
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Inferenza di Reti di Interazioni Diadiche da Dati Sensoriali

Relatore: Prof. Pier Luca LANZI

Correlatore: Prof. Tanya BERGER-WOLF

Tesi di laurea di:

Ettore RANDAZZO Matr. 837061

Anno Accademico 2015-2016

To my uncle Gianni, my memory of you will always inspire me to achieve all my goals in life,

just as you did.

i

ACKNOWLEDGMENTS

I would like to thank my parents, Adriana and Marcello, who made this dream come true,

and my brother Nestore, who has always been there for me when I needed.

I believe both Politecnico di Milano and University of Illinois at Chicago formed me the

way I am now, and I am really grateful for that. In particular I would like to thank Tanya

Berger-Wolf, Pier Luca Lanzi and Robert Kenyon who also helped me with my mental growth,

doing and caring about me much more than what is usually expected from a professor.

ER

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Thesis Models . 3
1.2 Thesis Objective . 6
1.3 Structure of the Thesis . 7

2 RELATED WORK . 8

3 BACKGROUND . 11
3.1 Graph Representation . 11
3.2 Data Subdivision . 13
3.3 Markov Assumption . 15
3.4 Cost Sensitive Learning . 16
3.4.1 Cost Matrix . 17
3.4.2 Classifier Adjustments . 18
3.5 Support Vector Machines . 19
3.6 Neural Networks . 20
3.7 Decision Trees . 21
3.7.1 Ensemble Methods . 22
3.8 Statistical Significance . 24
3.8.1 Multiple Comparisons . 25
3.9 Sensitivity Analysis . 25

4 PROPOSED APPROACH . 27
4.1 Proposed Sensors . 28
4.2 Proposed Models . 34
4.2.1 Assumption Free Family . 34
4.2.2 Independence and Equality Assumption Family 36
4.2.3 Proposed Classifiers . 37
4.2.3.1 Baseline Classification . 37
4.2.3.2 Neural Network Classification 38
4.2.3.3 Balancing Data . 40
4.2.3.4 Ensemble Methods for Decision Trees 41
4.2.3.5 Markov Assumption and Data Subdivision 42
4.3 Proposed Framework . 44
4.3.1 Creating the Environment . 44
4.3.1.1 Simulating the Data . 45
4.3.1.2 Simulating Animals Behavior and Labeling 46

iii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

5 CASE STUDY . 49
5.0.1 Graphs and statistical tests . 57
5.1 Estimating the Training Size . 58
5.2 Sensor Reliability . 63
5.3 Sensor Error . 65
5.3.1 Transmitter Error . 66
5.3.2 Receiver Error . 67
5.4 Feature Relevance . 72
5.5 Adding Agents . 74
5.6 Decreasing Interactions . 76
5.7 Families Comparison . 80
5.7.1 Common Interactions Case . 81
5.7.2 Rare Interactions Case . 83
5.8 Case Study Conclusions . 85

6 CONCLUSIONS AND FUTURE WORK 87

CITED LITERATURE . 89

iv

LIST OF TABLES

TABLE PAGE

I OUR COST MATRIX: ROWS ARE ACTUAL LABELS, COLUMNS
ARE INFERRED LABELS . 17

II EVALUATIONS OF SEVERAL MODELS FOR A CONFIGURA-
TION WITH NO BEACONS AND A TRAINING SET OF 10000
SAMPLES WITHOUT NOISE . 56

III EVALUATIONS OF SEVERAL MODELS FOR A CONFIGU-
RATION WITH BEACONS AND A TRAINING SET OF 10000
SAMPLES WITHOUT NOISE . 57

v

LIST OF FIGURES

FIGURE PAGE
1 Partitioning of the best model to infer interactions with respect to

the rarity of them. 5
2 An example of inference: given several timestamps of sensor data,

we want to infer an undirected graph of interactions. 28
3 An example of input ranking distances data in a configuration with

receivers on both animals and beacons. The black nodes are animals,
while the blue nodes are fixed position beacons. 32

4 An example of input absolute discretized distance data in a configu-
ration with receivers on both animals and beacons. The black nodes
are animals, while the blue nodes are fixed position beacons. 33

5 The actually implemented FSM of our agents. Transitions from states
are random, although their chance may vary. 50

6 Positions of beacons in the synthesized world. The blue dots repre-
sent the beacons containing the receivers. 54

7 Recall evaluation of our selected models with different training size
and with no beacons. 59

8 Precision evaluation of our selected models with different training
size and with no beacons. 60

9 Recall evaluation of our selected models with different training size
and with beacons. 62

10 Precision evaluation of our selected models with different training
size and with beacons. 63

11 Recall evaluation of our selected models with different transmitter
reliability and with no beacons. 64

12 Precision evaluation of our selected models with different transmitter
reliability and with no beacons. 65

13 Recall evaluation of our selected models with different transmitter
error and with no beacons. 66

14 Precision evaluation of our selected models with different transmitter
error and with no beacons. 67

15 Recall evaluation of our selected models with different receiver error
and with no beacons. 68

16 Precision evaluation of our selected models with different receiver
error and with no beacons. 69

17 Recall evaluation of our selected models with different receiver error
and with beacons. 70

18 Precision evaluation of our selected models with different receiver
error and with beacons. 71

vi

LIST OF FIGURES (continued)

FIGURE PAGE

19 Recall evaluation of our selected models with different features and
no beacons. 73

20 Precision evaluation of our selected models with different features
and no beacons. 74

21 Recall evaluation of our selected models with different numbers of
agents and with no beacons. 75

22 Precision evaluation of our selected models with different numbers of
agents and with no beacons. 76

23 Recall evaluation of our selected models with different likelihood of
interactions and with no beacons. 77

24 Precision evaluation of our selected models with different likelihood
of interactions and with no beacons. 78

25 Recall evaluation of our selected models with different training size,
1% likelihood of interactions and no beacons. 79

26 Precision evaluation of our selected models with different training
size, 1% likelihood of interactions and no beacons. 80

27 Recall evaluation of our Bagging models with and without assump-
tions with different training size and with no beacons. 81

28 Precision evaluation of our Bagging models with and without as-
sumptions with different training size and with no beacons. 82

29 Recall evaluation of our Bagging models with and without assump-
tions with different training size and with no beacons with 1% inter-
action likelihood. 83

30 Precision evaluation of our Bagging models with and without as-
sumptions with different training size and with no beacons with 1%
interaction likelihood. 84

vii

LIST OF ABBREVIATIONS

GPS Global Positioning System

DNA Deoxyribonucleic Acid

WAAS Wide Area Augmentation System

BLE Bluetooth Low Energy

RSSI Received Signal Strength Indication

SVM Support Vector Machine

NN Neural Network

MPU Magnetic Pick-Up

FSM Finite-State Machine

ReLU Rectified Linear Unit

OFAT One-Factor-At-a-Time

DT Decision Tree

viii

ABSTRACT

Being able to observe how animals interact among themselves has always been a crucial

requirement for behavioral scientists who study social species. Manually looking at them to see

when interactions occur is extremely time-consuming, results in many missing observations and

it becomes extremely difficult to do for a very extended period of time, moreover for animals

who live in large territories and for animals who behave differently when nearby human beings.

To overcome these problems, scientists are accustomed to use several different kinds of sensors

which are usually attached to the target animals and record some kind of raw data which, once

collected, is used to extract the behavior of their hosts.

These sensors have to be as least invasive as possible for the animal to behave as if it wasn’t

wearing them. This implies that sensors have to be light with respect to the animal, they must

not emit a considerable amount of heat and the wavelength they use must not be perceptible

by the animals near them.

The most popular type of data extracted from sensors attached to animals is Global Posi-

tioning System (GPS) data. GPS data is very easy to extract and it can be used to efficiently

track the positions of entire groups of animals. However, when we are interested in pairwise

interactions between animals and not in their positions, GPS data is not very reliable either

because of its accuracy and because of its reliability.

In this work, we introduce synthesized sensor data based on a type of non-invasive short

range proximity sensors in order to understand whether some animals interact among themselves

ix

ABSTRACT (continued)

at a given time. The data we consider has to be labeled, that is we are aware of most interactions

that occur during the training phase.

The sensors whose data we are interested in synthesizing can be used for animals that are

capable of wearing them due to weight or size constraints and as long as the sensor range

contains the interaction range of the animals we are interested in. The models we analyze in

this work are of two types: those which don’t assume either equality of the individuals and

independence among interactions, and those which assume both of them.

We present a framework to synthesize proximity, location and speed data extracted from

sensors with several different configurations and models to infer animal interactions.

Finally, we evaluate the methodology we use by proposing a case study where we perform

different analyses to understand when our models are fit for the inference task, what are the

most critical parameters impacting their performances and when we should switch from a model

with no assumption to one with the two previously mentioned.

x

SOMMARIO

Essere in grado di osservare come gli animali interagiscono tra di loro è sempre stato un

requisito fondamentale per gli etologi. Guardarli manualmente per vedere quando si verificano

interazioni richiede un notevole spreco di tempo, risultante peraltro in molte osservazioni man-

cate, e diventa estremamente difficile da fare per un periodo molto prolungato di tempo, in

particolare per animali che vivono in ampi territori e per animali che si comportano in modo

diverso con umani nelle vicinanze. Per superare questi problemi, gli scienziati sono abituati

a utilizzare diversi tipi di sensori che sono solitamente collegati agli animali interessati per

registrare qualche tipo di dati grezzo che, una volta raccolto, viene utilizzato per estrarre il

comportamento dei loro ospiti.

Questi sensori devono essere il meno invasivi possibile per indurre l’animale a comportarsi

come se non li indossasse. Ciò implica che i sensori devono essere leggeri rispetto all’animale,

non devono emettere una notevole quantità di calore e la lunghezza d’onda che usano non deve

essere percepibile dagli animali vicino a loro.

Il tipo più popolare di dati estratti da sensori collegati agli animali è GPS. I dati GPS sono

molto facili da estrarre e possono essere utilizzati per monitorare efficacemente le posizioni di

interi gruppi di animali. Tuttavia, quando siamo interessati a interazioni diadiche (a coppie) tra

gli animali e non alle loro posizioni, i dati GPS non sono ideali sia a causa della loro precisione

sia per la loro affidabilità.

xi

SOMMARIO (continued)

In questo lavoro, introduciamo dei dati sintetizzati basandoci su un tipo di sensori a corto

raggio di prossimità non invasivi per capire se alcuni animali interagiscono tra loro in un dato

momento. I dati che consideriamo devono essere etichettati, cioè siamo a conoscenza della

maggior parte delle interazioni che si verificano durante la fase di addestramento dei nostri

modelli.

I sensori dei quali dati siamo interessati a sintetizzare possono essere utilizzati con animali

che sono capaci di indossarli, condizionati dal volume e peso di entrambi e finchè la portata dei

sensori comprende la portata delle interazioni degli animali di cui siamo interessati. I modelli

che analizziamo in questo lavoro sono di due tipi: quelli che non assumono nè uguaglianza degli

individui nè indipendenza tra interazioni, e quelle che le assumono entrambe.

Presentiamo un framework per sintetizzare dati di prossimità, posizione e velocità estratti

da sensori con diverse configurazioni e modelli per dedurre le interazioni diadiche degli animali.

Infine, valutiamo la metodologia che usiamo proponendo un caso di studio in cui eseguiamo

diverse analisi per capire quando i nostri modelli sono idonei per il compito, quali sono i

parametri più critici che incidono sulle loro prestazioni e quando dovremmo passare da un

modello senza assunzioni ad uno con le due precedentemente accennate.

xii

CHAPTER 1

INTRODUCTION

Humans have been observing animals since ancient times. The reasons have been very

different: from being as effective as possible for hunting and to avoid dangerous predators to

pure interest in their everyday life.

After the work of Charles Darwin and the birth of the theory of Evolution [1], observing

animals has become extremely interesting because of the connection of animals with humans.

Moreover, with the discovery of the Deoxyribonucleic Acid (DNA) in 1869 and its molecular

structure’s identification in 1953 [2], the study of animal behavior has become important to

also understand human behavior.

However, observing animals is not always an easy task, either because of the time it takes

to gather significant information from them and because sometimes it is very hard to follow

some types of animals, such as predators whose territory is usually very vast. The advent of the

technology revolution of the most recent years gave biologists a new way to observe animals.

By exploiting sensors attached to several individuals of a given species, we can observe

their movements for a very long period of time. This gives us insight of what certain animals

do, where they go, what is their usual route, for example for hunting, and ultimately how

they interact with their environment and companions even when it wouldn’t be possible to be

observed by a scientist.

