Politecnico di Milano

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE
Corso di Laurea Magistrale in Ingegneria Informatica
Master of Science in Computer Science And Engineering

TESI DI LAUREA MAGISTRALE - MASTER’'S THESIS

Spectral Manipulation of Audio using General-Purpose
Graphics Processing Units

Relatori - Advisors Candidato - Candidate
Prof. Augusto Sarti Andrea Gianfranco Crespi
Prof. Victor Lazzarini Matr.813390

Anno Accademico 2015-2016

Andrea Gianfranco Crespi: Spectral Manipulation of Audio using General-Purpose
Graphics Processing Units | Tesi di Laurea Magistrale - Master’s Thesis in Ingegneria
Informatica - Computer Science And Engineering, Politecnico di Milano.

(© Copyright July 2016.

Politecnico di Milano:
www.polimi.it

Scuola di Ingegneria Industriale e dell’Informazione:
www.ingindinf.polimi.it

http://www.polimi.it
http://www.ingindinf.polimi.it

Acknowledgements

First, I would like to thank my hosting research supervisor in Ireland, Victor

Lazzarini, for accepting my unusual request to carry out a project under his
supervision, and for welcoming me in the facilities of Maynooth University. I would
like to thank him for the extraordinary support he has given me throughout all the
stages of this project, both during my stay in Dublin and later. I acknowledge that
he has dedicated a lot of energies and attentions to this project, being truly helpful
and patient. He introduced me to the exciting world of Csound and to some critical
aspects of audio programming and debugging. Finally, I thank him for assisting me
in the writing process of this thesis by means of meticulously correcting multiple
draft versions of each chapter.
Along with Victor Lazzarini, I would also like to thank the whole Music Department
of Maynooth University for providing me with the tools for the development of
this project: a quiet room to work in, two desktop computers, and two brand new
graphics cards, specifically bought for this project.

Then, I would like to thank my advisor, Augusto Sarti, for supporting the idea
of a project to be carried out abroad, outside the scope of Politecnico di Milano,
and for his assistance in the final stages of the drafting process.

Not least, I would like to thank all the competent and passionate professors I
was lucky to meet on my path at Politecnico di Milano, from whom I have had
the pleasure to learn the foundations of such fascinating fields as engineering and
computer science. In particular, I would like to thank: Marco Bramanti (calculus),
Lorenzo Mezzalira (computer science), Paolo Dulio (algebra and geometry), Marco
Sampietro (electronics), Marco Tagliasacchi (digital signal processing), Matteo
Matteucci (statistical learning) and, again, Augusto Sarti (sound analysis, synthesis
and processing). Without their teachings and stimuli, this work could not be even
conceived.

Milano, July 2016 Andrea Crespi

If this word “music” is sacred

and reserved for eighteenth- and nineteenth-century instruments,
we can substitute a more meaningful term:

organization of sound.

John Cage
‘The Future of Music: Credo’ (1937)

Contents

Introduction 1

1

Background: the General-Purpose GPU Computing Framework

and the Phase Vocoder 7
1.1 General-Purpose Computing on GPUs 7
1.1.1 The GPU 8
1.1.2 A Brief History of GPU Architecture 9
1.1.3 Modern NVIDIA GPUs: Architecture and Programming Model 12
1.1.4 Heterogeneous Computing via the CPU-GPU Pair 15
1.2 The Phase Vocoder, 17
1.2.1 STFT-Based Phase Vocoder Analysis 19
1.2.2 ISTFT-Based Phase Vocoder Re-Synthesis 22
1.2.3 Limitations of the Phase Vocoder 24
1.3 Conclusions 25
GP-GPU Computing for Audio Applications: a Review 27
2.1 Early Examples of GP-GPU Computing for Audio Applications . . 27
2.2 Additive Synthesis 37
2.3 Spectral Model Synthesis 000 40
2.4 Physically-based Synthesis via Finite Difference Methods 42
2.5 Room Acoustics Modelling 45
2.6 Headphone-based Spatial Sound (HRTF) 47
2.7 Using the GPU in the Context of Music Production 50
2.8 About Recursive Filters in a Parallel Computing Scenario o7
2.9 Spectral Processing 63
2.10 Conclusions 69
Research Task and Implementation 73
3.1 Tools 73
3.1.1 Csound 73
3.1.2 CUDA 74
3.2 Spectral Signal Processing in Csound 75
3.2.1 The fsig Framework 76
3.3 Spectral Signal Processing with CUDA 78
3.3.1 About Performance: Limitations, Trade-offs and Improvements 78
3.4 Selected Unit Generators 79
341 pvsgaino 80

ix

CONTENTS

3.4.2 pvsfilter 80
3.4.3 pvstencil 80
344 pvscale 81
345 pvshift Lo 81
34.6 pvsmooth 81
3.4.7 pvsblur 82
348 pvsmix 82
3.49 pvsmorph 82
3.5 Development of GPU-operating Plugin Opcodes 83
3.5.1 Host Memory Input-Output Version and Device-Only Version 83
3.5.2 A General Scheme for CUDA Plugin Opcodes 85
3.5.3 Sliding Mode 87
3.6 CUDA-based Plugin Opcodes 88
3.6.1 cudapvsgain and cudapvsgain2 88
3.6.2 cudapvsfilter and cudapvsfilter2 89
3.6.3 cudapvstencil and cudapvstencil2 90
3.6.4 cudapvscale and cudapvscale2 91
3.6.5 cudapvshift and cudapvshift2 96
3.6.6 cudapvsmooth and cudapvsmooth2 98
3.6.7 cudapvsblur and cudapvsblur2 99
3.6.8 cudapvsmix and cudapvsmix2 L. 101
3.6.9 cudapvsmorph and cudapvsmorph2 102
3.7 Conlcusionso 102
Tests and Experimental Results 105
4.1 Testing Environment L. 105
4.1.1 Testing Systems: Hardware 105
4.1.2 Testing Systems: Software 107
4.2 Testing Procedure 107
4.2.1 Testing Scheme o 108
4.2.2 Audio Specificationso 110
4.3 Results. 112
4.3.1 Gain module: a Preliminary Analysis 113
4.3.2 Filtermodule oo o 116
4.3.3 Stencil module L o 118
4.3.4 Scale module oL 119
4.3.5 Shiftmodule.o 124
4.3.6 Smooth module L 126
4.3.7 Blurmodule 127
4.3.8 Mix Module o 130
4.3.9 Morph Module 131
4.4 GPU Comparison 132
4.4.1 Gain Module 133
4.4.2 Scale Module (Mode 1) L 134
4.4.3 Blur Module 135
4.5 Possible Improvements: Code Optimisation 136

CONTENTS xi

4.5.2 Shared Memory 138

4.5.3 Shared Memory Privatisation and Atomic Operations 139

4.5.4 Pinned Host Memory 139

4.6 Conclusions 139
Conclusions 143

A True Envelope Estimation Algorithm for Formant Conservation

in scale and shift modules (Mode 2) 149
B Plugin Opcodes: CUDA C Scripts 153
C Csound Scripts for Testing Purposes 223
Acronyms 235

Bibliography 239

List of Figures

1.1

1.2

1.3

1.4

2.1

2.2

2.3

24

2.5

2.6

2.7

Vertex shaders, pixel shaders, etc. become threads running different
programs on a flexible core. (Image from [11])
General structure of an NVIDIA GPU (GeForce-Maxwell 107 mi-
croarchitecture in particular): the three main blocks are the Graphics
Processing Cluster, the GigaThread Engine and the L2 cache. (Image
from [12])
Internal structure of a Streaming Multiprocessor as in GeForce-
Maxwell 107 microarchitecture: groups of 32 cores each share the
same resources, including a warp scheduler, an instruction buffer, a
large register file, some load/store units and some special function
units. In Maxwell GPUs the Streaming Multiprocessor is called
“SMM”. (Image from [12])
Heterogeneous programming model as in CUDA: each curly arrow
represents a thread. (Image from [13])

Results obtained in [27] for a CPU versus GPU comparison (execution
time in microseconds). Seven basic audio effects are considered and
105000 audio samples are processed in each experiment.
Performance comparison of CPU and GPU implementations of a
plain FIR filter with a number of taps equal to the number of input
(and output) elements. Results from [29].
Performance comparison (CPU vs GPU) of a radio receiver appli-
cation for different number of taps used for the internal FIR filters.
The measured quantity is the time to generate 500 output samples.
Results from [29]. oo
In [31], modal models are stored in a 2D tezture. Different channels
are used for storing different modal parameters.
In [31], the current samples from each modal response are stored in
one channel of a 2D texture after computation.
Thread to data mapping in the CUDA implementation of additive
synthesis by Savioja et al., [32]. Each box corresponds to one thread
which is in turn assigned to multiple spectral components and multi-
ple time samples. L
Number of sinusoids that can be computed and mixed for real-time
additive synthesis on a commodity computer (CPU vs GPU) as a
function of the buffer size (results from [32], small buffers).

xiii

xiv

LIST OF FIGURES

2.8 Number of sinusoids that can be computed and mixed for real-time
additive synthesis on a commodity GPU as a function of the buffer
size (results from [32], large buffers).

2.9 Execution speed of finite difference-based membrane sound synthesis
programs with a constant grid size of 21x21 points and varying
output buffer sizes. Comparison between three systems producing a
5seconds output ([33])..

2.10 Execution speed of finite difference-based membrane sound synthesis
programs with a constant buffer size of 4096 samples and varying
grid sizes. Comparison between three systems producing a 5 seconds
output ([33]).

2.11 Execution time for the synthesis of one 512-samples buffer by means
of a finite difference-based membrane synthesizer set to different grid
sizes. CPU and GPU performance are compared ([34]).

2.12 Execution time of the CUDA-based HRTF rendering application
discussed in [38] for a variable number of virtual sources. In this
simulation, sources are moving constantly around the scene (worse
condition). The horizontal line represents the real-time threshold.

2.13 Maximum FFT length for real-time frequency-domain convolution
as a function of the number of channels to which it is applied. CPU
vs GPU comparison as in [44], where two possible buffer sizes are
considered (128 samples and 1024 samples).

2.14 Maximum FIR length for two real-time convolutions in the time
domain as a function of the number of channels to which they are
applied. CPU vs GPU comparison as in [44], where two possible
buffer sizes are considered (128 samples and 1024 samples).

2.15 Memory transfer times and kernel times for a Pure Data FFT analysis
module running on a GeForce GTX470 for different block sizes, as

2.16 Execution time for a Pure Data full phase vocoder analysis/re-
synthesis module running on a GeForce GTX470 for different block
sizes, as in [48]. Different lines indicate different approaches to
re-synthesis. Lo

3.1 Data flow diagrams of a practical utilisation example, comparing the
two versions that were developed for each algorithm. The device-
only version involves much less memory transfers and is expected to
perform better in any case.

4.1 Execution time results (in seconds) from testing the gain module on
system 1 over 60 seconds of audio.
4.2 Speed-up factors related to different implementations of the gain
module on system 1.o
4.3 Speed-up factors related to different implementations of the gain
module on system 1. L
4.4 Execution time results (in seconds) from testing the gain module on
system 1 over 60 seconds of audio.

44

49

ot
Ut

o6

LIST OF FIGURES XV

4.5 Execution time results (in seconds) from testing the filter module
on system 1 over 60 seconds of audio. 117

4.6 Speed-up factors related to different implementations of the filter
module on system 1. 117

4.7 Speed-up factors related to different implementations of the filter
module on system 1.o 118

4.8 Speed-up factors related to different implementations of the stencil
module on system 1. oo 119

4.9 Speed-up factors related to different implementations of the stencil
module on system 1. 119

4.10 Speed-up factors related to different implementations of the scale
module (mode 0) on system 1. 120

4.11 Speed-up factors related to different implementations of the scale
module (mode 0) on system 1. L. 120

4.12 Execution time results (in seconds) from testing the scale module
(mode 1) on system 1 over 60 seconds of audio.. 121

4.13 Execution time results (in seconds) from testing the scale module
(mode 1) on system 1 over 60 seconds of audio.. 122

4.14 Speed-up factors related to different implementations of the scale
module (mode 1) on system 1. L. 122

4.15 Speed-up factors related to different implementations of the scale
module (mode 1) on system 1. L. 123

4.16 Speed-up factors related to different implementations of the shift
module (mode 0) on system 1. L., 124

4.17 Speed-up factors related to different implementations of the shift
module (mode 0) on system 1. L. 125

4.18 Speed-up factors related to different implementations of the shift
module (mode 1) on system 1. L. 125

4.19 Speed-up factors related to different implementations of the shift
module (mode 1) on system 1. L. 126

4.20 Speed-up factors related to different implementations of the smooth
module on system 1.o oo 127

4.21 Speed-up factors related to different implementations of the smooth
module on system 1. 127

4.22 Execution time results (in seconds) from testing the blur module on
system 1 over 60 seconds of audio. 128

4.23 Real-time analysis for the four different versions of the blur module.

Red crosses reveal real-time operation failure while green dots indicate
SUCCESS. « v v v v e e e e e e e e e e e e 128

4.24 Speed-up factors related to different implementations of the blur
module on system 1. oo 129

4.25 Speed-up factors related to different implementations of the blur
module on system 1.o 130

4.26 Speed-up factors related to different implementations of the miz
module on system 1. oo 130

4.27 Speed-up factors related to different implementations of the mix
module on system 1. 131

xvi LIST OF FIGURES

4.28 Speed-up factors related to different implementations of the morph
module on system 1. 132

4.29 Speed-up factors related to different implementations of the morph
module on system 1. oo 132

4.30 Speed-up ratios obtained from the two different systems used for
running the gain module (instrument 4 only). 133

4.31 Speed-up ratios obtained from the two different systems used for
running the gain module (instrument 4 only). 134

4.32 Speed-up ratios obtained from the two different systems used for
running the scale module (mode 1, instrument 4 only). 135

4.33 Speed-up ratios obtained from the two different systems used for
running the scale module (mode 1, instrument 4 only). 135

4.34 Speed-up ratios obtained from the two different systems used for
running the blur module (instrument 4 only). 136

4.35 Speed-up ratios obtained from the two different systems used for
running the blur module (instrument 4 only). 136

4.36 A graphical representation of task parallelism and CUDA streams.

Each box represents a task. The yellow rectangle in the middle
highlights a situation for which task parallelism is optimised. 138

List of Tables

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

Speed-up factors (GPU vs CPU) for the sound synthesis of 100
SMS instruments (as in [6]) with different time granularities for
parameters update. CPU performance is compared to the two CUDA
implementations. 0oL
Number of coefficients achievable for the non-recursive part of a
real-time IIR filter, for different block sizes. CPU-based results are
compared to GPU-based results ([45]).
Processing times (in seconds) for applying an IIR filter to 44100
samples, using two different methods (dot product and FFT-based
method) on the CPU and on the GPU ([47])..
Maximum block size achievable in real-time for full phase vocoder
round-trips using different methods for the re-synthesis stage, as
reported in [48] (1: table lookup with 4-point cubic interpolation;
2: table lookup with 2-point linear interpolation; 3: table lookup
with truncated index; 4: direct use of the sinf () primitive; 5: table
lookup with linearly interpolated texture fetching). The performance
of two NVIDIA GPUs is compared.
Execution times for full sliding phase vocoder round-trips producing
a 1s sound on a GeForce GTX470 GPU. Results from [49].
Execution times for a 60s run of phase vocoder analysis (standard)
running on a laptop on-board GPU with different DFT sizes and
hop sizes. Results from [8]. Sampling rate: 44.1kHz.
Execution times for a 60s run of phase vocoder synthesis (standard)
running on a laptop on-board GPU with different DFT sizes and
hop sizes. Results from [8]. Sampling rate: 44.1kHz.
Execution times for a 60s run of full phase vocoder round-trips
(standard) running on a laptop on-board GPU and on a high perfor-
mance CPU with different DFT sizes and hop sizes. Results from
[8]. Sampling rate: 44.1kHz.o
Execution times for a 60s run of phase vocoder analysis plus additive
re-synthesis running on a laptop on-board GPU and on a high
performance CPU with different DFT sizes, hop sizes and number of
frequency bins employed for the additive synthesis. Results from [8].
Sampling rate: 44.1kHz.o
Execution times for a 60s run of full sliding phase vocoder round-trips
running on a laptop on-board GPU and on a high performance CPU
with different DFT sizes. Results from [8]. Sampling rate: 44.1kHz.

xvii

65

68

69

xviii

LIST OF TABLES

4.1
4.2
4.3
4.4

4.5

System specifications for the two computers used in the testing stage.

Specifications of the target GPUs.
DFT size and hop size pairs used for the tests.
A recap of the results presented in section 4.3: GPU vs CPU speed-
up factors when considering DFT sizes between 2048 points and
16384 points and varying hop size.
A recap of the results presented in section 4.3: GPU vs CPU speed-
up factors when considering a DFT size of 4096 points and varying
hop size.

106
106

Sommario

L’ambito dell’elaborazione digitale di segnali audio e caratterizzato da una
ineusaribile necessita di dispositivi di calcolo sempre piu potenti e di programmi
sempre piu efficienti. Figure professionali quali il sound designer, I'ingegnere del
suono, il musicista e il compositore sono alla costante ricerca di strumenti sempre
meno limitanti, di tecniche di elaborazione e sintesi del suono che restituiscano una
maggiore qualita audio, nonché di tecniche di analisi piu sofisticate, possibilmente
a costi contenuti. La comparsa sul mercato, nel corso dell’ultimo decennio, di
processori altamente paralleli e liberamente programmabili (come le moderne unita
di elaborazione grafica), ha innescato una nuova tendenza nella ricerca scientifica
volta allo sviluppo di processi audio ad alte prestazioni: in molti casi lo sfruttamento
della suddetta categoria di processori, ampiamente diffusa in diverse tipologie di
dispositivi elettronici, consente di eseguire un maggior numero di applicazioni
contemporaneamente e/o di ottenere risultati di maggiore qualita. In questa tesi
viene analizzata e commentata la prassi di delegare 1’elaborazione di processi audio
di vario tipo a processori grafici. Inoltre, particolare attenzione viene dedicata allo
studio di un’applicazione specifica, I’elaborazione spettrale del suono: il contesto
operativo fornito da Csound per la manipolazione di segnali audio basata sulla
rappresentazione streaming phase vocoder viene declinato in termini di calcolo
parallelo su unita di elaborazione grafica, attraverso lo sviluppo di moduli operativi
in ambiente CUDA. La funzionalita di questi moduli e stata verificata su due
sistemi di riferimento e comparata con le versioni originali, basate su un modello di
calcolo tradizionale, ovvero centralizzato. I risultati mostrano che la manipolazione
spettrale di segnali audio su unita grafiche non é solo realizzabile in tempo reale ma e
anche caratterizzata da migliori prestazioni se confrontata con il metodo tradizionale
impostato su unita di elaborazione centrali, almeno per quanto riguarda i due sistemi
in esame.

