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Abstract

In the last decades the necessity of finding statistical tools to analyze larger
and larger data, has been an important topic for researchers. A huge theory
about the limit distribution of the eigenvalues of sample covariance matrices,
whose dimensions diverge under certain conditions, has been developed. Almost
50 years ago, Karl Gustafson introduced new quantities, called antieigenvalues,
whose theory in a context of fixed matrices has been developing, with impor-
tant applications in numerical analysis, wavelets, statistics, quantum mechanics,
finance and optimization. In this report it is presented the basic theory concern-
ing the limit spectral distribution of sample covariance matrices, by reporting
the Wigner’s law and the Marčenko-Pastur’s law, and it is introduced to the
so far known theory on the antieigenvalues. The real aim is to try to find a
law that describes the limit distribution of the first antieigenvalue of a sample
covariance matrix.

Keywords: Antieigenvalues, eigenvalues, sample covariance matrices, random
matrices, Beta distribution, limit spectral distribution.

Ferrari, 2016. v



vi



Contents

1 Introduction 1
1.1 Statistical background . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Observations of statistical units . . . . . . . . . . . . . . . 1
1.1.2 Sample mean and sample covariance matrix . . . . . . . . 3
1.1.3 Eigenvalues and eigenvectors of the sample covariance ma-

trix. Mahalanobis distance . . . . . . . . . . . . . . . . . 7
1.1.4 Assumption of normality . . . . . . . . . . . . . . . . . . 10
1.1.5 The Wishart distribution . . . . . . . . . . . . . . . . . . 10

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Eigenvalues 13
2.1 Wigner matrices and Wishart ensemble . . . . . . . . . . . . . . 13

2.1.1 Haar measure . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Wigner matrices . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Wishart ensemble . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Distribution of the largest eigenvalue: sample coviarance matrices 15
2.3 Convergence of eigenvalues . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 The Wigner semicircular law . . . . . . . . . . . . . . . . 17
2.3.2 Marčenko-Pastur distribution . . . . . . . . . . . . . . . . 18

2.4 Results through simulations in R . . . . . . . . . . . . . . . . . . 19
2.4.1 M-P law: probability distribution function . . . . . . . . . 20
2.4.2 Convergence of the largest eigenvalue and of the smallest

eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Antieigenvalues 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Chandler Davis’ two contributions . . . . . . . . . . . . . . . . . 25
3.3 The variational characterization . . . . . . . . . . . . . . . . . . . 26
3.4 Antieigenvalues and numerical analysis . . . . . . . . . . . . . . . 27
3.5 Random matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Growth Curve Model . . . . . . . . . . . . . . . . . . . . . 29
3.6 Simulations in R . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Convergence of the first antieigenvalue . . . . . . . . . . . 32
3.6.2 The first antieigenvalue and the Beta distribution . . . . . 33
3.6.3 The elliptical law . . . . . . . . . . . . . . . . . . . . . . . 34

4 Conclusions 47

Ferrari, 2016. vii



viii Contents



Chapter 1

Introduction

In the last decades, data sets have become large in both size and dimension.
Hence, statisticians have been facing large dimensional data analysis in both
theoretical investigation and real applications. The aim of this project is to in-
vestigate the distribution of eigenvalues and antieigenvalues of random matrices
when their dimensions go to infinity.

In this chapter it will be provided a statistical background to introduce to
the main character of this project: the estimator sample covariance matrix S.
The geometrical meaning of S, of its eigenvalues and of its eigenvectors, will be
presented.

In the second chapter, two important results about the limit distribution
of eigenvalues of S will be reported: the Wigner semicircular law, where one
dimension of the data is thought to be fixed, and the Marčenko-Pastur law,
where both of the dimensions tend to infinity. Some simulations in R software
will be shown to visualize some theoretical results.

In the third chapter, it will be given a brief introduction to the already
known theory about antieigenvalues of operators and some simulations in R
software will be shown to investigate their limit distribution, when the consid-
ered operator is S, in a context of random matrices, which has not already been
investigated.

1.1 Statistical background

1.1.1 Observations of statistical units

Let x = (x1, . . . , xp)T be a sample, i.e. an observation of p variables. When we
collect n observations, we can store the values in a matrix X, with n rows and p
columns. [X]ij ∈ R is the result of a measurement: the j-th variable of the i-th
observation. The (x1, . . . ,xn) observations are n points in Rp, that is a vector
space as ∀x,y ∈ Rp and ∀α, β ∈ R, αx + βy ∈ Rp.

Ferrari, 2016. 1



2 Chapter 1. Introduction

A possible inner product to be associated to Rp is

〈x,y〉 =
p∑
j=1

xjyj = xTy (scalar product).

An other possibility is to define the inner product as

〈x,y〉 = xTQy, (1.1)

for some Q ∈ Rp×p positive definite.

Each observation xi can be viewed as a realization of a random vector
X = (X1, . . . , Xp)T , a so called population vector, whose distribution is F (µ,Σ).
Here µ is the mean of the F population and it is defined as µ = (µ1, . . . , µp)T =
(E[X1], . . . ,E[Xp])T , while Σ is the covariance matrix.

Definition 1 The covariance matrix of a p-variate population vector X,
with mean µ = (µ1, . . . , µp)T , is defined as

Σ = Cov(X) = E[(X− µ)(X− µ)T ].

Each element of Σ is

[Σ]ij = σij = E[(Xi − µi)(Xj − µj)] = cov(Xi, Xj),

the covariance between the components Xi and Xj . In particular, the elements
on the diagonal of Σ are

[Σ]ii = σii = E[(Xi − µi)(Xi − µi)] = var(Xi),

the variances of the components of the population vector X.

Let us now investigate the properties of Σ. It is easily notable that Σ is
a squared matrix ∈ Rp×p and that it is symmetric. This implies (Spectral
theorem) that ∃Q ortogonal matrix and ∃D diagonal matrix, such that

Σ = QTDQ,

where Q is the matrix that stores the eigenvectors (e1, . . . , ep) of Σ, while the
elements on the diagonal of D are its eigenvalues (λ1, . . . , λp). In an other way,
we can write

Σ =
p∑
j=1

λjejeTj .

Remark 1. xxT
xT x is the operator that projects orthogonally a vector in Rp on

L(x), the space generated by x ∈ Rp.
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y

x
πy|x

φ

L(x)

Let πy|x be the orthogonal projection of a
vector y on the space L(x) generated by a
vector x. Let the cosine of the angle φ be
defined as

cos(φ) = 〈x,y〉
‖x‖‖y‖ ,

then, it is easy to derive the expression for
πy|x as

πy|x = ‖y‖cos(φ) x
‖x‖ = ‖y‖ 〈x,y〉

‖x‖‖y‖
x
‖x‖ = 〈x,y〉

‖x‖2 x = yTx
xTxx = xxT

xTxy = Py,

where P = xxT
xTx is the symmetric and idempotent operator that projects a vector

y orthogonally on L(x).
Reminding that the norm of eigenvectors is equal to one, Σ =

∑p
j=1 λjejeTj

is the sum of orthogonal projections on the spaces generated by its eigenvectors.

Let X = (X1, . . . , Xp)T be a vector of p random variables - with expected
value µ and covariance matrix Σ - and c = (c1, . . . , cp)T a vector of p real coeffi-
cients. Then, cTX is a linear combination of p random variables, with expected
value E[cTX] = cTµ and variance V ar[cTµ] = cTΣc. As this holds ∀c ∈ Rp

and the variance is always non negative, we have that cTΣc ≥ 0 ∀c ∈ Rp.

Defintion 2. A p× p matrix A is called positive semidefinite if

xTAx ≥ 0 ∀x ∈ Rp,

and we write A ≥ 0.

This means that Σ is positive semidefinite. Hence, its eigenvalues (λ1, . . . , λp)
are all non negative. If all the eigenvalues are strictly positive, then Σ is said
to be positive definite and we write A > 0.

1.1.2 Sample mean and sample covariance matrix
When we store n indipendent p-variate observations (x1,x2, . . . ,xn) in the data
matrix

X = (x1 x2 . . . xn)T =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
. . .

...
xn1 xn2 . . . xnp


it can be viewed as a realization of the following random matrix

X = (X1 X2 . . . Xn)T =


X11 X12 . . . X1p
X21 X22 . . . X2p
...

...
. . .

...
Xn1 Xn2 . . . Xnp

 .
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Definition 3. Assuming that (x1, . . . ,xn) are n independent realizations of
(X1, . . . ,Xn), random vectors with distribution F , mean µ and covariance ma-
trix Σ, then

X = 1
n

n∑
i=1

Xi = 1
n
X T1 =


X1
X2
...
Xp

 , Xj = 1
n

n∑
i=1

Xij ∀j ∈ {1, . . . , p},

is called the sample mean. While, the matrix

S = 1
n

n∑
i=1

(Xi −X)(Xi −X)T , Sij = 1
n

n∑
k=1

(Xki −Xi)(Xkj −Xj)

is called the sample covariance matrix.

The sample mean X and the sample covariance matrix S are the estimators
of µ and Σ, while x and S are the estimates, i.e., a realization of the estimators
according to the observed data.

In order to highlight the marginal information about the variables that we
are simultaneously observing, we can write X = [Y1 Y2 . . . Yp]. In a world
without variability, all the observations are equal to each other, which means
that Yj = [kj , kj , . . . , kj ], with kj ∈ R, ∀j ∈ {1, . . . , p}, i.e. Yj ∈ L(1) ∀j ∈
{1, . . . , p}. If we project our data in this world without variability, we get, for
each j ∈ {1, . . . , p}:

πYj |1 = 11T

1T1
Yj =


1/n 1/n . . . 1/n
1/n 1/n . . . 1/n
...

...
. . .

...
1/n 1/n . . . 1/n



X1j
X2j
...

Xnj

 =



∑n

i=1
Xij

n∑n

i=1
Xij

n
...∑n

i=1
Xij

n

 =


Xj

Xj

...
Xj

 .

In this way we can notice that the j-th component of the sample mean X is Xj ,
the value of each component of the projection of the j-th variable Yj on L(1).

