅ and
returns full input at evaluation time. To be more concrete:

Pu(E, ti) = {Ii(wj) = SDSwj
(ti) | wj∈̂E}

For the chronological and recent settings, we describe here only in-
formally the two respective functions Pc and Pr. Their additional
parameters include Ii−1 (the input structure at ti−1) and ∆i (the delta
input structure at ti), and they return an input structure Ii such that
its elements Ii(wj) contain ∆i(wj) and the triples in Ii−1(wj) that are
not used to match E at ti−1. The validity of input can be guaranteed
by starting the evaluation with I1(wj) = SDSwj

(t1) which is valid by
definition.

We now proceed to incorporate consumption policies into event pat-
terns evaluation. The idea is to execute the evaluation function L.M
also with a policy function P , that is, to evaluate an event pattern E
with LEMtW,P . Then, when the evaluation process reaches a basic event
pattern at the leaf of the operator tree, P is applied to filter out already
consumed input. Formally:

LEVENT wj P MtiW,P = JP KI ,

where I denotes Ii(wj) ∩ (⋃
(Gk,tk)∈W•Wj(S`,ti) Gk) and Ii(wj) ∈ Ii =

P(E, ti, Ii−1,∆i).
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6.6 Remarks

In this chapter, we presented RSEP-QL, that extends RSP-QL to query
RDF streams with CEP features. We give a formal semantics for
RSEP-QL and compare its CEP features with those that currently be
possible with EP-SPARQL and C-SPARQL. The formal semantics of
CEP operators provides a vital foundation for enabling CEP features
in RSP engines.

Our approach can be extended to represent other selection and con-
sumption policies in CEP such as strict contiguity, partition contiguity,
skip till next match, and skip till any match [1].

Key for the implementation and the realization of an evaluation
module is the study and the optimization of RSEP-QL queries: study
of algebraic equivalences and cost models are needed to improve per-
formance and reduce responsiveness.
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CHAPTER7
Reasoning in RSEP-QL

In the last five years, several techniques were proposed under the
Stream Reasoning label, as described in Section 3.3, but they are het-
erogeneous in terms of input, output and use cases. In this chapter,
we move a step forward by introducing an extension of RSEP-QL to
describe Stream Reasoning techniques in terms of continuous query
answering process in the context of RDF Stream Processing.

The research question we investigate in this chapter is:

RQ.2 What is the correct behaviour of a continuous query en-
gine while processing a semantic stream under entailment
regimes?

To investigate the question, we study if and how the SPARQL en-
tailment regimes can be applied. The remainder of the chapter is struc-
tured as follows: after a presentation of the assumptions in Section 7.1,
Section 7.2 introduces the entailment regime extension for RSEP-QL
at a glance, while Sections 7.3–7.5 go in depth with the descriptions
of the entailment levels. We close with a comparison of the levels in
Section 7.6, and with final remarks in Section 7.7.
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7.1 Assumptions

Let us first detail the assumptions we make on the RDF stream con-
tent, the conceptual model and its evolution over time. Most of those
assumptions are the same of existing work in stream reasoning (Sec-
tion 3.3). The first is that we focus on entailment regimes with a
DL-related semantics. The choice let us adopt the notions of ontology,
TBox and ABox.

Regarding the assumptions on the RDF streams, we assume that
they carry only assertional axioms, and the content of each stream is
compliant to a TBox T containing the terminological axioms. This
assumptions captures a large portion of reality, where the conceptual
model is static (or quasi-static), and the facts rapidly changes over
time. It happens in several scenarios, such as the ones presented in
various work of the stream reasoning area.

Another assumption on RDF stream comes from the following con-
sideration on the semantics of the time instants: up to know, we defined
time instants as time annotations (application time) associated to the
stream items. This definition can be interpreted in different ways,
depending on the nature of the data stream item. When the stream
brings events like “Alice opens the door d” with time instant t, the in-
formation is related to the fact that the action happens at time t. On
the other side, a stream item “the door d is open” at time t refers to a
state of the door, and t can refer to the time instant on which this state
starts to be true, ends to be true, or simply is true at that time. We
leave the investigation of this problem as future work; in this chapter
we assume that the time instant indicates that the stream item starts
to be true at time t. This assumption contributes in guaranteeing the
correctness of the inference process: if we consider a query evaluation
at time t over the content of one fixed window, the inference process
should take into account axioms that are still true at that time. That
means, the axioms in the fixed window starts to be true at a time ti,
and are still true at t.

We also defines a set of assumptions related to the TBox. The
terminological axioms are stored in a time-varying graph GT , that
is optionally part of the dataset. Being a time-varying graph, GT
allows to track the evolution of the TBox T over time. The second
assumption is that, entailment regime E associated to the ontological
language L, for each time instant t where GT is defined, the RDF graph
is GT (t) is well formed for E. The assumption is made in the sake of
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clearness, and we refer to SPARQL entailment regime results [59] for
error management when not differently stated.

The last assumption is on the fact that the TBox does not change,
i.e. for each time instant t where GT is defined, GT (t) = GT . From
the above assumptions, given an entailment regime E, GT can be rep-
resented in the TBox T .

7.2 The Stream Reasoning stack

SPARQL entailment regimes [58] extends the SPARQL model in order
to take into account ontological languages and to make available to the
query processor implicit information in the data. The main idea behind
the extension is to redefine the notion of evaluation of basic graph
pattern through the concept of semantic entailment relation. That
means, given an entailment regime E, the basic graph pattern should
be evaluated over a scoping graph E-equivalent to the active graph,
and not over the active graph itself (as explained in Section 2.2.3).

When we move from SPARQL to RSEP-QL, we should take into
account two main differences. The first is that the active element in
the dataset SDS can be a time-varying graph, a (sliding or landing)
window operator, or a combination of both (in the default element A0).
The second is that, in addition to basic graph patterns, there are also
basic event patterns that access the content of the active element of
SDS .

While basic event patterns are evaluated over a window operator1
content, basic graph patterns can be evaluated over either windows
or time-varying graphs. In the latter case, when the content of the
active element A is a time-varying graph G, Definition 5.7 explains
that the basic graph pattern at time t is matched over a RDF graph
SDS(A, t) = G(t). In this case, the extension of RSEP-QL with the
SPARQL entailment regimes is straightforward: fixed an entailment
regime E, conditions and theory of [58] can be applied in the context
of the RDF graph G(t).

Different is the case when the active element is a window opera-
tor applied to a stream S. The output of a window operator can be
queried in the context of basic graph pattern and basic event pat-
tern evaluations. The process is shown in Figure 7.1, considering
the blue blocks: in the dataset SDS the stream S is associated to

1When not specified, we refer to window operator to indicate a generic sliding or landing
windows.
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Figure 7.1: The stream reasoning stack: the blue box represents RSEP-QL ele-
ments, while the orange ones represent the different levels on which reasoning
can be applied.

a set of window operators. Let W(S) be one of those window oper-
ators: as explained in Definitions 5.3 and 6.1, fixed a time instant
t, W(S, t) produces a fixed window W (o,c] containing a subset of the
stream with timestamped RDF graphs (di, ti). In the context of a
basic graph pattern evaluation having W(S) as active element, Defini-
tion 5.7 explains that the window content is merged in a RDF graph
(i.e., SDS(W(S), t) = {(s, p, o)|(s, p, o) ∈ di ∧ (di, ti) ∈ W(S, t)}). In
the context of an basic event pattern evaluation, Definition 6.6 shows
how each stream item (di, ti) in the fixed window is considered sepa-
rately, and the event pattern matches on one of those elements.

Given this process, the question that may arise is: when is the right
moment to consider the entailment regime? We envision three differ-
ent points (levels) where it can happen, denoted by the orange boxes
in Figure 7.1: graph-level entailment, where the entailment regime is
applied in the context the RDF graph SDS(W(S), t); window-level en-
tailment, applied in the context of to the window operator W(S); and
stream-level entailment, applied to the portion of the stream data S
observed up to the current evaluation time instant. The application
of the entailment regime to the three levels is not equivalent: each
level considers different input and output data models, and brings the
continuous query to compute different results.
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7.3 Graph-level entailment

When the entailment regime is applied at graph level, the event pattern
extension of RSEP-QL does not gain any advantage. In other words,
graph-level entailment just affects the result of basic graph pattern
evaluations.

Definition 5.7 explains that the evaluation at time t of a basic
graph pattern P having SDS(A) as active elements is equivalent to
the SPARQL evaluation JP KSDS(A,t). When the active element is a
sliding (or a landing) window W(S), the active element SDS(W(S), t)
identifies the RDF graph with the whole content of the fixed window
W(S, t).

In this sense, the graph-level entailment is a direct application of
the SPARQL entailment regime extension: considering SDS(W(S), t)
as the active RDF graph, most of the results presented in Section 2.2.3
hold, and when SDS(W(S), t) is well formed for E, it is possible to
convert it in an ontology, as defined in the OWL 2 Web Ontology Lan-
guage Mapping to RDF Graphs document [87]. Anyway, this ontology
would be composed by ABox axioms only. This is the main difference
w.r.t. SPARQL: while SPARQL entailment regimes assume that both
terminological and assertional axioms are stored in the active graph,
when the active elements is a window, the resulting graph contains
only triples describing the ABox axioms. To solve the problem, we
introduce the notion of Stream TBox Mapper.

Definition 7.1 (Stream TBox Mapper). A Stream TBox MapperM is
a partial function that maps RDF streams to time-varying graphs. Let
S be a stream, M(S) identifies a time-varying graph GS,T containing
the concepts and relations used in S information items.

The Stream TBox Mapper identifies the conceptual models related
to the RDF streams. Given a RSEP-QL query, for each stream S
available in the dataset SDS , the Stream TBox Mapper returns either
a time-varying graph GS,T is S is part of the domain, or the empty
RDF graph otherwise.

The Stream TBox Mapper supplies the terminological axioms, intro-
ducing the missing elements to enable the inference process. For each
basic graph pattern evaluation over a window content under graph-level
entailment regime E, the active graph considered in the evaluation is

SDS(W(S), t)) ∪M(S).
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LetO be the ontology associated to SDS(W(S), t))∪M(S), we indicate
with Cl(O) its closure w.r.t. the ontological language L associated
to E.

We envision different possible ways on which the Stream TBox Map-
per can be provided to the Stream Reasoner. A solution is to define
it in the query, declaring up to one Stream TBox Mapper for each
stream considered. Another possibility, is to let the stream provider
publish the data schema. We discuss this idea in the future work (Sec-
tion 10.2.2).