1

2

The most used sensor data for these tasks nowadays is GPS data. It is a space-based

navigation system which gives information about time and position, given in longitude and

latitude, and can be used anywhere in the world as long as there are four or more GPS satellites

that have an unobstructed line of sight to the sensor used. This makes GPS data available

almost anywhere on Earth and extremely efficient in tracking the movements of animals in

their habitat, especially when they live in a vast area free of obstructions, basically anywhere

but thick forests.

However, GPS data has its shortcomings: the standard accuracy of an average GPS sensor

is about 15 meters (49 feet), which can be improved to 3 meters (9.8 feet) by using Wide Area

Augmentation System (WAAS). The accuracy of a sensor is how confident we are about the

position we are recording. This means that having an accuracy of 3 meters implies that the

real position of the sensor can be anywhere in a circle with a radius of 3 meters. Despite being

acceptable for tracking animal movements in large areas, it is not the case when we want to

spot interactions between two individuals.

In fact, animals tend to have topological interactions instead of metric interactions [3], that

is they usually interact with a small, hardly varying number of closest animals instead of every

animal closer than a threshold. Thus, being uncertain of a distance by four times the accuracy

of a single sensor between two animals (twice the accuracy per animal), makes GPS data by

itself, without great redundancy, unfit for the task of inferring dyadic interactions. Moreover,

for smaller animals, the redundancy needed to have usable data might make the task impossible

for weight as well as cost constraints.

3

An alternative to GPS data is to use Bluetooth Low Energy (BLE) transmitters and receivers

so that the receiver is able to compute a Received Signal Strength Indication (RSSI) value,

which stands for the strength of the signal between the two sensors. This is far more accurate

than GPS data, however it does not give either absolute positions and always accurate absolute

distances between sensors, because of the many reasons a signal could be weaker than expected.

Still, it is sufficient when we want to understand interactions between animals, which is very

dependent on their relative distances.

1.1 Thesis Models

This work will synthesize RSSI and accelerometer data to extract interactions among groups

of animals. We will work with different configurations of sensors, creating a framework able

to synthesize such arrangements to extract the best model for a given instance and test its

performances with different parameters to understand when it does and does not perform well.

When scientists are interested in interactions between animals, what they mean for interac-

tion may well vary from one to another. Some might consider an interaction when two animals

are sufficiently near one another, others when one approaches the other and the interaction

might be only an instant despite them being close for a longer period. Others might think

an interaction is when two animals do something together, others when one follows another

one. Being the word “interaction” so arbitrary, in order to train any model to fit the specific

definition of any given instance, it implies the need to have labeled data.

Labeled data means that along with the raw input data which comes from the sensors, we

are given the interactions that occur among the animals we are considering at any given time

4

period we are interested to sample. This is necessary for most models that want to learn how

to predict an output, in our case the interactions between our animals, given an input, that is

our raw data collected from sensors.

Unfortunately, this means that scientists still have to manually annotate interactions of

animals for a fairly big amount of time: the longer they annotate interactions, the more robust

the models will be. This might seem counter intuitive: we want to build a model to not

manually annotate interactions, and we require them for our model to work. However, the

amount of data we have to label is significantly different: ideally, once we labeled a sufficient

amount of data, we would not need to label it anymore in the future, regardless of the number of

instances we would be able to sample with our sensors. Suppose we had a month of recordings

of interactions of animals, we would probably need to label only about a few days or even a few

hours of interactions to be able to build a reasonably good model, which would then label all

the remaining time.

The models we analyze in this work can be divided in two categories: the first category takes

into account that each animal is different from every other, and if an interaction occurs between

two animals, it may impact the likelihood of other interactions. These are probably some of

the most non constraining assumptions we can make, however they have their shortcomings:

they require a lot of data, w.r.t. other possibilities. Alternatively, we can create a model that

doesn’t take into account diversity of individuals and different likelihood of interactions given

other interactions. These would usually perform well with far less data than what would be

required by other models, but they may be less performing with more data.

5

Figure 1: Partitioning of the best model to infer interactions with respect to the rarity of them.

We estimate that what is the ideal model to spot interactions depends on the rarity of the

interactions themselves (Figure 1): when we have enough data to spot every single possible

pairwise interaction a fair amount of times, we expect our first type of models to perform

extremely well. However, when interactions become extremely rare and we only see a bunch of

them, and not for every possible pair (which of course scales also with respect to the number

of animals), we would need to drop some assumptions so that every label can be used to train

any pairwise prediction.

Finally, when spotting interactions becomes extremely time consuming, we can decide to

automatically detect them without training any model. This is called unsupervised learning,

6

and it should be used only when no other options are possible, because it is most likely going

to give either an extremely big number of false positives or an extremely big number of false

negatives, and the worst part of it is that, even if we can reason about the quantity of false

positives, we cannot do so for false negatives: we wouldn’t know how many interactions we are

missing unless we started to manually label all our data.

1.2 Thesis Objective

This work is a direct extension of our previous work [4], by introducing a new family of

classifiers and comparing them with the previously analyzed one. The goal of this thesis is

twofold: we want to build some models to infer dyadic interactions given sensor data before

actually deploying these sensors, in particular we want to be able to find the best model for any

given instance following some guidelines, and we want to build a framework able to synthesize

such data.

Deploying sensors is extremely costly, and biologists would like to know what sensors they

need, how many and where to put them before actually building or buying them, and they would

like to have assurances that once they collect some data, they can actually figure something

out of it. This makes not only necessary to create a model beforehand, but it also requires it

to be tested in a synthetic environment not too specific but not completely random, so not to

be too biased, to be able to give some idea on the performances that it could have, and more

importantly what types of sensors and what specifications they should have and what is more

or less important (such as, with these sensors it seems to be able to learn, or, adding these

sensors doesn’t improve anything).

7

1.3 Structure of the Thesis

Chapter 2 will briefly give an insight of the related work. Interestingly enough, supervised

learning has hardly ever been considered for animal interactions, most likely because of the

time it would need to be done well. Chapter 3 will give necessary background of most of

the approaches we will use to build our framework. This chapter is intended to aid a lack of

knowledge in a specific area and it is not necessary whenever the reader has already a sufficiently

large background on a specific subsection. We still recommend to quickly look at it even in the

latter case, to better understand how we are going to use such concepts later on. Chapter 4 will

explain the proposed approach. First, it will formally define our tasks, specifying our sensors

and our configurations, second, it will explain our models and framework. Chapter 5 will show

a case study where we will perform some sensitivity analysis and discuss the obtained results.

Chapter 6 will give conclusive observations and talk about possible future work.

CHAPTER 2

RELATED WORK

Whenever we are interested in animals, we are interested in their behavior. Behavior is

what makes an animal different from another, behavior is what leads an animal to do what

they do. Whenever biologists are interested in studying animal behavior, they need to observe

their behavior not only considering single individuals, but how they interact among themselves

as well.

Although observing animals manually can be done [5; 6], it can only be done for a small

amount of time and usually within small areas.

When interested in small animals constrained to live in a controlled environment such as

fish or insects, video tracking technology can seriously help biologists [7; 8; 9].

When facing larger animals, we can sense various information such as their location, move-

ment and orientation thanks to different wireless sensors [10; 11; 12; 13; 14; 15].

GPS data is customary to be used to track animal positions, a well known example is where

researchers at Princeton built ZebraNet [16], a tracking system which involves the usage of

tracking collars worn by some zebras in Kenya which collect GPS data. Tracking collars were

also used to track deer movements over a seven-year time period [17].

However, GPS data is not accurate enough to be successfully used to spot animal interactions

[18].

8

9

Video or RFID [19] can be used to better detect proximity among animals when it is possible

to cover vast areas with location systems. However, it is hardly the case. Ultrasonic tracking

could still be used for some animals [20], but it may disturb several other species, making it

impossible to be deployed in most cases.

Regarding inferring animal interactions, researchers recently exploited GPS data to track

baboons movements [21] in order to study shared decision making movements, dominance

interactions by first automatically extracting and then manually validating them as well as

extracting dominance hierarchies.

Scientists used k-means algorithm to cluster cows GPS data to spot different behaviors [22].

This is again an unsupervised learning classification. It is indeed usual to automatically extract

interactions among animals in many different ways: unsupervised learning can be used to find

interactions among cattle using a distance threshold and discern stronger ones by timing their

lengths [23], scientists can exploit maximum entropy models to infer interactions of mice [24];

others [25] uses various formulas as well, but tested its results with some synthesized labeled

data, and with a little real labeled data, also showing the usefulness of synthesizing this type

of data.

However, unsupervised learning methods have various limitations despite being easy to

deploy: inferring a specific kind of interaction is extremely difficult, in fact the interaction is

defined by our model, there is no way to estimate its recall and a recent work [26] discusses how

generally wrong is the concept of interaction extracted from thresholds w.r.t. what biologists

really look for. An alternative to that is supervised learning, as shown another recent work [27],

10

where mouse social behaviors were extracted through a supervised learning approach involving

data acquisition and adjustment from different sources and a labeling of around 150,000 video

frames fed into a Random Decision Forest model.

The gain of supervised learning approaches is undeniable, thus in this work we are especially

interested in knowing when we can exploit such a powerful method, instead of using the well

known unsupervised approaches.

CHAPTER 3

BACKGROUND

This chapter is going to focus on giving a background knowledge of some key concepts which

are going to be used in our proposed approach. Section 3.1 presents the concept of graphs.

Section 3.2 explains the basic data subdivision used in building a model. Section 3.3 describes

the Markov Assumption. Section 3.5 explains the concept of Support Vector Machine (SVM).

Section 3.6 presents the model of Neural Network (NN) and the instances used in this work.

Section 3.7 talks about Decision Tree (DT)s while focusing on its ensemble methods. Section 3.8

explains what is a test for statistical significance and why it is useful. Finally, Section 3.9 talks

about Sensitivity Analysis, which is going to be the focus of our work.

3.1 Graph Representation

A graph is a mathematical representation of a set of objects usually referred to as vertices,

nodes or points, where some pairs of them are connected by links, usually referred to as edges,

arcs or lines. The links can either be directed, being referred as arcs, or undirected, usually

being referred as edges. In our work we mostly name the objects nodes and the links edges

when referring to undirected links, and arcs when referring to directed links.

To understand what is the difference between directed and undirected links, we first need to

understand what means to have a link between two nodes. Being a mathematical representation

of elements, a link represents the occurrence of a relation between two of them. The meaning

11

12

of such relations is ours to give, so for example suppose that we have two nodes called “Dante”

and “Beatrice” and the relation we are interested in is “love”. Dante loves Beatrice, so we

would say with a mathematical relation Love(Dante,Beatrice). Here, the position of the nodes

is relevant: Love(x,y) means: “x loves y”, while Love(y,x) means: “y loves x”. In this example,

Beatrice doesn’t love Dante, so, if we wanted to represent our relationships with a graph, we

would have to use a directed graph, that is a graph which uses directed links and have an arc

from Dante to Beatrice.

Suppose instead that we are interested in a relation such as friendship. We generally

think that if an individual Foo is friend with Bar, then Bar is also friend with Foo, that is

Friend(Foo,Bar) ⇐⇒ Friend(Bar,Foo). This is called a symmetric relation. If we wanted to

represent such relations with a graph, we would use an undirected graph, that is a graph which

uses undirected links.

Edges (as well as arcs) can have weights attached to them, meaning that two nodes have

a relation which can be quantified with a number. For example, suppose we are interested

in representing the distance between nodes. Every node would have an edge with a number

attached to it, which would represent their distance. In a mathematical representation it

might be something like Distance(x,y) = Distance(y,x) = k, or in a logical representation

Distance(x,y,k) = Distance(y,x,k). A graph with weights attached to its edges is called weighted

graph, if there are no weights it is called unweighted graph.

In this work we will use both weighted and unweighted graphs to represent our instances. To

represent the interactions occurring between animals, we are going to use unweighted undirected

13

graphs, where an edge between two nodes would represent an interaction between them. By

the definition of interaction we will use in this work, we know that it is a symmetrical relation,

and we are not interested in the strength of such act, so it will be unweighted.

Sometimes, we will represent our input data with weighted graphs to show distances between

nodes. Given the peculiar type of data we handle, it might not be the case that the graph is

undirected. In that case, we would use directed weighted graphs to represent perceived distances

between nodes.

3.2 Data Subdivision

To build a model able to accomplish the task we need it to do, it is usually necessary to

have some data that it has to fit. This is referred as training data (set). To fit some data for a

model means to extract some latent information from it in order to understand some patterns

which lead to a specific prediction [28].

Once a model is learned, it is customary to test it to see whether it is effective at predicting

some new data. We do not want to test our model on the same data we trained it with, because

it might be the case that the model overfit the data, and would perform very badly with

new, never seen instances of the input data. Overfitting occurs when the model is excessively

complex with respect to the real function that describes our output [29]. Being so complex,

what it really does is fitting a random noise in the training data, and how it behaves for unseen

instances between two seen ones is most likely going to be random.