Yj

1
πYj |1

dj

L(1)

What is the error that we are committing by
approximating the real Yj with the projec-
tion πYj |1?

dj = Yj − πYj |1 =


X1j −Xj

X2j −Xj

...
Xnj −Xj
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In order to measure the error we can derive the expression of the squared eu-
clidean norm of dj :

‖dj‖2 = 〈Yj −Xj1,Yj −Xj1〉 =
n∑
i=1

(Xij −Xj)2 = nSjj .

In this way we can see what is the relation between the sample variance
Sjj = var(Yj) and the euclidian distance between Yj and L(1).

Hence, each variable Yj is associated with two values: Xj , the j-th compo-
nent of the estimate of the sample mean, representing the orthogonal projection
of Yj on the space L(1) generated by the vector 1, in a world without vari-
ability; and Sjj , the j-th element on the diagonal of the estimate of the sample
covariance matrix, representing the distance between Yj and L(1), i.e., the er-
ror we commit when we approximate Yj with its projection πYj |1 on L(1).

The correlation between a variable Yj and Yk, in general for each j, k ∈
{1, . . . , p}, is

rjk =
∑n
i=1(Xij −Xj)(Xik −Xk)√∑n

i=1(Xij −Xj)2
√∑n

i=1(Xik −Xk)2
= Sjk√

Sjj
√
Skk

.

Hence, Sjk = rjk
√
Sjj
√
Skk is a measure of the correlation between Yj and Yk,

also considering the distance between Yj and L(1), and between Yk and L(1).

Let us now investigate what is the relation between the estimators X, S and
µ, Σ.

Proposition 1. Let (X1, . . . ,Xn) be i.i.d. ∼ F , with mean µ and covari-
ance matrix Σ, then

1. E[X] = µ (unbiased estimator) and cov(X) = 1
nΣ.

2. E[S] = n−1
n Σ (biased estimator).

Proof:

1. E[X] =


E[ 1
n

∑n
i=1Xi1]

E[ 1
n

∑n
i=1Xi2]
...

E[ 1
n

∑n
i=1Xip]

 =


1
n

∑n
i=1 µ1

1
n

∑n
i=1 µ2
...

1
n

∑n
i=1 µp

 =


µ1
µ2
...
µp

 = µ.

cov(X) = E[(X− µ)(X− µ)T ] = E[( 1
n

n∑
i=1

(Xi − µ))( 1
n

n∑
i=1

(Xi − µ))T ] =

= 1
n2

n∑
i=1

n∑
j=1

E[(Xi − µ)(Xj − µ)T ].

Now, if i 6= j, then

E[(Xi − µ)(Xj − µ)T ] = E[(Xi − µ)]E[(Xj − µ)T ]
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due to the independency between the random vectors. But E[(Xi−µ)] = 0, for
each i = 1, . . . , n, so all the terms i 6= j are equal to zero.
If i = j, then

E[(Xi − µ)(Xi − µ)T ] = Σ

Hence, cov(X) = 1
nΣ.

2. E[S] = E[ 1
n

n∑
i=1

(Xi −X)(Xi −X)T ] =

= E[ 1
n

n∑
i=1

[(Xi − µ)− (X− µ)][(Xi − µ)− (X− µ)]T ] =

= E[ 1
n

n∑
i=1

(Xi − µ)(Xi − µ)T ]− E[ 1
n

n∑
i=1

(Xi − µ)(X− µ)T ]−

− E[ 1
n

n∑
i=1

(X− µ)(Xi − µ)T ] + E[ 1
n

n∑
i=1

(X− µ)(X− µ)T ] =

= E[ 1
n

n∑
i=1

(Xi − µ)(Xi − µ)T ]− E[(X− µ)(X− µ)T ]−

− E[(X− µ)(X− µ)T ] + E[(X− µ)(X− µ)T ] =

= E[ 1
n

n∑
i=1

(Xi − µ)(Xi − µ)T ]− E[(X− µ)(X− µ)T ] =

= Σ− Σ
n

= n− 1
n

Σ.

�

X is an unbiased estimator for µ and its coviarance matrix converges to the
null matrix when the number n of observations goes to infinity. S is a biased
estimator for Σ, but when n goes to infinity, its expected value converges to Σ,
which means that it is an asymptotically unbiased estimator.

Let D be the matrix storing the previuosly defined errors: D = [d1, . . . ,dp].
Then,

S = 1
n

n∑
i=1

(Xi −X)(Xi −X)T = 1
n


dT1 d1 dT1 d2 . . . dT1 dp
dT2 d1 dT2 d2 . . . dT2 dp

...
...

. . .
...

dTp d1 dTp d2 . . . dTp dp

 = 1
n
DTD.

This means that the estimator S is generated by the vectors (d1, . . . ,dp), but
∀j ∈ {1, . . . , p}, dj = yj − xj1 ∈ L⊥(1) ⊂ Rn−1. Hence, S is generated by p
elements living in Rn−1. That is why Sn−1 = 1

n−1D
TD = n

n−1S is the unbiased
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estimator of Σ.

Let be noticed that dj = yj − xj1 = yj − 11T
1T 1yj = (1− 11T

1T 1 )yj .
So, D = (1− 11T

1T 1 )X = HX , where the matrix H = 1− 11T
1T 1 is the operator of

orthogonal projection on the space L⊥(1), so it is symmetric and idempotent.
In this way we can derive the following expression for S:

S = 1
n
DTD = 1

n
X THHTX = 1

n
X THX .

1.1.3 Eigenvalues and eigenvectors of the sample covari-
ance matrix. Mahalanobis distance

In this subsection it will be given a geometrical and statistical interpretation of
the eigenvalues and eigenvectors of a sample covariance matrix.

Let us ask the question “What is the direction in Rp with the highest vari-
ability among X1,X2, . . . ,Xn ∼ F (µ,Σ)?”. Such a question can be expressed
as the following optimization problem.

arg max
‖a‖=1

var(aTX) = arg max aTΣa
aTa

where a ∈ Rp.

Theorem 1. Let B ∈ Rp×p be a postive definite symmetric matrix, then

1.max
a∈Rp

aTBa
aTa = λ1

2. arg max
a∈Rp

aTBa
aTa = e1,

where λ1 and e1 are respectively the first eigenvalue and the first eigenvector of
B.

Proof.
B is positive definite, which means that B =

∑p
i=1 λieieTi , with λ1 ≥ λ2 ≥

· · · ≥ λp > 0. Hence,

aTBa
aTa =

aT
∑p
i=1 λieieTi a
aT1pa

=
∑p
i=1 λi(eTi a)2

aT
∑p
i=1 eieTi a

=
∑p
i=1 λiy

2
i∑p

i=1 y
2
i

,

where yi = eTi a. Now, we know that λ1 ≥ λ2 ≥ · · · ≥ λp > 0. Hence, ∀a ∈ Rp,
it holds ∑p

i=1 λiy
2
i∑p

i=1 y
2
i

≤
λ1
∑p
i=1 y

2
i∑p

i=1 y
2
i

= λ1.
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Now, if we find a value a ∈ Rp such that this disequality is actually an equal-
ity, then λ1 is the maximum of the quantity aTBa

aT a , and a is the corresponding
arg max.
Let us consider a = e1. yi = eTi a = eTi e1. This means that y1 = 1 and yi = 0 for
i = {2, . . . , n}. Thus, aTBa

aT a = λ1·1
1 = λ1. �

Hence, the first eigenvector of the covariance matrix Σ is the direction of high-
est variability in the data. The measure of such variability is given by the first
eigenvalue of Σ.
What about the other eigenvalues and eigenvectors? Through the same method
we have used to prove Theorem 1, we can show that

max
a⊥e1

aTBa
aTa = λ2, arg max

a⊥e1

aTBa
aTa = e2,

max
a⊥{e1,e2}

aTBa
aTa = λ3, arg max

a⊥{e1,e2}

aTBa
aTa = e3,

. . .

Hence, the second eigenvector of Σ is the direction of highest variability in
the data in the subspace of Rp orthogonal to the space generated by the first
eigenvector. The measure of this variability is the second eigenvalue. The third
eigenvector of Σ is the direction of highest variability in the data in the subspace
of Rp orthogonal to the space generated by the first eigenvector and the second
one, and so on.

In practice, we have our observations stored in a matrix X, realization of a
random matrix X , and the estimate S of the sample covariance matrix S. We
know that S = PDPT , where P is the matrix storing the eigenvectors of S and
D is the diagonal matrix storing its eigenvalues.
We have just seen that the columns of P , i.e., the eigenvectors of S, generate
Rp and the corresponding referement system indicate the directions of highest
variabilities of the data. X̃ = XP contains the projections of our data on this
new referement system. Let us calculate the sample coviarance matrix of these
projected data.

S̃ = 1
n
X̃THX̃ = 1

n
PTXTHXP = PTSP = PTPDPTP = D.

The sample covariance matrix of the projected data is the diagonal matrix stor-
ing the eigenvalues of S! This means that the variables of the projected data
are uncorrelated to each other (if the data are gaussian, their variables are also
independent), and a measure of their variability is given by the eigenvalues of
S.

In (1.1) we have defined a possible inner product in Rp. We have shown
that if S has no zero eigenvalues, then it is positive definite and so is its inverse.
Thus, we can replace in (1.1) Q with S−1, in order to have 〈x,y〉S−1 = xTS−1y.



1.1. Statistical background 9

Definition 4. Let x,y ∈ Rp, then

d2
S−1(x,y) = 〈x− y,x− y〉S−1 = (x− y)TS−1(x− y) (1.2)

is called the Mahalanobis distance, between x and y.

In Rp, d2
S−1(x,x) ≤ r2, represents a sphere of radius r, according to the metrics

defined by d2
S−1 . According to the Euclidean metrics, instead, it would simply

be an ellipsoide.