Example 18. Let Ssocial be the stream defined in Examples 7 and 14,
and let M(Ssocial) = GTsocial

. For the assumption that the TBox does
not change, GTsocial

is GTsocial
for any time value t where is defined, and

Tsocial in Listing 7.1 is the relative EL++ TBox.
1 P ost v ∃hasAuthor.P erson
2 CouponP ubP ost v P ost u ∃contains.Coupon
3 Coupon v ∃in.Shop u ∃on.P rodut u ∃reduce
4 MentionedCoupon v Coupon u ∃mentionedIn.P ost
5 contains ◦mentionedIn v propagatedBy

Listing 7.1: The TBox representing GTsocial
, the Stream TBox Mapper value of

Ssocial

Let’s now consider a query that looks for the posts that are propa-
gated by other posts (as in Line 5). The query contains a time-based
sliding window W over Ssocial defined through parameters ω = 20, β =
10, t0 = 0. At evaluation time 20, the ontology considered in the en-
tailment regime is composed by Tsocial and the ABox Asocial in List-
ing 7.2, obtained by SDS(W(Ssocial), 20), i.e. the merge of the data in
W (0,20](Ssocial).

1 (∃hasAuthor.{Alice} u ∃countains.{c1})(:post1),
2 (∃in.{a} u ∃on.{armadillo} u ∃reduce.{30})(c1),
3 (∃hasAuthor.{Bob} u ∃countains.{c2})(:post2),
4 (∃hasAuthor.{Diana})(:post3),
5 (∃hasAuthor.{Eve})(:post4),
6 (∃in.{b} u ∃on.{panda} u ∃reduce.{25})(c2)
7 (∃mentionedIn.{:post3} u ∃mentionedIn.{:post4})(c2)

Listing 7.2: ABox Asocial obtained by SDS(W(Ssocial), 20)

The answer of the query is :post2, as propagatedBy(:post2, :post3)
and propagatedBy(:post2, :post4) can be inferred through the axioms in
Line 5 of Tsocial and Lines 3 and 7 of Asocial.

On the contrary, under simple entailment, the query does not return
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any result, as no posts are explicitly propagated in the stream, and
consequently there are not matching on the graph SDS(W(Ssocial), 20).

7.4 Window-level entailment

The application of entailment regime at graph level is a direct extension
of the SPARQL entailment regimes, but it has some drawbacks: it
affects the answer only in the context of basic graph pattern evaluation,
while it does not have any effect on the basic event pattern evaluation.
Moreover, the process uses only a subset of the available information
bought in the stream – it considers the data item contents but not
the relative temporal annotations. Window-level entailment regime
overcomes these limits, by applying the entailment regime E in the
context of the fixed windows produced by the window operators.

Differently from the graph-level entailment, which works on RDF
graphs (and ontologies), the window-level entailment receives as input
a fixed window, i.e. an RDF substream. We need a formalism that (i)
enables inference operations and (ii) captures the dynamic and evolu-
tion of the knowledge. We adopt the notion of ontology streams: initial
definition is given by Huang and Stuckenschmidt in [65], and has been
used in other work of the ares as [75, 92]. Starting from that definition,
we define ontology substreams as follows.

Definition 7.2 (DL L ontology substream). A DL L ontology sub-
stream is a pair (T ,Sco), where T is static TBox expressed in L, and Sco
(o, c ∈ N and o < c) is an ABox substream, i.e., a sequence of ABox
snapshots. An ABox snapshot is denoted with Sco(i, j) and represents
the j-th snapshot2 at time instant i.

Let ni ≥ 0 be the number of snapshots with time instant i, Sco is
defined as:

Sco = (Sco(o+ 1, 1),Sco(o+ 1, 2), . . . ,Sco(o+ 1, no+1),
Sco(o+ 2, 1),Sco(o+ 2, 2), . . . ,Sco(o+ 2, no+2),
. . .

Sco(c, 1),Sco(c, 2), . . . ,Sco(c, nc)),

As in the original definition, data (ABox) and its inferred statements
(entailments) are evolving over time while its schema (TBox) remains
unchanged. The main difference of this new definition is the order:

2For the sake of clearness, we assume that the snapshots are enumerated.

93



i
i

“thesis” — 2016/6/25 — 19:29 — page 94 — #106 i
i

i
i

i
i

Chapter 7. Reasoning in RSEP-QL

ontology stream definition in [65, 75, 92] describes a total order over
the ABox snapshots, while the one in Definition 7.2 uses a partial
order: given a time instant t, the ontology substream carries a set of
simultaneous snapshots.

Example 19 (DL EL++ ontology substream). Listing 7.3 illustrates
an EL++ ontology substream OC20

0 = (Tsocial,SC20
0 ) related to micro-

posts in a social network. Listings 7.1 and 7.3 respectively shows the
TBox Tsocial and the ABox substream SC20

0 .
1 SC20

0 (8, 1) : (∃hasAuthor.{Alice} u ∃countains.{c1})(:post1),
2 (∃in.{a} u ∃on.{armadillo} u ∃reduce.{30})(c1)
3 SC20

0 (15, 1) : (∃hasAuthor.{Bob} u ∃countains.{c2})(:post2),
4 (∃in.{b} u ∃on.{panda} u ∃reduce.{25})(c2)
5 SC20

0 (16, 1) : (∃hasAuthor.{Diana})(:post3),
6 (∃in.{b} u ∃on.{panda} u ∃reduce.{25} u ∃mentionedIn.{:post3})(c2)
7 SC20

0 (18, 1) : (∃hasAuthor.{Eve})(:post4),
8 (∃in.{b} u ∃on.{panda} u ∃reduce.{25} u ∃mentionedIn.{:post4})(c2)

Listing 7.3: ABox substream SC20
0 of OC20

0

The ABox substream SC20
0 captures posts published on a social net-

work, where some posts carries coupons, that can be mentioned and
discussed by other posts. The snapshots without time points are empty.

7.4.1 Mapping Fixed Windows and Ontology Substreams

Comparing the ontology substream definition with the one of RDF
stream in Definition 4.2, it is possible to observe that both models as-
sume a partial order. While the RDF stream is an infinite sequence of
data items, an ontology substream is a finite sequence (similarly to a
fixed window). Intuitively, the Ococan capture the data in a fixed win-
dow, and can enable the inference processes in the context of RSEP-QL
continuous query answering. We formalise the notion in the following
definition.

Definition 7.3 (Mapping Fixed Windows in Oco). Let S be an RDF
stream and W (o,c](S) a fixed window over S. Given an entailment
regime E, the ABox substream Sco maps W (o,c](S) w.r.t E if the follow-
ing condition holds:

(d, t) ∈ W (o,c](S) ⇐⇒ ∃!j : Sco(t, j) = Ad,

where Ad is the ontology that maps the RDF graph d w.r.t. E.
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The definition uses the mappings between RDF graphs and ontolo-
gies to map the RDF stream items into ABox snapshots (and vice
versa).

Example 20. The ontology substream in Example 19 is the mapping
of the RDF stream Ssocial defined in Examples 7 and 14.

7.4.2 Reasoning in Ontology Substreams
To define reasoning over ontology substreams, we distinguish two cases:
intra-snapshot and so-far inference. The intra-snapshot inference pro-
cess considers as ontology the TBox and one snapshot of the Oco.

Definition 7.4 (Intra-snapshot inference). Given an ontological lan-
guage L and an ontology substream (T ,Sco), the intra-snapshot infer-
ence is an inference process that considers the TBox T and one ontol-
ogy substream snapshot Sco(i, j) w.r.t. L. The intra-snapshot closure
of a snapshot Sco(i, j) is defined as follows:

Clintra(Sco(i, j)) |= α ⇐⇒ T ,Sco(i, j) |= α

As the name suggests, the so-far inference involves different snap-
shots, and combine their axioms to infer new knowledge.

Definition 7.5 (So-far inference). Given an ontological language L
and an ontology substream (T ,Sco), the so-far inference is an inference
process that considers the TBox T , one ontology substream snapshot
Sco(i, j) and all the snapshots that precedes it or are contemporary w.r.t.
L. The so-far closure of a snapshot Sco(i, j) is defined as the closure of
Sco(i, j) w.r.t the TBox T , and the snapshots Sco(p, q) such that p ≤ i.

Let α be an entailment of the so-far closure of Sco(i, j), and let
α1, . . . , αk, . . . , αn be a group of axioms that justifies α. It holds:

Clsofar(Sco(i, j)) |= α

⇐⇒
T ,Sco(o+ 1, 1), . . . ,Sco(i, 1), . . . ,Sco(i, j), . . . ,Sco(i, ni) |=α1,...,αk,...,αn α∧

T ,Sco(i, j) |= αk, (7.1)

The so-far closure of a snapshot Sco(i, j) contains the explicit axioms,
the ones of the intra-snapshot closure, and the ones that can be inferred
taking into account also the axioms in the ontology substream up to
know. The intuition behind the so-far inference is that a formula α can
be inferred only when all the inferring axioms are true, and it happens

95



i
i

“thesis” — 2016/6/25 — 19:29 — page 96 — #108 i
i

i
i

i
i

Chapter 7. Reasoning in RSEP-QL

Figure 7.2: Stream-level entailment: the entailment-regime is applied at a window
level over a landmark window Lsl(S), and the window operator defined in the
query WorL is applied on the substream identified by Lsl.

when the most recent of them appears in the ontology substream. For
example, if a formula α can be inferred by α1 in a snapshot at time t1
and α2 in a snapshot t2 > t1, the time instant when α starts to hold is
t2, due to the fact that before t2 α2 trueness is not known.

Example 21 (Reasoning in ontology substreams). Listing 7.4 shows
three examples of intra-snapshot entailments: TBox Tsocial and snap-
shot SC20

0 (8, 1) entail that Alice is a Person (Line 1), :post1 is a Post
and CouponPubPost (respectively Lines 2 and 3).

1 T ,Sc
o(8, 1) |= P erson(Alice)

2 T ,Sc
o(8, 1) |= P ost(:post1)

3 T ,Sc
o(8, 1) |= CouponP ubP ost(:post1)

4 T ,Sc
o(15, 1),Sc

o(16, 1) |= ∃propagatedBy.{:post3}(:post2)

Listing 7.4: Entailment examples in the ontology substream Oc
o

An example of so-far inference is shown on Line 4, where the axiom
∃propagatedBy.{:post3}(:post2) is entailed on Clsofar(SC20

0 (16, 1)) due
to the fact that it is inferred through axioms in SC20

0 (16, 1), SC20
0 (15, 1) ∈

prev(16) and Tsocial.