Parole chiave: GP-GPU, Elaborazione Spettrale, HIPAC, CUDA, Csound

xXix

Abstract

The scope of audio computing is in a never-ending need for more processing power
and more efficient software. Sound designers, engineers, musicians and composers
are constantly seeking for less restrictive tools, for higher-quality synthesis and
processing techniques, and for more sophisticated sound analysis techniques, possibly
at a lower cost. The appearance on the market of general-purpose, highly parallel
processors (like modern GPUs) has triggered, in the last decade, a new trend in
the scientific research aimed at developing better performing audio processes: in
many cases, harnessing this kind of hardware, which is widespread in a variety of
electronic devices (or it can be conveniently added to most computer systems),
allows for the execution of more tasks simultaneously and/or for the achievement of
better sound quality results. In this thesis, the practice of casting audio computing
tasks to general-purpose graphics processing units is reviewed and discussed. In
addition, a specific field of application is thoroughly investigated, namely that of
spectral manipulation of audio signals: the streaming phase vocoder framework
provided in the Csound environment is ported to a GPU-based parallel computing
model by means of developing CUDA-based processing modules. These modules
are tested and compared against the original CPU-based versions on two target
computer systems. The results show that real-time spectral manipulation of audio
on GPUs is not only feasible but it is also computed potentially faster with respect
to the standard centralised approach.

Keywords: GP-GPU, Spectral Processing, HIPAC, CUDA, Csound

XX

Introduction

Thesis Overview and Motivations

This thesis investigates new ways of improving the performance and the efficiency
of audio processing algorithms on digital systems by adopting a general-purpose
GPU computing scheme (GP-GPU'). In particular, the attention is focused on
real-time spectral audio manipulations based on the phase vocoder model?, and the
framework chosen for this study is that of commodity desktop computers equipped
with a dedicated graphics processor.

Even though, in the scope of digital media, the subclass of audio computing
and processing is generally considered one of the less demanding in terms of
computational power, this is only true for what concerns everyday applications that
are intended for the average user, who is not involved in a creative® process and does
not play an active role in the very definition of the processing steps. Nevertheless,
today’s technology standards can still be limiting for the achievement of certain
results, even when bleeding edge tools are employed, especially in those applications
that involve non-standard procedures and in all those cases where an always higher
level of audio quality® is required. Real-time spectral processing in particular is an
application field that tends to quickly saturate the available processing load of an
average digital system.

Thus, since the early days of digital audio, the hardware and software industries
have never stopped developing more and more powerful processing tools, both
in terms of audio quality capabilities and in terms of the processing power and
efficiency that is needed to actually make better audio possible. As a consequence,
during the last decades, the constant improvement of digital audio, along with a

LGP-GPU computing: the combined use of latency-oriented CPUs (based on a sequential
computing model) and throughput-oriented graphics processors (based on a parallel computing
model) in order to optimise the performance of a digital system when executing parallel algorithms.
For an insight on this topic, see section 1.1. GPU: graphics processing unit.

2 Phase vocoder: a particular representation of audio signals in the frequency domain. See
section 1.2.

3The term creative is used here in a wide sense and it is not only referring to artistic processes
but also to any audio application (being it for analysis, processing or synthesis purposes) that
requires an active approach in order to carry out a desired task. This could apply to situations of
artistic, technological or scientific nature. This kind of approach could be necessary, for example,
in the scope of music production applications, in the scope of sound design for videogames, cinema
or virtual reality, as well as that of sound analysis for scientific purposes.

4Here the words audio quality do not refer only to the quality of music reproduction but have to
be interpreted in a wider sense, and can refer to such things as superior sound synthesis possibilities
(for musical or non-musical purposes) or enhanced sound telecommunication capabilities and
low-latency real-time applications, to name a few.

2 Introduction

more general burst of digital technology on the whole, has eventually made audio
manipulation available to a wider public, with an ever growing level of quality and
possibilities, even without the need for dedicated hardware. The personal computer,
and, generally speaking, the introduction of general-purpose computers, have had
a major role in this transition: audio processing can now be performed at will
on machines that are not specifically designed for this purpose. Mobile devices
such as tablets and phones have also recently gained attractive general-purpose
capabilities and they de facto expand the possibilities for audio processing even
further. Interestingly enough, all kinds of general-purpose devices have seen an
increasing utilisation for many specific audio-related tasks”, even in professional
environments: from electronic music performance to acoustics simulations.

Still, regardless of the level of computational power and generality of a specific
digital machine (from DIY-oriented microcontrollers to smartphones, from laptops
to application-specific supercomputers), there will always be a need for more
computational power in order to make more and better achievements possible in
a given framework: in fact, there will always be a demand for more realistic and
aesthetically pleasing sounds and effects, as well as for a more precise analysis
of sound sources. Indeed, countless audio applications can provide higher sound
quality or better results, in general, when more processing power is available.

In order to optimise the overall audio processing performance of a given device or
application (without sacrificing its versatility), a new paradigm has emerged in the
course of the last decade: it consists of the exploitation of a heterogenous computing
scheme, where the usual scalar processors are flanked by vector processors (like
GPUs) in the computation of parallel algorithms. This direction is consistent with
a more general shift of the whole computer industry, from sequential to parallel
computing ([1]). In [2] and [3], Dobson, ffitch and Bradford defined the High-
Performance Audio Computing (HiPAC) domain of study as descriptive of new
classes of computationally demanding audio processes implemented by means of the
next generation of parallel processing platforms and tools. HiPAC is seen as a way to
potentially transform the current landscape of audio synthesis, processing and music
composition. As a matter of fact, the GP-GPU model (a subclass of heterogenous
computing) has been successfully applied to a wide variety of audio-related fields
(see chapter 2).

This work investigates the possibilities offered by the GP-GPU computing
scheme, for the manipulation (or the synthesis) of audio signals. This investigation
is twofold: on one side, a brief review of the existing scientific literature about
this topic will be presented (chapter 2); on a more empirical side, a GPU-based
implementation for a few real-time spectral processing algorithms will be developed
(chapter 3) and tested (chapter 4). The specific field that will be addressed in the
experimental section of the thesis is that of phase vocoder processing®. In particular,
nine basic and well-known phase vocoder algorithms will be developed and tested
on a desktop computer system. The choice of this specific field for the experimental
part (i.e., the frequency-domain manipulation of sound) has a double motivation: it
is both known for being particularly demanding in terms of computational resources

SThis is actually true for all kinds of digital media.
5For an insight on the phase vocoder, see section 1.2.

Introduction 3

and it is generally well suited for a parallel approach, which is essential for an
effective use of the GPU.

Brief Description of the Project

Starting from a review of the scientific literature about GP-GPU computing for
audio-related applications (in a very broad sense), this project aims at assessing its
potentials for a performance improvement in the much narrower field of real-time
phase vocoder processing. The report that can be found in chapter 2, in fact,
deals with an assorted range of different fields in the macro category of sound-
related research (for instance, ray tracing [4], wave-based modelling [5], spectral
model synthesis [6], finite difference physical models [7], to cite but a few) and
explores the ways these can relate with the GP-GPU framework. This report
aims at understanding conventional techniques and typical issues involved in the
implementation of GP-GPU programs for audio-related purposes. It also summarises
the potentials of this computing model in terms of performance improvement. Much
of the information contained in this review has been useful for the development stage,
for which nine phase-vocoder-based algorithms are translated from a traditional
(i.e., sequential) scheme to a parallel computing design. Specifically, the considered
algorithms are unit generators” within the Csound® programming language for
sound design and computer music. This project provides for the transposition
of these algorithms to a parallel computation paradigm by means of the CUDA’
platform, to be used in combination with NVIDIA' GPUs.

The starting point for this project is to be found in a publication by Victor
Lazzarini et al., namely “Streaming Spectral Processing with Consumer-Level
Graphics Processing Units” ([8]). This paper describes the implementation of a
streaming spectral processing system for real-time audio that is intended to be
executed in a GP-GPU fashion by means of the CUDA platform. It explores, among
other processes, the implementation of standard phase vocoder analysis and re-
synthesis (in the form of Csound unit generators), and it investigates the potentials,
in terms of computational speed, of harnessing GPU resources in this context.
The results obtained in [8] show that GPU-based full phase vocoder analysis and
re-synthesis can be run quite efficiently (and in real-time) on an off-the-shelf laptop
computer equipped with an on-board GPU. The authors point out that, even though
this solution, on average, does not provide for a speed-up in the execution time on
the target system (at least for the phase vocoder analysis/re-synthesis program), it
can actually serves as a means of freeing up some computation load from the CPU
in a multicore/multiprocessor operation scenario. Also, they expect the CUDA
version to outperform the original version of this algorithm when executed on more

TUnit generator: the basic formal unit in MUSIC-N-style computer music programming
languages (like Csound). Unit generators form the building blocks for designing synthesis and
signal processing algorithms in software. The unit generator theory of sound synthesis was first
developed and implemented by Max Mathews and his colleagues at Bell Labs in the 1950s.

8 Csound: http://csound.github.io/about.html. For more information about Csound
please refer to section 3.1.1.

YNVIDIA CUDA: http://www.nvidia.com/object/cuda_home_new.html. For more infor-
mation about CUDA, please refer to section 3.1.2.

Y NVIDIA: http://www.nvidia.com/

http://csound.github.io/about.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/

4 Introduction

advanced GPUs (or, alternatively, with less powerful CPUs).

The study conducted by Lazzarini et al. in [8] eventually opens up a new direction
for further research. In fact, as it has been proven that phase vocoder analysis
and re-synthesis can be efficiently carried out in a GP-GPU fashion, it is worth
wondering whether phase vocoder processing for spectral manipulations can be
conveniently implemented in the same framework. After all, most frequency-domain
processing algorithms are theoretically well suited for parallel computation. In
addition, the possibility of keeping spectral data in the GPU, instead of bouncing
data between host memory and device memory, is extremely appealing, as it would
critically reduce the occurrence of memory transfers, which are very costly in terms
of latency. Thus, this thesis investigates the possibility of expanding the CUDA
framework for spectral processing in Csound, started by Lazzarini et al. in [8], so
that the GPU is thoroughly employed for a full spectral processing chain (from
analysis to re-synthesis), including the actual frequency-domain manipulation stage
(or stages).

The project consists in the translation of nine phase-vocoder-based spectral pro-
cessing Csound modules from their original form to a CUDA-based implementation
for parallel computing. The specific algorithms addressed in this project are the
following (see section 3.4 for more details about the specific unit generators):

e Frequency-domain amplitude scaling (pvscale)

e Frequency-domain filtering (pvsfilter)

e Frequency-domain adaptive filtering (pvstencil)

e Pitch scaling (pvscale)

e Pitch shifting (pvshift)

e Spectral flux smoothing via IIR filters (pvsmooth)

e Spectral flux smoothing via FIR filters (pvsblur)

e Frequency-domain selective overlapping of two signals (pvsmix)

e Frequency-domain interpolation between two signals (pvsmorph)

The resulting plugin opcodes'' are tested within basic Csound scripts on two target
systems equipped with two different NVIDIA GPUs. In these testing scripts the
new opcodes are inserted in the processing chain in between the CUDA-based
phase vocoder analysis and re-synthesis unit generators developed for [8]. Their
execution times are compared with those obtained by the original modules, which
are designed to run on the CPU. The results are analysed and commented in order
to asses the conditions that, in this framework, endow the GP-GPU approach
with superior efficiency. The goal of this project is precisely that of implementing
efficient algorithms that could take advantage of idle hardware resources (in the
GPU, specifically) in order to either free up CPU load for other tasks or even boost
the performance of the very same processes, when possible. Yet, the same study
can also be useful for investigating the overall potentials of parallel computing in a
spectral audio framework, regardless of the actual processor employed. In fact, very
similar implementations could be also applied to dedicated co-processor systems in
high-performance computing applications.

1 Plugin opcodes: custom Csound modules.

Introduction 5

Thesis Outline

The content of the thesis is structured as follows:

In the first chapter the thesis is contextualised and background information is
provided. This chapter is designed to open the way for the implementation of
GPU-based phase vocoder processing programs. Hence, it provides a general
review of the two main topics involved, namely: the GP-GPU computing
framework and the phase vocoder framework. As a matter of fact, chapter 1
is boldly split into two separate sections.

The first section introduces the concepts of heterogeneous computing and the
GPU as a powerful co-processor for general purpose computing, as well as
for graphics-related tasks. A focus is set on modern NVIDIA GPUs, their
architecture and the software abstractions employed in order to program them
and use them as general purpose parallel processors.

The second section is devoted to an introduction to the phase vocoder repre-
sentation of audio signals. The mathematics involved in the transition from a
time domain signal to its phase vocoder representation (and back) is faced
and explained, with a focus on the short time Fourier transform (STFT)
approach/interpretation. The convenience of the phase vocoder representation
for certain classes of signal manipulation (including those that are considered
in chapter 3) is addressed and made clear.

The second chapter moves away from the very specific topic of phase vocoder
processing and takes a step back, analysing the wider scope of GP-GPU
computing for audio applications. A variety of audio-related research fields
are explored with the aim of summarising the potentials of GP-GPU computing
when applied to each area. These include: additive synthesis, spectral model
synthesis, physically-based synthesis via finite difference methods, room
acoustics modelling, headphone-based spatial sound via HRTFs, digital audio
effects aimed at music production (with a focus on reverberation) and recursive
filters. In order to bring the discussion back to this thesis’ main topic, the last
section is dedicated to a few publications in the area of GPU-based spectral
audio processing. Some attention is also dedicated to the very first examples
of GPU-based audio processing, before graphics processors were designed for
general purpose programming.

The third chapter describes the implementation stage of nine CUDA-based phase
vocoder processing modules that are designed to be integrated in the Csound
environment. To begin with, the employed tools (i.e., Csound and CUDA) are
presented. In particular, Csound’s spectral signal processing framework (also
called fsig framework) is thoroughly illustrated. Then, an a priori analysis of
CUDA-based spectral processing is carried out, highlighting potential benefits
as well as plausible trade-offs and limitations.

Finally, after a quick display of the nine original unit generators that are meant
to be translated to a parallel computing model, the actual implementation of
CUDA-based plugin opcodes is addressed. Ultimately, these are shared objects

6 Introduction

written in CUDA C'? that are designed to be integrated in Csound’s source
code in order to selectively cast computations to the GPU. The translation
of each original unit generator is thoroughly described with the support of
CUDA C code snippets. Each resulting plugin opcode is deeply analysed in
its very structural details.

The fourth chapter describes the testing stage of the plugin opcodes developed
for this project. Here, the specifications of the two target systems (two average
desktop computers) are reported, with a particular focus on their graphics
processors. The testing procedure is described, and so are the Csound scripts
employed for testing purposes. The aim of the tests is that of recording the
execution time of small sound processing programs under different conditions
and parameter settings (such as DFT size and hop size of the phase vocoder
model). These programs are designed in a modular fashion so that different
versions can be analysed, each version having different stages of the processing
chain cast to the GPU. The corresponding execution times are compared
to those resulting from the fully sequential version of the same programs
(running on the CPU only) in order to obtain speed-up factors. Module after
module, these results are illustrated with the support of convenient graphs
and they are successively analysed and commented. The specific conditions
under which a GP-GPU approach seems to give a substantial performance
benefit are thus identified.

Finally, a comparison between the performance of the two target GPUs is
carried out and a few options for future code optimisation are considered and
described.

12Cuda C: a set of extensions to the C/C++ programming language designed to allow the
programmer to cast computations to the graphics processors.

Chapter 1

Background: the General-Purpose

GPU Computing Framework and
the Phase Vocoder

This chapter presents the general topics on which this work is based. These are
essentially two: general-purpose computing on graphics processing units (usually
abbreviated as “GP-GPU computing”) and the phase vocoder technique. While the
former is a remarkably wide subject that applies to an extremely broad range of
fields, the latter is a quite specific technique, mainly employed in the field of signal
processing for audio applications. In this work, both topics are brought together
in order to investigate the potential of a synergistic application of the two, in the
scope of digital audio processing.

1.1 General-Purpose Computing on GPUs

General-purpose GPU computing is the practice of employing the graphics
processors of a digital system for non-graphical purposes. GP-GPU computing
is a subcategory of a broader field of computer science, namely heterogeneous
computing, which studies complex digital systems that use more than one kind of
processing unit in order to gain performance and/or efficiency from a synchronous
and symbiotic action of more and diverse cores. Each processing unit is placed
in the system either to carry out specific tasks, for which it is specialised, or to
perform general-purpose computations that are particularly congenial to its specific
architecture. The aim of a Heterogeneous System Architecture (HSA) is precisely
that of exploiting different kinds of computing units for different tasks, making sure
that this behaviour is hidden from the ultimate user of the system: in fact, the
user does not need to know which unit has to be used for the management of each
single sub-operation that is involved in the execution of a desired “macro task”'.

The units that make up a heterogeneous architecture system typically belong to
some of the following classes ([9]): latency-oriented cores (i.e., classic CPUs, scalar
or superscalar architectures), throughput-oriented cores (i.e., vector processors
and/or massively parallel architectures like modern GPUs), intellectual property

!This is actually taken care of by the heterogeneous system programmer.

7

Chapter 1. Background: the General-Purpose GPU Computing
8 Framework and the Phase Vocoder

cores, digital signal processing cores for specific media-related tasks (DSPs) and
configurable logic/cores. This work focuses on graphics processors in particular, and
their potentially relevant role in the field of audio signal processing on heterogeneous
systems.

1.1.1 The GPU

In a heterogeneous computing framework, the GPU plays a very important
role, as it is an extremely widespread kind of processing unit which is frequently
found in a variety of systems, including systems that are very common in the
everyday life of many people: from personal computers to mobile phones, from
embedded systems to gaming consoles. Modern graphics processors are placed
in heterogeneous systems in order to accommodate two possible kinds of need:
firstly they are specialised electronic circuits designed to execute graphics-related
computations such as digital image (and video) rendering and processing, mainly
(but not solely) for display purposes; secondly, when they are paired with and
coordinated/directed by a central processing unit, they can be exploited to carry out
some of the most burdensome computations required by any general-purpose task.
Actually, while it is true that GPUs can handle any task if properly programmed,
not any task is well suited for this kind of processors. This is because of the way
modern GPU architectures are designed as extremely wide vector processors with
hundreds of simple, unsophisticated? cores. Typically, computations are cast to the
GPU when they involve the very same chain of operations to be done in parallel on
large blocks of data, in a Single-Instruction Multiple-Data (SIMD) fashion.

In a heterogeneous system, a better utilisation scheme is potentially achieved
when sequential computations on the CPU are interleaved with parallel SIMD
operations on the GPU. This setting ultimately corresponds to what is labelled
as General-Purpose GPU Computing. There are two possible reasons for which
GP-GPU computing could be needed inside a heterogeneous system: sometimes
it could make sense to cast specific processes to the GPU (provided they are at
least moderate candidates to the parallel scheme) so that the CPU is relieved of
excessive computational loads, and this is especially true in those cases when the
GPU is at a low level of utilisation or it is not being utilised at all; alternatively,
and most importantly, modern GPUs have superior computing potentials, with
respect to CPUs, when an application involves a high degree of data parallelism and
a massively parallel processing scheme can be applied. In these cases® the internal
architecture of the GPUs allows for compute-intensive tasks to be completed in
a fraction of the time required by a CPU of comparable market value. Speed-up

2GPU cores are kept simple by design, mainly for circuit area economy and energy dissipation
considerations, as the chip needs to fit hundreds of cores. With respect to CPUs, GPU cores
typically feature small caches (to boost memory throughput), lower clock frequencies and very
basic control mechanisms, lacking branch prediction techniques and data forwarding. The idea is
to generate and maintain thousands of threads in flight, in contrast to the use of large caches in
order to hide memory latencies in CPU designs. Computing parallelism is mainly physical (many
cores effectively operate at the same time on different data) and virtual parallelism is mostly
found at thread level.

3Image and video processing are in fact particular cases of a massively parallel processing
scenario, which includes applications from virtually any field.

1.1. General-Purpose Computing on GPUs 9

factors in the dozens or even hundreds are to be expected for processes that are
particularly well suited for the parallel scheme.