Let us consider the case p = 2, and let us analyze the expression d2
S−1(x,x) = r2.

d2
S−1(x,x) = xTS−1x = xT

(
1
λ1

e1eT1 + 1
λ2

e2eT2
)
x =

= xT
(

1
λ1

e1eT1 x + 1
λ2

e2eT2 x
)

= 1
λ1

xTe1eT1 x + 1
λ2

xTe2eT2 x =

=
(
eT1 x√
λ1

)2

+
(
eT2 x√
λ2

)2

= y2
1 + y2

2 = r2.

x1

x2

eT1 x

eT2 x

r
√
λ1

r
√
λ2

We have ended up with the equation of a
circumference of radius r, in a new refer-
ement system defined by the new variables
y1 = eT1 x√

λ1
and y2 = eT2 x√

λ2
. In the orig-

inal referement system we see an ellipse, ro-
tated in direction of the two eigenvectors
e1 and e2 of S, orthogonal to each other.
The first semi-axis has length equal to r

√
λ1,

while the second one has length equal to
r
√
λ2.

Summarizing this subsection, we have dealt with the problem of looking for
the successively orthogonal directions that maximally explain the variability in
the data. We have found that these directions are given by the eigenvectors of
a population covariance matrix, and the variability in each direction is given by
the corresponding eigenvalue. This problem is known as Principal Component
Analysis (PCA). The directions given by the eigenvectors of Σ are called to
be the principal component directions. We can project our data on this new
referement system, where there is no correlation between the variables and where
there is a sorting of the variability in the data (λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0).

Since it may be not desirable to consider all the original p variables, ex-
pecially in high dimensions, PCA is one of the most important techniques for
reduction of the data dimensionality: by projecting our data on the space gen-
erated by the first eigenvectors, we may explain most of the information, which
is measured by the ratio between the sum of the corresponding eigenvalues and
the sum of all of them. In presence of large data, an important problem is the
choice of the number of the first eigenvectors to consider, dealing with the trade-
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off between complexity of the projected data and their explained variability.

In practice, estimates of the sample covariance matrix and its eigenvalues are
considered rather than the true objects. Thus, the study of the distribution of
the eigenvalues of S becomes an important task that we are going to investigate
in the following chapter.

1.1.4 Assumption of normality
In the last subsection we have introduced the Mahalanobis distance between
two vectors x,y ∈ Rp, when the sample covariance matrix S is positive definite.
Let us ask the question: “What is that distribution F , with mean vector µ
and covariance matrix Σ, such that the density function is centered in µ and
decreases exponentially when getting far from µ, with respect to the square
distance dΣ−1?”, i.e.,

f(x) = k1 · exp{−k2d
2
Σ−1(x,µ)} = k1 · exp{−k2(x− µ)TΣ−1(x− µ)},

where k2 defines the rate of exponential velocity, while k1 is to make f be a
density function, such that the integral in Rp is equal to one.

Definition 5. Fix µ ∈ Rp and a symmetric positive definite p × p ma-
trix Σ. The random vector X = (X1, X2, . . . , Xp)T is said to have a p-variate
Gaussian (normal) distribution with mean µ and covariance matrix Σ if its
density function f(x) is of the following form.

f(x) = 1√
(2π)pdetΣ

exp{−1
2(x− µ)TΣ−1(x− µ)}.

This is denoted by X ∼ Np(µ,Σ).

Data are quite often assumed to be realizations of independent multivariate
Gaussian (normal) vectors. In the following chapters we will work under this
assumption.

1.1.5 The Wishart distribution
In this subsection we are going to investigate the distribution of the sample
covariance matrix S.

Definition 7. Let z1, z2, . . . , zn be i.i.d.∼ Np(0,Σ), then

n∑
i=1

zizTi ∼Wp(Σ, n),

i.e., the Wishart distribution (Wp) with scale matrix Σ ∈ Rp×p and n degrees of
freedom is associated to p× p random matrices, that are sum of n i.i.d. random
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vectors z1, z2, . . . , zn ∈ Rp, normal distributed with 0 mean and Σ covariance
matrix, multiplied by their transpose.

In general, let us consider the random matrix X = (X1,X2, . . . ,Xn)T , where
X1,X2, . . . ,Xn are i.i.d. random vectors from Np(µ,Σ). This is denoted by
X ∼ Nn×p(µ,Σ). Let nowM beM = X TX . Then,M∼Wp(Σ, n).
The case when Σ = 1p, where 1p represents the p× p identity identity matrix,
is referred to as the null case, and the corresponding Wishart distribution is
called white Wishart distribution.

The Wishart distribution has a density function only when n ≥ p. Let A
be from Wp(Σ, n). Then, it has the following form (see [12]):

2−np/2

Γp(n2 )(detΣ)n/2
etr

(
−1

2Σ−1A

)
(detA)(n−p−1)(2),

where etr(X) = etr(X).

In the univariate case p = 1, z1, z2, . . . , zn i.i.d. ∼ N(0, σ2), we have

n∑
i=1

ziz
T
i =

n∑
i=1

z2
i = σ2

n∑
i=1

(zi
σ

)2
∼ σ2χ2(n) ≡W1(σ2, n).

Here are some properties of the Wishart distribution:

1. If A ∼Wp(Σ, n1) ⊥ B ∼Wp(Σ, n2), then A+B ∼Wp(Σ, n1 + n2).

2. If C ∈ R(q,p) and A ∼Wp(Σ, n), then CACT ∼Wq(CΣCT , n).

3. From (2), we can derive that if c ∈ Rp and A ∼ Wp(Σ, n), then cTAc ∼
W1(cTΣc, n) ≡ (cTΣc)χ2(n).

It is finally time to introduce the distribution of the sample covariance ma-
trix S.

Theorem 2. Let X ∈ Rn×p be a random matrix from Nn×p(µ,Σ). Then,
the scaled sample covariance matrix S has the Wishart distribution:

S = 1
n
X THX ∼Wp

(
Σ
n
, n− 1

)
. (1.3)

1.2 Research questions
Suppose we have n p-variate observations, stored in a data matrix X, which can
be viewed as a realization of a random matrix X ∼ Nn×p(µ,Σ). Then, we can
compute the corresponding estimates x and S of the sample mean X and of
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the sample covariance matrix S and we can project our data on the referement
system centered in x and whose axis-directions are given by the eigenvectors of
S. The projected data have null sample mean and sample covariance matrix as
diagonal matrix storing the eigenvalues of the sample covariance matrix of the
original data.
Theoretically, we can think to translate the n rows of X by µ, such that the new
data Y are from Nn×p(0,Σ). Then, knowing that Σ = ΓΛΓT , we can project
our new data on the referement system whose directions are given by the eigen-
vectors of Σ, i.e., YΓ ∼ Nn×p(0,Λ).

Therefore, without loss of generality, we can consider a data matrix X as a
realization of a random matrix X ∼ Nn×p(0, diag(λi)). Let S be the estimate
of the corresponding sample covariance matrix, obtained from the observed X.
Let l1 ≥ l2 ≥ · · · ≥ lp ≥ 0 be the eigenvalues of S. They can be viewed as
estimates of the eigenvalues l̂1 ≥ l̂2 ≥ · · · ≥ l̂p ≥ 0 of S, which are estimators of
the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 of Σ.

In this settings, this thesis is going to investigate the distribution of the
eigenvalues of S, by reporting some of the already known theoretical results on
this topics and by simulations in R to visualize such results.

Furthermore, the already known theory on the antieigenvalues, which are
functions of the eigenvalues, of fixed matrices will be presented. Finally, an
attempt to embark on a theory on antieigenvalues of random matrices (S is of
our interest) by simulations in R, will be performed.
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Distribution of eigenvalues
of sample covariance
matrices

Since the second half of the XX century, the topic of the limiting spectral anal-
ysis of random matrices in large dimensions has been considered with interest
from mathematicians, probabilists and statisticians. In this chapter, the asymp-
totic behaviour of the eigenvalues of the sample covariance matrix of a random
matrix X ∈ Rn×p whose entries are i.i.d. normal distributed, will be investigated
when n tends to infinity. Firstly p is thought to be fixed (Wigner’s semicircular
law) and then p is thought to tend to infinity as well, under the condition that
the ratio n

p tends to a positive costant γ ∈ (0,∞) (Marčenko-Pastur’s law).
Some simulations in R will be performed in order to confirm the theoretical

results.

2.1 Wigner matrices and Wishart ensemble
In this section Wigner matrices and the Wishart ensemble will be presented, in
order to be ready in the next sections to discuss about the limit distribution of
the eigenvalues of S.

2.1.1 Haar measure

A random matrix can be defined as a probability space (Ω,F ,P), where Ω is
the sample space of matrices of interest, F is a σ-algebra on Ω, i.e., a family of
measurable subsets of Ω, F ⊆ 2Ω, and P is a measure defined on Ω.
When a group Ω formed by an ensemble of random matrices is compact or
locally compact, the Haar measure is a common used probability measure PH
on Ω and it is translation invariant. For any measurable set B ∈ F and any
elementM∈ Ω.

PH(MB) = PH(B), whereMB = {MN |N ∈ B}.

Ferrari, 2016. 13
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2.1.2 Wigner matrices
Wigner matrices were introduced by the Hungarian American theoretical physi-
cist and mathematician Eugene Wigner in order to study the statistics of the
excited energy levels of heavy nuclei.

A Wigner matrix is a square n× n symmetric (or Hermitian in the complex
case, but this is not of our interest) random matrix A = (Aij) with i.i.d. entries
above the diagonal:

Aij = Aji, 1 ≤ i ≤ j ≤ n, {Aij}i≤j - i.i.d. real random variables.

Let us assume thatX1, . . . ,Xn are i.i.d. samples drawn from a p-dimensional
multivariate normal population N(µ,1p). When n tends to infinity, the sample
covariance matrix S = 1

n

∑n
i=1(Xi − X)(Xi − X)T → 1p and

√
n(S − 1p) →√

pWp. It can be seen that the entries above the main diagonal of √pWp are
i.i.d. N (0, 1), while the entries on the diagonal are iid N (0, 2). Such a matrix
is called the (standard) Gaussian matrix or Wigner matrix.

2.1.3 Wishart ensemble
We already know the definition of the sample covariance matrix for a random
matrix X = [X1,X2, . . . ,Xn]T , where Xi = (Xi1, Xi2, . . . , Xip)T . In most cases
of spectral analysis of large dimensional random matrices, though, the sample
covariance matrix is simply defined as

S = 1
n

n∑
i=1

XiXT
i = 1

n
X TX .