Abusing the notation, we indicate with Clintra(Oco) and Clsofar(Oco)
the intra-snapshot and so-far closure of all the snapshots of Oco.

7.5 Stream-level Entailment

On of the main limits of the window-level entailment is that it does
consider only a recent portion of the ontology substream: every time a
new window is computed, what happened in the past is forgotten, and
the entailment regime is applied from scratch restarting by the data
contained in the new fixed window.
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7.5. Stream-level Entailment

The entailment regime at stream level overcomes this limit, consid-
ering a larger portion of the ontology substream as data to be con-
sidered in the entailment regime. Even if the name suggests that the
entailment regime considers the whole RDF stream S, in this case the
reasoning is made on the top of a landmark window Lsl over S, as
depicted in Figure 7.2. This fact is explained by the following consid-
erations. First, the RDF stream has a start point, e.g. the time on
which the source starts to supply the data, or the time on which the
engine registers to the source and starts to receive the RDF stream.
Moreover, in the continuous query answering context, the RDF stream
has an end: at each step of instantaneous evaluations, the process con-
siders the RDF stream available up to that moment, i.e. it cannot
access data still not available in the future. This behaviour is captured
by a landmark window, as in Definition 6.1. Given a query with a
dataset SDS including a set of sliding and landmark windows over an
RDF stream S, S can be represented without loss of generality with
Lsl(S), where Lsl starts to operate at the minimum t0 time value of
the window operators defined over S in SDS .

Moving from a RDF stream to a landmark window over a RDF
stream and fixed an evaluation time t, a fixed window in (t0, t] is pro-
duced, and it can be mapped to an ontology substreams as in Defini-
tion 7.3. Anyway, in this setting, we should take into account also the
window operators defined by the query (the top block in Figure 7.2):
given the evaluation time instant t, it generates a fixed window W (a,b]

that should include a portion of the ontology substream obtained by
the fixed window Lsl(S, t).To describe this step, in the following we
provide the definition of fixed window in the context of an ontology
substream.

Definition 7.6 (Fixed windows in ontology substreams). Given an
ontology substream Oco = (T ,Sco) and two time instants a, b such that
o ≤ a < b ≤ c, we define a fixed window over an ontology substream
Oco, denoted Oco(a, b] as:

{Clsofar(Sco(i, j))|a < i ≤ b}

Similarly to the fixed window in RDF streams (Definition 5.2), the
fixed window of the above definition selects a subsequence of the on-
tology substream using a time condition, where snapshots are closed
w.r.t. so-far inference. When the fixed window is applied on an ABox
substream (without a TBox), it works similarly to fixed windows on
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Chapter 7. Reasoning in RSEP-QL

an RDF stream: it selects the set of axioms in the interval defined by
the window time interval.

Example 22. Let W be a sliding window with parameters ω = 2, β =
2, t0 = 0 over the RDF stream Ssocial. Under stream-level entailment
regime, at evaluation time t = 18, the basic (or event) graph pattern is
evaluated over the RDF substream corresponding to OC18

0 (16, 18] as in
Listing 7.5.

It is worth noting that under simple entailment regime, the scoping
element contains only the statements relative to axioms in Lines 1 and 2,
i.e. W (16,18](Ssocial). Under window-level entailment regime, the scop-
ing element is composed by the statements relative to OC18

16 , i.e. the
axioms between Lines 1 and 5. The axioms in is not considered because
it needs the snapshot OC20

0 (15, 1) to be entailed.
1 (∃hasAuthor.{Eve})(:post4)
2 (∃in.{b} u ∃on.{panda} u ∃reduce.{25} u ∃mentionedIn.{:post4})(c2)
3 P erson(Eve)
4 Coupon(c2)
5 MentionedCoupon(c2)
6 ∃propagatedBy.{:post3}(:post2)

Listing 7.5: OC18
0 (16, 18] contains the snapshot OC18

0 (18, 1) and its so-far closure.

7.6 Comparing the entailment regime levels

To close this section, we compare the entailment levels.
In the context of a BGP evaluation, the graph-level entailment and

the window-level entailment produces the same result. We can show
it by exploiting the following property.

Theorem 1. Let W (o,c] be a fixed window over a stream S and L
an ontological language. Let merge be merge of data items in a fixed
window, i.e.

merge(W (o,c](S)) =
⋃

(di,ti)∈W (o,c](S)
di,

and let closure be either the closure of the content of W (o,c](S) w.r.t.
M(S) under L or the closure of an ontology O, i.e.

closure(A) =

Cl
sofar(A) if A = Oco

Cl(A) if A = O
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7.6. Comparing the entailment regime levels

Under the assumption that no inconsistency is entailed, merge and
closure commutes with each other, i.e.

merge(closure(W (o,c](S))) = closure(merge(W (o,c](S))) (7.2)
To show that the property holds, the so-far closure of the ontology

substream associated to W (o,c](S) should infer the same axioms of the
closure of the ontology associated to the window graph content. It
is easy to show that any formula inferred in the former process is
inferred also in the latter. Let α be an entailment in the so-far closure
closure(W (o,c](S)), and let J = {α1, . . . , αn} be a justification of α, i.e.
a minimal set of axioms in the ontology responsible for the entailment.
The axioms in J that are not in T , are in W (o,c](S): it means that
they are also in the merge of the snapshots merge(W (o,c](S)), and the
same justification J holds in its closure closure(merge(W (o,c](S))).

To show that the vice versa holds, each formula inferred by the graph
closures should be inferred in (at least) one snapshot of the ontology
substream. Given an entailment α in closure(merge(W (o,c](S))), and a
justification J = {α1, . . . , αn}, α is entailed in the so-far closure of the
snapshot containing the most recent axiom αi ∈ J .

The equivalence of the two processes in case of basic graph pat-
tern evaluation can be exploited when implementing the system: if
the query does not contains basic event patterns, the RSP engine can
assume graph-level entailment even if the query should be evaluated
under window-level entailment, with a potential gain in performance.
In fact, the enrichment introduced by the window-level entailment is
useful in the context of event matching, where it can increase the num-
ber of answers.

Different is the case of stream-level entailment, where the number
of answers in both basic graph and event pattern evaluation is equal
or greater the number of answers w.r.t. graph and window level entail-
ment regimes. As explained in Section 7.5, the stream-level entailment
regime considers as input a superset of the data considered by graph
and window level ones.
Example 23. Let W be a sliding window over Ssocial defined through
parameters ω = 4, β = 2, t0 = 13. The task to solve is to find the posts
that propagates coupon posts. At evaluation time 17, W produces a
fixed window defined in (13, 17]. Under all the three entailment regime
levels, the answer matches :post2 propagated by :post3.

At evaluation time 19, W produces a fixed window in (15, 19]. In this
case, the stream-level entailment regime produces two results, while the
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Chapter 7. Reasoning in RSEP-QL

other two entailments do not produce any result. In fact, the former
considers the whole stream, and it infers :post2 propagated by :post3
at time instant 16, and :post2 propagated by :post4 at time 18, that
are selected in the window and consequently matched as results. The
latter ones do not produce any result, because they consider the closure
of W (15,19](S), that does not contain the description of :post2, i.e., it
is not possible to infer any propagatedBy relation.

7.7 Remarks

In this chapter, we presented how to extend the SPARQL entailment
regime extension in the context of RSEP-QL. The main difference is
given when the BGP (or, alternatively, the basic event pattern) should
be evaluated over a window: in this case, we identified three levels of
application of the regime, that may lead to different results.
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Part III

Effectiveness of RSEP-QL:
coverage and testing
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CHAPTER8
Capturing the semantics of the existing RSP

engines

Existing RSP query languages have different underlying semantics, and
even if their syntaxes is similar, these differences have fundamental
consequences at query evaluation time. In this chapter, we ask: how
can RSP-QL and RSEP-QL be used to capture the heterogeneity of the
operational semantics of existing RSP engines?

We go in depth and we study the query models of C-SPARQL,
SPARQLstream, CQELS and EP-SPARQL. Those languages and en-
gines have implicit assumptions on how the results of a continuous
query are streamed out and when the system should react to changes on
the sliding windows. We provide a qualitative analysis of the coverage
of RSEP-QL of the aforementioned RSP systems. Next, in Chapter 9,
we will formalise how RSP-QL captures the models of C-SPARQL,
SPARQLstream and CQELS.

Table 8.1 summarises the comparison of the systems and highlights
their differences. As we depicted in the previous chapters, a main dif-
ference in RSP engines is given by the support of data stream process-
ing features and the event processing ones. It follows that the engines
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Feature C-SPARQL CQELS SPARQLstream EP-SPARQL
Window operators Time-based slid-

ing windows
Time-based slid-
ing windows

Time-based slid-
ing windows

Landmark win-
dows, within op-
erators

Sliding window
parameters

α and β α and β α and β

Event pattern op-
erators

timestamp func-
tion

SEQ, OPTSEQ,
etc.

Stream in the
dataset

Sliding windows
associated to the
default element
A0

Each sliding
window has a
named element
(w,W)

Sliding windows
associated to the
default element
A0

One stream as
default element

Evaluation time
instants

Window close
and Non-empty
content

Content-change Window close
and Non-empty
content

Content-change

Streaming opera-
tor

RStream IStream RStream,
IStream and
DStream

RStream

Table 8.1: Comparison of RSP engines. On the one hand, C-SPARQL, CQELS and SPARQLstream offers Data Stream
Processing features through sliding window operators. On the other hand, EP-SPARQL provides several operators to define
Event Patterns, while C-SPARQL supports event matching through the timestamp function.
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8.1. Complex Event Processing operators

support different kind of windows: while C-SPARQL, CQELS and
SPARQLstream implement time-based sliding windows, EP-SPARQL
has landmark windows and within operators. We start from here the
analysis, in Section 8.1 we discuss the event processing operators, while
in Section 8.2 we analyse the differences in sliding windows in the dif-
ferent solutions. Next, in Section 8.3 we discuss the different types of
datasets that are built by the RSP engine; in Section 8.4 we discuss the
continuous evaluation process; while in Section 8.5 we report on the
*streaming operators. We close with some considerations about the
query language under development at W3C in Section 8.6, and with
some final remarks in Section 8.7.