14

To overcome this problem, when we want to evaluate our model properly, we use a different

partition of our data which has been untouched by our training process, that is called test data

(set).

This partitioning of our available data is usually enough to train and evaluate simple models.

However, sometimes this is not enough to give unbiased evaluations of our model.

Suppose we have an extra parameter that we want to fine-tune. We can imagine it being the

order of our function, or the type of input given to the model, or completely different models. If

we trained it with our training set and tested with our test set and then selected the parameter

that maximizes our evaluation function, we would be overfitting with respect to the test set.

Basically, we would choose the model that best fits our test data, but it would have unknown

results for new, never seen data.

When we face this problem, we split our data into three partitions: the training, the cross

validation (or simply validation) and the test sets.

Following the exact same reasoning done with just train and test sets, we will not touch

our test set for all the tuning of our model, and we will instead train with our training set and

evaluate with our validation set. In the end, after we choose the best model, we will see its

performance against the test set.

We are going to use this partitioning policy to develop our model. Further details will be

given once the needed background will be presented.

15

3.3 Markov Assumption

Suppose we are interested in knowing what the weather will be like today. We might suspect

that the weather of today depends on the weather we observed the previous days. For example

we might find out that if it has been sunny for several days in a row, it is most likely going

to be sunny today as well, with a small probability of being cloudy, and it never happens to

rain. If we wanted to model this behavior we would talk about conditional probabilities, for

example, suppose that wt is a variable representing the weather at day t, we would be interested

in knowing P (wt|wt−1, wt−2, wt−3, , w0) which is generally different than P (wt). Although this

would be a very precise estimation of the probability of a given weather condition for today,

it is most likely impossible to have enough data to make it usable in practice, as well as

being a very burdensome task. Suppose we find out that in reality, the probability of a given

weather today is dependent on only a fixed amount of previous days, for example 2. Then, we

would be able to compute its probability in a much easier way: P (wt|wt−1, wt−2, wt−3, ..., w0) ≈

P (wt|wt−1, wt−2). We call this a Markov assumption (in particular, a second-order Markov

assumption).

More in general, we have a nth-order Markov assumption if we believe that the probability

of a given variable at time t depends only on the n previous times. Usually, this is not true,

but it is a necessary assumption to make the problem tractable.

Now, suppose we know the relative positions of every animal we are observing with respect

to any other animal at any time t. The best thing to do to find out if two animals are interacting

would be to see all the previous history of the network. However, to do so, we would need an

16

enormous amount of data: suppose that we would need X instances to have a good estimation

of a specific input configuration, then, every time we increase our Markov assumption by one,

we would need to double the overall required input data for each input variable we consider at

any give time. Also, this would be the lucky case where our variables had only two possible

values, and we would have to triple, quadruple, etc. for a bigger range.

Thus, we need to make a reasonable Markov assumption. Suppose that the interaction

between two animals would only be dependent on the actual time: then a zero-order Markov

assumption would be fine. In general, we are interested in finding the best Markov assumption,

that gives us good results w.r.t. the size of the data we have, without being too computationally

expensive.

3.4 Cost Sensitive Learning

Generally, every classifier is built to maximize the accuracy of its predictions. Although it

is usually what the user wants, sometimes this is not the case.

Suppose that we are predicting whether or not a patient has pancreas cancer. Surely we

would like to accurately have only true positives and true negatives, however, when we are

wrong, the two effects are dramatically different: if we have a false positive, we can just double

check with maybe another method to be actually sure that he is ill. More in general, if he is in

a hospital, he stays in the hospital and no harm is done. However, if we have a false negative,

we would set the patient free and the next time he comes, his situation will be much worse than

before.

17

In all the cases where a false negative is different than a false positive, cost sensitive learning

should be done. Cost sensitive learning is also often used to diminish the harm of having

unbalanced data, when sampling is not very practical or would worsen the results (such as

when we don’t have enough data).

3.4.1 Cost Matrix

If we want to represent the different costs of our classifications, it is customary to use a cost

matrix, where the rows are the actual values and the columns are the inferred values. Sometimes

in other papers the convention is the opposite, so we ask special care from the reader when

looking at them.

TABLE I: OUR COST MATRIX: ROWS ARE ACTUAL LABELS, COLUMNS ARE IN-
FERRED LABELS

T F

T 0 cfn
F cfp 0

Usually both the true positive and true negative costs are 0, while very rarely true positives

might have negative values to indicate profit. Given that the higher the cost the worse out

model is at predicting, to evaluate a model while using cost sensitive learning, we will use a

cost function which will simply multiply the number of predictions pij with the cost weight

cij of that specific cost matrix and sum them all. Clearly, the lower the score, the better the

18

performance. To our purposes, we will have 0s on both true positives and true negatives, and

have a higher weight for false negatives w.r.t. false positives. Table I shows our target cost

matrix.

3.4.2 Classifier Adjustments

To make a classifier work with a cost matrix, adjustments must be made. We hereby discuss

the most common methods used:

• Make the classifier provide probability estimates, compute the expected cost of each can-

didate and select the one which minimizes the cost.

• Sample the data during training phase in such a way to have uneven distributions of the

classes, which will bias most classifiers to specific outcomes.

• Directly modify the inner workings of the classifier to make it use the cost matrix, which

should maximize the fit of that classifier to that specific cost matrix.

The limitations of these approaches come from how specific classifiers work and the type of

data we have available while training: most algorithms can’t be modified to fit a cost matrix or

cannot provide probability estimates. NNs can both provide probability estimates and modify

their inner workings (the latter is preferred), but have a hard time sampling the input data

when it returns multiple outputs. Given that what we usually want is to have a balanced

distribution while training, a stronger weight in the cost matrix might be needed to impartially

act as an equalizer.

19

3.5 Support Vector Machines

A Support Vector Machine (SVM) [30] is a model based on a supervised approach which

can perform both classification and regression analysis.

It need as input a set of training data, each line labeled as one of the only two possible

categories, and it outputs a deterministic binary linear classifier. It can also perform a non-

linear classification by performing the so called ‘kernel trick’.

An SVM wants to find a hyperplane which can be used as a classifier between the two selected

classes. Ideally, it tries to find a hyperplane that perfectly subdivides the two categories and

selects among the many possible, the one furthest from all points. This is usually impossible

to do, thus it uses a soft-margin, meaning that it tries to split its points at best, trying to

minimize the cost of the misclassifications which are proportional to how far is the misclassified

point from the right side of the hyperplane.

When a linear classifier is not enough, a transformation is used to represent our input data

into a feature space that makes the dimension easier to be separated by a hyperplane. This

operation however would be extremely time-consuming, thus a kernel trick is used: we don’t

need to transform our dataset, we just need to perform a dot product of an N dimensional space

with a M > N dimensional space. This can be efficiently done with a kernel function, thus the

so called kernel trick.

There exist several extensions for SVMs, which are not needed for our purposes, such as

multiclass SVMs and support vector clustering.

20

3.6 Neural Networks

Artificial Neural Networks, or NNs, are a family of many models inspired by the real bio-

logical neural networks.

While they may vary a lot one another, they all have in common their basic structure, which

consists of interconnected artificial neurons that send messages each other. An artificial neuron

is usually modeled taking example from the Hebbian Rule in biology: basically we receive a

number of inputs with some weights attached, we have a threshold called bias and we fire an

output. From that, we can have many various implementations.

We are interested in supervised learning with NNs. While the details of these models are

many, the general approach is, during training, to try to compute an output while giving a

sample input, compute its error w.r.t. the expected output for every output neuron, and then

use backpropagation, which is a method to adjust more the weights of the network which are

most responsible for the error by using the gradient of its error.

In our work, we will use a fully connected feedforward neural network, which is the oldest

and most commonly used, built however using mostly state of the art methods: Rectified Linear

Unit (ReLU) activation function with dropout neurons and a Bernoulli negative log-likelihood

error function.

A ReLU is a very trivial activation function: the idea is simply to have f(x) = max(0, x).

This has been shown [31] to be more biologically plausible than the more common functions

such as logistic sigmoid and hyperbolic tangent.

21

Usually, we prefer not to have 0 values, thus the rectifier function is smoothed: f(x) =

ln(1 + ex), which only gives positive numbers, still resembling the rectifier function.

Dropout is considered one of the most successful recent discoveries of the decade. During

training phase, we randomly ‘drop out’ some neurons, setting their output to 0, thus basically

not making them fire. During prediction phase, every neuron is allowed to fire. This has again

a biological inspiration, from genes: when a child is born, it receives half its genes from both

parents, thus every gene has to be able to adapt with unknown other genes, and be useful by

itself.

This method has several advantages: it prevents co-adaptations thus avoiding overfitting

and it results as a very powerful ensemble method, as it can be seen, while training, to train up

to 2n different networks, where n is the number of neurons, and while testing to merge them.

This sometimes implies the need of a higher amount of data required or simply a longer training

phase, but it has been shown to own the state of the art performance for several deep learning

classification tasks.

3.7 Decision Trees

DTs are a very common type of classifiers. They use a tree to decide how to label an input

instance, where the leaves are the class labels and the nodes are some conditions of the input

that branches the decision to be taken.

DTs can either predict multiple classes or a continuous value, in the latter case they are

called Regression Trees. This classifier is very popular, mostly because of its simplicity and its

reasoning is understandable by humans and can be easily plotted.

22

A tree is built by greedily deciding what attribute to split at every step, selecting it by

choosing a scoring measure. A very well known measure is the Information Gain, which tries to

minimize the overall entropy of the system. Informally, we can say that Information Gain = En-

tropy(parent) - Weighted Sum of Entropy(Children). We do that for every possible child split

and select the one with the maximum score. If a node already perfectly explains the data (it

classifies all its data with just one label), it becomes a leaf. This process usually continues

until or all nodes become leaves or there are no more features to split or the gain from splitting

is less than a given threshold. Usually, branches get pruned also after this process, to reduce

overfitting.

3.7.1 Ensemble Methods

DTs by themselves perform well, but they don’t own the state of the art performances.

Whenever we are not interested in having a decision tree representation and we only want the

best classifier, ensemble methods come into play.

Ensemble methods consist of using more than one classifier to infer a label. How the result is

chosen among the individual classifications may vary one method another. Ensemble methods

work well when the basic classifier is simple and very susceptible to noise. Decision trees are

the most common models used because of these needs.

The most common ensemble methods are:

• Bagging [32]

• Boosting [33]

• Random Forest [34]

23

The main idea is more or less the same for the three of them: we want to have a big number

of independent classifiers, that means that ideally if classifier A says ‘Yes’, we don’t know

anything about what classifier B is about to say. If every classifier has an accuracy greater than

50% and we take the majority vote, we end up increasing the accuracy ideally by as much as

we want, depending on how many classifiers we use, because the more classifiers we use, the

more likely it is that the majority of them classified correctly.

This directly applies to bagging and random forests, the difference is how they achieve the

condition of independence of their classifiers (also, it is anyway impossible to have a perfect

independence among them): bagging, or bootstrap aggregating, trains with up to the same

number of data of the input data, however it samples them with replacement from it. This is

shown to give (1− 1/e) ∼ 63.2% unique elements, while the rest are duplicates. Being decision

trees very sensible to noise in the data, the resulting classifiers behave very differently. Of

course, to have even less resemblance, a smaller number of samples can be taken.

Random forests do exactly as bagging, but they increase the classifiers independence by also

ignoring a certain number of input features (usually they use the square root or half of such

number), making them more prone to error, but still usually over 50%.

Usually random forests perform better than bagging, but, as we will see, this is not the case

for our instances.

Boosting uses a slightly different approach: it keeps adding classifiers which specialize where

the previous classifiers mispredicted the most. In the end, every classifier is weighted and besides

predicting the label, it also gives a confidence on how certain it is. The final results are computed

24

by weighting the classifiers by also considering this confidence and the most likely overall result

is selected.

3.8 Statistical Significance

Sometimes, we try different models to see which one performs best w.r.t. our data. Now,

suppose we have two models which performed similarly, i.e. they had almost the same accuracy,

precision and recall. Is really one better than the other, or are they coming from the same

distribution, thus either one of the two is the same for us?

To answer these questions, we do a test of statistical significance: how likely is the null

hypothesis to be true for the two output distributions of our models? The null hypothesis is

supposing that the two populations come from two different distributions (there is no correlation

between them).

A test of statistical significance computes a p-value, which is the probability of obtaining

results at least as extreme given that the null hypothesis is true, thus they are from two different

distributions. A significance level α is introduced to understand when this p-value is excessively

small: α is the probability to reject the null hypothesis in the case it is actually true.