Indeed, when we are in large dimensions, the projection of the vectors
Y1,Y2, . . . ,Yp on L⊥(1) ⊂ Rn−1 almost coincides with the vectors theirselves
in Rn. Hence, HX ' X .

Suppose that {Xij}i,j=1,2,... is a double array of i.i.d. real random variables
with zero mean and variance σ2. The symmetrization of X by multiplying by
its transpose X T , gives us the ensemble of the positive definite matrices X TX ,
which coincides up to a constant with a family of sample covariance matrices.
This ensemble was named after Wishart who first computed the joint element
density of X TX , which has a Wishart distribution, as already seen in the pre-
vious chapter.

It is in our interest to consider what in literature is known as the the Wishart
ensemble of real sample covariance matrices. This is the case when X is a n× p
real random matrix with np i.i.d. entries N (0, 1).

Xij ∼ N (0, 1), 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Let us now study the joint density of the eigenvalues of a Wishart matrix.
The following theorem can be found in Muirhead [12] (1982, Th.3.2.17).
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Theorem 3. If A is a p× p positive definite random matrix with density func-
tion f(A) then the joint density function of the eigenvalues l1 > l2 > · · · > lp > 0
of A is

πp
2/2

Γp(p/2)
∏

1≤i≤j≤p
(li − lj)

∫
Op
f(HLHT )(dH).

Here dH stands for the Haar invariant probability measure on the orthogonal
group Op, normalized so that ∫

Op
(dH) = 1.

Let us now apply this general theorem to the Wishart case (Muirhead,
Th.3.2.18).

Theorem 4. If A ∼Wp(Σ, n) with n > p− 1, the joint density of the eigenval-
ues l1, l2, . . . , lp of A is

πp
2/22−np/2(detΣ)−n/2

Γp(n2 )Γp(p2 )

p∏
i=1

l
(n−p−1)/2
i

p∏
j>i

(li − lj)
∫
Op
etr(−1

2Σ−1HLHT )(dH).

This formula can be obtained by substituing f(A) in the previous theorem with
the Wishart density function and by reminding that detA =

∏p
j=1 li.

In the null case, when Σ = λ1, we have that∫
Op
etr(− 1

2λHLH
T )(dH) = etr(− 1

2λL)
∫
Op

(dH) = e
(− 1

2λ

∑p

j=1
li).

Hence, the joint density distribution of the eigenvalues for the null Wishart ma-
trix A ∼Wp(λ1p, n)is

πp
2/22−np/2(detΣ)−n/2

Γp(n2 )Γp(p2 ) e(− 1
2λ

∑p

1=1
li)

p∏
i=1

l
(n−p−1)/2
i

p∏
j>i

(li − lj).

2.2 Distribution of the largest eigenvalue: sam-
ple coviarance matrices

We already know that if X ∼ Nn×p(µ,Σ), the sample covariance matrix S =
1
nX

THX has the Wishart distributionWp( 1
nΣ, n−1). Hence, we can just study

the distribution of the eigenvalues of A = nS ∼ Wp(Σ, ñ), where ñ = n − 1,
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keeping in mind that its eigenvalues are just n times greater than those of S.

In this context, let us formulate Theorem 4 in the following way:

Theorem 4. The joint density function of the eigenvalues l1 > l2 > · · · > lp > 0
of a sample covariance matrix S ∼Wp(Σ, n) (n > p) is of the following form

πp
2/2(detΣ)−ñ/2

Γp( ñ2 )Γp(p2 )
ñ−ñp/2

2

p∏
i=1

l
(ñ−p−1)/2
i

p∏
j>i

(li − lj)
∫
Op
etr(−1

2nΣ−1HLHT )(dH).

This is the formula expressed in Theorem 4, with just a correction for n and
the substitution of all li by ñli.

Following Muirhead (Th. 7.2.12), by averaging over the group Op we get
the equality

etr(− 1
2 ñΣ−1HLHT ) = 0F0(− 1

2 ñL,Σ
−1),

where 0F0(·, ·) is the (two matrix) multivariate hypergeometric function. Thus,
the joint density function of the eigenvalues of S is

πp
2/2(detΣ)−ñ/2

Γp( ñ2 )Γp(p2 )
ñ−ñp/2

2

p∏
i=1

l
(ñ−p−1)/2
i

p∏
j>i

(li − lj)0F0(−1
2 ñL,Σ

−1).

The distribution of the largest eigenvalue - which is measure of the variabil-
ity in the data explained by the first principal component as we already know
- can also be expressed in terms of the hypergeometric function of a matrix
argument. The following theorem is formulated in Murihead as a corollary of a
more general result regarding the positive definite matrices.

Theorem 5. If l1 is the largest eigenvalue of S, then the cumulative distri-
bution function of l1 can be expressed in the form

P(l1 < x) =
Γp(p+1

2 )
Γp(n+p

2 )
det( ñ2 Σ−1)ñ/21 F1( ñ2 ; n+ p

2 ;−n2xΣ−1).

2.3 Convergence of eigenvalues
It is finally time to analyze the limit distribution of the eigenvalues of S.



2.3. Convergence of eigenvalues 17

2.3.1 The Wigner semicircular law
Dealing with eigenvalues’ convergence in sample covariance matrices concerns
not only the convergence’s type (weak convergence, almost surely convergence,
convergence in probability), but also the conditions imposed on the dimensions
of the data matrix.

Following Anderson (2003) [1], in the case of a multinormal population, the
asymptotic distribution of eigenvalues of a covariance matrix is expressed in the
following theorem.

Theorem 6. Suppose S is a p × p sample covariance matrix correspond-
ing to a data matrix drawn from Nn×p(µ,Σ). Asymptotically, the eigenvalues
l1, l2, . . . , lp of S are distributed as follows:

√
n(lj − λj)

dist−−→ N(0, 2λ2
j ), for j = 1, . . . , p,

where λ1, λ2, . . . , λp are the (distinct) eigenvalues of the population covariance
matrix Σ.

In this theorem, p is considered as a fixed value. The convergence is meant
in the weak sense, i.e., the pointwise convergence of the cumulative distribution
function of

√
n(lj − λj) to 1

2
√
πλj

e
− x2

4λj occurs.

Let #E be the cardinality of the set E, and 1(E) be the event indicator
function, such that

1(E) =
{

1, if E is true
0, otherwise.

Definition 8. Let A be a p × p matrix with eigenvalues λ1, λ2, . . . , λp. If
all these eigenvalues are real, we can define the so called empirical distribution
function

FA(x) = 1
p

#{j ≤ p | lj ≤ x} = 1
p

p∑
j=1

1(lj ≤ x).

Given a sequence of random matrices {An}, it is interesting to investigate the
convergence of the sequence of empirical spectral distributions {FAn}. The
limit distribution F is called the limiting spectral distribution of the sequence
{An}.

Reminding that the derivative of the event indicator function is the Dirac delta
function δ(x), the probability density function of FA(x) is
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fA(x) = 1
p

p∑
j=1

δ(x− li).

Wigner developed the semicircular law by studying the spectral analysis of
the large dimensional Wigner matrix. He proved that the limit of the expected
empirical spectral distribution of a n× n Wigner matrix, normalized by 1/

√
n,

when n goes to infinity, is the semicircular law F , whose density is given by

F ′(x) =
{

1
2π
√

4− x2, if |x| ≤ 2
0, otherwise.

(2.1)

This is an interesting result concerning a limit distribution of eigenvalues
of a sequence of p × p Wigner matrices, which can be seen as a sequence of√
n(S − 1p), with n (the number of rows of our data matrix X ) "fixed" to

infinity, while p (the number of columns) tends to infinity.
Let us in the next subsection see what happens when both of the dimensions

are allowed to tend to infinity.

2.3.2 Marčenko-Pastur distribution
In spectral analysis of large dimensional sample covariance matrices, it is usual
to assume that the dimension n goes to infinity proportionally to p, i.e., n =
n(p)→∞, s.t. n

p → γ ∈ (0,∞).

In this context, the first success in finding the limiting spectral distribution
of the large sample covariance matrix S, was due to Marčenko and Pastur.

Theorem 7. (Marčenko-Pastur 1967) Suppose that xij are i.i.d. real ran-
dom variables with mean zero and variance σ2. Also assume that n/p → γ ∈
(0,∞). Then, with probability one, the empirical distribution function FS of
the eigenvalues l(p)1 , l

(p)
2 , . . . , l

(p)
p of the p× p sample covariance matrix S tends

to the so called Marčenko-Pastur law, whose density is defined as follows.

fSγ (x) =
{

γ
2πxσ2

√
(b− x)(x− a), if a ≤ x ≤ b,

0, otherwise,
(2.2)

and has a point mass 1 − γ at the origin if γ ∈ (0, 1), where a = σ2(1 − 1√
γ )2

and b = σ2(1 + 1√
γ )2. Let be noticed that this theorem holds regardless of the

choice of the entry distribution.
If σ2 = 1, the M-P law is said to be the standard M-P law.
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The investigation on limits of extreme eigenvalues is important in many
areas, such as in signal processing, in pattern recognition and edge detection.
It is known that

l
(p)
1 → b = σ2

(
1 + 1
√
γ

)2
, (2.3)

i.e., the largest eigenvalue l(p)1 of a sample covariance matrix tends almost surely
to the right edge of the domain of the Marčenko-Pastur law, when γ ∈ (0,∞)
under the assumption of the existence of the fourth moment of the underlying
distribution. This condition is not only sufficient, but also necessary thanks
to the work developed by Bai, Silverstein and Yin in [4] who proved that the
limsup of the largest eigenvalue of a sample covariance matrix is infinity with
probability 1 if the fourth moment of the underlying distribution is not finite.

Let us now ask what is the limit of the smallest eigenvalue of a large sam-
ple covariance matrix. The most current answer is due to Bai and Yin in [3],
who proved that

l
(p)
min{n,p} → a = σ2

(
1− 1
√
γ

)2
, (2.4)

i.e., the smallest (non zero) eigenvalue l(p)min{n,p} of a sample covariance matrix
tends almost surely to the left edge of the domain of the Marčenko-Pastur
law, when n

p → γ ∈ (0,∞) under the existence of the fourth moment of the
underlying distribution. Let be noticed that, if n < p, then l(p)n+1 = l

(p)
n+2 = · · · =

l
(p)
p = 0.