This chapter is based on “Towards Unified Language for RDF Stream
Query Processing”, published on the Satellite Events of Extended Se-
mantic Web Conference. I drove the development of this paper: I
wrote the first draft of the paper, that was later on edited by J.P. Cal-
bimonte, which added examples in the sections. The work has been
finally read and refined by Prof. E. Della Valle and Prof. Ó. Corcho.

8.1 Complex Event Processing operators

In general, in every RSP engine that supports SPARQL, it is possible
to verify the existence of an event (i.e. EVENT wi P ), by inserting
P in the WINDOW pattern of wi. As discussed in Chapter 6, EP-
SPARQL is the RSP language with highest support to CEP features.
We compare EP-SPARQL and RSEP-QL on two features: the data
model and the event pattern matching.

The two query models adopt two different data models: EP-SPARQL
assumes as input a stream of statements annotated with intervals,
while RSEP-QL adopts streams of graphs annotated with time in-
stants. This fact brings to a slightly difference in the way time in-
stants associated to event mappings are interpreted. In EP-SPARQL,
the simple events are already characterized by two different time in-
stants (validity interval), while in RSEP-QL simple event mappings
have one time instant (the time on which the event happens). Conse-
quently, the time annotations of the complex events have a different
meaning: in EP-SPARQL, they indicate the validity interval of the
events; in RSEP-QL, the temporal annotation associated to the event
mappings are the time instants that justify it.

Moving to the operator and the operational semantics, we have
evidence of the fact that RSEP-QL can capture the behaviour of EP-
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Chapter 8. Capturing the semantics of the existing RSP engines

RSEP-QL EP-SPARQL/C-SPARQL

L + SEQ EP-SPARQL unrestricted
L + SEQc + Pc EP-SPARQL chronological
L + SEQr + Pr EP-SPARQL recent
W + SEQn C-SPARQL SEQ (timestamp)
W C-SPARQL time-window

Table 8.2: Coverage of DSMS and CEP features of RSEP-QL compared to EP-SPARQL
and C-SPARQL.

SPARQL and C-SPARQL. RSEP-QL models both the event patterns
and their evaluation semantics takes into account the presence of selec-
tion and consumption policies. While models for event patterns were
already available in [5, 41], a formalization for policies was missing.
These policies are key to determine the answer that a query should
produce for a given input stream. Therefore, it is not possible to con-
sider those aspects as only technical or implementation related.

RSEP-QL captures the behavior of the sequential event pattern
matching features of EP-SPARQL and C-SPARQL [R3], including the
different selection and consumption policies that they provide. To
illustrate the coverage of these features, Table 8.2 shows the equiva-
lence of the main features in RSEP-QL with their counterparts in both
EP-SPARQL and C-SPARQL. For instance, one can observe that an
EP-SPARQL sequence pattern (with recent policy) can be captured
by the SEQr operator and the Pr function on a landmark window in
RSEP-QL.

8.2 Sliding window operators

RSEP-QL defines the sliding window operator through three param-
eters: width (α), slide (β) and t0 (Section 5.3). The query models
of C-SPARQL, SPARQLstream and CQELS only allow controlling the
width and slide values of the sliding windows. The t0 parameter is left
to be managed internally by systems and none of the query languages
provide syntactic constructs to constrain it. The query designer can-
not determine when the first window of the sliding window opens: each
sliding window can start at different time instants, and consequently,
the system can produce different outputs.

1 REGISTER STREAM : longStream AS
2 CONSTRUCT {? shop : totalLong ? totalLong }
3 FROM STREAM :in [RANGE 60m STEP 20m]
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8.2. Sliding window operators

4 FROM :shops
5 WHERE{
6 SELECT ?shop (( COUNT (? shop) AS ? totalLong )
7 WHERE{ ?user :isNearby ?shop}
8 GROUP BY ?shop
9 }

Listing 8.1: C-SPARQL Query QCS
1 : it counts every 20 minutes the number of

shops to which a user was near by in the last 60 minutes

Example 24. Let’s consider the C-SPARQL query QCS
1 in Listing 8.1:

it processes the input stream Snearby in order to count the number of
times a user goes near a shop. The query defines a time-based sliding
window W with the parameters (α = 60, β = 20). The t0 parameter
cannot be explicitly defined and the sliding window can open at different
time instants, as shown in Figure 8.1. This fact influences the portion
of the stream that is captured by the sliding window operators: if we
focus on the first window of each sliding window operator, we can notice
that in the first case (t0 = 0), it contains the elements s1, s2 and s3;
in the second case (t0 = 1), it contains the elements s1, s2, s3 and s4;
while in the third case (t0 = 2), the first window captures s3 and s4
only.

Figure 8.1: Sliding windows with different t0 values

Similarly, CQELS and SPARQLstream have the same problem. On
the contrary, EP-SPARQL does not suffer of this issue related to
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Chapter 8. Capturing the semantics of the existing RSP engines

t0because it does not provide time-based sliding window operators and
the within operators determines fixed windows in the context of events.
Thus, the time on which the within operators start to operate does not
matter.

Example 25. In the query in Listing ??, the two computed fixed win-
dow are in the scopes (2, 12] and (7, 17], independently by the time on
which the query is registered when the within operator starts to oper-
ate (assuming that the query is registered before time instant 2). The
equivalent C-SPARQL query, listed in Listing ?? suffers of the t0 issue
depicted above: if the window starts to operate at time instant 0, the
answer containing shop b is not detected.

8.3 RSP-QL datasets

The RSP-QL dataset (Section 5.3) is a generic definition, which is
constrained by the syntaxes of query languages of C-SPARQL, CQELS,
SPARQLstream and EP-SPARQL.

In CQELS-QL, a named time-varying graph is associated to each
window; window content can be accessed using the STREAM opera-
tor. This operator is analogous to the RSP-QL’s WINDOW: it sets
as active graph the fixed window generated by a sliding window. In
CQELS is not possible to put the content from the sliding window in
the default element of the dataset. The syntax of CQELS-QL brings
to assign an implicit name to each sliding window; in other words, it
is not possible to assign explicit identifiers to the sliding windows. In
this way, the language gains in usability, but it forbids to add sliding
windows contents to the default element.

1 CONSTRUCT {? shop a : PopularShop }
2 FROM :shops
3 WHERE {
4 STREAM :in [RANGE 60m STEP 20m] {
5 SELECT ?shop ( COUNT(?) AS ? totalLong )
6 WHERE{ ?user1 :isNearby ?shop }
7 GROUP BY ?shop
8 }
9 STREAM :in [RANGE 20m STEP 20m] {
10 SELECT ?shop ( COUNT(?) AS ? totalShort )
11 WHERE { ?user2 :isNearby ?shop }
12 GROUP BY ?shop
13 }
14 ?shop a :Shop
15 FILTER (? totalShort -? totalLong > $threshold$)
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8.3. RSP-QL datasets

16 }

Listing 8.2: CQELS query to find the emerging shops

Example 26. We want to search of the trending shops. One way
of characterizing trending shops is by finding out those which are fre-
quently appearing in the last time period, and less frequently in the past.
This apparently simple query contains some interesting elements that
reveal differences among existing RSP solutions and challenge some of
their capabilities. The query that solves this task has to look at the
same stream from two different perspectives: in the one hand it needs
to keep track of very recent shops, while on the other hand needs to
be aware of a longer time span, so that it can make sure that the new
shops were not present before.

Listing 8.2 reports the CQELS-QL query that models the task. The
query declares two sliding windows over the same input stream :in:
the first, WCQ

l (Line 4), has width αl = 60 minutes and slide βl = 20
minutes; the second, WCQ

s (Line 9), has width and slide αs = βs = 20
minutes (it is a tumbling window). Each sliding window contains a
subquery to compute the shop and the total number of their mentions
(respectively ?totalLong and ?totalShort). The trending value is
computed at Line 15: if this value is greater than the $threshold$
value, then the shop is selected as trending and it is streamed out ac-
cording to the CONSTRUCT clause at Line 1. The RSEP-QL dataset
of this query is the following:

SDSCQ = {:shops, (wl,WCQ
l (:in)), (ws,WCQ

s (:in))}

The two sliding windows, WCQ
l and WCQ

s , do not have an explicit name
in the query.

C-SPARQL does the opposite: its query language does not allow to
name the time-varying graphs computed by the sliding windows. As
a result, all the graphs computed by the sliding windows are merged
and set as default graph.

Example 27. The task in Example 26 cannot be written in one C-
SPARQL query, as the syntax of C-SPARQL does not allow to dis-
tinguish among multiple windows defined over the same stream. Let
us consider the query in Listing 8.3, the RSP-QL dataset built by the
query is the following:

SDSCS = {A0 = {WCS
l (:in),WCQ

s (:in)}}
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The dataset SDSCS has the two sliding windows in the default graph
position, i.e. the graphs produced by the sliding windows are merged
in the default graph. In fact, C-SPARQL does not allow to name the
sliding windows and, consequently, the generated windows.

1 REGISTER STREAM :out AS
2 CONSTRUCT {? shop a : PopularShop }
3 FROM STREAM :in [RANGE 60m STEP 20m]
4 FROM STREAM :in [RANGE 20m STEP 20m]
5 WHERE {
6 ?m sioc:topic ?shop.
7 }

Listing 8.3: C-SPARQL Query: the triple pattern is evaluated against the union
of the two sliding windows

It is actually possible to solve the task through a network of three C-
SPARQL queries. First, two queries QCS

1 and QCS
2 process the input

stream :in in order to compute the shop mentions in the long and
in the short windows. QCS

1 , reported in Listing 8.1, builds a stream
:longStream that brings the shops and the number of appearance of the
shop in the last 60 minutes (according to the sliding window definition
at Line 3). Query QCS

2 builds a stream :shortStream with the shops
and their number of mentions in the previous 20 minutes. QCS

2 is
similar to QCS

1 but for the window size, the name of the output stream
and the property name in the CONSTRUCT clause (we omit it for
brevity). Those streams are the input of query QCS

3 , reported in Listing
8.4, which computes the trending value of the shops and adds the shop
in the output stream :out if the trending value is greater than the
threshold (Line 7).