Thus, suppose that our p-value is greater than our selected α, then we would be confident

with probability 1− α that the null hypothesis is true. However, if the p-value is less than our

significance level, it is very unlikely for the null hypothesis to be true, so we reject it.

Different distributions use a different test, for example for Gaussian distributions, t-test is

the most commonly used.

25

3.8.1 Multiple Comparisons

When we have to do multiple comparisons, the standard statistical significance tests become

unfit for the task.

Suppose in fact that we are testing a new drug and we want to know if it is helping to cure

any of 100 disease symptoms. To do that, we perform a test of statistical significance with a

significance level of 5%, thus we have 5% chance to incorrectly reject the null hypothesis if it is

true.

However, supposing that the null hypothesis is true for all 100 symptoms, that is, it doesn’t

have any effect at all, we should expect to incorrectly reject 5 of them. Moreover, the probability

to have at least an incorrect rejection is as much as 99.4%.

To solve this issue, we want to adjust our significance level to be more stringent. One very

common example is the Bonferroni adjustment, where from Boole’s inequality we know that if

we have k tests and a target significance of α, adjusting it to α/k for each one of them we are

sure for the total error to not exceed α.

3.9 Sensitivity Analysis

Whenever we ask the questions: “Why does my model not work? What are the weak points

of my model? Are there useless inputs? How robust to noise is my model?” we want to perform

some sensitivity analysis. It is the study of how the uncertainty in the output of a model can

be properly split among uncertainties in its inputs.

26

There are different ways to do these analyses. One widely used is One-Factor-At-a-Time

(OFAT): as the name suggests, we modify one factor at a time while not varying the remaining

factors to see what effects it produces to the output.

Sensitivity analysis is infamously known to be computationally expensive, thus a full analysis

might be unfeasible, especially when we have a big number of factors we are interested in. Still,

we are going to do as many experiments as we can, to thoroughly test our models.

CHAPTER 4

PROPOSED APPROACH

Our task is given a configuration and some data regarding such configuration, labeled at

every interval with the interactions occurring among any animal, find the model that best infers

those interactions. Ideally, to infer some interactions at time t, we can look at our input data

at time t− 1, t− 2 and so on. So, for every timestamp t to infer, we can use several input data

of time t′ ≤ t to aid our inferences. Figure 2 shows an example of input and output data.

Moreover, we consider false negatives to be more relevant than false positives: There are

three reasons for that:

• The expected interaction network is very sparse. This implies that the trivial model that

claims there are no interactions will have reasonably high accuracy, but terrible recall.

We want to avoid this scenario, of course, which means to be more biased towards having

less false negatives than false positives.

• False positives can be removed manually after the inference, if they are not too many,

while false negatives cannot.

• Having a high number of false negatives seriously worsens the quality of the inferred

network, and its structure might look like random [26].

Of course, saying “every animal always interacts with everybody else” would give us a recall of

1, but a terrible precision. On the other hand, precision by itself is still not sufficient, because

27

28

Figure 2: An example of inference: given several timestamps of sensor data, we want to infer
an undirected graph of interactions.

we wouldn’t be able to realize how many interactions we are missing. Thus, only using either

recall or precision would not be enough to understand how good is our model.

This Chapter will further explain the proposed sensors we are interested in synthesizing,

the models and the framework we built to respectively infer interaction networks in any con-

figuration and understand when this model gives good results and when and why it doesn’t.

Section 4.1 will describe the sensors we want to synthesize. Section 4.2 explains the proposed

model of this work. Section 4.3 will describe the proposed framework.

4.1 Proposed Sensors

We are interested in inferring the interactions occurring among animals, in order to build

a graph of interactions for every given timestamp. If we want to infer interactions between

two animals, knowing their absolute positions is not strictly necessary. What we would be

29

interested in would be their distances. Moreover, we would like to know the distances among

all the animals we are observing, which might spot interesting patterns.

Having accurate absolute distances would be ideal, however the state-of-art technology

doesn’t allow us to have an accuracy as good to be used by itself for such purposes. GPS

data, with an accuracy of 3 meters, is unfit to be used for most animals, especially the smaller

ones. Adjustments can be done and it has been reported an average accuracy of 30 centimeters

[21] on a controlled environment. However, its reliability is very dependent on the signal and

obstruction of the line of sight with some satellites is likely to occur. Also, in certain cases such

as with small animals, even if we always had the guarantee of 30 centimeters accuracy it would

still be too much. What we could use to have more accurate information are pairs of BLE

sensors (one transmitter and one receiver) [35] the receiver would sense a signal and attach to it

an RSSI value [36], which stands for the strength of the perceived signal. If we tried to convert

our RSSI value into absolute distances, it would result to a relatively high error but it would

still be more informative than using pairs of GPS sensors.

Moreover, suppose we received two signals from two different transmitters, then we would

have two RSSI values and we could compare them. This makes us have arguably more accurate

relative ranking distances among sensors: we would be able to say who is closest to me, who

is second, and so on. Of course, we would still use thresholds of uncertainty so we might

end up considering multiple sensors as equally “second”. Ranking distances might be of key

importance to spot interactions, as studies show how animals interact with a fixed number of

closest neighbors [3].

30

Also, for both the inaccurate absolute distances and the somewhat accurate relative ranking

distances, it may well be the case that a receiver doesn’t receive any signal from a specific

transmitter. This might either imply that the transmitter is too far away to be spotted, or

that the signal was obstructed and wasn’t able to reach its destination. Thus, we are in

the unfortunate situation where “missing data” might be caused by two completely opposite

reasons. This will get our data even noisier than just the inherent errors of precision of the

sensors. Still, having redundant sensors, or multiple sensors in different positions should spot

these errors and overcome them.

Also, our animals can be equipped with Magnetic Pick-Up (MPU) sensors to either extract

accelerometer and/or gyroscope data. We will disregard gyroscope data for our instances and

instead sometimes use the absolute value of the speed extracted from the accelerometer. We

also have the per-axis speed, however it doesn’t really make a lot of sense if we are not planning

to use absolute positions but only distances.

Now, let’s look at the input data we are going to use: we said we want to transform our

RSSI values in absolute and ranking distances. However, both transformations suffer from the

absence of received signal. To be able to input something also on these cases, we need to have

discrete domains for both absolute and relative distances.

Ranking distances as we defined them are already discrete: we would have the closest

ones, the second closests one, and so on. The only thing we would have to add is a ranking

representing when we don’t spot any signal. We can either say that all those sensors are

considered the furthest (i.e. if the furthest spotted is in third position, we would add a fourth

31

position for all the others), or we would define a default position for all of them (i.e. suppose

that we at most are able to discern 5 ranking positions, we would add a sixth position that

would refer to all the not received signals). To remain consistent with the concept of ranking,

we decided to exploit the first option.

Absolute distances are continuous instead. However, we wouldn’t be able to build a not-

biased model with continuous distances and many not received signals. What we can do is to

split the input in different ranges such as “very close”, “close”, “medium”, “far” and a special

distance “very far” for when we don’t sense anything.

As mentioned before, when the input should be sufficiently near to be sensed but it doesn’t

for any reason, it worsens our input data. That is one of the reasons why we would like to add

information such as fixed receivers around our grid, to overcome such problems.

Finally, notice how these discretizations give us an ordered domain, that is we are using

ordinal values, so our model can exploit the knowledge that “medium” is further than “close”

and “very close” but closer than “far” and “very far”. Likewise for rankings.

Once we have these sensors available, we can decide on using several different configurations:

first of all, for all possible configurations we can either have or not have accelerometer data from

each animal. We might decide to put a transmitter on every animal and put some receivers

on some fixed positions over them (for example onto some beacons). We would then receive

ranking and absolute distances of every animal from every fixed position.

Or, we could attach both receivers and transmitters to each animal, thus being able to

have distances directly among them. Notice that, being relative, we would represent it with a

32

Figure 3: An example of input ranking distances data in a configuration with receivers on both
animals and beacons. The black nodes are animals, while the blue nodes are fixed position
beacons.

directed weighted graph, because it is not necessarily true that, given two individuals x and y,

SensedDistance(x,y) = SensedDistance(y,x).

Finally, we could have both configurations altogether: transmitters and receivers on every

animal, and receivers in some fixed positions.

Figure 3 shows an example of input ranking distances data. As we can see, this is a directed

weighted graph where distances are discrete positive numbers, there can be multiple arrows

of the same rank starting from the same node, but there are no gaps in the rankings. Also,

receivers only sense distances and are not sensed. We can see that sometimes receivers do not

sense a transmitter, for example B senses C, but C doesn’t sense B. Also, ranks between two

33

Figure 4: An example of input absolute discretized distance data in a configuration with re-
ceivers on both animals and beacons. The black nodes are animals, while the blue nodes are
fixed position beacons.

nodes can be different either for noise in the data (pair AB) and for structural properties which

have nothing to do with noise (pair CE, where E only senses C thus it is distant 1, but C senses

A as well, which is closer, so it says E is distant 2).

Figure 4 shows a possible absolute distance input (already partially discretized) for the

same timestamp. What wasn’t sensed remains not sensed, however we can see that distances

don’t necessarily start from 1 (also, they could start from 0 if very close), there can be gaps

and distances without noise are more consistent. In fact, even if pair AB due to noise gives a

contradictory distance, pair CE this time spots the same distance from each other.

34

4.2 Proposed Models

Given some labeled data of a specific configuration of sensors, whose values are discrete

ordinals and possibly floating point numbers (regarding speed in our examples, but not limited

to them), we want to build a model which explains at best our data.

Our output will ultimately be an undirected unweighted graph of interactions. The first

question we have to answer is: how do we want to infer the edges of our graph? We want to

infer pairwise interactions one at a time, or more specifically, every possible dyadic interaction

will have its own output, saying whether it is interacting or not at a specific timestamp.

We present two different families of models: an assumption free family, and one with inde-

pendence and equality assumptions.

4.2.1 Assumption Free Family

Even if we want to individually predict every edge, this does not mean that we have to

suppose that the presence of an edge is independent from all the other edges.

In fact, if we feed our model with all the input data we have at any given time, and we

individually predict every edge from such data, this makes every edge possibly dependent from

the others, even if we were to predict such edges one at a time (notice that it is not always the

case).

To understand why they are dependent, imagine what we would do if we considered every

edge to be independent to the other edges. For now, consider a simple configuration, which can

be easily generalized to all our cases, where every animal has both a transmitter and a receiver

and we want to classify an edge between two of them. If we believed in edge independence,

35

we wouldn’t care about any data regarding any pair of animals but the ones we are classifying

now (why caring about the distances between animals 3 and 4, if we are analyzing 1 and 2?

Also, why caring about the interaction between 2 and 3, when interested in 1 and 2, if the

presence or not of an edge between 2 and 3 does not imply anything for 1 and 2?). Interestingly

enough, the concept of “ranking distances” starts being less useful (why caring to know that 2

is second in distance to 1, if we don’t care about other interactions?), however it should still

be useful by itself, considering that animals are supposed to interact with a fixed number of

closest neighbors, as previously noticed [3]. Likewise for speed, we would only care about their

two values.

Generalizing, if we had fixed position receivers, we would be interested in only the signals

received from the 2 animals we are considering.

Knowing that edges can be dependent from other edges makes all our data useful for their

classifications.

Also, we consider every animal to be possibly different in behavior w.r.t. every other one,

so we want out models to exploit this fact by specializing in a different way for every possible

dyadic interaction (this will usually result in having multiple specialized classifiers). Notice

that they would still have all the available input features, but the number of outputs of our

overall model is equal to the number of possible interactions at every timestamp.

This family of models is able to specialize and spot group patterns, thus it is expected to

perform best with a lot of data, but fairly poorly with a small amount.

36

4.2.2 Independence and Equality Assumption Family

On the other hand, if we assume the likelihood of an interaction to be independent from

all other interactions, and if we suppose that every animal behaves the same, or in a more

technical way, we are interested in the general concept of interaction regardless of what pair

of individuals we are interested in, we can drastically drop both the input feature size and the

size of data required to have a good classifier.

In fact, we could create one single classifier which would infer every interaction at each

timestamp, by modifying its inputs every time: as we noticed before, in this case we would

only be interested in the input features regarding the pair, that are pairwise distances, speed,

and beacons distances sensed for the two individuals. If we feed this information to our model,

regardless of what pair we are interested, it will give us an output.

As you can imagine, this drastically decreases the size of data required: for n individuals,

from n2 outputs (which usually means classifiers), we now only have 1 output. This can usually

be trained with a very small amount of data and still give reasonably good results.