The almost sure convergence means here, that, for instance for the largest
eigenvalue,

P

(
lim

n/p→γ
l
(p)
1 = σ2(1 + 1

√
γ

)2
)

= 1.

2.4 Results through simulations in R
So far, we have discussed about a few theoretical results about the limit dis-
tribution of the eigenvalues of a sample covariance matrix S related to a ran-
dom matrix X . In this section we are going to show some simulations in R
to have a graphical representation of these theoretical results, assuming that
Xij

iid∼ N(0, σ2 = 1).
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2.4.1 M-P law: probability distribution function
Figure (2.1) represents the histograms of the eigenvalues l1, l2, . . . , lp of sample
covariance matrices when p = 1000 and respectively n = {300, 600, 900}. In
each figure it is also drawn in blue color the Marčenko-Pastur theoretical den-
sity, with a mass point in x = 0, as γ < 1.

density eigenvalues S

lambda

D
en

si
ty

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

n = 300
p = 1000

density eigenvalues S

lambda

D
en

si
ty

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

n = 600
p = 1000

density eigenvalues S

lambda

D
en

si
ty

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

n = 900
p = 1000

Figure 2.1: distribution of eigenvalues of S for γ = {0.3; 0.6; 0.9}.

It is noticeable that the results from the simulations follow the already known
theoretical results.

Figure (2.2), the same content is presented, but when the number of columns
of X is respectively n = {3000; 10000; 17000}. So, this time γ > 1 and there is
no mass point in x = 0.
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Figure 2.2: distribution of eigenvalues of S for γ = {3; 10; 17}.

Also in this case it is noticeable that the results from simulations fit pretty
well the theory. Let be noticed that, the higher is γ and the more the eigenval-
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ues distribute around the value x = 1. This confirms, indeed, our expectations,
as we know that S converges to Σ = 1p, whose all eigenvalues λ1, λ2, . . . , λp are
equal to one.

Figure (2.3) shows the density curves of the Marčenko-Pastur distribution
when γ varies respectively from 0.1 to 1 and from 1 to 20.
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Figure 2.3: Marčenko-Pastur density curves depending on γ values.

2.4.2 Convergence of the largest eigenvalue and of the
smallest eigenvalue

Figure (2.4), the convergence of the largest eigenvalue of S and of the smallest
one is analyzed. In particular, it is studied the case γ = n

p = 3.

The simulation consists of 70 iterations. The first iteration starts with p = 5
and n = γ · p = 3 · 5 = 15. At the i-th iteration, the largest eigenvalue and
the smallest one of the sample covariance matrix S of a random normal matrix
with ni = n · i rows and pi = p · i columns, are computed, 100 times in the same
way and in the end it is taken the mean for both the largest eigenvalue and the
smallest one, out of the 100 samples. Hence, in the last iteration n70 = 1050
and p70 = 350.

In this algorithm we have set γ = n
p = 3; a sequence {pi}70

i=1, such that
p = (5, 10, . . . , 350); and a sequence {ni}70

i=1, n = (γ · p1, γ · p2, . . . , γ · p70) =
(15, 30, . . . , 1050), in such a way that our limit conditions are p → “∞” and
n(p)
p = γ·p

p = γ “→” γ = 3. In this settings, we can see that l(p)1 converges
to the right edge of the support of the Marčenko-Pastur law b = (1 + 1√

γ )2;
while l(p)p converges to the left edge of the support of the Marčenko-Pastur law
a = (1− 1√

γ )2, confirming the theoretical results (2.3) and (2.4).
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Chapter 3

Distribution of
antieigenvalues and sample
covariance matrices

In this chapter, it will be presented the already known theory about the antieigen-
values, introduced almost 50 years ago by Karl Gustafson, now professor at the
department of Mathematics at the University of Colorado Boulder. So far,
antieigenvalues have been analyzed in a context of fixed matrices. Our purpose
is to extend this theory in a context of random matrices, trying to set a rule
for the limit distribution of the antieigenvalues (or at least for the first one), in
analogy with what we have done in the previuos chapter for the eigenvalues.

3.1 Introduction
In Karl Gustafson’s work “The angle of an operator and positive operator prod-
ucts” (1968, [5]), he introduced two new quantities, namely the angle of an
operator and the minimum of a certain (norm) function related to tangent func-
tionals.

Definition 9. Let B : X → X be an operator, where X is a complex Ba-
nach space, then

φR(B) = cos−1
(

inf
x∈D(B)

Re〈Bx,x〉
‖Bx‖‖x‖

)
, (3.1)

is called the (real) angle of B. It measures the maximum (real) turning effect
of B.

Definition 10. Let ε ≥ 0, g(ε, B) = ‖εB + 1‖, then

gm(B) = min
ε
g(ε, B). (3.2)

Ferrari, 2016. 23
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At the Los Angeles Inequalities Symposium in 1969 ([6]) Gustafson intro-
duced the name antieigenvalues to indicate the following quantities.

Definition 11. Let B be defined as above, then

µk(B) = inf
x⊥{x1,...,xk−1}

Re〈Bx,x〉
‖Bx‖‖x‖ , x s.t x ∈ D(B) \ {0}, Bx 6= 0. (3.3)

are called the antieigenvalues of B, while x1,x2, . . . ,xk are the corresponding
antieigenvectors.

In particular, by looking at Definition 9, we can notice that the first (small-
est) antieigenvalue

µ1(B) = inf
x∈D(B)

Re〈Bx,x〉
‖Bx‖‖x‖ . (3.4)

is the cosine of the (real) angle of the operator B.

µ1(B) = cos (φR(B)) .

In short, we can write that the first antieigenvalue µ1(B) of an operator B is its
cosine, i.e., µ1(B) = cosB.

Coming back to Definition 10, the quantity gm(B) = minε ‖εB + 1‖ becomes
more interesting when it is seen that

gm(−B) = sin (φR(B)) (= sinB) .

That is why it is introduced the quantity

ν1(B) = gm(−B) = min
ε
‖εB − 1‖ = sinB. (3.5)

Let B be a p× p symmetric positive definite matrix, then the following relation
is satisfied.

ν1(B)2 + µ1(B)2 = sin2(B) + cos2(B) = 1.

In addition, the solution of (3.4) is

µ1 =
2
√
λ1λp

λ1 + λp
, (3.6)

and it is attained at the two maximally turned first antieigenvectors:

x1,2 =
√
λp√

λ1 + λp
e1 ±

√
λ1√

λ1 + λp
ep,
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where λ1 and λp are respectively the largest and the smallest eigenvalue of B,
while e1 and ep are their corresponding eigenvectors.

Moreover, the solution of (3.3), is

µi =
2
√
λiλp−i+1

λi + λp−i+1
, i = {1, . . . , bp2c}. (3.7)

If p is odd, then µ p+1
2

= 1.

In [7], Gustafson gives an interesting motivation for the choice of the name
“antieigenvalues”. It comes from the fact that as much as eigenvalues are mea-
sures of the amount of dilation that a matrix B induces in those directions which
are not turned, namely the eigenvectors, then the antieigenvalues are measures
of the amount of rotation that a matrix B induces in those directions which are
turned the most, namely the antieigenvectors.

In (1.1.3) we have expressed the meaning of the eigenvalues and eigenvectors
of a matrix B, as the result of an optimization problem. Antieigenvalues and
antieigenvectors are the result of an optimization problem as well: we ask the
question what is the p-vector such that the (real) angle of B defined in (3.1)
is maximum, or its cosine is minimum. The answer to this question is the first
antieigenvector of B, and the minimum value of the cosine of the (real) angle
B, namely the cosine of B, is the first antieigenvalue. Then we ask the same
question, but in a subspace of Rp ortoghonal to the space generated by the first
antieigenvector: the answer is the second antieigenvector and the minimim value
of the new object function is the second antieigenvalue, and so on.

3.2 Chandler Davis’ two contributions
In [7] Gustafson reports Chadler Davis’ two principal contributions to the the-
ory of the antieigenvalues. The first one is his relation of the antieigenvalues to
the theory of the shell of an operator. The second one, perhaps more important,
is his emphasis on estimating the antieigenvalues through pairs of eigenvalues.

According to Davis, the shell s(B) of an operator B, defined in a Hilbert
space, is the set of all values (ξ, η, h) obtained from all

ξ + iη = 2〈Bx,x〉
‖Bx‖2 + ‖x‖2 , h = ‖Bx‖

2 − ‖x‖2
‖Bx‖2 + ‖x‖2 , x 6= 0.

The set s(B) is a convex subset of the unit ball ξ2 + η2 + h2 ≤ 1. In the finite
dimensional case, the eigenvectors x of B are the intersection of s(B) with the
unit sphere ξ2 + η2 + h2 = 1. Let us now investigate the connection between
the shells and the antieigenvalues.

1− h2 = 1−
(
‖Bx‖2 − ‖x‖2
‖Bx‖2 + ‖x‖2

)
= 4‖Bx‖2‖x‖2

(‖Bx‖2 + ‖x‖2)2
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from which √
1− h2 = 2‖Bx‖‖x‖

‖Bx‖2 + ‖x‖2 = (ξ + iη)‖Bx‖‖x‖
〈Bx,x〉 .

Thus,

µ1(B) = inf
x∈D(B)

Re〈Bx,x〉
‖Bx‖‖x‖ = inf

x∈D(B)

Re(ξ + iη)√
1− h2

= inf
x∈D(B)

ξ√
1− h2

.

Definition 12. Let m(B) be m(B) = inf Re〈Bx,x〉. Then, B is called ac-
cretive if m(B) ≥ 0, strongly accretive if m(B) > 0.

If we consider finite dimensional strictly accretive operators B, the shell
s(B) is a convex polygon. The autoeigenvectors are the vectors that generate
the corners of s(B). Hence, upper bounds for the first antieigenvalue µ1 could
be given in terms of the sides of this polygon. For normal operators, the exact
value of µ1 depends on a pair of eigenvalues of B and all total antieigenvectors
have only two nonzero components. Those componentes zi and zj satisy

|zi|2 = |λj |
|λi|+ |λj |

, |zj |2 = |λi|
|λi|+ |λj |

,

where λi and λj are a pair of eigenvalues of B.