Countless examples could be adduced to prove the successful employment of GPUs
in a plethora of fields and applications that are not related to graphics. Just to
give an idea, these include’: financial analysis, scientific and engineering simulation,
numerical methods for mathematical problems, statistical modelling, machine
learning, data mining, biomedical informatics, computational chemistry, ray tracing
rendering, interactive physics, cryptography, electronic design automation and
digital audio processing. Chapter 2 of this thesis is precisely dedicated to a review
about the applications of the GP-GPU scheme to the field of digital audio processing.

1.1.2 A Brief History of GPU Architecture

In order to have a complete view on the topic of GP-GPU computing, a basic

understanding of the GPU” architecture and its evolution throughout the last
decades is needed. What follows is a quick recap of the main concepts regarding
the history of GPUs (see also [10]), with a particular focus on the critical years of
birth and development of the general-purpose approach, which roughly coincides
with the first decade of the century.
The main objective of this section is to show how GPU hardware architectures
evolved from a specific single core, fixed function hardware pipeline designed solely
for graphics, to a set of hundreds parallel and highly programmable cores for
general-purpose computing. Prior to a certain stage in the evolution of GPUs (i.e.,
the early 2000s), it would have been nonsense to think of casting audio processing
to the GPU, simply because of a lack of programmability. Furthermore, the huge
benefits that will be exploited from modern GPUs in the development of this thesis
mainly rely on the concept of hardware parallelism, which was introduced in the
late 1990s. Parallelism is in fact the main drive for any GP-GPU project, in any
field.

The original GPUs were modelled after the concept of a graphics pipeline: this
is a conceptual model of stages that graphics data is sent through to transform
coordinates from a 3D space and other environment information (specified by the
programmer) into the 2D pixel space on the screen®. The graphics pipeline was
initially implemented via a combination of hardware (the GPU itself) and software
running on the CPU (thanks to APIs like OpenGL" and DirectX®). The graphics
pipeline can be generalized out of two main stages: geometry and rendering, the
former being mostly associated with software applications and the latter being
mostly carried out by hardware stages on the GPU.

4See http://gpgpu.org/ for a comprehensive catalogue about the current and historical use
of GPUs for general-purpose computation.

5Although the term “GPU” would not be introduced until 1999 by NVIDIA, it will be used
throughout this report in order to refer to any chip designed for graphics computations and to
send data to a screen.

6The graphics pipeline will be addressed with more details in section 2.1

"Khronos Group OpenGL: https://www.opengl.org/

8 Microsoft DirectX:
https://msdn.microsoft.com/en-us/library/windows/apps/hh452744

http://gpgpu.org/
https://www.opengl.org/
https://msdn.microsoft.com/en- us/library/windows/apps/hh452744

Chapter 1. Background: the General-Purpose GPU Computing
10 Framework and the Phase Vocoder

The early 1980s have generally been credited with being the roots of the modern
era of computer graphics, although the GPUs of the time were really just integrated
framebuffers”. During the 1980s and early 1990s the trend was to design co-
processors that featured circuits to handle more and more graphics pipeline stages
(starting from the last rendering stages, those conceptually closer to the frame
buffer), so as to free up more and more CPU cycles. During the 1990s (and beyond),
the videogame industry was a huge driving force for higher performance chips: even
with deep hardware pipelines, early GPUs could still output only one pixel per
clock cycle, meaning that, especially for gaming applications, the CPU could still
send more information to the GPU that it could handle. This lead to the need
of adding more pipelines in parallel to the GPU, so that multiple pixels could be
processed in parallel each clock cycle.

In 1999, the first cards to implement a set of complete pipelines at consumer level
were released by both NVIDIA and ATI'. Still, this hardware was based on “fixed
function” circuits: once the programmer sent data into the GPU, the data had
to be processed in a pre-established fashion. While faster, this model involved an
annoying lack of flexibility for graphical effects and it could not have a flourishing
future: as newer features were added to graphics APIs, the fixed function model
could not take advantage of the new standards.

Starting from 2001, more and more programmability inside of the GPU pipelines
was added to newer models: as a result, the programmer was given the possibility
of sending, along with the usual data, verter and fragment shader programs that
operate on data while in the pipeline. These shader programs were small kernels,
written at assembly-level or in C-like languages like NVIDIA’s Cg'!, OpenGL
Shading Language (GLSL) and Microsoft’s High Level Shading Language (HLSL'?).
As this trend of extending the GPU programmability went on, in 2003 the first
wave of non-graphics GPU computing started to come about with the introduction
of DirectX 9. In 2004, early high level GPU languages such as Brook'® and Sh!'*
started to appear. These languages provided, among other features, dynamic flow
control in shader programs.

In 2006, a critical step in the evolution of GPU architecture was made with the
introduction of NVIDIA’s GeForce 8 series and its new massively parallel scheme:
the “unified design”'® (Figure 1.1). The hardware version of the graphics pipeline
was abandoned in favour of a series of simple, general-purpose, all alike parallel cores
called “Streaming Processors”. These cores were grouped in a set of “Streaming
Multiprocessors” working in a SIMD fashion. Ten years later, this is still the basis
for the most recent GPU architectures. Of course, for graphical applications, the
traditional graphics pipeline (meaning the conceptual model) still applies to the

9A framebuffer is a portion of memory reserved for holding the complete bit-mapped image
that is sent to the monitor.

O ATI: https://en.wikipedia.org/wiki/ATI_Technologies

N NVIDIA Cg: https://developer.nvidia.com/cg-toolkit

12 Microsoft HLSL:
https://msdn.microsoft.com/it-it/library/windows/desktop/bb509561 (v=vs.85) .aspx

13 Brook (Stanford University):
https://graphics.stanford.edu/projects/brookgpu/lang.html

Y 8h (University of Waterloo): http://www.libsh.org/

150therwise known as “unified shader architecture”.

https://en.wikipedia.org/wiki/ATI_Technologies
https://developer.nvidia.com/cg-toolkit
https://msdn.microsoft.com/it-it/library/windows/desktop/bb509561(v=vs.85).aspx
https://graphics.stanford.edu/projects/brookgpu/lang.html
http://www.libsh.org/

1.1. General-Purpose Computing on GPUs 11

unified design: it simply does not appear as a hardware scheme any more, as it
becomes purely a software abstraction.

Non-Unified Architecture Unified Shader Architecture
input input

'

Shader I

|

Shader 11

:

Shader 111

'

Shader IV

}

output output

Shader

Figure 1.1: Vertex shaders, pixel shaders, etc. become threads running different pro-
grams on a flexible core. (Image from [11])

To harness all this general-purpose GPU power NVIDIA developed a new set
of extensions to C/C++: CUDA. This was made available in 2007 and it was
designed to work in combination with NVIDIA GPUs only. Not much later, ATI
Stream' for ATI cards and DirectX 10 for either card (though Microsoft Windows
only) were introduced. In 2009, the OpenCL'" framework for writing programs for
heterogeneous parallel platforms (including any CPU-GPU model) was released
by the Khronos Group in collaboration with technical teams at NVIDIA, AMD'®,
IBM", Qualcomm?’ and Intel*!.

In 2010, NVIDIA’s Fermi was the first GPU architecture designed specifically for
GP-GPU computing: it featured true hardware cache hierarchy, ECC, unified
memory address space and concurrent kernel execution.

Later evolutions in the GPU architecture are beyond the scope of this thesis
but, for completeness, it is interesting to mention a new trend of fusing CPU-like
cores and GPU-like vector processors on the same die. This trend was started
in 2011 by AMD with the introduction of their APUs (“Accelerated Processing
Unit”): these processors are designed so that a standard x86 processor for scalar
workloads and a DX11 GPU for vector workloads are brought together on the
same die. Heterogeneous parallel processing can be done on this hardware via
OpenCL. Intel followed with similar architectures. On a similar direction, but

Y AMD Stream Computing: http://developer.amd.com/partners/training-partners/
streamcomputing/

17 Khronos Group OpenCL: Open Computing Language, https://www.khronos.org/opencl/

18 AMD: http://www.amd.com/

YIBM: http://www.ibm.com/

20 Qualcomm: https://www.qualcomm.com/

2 Intel: http://www.intel.com/

http://developer.amd.com/partners/training-partners/streamcomputing/
http://developer.amd.com/partners/training-partners/streamcomputing/
https://www.khronos.org/opencl/
http://www.amd.com/
http://www.ibm.com/
https://www.qualcomm.com/
http://www.intel.com/

Chapter 1. Background: the General-Purpose GPU Computing
12 Framework and the Phase Vocoder

regarding smaller form factors and a lower power consumption target, NVIDIA
has been producing the Tegra®® system-on-a-chip line since 2008. These chips
are designed as efficient multimedia/gaming processors®® that combine an ARM?*!
CPU with a Maxwell-based® (or Kepler-based*®) GPU on the same die. Of course,
heterogeneous parallel processing can be also done on this hardware via CUDA.
It seems that future GPU generations will look more and more like wide-vector,
general-purpose processors, and eventually there will be no real distinction between
CPUs and GPUs, as they might combine in one single entity.

1.1.3 Modern NVIDIA GPUs: Architecture and Program-
ming Model

This work is focused on the use of NVIDIA GPUs in particular (via the CUDA*"
API) and, since many terms and concepts that only apply to this specific framework
will be used extensively throughout this thesis, it is required to present these in
more detail. Actually, many of the concepts that are going to be discussed in the
following paragraphs also apply to graphics units from other manufacturers.

NVIDIA GPUs belonging to the wunified shader architecture design can be
described at two levels of abstraction: the hardware structure and the software
abstractions used to program it, i.e. the CUDA programming model. While the
software abstractions are common to all generations of C'UDA-enabled GPUs,
the hardware microarchitecture has varied from one generation to the next: this
discussion will be based on NVIDIA’s Maxwell microarchitecture which is the
latest available at the time of writing. In particular, the first generation Maxwell
(GeForce-Maxwell 107) will be addressed, as the main graphics card employed
throughout the implementation and benchmarking stages of this thesis (GeForce
GTX750Ti) belongs to this category.

At hardware level, NVIDIA GPUs are structured in a hierarchical fashion. At
the highest level, one ore more Graphics Processing Clusters (GPCs) can be found®®,
as well as a GigaThread Engine (see figure 1.2). The former is a collection of vector
processors containing the actual cores, the latter is a component that marshals
data and instructions between the GPC, the raster operations processors (ROPs),
the cache memory, the memory controllers, the bus interface, and the display 1/0
([12]).

Each GPC contains a variable number®” of Streaming Multiprocessors (SMs). These
are vector processors on which blocks of threads are spawned by the GigaThread

22NVIDIA Tegra: http://www.nvidia.com/object/tegra.html

23 Apart from being installed in smartphones, tablets and gaming consoles, Tegra is also the
core of the Jetson board for embedded systems, which is designed for developing low-power and
compute-intensive embedded projects.
NVIDIA Jetson: http://wuw.nvidia.com/object/embedded-systems.html

2 ARM: https://www.arm.com/

25Gee section 1.1.3 for more details about NVIDIA Maxwell microarchitecture.

260lder versions of the Tegra units featured a VLIW-based VEC4 architecture instead.

2"For a better insight about CUDA, please refer to section 3.1.2.

28Entry-level and medium range GPUs, like the GeForce GTX750Ti, are typically equipped
with only one GPC.

P There are five SMs in the single GPC of GeForce-Maxwell 107 microarchitecture.

http://www.nvidia.com/object/tegra.html
http://www.nvidia.com/object/embedded-systems.html
https://www.arm.com/

1.1. General-Purpose Computing on GPUs 13

PCIl Express 3.0 Host Interface

GPC

Raster Engine
3 4 rd 4 +8
SMM SMM SMM SMM SMM
Polymorph Engine 2.0 Polymorph Engine 2.0 Polymorph Engine 2.0 Polymorph Engine 2.0 Polymorph Engine 2.0

Memory Controller Memory Controller

Figure 1.2: General structure of an NVIDIA GPU (GeForce-Maxwell 107 microarchi-
tecture in particular): the three main blocks are the Graphics Processing
Cluster, the GigaThread Engine and the L2 cache. (Image from [12])

Engine. Unlike other types of vector processors, SMs not only contain a large
number of registers, but they also have a considerable number of ALUs: each
SM is in fact made of an array of basic, scalar processing cores, termed CUDA
cores (pictured as light green squares in figure 1.2 and 1.3), that constitute the
lowest level of the hierarchical hardware structure: each thread generated by a
CUDA program is eventually assigned to run on one of these cores. CUDA cores
are physically and conceptually grouped in blocks of 32 units that share the same
register file, the same instruction buffer and the same warp® scheduler. In some
previous microarchitectures a Streaming Multiprocessor would consist of just one
group of 32 cores, together with the corresponding extra resources and units, but
in GeForce-Maxwell 107 microarchitecture there are four groups of these per SM,
summing up to 128 cores per SM, resulting in turn in a total number of 640 CUDA
cores in the GeForce GTX750Ti GPU (figure 1.2 and 1.3).
In any case, all CUDA cores have direct access to (and can communicate through)
an SM-specific, on-chip and user-managed cache memory*! termed shared memory.
As it can be seen in figure 1.2 and 1.3, there can be other levels of cache memory,
in addition to shared memory.

At the software abstraction level, there is another hierarchical structure which
partially overlaps with the hardware one. The CUDA programming model is based
on a Single-Instruction Multiple- Thread (SIMT) scheme for which a single function in

30In the CUDA jargon, warps are groups of 32 threads. See below.
31Cache memory was actually absent in older microarchitectures.

Chapter 1. Background: the General-Purpose GPU Computing
14 Framework and the Phase Vocoder

PolyMorph Engine 2.0
‘ ‘ Tessellator | | Viewport Transform

Aftribute Setup ‘ | Stream Output

Instruction Cache

Instruction Buffer Instruction Buffer

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
+ 4+ &

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core Core Core Core

Core Core Core Core Core Core

r
[
I
|l
|
Core Core Core || Core Core Core Core
|

Core Core Core Core Core Core
Core Core [Core Core Core Core
Core Core [Core Core | Core Core
Core Core : Core Core Core Core

Core Core Core Core Core Core

Instruction Buffer ‘ Instruction Buffer
Warp Scheduler | Warp Scheduler

Dispatch Unit Dispatch Unit 1| Dispatch Unit Dispatch Unit
+ . |1 .

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core LD/ST Core | Core Core Core LDIST SFU
Core | Core | Core LD/ST SFU ‘ Core | Core |Core |Core LDIST SFU
Core | Core |Core | LDiST | SFU ‘ Core | Core |Core Core LDIST SFU
Core | Core | Core LD/ST SFU Core | Core Core |Core LDIST SFU
Core | Core |Core | LDIST | SFU Core | Core |Core Core LDIST SFU
Core | Core |Core | LDIST & SFU i Core | Core |Core | Core LDIST SFU
Core |Core | Core LD/ST SFU Core < Core Core |Core LD/ST SFU

|
Core Core Core LD/ST SFU Core Core Core Core LDIST SFU

Texture / L1 Cache

Tex

64 KB Shared Memory

Figure 1.3: Internal structure of a Streaming Multiprocessor as in GeForce-Maxwell
107 microarchitecture: groups of 32 cores each share the same resources,
including a warp scheduler, an instruction buffer, a large register file, some
load /store units and some special function units. In Maxwell GPUs the
Streaming Multiprocessor is called “SMM”. (Image from [12])

a kernel (i.e., a self-contained block of source code) spawns a set of identical threads
that are designed to execute the very same machine-level instructions on multiple
data, in a SIMD fashion. Thus, each thread is ultimately assigned to a CUDA core
on the hardware side. Threads are conceptually grouped in multidimensional thread
blocks and each thread block is assigned to only one SM on the hardware side. Finally,
thread blocks are in turn placed in a multidimensional grid for software abstraction
convenience. The way this software model is built on top of the hardware model

1.1. General-Purpose Computing on GPUs 15

allows for a great degree of code portability and scalability: the same code can
run seamlessly on different NVIDIA GPU microarchitectures from very distinct
generations and with a different number of cores, of course resulting in a varied
performance’”.

A key concept of the CUDA programming model is the warp, i.e. a group of 32
threads that execute in lockstep in a SIMD fashion. Warps are assigned to the
aforementioned groups of 32 cores and, because these share a single instruction
buffer, a warp is the smallest unit of work a GPU issues®*. Machine-level instructions
belonging to a warp are executed simultaneously inside the SM, in a truly parallel
way>*. For full efficiency, it is advised that all threads in a warp have a single
execution path: divergence via conditional branches will force each branch to be
executed sequentially until these converge back into the same path. For this reason
it is important to minimise divergent conditionals in the GPU code.

1.1.4 Heterogeneous Computing via the CPU-GPU Pair

As already pointed out, general-purpose computing on GPUs can be seen as
a particular case of heterogeneous computing. In this case, there is a specific
relationship between the two entities involved, the CPU and the GPU: the first has
the role of the master, and it is typically called “host” in this scenario, while the
second is operated as a slave device, and indeed it is called “device”.
Under this model, serial sections of code, running on the host, are interspersed
with parallel ones running on the device (figure 1.4). GP-GPU code is supposed to
start execution on the host as a single-threaded process. As soon as some kind of
vectorised parallel computation is needed, the host calls the device into play via a
kernel call. Most of the times, the data on which calculations need to be carried
out reside on host memory: when this is the case, the CPU also takes care® of
transferring this data to the device memory by means of the DMA®® controller.
Then, through the kernel call, the host spawns and schedules a number of threads
on the device, and these are always grouped in warps.

32 A device with less SMs will need to assign more thread blocks to the same SM, hence increasing
the level of warp competition for hardware resources and eventually resulting in less physical
parallelism and longer execution times; conversely, a device with more SMs can assign less thread
blocks to each SM, increasing the number of threads that are processed simultaneously and
decreasing the execution time.

33 As a result, problems that involve a number of elements which is not an integer multiple of
32 will still spawn a number of threads corresponding to the nearest multiple of 32 (rounded up):
some of these threads simply will not do any work and they will occupy resources, resulting in a
non ideal utilisation scheme.

34Usually, a thread block is made of more than one warp and this is why a warp scheduler unit
is needed to direct the order of execution of different warps.

35Gince the release of CUDA 6 and the introduction of Unified Memory, this operation can
be made in a transparent way to the programmer. From [14]: “Unified Memory creates a pool
of managed memory that is shared between the CPU and GPU, bridging the CPU-GPU divide.
Managed memory is accessible to both the CPU and GPU using a single pointer. The key is that
the system automatically migrates data allocated in Unified Memory between host and device
so that it looks like CPU memory to code running on the CPU, and like GPU memory to code
running on the GPU”.

36 Direct Memory Access.

Chapter 1. Background: the General-Purpose GPU Computing

16 Framework and the Phase Vocoder
C Program
Sequential
Execution
Serial code Host g
Parallel kernel Device
Kerne|0<<<>>>() Grid 0

Block (0, 0) Block (1,0) Block (2, 0)

Block (0, 1) = Block (1,1) Block (2, 1)

Serial code Host
Device
Parallel kernel
Kernel1<<<>>>() Grid 1
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

Figure 1.4: Heterogeneous programming model as in CUDA: each curly arrow represents
a thread. (Image from [13])

As the CPU is waiting for memory transfers to complete and for vectorised operation
to be carried out by the GPU, the former is actually free to manage other threads
from other concurrent processes. In this way, the two processors are optimally
exploited for what they can do best: on one hand the CPU works as a heavily
multitasking general-purpose processor intended to make a lot of context changes;
on the other hand, the GPU is employed for massively parallel operations on data
arrays, harnessing its vectorial structure. In practice, not many algorithms are
purely data parallel: typically, there is a need for branching as well as for some kind
of communication among threads, which often implies the need for synchronisation
barriers. This is all implementable in an SIMT model, and with CUDA in particular,
but care must be taken so that the performance is not degraded unnecessarily.