Of course, this has its shortcomings as well: aside from being it trickier to be handled,

because it would need a more complex preprocessing of data, and in general an input format

following some rules (we use dictionaries of dictionaries in our Python implementation, while

the assumption free model accepts matrices), making it less user friendly, it clearly is unable to

spot collective behaviors and it would not be able to specialize for each individual.

It might be questionable why we consider good to specialize for individuals. This might be

wrongly identified as overfitting, but most of the times, to perfectly spot an interaction with no

37

false positives/negatives is usually impossible because the amount of sensors needed and where

to put them on the animal is unreasonable or practically not doable. For example accelerometer

data for arms movements on baboons is extremely tricky because baboons would most likely

destroy the devices. Therefore, knowing that a specific animal is more likely to interact w.r.t.

other individuals, with lack of important data, is extremely precious.

This leads us to suppose that this family of models would perform extremely well with a

little data, and worse than the more general family with medium to a lot of data.

4.2.3 Proposed Classifiers

In practice, we consider a baseline approach and several different models that can be used

with any of the two families:

• Baseline: distance and time threshold

• NNs

• SVMs

• Ensemble methods for DTs

4.2.3.1 Baseline Classification

Our baseline approach assumes that both transmitters and receivers are on each animal and

disregards the preprecessing of the data into ordinal categories: It wants to find, for each pair

of animals, the maximum distance and for how long that distance must be kept to consider it

an interaction.

38

We only consider the distances between the two animals we care about, thus we can have

at most two input values for each pair, and if at least one of them is sensed to be closer than

the threshold, we consider them close. If they remain close for the minimum time threshold,

we consider it an interaction. If no signal has been sensed, we consider it to be ‘far away’ and

no interaction is spotted.

We want to find the couple of thresholds that minimizes our cost function. The maximum

distance threshold is clearly the maximum range of the receivers, while the time threshold is

a parameter to be chosen. However, the optimal threshold is hardly ever going to be greater

than 3, thus we could select 3 for most instances, and only if 3 happened to be the optimal

threshold for a specific instance, we might want to increase this number.

This baseline is simple enough to be able to find the best parameters (global optimum) by a

bruteforce approach. Heuristics that find local optima in logarithmic time with respect to the

range of the receivers exist, but are not needed in this case.

4.2.3.2 Neural Network Classification

Neural networks seem ideal for our target configurations: they can be built to have any

number of numeric inputs as well as any number of binary outputs. Moreover, even if just

slightly, mispredictions of one output modify most of the network which is shared by all outputs,

thus actually being theoretically dependent from the other outcomes. We used a fully connected

feedforward neural network with dropout ReLU neurons for all but the output neurons, and for

output neurons we used a standard sigmoid activation function where being close to 1 means

interaction and being close to 0 means no interaction.

39

One problem with NNs is that their input data cannot be balanced (for the assumption free

family). We can theoretically decrease the unbalance of 0s w.r.t. 1s by completely discarding

train data without a single positive classification, but this, especially for networks with a lot of

nodes, doesn’t solve the problem.

Here, we decided to not discard training data (because it was not needed for our tested

instances) and to balance the problem by using cost sensitive learning: we took the Bernoulli

Negative Log-likelihood error function described this way where x is the inferred and y is the

expected value:

error(x, y) = −y lnx− (1− y) ln(1− x) (4.1)

noticing that

error(x, y) =

− ln(1− x), if y = 0,

− lnx, if y = 1.

(4.2)

thus, suppose we have a cost matrix where mispredicting false negatives and false positives

have a cost of fn and fp, respectively, where in our case fn ≥ fn, we want to weight this

error function to backpropagate differently those two types of error. First of all, we normalize

the two weights so that we are sure to find convergence: wfn = fn/max(fn, fp) and wfp =

fp/max(fn, fp) so that the weight for the bigger cost will remain 1 and the weight for the

smaller one will be reduced proportionally. Then, we multiply the two parts of our former cost

function accordingly:

40

new error(x, y) = −wfny lnx− wfp(1− y) ln(1− x) =

−wfp ln(1− x), if y = 0,

−wfn lnx, if y = 1.

(4.3)

What it means is that if we mispredicted and y = 1, then we must have said that x = 0

thus we had a false negative and we backpropagate multiplying its error with a wfn factor,

likewise for false positive errors, accordingly to our goals. In fact, even if the data is inherently

unbalanced, by weighting less the false positives, we effectively help our model in being more

balanced.

4.2.3.3 Balancing Data

The remaining classifiers have the way we handled data in common:

We created one classifier for every possible output, effectively creating n(n − 1)/2 binary

classifiers which specialize in a single edge for the assumption free family (and of course, only 1

for the other family). This number, although being linear w.r.t. the size of the output, is easily

handled for small to medium size networks of animals, which is always going to be the case for

these kinds of inferences.

This trick makes our input data easily balanceable: we can always use all the minority class

input instances and the same number, randomly sampled, of majority class input instances.

Experimenting this turned out to make us not need to use cost sensitive learning, even if it was

possible for all of the following models.

41

While there is nothing more to add for our SVM models, we still have to discuss our ensemble

methods.

4.2.3.4 Ensemble Methods for Decision Trees

We tried three different ensemble methods with DTs:

• Bagging with a sampling size of 50% of the data and 100 trees.

• Random Forest with 100 trees.

• AdaBoost boosting with a maximum number of 100 trees.

AdaBoost is one of the most used boosting ensembles on the market. While we can’t ever

suppose a priori which will perform best between AdaBoost and the two more similar Bagging

and Random Forest, we don’t even know which of the latter two will perform better than the

other.

In fact, the main idea of Random Forest is to increase the diversity of the classifiers by

selecting only a small number of input features. However, we already know that there are going

to be a very, very small number of features which are going to be extremely important for

classifications, while the others will impact our results much less. Thus, randomly removing a

big number of features implies to very usually not have any of the most important features.

We expect this to often result in a worsening of the results, because it will decrease drastically

the average accuracy of every classifier, even if increasing the diversity. Still, we don’t expect

Random Forests to perform badly: the only condition they have to meet to give good results is

to have an accuracy higher than 50%, and with a binary classification this is extremely easy to

42

achieve, even with not so important features. Thus, it will be interesting to see what impacts

best the results: will it be a higher accuracy or a higher diversity?

4.2.3.5 Markov Assumption and Data Subdivision

Up to now, we only considered the input data of the specific time we want to label. This is

a zero-order Markov assumption and it is not necessarily the case that it holds.

It could be the case that the distances of our animals of one, two, etc. previous time

periods might well alter the likelihood of an interaction. Thus, we would like to try different

assumptions. To do that, we need several things:

• A way to compare two results.

• To split the data into train, validation and test sets.

• Understand when to stop increasing our order of Markov assumption.

In order to understand if a bigger order model would eventually overfit the data, we need to

evaluate our results and compare them: if we find out that a bigger order Markov assumption

behaves worse than a smaller order, we would select the lower order one.

This implies that we need to test our models while training, thus we need to have a validation

set to not overfit the test set. The test set will only be used at the end of every model tuning.

To evaluate our performances we will use a cost function directly extracted from our cost

matrix: the lower the result is, the better our model is.

Finally, it might be the case that using a higher order assumption only slightly increases

our results. This is a good hint for understanding that the proper assumption was the previous

43

one, because it means that adding new information doesn’t improve our model. But what if a

higher order actually improved the results? Using a threshold of improvement is not the best

way to tackle the problem. What we will do is make a test of statistical significance between

those two models, using the multiple comparisons approach. If the two models are most likely

going to not be statistically different, we would refuse the higher order assumption to select the

lower one.

Speaking of the statistical test, we will always refer to a Bonferroni multiple comparison

test with α = 5%. Also, we performed a slight adjustment to it to better fit our goals: we are

interested in having the simplest model which performs best. Suppose we had 100 outputs and

we validated our model with Markov orders 0 and 1. Imagine our second order model to give

a just slightly better evaluation result. We would then perform a statistical test and through

Bonferroni adjustment we might find out that out of the 100 outputs, only 2 are statistically

different. This might indeed mean that those two outputs are the main reason why it performed

better than the smaller order model, or that again by chance they performed better just in this

case. In fact, the more outputs we have, the lesser it is important for one single output to be

better than the others, and increasing the Markov order implies significant computational costs.

Thus, we decided to use the same α = 5% threshold once again: in order to consider a model

sufficiently better than the previous one, once Bonferroni adjusted, at least α outputs must be

significantly different than the previous ones. To give an insight to why this looks like more

ideal, if we had up to 20 outputs, this threshold would do nothing, and one different output

would be enough to be a significant difference. However, for 100 outputs, 1 different output

44

may very well be by chance, and even if it weren’t it would justify a whole Markov order more.

On the other hand, if 5 of such outputs were to differ, we have reasons to believe that our new

order is really helping and it is worth to be taken.

4.3 Proposed Framework

In order to evaluate our proposed models and to perform sensitivity analyses on them, we

first need to be able to synthesize our data. Also, we need to do it in such a way that it is

easily possible to fine-tune its parameters that impact the reliability of the input data.

4.3.1 Creating the Environment

Accurately synthesizing some real data is a very complex task whose results are very often

far from perfect.

The background setup is straightforward: we create a virtual world, where we put inside a

given number of animals with some transmitters and possibly receivers and eventually also put

pillars in fixed positions with some receivers. We make our animals ‘move’ a fixed number of

times while sampling either the values from our sensors and the occurring interactions every k

steps with k not necessarily being equal to 1.

During this process we stumbled across three major design issues:

• Simulate the data retrieved from our sensors.

• Simulate the behavior of our animals

• Label the interactions of our animals

45

4.3.1.1 Simulating the Data

How do we design our sensors? Which parameters do they take? How are their outputs

presented to us?

We want our sensors to give us data similar to RSSI values. Their absolute values are

not relevant as long as their relative values are consistent, but we expect our sensors to fail

sometimes and even when they don’t fail we expect to have some noise in the values received.

We know that our receivers are unable to spot signals further than a given range, thus we

could easily say that if the two sensors (one transmitter and one receiver) are distant more than

that range, the receiver doesn’t receive any signal. But what about when they are not as far

away?

If we want to model the possibility of failure, we can just assume that every transmitter has

a probability of failure to transmit a given signal and likewise for receivers if needed.

The strength of the signal sent can vary for several reasons, and that can be modeled by

using a Gaussian noise which modifies the position we infer (instead of using RSSI values we

directly estimate the distances between the two sensors, which requires one less computational

step and gives us the same results).

However, when we do receive a signal, it is unlikely to be noiseless. We want to add some

noise to it, also, the further it travels, the bigger the noise we can receive. We model this by

using a Gaussian noise with mean 0 and a parameter for the standard deviation which decreases

linearly the closer the two sensors are.

46

The good thing about it is that those parameters can be fine-tuned for our sensitivity

analysis and fairly accurately describe the real world examples.

4.3.1.2 Simulating Animals Behavior and Labeling

The last two issues will be solved together, but before explaining how, it is important to

understand why such things are difficult to deal with.

If we want to synthesize data properly, we want to have inputs reasonably close to reality,

thus simulating animals behavior becomes crucial for our framework. Clearly, if animals didn’t

move at all, or moved at random all the time, their behavior would be useless for our purposes.

Our goal is to be able to construct a animal which resembles sufficiently the behavior of a real

animal, but not so much in details to have too many arbitrary parameters which could make

us jump into false conclusions. For example, the field of view of animals different from fish is

in most cases unknown. Now, if we had to rely to this information while synthesizing data and

we weren’t certain about its value, our results might drastically differ from reality. While, if

we had a more general case where we knew that somehow something close enough is seen, this

weaker assumption should hold for the real cases also.

For labeling we have yet again a problem: we can’t manually annotate interactions after

creating some data. Well, in theory we could: we would first create our input data, then we

would have to plot it somehow and to manually say at every timestamp which are the interacting

pairs. After all this is what we will have to do with the real data, so what is the problem?

Fist of all, one of the main goals of our study is to estimate how much data we need to label

in order to build a reasonable model to spot interactions, so we don’t know this information

47

here yet. Connected to this rises the second problem: we want to synthesize a variable amount

of data, from a lot to very little, an enormous amount of time to perform sensitivity analysis.

Ideally, this type of analysis can be made automatically, thus we really can’t manually label

our data, and even if we could, it would probably require years.

So how do we automatically label our data? We could say: if two animals are closer than

a certain threshold for a certain time threshold, then they are interacting. The problem with

that is it is too simple. We want to have challenging interactions to be spotted, otherwise we

could wrongly believe our models are good, while they are good only for trivial cases.

As anticipated, we solved these two problems at the same time: we performed a very simple

instance of agent based modeling [37], by building a Finite-State Machine (FSM) artificial agent

intelligence. Agent based modeling is a very wide and complex field, and this work does not

intend on going in depth into that. Given that our needs are not having extremely accurate

behaviors (which for most animals would be impossible to have, otherwise we wouldn’t need to

observe them in the first place), a simple FSM with random transitions will suffice.