3.3 The variational characterization
In this section the Euler equation for the antieigenvalues will be presented.
For simplicity, let B be a strongly accretive bounded operator on a Hilbert
space. Our antieigenvalues are of the following form:

µk = inf
H
µ(x), µ(x) = Re

〈Bx,x〉
‖Bx‖‖x‖ ,

where H = L⊥{x1,x2, . . . ,xk−1}, subset of the Hilbert space. This is an op-
timization problem: we have to minimize an object function within a certain
space. To find the Euler equation, we consider the following differential quantity.

dµ
dy

∣∣∣∣
ε=0

= lim
ε→0

1
ε

(
Re〈B(x + εy,x + εy〉)

〈B(x + εy), B(x + εy)〉1/2〈x + εy,x + εy〉1/2
−

− Re〈Bx,x〉
〈Bx, Bx〉1/2〈x,x〉1/2

)
.

Following the steps in [7], we lead to the following Euler equation:

2‖Bx‖2(ReB)x−Re〈Bx,x〉
[
B∗B + ‖Bx‖2

]
x = 0, ‖x‖ = 1.
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In a “normalized” form, it may be written as

2(ReB)x
Re〈Bx,x〉 −

B∗Bx
‖Bx‖2 − x = 0.

Definition 13. An operator B is said to be self-adjoint if 〈Ax,y〉 = 〈x, Ay〉,
∀x,y ∈ X.

If B is a self-adjoint operator, the Euler equation becomes

B2x
〈B2x,x〉 −

2Bx
〈Bx,x〉 + x = 0.

Thus, we can conclude this section with the next theorem.

Theorem 8. The Euler equation for the antieigenvalue functional

µ(x) = Re〈Bx,x〉
‖Bx‖‖x‖

is

2‖Bx‖2‖x‖2(ReB)x− ‖x‖2Re〈Bx,x〉B∗Bx− ‖Bx‖2Re〈Bx,x〉x = 0.

3.4 Antieigenvalues and numerical analysis
In optimization theory, the method of the steepest descent is one of the basic
methods, used to find the minimum of a given function, by performing the
following basic algorithm.

xk+1 = xk − αk [∇f(xk)]T .

Let us focus on the quadratic case, where the function f can be expressed
with the following form.

f(x) = 〈x, Ax〉2 − 〈x,b〉,

where A is a p × p symmetric positive definite matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λp > 0.

In this case, the point of minimum x∗ solves the linear system

Ax∗ = b.
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The algorithm for steepest descent is an iterative method, which is important for
numerically solving large linear systems. In the case of quadratic minimization,
this algorithm is the following.

xk+1 = xk −
‖yk‖2yk
〈Ayk,yk〉

,

where yk = Axk − b is called the residual error. The error EA(x) that we
commit at each iteration k, whatever is the initial point x0, is the following.

EA(xk) = f(xk)− f(x∗) = f(xk)− 〈x
∗, Ax∗〉

2 + 〈x∗,b〉 =

= f(xk)− 〈x
∗, Ax∗〉

2 + 〈x∗, Ax∗〉 = f(xk) + 〈x
∗, Ax∗〉

2 .

At each iteration, we have the following error bound:

EA(xk+1) ≤
(

1− 4λ1λp
(λ1 + λp)2

)
EA(xk). (3.8)

In the right side of the inequality, the square of the first antieigenvalue of A
appears. Hence, we can write

EA(xk+1) ≤
[
1− µ2

1(A)
]
EA(xk) =

= (1− cos2(A))EA(xk) =
= (sin2(A))EA(xk).

This has an interesting geometrical interpretation. We know that the first
antieigenvalue measures the maximum turning capability of A. The method
of the steepest descent works fine, but the velocity of its convergence depends
on the maximum turning capability of A, i.e., the maximal distance from a vec-
tor x ∈ Rp to Ax, which is measured by sin(A). The closer to zero sin(A) is, i.e.,
the closer to 1 µ1(A) is, and the faster the convergence of the steepest descent is.

This is an example in numerical analysis where the first antieigenvalue of an
operator comes into play. We refer to [8] to see other applications to numeri-
cal analysis, wavelets, statistics, quantum mechanics, finance and optimization,
analyzed from 1966 to 2010; and to [9] for new applications to continuum me-
chanics, economics, and number theory.

3.5 Random matrix
So far we have dealt with antieigenvalues within a context of fixed matrices. Let
us now analyze the distribution of the antieigenvalues, in particular the first one,
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in the same conditions we set while studying the distribution of the eigenvalues,
so in a context of random matrices.

Why? A possible reason is explained in the next subsection.

3.5.1 Growth Curve Model
In this subsection The Growth Curve Model will be presented. It was intro-
duced in 1964 by Potthoff and Roy ([13]), and it is defined as follows.

Definition Let X ∈ Rp×N and ξ ∈ Rq×m be the observation and parameter ma-
trices, respectively; and let B ∈ Rp×q and A ∈ Rm×N be the within and between
individual design matrices, respectively. Suppose that q ≤ p and p ≤ N − r = n,
where r = rank(A). Then, the Growth Curve model is given by

X = BξA+ ε, (3.9)

where the columns of ε are assumed to be independently p-variate normally dis-
tributed with mean zero and unknown positive definite covariance matrix Σ, i.e.,

ε ∼ Np,N (0,Σ,1N ).

Here, X is thought to be a fixed matrix, representing p repeated measurements
over time for N individuals; while m is the number of groups which the N indi-
viduals are divided in, and q− 1 is the degree of the polynomial through which
we want to express the m growth curves.

Similarly to what the remark in (1.1.1) says, let PAT = AT (AAT )−1A be the
projection on L(AT ), the space generated by AT , and let H = 1N −PAT be the
projection on L⊥(AT ). Then we can define V = (HX)T (HX) = XTHTHX =
XTHX, N times the sample “covariance” matrix of X.
If B and A have full rank, the Maximum Likelihood Estimator for ξ is

ξ̂MLE = (BTV −1B)−1BTV −1XAT (AAT )−1. (3.10)

Mean and covariance for ξMLE are given in Kollo and von Rosen (2005, [10]) as

E(ξ̂MLE) = ξ,

cov(ξ̂MLE) = n− 1
n− 1− (p− q) (AAT )−1 ⊗ (BTΣ−1B)−1,

if n− 1− (p− q) > 0, where n = N −m.

As we are interested in the case where q ≤ p ≤ n, then we have n−1
n−1−(p−q) ≥ 1.
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Let us now think X to be a random matrix, to discuss about to efficiency of
ξ̂MLE when the number of individuals N is fixed, but the number of repeated
measures p grows over time. This implies that the matrix V becomes closer to
singularity. Thus, the variablity of ξ̂MLE grows and it becomes unstable.

In [14], an unweighted estimator of ξ is proposed, by considering the identity
matrix instead of V , as follows.

ξ̂ = (BTB)−1BTXAT (AAT )−1. (3.11)

This estimator is simpler than the MLE, since we do not need to calculate the
inverse of V . The distribution of this unweighted estimator is given by

ξ̂ ∼ Nq,m(ξ, (BTB)−1BTΣB(BTB)−1, (AAT )−1),

i.e., we have

E(ξ̂) = ξ,

cov(ξ̂) = (AAT )−1 ⊗ (BTB)−1BTΣB(BTB)−1.

After some simulations to compare the efficiency of the two estimators when p
grows, it is possible to show that the MLE becomes more and more unstable,
while the unweighted estimator is always close to the reality. Hence, a compar-
ison between the two estimators seems reasonable to be done.

Both ξ̂MLE and ξ̂ are unbiased. Their covariances are given by

cov(ξ̂MLE) = n− 1
n− 1− (p− q) (AAT )−1 ⊗ (BTΣ−1B)−1,

cov(ξ̂) = (AAT )−1 ⊗ (BTB)−1BTΣB(BTB)−1.

Hence, we want to compare (BTΣ−1B)−1 and (BTB)−1BTΣB(BTB)−1.

It is possible to show that

(BTΣ−1B)−1 ≤ (BTB)−1BTΣB(BTB)−1, (3.12)

where the inequality is with respect to the Lowener partial ordening, i.e., A ≤ B
if B −A is positive semidefinite.
For large n, we can notice that the unweighted estimator of ξ has a larger co-
variance than the weighted one, as expected since this is the MLE.

When p is also large, though, and q ≤ p ≤ n still holds, then

1� n− 1
n− 1− (p− q) ,
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which implies that

cov(ξ̂) < cov(ξ̂MLE).

It is possible to show that the inequality (3.12) is actually an equality if and
only if L(Σ−1B) = L(B), which happens for instance if Σ = σ21p (sphericity
assumption).
In this context, it is possible to show that

(BTB)−1BTΣB(BTB)−1 ≤ (λ1 + λp)2

4λ1λp
(BTΣ−1B)−1, (3.13)

where λ1 and λp are the largest and smallest eigenvalue of Σ.
Let us see again the fraction that appears in (3.13): this is 1

µ2
1
, where µ1 is the

first antieigenvalue of Σ!

Hence, if

1
µ2

1
= (λ1 + λp)2

4λ1λp
≤ n− 1
n− 1− (p− q) , (3.14)

then, the unweighted estimator has smaller covariance matrix then the MLE.
In other words, if the first antieigenvalue µ1 of Σ, i.e., the maximum turning
capability of Σ, is greater than a certain threshold, then the unweighted esti-
mator is a better (more stable) estimator of ξ than the MLE.

In the next section, we are going to investigate the distribution of µ1.

3.6 Simulations in R
The inequality (3.14), leads us to study the distribution of µ1, the first antieigen-
value of the sample covariance matrix S of a random matrix X ∈ Rn×p, whose
np entries are i.i.d. N(0, σ2), as S is the estimator of Σ = σ21p, exactly as we
did for the eigenvalues in Chapter 2.
We do not know any theoretical results about the distribution of µ1. Hence, we
want to perform some simulations in R and discuss the results. Without loss of
generality we assume σ2 = 1.