1.2. The Phase Vocoder 17

1.2 The Phase Vocoder

The phase vocoder is a mathematical tool which is meant to provide an alter-

native representation of generic signals, even though it was originally developed
specifically for speech modelling and it works best for a specific class of signals (see
below).
This technique was in fact proposed by Flanagan and Golden in 1966 [15] as a way
to enhance a pre-existing speech signals encoding method, the channel vocoder®’.
In this publication, the authors show how this method not only leads to a certain
economy of transmission bandwidth for speech signals (with a relatively low impact
on voice quality), but also provides a framework for time compressing and expanding
the same kind of signals, while keeping the spectral content substantially intact*®.
The concepts of the phase vocoder were then developed further by many other
researchers, and it eventually proved to be a powerful tool for many other processing
tasks, not only for speech signals but also for other kinds of musical signals. Most
prominently, this technique is employed for high fidelity time-scale modifications
or pitch transposition of a wide variety of sounds, but it can actually provide for
many other classes of spectral manipulation, as it basically allows to arbitrarily
control individual sound harmonics.

The phase vocoder falls under the umbrella of analysis-synthesis techniques.
The idea is that of modelling a signal z() as the sum of a finite number N of
sinusoids whose instantaneous amplitudes and frequencies vary slowly with time. In
particular, frequency values are expressed in terms of a set of fixed and harmonically
related central frequencies kwy (all multiples of a fundamental frequency wy = 27/N)
and a set of time-varying frequency deviations Awy)

N-1 N-1
T = Z Th(t) = Pk(t) COS(lfwot + Sok(t)) =
k=0 k=0
N-1 .
= Pk (#) COS (kwot +/ Pr(r) d7‘> = (1.1)
k=0 0
N-1 .
= Pr(t) COS (kwot +/ Awg(r) d7'>
k=0 0

In equation 1.1, py (s is the amplitude envelope in time for component & while ¢y,)
is the corresponding phase envelope®”. In musical terms, however, a more intuitive
representation is given by extracting the time evolution of the frequencies of each
component, Wy, In this scenario, these frequencies are obtained by the sum of
two components, namely bins’ central frequencies (known a priori and static) and

37The name vocoder itself is indeed a contraction of the term “voice coder”.

38 Artefacts can be actually introduced by this process, and their intensity depends on the
amount of time stretching required, by the nature of the original signal and by the settings used
for the phase vocoder.

39Technically speaking, the true phase envelope ®p.(+) would be the whole argument of the cosine
function, thus @y ;) = kwot + k(1) In this context, however, since the phase component related to
the bins’ central frequencies is fixed by design at kwgt, what really characterises phase envelopes
is ¢ (). Thus it makes sense to “overload” the term phase envelope to indicate that component
of @) that really determines frequency deviations from the bins’ central frequencies, i.e. g (y)-

Chapter 1. Background: the General-Purpose GPU Computing
18 Framework and the Phase Vocoder

time-varying frequency deviations:
(-:}k:(t) :kw0+Awk(t) , k=0,1,2,...,N — 1. (1.2)

It can be shown that the frequency deviations are related to the phase envelopes
by means of time differentiation:

t

t
dsk(t) = kwot + Pr(t) = /_ d)k(T)dT + @ = / (kwo + Awk(T))dT + o =

. > (1.3)
:kw0t+/ Awy(rydT + o k=0,1,2,...,N — 1.
dd d d d t
W) =) — (kwot) + PR _ kwo + — / Awk(f)dT +@o | =
d [t '
:k;woju%/ Awpmdr . k=0,1,2,... N —1.
Thus, solving equation 1.4 for Awy) with respect to g :
d d [t
kwo + o) _ kwo + —/ Awy(rydT =
p .
= Awg = 0 k=0,1,2,...,N —1.

dt ’
This representation is very significant from a musical point of view: in fact, psychoa-
coustics and physiological studies show that this description is closer to a perceptual
model of the human hearing system, with respect to other representations (for
instance, with respect to a basic time domain description or a straightforward
Fourier transform description).
As with the channel vocoder, the original phase vocoder representation of [15] is
based on the Fourier transform model but it deviates from the typical source/filter
utterance generation model*’ used by other speech encoding techniques. In fact,
the phase vocoder is designed to exploit the short-time phase spectrum of the
input signal (as well as the short-time amplitude spectrum) in order to recover
information on its harmonic nature; additionally, it does not need a supplementary
pitch tracking process or a decision making rule for voiced or unvoiced segments as
this information is somewhat embedded in the phase vocoder representation itself.
As it was shown in the previous paragraphs, the phase vocoder is based on a
sinusoidal model assumption for the input signal. This means that, in order for this
method to be effective, the input signal is required not to be too dissimilar*' from a,
finite sum of sinusoids with time-varying amplitudes and time-varying frequencies

40The source/filter model consists of representing a speech signal as an alternately voiced
(periodic) or unvoiced (aperiodic and “noisy”) excitation signal that is fed into a dynamic system
which is meant to model the vocal tract. Even though the phase vocoder technique does not
explicitly consider this structure into its model, the very same concepts are somehow embedded
in the phase vocoder itself, in an implicit way.

4 Actually, as far as basic analysis/re-synthesis is concerned, good results can be achieved even
when the input signal bears little relation to the sinusoidal model. Still, similarity to this model
becomes crucial when any kind of alteration is intended in between analysis and re-synthesis
stages [16].

1.2. The Phase Vocoder 19

that are well separated from each other. Yet, it is important to point out that these
frequencies are not required to be harmonically related; indeed, the possibility for
the phase vocoder to track and modify inharmonic partial components of a sound,
as well as harmonic ones, is attractive for many applications.

As discussed in [16], the phase vocoder can be faced from two complementary
(but mathematically equivalent) viewpoints: the filterbank interpretation and the
Fourier-transform interpretation. In addition, each viewpoint can be handled by
means of a few slightly different attitudes. In this chapter the phase vocoder will
be explained only from a particular perspective, ultimately the one upon which the
Csound implementation is based*?, as this is the one that will be eventually used in
this project. This perspective falls under the Fourier-transform interpretation of
the phase vocoder and it is of course based on a discrete-time/discrete-frequency
digital model. It will be referred to as “STFT-based phase vocoder™.

1.2.1 STFT-Based Phase Vocoder Analysis

The phase vocoder analysis stage can be explained using the short-time Fourier
transform (STFT) as a starting point. This is a well known and widespread
mathematical tool that consists of a succession of overlapping Fourier transforms
taken over finite-duration windows in time. In the discrete domain of digital signals,
the STFT X, ;) of the time-domain signal xp, at time instant [can be defined as:

Xpy = Y Wp_yapge 72N k=0,1,2,...,N — 1. (1.6)

n=—oo

This definition implies the use of a window function wy, with limited support over a
number of samples M which is usually set equal to the DF'T size, i.e. the number of
frequency bins N (thus, M = N and this will be the assumption from now on). A
handful of different shapes can be employed for the window function, depending on
the desired specifications for the well known trade-off between frequency resolution of
spectral peaks and bin-leakage/aliasing problems. Essentially, the window function
carries out two different tasks: it is responsible for selecting a specific time segment
of the input signal at each analysis step and, unless a rectangular window is chosen,
it also takes care of eliminating discontinuities at its edges by means of smooth
bell-like shapes, in order to minimise spectral smearing.

The analysis time instants [are not required to be as closely spaced as the time
samples that make up the input signal: indeed, they are usually chosen in such
a way that each window is overlapped with only a few other windows (at least
one) and they are equally spaced in time. The number of samples between analysis
instants is called analysis hop size and will be referred to by means of capital L*.
The choice of this parameter is usually left to the user, together with the choice of
the DF'T size, and these parameters strongly depend on the nature of each specific
application.

42This perspective also coincides with the one used in Chapter 9 of The Audio Programming
Book, [17].
43 As a result, [can only have values that are multiple of L.

Chapter 1. Background: the General-Purpose GPU Computing
20 Framework and the Phase Vocoder

By comparison to the filterbank interpretation®, rather than putting emphasis
on the temporal evolution of magnitude and phase (or frequency) values in each
filter band, this STFT arrangement focuses attention on the complex spectrum
values for all of the different filters bands (i.e., frequency bins) at a single point in
time. In reality, these are only two different viewpoints for the same underlying
concept.

Starting from the STFT representation, a few more steps are needed in order to
get to the phase vocoder representation described above. Namely, amplitude and
frequency functions of time for each component are desired. The former are simply
obtainable by converting each complex spectrum into polar coordinates; the latter
can be obtained via an extra step: phase differentiation over time. This step is
referred to as frequency tracking, because it provides, step by step, the time-varying
deviation of each component from the central frequency of the DFT bin to which it
is associated.

Before proceeding to these steps, it is advisable to rewrite equation 1.6 in a way that
is closer to what can be interpreted by a digital machine. In particular, it would
be wise to lead back this formulation to the one used for applying fast algorithms
(FFTs) any time a DFT is required.

Thanks to the limited support of the window function, the infinite summation of
equation 1.6 can be reduced to a sum of N elements:

Xppg = D2 wi-nape >N =
N1 | (1.7)
= Z w[n_l]x[n]e_ﬂ”k”/N , k=0,1,2,...,N — 1.

n=l

In order to lead this back to a summation from zero, a change of variables is applied,
namely n=m+Il=m=n—1[:
N-1 ‘
Xipa = Y WimTmpe 2N =

m=0
o (1.8)

= ¢~ I2mRUN Z w[m]x[mﬂ]e*j%kmﬂv , k=0,1,2,...,N — 1.
m=0

Now the last summation appearing in 1.8 exactly represents the DF'T of a signal
portion (properly reshaped by the window contour) and can be computed via
an FFT algorithm. Since, for the shift theorem of the DFT, the presence of the
exponential phase term preceding the summation is equivalent to shifting the
input samples circularly to the right according to [mod N, rather than actually
computing the multiplication by this complex exponential, the input (windowed)
signal sj,] = W}, T[p4y can actually be shifted before computing the DFT:

Xy = e ™ NDFET sy} = DFT{3} (1.9)

441n a nutshell, this consists of analysing the input signal by feeding it into a parallel set of
band-pass filters centred at equally spaced frequencies throughout the audible spectrum. From
the resulting signals, the amplitude and phase (or frequency) time envelopes are extracted. These
will be eventually processed (if needed) and used for re-synthesise an output signal. See [18] and
[16] for more details.

1.2. The Phase Vocoder 21

, where 5, is the circularly shifted version of s, (by [mod N samples to the
right).

For the sake of more elegant syntactics, a different index ¢ can be used instead
of [for identifying the slower time rate of analysis windows with respect to the
sample rate: ¢t = [/L. In this setting, the STFT of a signal xp,) becomes X[4, with
t increasing of just one unit at each analysis step.

Back to the problem of extracting the amplitude and frequency time functions
for each component, let Ay = Re{Xq} and By = Im{Xp4} be the real and
imaginary part of the STFT representation of equation 1.6:

Xk = Ay + 7By (1.10)

Then, employing a heuristic approach under the assumption that the amplitudes
pr[t] are “slowly varying”, the amplitude functions of time for each component k
of the original signal zp,) can be simply extracted from the the magnitude of X 4:

Pk = |X[k,t]| = A[Qkﬂ —+ B[2k,t] , k= O, 1,2, e N — 1. (111)

Here, the time evolution is set by the t variable, which is increased by one every
hop size samples L: for higher time resolution a lower analysis hop size parameter
of the STF'T scheme needs to be chosen, and vice versa.

In order to generate the frequency trajectories, the phase envelopes are needed first:

Birg

), k=0,1,2,....N —1. (1.12)
Ak

@i ~ arg(Xpy) = arctan (

Again, equation 1.12 holds only under the assumption of slowly varying phases
and, again, this is a heuristic approach that does not always guarantee perfect
reconstruction’® (see the section 1.2.3).
Then, in order to obtain the frequency deviations, time differentiation of these
function needs to be carried out (equation 1.5). In the digital domain this is usually
approximated by means of a finite difference between phase values of consecutive
frames’” (backward Euler method):

Prt] — Pk[t—1]
L)
45«Slowly varying” means that the amplitude envelopes are relatively constant over the time
window over which the DFT is taken. For a more detailed explanation of the nature of this
heuristics see [19] under the section “Short-time Fourier transform of a sinusoidal signal”.
46Nevertheless, these approximations offer some powerful tools for spectral processing and sound
encoding, at least from a perceptual point of view.
47 An alternative solution could be that of explicitly differentiate equation 1.5:

Awpy = d@k[t] = i arctan B[k’t] = L i B[k’t] =
klt] = dt dt A[k,t] o 14+ (M)Q dt A[k,t] B
[k,t]

Awgp ~ k=01,2...,N—1. (1.14)

A
,
_ A (BWM__BkﬂAwﬂ)::*ﬁhﬂBWM"BWﬂA%J]: (1.13)
A[zk,t] + B[2k,t] A[M] 7 A[zk,t] A[Qk,t] + B[Zk,t]

1 A (Bet) = Bet—1) = Bty (Ape) — Apet—1))
L A? g+ By

. k=0,1,...,N—1.

Chapter 1. Background: the General-Purpose GPU Computing
22 Framework and the Phase Vocoder

The result of this operation needs to be brought down to principal values (in the
interval between —7 and 7). This operation is called wrapping.

After phase difference wrapping, the true frequency values®® are computed by simply
adding the corresponding bin frequencies to each frequency deviation obtained by
means of equation 1.14:

(Dk[ﬂ :kwo—i—Awk[t] , k=0,1,2,...,N — 1. (1.15)

Sometimes, it is preferred to express frequencies in hertz rather than in digital
terms (i.e., in radians). To do so, it suffices multiplying Awy[y by g—ﬁ, where Fj is
the sampling rate employed in the system.

To sum up, the steps involved in phase vocoder analysis are:

1. Extract N samples from a signal and apply an analysis window.

2. Rotate the samples in the signal frame according to the analysis time instant
[mod N.

3. Take the DFT of the resulting array of real values (possibly exploiting an
FFT algorithm).

4. Convert the obtained complex spectrum from rectangular to polar format.

5. Compute the phase differences and bring these values to principal values
(wrapping).

6. Add the obtained difference values to the bands’ central frequencies and
convert to hertz.

Thus, phase vocoder analysis results in a time stream of N amplitude values (from
step 4) and N frequency values (from step 6). Each pair of values is related to one
of the N components that make up a sound in the sinusoidal model of equation
1.1. In this way an important goal is achieved, namely that of separating temporal
information from spectral information. The resulting benefits are truly precious
when high fidelity temporal and/or spectral manipulations are desired.

1.2.2 ISTFT-Based Phase Vocoder Re-Synthesis

After a signal has been expressed in terms of the phase vocoder representation
provided by equation 1.1, any kind of manipulation can be applied (many of
these will be actually discussed in Chapter 3). When all the processing has been
performed®’, the obtained phase vocoder data usually needs to be brought back to a
time domain representation for playback or storage. To do so, a variety of methods
can be applied and most of these are derivatives of the two possible views of the
phase vocoder: on one side, an additive synthesis framework can be employed by
means of a bank of oscillators driven by phase vocoder data (acting as time-varying

48For completeness, it is due to point out that an alternative method for extracting the true
frequency values from STFTS is also widespread. This is the Instantaneous Frequency Distribution
algorithm proposed by Toshihiko Abe in [20].

490f course, in a speech encoding scenario there can be no need for any processing. Still,
a re-synthesis stage at receiver side needs to be performed. The steps involved are the same,
regardless of the nature of the application.

1.2. The Phase Vocoder 23

amplitude and frequency controls); on the other side, inverse Fourier transforms
overlapping in time are employed (ISTFT). The latter is usually a more efficient
method, thanks to the possibility of using fast algorithms for computing inverse
Fourier transforms, and it is the one that will be discussed here.

In the ISTFT re-synthesis scenario, all the steps discussed for the analysis stage
need to be retraced back.
To begin with, the frequency values need to be transformed back to phase values.
To do so, the bin frequencies are subtracted from @y values and the result is
integrated over time:

Awk[t] :(Dk[t] —kwo 5 k‘:O,l,Q,...,N— 1. (1.16)
t
Prt] :LZAWHT] :arg(X[kvt]) 5]{320,1,2,...,]\7— 1. (1.17)
7=0

Then, the STF'T data needs to be converted back from polar to rectangular coordi-
nates:

Ay = Re{ Xy} = | Xpkg| cos(@rp)
By = Im{ X} = [Xl sin(prp)

Now, the inverse DFT of each frame can be taken in order to obtain time-domain
frames that partially overlap in time:

(1.18)

1 N-1

— 3 XN m=0,1,2,...,N — 1.
N k=0

Ti[m] =

(1.19)
t=0,1,2,3,...

Each of these xy(,, frames is meant to be placed on the time axis having the first
sample at time instant ¢*.

Then, the obtained frames need to be cyclically rotated in the opposite direction
with respect to what was done in the analysis stage, hence to the left (again, the
shift amount is [mod N if no time-scaling modification is applied, but this may
vary).

Finally, a standard overlap-and-add method is employed to obtain the full time-
domain signal:

Tpp) = Zw[n_mxt[n_m Vn (1.20)
¢

, where wy, is a windowing function with a support of N samples (from n = 0 to
n=N—1) and Ty[n) is the “extended version” of @y, such that it is defined to
be zero-valued outside of the same interval. [is the re-synthesis hop size. The
re-synthesis stage is thus complete.

To sum up, the steps involved in phase vocoder re-synthesis are:

1. Bring the frequency values back to frequency deviations by subtracting them
from the bins’ central frequencies.

50 Actually, this is true only if no time scaling is desired: for time scaling operations, a different
spacing between successive frames (with respect to the analysis hop size L) has to be employed.
In these cases, a synthesis hop size I < L is needed for time compression and I > L for time
expansion.

Chapter 1. Background: the General-Purpose GPU Computing
24 Framework and the Phase Vocoder

2. Convert frequency deviations back to phase values by accumulating them
over time and scaling them by the analysis hop size’!.

3. Perform a polar to rectangular conversion.

4. Take the IDFT of the obtained spectral data (possibly exploiting an FFT
algorithm).
5. Left-shift (circularly) the obtained frames.

6. Overlap-and-add consecutive frames using re-synthesis windows.

1.2.3 Limitations of the Phase Vocoder

In spite of the many successes of the phase vocoder as it has been presented
here, numerous problems have limited its use. Still, many of these problems can be
solved by means of improved techniques that are based on the same scheme (see
18)).

The main issue is the already mentioned need for the input to be close enough
to the sinusoidal model. This requirement is not always met. The best kind
of sounds are the so-called quasi-periodic signals like steady speech vowels and
sustained musical notes. Noise-like signals and transients (i.e., impulsive sounds like
musical attacks and speech plosives) are less congenial to phase vocoder analysis
and processing. They can be still approximately represented by means of a sum
of sine waves to some extent but they are more likely to produce artefacts when
re-synthesised. Especially (but not only) for these kinds of sounds, enhanced
techniques have been developed in the last decades (see [18]).