We decided to model the behavior of every animal as a machine which lives in several

different states, and that behaves differently accordingly to its actual one. It must have a

movement function which can switch states as well as performing its state behavior.

This FSM must of course be handled case by case, and the only requirement it has, is to

have a special interacting state: in this state, an agent is interacting with at least another one,

and we know who it is interacting with. This makes our labeling of interactions trivial: at any

timestamp, we just look at every agent, if it is interacting, we add an edge of interaction with

48

every one it is interacting with. Even if our interacting behavior is somehow directed for now,

we can still create an undirected edge (or directed if preferred).

The nice thing about that is we never miss an interaction, being as close as possible to a

perfect labeling. If we don’t believe it to be the case, we can add uncertainty to the automatic

labeling. However, sensitivity analysis about that is far from useful, because it would be useless

to say to our labelers: ‘Be sure to be accurate at least 87% of the time!’ because we are

supposing that they are as accurate as they can be and they wouldn’t know to be mistaken

most of the time.

Finally, this gives us the possibility to actually label a specific behavior not by using our

input data, thus our models will need to reverse engineer the correlations between our input

data and the labelling, which is, said in a less fashioned way, performing supervised learning.

CHAPTER 5

CASE STUDY

We propose a case study where we synthesize some data and do some sensitivity analysis

on it, to show example of how our framework and model work and evaluate our methodology

while possibly giving some insights on general properties of dyadic interactions.

As anticipated, we need to create a random agent FSM: we decided to make one very simple

agent which lives in four different states, and that behaves differently accordingly to its actual

one. We made it fairly simplistic to avoid making assumptions of any type. It has a body and

moves not much more than its body length for every timestamp, but we didn’t assume how it

senses any other agent, thus it has no explicit sensory system. Every number you will see is a

specific instance of our more general parametric model. Of course, their numbers will be pure

(without a dimension such as distance in meters or time etc.), but for the readers’ clarity we

will interpret them as centimeters.

The four states actually implemented are the following:

• Normal

• Hungry

• Sleeping

• Interacting

49

50

Figure 5: The actually implemented FSM of our agents. Transitions from states are random,
although their chance may vary.

Figure 5 shows the FSM of our agents. The Normal state is the core of our automaton:

it can either behave ‘normally’ or it can switch to any of the other three states. If it behaves

normally, it can either stay still or move, whereto is irrelevant.

Randomly, the agent can switch from Normal to Hungry state. When it does, its priority

becomes to feed. To implement this behavior we created in our virtual world a spot where our

agents can eat food (and ideally drink), when an agent is hungry, it doesn’t anymore behave at

51

random, but it instead moves towards the food spot of the fence and eats there to its heart’s

content (conveniently modeled by a number). After that, it goes back to Normal.

Or, starting from Normal state, the agent can decide to go to sleep. If it goes to sleep it

doesn’t move at all for a variable number of turns. After that, it wakes up and goes back to

Normal.

Finally, it can try to start an interaction: if the agent is in Normal state and wants to interact

with another agent, it can look around itself: if there is another agent close to its position, it

can start interacting with them. This has a completely different behavior than the general case:

the interacting agent starts moving towards and around the other agent (simulating either a

poke or some active jumps around the other individual). Moreover, being playful increases the

chance to interact with any other close agent. If it is interacting with more than one agent at

the same time, it randomly decides who to torment. Also, it randomly decides whether to drop

an interaction with an agent at any time and, if there are no more interactions active, it goes

back to Normal.

In details, we implemented our agent behavior with these parameters:

• Normal state is the starting state of any agent.

• While in Normal state, it can transition to Hungry or Sleeping states with 5% chance

each, and if sufficiently close (there is at least one other agent closer than 50 cm to our

target agent) it has a 20% chance to transition to Interacting state.

• An agent in Sleeping state stays there for a random number of timestamps varying from

3 to 20.

52

• An agent in Hungry state, once reached a feeding spot, stays there for a random number

of timestamps varying from 1 to 4.

• While in Interacting state, an agent can start interacting also with another agent very

close to it (less than 30 cm) with a 30% chance. However, any occurring interaction can

drop with a 40% chance at the beginning of every timestamp.

The interacting likelihood is a parameter we will modify later, to make interactions occur less

and less often to make sensitivity analysis on our models.

Modeling an animal this way is reasonably similar to a real animal behavior (which still

needs several parameters to be set to better resemble them, such as sleeping time, movement

chance and so on), but not as specific to be close to one specific type of animal, and does

not assume anything like the line of sight, hearing and smell of an animal, which is usually

unknown.

Notice that this behavior construction is made purposely to have hard time inferring inter-

actions from our model, and being it as general as possible, it should apply and give a lower

bound for our parameters in real configurations, or at least an idea to what to expect.

However, this is only an example and it can be either made simpler or more realistic: Some

examples for improvement are: to really model the starving factor of an animal as well as its

fatigue which directly affect which state is most likely to be selected. To model the orientation

of an animal and its field of vision (otherwise the orientation would be useless). To say that

if you are sleeping and an interacting animal pokes you, or even every time a animal stumbles

across you, you have a chance to wake up. Or, if some animal is interacting with you and you

53

are not sleeping or hungry, you have a very high chance to either avoid it, or start interacting as

well. If you are willing to have a more realistic interaction, it is implementable in our framework

in theory. However, once the complexity of the agents becomes reasonably big, we suggest using

specific tools for agent based modeling such as NetLogo [38]. Nevertheless, care is recommended

if following that route: setting the wrong (very specific) parameters w.r.t. the real animal’s

might result in misleading results.

We will put our agents in a M×N (5×5 is what we arbitrarily decided) m2 fence. Whenever

we say we use fixed position beacons in this work, we will refer to a configuration where beacons

are positioned in a very redundant way: they are positioned in a grid, where their distance from

either a wall or another beacon is exactly as big as its range, thus we are confident that an

agent would be sensed by at least two beacons in most places, if there weren’t reliability issues.

Figure 6 shows our target positions of beacons.

First, we have to estimate some parameter thresholds regarding error and reliability of our

sensors. We don’t suppose our sensors (both transmitter and receivers) will be 100% reliable.

Thus, we will estimate that their reliability, that is the probability to send/receive a signal,

will never exceed 95%. Also, in our synthesized world we could be 100% sure of the distances

between the two sensors, thus we add positional errors being sent from the transmitters and

a distance error being received by the receiver. They are both coming from a Gaussian noise,

where we give as input parameter the standard deviation.

A reasonably starting value for these errors is, given that the maximum sensed distance is

100 cm, we give a transmitter standard deviation of 10, and receiver distance standard deviation

54

Figure 6: Positions of beacons in the synthesized world. The blue dots represent the beacons
containing the receivers.

of 15. Thus we suppose our signals to be reasonably noisy to begin with because it wouldn’t

make much sense to suppose no noise in our default case.

For all our evaluations, we will always use a test size of 2000 time frames. This is big enough

to give us relevant estimates of our results, but more importantly it is necessary to always have

the same arbitrary size once decided, to be able to compare results with different parameters.

Also, we will use a cost matrix where false positives are weighted 1, false negatives are weighted

3, and true positives and negatives have 0 weight whenever we don’t specify otherwise. Notice

that, while a cost function is needed for our models to properly finely tune our classifiers, its

result once trained is negligible and we only care about recall and precision.

55

Anyhow, input size is the most important parameter to estimate as first: the lower the input

size needed, the faster all our other analyses will be.

Also, as the generation of the data is a random process, as well as some inner calculations

of our classifiers while being trained (think of how a Neural Network gets trained, or a Random

Forest, for example), we want to repeat every analysis multiple times and average results. We

decided 5 to be the number of repetitions, only for computational constraints (some of our

analyses are too long to be repeated more than 5 times for every classifier). Thus, whenever

we show evaluation measures, they are all averaged from 5 runs. Given the variability of

our training phase, we believe that a greater number of tests for each model would be more

insightful. However, as you will see shortly, the variance of our models does not seem like to

be a primal concern.

Finally, special care must be taken with the parameters regarding our agents: they are very

complex to be finely tuned. At first, we are supposing to have 6 (a partially arbitrary starting

number, driven by the fact that a small number of agents should suffice in showing patterns

and that real world labeling would start with a small number of animals first, however why

exactly 6 was a preference of the author) agents which interact relatively often when they are

close (20 % as stated before) in a time frame. This can and will later be significantly reduced

to see how our models behave with much more unbalanced data. Also, this work will always

put one receiver and transmitter on every single agent, although future analyses might be done

to see what happens with different configurations.

56

We will start our analysis with the assumption free family of models, to understand how

it performs, to give insight on several parameters, and we will introduce our other family later

on, to compare the two of them in different contexts.

To give an insight of what data without noise would give as a result, we performed two tests,

one without (Table II) and one with beacons (Table III), where there is no noise whatsoever.

We will also show its uncertainty, so we performed 10 runs each (twice what we will do after

this) to be more precise on the analysis.

TABLE II: EVALUATIONS OF SEVERAL MODELS FOR A CONFIGURATION WITH NO
BEACONS AND A TRAINING SET OF 10000 SAMPLES WITHOUT NOISE

Method Cost Accuracy Precision Recall

Baseline 12371± 643 0.677± 0.019 0.390± 0.014 0.800± 0.018

SVM 13857± 630 0.638± 0.022 0.356± 0.017 0.776± 0.016

NN 8793± 1184 0.782± 0.018 0.506± 0.008 0.834± 0.049

Bagging 7753± 1091 0.784± 0.028 0.509± 0.021 0.906± 0.016

Boosting 8169± 966 0.774± 0.025 0.496± 0.02 0.896± 0.015

Random
Forest

8136± 868 0.775± 0.021 0.497± 0.018 0.896± 0.019

We can see from Table II and Table III that bagging performs better than any other classifier

with no beacons, and random forest performs better with beacons. This might be because when

we significantly increase the number of input features, having a higher variability in our default

decision trees is better than having a higher accuracy. However, we can also notice that our

57

TABLE III: EVALUATIONS OF SEVERAL MODELS FOR A CONFIGURATION WITH
BEACONS AND A TRAINING SET OF 10000 SAMPLES WITHOUT NOISE

Method Cost Accuracy Precision Recall

Baseline 12085± 610 0.687± 0.013 0.397± 0.009 0.796± 0.016

SVM 10759± 474 0.710± 0.014 0.422± 0.008 0.846± 0.010

NN 19720± 1509 0.731± 0.053 0.196± 0.144 0.121± 0.094

Bagging 7863± 859 0.782± 0.021 0.504± 0.018 0.900± 0.022

Boosting 8147± 704 0.776± 0.017 0.496± 0.017 0.892± 0.021

Random
Forest

7763± 729 0.784± 0.019 0.506± 0.021 0.904± 0.017

top performing classifiers don’t gain much from having beacons when there is no noise, hinting

that fixed positions don’t help for spotting interactions. We can also notice that NN performs

terribly with beacons, which we will discuss later, and that SVM improves significantly in both

precision and recall. Finally, notice that the variance of our models is not of crucial concern,

especially for recall.

5.0.1 Graphs and statistical tests

One very important issue to address before starting is how we are going to analyze and

compare our results. One thing we can surely do is plot some graphs, for example the values

of a certain evaluation measure with varying parameters of multiple models. This will give

us a very intuitive insight for comparing different models and varying parameters. As we are

performing multiple runs for each assignment of parameters, the canonical way to plot such

information would be by using box plots, which would show median and variance of every

model for each assignment. However, we realized that graphs this way were either too big

58

(if we were to show one assignment at a time) or too messy (if we wanted to plot everything

altogether). Thus, we decided to only show the average of the runs for each parameter while

plotting graphs. Also, when the x axis is a parameter, we will connect points of the same model

with a line. Given that if we had boxplots we wouldn’t connect them, this is a controversial

choice. However, as we want to show trends occurring while varying parameters, and that if we

didn’t use lines some points would not be visible because of them being too close to others, we

decided to adopt it regardless.

Anyhow, we are not going to disregard the fact that these are distributions and not fixed

points. In fact, we can directly compare two classifiers by looking at their averages and variances

for some evaluation functions, such as recall or precision. We will first perform normality tests

(Saphiro-Wilk [39]) for the outcomes of our classifiers and once confirmed they seem normally

distributed, we will perform unpaired t-tests to see if two classifiers are significantly different,

or one-way ANOVA if we are interested in confronting more than 2 classifiers altogether.

As a first test, we tested normality for all our classifiers with no noise with respect to

precision and recall and they didn’t result not normal.