In analogy with the eigenvalues, we can plot histograms approximating the
distributions of the antieigenvalues when γ = n/p varies. This time, though,
we are interested only in γ > 1, because our attention is mainly focused on the
first antieigenvalue, which would be equal to zero in case γ < 1.

In Figure (3.1) the histograms of the antieigenvalues of S are shown, when
p = 1000 and respectively n = {3000, 8000, 14000}. In analogy with the
Marčenko-Pastur density functions for γ < 1, it seems that it could be pos-
sible to find a function, depending on γ that fits these histograms, with a mass
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Figure 3.1: distribution of antieigenvalues of S for γ = {3; 8; 14}.

point in x = 1. A further research for this thesis could be trying to find the
expression of such a function.

As already noticed for the eigenvalues, we know that S converges to Σ = 1p,
whose eigenvalues λ1, λ2, . . . , λp are equal to one. By looking at the formulas
for the antieiganvalues, this implies that all the antieigenvalues of Σ are equal
to one. Indeed, the higher is γ and we can see that the more the antieigenvalues
distribute next to the value x = 1.

3.6.1 Convergence of the first antieigenvalue
In the previous section, we have dealt with the limit distribution of the largest
and of the smallest eigenvalues of S, confirming the theoretical results by sim-
ulations.

By exploiting the results (2.3) and (2.4), i.e., λ(p)
1 → b and λ

(p)
p → a (γ >

1⇒ p < n⇒ min{n, p} = p), and reminding that µ1 = 2
√
λ1λp

λ1+λp , we expect that

µ
(p)
1 → 2

√
ab

a+ b
= γ − 1
γ + 1 . (3.15)

This is an important result, which says to us that when n and p go to infi-
nite, and n

p tends to a positive constant γ, if γ is almost one, i.e., p / n, then
µ

(p)
1 tends to zero; if γ, instead, is really high, i.e., p� n, then µ(p)

1 tends to one.

Let us verify by simulations this result.

In Figure (3.2), the convergence of the first antieigenvalue of S is analyzed.
In particular, it is studied the case γ = n

p = 3. This means that the limit value
in (3.15) is equal to 0.5.

The simulation consists of 70 iterations and it is the same as the one we have
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Figure 3.2: Convergence of the first antieigenvalue of S.

seen to study the convergence of the largest and of the smallest eigenvalues, in
the previous chapter. This time, though, we are interested in the first antieigen-
value.

We can see that µ(p)
1 seems to converge to the value 0.5.

3.6.2 The first antieigenvalue and the Beta distribution
In this subsection we are going to analyze the distribution of the first antieigen-
value. In Figure (3.3), the distribution of 1000 sampled µ1’s is shown, when
n = 100 and respectively p = {5, 50, 80}.

By computing the same distributions for different values of p, it can be noticed
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Figure 3.3: distribution of the first antieigenvalue of S for n = 100 and p =
{5, 50, 80} respectively.

that µ(p)
1 seems to follow a Beta distribution, whose parameters (α, β) depend

on the values of p. In the three pictures, the histogram of the µ(p)
1 ’s is shown,

but also the density function of a Beta(α(p), β(p)), where α(p) and β(p) are cal-
culated through the method of the moments.

It seems that when p � n, then α(p) � β(p); while when p / n, then α(p) �
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β(p). In the next subsection we are going to investigate the existence of a pos-
sible law that describes the relation between α(p) and β(p).

3.6.3 The elliptical law
In Figure (3.4), it is presented the result of the following algorithm.

1. Set n = 100 and p = {2, 4, . . . , 98}.

2. For each value of p, do 200 times the following procedure: sample 500
times the first antieigenvalue µ1 of the sample covariance matrix S of the
random matrix X ∈ Rn×p, whose np entries are i.i.d. N(0, 1), and estimate
the parameters α(p) and β(p) through the method of the moments.

3. Now, for each value of p, we have 200 values of the estimated α(p) and
β(p). Compute the mean, the empirical quantile .025 and the empirical
quantile .975 of both of them.

4. Draw in the space (α, β), the mean values in red colour, the .025 quantile
in blue colour, and the 0.975 quantile in purple colour, so that it is possible
to see the 95% empirical interval of confidence for α and β for each p.
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Figure 3.4: Estimation of α(p) and β(p) thorugh the method of the moments,
for n = 100 and p = {2, 4, . . . , 98}.

The indexes {1, 2, . . . , 49} are the 49 iterations related to {p(1) = 2, p(2) =
4, . . . , p(49) = 98}.
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It is interesting to notice that mean of the estimations of the points (α(p), β(p))
seems to follow an elliptical curve. Hence, let us try to express an elliptical for-
mula that best fits the red line.
A parametric formula in the variable t to express an ellipse, in a xOy referment
system, is (

x(t)
y(t)

)
=
(
acos(t)
bsin(t)

)
, t ∈ [0, 2π],

where a is the length of the semi x-axis, while b is the length of the semi y-axis.
If an ellipse is translated, i.e., its center is not in O(0, 0), but in C(xc, yc), and if
it is rotated, i.e., the angle between the referement system that is parallel to its
axis and the original xOy referement system is equal to α, then the parametric
equation for such an ellipse is the following.(

x(t)
y(t)

)
=
(
xc
yc

)
+
(
cos(α) −sin(α
sin(α) cos(α)

)(
acos(t)
bsin(t)

)
, t ∈ [0, 2π]. (3.16)
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Figure 3.5: Estimation of α(p) and β(p) thorugh the method of the moments,
for n = 100 and p = {2, 4, . . . , 98}. Parametric equation for the green ellipse.

In order to find our desired ellipse, we need xc, yc, α, a and b. In Figure
(3.5), it is shown in green colour, the elliptical parametric equation estimated
by following the next steps.

1. Set the values xc and yc, by looking at the graphics and figuring out where
the real (xc, yc) could be approximately.

2. Let us now think to be in a referement system, whose center is C(xc, yc),
and rotated, such to see the ellipse parallel to the new axis: let us call
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D,A,S,B the four points of intersection between the ellipse and our new
axis, respectively at 0, π/2, π, and 3π/2 degrees. Set the values xd and
yd, xa and ya, by looking at the graphics and figuring out where the real
D and A could be approximately.

3. Calculate the angle between the segments CD and CA. If it is not very
close to π/2, then repeat step 1,2.

4. Let us call P, the point (xc + 1, yc). Calculate the angle between the
segments CD and CP : this is α.

5. Compute a =
√

(xd − xc)2 + (yd − yc)2 and b =
√

(xa − xc)2 + (ya − yc)2.
Draw the ellipse by following the equation (3.16).

6. Repeat steps 1, 2, 3, 4, 5 by changing each value, in order to find an ellipse
that better fits the red line.

The following values are the ones I got to draw the green ellipse in Figure (3.5):

xc = 77.7
yc = 186.5
xd = 135.9
yd = 200.5
xa = 35.5
ya = 364

angle(CA,CD) = 89, 84807
α = 13, 52552
a = 59, 86017
b = 182.4475

Now, we have the parametric equation in t, that approximates pretty well the
red line. Though, we are not interested in an equation in t. We are interested
in having the equation of this ellipse in function of p. Hence, let us try to find
a function t = t(p).
Our idea is to associate to each value of p, that value of t ∈ [0, 2π] such that the
distance between the red point associated to p and the green point associated to
t is the minimum one. The next table shows the results of this idea, where the
first column represents the values of p, the second column represents the values
of t(p) and the third column represents the associated minimum Euclidean dis-
tance.

p t(p) dist p t(p) dist p t(p) dist p t(p) dist
2 4.45 134 16 5.26 0.69 30 5.76 0.97 44 6.23 1.22
4 4.51 34.7 18 5.34 0.10 32 5.82 1.00 46 0.01 1.71
6 4.66 0.16 20 5.42 0.68 34 5.89 2.41 48 0.08 0.36
8 4.80 14.3 22 5.49 1.60 36 5.96 4.10 50 0.15 0.37
10 4.97 11.1 24 5.56 4.33 38 6.03 1.80 52 0.22 0.03
12 5.08 10.1 26 5.62 0.07 40 6.09 2.43 54 0.29 0.53
14 5.18 1.74 28 5.69 3.36 42 6.16 2.09 56 0.36 0.73
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p t(p) dist p t(p) dist p t(p) dist
58 0.43 2.61 72 0.99 4.22 86 1.54 143.4
60 0.51 0.20 74 1.09 23.28 88 1.63 45.9
62 0.58 0.96 76 1.19 64.00 90 1.71 37.5
64 0.66 0.58 78 1.26 60.5 92 1.83 16.2
66 0.71 14.06 80 1.34 55.4 94 2.03 0.42
68 0.83 4.22 82 1.41 68.5 96 2.26 0.41
70 0.90 0.20 84 1.48 94.72 98 2.55 4.33

If the minimum distance is high, it means that the corresponding green and red
points are far away from each other: for that value of p, the green ellipse is not a
very good approximation of the red curve. The idea is to draw the green ellipse
in such a way that the values of p in the middle are well fitted, without taking
care so much of the values of p close to the border {0, 100}.

Now, the range of values t ∈ [0, 2π] is just arbitrary: we could start from
any point t and finish in t + 2π. In our case we can start in t(p = 2) − 2π =
4.45− 2π = −1.84 and finish in t(p = 2) = 4.45. Actually, we are not interested
in all the green ellipse, but only in the part of it that fits the red line. Hence,
we can stop at t(p = 98) = 2.55.
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Figure 3.6: Estimation of α(p) and β(p) thorugh the method of the moments,
for n = 100 and p = {2, 4, . . . , 98}. Parametric equation for the green ellipse.

In Figure (3.6) our green ellipse is shown for t ∈ [−1.85, 2.60].

In Figure (3.7), the 49 points (p, t(p)) are shown. The aim is to find an ex-
plicit function for t = t(p).
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Figure 3.7: paramater t in function of p.

We can notice that, if we are not interested in border values of p, a good
approximation of t = t(p) could be a simple line. In general, a tangent curve
seems to be the best option. Let us try with both of these ideas.