1 REGISTER STREAM :out AS
2 CONSTRUCT {? shop a : PopularShop }
3 FROM STREAM : longStream [ RANGE 20m STEP 20m]
4 FROM STREAM : shortStream [ RANGE 20m STEP 20m]
5 WHERE {
6 ?shop : countLong ? totalLong ; : countShort ? totalShort .
7 FILTER (? totalShort -? totalLong > $threshold$)
8 }

Listing 8.4: C-SPARQL Query QCS
3 : computation of the trending shops

In SPARQLstream, similarly, named stream graphs can be declared
but not used inside the query body. Therefore, graphs derived by time-
based sliding windows are logically merged in the default graph of the
query dataset.
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On the one hand, it may be considered easier to write queries in C-
SPARQL and SPARQLstream than in CQELS: all the sliding windows
are declared before the WHERE clause and the data from the streams
is available in the default graph. On the other hand, CQELS allows to
write more complex queries, such as queries with multiple sliding win-
dow over the same stream. However, in the examples above we shown
that the same task can be solved in all the languages we analysed:
CQELS allows to express the task in one query, while C-SPARQL and
SPARQLstream require network of queries.

Finally, EP-SPARQL assumes the existence of “only” one stream
S and the dataset default element is always a landmark window over
S. It is worth noting that, despite what happens in other languages,
EP-SPARQL can write query outputs on S.

8.4 Evaluation time instants

In Section 5.8, the concepts of policy and strategy were presented.
They allow determining the set of time instants ET on which eval-
uations occur. Looking at the available RSP systems, it is possible
to observe that policy and strategy are features of the implementa-
tion, i.e. neither the query model nor the query language syntax allow
expliciting control policies and strategies. This is a major source of
heterogeneity among RSP systems.

C-SPARQL and SPARQLstream adopt a Window Close and Non-
empty Content policy to the windows of the query, while CQELS and
EP-SPARQL implement the Content-Change policy (it evaluates the
query as every time new statements enter the window). It follows
that the systems build different evaluation time instant sets and con-
sequently, they stream out new results at different time instants.

Example 28. Let’s consider the sliding window W in Figure 8.2: it
is over Snearby and it is defined through (α = 5, β = 2, t0 = 1). The
lower part of the figure shows the effect of different policies on the set
time instants the evaluation occurs: each diamond represent an evalua-
tion time in the relative RSP system. While CQELS and EP-SPARQL
evaluate the query as soon as it receives new timestamped RDF state-
ments, C-SPARQL and SPARQLstream follow a regular pattern: they
report every time the windows close (except for the cases where win-
dows are empty).
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Figure 8.2: Policy implementations in RSP systems

8.5 Streaming operators

The last feature on which we focus is the streaming operator sup-
port. In Section 5.6, we defined three streaming operators: RStream,
IStream and DStream, but only SPARQLstream supports all of them.
C-SPARQL and EP-SPARQL permit the RStream operator only (it
streams out the whole output at each evaluation), while CQELS ad-
mits only the IStream one (it streams out only the new statements).

C-SPARQL and EP-SPARQL answers can be verbose as the same
solution mapping could be in different portions of the output stream
computed at different evaluation time instants. It is suitable when it
is important to have the query answer at each step.

CQELS streams out the difference between the timestamped set
of mappings computed at the last step and the one computed at the
previous step. It means that CQELS uses an IStream operator to
produce the output. That is, it is impossible to produce an RStream
with the whole result of each operator. In other words, the algebraic
expressions of CQELS-QL always assume Istream as outer element
of the algebraic expression. Consequently, answers are usually short
(they contain only the difference) and it is a good solution when data
exchange is expensive.
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8.6 Analysis of the W3C RSP Query Language proposal

The problem of heterogeneity is currently studied by different groups.
Initiatives have started with the goal of proposing a common model
and query language for processing RDF Streams, converging in the
RSP Community Group of the W3C1. The emergence of such a model
is expected to take the most representative, significant and important
features of previous efforts, but it will also require a careful design and
definition of its semantics. In this context, it is essential to lay down
the foundations of formal semantics for the standardized RSP query
model, such that we consider beforehand the notions of correctness,
continuous evaluation, evaluation time and operational semantics, to
name a few. In this section, we briefly analyse the language under
development by the W3C RDF Stream Processing community group2.
We describe how limitations in current RSP languages are partially
solved by the current proposed language of the W3C RSP Community
Group, we show that the new language proposed in the RSP Group
is covered by the RSEP-QL model, therefore providing a well-founded
semantics for it. We also show that this new language allows covering
cases that previous RSP languages are unable or only partially able to
address.

1 REGISTER STREAM :out
2 AS CONSTRUCT RSTREAM { ?shop a : PopularShop }
3 FROM NAMED WINDOW :lwin ON :in [RANGE PT60M STEP PT20M]
4 FROM NAMED WINDOW :swin ON :in [RANGE PT20M STEP PT20M]
5 FROM GRAPH :shops
6 WHERE{
7 ?shop a :Shop
8 WINDOW :lwin{
9 SELECT ?shop ( COUNT (?) AS totalLong )

10 WHERE { ?m1 sioc:topic ?shop. }
11 GROUP BY ?shop
12 }
13 WINDOW :swin{
14 SELECT ?shop ( COUNT (?) AS totalShort )
15 WHERE { ?m2 sioc:topic ?shop. }
16 GROUP BY ?shop
17 }
18 FILTER (? totalShort -? totalLong ) > $threshold$)
19 }

Listing 8.5: The task in Example 26 modelled through the W3C RSP Query
Language

1W3C RSP Group: http://www.w3.org/community/rsp
2We refer at the version of the language available at July 2015
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Chapter 8. Capturing the semantics of the existing RSP engines

Listing 8.5 shows the query that captures the task in Example 26.
Observing the query, it is possible to note that the new language puts
together the features of C-SPARQL, CQELS and SPARQLstream in or-
der to overcome some of the limits highlighted in the previous sections.

First, the new language allows to declare the *streaming operator
(RStream, at Line 2). Moreover, the new language allows to build both
CQELS and C-SPARQL data sets: it is possible due to the the sliding
windows declarations in the FROM clause, combined with the use of
the NAMED keyword (Lines 3 and 4). Next, in the WHERE clause,
the WINDOW keyword is used to refer to the content of the named
sliding windows (similarly to the GRAPH keyword in SPARQL). The
RSEP-QL dataset built by the query is:

SDSRSP = {(:lwin,WRSP
l (:in)), (:swin,WRSP

s (:in))}

Nevertheless, this syntax is not enough to determine a unique query
following th RSEP-QL model. As we explained above, there is no
explicit information to determine which is the report policy and when
the sliding windows start to work (i.e. the t0 value). A possible solution
for the latter problem can be the introduction of a STARTING AT clause
to express the t0 value. Alternatively, the language could allow to
define a pattern to express the t0 value.

8.7 Remarks

In this chapter, we exploited RSEP-QL to explain and compare the
model the query languages and models of C-SPARQL, SPARQLstream,
CQELS and EP-SPARQL. We shown that RSP-QL captures the se-
mantics of those different engines and languages. Having well-defined
RSP engine models would enable interoperability through common
query interfaces even if the implementations architectural approaches.
In this sense, RSEP-QL aims at constituting a contribution to ongoing
efforts in the Semantic Web community to provide standardized and
agreed definition of extensions to RDF and SPARQL for managing
data streams.

Furthermore, it is worth noting the expressivity of RSEP-QL allows
defining complex queries that combine both windows and event pat-
terns, defining queries that none of the existing engines may express.
For instance, consider that in a social network we want to find the
post made by a user that is then followed by a popular user, defined
as someone that gets a lot of mentions in the last hour and has a lot
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of followers. In this case a time window is needed to keep track of
the number of mentions in the last hour. Then the sequence pattern
is required to capture the fact that someone is followed after he made
a post. The contextual information is used to look for the number of
followers of a person, to determine if he is popular.
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CHAPTER9
Correctness assessment in RSP engines

Several initiatives started to test and compare RSP engines. Some
early efforts have been done as well in the context of RDF Streaming
benchmarking: SRBench [104] and LSBench [89]. SRBench is mainly
focused on understanding coverage for SPARQL constructs. LSBench
is mainly focused on understanding the throughput of existing RDF
Stream processors and checking correctness by comparing the results of
different processors and quantifying the mismatch among them. How-
ever, to make a step further towards a more precise assessment on cor-
rectness, it is necessary to consider the different operational semantics
of the benchmarked systems. In Chapter 8, we discussed how RSP-QL
and RSEP-QL can capture the query models of existing RSP systems.
It follows that they are candidates to be at the basis of a formal def-
inition of correctness to be used in the context of benchmarking. In
this chapter, focus on RSP-QL and we study the following problem:
can RSP-QL be used to test whether an RSP system is correct or not?

We use the RSP-QL model to address the problem of describing the
execution of a query, given an input stream and a system previously
characterized. This allows us to check the correctness of RSP engines,
by comparing the modelled output and the system actual output.
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Chapter 9. Correctness assessment in RSP engines

Taking into account the properties described in the first part of the
chapter, we propose CSRBench, a benchmark for correctness checking.
CSRBench extends SRBench, with a set of queries and an oracle to
assess the correctness of RSP engines. We apply CSRBench to a set
of existent engines and report on our findings in Section 9.3, and we
close with some remarks in Section 9.4.

This chapter is based on “On the Need to Include Functional Test-
ing in RDF Stream Engine Benchmarks”, published at the First Inter-
national Workshop on Benchmarking RDF Systems and its extended
version “On Correctness in RDF Stream Processor Benchmarking”,
published at the 12th International Semantic Web Conference. The
initial idea of this work started by Prof. E. Della Valle, that observed
that RSP engines were actually not behaving as expected. I drove
the investigation of the problem under his supervision: we designed
the tests and we designed the oracle system, that I developed. J.P.
Calbimonte integrated and adapted the tests in SRBench, defining the
data and the queries of CSRBench; he also executed the tests over
SPARQLstream. Marco Balduini ran the experiments in C-SPARQL
and CQELS. Prof. E. Della Valle and Prof. Ó. Corcho supervised the
work and refined the final drafts of the articles.

9.1 Correctness assessment in RSP engines

In Section 8, we described that RSP engines have some parameters that
are not described in their model. As consequence, they have different
behaviours when they process the same query over the same data, and
they produce multiple correct answers (e.g. the t0 parameter described
in Section 8.2). These parameters are hidden, in the sense that they are
not defined in the models and there is no way to control them through
the query languages. They are usually managed by the engines that
adopts the models, or by constraints on the query languages.

Even if those parameters cannot be controlled, it is necessary to
take them into account to determine if the answer is correct. In fact,
while Intuitively, a query QR for an RSP system R is a partially defined
RSP-QL query, i.e. some of its parameters are undefined or implicitly
defined. Every RSP system can be analysed, so that it is possible to
determine the values that those parameters assume and, consequen-
tially, derive a set, denoted of RSP-QL queries that produces all the
correct answers that QR may compute.