5.1 Estimating the Training Size

Estimating the size of the training data needed to have reasonable results is extremely

important. We will have to estimate them for at least two configurations:

• Without fixed position beacons holding receivers.

• With them.

59

Figure 7: Recall evaluation of our selected models with different training size and with no
beacons.

The reason is simple: the size of the input features significantly increases when we add those

beacons, thus it may be the case that a small size of data for the first configuration is not

enough for the second.

We will start without beacons and see how our models behave with gradually less data:

We start from 10000 time frames which we believe it to be reasonably high (it would mean

that 10000 different time frames would have been manually labeled, which is unlikely), and

go downwards in a non linear fashion. We will stop once we realize our family of models is

deteriorating too much:

60

Figure 8: Precision evaluation of our selected models with different training size and with no
beacons.

The first thing we can notice is that even if having a configuration with no noise improves

the results, it doesn’t by so much that we cannot work with noisy data.

Looking at Figure 7 and Figure 8 we can see different things: although as we could expect

the more data we have, the better we predict, there appears to not be significant difference

between 10000 and 5000 (we performed t-tests for both precision and recall using average and

variance for ensemble methods with different training size, for example bagging 10000 with

bagging 5000, not rejecting the null hypothesis, after confirming with Shapiro-Wilk that the

61

distribution seemed normal), and starting from 5000 going downwards the cost evaluations of

most classifiers drop significantly.

In particular, the best classifier appears to be Bagging when we feed it with a lot of data

(10000-5000, t-tests with the other ensemble methods resulted to be significantly different)

and there is no significant difference among the three ensemble methods with lower data (we

performed one-way ANOVA for both precision and recall evaluations after confirming normality

of the distributions). As expected, the Baseline performs consistently with a little variety in the

results. Also, SVM has the worst performance consistently among the not baseline classifiers

for precision while keeping a reasonably good recall. Finally, NN performs better than the

baseline with respect to precision, but it is terrible with recall.

Adding information from fixed position receivers, as we can see in Figure 9 and Figure 10,

shows no significant improvement for our ensemble methods (we performed t-tests for each

ensemble method with its correspondent model with beacons and in almost every case they

resulted to be not significantly different. Bagging resulted to be different with 5000 samples,

but it may be due to be using only 5 samples for each classifier), exception made with 500

samples where our models seemed to perform not even normally, probably due to being too

little data to properly train our classifiers, a remarkable improvement on SVM, which appears

to perform extremely better than the baseline with a lot of data, and a surprising worsening of

the performance for NN, most likely caused by underfitting.

Summing things up:

62

Figure 9: Recall evaluation of our selected models with different training size and with beacons.

• There does not appear to be an extreme advantage on using fixed position sensors for the

top performing classifiers, with this little noise in the data.

• NN tuning of layers and number of neurons appears to be extremely difficult and time

consuming to be used in an automatic way, for so many different configurations.

• Although having more data does improves the results, we cannot always use a big amount

of data for computational constraints as well as for comparisons with real world labeling,

thus we will use 2000 samples from now on, which still gives reasonably good performance

while maintaining small enough computation time.

63

Figure 10: Precision evaluation of our selected models with different training size and with
beacons.

5.2 Sensor Reliability

How reliable must sensors be to still have reasonable results? In this Section, we are inter-

ested in dropping the reliability of a transmitter to send a signal. If it doesn’t, in that time

frame no receiver receives it.

We will not use NNs anymore, as they appear to not be fit for the task, and we will decrease

the reliability in a non linear fashion again.

We will only show our configuration with no beacons here. The reason is simple: adding

beacons does not affect at all this type of errors, as beacons have only receivers, and when

64

Figure 11: Recall evaluation of our selected models with different transmitter reliability and
with no beacons.

transmitters fail they dont send any signal. Everything you will see is conceptually the same

for the configuration with beacons, suggesting again we don’t need beacons in this case, so we

omitted it.

As expected, the performances drop for all classifiers. In particular, the precision is harmed

significantly by this noise, as shown in Figure 12, for our ensemble methods, while both SVM

and the baseline keep their (low) performance stable.

65

Figure 12: Precision evaluation of our selected models with different transmitter reliability and
with no beacons.

Surprisingly, recall remains very high. In particular, the ensemble methods are able to

make reasonable inferences even with extremely unreliable data, as seen in Figure 11, even if

the precision falls behind 40%, maintaining a 80% recall.

Finally, our baseline’s recall drops drastically, making it not usable at all.

5.3 Sensor Error

Transmitter and receiver errors are modeled in two different ways and have two different

effects on our input data.

66

Figure 13: Recall evaluation of our selected models with different transmitter error and with
no beacons.

We will first increase the noise on solely the transmitter signals. Second, we will analyze

the effects of the noise in the receivers.

5.3.1 Transmitter Error

Again, being a type of error not regarding beacons, they don’t help here and our models

with and without beacons give the same results, so we omit the graphs with beacons here as

well.

It appears that this kind of noise heavily impacts the performance of all our models. The

baseline’s performance in particular is terrible, while our models still keep respectable results. In

particular, recall remains untouched (Figure 13), while precision drastically drops (Figure 14).

67

Figure 14: Precision evaluation of our selected models with different transmitter error and with
no beacons.

5.3.2 Receiver Error

Receiver error can in principle be mitigated by adding beacons, so we will show both con-

figurations:

With respect to the transmitter noise, this kind of noise impacts significantly less the per-

formances of our classifiers. Recall still performs well (Figure 15) even if it decreases by a little

bit, while precision decreases with a ‘lesser’ slope (Figure 16) with respect to other types of

noise.

68

Figure 15: Recall evaluation of our selected models with different receiver error and with no
beacons.

Being this the case, you can already imagine that beacons will not be of much help, as this

noise was not a problem to begin with. Figure 17 and Figure 18 show just that: they don’t

seem to be of any impact. To be sure, we performed t-tests for each ensemble method for recall

and precision, not resulting to be statistically different.

69

Figure 16: Precision evaluation of our selected models with different receiver error and with no
beacons.

70

Figure 17: Recall evaluation of our selected models with different receiver error and with
beacons.

71

Figure 18: Precision evaluation of our selected models with different receiver error and with
beacons.

72

5.4 Feature Relevance

We are interested in knowing what are the input features that impact the most on our

models, to eventually trim down the input size.

We split our input features into:

• Absolute pairwise distances.

• Ranking pairwise distances.

• Speed of agents.

Exception made for the speed features, which are useless by themselves, we tried every combi-

nation of features with our standard configuration of 2000 training size, standard noise.

Being a feature analysis, it doesn’t matter what configuration we use, in fact the results are

the same for both with and without beacon configurations. Here we present the results for the

configuration with on beacons, as we previously noticed it to be sufficient and adding beacons

doesn’t help.

Clearly, our baseline is unaffected by these features, because we use raw data for it. As

we can see from Figure 19 and Figure 20, it appears that our models without speed features

are worse than the baseline with respect to precision, and ranking distances are worse than

the baseline even regarding recall. In particular, even when adding speed features, ranking

distances by themselves give significantly worse results than the ones obtained with absolute

distances alone (exception made for SVM w.r.t. recall, t-test for our models with ranking and

absolute distance rejected the null hypothesis) but they are still very good at both precision

73

Figure 19: Recall evaluation of our selected models with different features and no beacons.

and recall, and the combination of the two does not improve significantly with respect to just

having absolute distances for all models but SVM which worsens its results.

This result is interesting, and it is probably ought to the artificial labeling of our data. It

is extremely reasonable to suppose that humans would label in a way much more similar to

relative ranking distances than absolute ones, thus future work might want to see whether with

different labels the situation might change.

It appears that our configuration doesn’t overall require ranking distances (and beacons),

while speed is extremely important.

74

Figure 20: Precision evaluation of our selected models with different features and no beacons.

5.5 Adding Agents

We are interested in knowing what happens when we increase the number of agents in our

fence. Up to now, we have always had 6 agents in our 5x5 meters squared environment. Now, we

will increment this number. From now on, we will only use absolute distances and speeds in a

configuration with no beacons, as it was shown to be more than enough in these configurations.

Also, this task turned out to be extremely time consuming, thus we stopped after it took more

than one day to compute a complete cycle (which we remember it to consist of 5 different runs,

where we find the best model for each classifier with multiple training, then we train again and

test each model).

75

Figure 21: Recall evaluation of our selected models with different numbers of agents and with
no beacons.

Figure 21 shows recall drops drastically for SVMs, a little for our ensemble methods and

surprisingly it increases for our baseline. Figure 22 shows an increase of precision for all our

classifiers, baseline included.

It appears that the more agents we add, the more likely we are to have an interaction,

this explains the linear increase in performance for our baseline. Still, our ensemble methods

perform consistently better than it.

We are curious to know what would happen in a larger environment, or with even more

agents, or with a different agents behavior.

76

Figure 22: Precision evaluation of our selected models with different numbers of agents and
with no beacons.

5.6 Decreasing Interactions

Probably the most critical parameter for our models to work is the likelihood of interactions

between two close animals.

Being it a supervised learning approach which assumes differences among our animals, it

generally needs a lot of data to work properly. When interactions become extremely rare, it

starts to be a very big problem for our model to be trained properly.

77

Figure 23: Recall evaluation of our selected models with different likelihood of interactions and
with no beacons.

We are going to decrease our interaction likelihood and try to understand when our proposed

models become unfit for the task, and different approaches should be considered.

Up to now, we have always used a 20% chance of interaction between two close animals.

We will start with 50% and decrease it significantly, with a training size of 2000 timestamps,

a cost matrix which considers false negatives three times more important than false positives

and only using absolute distances and speeds, as before.

78

Figure 24: Precision evaluation of our selected models with different likelihood of interactions
and with no beacons.

Figure 23 shows how the baseline quickly drops down to not ever predicting a positive result,

while our models appear to hold a very high recall up to 5% interactions, to drastically drop

their performance after.

Figure 24, however, shows how precision drops all the time we decrease the likelihood of

interactions and even more when we reach 1%.

This was again predictable, because if the agents stay in the same small environment but

interact less, its is extremely likely that just by chance more of their random movements look

like an interaction, but it isn’t. If we had a different type of interaction, in a bigger area, where

79

Figure 25: Recall evaluation of our selected models with different training size, 1% likelihood
of interactions and no beacons.

being close to each other significantly increases the likelihood of an interaction, or with more

specific accelerometer and orientation data, we expect our model to perform much better.

Still, we asked what would happen if we had more data. First of all, we modified the cost

matrix to consider false negatives ten times more than false positives, then we significantly

increased the training size to see if our models improved and by how much.

Figure 25 shows how recall increases until it stabilizes at 96% for all models but the baseline,

which remains unable to predict a positive interaction. Figure 26 shows how precision grows

very slowly, becoming excessively slow after 50000 samples.

80

Figure 26: Precision evaluation of our selected models with different training size, 1% likelihood
of interactions and no beacons.

This suggests us that for spotting this specific kinds of interactions, either this model might

be too complex and we would need too much data, thus we should go with pairwise independent

models, or it is too difficult to understand when an interaction does not occur without dropping

the more important recall.

5.7 Families Comparison

Once we realized what our family of models without the use of any independence assumption

can and cannot do, we can directly compare the top performing one with its counterpart of

the other family: we took our Bagging classifier, with only absolute distances and speed, and

81

Figure 27: Recall evaluation of our Bagging models with and without assumptions with different
training size and with no beacons.

with no beacons, and we compared it with the same bagging classifier, but with individual

independence and pairwise independence assumptions.

5.7.1 Common Interactions Case

We first show their performances in our standard configuration of 20% interactions with

varying training size. This time, however, having a model which performs well even with a

little data, we started from 50 timestamps, up to again 10000.

As expected, our independence model performs astonishingly better than our other model

when we have a little data. Figure 27 shows that while our assumption free model starts

82

Figure 28: Precision evaluation of our Bagging models with and without assumptions with
different training size and with no beacons.

with a terrible recall, to become extremely good after having more than 1000 timestamps, our

independence model is consistent with more than 80% recall for every quantity of training size

we feed it with.

Figure 28 shows the same trend for our assumption free model and a similar one for our

independence one. This time, it seems that with a little data, even though it still is far better

than its counterpart, it has still rooms for improvement, and it reaches its summit at 200

training size, which is anyway extremely low. We can notice that the turning point in this

83

Figure 29: Recall evaluation of our Bagging models with and without assumptions with different
training size and with no beacons with 1% interaction likelihood.

experiment turns out to be 1000 timestamps: if we have more data, we prefer our assumption

free model, otherwise our independence model is far better.