Linear method

In order to find the two parameters that define our desired line, we can ex-
ploit the command lm() in R, to perform a linear regression by considering
only the values {p(7) = 14, p(8) = 16, . . . , p(44) = 88}. The output parame-
ters are β0 = −1.634893, β1 = 0.03651494. Hence, our desired line could be
t = t(p) = β1p+ β0, which is shown in figure (3.8).
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Figure 3.8: paramater t in function of p.
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We have found a rule to estimate (α(p), β(p)), ∀p ∈ (0, 100).

(
α̂(p)
β̂(p)

)
=
(
xc
yc

)
+
(
cos(α) −sin(α
sin(α) cos(α)

)(
a · cos(mp+ q)
b · sin(mp+ q)

)
, (3.17)

where xc = 77.7, yc = 186.5, α = 13.52552◦, a = 59.86017, b = 182.4475,
m = 0.03651494, q = −1.634893.
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Figure 3.9: Distance between the estimated values of (α(p), β(p)) and the “real”
ones. Linear method.

In order to estimate the efficiency of this rule, let us estimate (α(p), β(p)), for
p = {2, 4, . . . , 98} and compare them to the “real” ones. In Figure (3.9), we
can see the distance between the red points, corresponding to the “real” values,
and the green points, corresponding to the estimated ones through the linear
method. We can notice that for intermediate values of p, the estimation seems
to be pretty good, while for values of p close to the border the estimation seems
to be quite rough.

Tangent method

Let us try to approximate t = t(p) with a tangent curve depending on three
parameters: t = t(p) = k1tan[k2(p − k3)]. After some attempts we found that
k1 = 1.62, k2 = 0.0195 and k3 = 45 seem to be good values.

In Figure (3.10), such a curve is shown.

We have found a rule to estimate (α(p), β(p)), ∀p ∈ (0, 100).
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Figure 3.10: paramater t in function of p.

(
α̂(p)
β̂(p)

)
=
(
xc
yc

)
+
(
cos(α) −sin(α
sin(α) cos(α)

)(
a · cos(k1tan[k2(p− k3)])
b · sin(k1tan[k2(p− k3)])

)
, (3.18)

where k1 = 1.62, k2 = 0.0195, k3 = 45.

In order to estimate the efficiency of this rule, let us estimate (α(p), β(p)), for
p = {2, 4, . . . , 98} and compare them to the “real” ones.
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Figure 3.11: Distance between the estimated values of (α(p), β(p)) and the “real”
ones.

In Figure (3.11), we can see the distance between the red points, corresponding
to the “real” values, and the green points, corresponding to the estimated ones
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through the tangent method. We can notice that for intermediate values of p,
the estimation seems to be similar to the linear method, while for values of p
close to the border the estimation seems to be much better.

Efficiency of the Elliptical Law
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Figure 3.12: Estimation of Beta(α, β) through linear method and tangent
method. Comparison to reality.
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It is now time to verify the goodness of fit of the elliptical law, for both
the linear method and the tangent one. Let us fix n = 100 and sample 1000
times µ1, for different values of p. In Figure (3.12), it is shown the histogram of
the 1000 samples, the beta density function in red with parameters estimated
through the linear method, and the green one through the tangent method, for
some values of p.

We can notice that when p assumes intermediate values, then the estima-
tions from both of the methods seem to be pretty good. When p assumes values
close to the border, the linear method seems to be not so close to the reality,
while the tangent method seems to be still good.

We have seen that the elliptical law estimates in a good way the parameters
α and β of the Beta distribution where µ1 seems to come from, when n is fixed
and equal to 100. A natural question now is whether this elliptical law holds
∀γ = n

p , or not.

Let us try to sample 1000 times µ1, from the sample covariance matrix S of
a random matrix X ∈ Rn×p, whose np entries are i.i.d. N(0, 1), for instance
when n = 200 and p = 80, or when n = 500 and p = 200, by using the estimated
α and β for n = 100 and p = 40, i.e., for γ = 2.5.

We can notice from Figure (3.13) that the answer to our question is nega-
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Figure 3.13: Estimation of Beta(α, β) when n = 500, p = 200. Comparison to
reality.

tive. The elliptical law does not depend on only γ = n
p , but on both n and p.

It seems that, if we think γ as a fixed value, the higher is n (and so p = n
γ ), and

the tighter is the µ1 distribution (but still around the same values, for each γ).
Thus, it could be the case that the mean value is the same for each n, but the
variability decreases when n increases, which could mean that, for each γ = n

p ,
the parameters α(n+k) and β(n+k), for some k ∈ N, are proportional to α(n) and
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β(n), up to a constant ck > 1.
Let us now try to do the same for n = 200 to answer to this question.

n = 200

Let us set n = 200, and p = {4, 8, . . . , 196}. In Figure (3.14) it is shown in red
colour the mean of the 100 (instead of 200) estimated parameters α(p) and β(p)

for each of the 49 values of p.
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Figure 3.14: Estimation of α(p) and β(p) thorugh the method of the moments,
for n = 200 and p = {4, 8, . . . , 196}. Parametric equation for the green ellipse.

In green colour it is shown the parametric equation for an ellipse drawn by
following the same algorithm explained above, by attempts, and considering
the range of values t ∈ [−1.95, 2.70].

The following values represent the ratios between the 49 values of the esti-
mated parameters α and β, in the case n = 200 and in the case n = 100:

p α200
α100

β200
β100

p α200
α100

β200
β100

p α200
α100

β200
β100

p α200
α100

β200
β100

2 2.19 4.30 16 2.52 2.77 30 2.49 2.65 44 2.46 2.59
4 2.43 3.33 18 2.50 2.73 32 2.50 2.65 46 2.51 2.63
6 2.44 3.03 20 2.49 2.70 34 2.53 2.68 48 2.50 2.62
8 2.51 2.97 22 2.46 2.66 36 2.50 2.64 50 2.49 2.61
10 2.49 2.87 24 2.51 2.70 38 2.48 2.62 52 2.48 2.60
12 2.55 2.88 26 2.54 2.72 40 2.46 2.59 54 2.50 2.62
14 2.48 2.76 28 2.52 2.69 42 2.43 2.56 56 2.49 2.61
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p α200
α100

β200
β100

p α200
α100

β200
β100

p α200
α100

β200
β100

58 2.51 2.62 72 2.46 2.57 86 2.44 2.56
60 2.45 2.56 74 2.44 2.55 88 2.43 2.55
62 2.48 2.59 76 2.43 2.54 90 2.40 2.53
64 2.44 2.55 78 2.42 2.53 92 2.35 2.48
66 2.53 2.64 80 2.46 2.57 94 2.35 2.48
68 2.46 2.57 82 2.47 2.58 96 2.37 2.51
70 2.46 2.57 84 2.42 2.53 98 2.28 2.43

The ratio values related to α have 2.459269 mean, and 0.06561574 stan-
dard deviation. While the ratio values related to β have 2.678803 mean, and
0.2827515 standard deviation. We can notice that the standard deviation cor-
responding to β seems to be quite high. Apparently, the answer to our previous
question is negative. A further research for this thesis could be investigating
more about this question.

In the same way as for the case n = 100, m and q can be estimated for the
linear method, and k1, k2 and k3 for the tangent method. Let us analyze the
efficiency of these two methods, by sampling 1000 times µ1 for different values
of p, as we did for n = 100.

By looking at Figure (3.15), also in this case the linear method seems to be
very good in some cases, and not very close to the reality in other cases. The
tangent method instead, seems to be always better and close to the reality.
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Figure 3.15: Estimation of Beta(α, β) through linear method and tangent
method. Comparison to reality.
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Chapter 4

Conclusions

After reporting some already known results about the distribution of eigenval-
ues of sample covariance matrices and some already known information about
antieigenvalues, in particular of p × p symmetric positive definite operators,
through simulations in R software we have started investigating the distribu-
tion of antieigenvalues of the sample covariance matrix S of a random matrix
X ∈ Rn×p, whose entries are i.i.d. N(0, 1).

We have analyzed the distribution of the antieigenvalues of S when γ = n
p

varies in (1,+∞), noticing that the distribution spreads in a tighter way towards
the value 1, the higher is γ, as expected since all the antieigenvalues converge
to the value 1 when n tends to infinity and p is fixed.

We have investigated the convergence property of the first antieigenvalue of
S µ1(S), obtaining a theoretical result by exploiting the already known results
for the largest and smallest eigenvalues of S. This result says that if p� n, then
µ

(p)
1 (S) converges to a value close to 1. While, if p / n, then µ(p)

1 (S) converges
to a value close to 0.

We have noticed that the first antieigenvalue of S seems to follow a Beta dis-
tribution, whose parameters α and β respect the following behaviour: if p� n,
then α� β; while, if p / n, then α� β.

We have tried to set a rule to estimate the parameters α and β of the Beta
distribution where µ1(S) comes from, in function of γ.
We have set n = 100 and expressed an elliptical law to estimate α and β in
function of p, through both a linear method and a tangent method. By analyz-
ing the performance of these two methods we have noticed that in general the
tangent method is better and works fine.
Then, we have set n = 200 to see if such estimations keep holding, but we were
contraddicted by the results. So, we asked the question if the real values of α
and β grow linearly in function of n (with the same linear coefficient for each
γ), but we have seen that the ratio of the estimated values for α and β when
n = 200 and when n = 100, varies in a relevant way with γ for β.
Hence, it is probably the case that our elliptical law needs to be found for all
the values of n that we are interested in, as we did for n = 100 and n = 200,
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unless a relation for the real values of α and β in function of n, different from
the linear one and holding for each value of γ, is found. In this case the elliptical
law obtained by setting n = 100 should just be modified by introducing γ and
such relation.

Further Research
Along the chapters we have already mentioned possible further researches. Firstly,
we have mentioned the possibility of trying to find a function, in analogy to the
Marčenko-Pastur law, that best fits the histograms of the antieigenvalues of S.
Then, a really important further research could be trying to find a relation for
the values of the parameters α and β of the beta distribution where µ1(S) comes
from, in function of n and which, for each n, is the same for all the values of
γ ∈ (1, n). In addition, a further research could be trying to find theoretical
results that confirm the results we have got through simulations in R software.
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