Assuming that enough frequency resolution is achieved when computing DFTs,
such that there is a sufficient number of bins to track all the sinusoidal components
of a sound, there are still two critical issues that a basic phase vocoder fails to
address. Firstly, even though each partial is varying its frequency slowly enough,
it can always happen that, as they move in the audio spectrum, two sinusoidal
components end up in the same DFT bin. Unfortunately, phase vocoder analysis
will be able to resolve a maximum of one sinusoidal component per frequency
band. Thus, this method will fail to output the right values for the amplitudes and
frequencies of each conflicting partial. Instead, the result of the analysis will be an
amplitude-modulated composite output, in many ways similar to beats. Also, a
particular sine wave may not be adequately estimated when it falls between two
adjacent DF'T bins.

Secondly, amplitude and frequency values of one ore more partials may vary too
rapidly. This results in violating the assumptions that were made in section 1.2.1
and perceivable artefacts are likely to sprout in the re-synthesised signal.

Yet another problem is implicitly brought about by the STFT framework®?: the
universal issue of the time-frequency resolution trade-off. Large analysis windows
are needed for accurate frequency resolution but this is in contrast with the need for
correctly analysing short sound events or signals with rapidly varying parameters.
Again, some variations of the phase vocoder approach have been proposed in the
past to address this issue ([18]).

Sf time scaling is desired, phase values also need to be scaled further by the scaling ratio ([16]).
52Yet, this problem is embedded in the filterbank approach with no difference.

1.3. Conclusions 25

Despite the problems that have been highlighted in this section, the phase
vocoder remains an extremely powerful tool for sound manipulation, even in its
basic form. As a matter of fact, by means of this technique, an outstanding array
of processing tasks can be applied to a variety of sound sources with high fidelity.

1.3 Conclusions

This chapter provides the background information that is needed in order

to fully understand the development phases of this project. The principles of
GP-GPU computing were presented in the first half of the chapter together with
basic information about GPU architectures (with a brief historical ezcursus) and
the related software abstractions (mainly focusing on NVIDIA processors). This
information is essential for the development of CUDA-based applications.
In the second half of the chapter, the phase vocoder mathematical model for audio
signals was presented and discussed, focusing on the steps involved in the conversion
from a time domain signal to a phase-vocoder domain one (and back). Also, the
phase vocoder’s potentials were reviewed, together with its limitations. In chapter
3 these two topics will be brought together for the development of phase-vocoder-
based spectral manipulation programs that are designed to harness the computing
power of CUDA-enabled GPUs. In fact, as it has been shown in the phase vocoder
section of this chapter, the mathematical passages that make up phase vocoder
analysis and re-synthesis are very congenial to a parallel processor. As a matter
of fact, they comprise FFT analysis and synthesis stages (which can be efficiently
computed in a parallel fashion®, as discussed, for instance, in [23], [24] and [25])
and a few other operations that can be carried out independently at bin level. This
is exactly what encouraged Lazzarini et al. to carry out their analysis in [8]. In
addition, most typical manipulation algorithms that are based on a phase vocoder
representation can be easily implemented in a parallel fashion as well. This very
topic will be addressed in chapter 3.

3In a CUDA scenario, this is typically done via the cuFFT [21] library but other implementations
also exist (see [22]).

Chapter 2

GP-GPU Computing for Audio
Applications: a Review

What follows is a brief review based on the scientific literature that have shaped

the field of GP-GPU computing for audio applications. The author does not claim,
and does not even presume, this review to be a complete inspection of the literature
at all: even though the birth of this field was relatively recent (it first sprang around
the year 2005), a remarkable number of scientific publications has been already
published and a complete covering of this topic would require more than one chapter
(besides, it is not the main purpose of this work). In fact, this field has received a
lot of attention from many researchers in the scope of audio computing: on one
side the GP-GPU method can give outstanding results and opens up a whole new
scene of possibilities and applications that were not even possible before; on the
other side, it presents intrinsic challenges that are hard to overcome and need to be
investigated. These issues are especially related to the limitations implied by the
need of transferring data to the GPU and to the fact that some basic audio signal
processing operations do not fit very well the parallel computation scheme.
In this review, it will be shown how the GP-GPU model has been explored by
researchers for a wide variety of different applications and how their approaches
have changed during the years, the critical shift occurring after the introduction of
the unified shader architecture (see section 1.1.2) and that of GP-GPU APIs, in
primis CUDA. A few examples from each application field are thus examined and
their results are reported and compared to each other. This overview will also be
useful to understand the typical issues involved in GP-GPU computing for audio
applications and to learn useful tricks in preparation for the implementation of
GPU-enhanced spectral processing programs.

2.1 Early Examples of GP-GPU Computing for
Audio Applications

In order to show the methodologies used in the early years of GP-GPU computing,
and the power gained by exploiting parallel processing even on older architectures
(i.e., on the hardware graphics pipeline), a few studies from the pre-CUDA period
are going to be reported next.

27

28 Chapter 2. GP-GPU Computing for Audio Applications: a Review

A Brief Description of the Graphics Pipeline

In order to fully understand the working principles behind some of the earlier
works that will be described in this review, a basic knowledge of the graphics
pipeline is needed. What follows is a brief description' of this conceptual model
(and its hardware counterpart).

The graphics pipeline, as it is used (actually, as it was used) by GP-GPU
programmers, can be roughly divided into six stages: the wertex processor, the
primitive assembly stage, the clipping-and-culling stage, the rasterization stage, the
fragment processor and the raster operation stage (“ROP?”). The first three stages
are conceptually related to geometric operations, while the last three are related to
rendering. Typically, only a few of these stages are (were) actually programmable
on hardware implementations and only two are actually useful for non-graphics
purposes: the vertex processor and the fragment processor. The programmability
of these elements is somewhat limited if compared to a general-purpose CPU and,
still, all computations need to be expressed in graphics terms.

The vertex processor handles geometric transformations and lightning: it receives
vertices (i.e., points) represented in homogeneous coordinates as four-dimensional
arrays (for 3D scenes) and applies a transformation so that the position in the
object coordinate system is translated in the eye coordinate system, according to
the position of the eye:

Zo Z;
Yo o Y;
ol = M | ¥ (2.1)
W, w;

, where x;, y;, 2;, and w; are the input coordinates, x,, y,, 2,, and w, are the output
coordinates and My, is the trasformation matrix. The fourth dimension is needed in
order to exploit a projective geometry framework rather than an Fuclidean geometry
one: this allows affine transformations and, in general, projective transformations
to be easily represented by matrices. The colour of the new vertices is computed
from position and intensity of light sources, position of the eye, vertex normal and,
of course, original colour.

In the primitive assembly stage, vertices are assembled into triangles and/or
lines (when needed), in preparation for further operations.

In the clipping-and-culling stage, vertices outside the viewing frustum are
discarded and triangles which face away from the eye are tagged so that they can
be treated differently (or even discarded in some cases).

In the rasterization stage, the primitives that make up the virtual scene (i.e.,
triangles, lines and points) are finally projected on a plane, thus converted into a set
of fragments, i.e. data that describes the characteristics of a pizel and its relations
with the scene which is being rendered (not yet a simple color value to be displayed).
For lines and triangles, the color values of single vertices are interpolated to give
smooth transitions.

In the fragment processor, any kind of operation can be applied to fragments in

!The information that is reported in the following paragraphs was mostly taken from “A Crash
Course on Programmable Graphics”, by Li-Yi Wei ([26]).

2.1. Early Examples of GP-GPU Computing for Audio Applications 29

order to obtain a new set of modified fragments (typically: texture mapping). This
is of course the most important stage for general-purpose computing.

The ROP brings all the information held by each fragment down to a simple

color value assigned to a pizel. In this way, a 2D picture is rendered. The pizel
value information is eventually sent to the frame buffer for display.
Before the introduction of the unified shader architecture and that of general-purpose
programming APIs, the vertex processor and the fragment processor could only
be programmed by means of specialised language extensions and compilers. Some
strong programming limitations were imposed by GPU processors. Still, most of the
main features needed for audio processing were available on older GPUs: the ability
to perform conditional branching (and, consequently, looping), the ability to read
and write to and from memory locations (in a ping-pong fashion), and, finally, the
availability of a set of highly efficient vector and trigonometric operations, which
are very convenient for parallel DSP applications. Of course all these features can
also be exploited by modern GP-GPU APIs while releasing the software developer
from the burden of translating the addressed processes into the graphics rendering
scheme, with all the limitations and complexities implied. All the examples that
follow are based on NVIDIA’s Cg language for GPU programming.

Whalen - 2005

An early example (March 2005) can be found in Sean Whalen’s paper “Audio

and the Graphics Processing Unit” [27], where a few digital audio effects were
implemented as Cg kernels and executed on a GPU. Namely, these effects are simple
versions of chorus, dynamic range compression, delay, FIR high-pass filtering, FIR
low-pass filtering, noise gate and amplitude normalization. Being one of the first
studies on GPU audio processing, the author chose an off-line framework to begin
with, as he was concerned about the limited bandwidth of the AGP bus being not
enough for real-time operations.
In Whalen’s program (and in the other examples described next) digital audio
elements and processes are translated into graphics primitives and graphical opera-
tions, i.e. into rendering terms: 32-bit floating-points mono samples are loaded into
the red channel only of a square texture in order to be processed (the full RGBA
space was not used, in order to simplify translating between a 1D sample array and
a 2D texture). Very little information is given about the way kernel operations are
performed on the GPU and the reader is invited to refer to later examples for a
better understanding of typical methods.

Tests were run on a 105000 samples audio file (16-bit short PCM converted to
32-bit floats before processing in order to avoid distortion). The system used for
the benchmarks consisted of a 3GHz Pentium 4 and an NVIDIA GeForce FX 5200
/ AGP, accelerated by NVIDIA’s kernel driver 6629 and Cg 1.3. The execution
times of the program computing different audio effects were compared with a CPU
version of the same program written in C. Results are reported in figure 2.1.
Although the GPU scores better in overall execution time, it is actually outperformed
by the CPU in more than half of the algorithms. In fact, these results reinforce the
notion that GPU performance is strongly dependent on the specific algorithm that is
analysed and its particular implementation (i.e., whether it fits the GPU architecture

30 Chapter 2. GP-GPU Computing for Audio Applications: a Review

16000 D GPU Time
14000 B cru Time
12000 +
10000 +
8000+
6000 1
4000+
2000+ _.
, I_h [

chorus compress delay highpass lowpass noisegate nrml

Figure 2.1: Results obtained in [27] for a CPU versus GPU comparison (execution time
in microseconds). Seven basic audio effects are considered and 105000 audio
samples are processed in each experiment.

well or not). Since very little information is provided on the implementation
details of these algorithms, it makes little sense trying to carry out a deeper
analysis of Whalen’s results and trying to compare the algorithms that were
tested. Nevertheless, the author himself points out that the main reason for the
significantly poor performance of the GPU versions of the high-pass and low-pass
filtering algorithms (implemented through two 5-tap masks) is to be found in
the particular way data needed to be mapped from one-dimensional arrays to 2D
textures. Noteworthy, this is a problem that is completely absent in modern GPUs.
In all other tests, GPU performance is either comparable or remarkably better?.
About the possibility of porting his program to a real-time scenario, Whalen states
that: “Real-time effects processing on the AGP bus seems unlikely. To achieve low
latency, short chunks of audio must be sent to the GPU and back to system memory.
The readback performance of the AGP bus will likely limit GPU acceleration to
offline audio processing. PCI-X should remove this limitation”. Indeed, many
examples of real-time audio GPU processing applications have been developed in
the following years.

Smirnov and Chiueh - 2005

In [29], Smirnov and Chiueh design and implement a GPU algorithm for basic
FIR filtering and test it in the scope of audio processing. In this work, the
authors use NVIDIA’s Cg compiler in order to program fragment processors on
a GeForce 6600 GPU. They embed the resulting codes in already existing GNU
Radio® building blocks. Smirnov and Chiueh used their FIR filter implementation
in order to compute:

2The best performance is achieved on the dynamic range compression algorithm, where an
impressive speed-up factor is brought about. This is a peculiar result, especially if compared to
the much less exciting results obtained in [28] (see section 2.7). This difference can be explained
by the fact that countless different versions of compression algorithms can be implemented, based
on very distinct designs. Whalen’s and Fabritius’ versions are very likely based on incomparable
designs.

3GNU Radio (http://gnuradio.org/) is a free and open-source software development toolkit
that provides signal processing blocks to implement software radios.

http://gnuradio.org/

2.1. Early Examples of GP-GPU Computing for Audio Applications 31

e simple FIR filtering of a real input signal wp,:

l
Yin) = D T hyy (2.2)
=0

, where h are the taps of the desired impulse response.

e the Hilbert transformation of a real input signal w,:

S(Yp) = Zj—o Tin+i1hij
, where h are specially defined taps.
e the frequency translating FIR filter of a real input signal x,):
!
2w fn
Y = (Zfﬁ[nmhm) et (24)
§=0

, where f is the desired amount of frequency shift.

Vector elements (both input/output ones and impulse response ones) are stored
in textures: each pixel contains either four real numbers or two complex numbers
(Repn, Imy,, Re,i 1, Im,11) and consecutive samples are stored sequentially along
rows. The computations needed for evaluating equation 2.2 are carried out in the
time domain, without the use of FFTs. Yet, a convenient matrix representation is
employed in order to reduce the number of GPU instructions (see [29] for details).

The performance of the three processes was tested on a Pentium 4 HT 3.2GHz
with a GeForce 6600 video card. The GPU implementation was compared with an
SSE-optimized CPU version of GNU Radio. The results of testing the plain FIR
filter are shown in figure 2.2.

These results imply that the GPU implementation outperforms the CPU im-

plementation for vector sizes greater than 60000. This is a typical behaviour of
GPU-based programs: a substantial improvement over the CPU is only observed
when the desired process is applied to a large number of data. To confirm this,
Smirnov and Chiueh report that the GPU-based Hilbert transformation program,
which involves a short impulse response of only 31 taps, performs much worse than
its CPU-based counterpart. It turns out that the plain FIR filter and the frequency
translation FIR filter (which also performs well on the GPU) are computation-
bound programs. Thus, being also congenial to parallel computation, they are well
suited for GP-GPU processing. On the other hand, the Hilbert transformation is
a memory bandwidth-bound program and it fails to give any improvement over a
standard CPU implementation.
All the three developed modules are finally put together in a more complex “radio
receiver” application (see the paper for details): a comparison is made between
the time it takes to generate 500 output samples on by means of CPU and with a
GP-GPU approach. The results are shown in figure 2.3.

These results again corroborate the conclusion that implementing certain blocks
on the GPU can improve the application performance, especially for FIR filters

32 Chapter 2. GP-GPU Computing for Audio Applications: a Review

FIR filter computation time, CPU ticks

4e+10 ‘ -
CPUSSE —/—
3.5e+10 r Geforce 6600 -/~ j

3e+10
2.5e+10
2e+10

Ticks

1.5e+10 |
1e+10 |
5e+09

0 —----'_"_"_'L;_-- — ‘ ‘ I
0 2000 40000 60000 80000 100000

vector size

Figure 2.2: Performance comparison of CPU and GPU implementations of a plain FIR
filter with a number of taps equal to the number of input (and output)
elements. Results from [29].

Performance of radio receiving application

) T

40 Geforce 6600 - -
35+ |
30
25 |+
20 r
15 |-
10 +

seconds

10K 20K 30K 40K 50K B0K 70K
number of taps
Figure 2.3: Performance comparison (CPU vs GPU) of a radio receiver application for

different number of taps used for the internal FIR filters. The measured
quantity is the time to generate 500 output samples. Results from [29].

with a larger number of taps. Of course this whole framework is not addressing
the possibility of real-time execution, even with low sample rates. The hardware
used in this study is not powerful enough for being able to filter in real-time with
impulse responses as long as those considered here. Yet, more recent studies show
a significant improvement and they prove that real-time FIR filtering with long
impulse responses is possible and it can be faster if computed on a GPU (see [28],
section 2.7, for instance). Current GPUs are quite different than at that time and
the break-even point has shifted towards much shorter filter lengths with respect to
the 60000 taps reported here. FIR filtering is a key functional block for countless

2.1. Early Examples of GP-GPU Computing for Audio Applications 33

audio-related applications: this review will be dealing with many more examples of
this computational block.

Trebien - 2006

The real-time framework is addressed, for example, in Fernando Trebien’s
undergraduate thesis [30], which features a description of graphics-pipeline-level
audio processing in the GPU. Trebien implements an embryonic prototype of
a GPU-based modular audio system designed for real-time operation. His aim
is to show how the limitations of CPUs in handling computationally intensive
audio processing tasks (especially when multiple processing chains are meant to be
executed concurrently) can be overcome by running certain processes on a GPU.
The objective is therefore quite similar to that of this work but, while Trebien
starts from scratch, building a whole audio system based on RtAudio® and ASIO®
drivers, this work is arranged as an integration into the Csound environment and
focuses on very specific spectral processes as opposed to the basic but fundamental
building blocks implemented by Trebien.

The author sets up a mapping from a network model of virtually interconnected
software modules to the graphics pipeline. This operation was accomplished via the
OpenGL graphics library as an accessory to C++ and Cg programming languages,
where Cq is used for writing shader programs. It is noteworthy to stress that the
author cites a few GP-GPU “systems” like Brook (a programming language for
stream processing), Sh and Shallows (C++ libraries), but he states that “none of
them is an established standard, and all of them are still under development. In
any case, using any of those systems is limiting to some extent and generally less
efficient than direct programming of the graphics system”. Trebien loads audio
sample values into tezels (mapping samples from different audio channels of multi-
channel streams onto different color components of a single texel) and then posts
tasks for computation on the GPU (typically, the task would be a horizontal line
for an audio frame). Memory indexing for reading source textures and writing result
textures is performed in a ping-pong fashion over successive shader calls: this is
because of an intrinsic limitation in old GPUs for which a texture could not be set
as source and target at the same time.

The modules that make up the prototype audio system implemented by Trebien
are the following:

e A waveform synthesis program which is able to generate four different types
of waveform by evaluating four different functions at successive time instants
(sine wave, sawtooth wave, square wave, and triangle wave shaders).

A mixing program to sum different lines in textures, i.e. mixing audio streams
into one.

An interpolating wavetable synthesis program.

A delay effect program.
A FIR filter program.

4 RtAudio (McGill University): https://www.music.mcgill.ca/~gary/rtaudio/
5Steinberg ASIO: http://www.steinberg.net/en/company/developers.html

https://www.music.mcgill.ca/~gary/rtaudio/
http://www.steinberg.net/en/company/developers.html

34 Chapter 2. GP-GPU Computing for Audio Applications: a Review

No IIR filter programs were implemented because of their intrinsic recursivity,
meaning that a straightforward implementation as a shader would not benefit from
the GPU architecture®.

Benchmarking of this system was carried out on an Athlon64 3000+ (1.81GHz)
with 1GB of memory paired with an NVIDIA GeForce 6600 with 256 MB of memory.
Tests were run with stereo blocks of 256 32-bit samples at a sampling rate of 48kHz.
Unfortunately, only the waveform synthesis module was actually tested: the author
counted the maximum number of times this program could be invoked in real-time
without causing buffer under-run in order to assess the application behaviour on
practical usage. He compared this data with the results obtained by running similar
programs on the CPU and consequently obtained a speed-up factor for each type of
waveform. The speed-up factors reported by Trebien are the following:

e 28x for the triangle waveform
e 30x for the sinusoid waveform
e 36x for the sawtooth waveform

e 59x for the square waveform

These are exceptional results, perhaps too optimistic. In fact, analyzing the results
of other studies regarding real-time audio processing on the GPU, speed-up factors
as high as these can be hardly found. In addition, the video card used for these
experiments hosted a medium-range GPU with only 8 fragment processors. These
facts may lead to believe that in Trebien’s experiments there might have been
some kind of bias in favor of GPU computing. In any case, there is no reason to
question that at least a good level of speed-up was achieved. Of course these results
only apply to waveform synthesis by function evaluation, which is a very limited
sub-scope of audio signal processing, but the framework in which they were obtained
can be easily extended to many other applications, as this review demonstrates by
illustrating numerous examples.