In fact, each RSP-QL query generates a different (but correct) an-
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9.1. Correctness assessment in RSP engines

swer: if the result of the query qR matches one of them, we state that it
is correct (Section 9.1.1). Anyway, to assess whether an RDF Stream
Processing system behaves correctly or not, some assumptions and ap-
proximations are required, due to the infinite nature of input streams
(Section 9.1.2).

9.1.1 Correctness based on RSP-QL
The RSP-QL model is built to capture the query model and the op-
erational semantics of existing RSP systems. This model is able to
reproduce each result of the targeted systems. Anyway, as explained
in Section 8, each system R has a different behaviour, and the relative
queries are not fully-defined RSP-QL queries. In the next definition,
we use the analysis in Section 8 and we formalise the notion of correct-
ness w.r.t. RSP-QL. Given an engine R and a query QR, we define set
of well-defined RSP-QL queries that produces all the possible correct
answers of QR. The process of finding the queries is captured by a
function, named rspqlQueries(·), that is defined in the remaining of
this section.
Definition 9.1 (Correctness of an RSP engine answer). Let R be
an RSP system (C-SPARQL, CQELS or SPARQLstream), let QR de-
note a continuous compliant to R and let AnsR(QR) be the answer
produced by the continuous evaluation of QR in R. It exists a set
Q = rspqlQueries(QR, R) of RSP-QL queries that can be derived by
QR, such that the answer AnsR(QR) is correct with regards to the RSP-
QL model iff it exists a query Q ∈ Q such that AnsR(QR) = Ans(Q).
Ans(Q) is the output of Q as defined in Section 5.9. To complete

the definition, we need to explain how to build the rspqlQueries func-
tion. The function is strictly related to the peculiarities highlighted
in Chapter 8: given a continuous query QR for R, it composes RSP-
QL queries by adding to QR information that can be elicited by the
operational semantics of R.

Given an RSP engine R and a query QR, the function rspqlQueries
generates a set of RSP-QL queries Q. For each query Q ∈ Q, the
algebraic expression and the query form are the same of QR. The set of
evaluation time instants is set accordingly to the report policy of R (see
Sections 5.8 and 8.4). Regarding the dataset, we analysed two main
differences between the RSP-QL query model and the RDF Stream
Processing systems: Section 8.3 shows that each system has syntactical
constraints that limit the shape of the dataset and Section 8.2 discusses
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Chapter 9. Correctness assessment in RSP engines

the fact that t0 instants are system-related parameters and they are out
of control of the query designer. While the former does not influence
the number of queries in Q, the latter generates multiple alternative
sliding window operators and, consequently, different RSP-QL queries.
The sliding windows operators of the queries in Q are built in the
following way:

• for each time-based sliding window Wi in QR, determine the set
T 0
Wi

of possible t0 instants – the time instants on which the first
window of Wi opens:

T 0
Wi

= {a, a+ 1, . . .},

where a is the query registration time.
• compute the set Z with the combinations of the starting time

instants of the sliding windows in QR:

Z =
n∏
i=1

T 0
Wi

Each element of the Z set is a vector z of dimension n (where n
is the number of sliding window operators in QR). The number of
vectors in Z is the number of queries that rspqlQueries generates. In
particular, given the j-th vector zj ∈ Z, the query Qj has a dataset
with n sliding windows. For each value zji of the vector zj (i ∈ [1, n]),
a sliding window Wi is defined as:

Wi(αi, βi, zji),

where (αi, βi) are the width and slide parameters that define the i-th
sliding window of QR.

9.1.2 Correctness in practice
Definition 9.1 gives a notion of correctness assessment for RSP systems.
The idea is to compare the output of a system with the ones generated
through the RSP-QL query model, and check if the answers match.
Anyway, the notion is theoretical and it is not feasible in reality:
1. the continuous and infinite nature of data streams do not allow de-

termining whether two answers match. The infinite input lengths
imply undecidability in the matching problem – it is possible to
determine if inputs are different, but it requires infinite time to
determine if they are equal;
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9.1. Correctness assessment in RSP engines

2. the rspqlQueries function generates a RSP-QL query for each
possible combination of t0 values, but those combinations are in-
finite (sliding windows can start to work at any time instant).

We start to analyse the second problem. To cope with the infinite t0
combinations, we exploit the following property of the sliding window
operator.
Theorem 2. Let W′ and W′′ be two sliding window operators, defined
respectively through (α, β, a) and (α, β, a+nβ), where a ∈ T is a time
instant and n a natural number. The sliding windows are applied to a
generic stream S; for each time instant t ∈ T on which W′′ operates,
i.e. t ≥ a+ nβ, it holds:

W′(S, t) = W′′(S, t)

The proof is straightforward. Intuitively, the slide parameter in-
troduces a periodicity in the window: windows generated by sliding
windows with the same width and slide parameters, and t0 values of a
and a+ nβ overlap, capturing the same portions of the streams. Con-
sequently the results will be the same from the starting time of the
most recent sliding window.

We exploit this property to limit the number of the t0 combinations
and consequently the number of queries that rspqlQueries generates.
Exploiting this property, we modify the rspqlQueries function in the
following way: given a query QR with n sliding windows, we define the
set T 0

Wi
of the i-th sliding window as:

T 0
Wi

= {a, a+ 1, . . .}

Exploiting the property, we bound the set:

T 0
Wi

= {a, a+ 1, . . . , a+ βi − 1}

Now the set Z (the Cartesian product of the T 0
Wi

sets) is bound and the
rspqlQueries function generates a finite number of RSP-QL queries.

We need also to introduce a constraint in Definition 9.1, to set a
time instant on which the correctness assessment starts.
Definition 9.2 (Correctness in practice). The answer AnsC(q), pro-
duced by continuously executing QR on R, is correct with regards to the
RSP-QL model iff from a time instant ts, there exists a query Q ∈ Q
such that AnsC(q) = Ans(Q). ts is:

ts = max{tj|tj ∈ T 0
W1 ∪ . . . ∪ T

0
Wn
}
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Chapter 9. Correctness assessment in RSP engines

This new definition sets a time instant on which the comparison
starts. In particular, it cuts off the transient state of the query an-
swering (the registration and the set up of the query), and it focus on
the stable phase of the process. It is a suitable assumption, due to the
fact that in stream processing it is common to focus on behaviour of
the system when system is in a stable state [8].

Regarding the problem of the infinite input length, it is necessary
to bind the length of the stream. This bound has to guarantee that the
inputs are long enough to discover long-term running problems (burn-
in tests [72]) of the RSP engine, e.g. windows misalignment over the
data streams.

9.2 CSRBench: Correctness Extensions of SRBench

In the main problem dimensions are defined, then we explain the design
of the benchmark queries in Section 9.2.2. Next, Section 9.2.3 presents
the architecture and the implementation of the oracle, an open-source
software that performs the assessment of the correctness.

9.2.1 Problem dimensions

Even if the result of a query answering should depend on the input
(query and data), we explained above how in current RSP solutions,
the engine has an active role and affects the output of the process.
It means that we should take into account three dimensions while de-
signing CSRBench: the system, query and input stream data. For the
system dimension, we consider:

• Reporting policies, as described in Section 5.8.

• Sliding window initial time t0, which is used by the system to
determine the scope of the produced window (and consequently
the content). While this parameter is usually not configurable, it
can be inferred in post-execution analyses.

• Input stream timestamp policy.

For the query dimension, we focus on the time-based sliding window
and *streaming operators, largely neglected in previous benchmarking
efforts. Checking correctness with different window configurations is
one of the key elements of the proposed extensions. In particular we
consider:
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• Window size. Varying the window sizes (e.g. 10s, 1s, 100ms) re-
sults in different scopes, and consequently different window con-
tents.

• Window slide. Variations on the window slide (e.g. slide every 1s,
every 10ms) also produce differences on the scope. A slide equal to
the window size indicates a tumbling window, while a slide smaller
than the size produces a sliding window. We propose testing these
different combinations.

• *streaming operator. While some RSP engines provide only one
default operator for the output, others allow explicitly indicating
the type of R2S that is expected in the results.

For the input stream dimension, we can briefly mention the input
data rate (e.g. triples per second), the window content size (e.g. num-
ber of triples) and the data stream distribution (constant, normal,
bursts in the input data, etc.).

9.2.2 CSRBench queries

CSRBench uses as input data the one of SRBench. The main differ-
ence is related to queries: the benchmark queries are modified in order
to stress the time-based sliding window operators, adding the follow-
ing three types of queries to the existing of SRBench: queries with
parametrized sliding window parameters, queries with parametrized ag-
gregations and queries with joins involving data from different stream
items. Because the queries are parametrized, the different combina-
tions are useful to produce a set of concrete queries that cover a wide
range of cases. A full query descriptions in the three languages avail-
able at: http://www.w3.org/wiki/CSRBench.

Parametrized sliding window size and slide. By varying the win-
dow width and slide, the query in Listing 9.1 allows testing different
cases: different window sizes and window slides (e.g. 10, 100, 1000
ms., etc.). Therefore, the value assigned to these two parameters will
allow obtaining sliding or tumbling windows.

1 PREFIX om -owl: <http :// knoesis . wright .edu/ssw/ont/sensor -
observation .owl#>

2 PREFIX weather : <http :// knoesis . wright .edu/ssw/ont/ weather .owl
#>

3 SELECT ? sensor ? tempvalue ?obs
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Chapter 9. Correctness assessment in RSP engines

4 FROM NAMED STREAM <http :// cwi.nl/ SRBench / observations > [NOW - %
WSIZE% MS SLIDE % WSLIDE % MS]

5 WHERE { ?obs om -owl: observedProperty weather : _AirTemperature ;
6 om -owl: procedure ? sensor ;
7 om -owl: result [om -owl: floatValue ? tempvalue ] .
8 FILTER (? tempvalue > %TEMP %) }

Listing 9.1: Parametrized window slide and size, example in SPARQLstream.
Parameters are indicated as strings through percentage symbols.

Parametrized aggregate query. Aggregate queries are commonly
used in data stream processing, as a common task is the computation of
data trends and summarization rather than on individual data points.
Aggregates pose challenges to the computation of the window content
and depending on the streaming processor report and tick policies, the
results of a sum, average or other function may greatly vary. This type
of issues are often overlooked when querying single stream triples.

Joins of triples in different timestamps. The queries types de-
scribed above include graph pattern matching of triples that are typi-
cally received at the same timestamp (or nearly), e.g. an observation
and its value, its type, etc. However, there are cases where queries
including joins at different timestamps may be relevant. This is more
challenging for query engines and correctness checking. For instance,
the query in Listing 9.2 asks for sensor stations that record a high
atmospheric temperature variation, in a time window.