5.7.2 Rare Interactions Case

We are extremely interested in what happens with rarer interactions. We noticed that our

first family resulted to be struggling a lot with 1% interactions likelihood, and we didn’t know

what was the reason for it. We will try this configuration with both our families to give an

insight about it.

The result is interesting: it appears that in this case our independence model performs

better than our assumption free model even at 100000 training size.

84

Figure 30: Precision evaluation of our Bagging models with and without assumptions with
different training size and with no beacons with 1% interaction likelihood.

Figure 29 shows how both classifiers stabilize at 95-96% recall, but with our independence

model starting with more than 90% w.r.t. less than 65% of its counterpart.

Figure 30 however shows two interesting things: the first is that, as mentioned before, our

assumption free model never reaches its rival, suggesting that even more data would be needed

to surpass it. Secondly, that after 10000 timestamps, our independence model stabilizes at 16%

precision. This strongly suggests us that, even if our other model could in principle do a little

better than this, the issue of its low precision doesn’t come only from not having enough data,

85

but also because we don’t either have enough specific sensors or the interaction was too oddly

defined to begin with.

Nevertheless, it still shows that especially for rare interaction cases, we would have to use

our independence model.

5.8 Case Study Conclusions

We performed sensitivity analysis on our case study with FSM agents in a virtual fence with

and without fixed position receivers, exploiting a baseline and two different families of models.

The more training data we have, the better we classify. Reliability on transmitters is not

critical for practical configurations, but their error is. Receivers error is sustainable in small

amounts and in our configurations having fixed position beacons doesn’t seem to be necessary,

even with extremely noisy data.

With the types of interactions we created, ranking distances perform worse than absolute

distances, but they are still very useful by themselves. However, we believe them being worse

than absolute ones might be caused by our bias at creating interactions in that specific way,

so it might be that more realistic agents or human labeling might turn this conclusion upside

down.

Increasing the number of agents improved our performances, probably by making our pre-

dictions easier, but significantly increased the computational time needed to perform our tests.

Also, decreasing the likelihood of agents interactions extremely impacted our results, drop-

ping the precision by an exponential amount, especially for our assumption free family. We

compared our two families of models by using the top performing classifiers and we confirmed

86

that our independence family works very well even with a little data and that over normal

conditions our assumption free model surpasses it, given enough data. We confirmed that for

practical uses with low likelihood interactions our independence family is recommended and

realized that in this case study, there is either a lack of specific sensors or an oddly defined type

of interaction, which causes precision to remain low, when there are rare interactions.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We introduced a new way of using proximity data extracted from RSSI values to infer

pairwise interactions of animals by synthesizing such data and using it with our models and

framework. We created different families of models for a supervised learning approach: assump-

tions free and independence assumption families. We created a framework to perform extensive

sensitivity analysis for calibrating any sensor system for inferring biological interactions which

gives us the best model to use given any type of sensor data.

Our models work with arbitrary sensor data (GPS data can be used as well, of course it is

still recommended to give distances and not positions as inputs) and can use context variables

such as time of the day, season, specific places and so on.

Our framework for sensitivity analysis can be used to give guidelines for deploying sensors

for a real configuration as well as suggesting the amount of training data required, and can give

protocols for models and parameters selections.

Actual suggestions we were able to give to biologists are: we showed evidence supporting the

thesis that ranking distances are useful and usable, that BLE sensors can be used in the field,

that fixed position beacons are not necessary when we are interested in dyadic interactions, at

least when we can have pairwise distances by applying them to animals, that accelerometer

data is vital to spot specific types of interactions. We also discussed about when such models

can be used and for what types of interactions. Finally, we gave some guidelines to how much

87

88

data we would need to have labeled for our models to work, with respect to the likelihood of

interactions.

Future work can be done in many areas: we definitely need to try our models with human

labeled data to see how it performs with real configurations.

We can add information of orientation of animals, to be able to give an idea if an animal is

looking at another kin or not, which might significantly increase the accuracy of most human

labeled and better synthesized models.

We can exploit Active Learning [34] to manually aid our model where it doesn’t perform

well, in our case, to try to increase the precision, trying to understand when it isn’t able to

spot a false positive and focus on labelling the types of interactions that are classified with the

most errors, effectively decreasing the amount of data to label.

Finally, we might also be interested in knowing the absolute positions of our animals given

our sensor, to see if it is possible to accurately triangulate their positions in a closed environ-

ment.

CITED LITERATURE

1. Darwin, C.: The Origin of Species. P. F. Collier & Son, 1909.

2. Watson, J. D. and Crick, F. H.: Molecular structure of nucleic acids: A structure for
deoxyribose nucleic acid. Nature, 171:737–738, 1953.

3. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte,
V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., and Zdravkovic, V.: Inter-
action ruling animal collective behavior depends on topological rather than metric
distance: Evidence from a field study. Proceedings of the National Academy of
Sciences, 105(4):1232–1237, 2008.

4. Randazzo, E.: Inferring interaction network from sensor data. Master’s Thesis, University
of Illinois at Chicago, 2016.

5. Altmann, J.: Observational study of behavior: Sampling methods. Behaviour, 49(3/4):227–
267, 1974.

6. Silk, J. B., Alberts, S. C., and Altmann, J.: Social bonds of female baboons enhance infant
survival. Science, 302(5648):1231–1234, 2003.

7. Blonder, B. and Dornhaus, A.: Time-ordered networks reveal limitations to information
flow in ant colonies. PLoS ONE, 6(5):1–8, 05 2011.

8. Campbell, J., Mummert, L., and Sukthankar, R.: Video monitoring of honey bee colonies
at the hive entrance. visual observation & analysis of animal & insect behavior,
2008.

9. Katz, Y., Tunstrm, K., Ioannou, C. C., Huepe, C., and Couzin, I. D.: Inferring the
structure and dynamics of interactions in schooling fish. Proceedings of the National
Academy of Sciences, 108(46):18720–18725, 2011.

10. Liu, J., Liu, J., Reich, J., Cheung, P., and Zhao, F.: Distributed group manage-
ment for track initiation and maintenance in target localization applications.
In Proceedings of the 2Nd International Conference on Information Processing in

89

90

CITED LITERATURE (continued)

Sensor Networks, IPSN’03, pages 113–128, Berlin, Heidelberg, 2003. Springer-
Verlag.

11. Shin, J., Guibas, L. J., and Zhao, F.: Information Processing in Sensor Networks:
Second International Workshop, IPSN 2003, Palo Alto, CA, USA, April 22–23,
2003 Proceedings, chapter A Distributed Algorithm for Managing Multi-target
Identities in Wireless Ad-hoc Sensor Networks, pages 223–238. Berlin, Heidelberg,
Springer Berlin Heidelberg, 2003.

12. Zhao, F., Liu, J., Liu, J., Guibas, L., and Reich, J.: Collaborative signal and infor-
mation processing: an information-directed approach. Proceedings of the IEEE,
91(8):1199–1209, Aug 2003.

13. Balch, T., Dellaert, F., Feldman, A., Guillory, A., Isbell, C. L., Khan, Z., Pratt, S. C.,
Stein, A. N., and Wilde, H.: How multirobot systems research will accelerate
our understanding of social animal behavior. Proceedings of the IEEE, 94(7):1445–
1463, July 2006.

14. Pereira, D. P., Dias, W. R. A., d. L. Braga, M., d. S. Barreto, R., Figueiredo, C. M. S., and
Brilhante, V.: Model to integration of rfid into wireless sensor network for tracking
and monitoring animals. In Computational Science and Engineering, 2008. CSE
’08. 11th IEEE International Conference on, pages 125–131, July 2008.

15. Markham, A. C. and Wilkinson, A. J.: Novel Algorithms and Techniques In
Telecommunications, Automation and Industrial Electronics, chapter EcoLocate:
A Heterogeneous Wireless Network System for Wildlife Tracking, pages 293–298.
Dordrecht, Springer Netherlands, 2008.

16. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., and Rubenstein, D.: Energy-
efficient computing for wildlife tracking: Design tradeoffs and early experiences with
zebranet. SIGARCH Comput. Archit. News, 30(5):96–107, October 2002.

17. Webb, S. L., Gee, K. L., Strickland, B. K., Demarais, S., and DeYoung, R. W.: Measur-
ing fine-scale white-tailed deer movements and environmental influences using gps
collars. International Journal of Ecology, 2010, January 2010.

18. Hebblewhite, M. and Haydon, D. T.: Distinguishing technology from biology: a critical
review of the use of gps telemetry data in ecology. Philosophical Transactions of
the Royal Society of London B: Biological Sciences, 365(1550):2303–2312, 2010.

91

CITED LITERATURE (continued)

19. Ni, L. M., Liu, Y., Lau, Y. C., and Patil, A. P.: Landmarc: indoor location sensing using
active rfid. In Pervasive Computing and Communications, 2003. (PerCom 2003).
Proceedings of the First IEEE International Conference on, pages 407–415, March
2003.

20. Priyantha, N. B., Chakraborty, A., and Balakrishnan, H.: The Cricket Location-Support
System. In 6th ACM MOBICOM, Boston, MA, August 2000.

21. Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D., and Crofoot, M. C.: Shared decision-
making drives collective movement in wild baboons. Science, 348(6241):1358–1361,
2015.

22. Schwager, M., Anderson, D. M., Butler, Z., and Rus, D.: Robust classification of animal
tracking data. Comput. Electron. Agric., 56(1):46–59, March 2007.

23. Handcock, R. N., Swain, D. L., Bishop-Hurley, G. J., Patison, K. P., Wark, T., Valencia,
P., Corke, P., and ONeill, C. J.: Monitoring animal behaviour and environmental
interactions using wireless sensor networks, gps collars and satellite remote sensing.
Sensors, 9(5):3586, 2009.

24. Shemesh, Y., Sztainberg, Y., Forkosh, O., Shlapobersky, T., Chen, A., and Schneidman,
E.: High-order social interactions in groups of mice. eLife, 2:e00759, sep 2013.

25. Long, J. A., Nelson, T. A., Webb, S. L., and Gee, K. L.: A critical examination of indices
of dynamic interaction for wildlife telemetry studies. Journal of Animal Ecology,
83(5):1216–1233, 2014.

26. Farine, D. R. and Whitehead, H.: Constructing, conducting and interpreting animal social
network analysis. Journal of Animal Ecology, 84(5):1144–1163, 2015.

27. Hong, W., Kennedy, A., Burgos-Artizzu, X. P., Zelikowsky, M., Navonne, S. G., Perona,
P., and Anderson, D. J.: Automated measurement of mouse social behaviors using
depth sensing, video tracking, and machine learning. Proceedings of the National
Academy of Sciences, 112(38):E5351–E5360, 2015.

28. Glossary of terms. Mach. Learn., 30(2-3):271–274, February 1998.

29. Dietterich, T.: Overfitting and undercomputing in machine learning. ACM Comput. Surv.,
27(3):326–327, September 1995.

92

CITED LITERATURE (continued)

30. Cortes, C. and Vapnik, V.: Support-vector networks. Machine Learning, 20(3):273–297,
1995.

31. Glorot, X., Bordes, A., and Bengio, Y.: Deep sparse rectifier neural net-
works. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS-11), eds. G. J. Gordon and D. B. Dunson,
volume 15, pages 315–323. Journal of Machine Learning Research - Workshop and
Conference Proceedings, 2011.

32. Breiman, L.: Bagging predictors. Machine Learning, 24(2):123–140, 1996.

33. Freund, Y. and Schapire, R. E.: A short introduction to boosting, 1999.

34. Ho, T. K.: Random decision forests. In Proceedings of the Third International Conference
on Document Analysis and Recognition (Volume 1) - Volume 1, ICDAR ’95, pages
278–, Washington, DC, USA, 1995. IEEE Computer Society.

35. Gomez, C., Oller, J., and Paradells, J.: Overview and evaluation of bluetooth low energy:
An emerging low-power wireless technology. Sensors, 12(9):11734, 2012.

36. Benkic, K., Malajner, M., Planinsic, P., and Cucej, Z.: Using rssi value for distance
estimation in wireless sensor networks based on zigbee. In 2008 15th International
Conference on Systems, Signals and Image Processing, pages 303–306, June 2008.

37. Macal, C. M. and North, M. J.: Tutorial on agent-based modeling and simulation. In
Proceedings of the 37th Conference on Winter Simulation, WSC ’05, pages 2–15.
Winter Simulation Conference, 2005.

38. Damaceanu, R.-C.: Agent-based Computational Social Sciences Using NetLogo: Theory
and Applications. Germany, LAP Lambert Academic Publishing, 2011.

39. SHAPIRO, S. S. and WILK, M. B.: An analysis of variance test for normality (complete
samples). Biometrika, 52(3-4):591–611, 1965.

40. Settles, B.: Active learning literature survey. Technical report, 2010.