Zhang et al. - 2005

Another pre-CUDA example of GP-GPU computing applied to sound synthesis
can be found in [31]. In this publication, Zhang et al. describe a method to
exploit the processing power of a GPU in the context of modal synthesis” of sounds
produced by colliding objects. In this case, the GPU is used in order to achieve
real-time synthesis of a higher number of sounding objects simultaneously. Modal
synthesis is indeed a very appealing target for parallel computing, considering that
each mode can be synthesized independently of the others.

The approach used by Zhang et al. consists in pre-calculating modal models and
storing them in a 2D texture so that they can be used as input data for fragment
programs in order to compute the actual response to simulation stimuli. This

8This is a topic that will be actually faced in the section 2.8.

" Modal synthesis is a physical modelling synthesis technique which consists in modelling the
sound produced by a vibrating object as a bank of damped oscillators that are excited by an
external stimulus. More recent examples of the same technique have also been addressed in this
review, see section 2.8.

2.1. Early Examples of GP-GPU Computing for Audio Applications 35

approach has the downside of being memory-intensive® but it benefits in terms of
computational complexity. The modal model used in [31] is represented by the
set of parameters {w;, d;, A7}, where 1 < i < N represents the mode number (for
a total of N modes) and 1 < j < K represents the sampling contact location
index (for a total of K sampling points). w; is the mode frequency, d; is the decay
rate that characterizes each mode and A? is the mode’s initial amplitude at each
particular location after an impulsive excitation. All these parameters are meant to
be given by some prior empirical analysis of the objects or by other computations
based on their geometric and physical properties.

Zhang et al. show that, under the assumption of a linear model, the final response
under an arbitrary force Fjy at a particular sampling location, can be expressed as:

N N
Y = Zyi[t] = Z (Riyz‘[t—l] + Giyi[t_g} + BgF[t_1}> (25)
=1

=1

Where R; = 2e~%/5cos(w;/S), G; = —e2%/5 and B} = e~%/Ssin(w;/S) A} (where
S is the audio sampling rate). All the R; and G; values can be pre-calculated
before any actual computation, whereas B! depends on the simulation-related
factors A7 (which are related to specific contact locations). The authors actually
pre-calculate all the K possible Bf at each desired sampling location; in this way,
the computation of the By goes down to selecting the proper set of coefficients
which corresponds to the sampling location closest to the actual contact location.
At the beginning of the simulation, all the modal models of the sounding objects
(i.e, all their parameters) are stored in a 2D texture of the GPU and this is actually
the only data transfer that is taking place from host to device. The names chosen
for the parameters in equation (2.5) are not fortuitous, in fact, the R;, G; and B
parameters are loaded into the red, green and blue channel of each texel. Parameters
related to different modes are stored in successive columns of the texture while data
related to different sampling locations and different objects is stored in successive
rows’ (see figure 2.4).

The actual sound synthesis is then performed in two steps: first, the current
response sample of each individual mode from each object is computed, then all
the modes’ samples are summarized in a single one. This procedure is repeated at
audio rate for each output sample. The first operation corresponds to selecting the
desired row of the texture for each object (depending on the contact locations) and
evaluating!’

Vi = Rivije—1) + Gilipp—o) + Bg*F{t—l] (2.6)

for each mode i. In graphics terms, this is equivalent to rendering a rectangle
through a fragment program: the total number of rows in the resulting rectangle is

8Still, the memory capacity of the GPUs of the time allowed for the synthesis of enough
sounding objects and modes to recreate typical real life situations.

9There is indeed some data redundancy in this representation, since each R; and G; do not
depend on contact locations but they are stored anyway in multiple rows. This redundant
representation was chosen in order to simplify computational logic in the fragment program.

YEquation 2.6 is actually a dot product between two vectors, i.e. [R;,Gj, Bf*]T and
[y [t—1]> yi[t,g],F[t,l]]T. Since this is a very common operation in the graphics framework, it is
carried out very efficiently on GPUs.

36 Chapter 2. GP-GPU Computing for Audio Applications: a Review

Modes (1:N)

Figure 2.4: In [31], modal models are stored in a 2D texture. Different channels are
used for storing different modal parameters.

equal to the number of objects that are currently oscillating due to past collisions.
The rendered rectangle is stored in one channel of a 2D texture and, since only
two past samples per mode are needed at each step of the computation (according
to equation 2.6), only two channels of texture memory are used for storage (for
instance, red and green channels are shown in figure 2.5).

Modes (1:N)

at Location 1
at Location 2
at Location 3

Object 1
Object 2
Object 3

Figure 2.5: In [31], the current samples from each modal response are stored in one
channel of a 2D texture after computation.

Together with y;;_1), the result y;};) is written back to the same fezel, which will

be used in the next cycle.
Summarizing all responses in one total response is achieved through a reduction
operation. Due to the fact that there was no global register or hardware accumulator
on older GPUs, reductions needed to be implemented as a multi-pass ping-pong
process: starting with the initial rectangle, in each following step a rectangle scaled
by a factor of 0.5 (both column-wise and row-wise) is rendered. For N sounding
objects with N modes each, one channel of an N x N 2D tezture is transformed
in one channel of a single pizel in logs(N) rendering passes. The resulting pizel is
then read back by the CPU!!,

This method was tested on 64 sounding objects in an acoustic scene. Each object
is modelled using 512 modes and 16 sampling contact locations. This is equivalent
to synthesize 32K modes simultaneously. Tests were run on a Pentium IV 2.8GHz
CPU flanked by an NVIDIA GeForce 6800 GT with 256 MB of video memory. The

audio stream consists of 32-bit floating-point samples but the sampling rate used

HProbably in a block fashion, but this is not specified by the authors

2.2. Additive Synthesis 37

in the tests is not declared. The GPU version of the code was written in Clg and
allows to synthesize in real-time more than 6 times as many modes as the CPU
version, which could handle less than 5000 modes.

This approach is particularly efficient since it needs data to be moved from host to
device only once, i.e. at the beginning of the simulation. This is at the expense of
memory occupation and lack of flexibility (the properties and number of objects
must be defined beforehand). Concerning data transfer in the opposite direction,
the authors do not specify how often output samples were moved from device to
host, but they point out that data trasfers were indeed the performance bottleneck
(for a real-time scenario) and that PCI-Express could have helped improving the
total number of modes achievable in real-time (they were using an AGP 8X interface
instead).

2.2 Additive Synthesis

Additive synthesis on general-purpose computers has always been quite limited
by processing power: when high quality synthesis of arbitrary sounds is desired, the
need arises for a number of sinusoids that is too high for any consumer-level CPU
to compute. It has been typical to perform high quality additive synthesis with
specially designed hardware. Yet, the task of generating and mixing sine waves of
different frequencies can be accomplished in a fully parallel fashion and it is thus
suitable for GPU computing.

Savioja et al. - 2010

In [32], Svioja et al. set up a testing framework in order to find out how many
sine waves can be computed in real-time for the synthesis of general sounds on a
commodity GPU, using CUDA. Two versions of an additive synthesis algorithm
are implemented:

e A plain version concentrates on pure sinusoid computation at random fre-
quencies.

e A full (more realistic) version defines specific starting phase and gain pa-
rameters in addition to the frequency parameter. Also, there is a possibility
to slide each sinusoid from one frequency to another, causing more memory
transactions.

For each version, two sine wave generation methods are investigated: table lookup
with linear interpolation and sinf function.

The CUDA implementation assigns to each thread the task of computing a subset
of the total number of sinusoids. In addition, only a fraction of the buffer size is
computed by each thread (for instance, 128 samples are computed by one thread
when the buffer size is 1024). This way, as it is shown in figure 2.6, given a specific
buffer size and a target number of sinusoids to be computed, each thread is designed
to compute samples related to a limited spectral region and to a limited time
interval (inside the buffer time interval). Each thread also accumulates all the
sinusoids’ samples related to the same time instant and to the same spectral region.

38 Chapter 2. GP-GPU Computing for Audio Applications: a Review

A second set of threads accumulates, again in the vertical direction, the results
computed in the first set in order to obtain a number of output samples which is

equal to the buffer size. The whole process is repeated for each successive output
buffer.

T72 | 173 | T74 | T75 | T76 | T77 | T78 | T79

o
©

Te4 | Te5 | Tee | Te7 | Te8 | Te9 | T70 | T71

o
o

T56 | T57 | T58 | T59 | Te0 | Tet Te2 | Te3

e
=

T48 | T49 | T50 | T51 T52 | T53 | T54 | T55

o
o

T40 | T41 T42 | T43 | T44 | T45 | T46 | T47

T32 | T33 | T34 | T35 | T36 | T37 | T38 | T3¢9

o
IS

Te4 | T25 | T26 | T27 | T28 | T29 | T30 | T31

o
w

Ti6 | T17 | T18 | T19 | T20 | T21 T22 | T23

Sinusoid inside a block (in millions)
o o
&} w

T8 T9 T10 | T11 Ti2 | T18 | T14 | T15

o

TO T1 T2 T3 T4 T5 T6 T7

0 128 256 384 512 640 768 896 1024
Sample inside a block

o

Figure 2.6: Thread to data mapping in the CUDA implementation of additive synthesis
by Savioja et al., [32]. Each box corresponds to one thread which is in turn
assigned to multiple spectral components and multiple time samples.

Savioja et al. tested this implementation on a commodity PC with a 2GHz Intel
Pentium Dual E2180, 2GB of RAM and an NVIDIA GeForce GTX480 with 1.5GB
of RAM memory. The operating system running on this machine was Microsoft
Windows XP Pro SP3 and audio was managed by the Windows WaveOut API
(using 44.1kHz as the target sampling rate).

3500 : - . :
1 —GPU
3000} / »=—==GPU - full ||
/ —S— lookup
) | / === lookup — full|]
'g 2500 / =8~ sinf
5 . ==Ek- sinf — full
£ 2000¢ / 1
w .
kS !
o 1500¢ Ele o—6—6—6—6—0—0——0-
E 7
Z 1000} / 1
500! —0--6-©0-0-06--6-0-0-0-6-©
/
0 1 1 1
0 25 50 75 100

Buffer size in samples

Figure 2.7: Number of sinusoids that can be computed and mixed for real-time additive
synthesis on a commodity computer (CPU vs GPU) as a function of the
buffer size (results from [32], small buffers).

2.2. Additive Synthesis 39

Tests were run with a variety of buffer sizes, from 8 to 2048 samples in 8 samples
steps. These experiments clearly show that the GPU implementation is superior
with respect to a standard CPU implementation for all buffer sizes over 16 samples
(figure 2.7). Analysing figure 2.7, it is important to stress that, while the CPU
versions show a fixed performance that does not depend on the buffer size (it makes
sense in a sequential computing framework), the GPU versions strongly depend
on this parameter. This can be explained by noting that, as long as there are
idle CUDA cores available, more threads can be actually instantiated on the GPU,
simultaneously, until the graphics hardware is fully busy, thus increasing the total
achievable number of sine waves that can be synthesised. Figure 2.8 shows the
GPU results for longer buffers. The maximum performance of 1.9 million sinusoids
is achieved with a buffer size of 2016 samples.

o

Number of sinusoids (x1 000 000)

—GPU |
-—--GPU - full
0.5¢
-------- I
oo™’ T ‘ . |
0 500 1000 1500 2000

Buffer size in samples

Figure 2.8: Number of sinusoids that can be computed and mixed for real-time additive
synthesis on a commodity GPU as a function of the buffer size (results from
[32], large buffers).

It is interesting to note that there are local maxima in the trends shown in
figure 2.8. These are probably related to the way CUDA manages the mapping
between threads and hardware resources, and they highlight the need for the
programmer to know some details about the underlying hardware. Also note that
the GPU version suffers’®> most from the incorporation of the individual gains,
starting phases and slides, but still the performance at 500-samples-long buffers (a
typical setting) provides a speed-up factor of more than 6 times over the fastest
CPU implementation.

12This is caused by the increased number of memory transactions, since for each sinusoid there
are four fetches instead of one, as in the plain version.

40 Chapter 2. GP-GPU Computing for Audio Applications: a Review

2.3 Spectral Model Synthesis

Spectral model synthesis (SMS) is an effective sound analysis/synthesis technique
that can provide for high fidelity imitations of pre-recorded sound sources and it is
often chosen for modelling some specific categories of sounding objects in a software
environment. Nevertheless, high fidelity is only achieved when a remarkable number
of spectral components is included in the model: in these cases SMS can get
computationally intensive and very hard to manage in real time with commodity
CPUs. Still, if the characteristics of the spectral components (amplitude and
frequency) do not change too rapidly, and they can be considered constant on some
time intervals, this operation turns out to be well suited for parallel processing.
Thus, a GP-GPU computing approach can be employed in order to increase the
number of spectral components that can be managed in real-time by a heterogeneous
system. This approach shares a lot of similarities with the GPU-based additive
synthesis framework analysed in section 2.2.

Tsai et. al. - 2010

In [6], Tsai et al. present a GPU-based technique for implementing real-time
spectral model synthesis, using CUDA. They design the sound they want to achieve
as a superposition of deterministic component (sj,) made of piecewise-stable and
harmonically related sinusoids and a stochastic component (s,,), represented by a
residual signal:

Py

St = Shin] T Snn] = Y Apcos(puon + ©p) + Snjn) (2.7)
p=1

, where Py is the (slowly) varying number of harmonics'?, A, is the (slowly)
varying amplitude related to the p*” spectral component, wy is the fundamental
frequency of the synthesised sound and ¢, is the initial phase related to the p*"
component.

The residual signal can be completely characterised by a low-order autoregressive

LPC model:
Q

Snfn] = = D_ gSnfn—q] + Wiy (28)
q=1

, where () is the LPC order, a, are the predictor coefficients and wy, is a white noise.
Note that equation 2.8 represents a recursive filter and it cannot be computed in
parallel in a straightforward way.
Tsai et al. set up a synthesis framework for two audio channels: the sound in each
channel is obtained by mixing 50 SMS instruments. Each instrument is modelled
by means of 50 spectral components with time-varying parameters that update
every 10ms. The sampling rate is set to 44100Hz.
Two CUDA implementations are presented for the deterministic part, with different
approaches about the way data is stored in the device memory and with a different

13 P is actually considered constant over R samples. The time index ¢ is such that it grows at a
slower rate than n: n = Rt.

2.3. Spectral Model Synthesis 41

level of sophistication: algorithm 1 is more straightforward, whereas algorithm 2
employs shared memory a more clever thread-to-data mapping (see [6] for more
details). In both implementations, the idea is that of generating 882 samples for each
iteration of the external loop: these samples represent a 10ms portion of the final
signal (441 samples for each channel). Since the model’s parameters are considered
constant over this interval, each instrument can be computed independently of
the others and the same goes for the computation of the final samples, which
are obtained by mixing the partial results related to each instrument. A similar
discussion can be applied to the stochastic signal, with the exception that the
partial results related to each instrument cannot be computed in parallel and are
thus computed sequentially. Actually, also lower time granularities are investigated
(up to 10 seconds).

Tsai et al. use the following computer system for testing this framework and
comparing the execution times achieved by their CUDA implementation to a plain
CPU version of the same synthesis process: an Intel Quad Core Q6600 at 2.4GHz
flanked by an NVIDIA Tesla C1060 at 1.3GHz (240 CUDA cores, compute capability
1.3). The GPU turns out to be capable of achieving the goal of synthesising 5000
sinusoids plus residual noise in real-time for all time granularities above 10ms. On
the other hand, the CPU-based sequential implementation fails in all cases (it has
to be said that this version was not SSE-optimised). The speed-up factors obtained
in these tests are reported in table 2.1.

Table 2.1: Speed-up factors (GPU vs CPU) for the sound synthesis of 100 SMS instru-
ments (as in [6]) with different time granularities for parameters update.
CPU performance is compared to the two CUDA implementations.

Granularity (s) | Algorithm 1 | Algorithm 2

0.01 50.74 76.11
0.05 52.13 80.11

0.1 53.41 81.40

0.5 53.86 82.19

1 54.00 82.15

5) 54.12 82.40

10 54.27 82.29

In a nutshell, the performance increase is quite remarkable, as speed-up factors
vary between 50 and 80. Analysing this table a little further, it can be learned that,
in this case, a well-tuned and sophisticated CUDA implementation (algorithm 2)
turns out to be approximately 1.5 faster than a straightforward implementation
(algorithm 1), and this difference can be enough to justify some extra effort when
implementing CUDA applications. Table 2.1 also shows that the speed-up factors
tend to increase as bigger and bigger chunks of data are processed each time the
GPU is called into action (i.e., decreasing granularity): this is actually a typical
behaviour in the GP-GPU computing scope.

Tsai et al. also tried to push the Tesla GPU to the limit, by increasing the desired

42 Chapter 2. GP-GPU Computing for Audio Applications: a Review

number of SMS instruments'®: with a granularity of 10ms, the maximum number
of instruments that this GPU could handle in real time was 1700.

2.4 Physically-based Synthesis via Finite Differ-
ence Methods

Finite difference methods can be the basis for implementing physically modelled
musical instruments. However, such methods can get very compute-intensive,
especially when realistic sounds are desired and, consequently, the need arises for
complex virtual structures and for a high level of spatial resolution in the definition
of these physical models. Yet, most of the times, the resulting large simulations can
be expressed by means of a parallel paradigm. Thus, the possibility of harnessing
the massively parallel architecture of modern GPUs gets very attractive.

Sosnik and Hsu - 2010 - 2013

In [33], Sosnik and Hsu implement a GPU-based real-time'® finite difference-

based simulation for a two-dimensional membrane. They point out that finite
difference-based sound synthesis for large and/or fine-grained membranes and plates
is too expensive to run in real time on CPUs and that the architecture of the GPU
is particularly well suited for this type of algorithm.
Sosnik and Hsu consider a square (but elastic) membrane modelled as a vertical
displacement continuous function of space and time w,) with respect to a hori-
zontal x-y grid. The shape of this function and its evolution in time are governed
by the wave equation (with dissipation):

9%u N Pu u N Jdu
oz "oy oz o

(2.9)

where 7 is the viscosity coefficient. After the model is moved in a discrete space,
discrete time framework, the authors end up obtaining the following solution for
the one-step-ahead value of the displacement function in each grid point:

1
“z;rl = (1 + 5) {P (uipy j tudy g+ ol —4u;)+
At

where p = [v(At/Az)]?, such that v is the propagation speed of the wave in the given
medium and At and Ax are the temporal and spacial sampling units, respectively.
In order to obtain different sounds, the size of the grid is varied, together with the
values of 77 and p and, if desired, those of the boundary conditions. Of course, the
displacement function u also needs to be initialised accordingly, on the basis of the
desired kind of excitation: in [33], for all simulations, the excitation is defined as a

(2.10)

MEach instrument is composed of 50 harmonics.
5Good responsiveness is considered by the authors as a key requirement in this context.