It is worth noting that this query produces answers when the tem-
perature increases or decreases (there is no control about the order
of the observations, so ?value1 could be before or after ?value2). If
we would like to write the query that looks for increasing temperature
values, we should write a multi-window query, or we need a mechanism
to put constraints on the application timestamps in the query, such as
C-SPARQL’s timestamp function.

1 PREFIX om -owl: <http :// knoesis . wright .edu/ssw/ont/sensor -
observation .owl#>

2 PREFIX weather : <http :// knoesis . wright .edu/ssw/ont/ weather .owl
#>

3 REGISTER QUERY q AS SELECT ? sensor ?ob1 ? value1 ?obs
4 FROM NAMED STREAM <http :// cwi.nl/ SRBench / observations >[ RANGE %

WSIZE% S STEP % WSLIDE % S]
5 WHERE { ?ob1 om -owl: procedure ? sensor ;
6 om -owl: observedProperty weather : _AirTemperature ;
7 om -owl: result [om -owl: floatValue ? value1 ].
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8 ?ob2 om -owl: procedure ? sensor ;
9 om -owl: observedProperty weather : _AirTemperature ;

10 om -owl: result [om -owl: floatValue ? value2 ].
11 FILTER (? value1 -? value2 > % VARIATION_THRESHOLD %) }

Listing 9.2: Query joining triples of different timestamps, example in C-SPARQL.
Parameters are indicated as strings through percentage symbols.

9.2.3 An Oracle for Automatic Correctness Checking
Once the benchmark is defined, we need a way to check if the results,
provided by a system to the benchmark queries and input, correspond
to the expected ones according to the system operational semantics.
For this we propose an oracle that generates and compares results
of RDF stream processors and checks their correctness. As explained
above, given an input stream S, a target system R and a query QR, the
continuous evaluation QR in R produces an answer AnsR(QR). The
oracle implements the process described above: given the query QR

and a RSP-QL model MR that captures operational semantics of R, it
derives the set of equivalent queries rspqlQueries(QR, R), it generates
all the possible answers and checks if one of them matches AnsR(QR).

Figure 9.1: Oracle for RSP query results correctness checking.

The architecture of the oracle is shown in Figure 9.1. The oracle
is based on the off-line execution of a continuous query QR, that is
translated in a set of SPARQL queries evaluated over an RDF dataset
that simulates an RDF stream. The oracle operates in two main stages:
(i) the setup of the dataset, and (ii) the execution and comparison of
the results.
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Chapter 9. Correctness assessment in RSP engines

The main goal of the Dataset Importer is to produce an RDF dataset
that allows to compute the data of the time-varying graphs and slid-
ing windows contained in the RSP-QL dataset for each evaluation time
instant. This dataset is composed of a metadata RDF graph Gm and
a set of RDF graphs {Gt} that captures the input stream S. Given
that all the engines we are considering use streams of timestamped
statements, the original RDF stream S is composed of a sequence of
elements (d = {(s, p, o)}, t), where d is a graph embedding one RDF
statement (s, p, o), and t is the application timestamp, following the
model described in Section 4.1. For each timestamp t in S, a corre-
sponding data graph Gt is created, and also the following metadata
triple is added in Gm:

Gt :hasTimestamp t.

Finally, for each t, the data items of S with timestamp t are imported
into Gt, i.e.

Gt = {(s, p, o) | (d = {(s, p, o)}, t) ∈ S}.

Once the RDF dataset is set up, the oracle computes the correct
answers of QR w.r.t. R. To do it, the oracle translates QR into a set a
set of sequences of plain SPARQL queries to be executed over the RDF
dataset. The execution of a sequence of SPARQL queries simulates the
execution of a RSP-QL continuous query in rspqlQueries(QR, R) over
a limited amount of time. The translation performed by the oracle
in this work mainly considers the window operators of the continuous
query, and can be summarized as follows.

1 the oracle computes the set Z of values to be assigned to t0, ac-
cording to Section 9.1.2. Z = {t01, t02, . . . , t0k};

2 the oracle iterates over Z. At each iteration, the oracle assigns a
value t0i of Z to t0, and:

2.1 oracle computes the answer Ansoracle(t0i ). To do it, oracle
computes the set ET t0i of evaluation time instants, according
to the RSP-QL policy of MR (as in Section 5.8). For each
evaluation time in ET t0i :

2.1.1 oracle determines the next present window: it computes
the time interval (op, cp] of the present window;
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2.1.2 oracle computes the present window content, by selecting
the Gt graphs in (op, cp], i.e.

{Gt | (Gt, :hasTimestamp, t) ∈ Gm ∧ op < t ≤ cp};

2.1.3 oracle evaluates the query. It executes a plain SPARQL
query over the merge of the graphs determined by the
previous step. The SPARQL query preserves the graph
patterns and output modifiers of QR;

2.1.4 the answer of the query is a timestamped set of mappings,
and it is added to the oracle output stream Ansoracle(t0i ).
The conversion depends on the *streaming operator defi-
nition contained in MR;

2.2 when Ansoracle(t0i ) computation ends, oracle compares it with
AnsR(QR). If they match, the process ends and the oracle
notifies the positive matching, i.e. AnsR(QR) is correct w.r.t.
its operational semanticsMR, and for input S and query QR.
Otherwise it restarts from Step 2;

3 if none of the generated answers

Ansoracle(t01), Ansoracle(t02), . . . , Ansoracle(t0k)

matches the output stream AnsR(QR), the oracle notifies that the
answer of R is not correct.

The oracle we implemented manages queries with one time-based
sliding window over a stream and static background data, it supports
the whole SPARQL 1.1 query language and it implements the three
R2S operators RStream, IStream and DStream. The oracle is con-
figurable and it is possible to change both the input stream and the
benchmark queries. In this way it can also be used by RSP developers
to set up testing environments while implementing their systems.

We have implemented the oracle on the top of the Sesame frame-
work. We made it available as an open source project1. The project
repository supplies also all the resources required to repeat the exper-
iments: the input stream (with different streamer implementations for
the analysed systems), the queries, and the code to execute them in
C-SPARQL, CQELS and SPARQLstream.

1Cf. https://github.com/dellaglio/csrbench-oracle
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9.3 Experiments with RSP engines

We have used CSRBench to test2 the C-SPARQL engine (version 0.9),
CQELS (Aug 2011) and SPARQLstream (version 1.0.5). The dataset
used for experiments consists of a subset of the LSD dataset of SR-
Bench that comprises weather observations from hurricanes in the US.
Only the data from hurricane Charley has been used, for a total of 3
hours of records. Data is replayed with parametrized input rates. We
defined 7 queries, by instantiating the parameters of the three types of
queries defined in Section 9.2.2:

• Q1. Query latest temperature observations and its originating
sensor, filtered by a threshold. ω = 10s, β = 10s, tumbling
window.

• Q2. Query latest temperature observations and its originating
sensor, filtered by a threshold. ω = 1s, β = 1s, tumbling window.

• Q3. Query latest relative humidity observations and its originat-
ing sensor, filtered by a threshold. ω = 4s, β = 4s, tumbling
window.

• Q4. Query latest average temperature value, filtered by a thresh-
old. ω = 4s, β = 4s, tumbling window.

• Q5. Query latest temperature observations and its originating
sensor, filtered by a threshold. ω = 5s, β = 1s, sliding window.

• Q6. Query latest sensors having observations with a variation of
temperature values higher than a threshold. ω = 5s, β = 5s,
tumbling window.

• Q7. Query latest sensors having observations with higher temper-
ature values than a fixed sensor station. ω = 5s, β = 5s, tumbling
window.

As shown in Table 9.1, none of the RDF stream engines successfully
passes all the tests. This provides an idea of the difficulty of assessing
correctness in this type of systems. We now describe the cases where
there are failures.

Queries Q1, Q2 and Q3 focus on variations of the window size and
slide, for the case of tumbling windows. All the systems behave in

2C-SPARQL: http://streamreasoning.org/download, CQELS: http://code.google.com/p/
cqels/, SPARQLstream: https://github.com/jpcik/morph-streams
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Query C-SPARQL CQELS SPARQLstream

Q1 X X X
Q2 X X X
Q3 X X X
Q4 X × ×
Q5 × X X
Q6 X × X
Q7 X × X

Table 9.1: Correctness checking: experimental results for C-SPARQL, CQELS
and SPARQLstream.

the correct way and provide the correct answers. These results are for
the most part very similar in terms of content, as the graph pattern
of the queries operates over (almost) contemporaneous triples. The
main difference is on the timing of the output. The report policy of
CQELS enables an almost immediate answer after a match is produced.
This behaviour interestingly hides any difference on the use of a slide,
and consequently the results for Q1 and Q2 are virtually identical
in CQELS. Also, smaller windows such as the one in Q2 forced to
configure the time resolution of the processing engine, in the case of
SPARQLstream, which otherwise would be unable to slide at the given
rate. In the case of SPARQLstream, the results in these three queries
with C-SPARQL is noticeable on the absence of any output when no
matches are produced. This situation must not be confused with the
absence of data in the input stream.

The other four queries exploited unexpected behaviours of the an-
alyzed systems. C-SPARQL does not pass the experiment with Q5 :
this query highlights the use of an explicitly controlled slide, smaller
than the window size. The problem is related to the fact that when a
query is registered in C-SPARQL, there is a transitory phase on which
some open windows are erroneously reported. When the system be-
comes stable and the first window closes, C-SPARQL starts to behave
correctly and works as expected. This wrong behaviour is related to
the sliding windows, in case of tumbling windows C-SPARQL works
correctly.

SPARQLstream does not behave in the correct way with Q4. In gen-
eral, this query poses challenges in several aspects. The first and most
obvious is related to the t0 parameter. Because the first window opens
at different points in each system, the resulting average values are com-
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Chapter 9. Correctness assessment in RSP engines

pletely different. The oracle adequately handles these variations, by
computing results for different possible values of t0. Nevertheless, other
issues arise on the way aggregates are implemented in the absence of
matches in the graph patterns. In this particular case, SPARQLstream
outputs a null value instead of a 0 average value. This unexpected
behaviour is the cause of the failure in Q4, although in other cases
the resulting values are correct. It is also worth mentioning that be-
cause SPARQLstream uses a underlying Data Stream Processing system
through query rewriting, by changing it with another implementation,
its modelled parameters (e.g. report, tick, etc.) could also change.
Therefore its operational semantics depend on the underlying system
it uses in a particular deployment.