2.4. Physically-based Synthesis via Finite Difference Methods 43

drastic shift from a perfectly flat surface (at n = —1) to a Gaussian initialisation
(at n = 0). The audio output is obtained by simply considering the evolution in
time of the central point in the grid.
A parallel implementation of equation 2.10 is implemented via CUDA: each grid
point update is mapped to a single CUDA thread via 2D thread blocks (note that
boundary points need to be treated accordingly). At each step, the value of u
corresponding to the chosen output grid-point is saved to a specific array which is
sent to the audio buffer (at host side) at the desired rate. Note that the parallelism
exploited here involves the two spatial dimensions only: each output sample is still
computed sequentially via a for loop. Also noteworthy is the fact that, even though
the amount of data which is handled by the GPU can be quite remarkable when a
fine-grained spatial resolution is set, the memory transfers between device and host
only involve the output buffer, which ultimately consists of a one dimensional array
of no more than a few hundreds elements (audio samples). In addition, no memory
displacement in the opposite direction (from host to device) is needed, apart from
a preliminary transfer for the initialisation of the membrane’s shape.

The CUDA implementation was tested on three systems and compared to a
standard serial implementation.

e System 1: a desktop computer with 2.5GHz Intel Core 2 Quad running
Ubuntu 9.10, flanked by an NVIDIA GeForce GTX285.

e System 2: a Mac Book Air with a 1.86GHz Intel Core 2 Duo running OS
10.5.8, flanked by an integrated NVIDIA GeForce 9400M.

e System 3: a macPro with dual 3 GHz Intel Quad-Core Xeon running OS
10.5.8, flanked by an NVIDIA GeForce 8300GT.

A series of tests was run, each test being characterised by a different grid size (from
15x15 to 21x21) and a different target buffer size (from 8 to 4096). The sampling
rate was set at 44.1kHz and computation was carried out with single precision
(4-byte) floats. The simulations consisted in playing the virtual instrument for 5
seconds and recording the total execution time of the two versions. The results
obtained from the simulations with a fixed grid size of 21x21 points are shown in
figure 2.9.

While the performance on the CPU remains almost constant for all buffer sizes,

on the GPU side there is a clear trend for the execution time to decrease with
increasing buffer size. This is probably due to the fact that, with higher buffer sizes,
fewer memory transfers and fewer kernel calls are needed. The comparison between
the sequential implementation and the parallel one really depends on the specific
system, as well as on the employed buffer size. However, it is worth noting that, on
system 1, the GPU-based version outperforms the CPU-based one, with speed-ups
of 1.2 to 2.9.
Figure 2.10 shows the results obtained with a fixed buffer size of 4096 samples but
with varying grid sizes. As with the previous test, the parallel implementation is
faster than the serial one on the GTX285 system for all tested grid sizes; it can
be seen in 2.10 that timings for the CPU show an approximate O(n?) increase
with grid size, while GPU timings increase significantly more slowly. In all cases,
speed-up improved with larger grid-sizes.

44 Chapter 2. GP-GPU Computing for Audio Applications: a Review

1500

GPU ||
cPU B

1111] e T

milliseconds

500 -

8 512 4096 8 EIE 4096 8 512 4096
GTX285 9400M 8800GT

Buffer Size by Graphics Card

Figure 2.9: Execution speed of finite difference-based membrane sound synthesis pro-
grams with a constant grid size of 21x21 points and varying output buffer
sizes. Comparison between three systems producing a 5 seconds output

([33]).
1500
GPU [
cPrU B
kn? —
B0 .
3
c
8
2
z N
[sT0][0] ETTTT IR AN 21 RN R -

0 =
15x15 18x18 21x21 15x15 18x18 21x21 15x15 18x18 21x21
GTX285 9400M 8800GT

Grid Size (points) by Graphics Card

Figure 2.10: Execution speed of finite difference-based membrane sound synthesis pro-
grams with a constant buffer size of 4096 samples and varying grid sizes.
Comparison between three systems producing a 5 seconds output ([33]).

In [33], Sosnik and Hsu prove that, in an adequate system, better performance can
be obtained when casting finite difference sound synthesis of a membrane to the
GPU. On less powerful systems, a performance gain can be obtained only for high
grid sizes (which actually translate into more realistic sounds) and high buffer sizes
(which can undermine real-time applications). In general, a GP-GPU approach to
sound synthesis via finite difference methods is promising, even when dealing with

2.5. Room Acoustics Modelling 45

mid-range GPUs. Larger simulation grid sizes could be achieved by exploiting the
parallelism of multiple GPUs or that of more recent GPUs with more memory and
more cores.

In [34], Sosnik and Hsu reprised the same project after a few years and tested
a very similar application on more recent hardware. This time, much larger grids
could be simulated, giving a better spatial resolution and a more realistic sound.
The new tests were run on mid 2012 MacBook Pro Retina with a 2.7GHz Intel
Core i7 processor, 16GB of RAM and a built-in 900MHz NVIDIA GeForce GT
650M GPU (one of the slower Kepler-based GPUs). The operating system is OS X
10.8.2 running CUDA 5.0.
Figure 2.11 shows the time needed to generate one 512-sample buffer of audio for
the finite difference synthesizer running on the CPU and on the GPU (execution
times above 11ms get out of the real-time region).

Time to Generate Audio Buffer with FDS on a Mid 2012 MacBook Pro Retina

finite difference simulation execution times
2.7GHz Intel Core i7 CPU, NVIDIA GeForce GT 650M GPU, 512 Samples

— GPU
e CPU

unusable

execution time (ms]

0
18x18 27x27 36x36 45x45 54x54 63x63 72xP2 81x81
grid size

Figure 2.11: Execution time for the synthesis of one 512-samples buffer by means of
a finite difference-based membrane synthesizer set to different grid sizes.
CPU and GPU performance are compared ([34]).

For this system, the CPU load gets too high for simulations based on grids
that are larger than 69x69 points. However, the GP-GPU version of the algorithm
is capable of providing real-time execution for grid sizes as large as 84x84: this
corresponds to a 48% improvement in the maximum grid size supported.

2.5 Room Acoustics Modelling

GP-GPU computing has always been an attractive approach for what concerns
the research field of room acoustics modelling. As a matter of fact, GPU-enhanced
room acoustics computation is both one of the older audio-related fields to be
investigated ([35], for instance, dates back to 2004) and one of the most studied.

46 Chapter 2. GP-GPU Computing for Audio Applications: a Review

Of course, for practical reasons, only a very small fraction of the existing literature
about this topic will be reported here, just to give an idea. For a thorough analysis
of this research area please refer to [5] and [36]

The reason for which this field was, in the early days of GP-GPU computing, an
obvious candidate for GPU processing is that it actually shares several similarities
with graphics-related problems such as global illumination modelling. This is
especially true for the higher portion of the audio spectrum, where the sound
wavelength is short compared to the dimensions of reflecting surfaces and sound
can be assumed to behave similarly to light and modelled as rays (this is called ray
tracing).

In the lower part of the spectrum, where the ray assumption fails, room acoustics
modelling is usually done by means of wave-based methods, for which the wave
equation is solved numerically or analytically. Different approaches are possible:
these include finite-element method (FEM), boundary-element method (BEM), finite-
difference time-domain technique (FDTD), and digital wavequide mesh. 1t turns
out that all these techniques can be implemented using highly parallel algorithms
and they are thus perfect candidates for GP-GPU computing.

An important study about the GPU-based ray tracing technique applied to sound
propagation can be found in [4]. However, this paper is not going to be summarised
here because it has a very theoretical and qualitative approach (the theoretical
side is of course beyond the scope of this work) and it does not delve into the
details of the GPU implementation. A similar argument can be made for [37],
which in turn deals with a waveguide-based approach to room acoustics and reports
speed-up factors from 4.5 to 69-fold in the 2D case, depending on the resolution of
the employed lattice.

Hamilton and Webb - 2013

In [7], Hamilton and Webb present a room acoustics simulation based on a
finite difference approximation on a face-centred cubic (FCC) grid with finite
volume impedence boundary conditions. The authors aim at coupling finite volume
boundary conditions to a 13-point finite difference scheme on the FCC grid for
large-scale room acoustics simulations enhanced by GPU acceleration.

Hamilton and Webb start from a classic dispersion-free 3D wave equation:

(8152 - C2A)u(t,x,y,z) =0 (211)

, where ¢ is the speed of the wave (constant), A is the 3D Laplacian operator
(A =0%+ 85 + 0?%) and u represents a velocity potential, such that air pressure p
and particle velocity v fields are given by:

Ptz,y,z) = P atu(t,:p,y,z)

(2.12)
Vitayz) = — VU(tzy,z)

From there, by means of defining discrete approximations for the first-order and
second-order differential operator and for the Laplacian operator (using a 13-point
stencil), they end up with the following explicit recursion for the approximated

2.6. Headphone-based Spatial Sound (HRTF) 47

solution:
1 12

Uprrin) = ~le) = A1 + 7 D Wrcron) (2.13)
i=1
, where T' is the time-step, x represents the 3D spatial coordinates and wv; are
vectors in R? that are accordingly chosen.
For what concerns the boundary points of the room, a finite volume scheme with
frequency-dependent absorption at the walls is employed. This approach leads to
the following update equation for the boundary cells:

) 1 12 A A
Um0 = 7 <k2 + k3 Qi(SU;F)u(t,x) — kylig—7x) (2.14)
=1

, where ky, ko, k3 and k4 are scaling constants, g; is either 1 or 0 (depending on the
considered cell). The operator d,+ is defined as:

1 A A
5uj = z(u(t,x+viL) - u(t,x)) (2.15)

, where L is the spatial step.

By looking at the two update equations (2.13 and 2.14), it is evident that, at each
time step, updating the grid points is data-independent and the whole process
can clearly benefit from parallel execution. The main concern in terms of GPU
efficiency is ensuring memory coalescence: a clever technique for avoiding too many
uncoalesced accesses is displayed (see the full text for more details).

The CUDA implementation was tested against a plain CPU version in a simu-
lation based on a grid of 195,520,000 points (800x520x470), computed for 44100
time steps, using double precision arithmetic. The computer system used for these
tests comprised of an Intel Xeon E5-2620 and an NVIDIA Tesla K20 GPU. The
resulting execution times were: 30 hours for the serial code running on the CPU
and 38.5 minutes for the parallel code running on the GPU. The parallel version is
thus 46 times faster.

2.6 Headphone-based Spatial Sound (HRTF)

Spatial audio systems are becoming more and more popular in the entertainment
industry, including applications in the scope of videogames, virtual reality, cinema
and music performances. One particular sub-class of spatial audio that has shown
remarkable potentials is that of headphone-based auralization by means of HRTF'°
filtering: this technique allows a listener to perceive the virtual position of sound
sources in space by means of using only two real sources (headphones). This kind of
effect is obtained by filtering the sound sources with special filters whose coefficients
shape the sound with spatial information. As a matter of fact, the impulse responses
of HRTFs describe how sound waves are filtered by the scattering properties of
the individual body shape (i.e., pinna, head, shoulders, neck and torso) before
the sound reaches the listeners eardrum. The realisation of this effect eventually

16 HRTF: Head Related Transfer Functions

48 Chapter 2. GP-GPU Computing for Audio Applications: a Review

corresponds to the computation of two FIR filters per virtual sound source (one for
the left ear and one for the right ear). This is doable in real-time applications on
commodity computer system as long as sound sources are kept limited and filter
lengths are kept short. However, too often the need arises for more virtual sources
than an off-the-shelf CPU can handle. To solve this problem, HRTF filtering can
benefit from parallel processing (FIR filters are easily cast to a data-parallel scheme)
and it can be successfully implemented on GPUs for rendering a higher number of
virtual sound sources in real-time.

Belloch et al. - 2012

In [38], Belloch et al. discuss the design, the implementation and the performance
of a headphone-based spatial audio application whose processing is totally carried
out on a GPU, via CUDA. They use an HRTF database of 384 filters (187 for the
left earphone and 187 for the right earphone) made of 512 coefficients each (in the
frequency domain). Their objective is that of increasing the total number of virtual
sound sources that can be rendered in real-time on a commodity notebook.

Given N virtual sources z; and two filters (h}’ and h};) for each possible direction
r; in the 3D space, the output signals y;, and yr are computed as:

N
Yiim) = D Dim) * T
o (2.16)
YRR = D i) * Tif
i=0

These convolutions are usually implemented in the frequency domain, and this
is also the case in [38]. At the beginning of the process, all the HRTF filters
(frequency-domain coefficients) are transferred to the GPU memory. Then, the

following operations are performed in a CUDA environment:

1. N memory buffers of 512 samples each (from different sound sources) are
filled at host side.

2. When filled, these frames are transferred to the device.
3. Position information vectors are transferred to the device.

4. Convolution is started:

(a) Each input frame is Fourier transformed via cuFFT library ([21]).

(b) Element-wise multiplication is performed between transformed input
frames and the corresponding filter vectors.

(c) Element-wise summation of all the outputs related to the left channel is
performed (the same for the right channel).

(d) The two resulting frames are inverse transformed (again via cuFFT).

(e) In case of moving sources, additional filters are computed (related to the
new positions) and the results are weighted by smoothing time functions
and summed to smoothed versions of the results obtained from the old
positions.

5. The two resulting frames are transferred back to the host for playback.

2.6. Headphone-based Spatial Sound (HRTF)

49

Belloch et al. make use of CUDA streams'” to efficiently manage the real-time
motion of sound sources in space. Also, particular care is taken so that global

memory accesses are coalesced.

Tests were run on an NVIDIA Tesla GTS-360M (CUDA compute capability 1.2)
with 12 streaming multiprocessors (no information is given about the rest of the
system, other than it is a notebook computer). The results are shown in figure 2.12,
where the execution time of the whole process is plotted as a function of the number
of virtual sources employed for the simulation. The experiments were carried out
in an extreme worse situation, that is, when all the sources are constantly moving

through the 3D scene.

Figure 2.12 shows that a maximum of 2500 moving sources can be rendered for

0 500 1000 1

500

2000
Number of sources

2500

3000

3500

4000

Figure 2.12: Execution time of the CUDA-based HRTF rendering application discussed
in [38] for a variable number of virtual sources. In this simulation, sources
are moving constantly around the scene (worse condition). The horizontal

line represents the real-time threshold.

headphone-based spatial audio on the target system. Note that the buffer size
used (512 samples) is quite low, thus insuring low latency. No comparison with
sequential, CPU-based processing is reported in this work. In fact, the authors are
not interested in this comparison: instead, they aim at assessing how much the
utilisation level of the CPU can be kept low while rendering a HRTF simulation on
the GPU. It turns out that when 2500 moving sources are simulated, the CPU task

manager reaches barely 10% of the available computing potential.

17Gee section 4.5.1 for more details about CUDA streams.

50 Chapter 2. GP-GPU Computing for Audio Applications: a Review

2.7 Using the GPU in the Context of Music Pro-
duction

Knowing the potential power offered by GPUs combined with the possibility
of using them for general-purpose computing, it is right and proper for audio
programmers to wonder whether it makes sense to harness this power in any project
that is meant to run on a GPU-equipped device (nowadays, not only computers).
One field in particular where GP-GPU computing has not really become popular'®
(yet) is that of music production software, meaning software specifically designed to
accomplish some tasks inside the last stages of the digital music recording chain, i.e.
tracking, mixing and mastering. In this scenario, when sufficiently complex projects
are considered, high processing power is often needed: actually, the CPU can often
be the limiting factor when a project runs too many filters/effects on too many
tracks. In fact, some vendors sell dedicated processors to handle audio DSP. A
variety of DSPs for audio effects'? are available for the music producer, ranging from
soundcards with on-board effects to dedicated DSP expansion cards (usually PCle
cards) that provide no audio I/0, instead concentrating on a range of high-quality
effects. Unfortunately, this hardware is often very expensive and these dedicated
audio processors are typically closed proprietary devices that only allow certain
audio processes to be computed, keeping the amount of programmability very
limited. By contrast, GPUs are widespread in the majority of computer systems
and are sold in a broad market, with an extensive range of price tags, from entry
level to hi-end processors, and, most importantly, they are now fully programmable.

18 Although GPU-supporting audio software does exist, the practice of developing parallel-
processing-oriented versions of code has not asserted yet. One essential exception is Acustica’s
Nebula VST series, an emulator for analog hardware like pre-amps, equalizers, compressors, tapes,
filters, effects and reverbs. In Nebula plug-ins, the model identification scheme of non-linear and
time-variant systems is based on Vectorial Volterra Kernels. From Acustica’s website: “The Acqua
Engine VST Plug-in is “Designed For CUDA”, which means that it is able to take advantage
of this technology to provide enhanced performance for those who use NVIDIA graphics cards
that are CUDA enabled” (http://www.acustica-audio.com/). Another example can be found
in Liquidsonics’ Reverberate LE, a highly efficient convolution reverb processor VST which is
available in a version taking advantage of CUDA for the main convolution processing tasks,
reducing CPU usage. It is interesting to report here a note which can be found on Liquidsonics’
website: “Zero latency mode is not supported by the GPU Edition due to a combination of
factors including the mechanisms involved with transferring data to and from the GPU being
much more efficient with larger blocks, a current requirement to run CUDA VST plug-ins in
a separate thread (making larger block processing more efficient) and the lack of coherency
in buffering schemes used by various different VST hosts complicating the above issues. It
may become more practical to implement this feature in future using newer GPU architectures”
(http://www.liquidsonics.com/).

19To name a few (older and newer) devices: Universal Audio’s UAD series and Apollo se-
ries (http://www.uaudio.com/), TC Electronic’s PowerCore (http://www.tcelectronic.com/
powercore-pci/), Digidesign’s HD Accel (now Avid’s Pro Tools HD, http://www.avid.com/
products/protools-hdx) and countless more. More than real “co-processors” most of these are
actually DSP “external processor” and their role is indeed quite different to that of using the
GPU for similar tasks.

http://www.acustica-audio.com/
http://www.liquidsonics.com/
http://www.uaudio.com/
http://www.tcelectronic.com/powercore-pci/
http://www.tcelectronic.com/powercore-pci/
http://www.avid.com/products/protools-hdx
http://www.avid.com/products/protools-hdx

2.7. Using the GPU in the Context of Music Production 51

Fabritius - 2009

Precisely to answer the question about how much gain in performance it is
possible to achieve, if any, in the execution of the algorithms involved in a typical
music production scenario, Frederik Fabritius carries out a thorough analysis [28]
on the efficiency of porting to the parallel programming scheme some of the most
common (and basic) processing algorithms, namely: equalizer, delay, reverberation
and dynamic range compression. This is done in order to study the possibility of
“expanding the computational potential for audio hosts in music production, by
taking advantage of the otherwise unused GPU” and understand in which cases the
parallel versions of these widespread algorithms are faster. This is a good starting
point for studying the possibility of integrating GPU processing (or some other
form of parallel processing) into digital audio workstations by default.

Fabritius designs a program for applying to a sound file at least one prototype
version for each of the four processes: the equalizer family is represented by applying
a second order low-pass Butterworth filter (ITR), the delay is designed by means
of memory lookups involving a simple sum evaluation and balance factors, the
reverberation family is represented by a convolution reverb (i.e., an applied FIR
filter) and the compressor is based on a target gain envelope design. CPU-based
and GPU-based versions of the same processes are implemented and tested in order
to make a comparison between the two programming models.

Noteworthy, most of Fabritius’ work is based on an off-line utilization scheme as
opposed to what will be presented in the next chapters of this thesis, which will
focus on exploiting parallel computing for real-time sound design and live music
applications. Fabritius’ work, instead, aims at building a faster framework mainly
for mixing and mastering stages where the same process is applied in a batch fashion
to a whole audio file. Of course, most of the considerations which will be made in
the next paragraphs also apply to real-time processes.