Even CQELS does not provide the correct answer on Q4 and, addi-
tionally, it shows wrong behaviours on Q6 and Q7. Both Q6 and Q7
focus on the evaluation of joins in triples with different timestamps. In
the first case the equality join is on the observation sensor, which is a
URI in the dataset, while in the second it is basically a cross-product
of a single fixed observation against all observations in the window.
In this case, the problem is given by the fact that CQELS does not
correctly remove the RDF statements from the active window. As a
result, there are aggregations and joins on elements that should not
be in the window anymore and the system produces additional wrong
mappings. This behaviour does not emerge with other queries due to
to the IStream operator: when queries filters the input stream, the an-
swers are computed looking for triple patterns over data with the same
application timestamp. Consequently, only answers obtained from new
data entering the window are output, due to the fact that the data al-
ready present in the window produced answers that were output in
previous steps.

9.4 Remarks

In this chapter, we made an effort to cover an existing gap in current
benchmarks for RSP engines. Checking the correctness of streaming
query results is complementary to other tests such as functional cover-
age, performance, scalability, but it is also key to assess how a system
complies to its operational semantics. A comparison among this type
of systems is not possible if we are unable to judge whether their out-
put is correct or not. To do so, we exploited RSP-QL to formalise
a notion of correctness, and we have shown experimentally that RSP
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engines do not always comply to their semantics. We have shown the
cases where this happens through the CSRBench extensions and the
oracle.

We aim to improve this work in several directions. We plan to im-
prove the oracle output mechanism: at the moment the match between
an oracle result and the system result AnsR(QR) provides a boolean
answer: true if AnsR(QR) is contained (or it is equal) to one of the ora-
cle and false otherwise. We plan to provide a more expressive matching
mechanism, through the introduction of a matching percentage value,
to help the analysis of results. Additionally, we plan to take into ac-
count also the verification of quality of service metrics, such as the fact
that the systems may provide results with a maximum delay from the
theoretical output time.

Additionally, we are interested in studying the behaviour of systems
that are not captured by RSP-QL, such as CEP-enabled RSP engines
and systems using interval-based timestamps in RDF streams. While
RSEP-QL is a solution for the former, further extensions are required
to cope with the latter point. It is important to understand the opera-
tional semantics of those systems and discover the similarities and the
differences between them and the systems we targeted in this work.
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CHAPTER10
Conclusions

[...] we need a theory of semantic processing of massive sets
of complex and highly dynamic data. This will include the
development of knowledge representation languages, perfor-
mance metrics and a systematic roadmap about how to pro-
cess massive, dynamic, ordered data.

The sentence, stated by Della Valle, Schlobach, Krötzsch, Bozzon,
Ceri and Horrocks in [46], sets one of the key points in the Stream
Reasoning research agenda. This thesis develops along this direction,
contributing in the definition of a theory for semantic stream process-
ing.

We are not the first in proposing data and query models for semantic
stream processing, but our novelty is given by the different approach
we took with regards to other works in the area. We focused on filling
the gap among existing solutions, on unifying the models proposed in
state of the art. That means, we identified the common features of
available models and solutions and, more important, the peculiarities
that make them unique. As result, we built RSEP-QL, a model to
describe the continuous query processing of semantic streams.
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Such a model sets a milestone on the Stream Reasoning roadmap,
as it offers a framework to compare, benchmark and let interoperate
the current solutions. Moreover, RSEP-QL can contribute to the stan-
dardization of a language to process query streams, as the one under
development at the RSP W3C Community Group1.

This thesis proposes different contributions that we can group in
three blocks: (i) unified query model for semantic streams, (ii) unified
reasoning over semantic streams and (iii) engineering stream reasoning
processors. We analyse them in the next section.

10.1 Review of the Contributions

The main contributions of this activity are consequences of the research
questions that we introduced in Section 1.

Unified Query Model for Semantic Streams. The first question,
RQ.1, asked: How can the behaviour of existing RDF Stream Process-
ing systems be captured and compared when reasoning processes are
not involved? Our investigation lead to the definition of two reference
query models, RSP-QL and RSEP-QL.

RSP-QL, presented in Chapter 5, extends SPARQL by adding sup-
port for operators typical of the Data Stream Processing area, such as
sliding windows and streaming operators, used respectively to consume
and produce RDF streams. RSP-QL moves the evaluation semantics
of the model from one time (as in SPARQL) to continuous. That
means, RSP-QL produces sequences (streams) of answers, computed
at different time instants, to cope with the fact that the data on the
stream is dynamic and changes over time. RSP-QL captures the eval-
uation semantics of Data Stream Processing inspired RSP models, e.g.
C-SPARQL, CQELS and SPARQLstream, as shown in Section 9.1.

RSEP-QL, described in Chapter 6, extends RSP-QL by adding op-
erators for event matching, with the goal of capturing the RSP engine
operators inspired by Complex Event Processing solutions, as the ones
of EP-SPARQL and the timestamp function of C-SPARQL. These op-
erators enable the search of sequences of events joined through time
constraints (e.g. join two events if the former happens before the lat-
ter). As result, RSEP-QL supplies in a unique model the operators
used by RSP models inspired to either Data Stream Processing or
Complex Event Processing, as discussed in Chapter 8.

1Cf. www.w3.org/community/rsp/.
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Unified Reasoning over Semantic Streams. The second part of
the thesis is lead by the Research Question RQ.2: What is the correct
behaviour of a continuous query engine while processing a semantic
stream under entailment regimes?

One of the main outcomes of RSEP-QL is to define a rigorous eval-
uation semantics, in the sense that, given a continuous query over a
set of input streams and background data sets, it identifies one and
only one correct answer.

This fact poses a solid basis to build a reasoning layer on RSEP-QL.
In Chapter 7, we defined the entailment regimes in RSEP-QL, extend-
ing the SPARQL ones. The presence of streams in the dataset and
event patterns in the query language required to expand the meaning
of answer under entailment regimes as defined in SPARQL. We in-
troduced three levels, to consider the entailment regime on the merge
of the window content, the window or the whole stream. We shown
that each level may produce a different answer, and we studied some
properties among them.

Engineering Stream Reasoning Processors. As claimed above,
the design of RSEP-QL enables further research. To support the claim,
in this thesis we used RSEP-QL in the context of three problems related
to realization and improvement of stream reasoning processors.

In Chapter 9, we applied RSP-QL in the context of benchmarking.
It is at the basis of CSRBench, an extension of SRBench for correct-
ness assessment. Given an RSP engine, RSP-QL is used to determine
the set of expected correct answers may be produced. We enabled the
possibility to automatically verifies if the current answer of the en-
gine matches an expected answer, through the oracle, an open source
framework we wrote.

In parallel, in Chapter 4 we presented Triple Wave, a framework to
publish RDF streams on the Web. The work fills an important gap
in in RDF Stream Orocessing, as it provides flexible mechanisms for
plugging in diverse Web data sources, and for consuming the streams
in both push and pull mode.

10.2 Future directions

In the previous chapters, we discussed possible extensions of the defined
contributions. In this section, we discuss three future directions we
envision for this work.
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10.2.1 Towards an RSEP-QL Engine

RSEP-QL provides a well-defined semantics to process RDF streams.
A natural direction on which this work can be extended is an imple-
mentation. As we discussed above, we developed components relative
to the algorithms we developed, but a complete proof of concept en-
gine that shows the feasibility of a comprehensive RSEP-QL engine is
missing.

The road to an RSEP-QL engine is not just related to implementa-
tion: there are several problems we did not tackle. A prototype would
support the investigation of query optimization of RSEP-QL queries
including the MATCH clause. As explained in Chapter 6, we described
the naïve strategy where the MATCH clause is evaluated at the end, in
order to compute the correct event mappings. This solution can gen-
erate a high number of intermediate mappings. It is possible to study
algebraic equivalences to move operators in the MATCH clause, and
prove (theoretically and experimentally) the advantages. Additional
problems we did not consider are out-of order arrival of data items,
arbitrary delays in query operators and other issues that may arrive in
real-life systems when overloaded.

We believe that a convenient way to implement the engine is to
extend a Semantic Web-related framework, as Jena or Sesame, rather
than starting a Data Stream Processing or an Complex Event Pro-
cessing system. The main reason is that the former provides a native
support to RDF, SPARQL and reasoners, as well as APIs to man-
age them. Extending such a framework allows a full control over the
streaming data model and the RSEP-QL operators.

10.2.2 RDF Streams: Models and Publishing

In the future, we envision a widespread adoption of RSP-based solu-
tions in different domains, specially under the umbrella of the Internet
of Things (IoT). RSEP-QL helps providing the foundations for well-
defined query processors that can interoperate through common query
interfaces, even if they follow different architectural approaches. This
allows creating an ecosystem of RSEP-QL compatible systems that
take advantage of semantics and Linked Data to interact.

An open direction that deserves attention is related to the data
model. In this work, we assumed a data model where streams are
composed by sequences of RDF graphs annotated with single applica-
tion time instants. As we briefly discussed in Chapter ??, this model
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can be enriched with further information, as the time annotation can
have different semantics (e.g. instantaneous validity or beginning of the
validity interval), also in relation with the stream item (e.g. states and
actions). Moreover, this data model admits alternatives, as streams
where there are two or more time instants associated to stream items,
each of them with different meanings.

While a definition of a vocabulary to specify the semantics of the
time annotation and of the stream items can solve the problem at
the data level, it creates several problems at query level. In fact, the
query processor should process the vocabulary and consequently take
different actions on the data it receives. This problem affects both the
query answering and reasoning layers.

Moreover, we did not tackle the problem of blank nodes in the
stream: is there any relation two blank nodes with the same label
appearing in two different stream items? In RDF, a blank node is
defined in the context of a RDF graph, so the same label on two graphs
identifies two different unnamed resources. However, in the context of
an RDF stream, there are cases where is needed to describe the same
(unnamed) resource at different time instants.

Finally, Triple Wave sets a milestone in making available RDF
streams on the Web, but additional work is required. Even if formats
like JSON-LD can be adapt to serialize the RDF stream, the provider
should publish not only the stream, but also the vocabulary and, if
available, the graph describing the schema describing the streaming
data (i.e. the Stream TBox Mapper value as defined in Chapter 7).
Next, a protocol to let the continuous query processor to access this
information should be defined. It is worth noting this protocol should
also manage the fact that the schema can change over time.
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