As the author points out, some of the algorithms are better suited for parallel
processing than others: the equalizer, for instance, is inherently sequential and
recursive and should not benefit from being parallelised (at least in its straight-
forward implementation, see the section dedicated to parallel implementations of
recursive filters for more information). On the other hand, the convolution reverb
(FIR filtering) should be very efficiently computed in parallel, as it has been already
shown in this review (see 2.6, for instance). Delay and dynamic compression are
likely to show an intermediate level of achievable parallelism, as they can be broken
down into different steps, some of which are suited for parallelism and some others
are not. In any case, Fabritius points out that whenever an algorithm shows a
similar level of execution speed on the CPU and on the GPU, it is still worth
considering the GPU implementation so to free the CPU for other tasks.

About the delay, it can be seen from the update equation®

Y = (1 = @)) + & B o1 (2.17)

that recursion problems can be avoided if processing is carried out in a block fashion
with a block length of L samples. In this way, L parallel threads can be launched

20In equation 2.17, « is the “wet”parameter, 3 is the amount of feedback and L is the delay
length in samples.

52 Chapter 2. GP-GPU Computing for Audio Applications: a Review

on the GPU for each frame, but each pair of consecutive frames must be computed
sequentially. This means that the longer the delay the more efficient the GPU
version of the algorithm. A copy and sum design is also implemented: this approach
is completely parallel (with the exception of one atomic operation needed for each
iteration) but it has the disadvantage of increasing the time complexity from O(n)
to O(n?) (see [28] for details). Note that this approach is presented even though
floating point atomic operations were not available at the time of development and
it thus scores poorly on benchmarks (barrier synchronization is used instead of
atomic operations).

For convolution reverb, the fast convolution method is used: the signal and the
impulse response are Fourier transformed, multiplied in the frequency domain
and transformed back to the time domain. Three variants of this approach are
implemented and tested: standard fast convolution, i.e. the batch processing on
the whole signal, basic overlap-and-save design, based on successive processing of
overlapped input signal STFT?! frames, and partitioned convolution, where both the
signal and the impulse response are split up into segments, convolved in an overlap-
and-save fashion and finally combined by means of proper delays (See [39],[40] and
[41]). Each of these methods is very well suited for parallel computation; however,
even though basic overlap-and-save has a lower time complexity with respect to fast
convolution (O(N1og2(Nyoer))) against O(Nlog2(N)), and should be therefore more
efficient for larger problems, as the FFT size is decreased the GPU version is likely
to give a smaller proportional speed-up with respect to a batch implementation (this
is because of the usual overhead introduced by GPU processing). Furthermore, even
though partitioned convolution is slightly more costly than basic overlap-and-save,
a smaller amount of memory is referenced during computation and this results in a
more efficient use of cache memory.

The dynamic compressor examined by Fabritius uses a target gain envelope based
on an RMS input level detector. The RMS input level is computed via a truncated
infinite impulse response (TIIR) filter ([42]), using a delay line with a length in
samples which corresponds to the chosen RMS time window (Ngys). For each
sample n:

SumO fSquares[n] = SumO fSquares[n — 1] + z[n]?
— SumO fSquares[n — Nps] (2.18)
level[n] = SumO fSquares[n]/Nras

This approach is thus similar to the algorithm used for the delay and similar
considerations apply: the presence of SumO fSquares[n — 1] in the first equation,
however, implies a computation pattern that must be fully sequential. Nonetheless,
other parts of the compressor algorithm can be computed in parallel, i.e. the
computation of the sample by sample difference between input level and threshold
(the so-called “delta level”, used both for switching the compressor on and off and in
the computation of the gain envelope) and the final application of the gain envelope
(which must be otherwise computed sequentially before application).

Fabritius states he would have used OpenCL had it been available when he
was developing his wok: OpenCL is seen as an ideal framework thanks to its

2L Short Time Fourier Transform.

2.7. Using the GPU in the Context of Music Production 53

cross-platform nature, preventing vendor lock-in. He states his choice went down to
selecting between NVIDIA’s CUDA and AMD’s Brook+ as GP-GPU programming
APIs, and he eventually chose CUDA for two reasons: first, being CUDA more
similar to OpenCL, porting his work to a hypothetical OpenCL version should be
easier, secondly, he already owned an NVIDIA graphics card.

Note that the CUDA implementation of Fabritius’ work does not consider asyn-
chronous memory operations because the testing platform is limited to compute
capability 1.0 (CUDA’s zero copy feature is also not supported).

The testing stage of Fabritius’ thesis is quite articulated and a thorough report
of each result data is beyond the scope of this work; nevertheless, an abstract of the
most interesting results will be provided in the following paragraphs. The testing
system used by Fabritius is the following: Intel Core 2 Quad Q6600 (2,66GHz) with
4AMB of shared L2 cache per core pair and 32KB of L1 cache per core, 2048MB of
RAM and an NVIDIA Geforce 8300 GTS (compute capability 1.0) with 320MB of
device memory. Tests are run on a mono signal with a sampling rate of 44.1kHz
and 32-bit resolution.

As it is implemented as a single-threaded process, it comes as no surprise that
the equalizer performs very poorly on the GPU: when doing tests on a 8399608
samples long file, the “speed-up” factor ¢ given by the ratio of the running time of
the CPU version over the running time of the GPU version turns out to be a very
disappointing ¢ = 10556075 — (.023.

The performance tests made on the delay algorithm are quite interesting to
analyse: it turns out that both the straightforward design and the circular buffer
design are slightly slower when executed on the GPU, with no particular influence
given by varying the delay length (which is kept below 10 seconds for musical
plausibility). A few explanations for these behaviours are reported: the reduced
execution speed is explained by the fact that the memory transfer overhead implied
by GP-GPU computing is not compensated by parallel processing as the kernels
are very simple (with low time complexity and few arithmetic operations) and the
delay length is not enough, which means that not enough threads are spawned on
the GPU, even in the case of a 10 seconds delay. It is in fact proved that kernel
execution time of the circular buffer design is more than 5 times faster for the
GPU when a 4 seconds delay is used, but this is not enough to compensate for an
overall memory transfer overhead of almost 40ms. Overall, the “speed-up factor” ¢
turns out to be ¢ = ii:gggﬁj = 0.57. Note that the CPU version was optimized for
multi-core computing as it exploits the Streaming SIMD Extensions (SSE) through
the OpenMP?* API. It is also important to stress that the GP-GPU implementation
used by Fabritius in this work is quite “rudimentary” for today’s standards: as
explained by the author himself, the lack of the zero copy feature and the lack
of asynchronous memory transfers really spoil the potential of the GPU version,
and testing the same algorithm on a more recent device would probably result
in the GPU version being faster than the CPU version for delay lengths above a
certain size. Nevertheless, even in the analysed situation, it would still make sense
to offload these computations to the GPU in order to make room for other tasks to
use CPU resources. This is a key point of GP-GPU audio programming in general.

22 OpenMP: http://openmp.org/wp/

http://openmp.org/wp/

54 Chapter 2. GP-GPU Computing for Audio Applications: a Review

All versions of the reverb algorithm turn out to be very efficiently run on the
GPU. They are all suited for parallel processing and they are all computationally
intensive enough, so that parallel processing compensates for memory transfer
overheads. Making a comparison between GPU versions, partitioned convolution
results to be the fastest method: this is due to a good level of achieved memory
coalescence (this applies to basic overlap-and-save as well) and to a computation
shift from Fourier transforms to complex multiplications, which are very fast on
GPUs. Among the CPU versions, basic overlap-and-save is found to be the fastest;
thus, a final comparison is made between the partitioned convolution design (on the
GPU) and the basic overlap-and-save design (on the CPU). Not surprisingly, the
speed of execution of these two implementations is found to be highly dependent on
the length of the impulse response used for filtering. For large filter lengths (from a
quarter of a second upwards) the GPU version is faster, getting better and better
with respect to the CPU version as the filter length grows. For smaller filter lengths
(below 0.2 seconds) the performance of the CPU compared to the GPU is roughly
equal. Again, the bottleneck of the parallel version is to be found in the memory
transfers and running the same test on a more recent system (i.e. on a device with
higher compute capability) would probably result in faster execution times on the
GPU side, even for quite small decay times. Analysing the case of a fixed decay
time (a typical value of 0.75 seconds) and varying the length of the input signal,
the tests show that, as this variable grows, the running time increases more slowly
for the GPU implementation. However, the speed-up given by GP-GPU processing
for a typical application (0.75 seconds decay time reverb applied to a 190 seconds
audio signal) is not really outstanding: ¢ = 322 éégms = 1.40. FFTs are computed
through the cuFFT library ([21]) on the GPU, while the FFTW library ([43]) is
used for the CPU versions.

Finally, the GPU version of the dynamic compressor turns out to be outdone
by the CPU version. In addition, the tests show that, while the CPU version is
somewhat independent of the RMS window size, the running time of the GPU
version grows linearly with this variable. For a very small RMS window size of bms
the execution time for the GPU is 3 times as long as for the CPU implementation
but, if the CPU resources are scarce, it could still make sense to offload compressor
computations to the GPU.

To sum up, Fabritius’study shows that the only process that clearly benefits
from GP-GPU computing is the convolution reverb algorithm (and, consequently,
any kind of FIR filtering). The delay and the dynamic compressor are shown to be
slower when executed on the GPU but, in some cases, it could still be beneficial
to offload computations from the CPU to the GPU for both these tasks. On
the other hand, the equalizer performs very badly when using a (single-threaded)
straightforward design, but in other sections of this review it is shown how other,
much more efficient designs are available for this kind of process (See section 2.8).
These results are more than promising for the introduction of GP-GPU computing
in everyday music production systems: it is in fact quite safe to assume that running
the very same tests on more recent devices, making sure to exploit features like
asynchronous memory transfers and zero copy, would make the GPU versions of all
analysed algorithms much faster (even faster than CPU versions when this is not
already the case).

2.7. Using the GPU in the Context of Music Production 55

Savioja et al. - 2011

A slightly more recent approach to GPU-based reverberation for musical purposes
can be found in [44]. Here, Savioja et al. discuss two versions of a reverberating
algorithm, one in the frequency domain (using an STFT approach) and one in the
time domain (plain convolution). For both versions, a GP-GPU implementation
(based on CUDA) is compared to a standard CPU implementation. The frequency-
domain approach is also used as a way to assess the efficiency of GPU-based Fourier
transforms in general.

For what concerns the frequency-domain approach, the authors investigate what
is the maximum DFT size that can be handled in real-time by a commodity computer
for a given number of channels and with various buffer sizes. In each channel,
the processing is managed one buffer at a time with 50% overlap. Each buffer
is Hamming windowed and zero padded to the DFT length under examination.
The FFT of the input buffer is computed, the multiplication in the frequency
domain is evaluated and the result is inverse transformed and overlap-added with
the other results in order to give two channels for stereo output. The CPU
implementation makes use of the highly optimised FFTW library ([43], which
employs SSE instructions) while the GPU implementation is based on the cuFFT
library ([21]).

4N‘|‘A T T T T T L T T T T T T T T 17T T T
—4A— 1k samples GPU
- —A— - 128 samples GPU | |
—6— 1k samples CPU
A - —@G- - 128 samples CPU
256k
655364
s
o 16384
z
4096
1024
256
64 1 1 1 1 1 L 111 1 1 1 1 1 1 1 11 1 J
1 2 3 456 810 1620 30 40 60 80100 160 256

Number of channels

Figure 2.13: Maximum FFT length for real-time frequency-domain convolution as a
function of the number of channels to which it is applied. CPU vs GPU
comparison as in [44], where two possible buffer sizes are considered (128
samples and 1024 samples).

The tests were run on the very same system employed in [32] (see 2.2), except
for the use of a higher sampling rate of 48kHz in these tests. Figure 2.13 shows the
maximum DFT size (i.e., the maximum impulse response length) as a function of

56 Chapter 2. GP-GPU Computing for Audio Applications: a Review

the number of the effected channels (up to 256).
These results show that the GPU is quite consistently able to handle transforms
eight time as long as the CPU version in the same time, no matter how many
channels are considered (even with one single channel the GPU still performs better).
By means of reading figure 2.13 it is possible to grasp an idea of the practical limits
for multi-channel FF'T processing on a GPU. For instance, when 16-channel audio
is processed at 48kHz with small latency (buffer size of 128 samples), the maximum
reverberating time achievable with this framework corresponds to 32768 samples.
For what concerns the convolution in the time domain, the authors show that
the computation time of an FIR filter does not depend linearly on the filter length
when it is computed on a GPU. In addition they investigate what is the maximum
filter length that can be used in real-time as a function of the number of input
channels. Each channel is processed with two different filters for stereo output
(so this framework could be valid for studying HRTF** applications in addition to
reverberation).

I
1M
256k
q
65536
__ 16384
ES)
= i
& 4096
o
L 1024
|
2 .
%6 —A— 1k, GPU, FFT
1k, GPU
B4r| — —- 128, GPU
—o— 1k, CPU, FFT
16| —=— 1k, CPU =T
—B--128, CPU
4 1 1 1 1 1 1111 1 1 1 1 1 1 1 1 11 1 1
1 2 3 456 810 1620 30 40 60 80100 160 256

Number of channels

Figure 2.14: Maximum FIR length for two real-time convolutions in the time domain
as a function of the number of channels to which they are applied. CPU vs
GPU comparison as in [44], where two possible buffer sizes are considered
(128 samples and 1024 samples).

The CUDA implementation consists of two phases: in the first phase, 2 x (N +
L — 1) threads are mapped to each input buffer (where N is the buffer size and L
is the filter length). In the second phase the results of the first phase are summed
together for final stereo output. This CUDA-based implementation turns out to be
faster than a straightforward CPU implementation in all examined cases. Figure
2.14 reports the maximum length of the FIR filters in order to achieve real-time

23 HRTF: Head Related Transfer Function.

2.8. About Recursive Filters in a Parallel Computing Scenario 57

processing. This is plotted as a function of the considered number of channels for
two possible buffer sizes.

The figure shows that the GPU is able to handle 130 times longer filters than those
the CPU can handle in real-time. It also shows that the computation time is nearly
independent of the buffer size: in practice, quite short buffers can be efficiently
used for time-domain convolution on the GPU.

2.8 About Recursive Filters in a Parallel Com-
puting Scenario

The parallel computing scenario brings many outstanding features to the audio
programmer. Some operations are immediately recognizable as excellent candidates
for being parallelised and cast to the GPU (e.g., FIR filtering with long impulse
responses, as used in convolution reverb). Unfortunately, some other operations
raise legit doubts about what can be earned in terms of performance, since they
do not fit the GPU architecture well (at least not immediately): this is especially
true for recursive operations where data dependency prevents the possibility of
instantiating a set of parallel threads on independent data (i.e., each step of the
computation relies on data which resulted from the previous steps). This kind of
operations are likely to perform worse on the GPU than on the CPU simply because
the resulting thread must be performed on a single (much simpler) core. Conversely,
GP-GPU computing is based on harnessing many simple cores simultaneously,
performing the very same instructions in parallel.

In the digital audio processing scope, a very common example of an operation
which is not a good candidate for GPU computing is the application of IIR filters
to an input signal x:

P Q
Yin) = D b — Y Ym—j) (2.19)
i=0 =1

When considering a GPU implementation, the problem with IIR filters is indeed
their recursivity: at any time n, any IIR filter equation relies on past outputs to
compute the current output. This means that it is not possible to exploit data
parallelism using many independent threads on the GPU to compute different output
samples: each but the (conceptually) first thread would be “tied” to the result of
the (conceptually) previous thread. As a result, a straightforward implementation
of the filter equation would imply a single, sequential thread on the GPU: not only
this would not at all exploit the computing resources of the GPU, but it would also
result in terrible performance, given that single GPU cores are not at all comparable
with any modern CPU in terms of single-thread speed of execution, not to mention
the unavoidable memory transfer latency implied by GP-GPU computing.
Providentially, researchers have studied alternative methods to implement the
recursive equation of IIR filters with an arbitrary level of parallelism, in order to
exploit parallel architectures. In this section, two techniques in particular are going
to be presented.

58 Chapter 2. GP-GPU Computing for Audio Applications: a Review

Trebien - 2009

The first is an approach presented by Fernando Trebien in his master thesis

[45] and reprised in [46]. In these publications Trebien proposes a clever method to
eliminate, up to a certain degree, the data dependencies that would emerge from a
parallel execution of a linear time-invariant®* recursive filter equation®, making the
filter implementation more suitable for GPU processing: “the problem is solved by
unrolling the equation and “trading” dependences on samples close to the current
output for preceding ones, thus requiring only the storage of a limited number of
previous output samples”.
Trebien shows that this technique not only provides an adequate increase in the
number of coefficients that, in many cases, can be used for real time filtering, but
it also allows to eliminate time consuming data transfers from device memory to
host memory and back when the filtering operation is part of a complex processing
chain and it is coupled with other audio processes to be executed on the GPU. The
core of the technique can be synthesized by the following relations:

Q

P
Ymn] = Z bix[n—i] - Z QjYn—j) = "=
=0 j=1

m—1 P Q-1
s =S ck(zbmm]) £ dyny
k=0 i=0 j=0

Where P and () are the feedforward and feedback filter orders, respectively, b; and
a; are the coefficients of the feedforward and feedback parts, respectively, x, is
the input signal, m is an arbitrary number of samples that describes the chosen
amount of unrolling and ¢;, and d; are coefficients that can be related to a; and b;
by means of the following relations:

C =lco,cr,- . ema]” = (D), DY, ..., D) (2.20)
with D™ = [dy, dy,. .., do1|" (2.21)
where DY) = —DIVA+ Sg.oD® and D =[1,0,...,0]" (2.22)

Oo10¢0 ---0
O o010 ---0
Ooo0o01-.---0
where Soxg=1{.) and A:[al,ag,...,aQ]T (2.23)
O0o0©O0 ---1
0000 |

D) represents the vector D at the m-th step of unrolling and the expression Dfﬁ)

(k

is the i-th coefficient of vector D). The reader may refer to [45] for the missing

24The method presented in this publication is valid for time-invariant filters only and cannot be
easily extended to handle time-variant filters in general.

25The topic of IIR filters had been quickly faced in his bachelor thesis but this feature was not
actually implemented due to the lack of a straightforward way of writing such a shader program,
as it would not fit the GPU architecture well. See section 2.1 for more details on Trebien’s bachelor
thesis.

2.8. About Recursive Filters in a Parallel Computing Scenario 59

intermediate steps and for a more detailed explanation. As the author points out,
“due to block processing, one can assume that there is in fact a value for m so that
all samples up to yj,—, are available as a result of processing previous blocks”.
In this way, once the appropriate value of m is chosen, all ¢, and d;. coefficients
can be precomputed via the algorithm reported above: these coefficients and the
b; coefficients can then be treated as impulse responses and the filtering can be
applied in the frequency domain:

v = F T (en) F(on) F ()] + FHF (dn) F (Y1) (2.24)

, where all signals are conveniently zero-padded in order to get linear convolution
instead of circular convolution and the Fourier transform operator is to be interpreted
as a DFT operated via the cuFFT library ([21]). Note that, as the ¢,, b, and d,
coefficients are known beforehand, the transform of these coefficients needs to be
computed only once (i.e., it can be pre-computed): only two transforms need to
be computed at each processing step (F(x,) and F(yp—g)); samples of xp, are
obtained by accessing the current and previous input blocks while samples of y,
are obtained from previous output blocks only. Block-wise filtering was performed
by the author in an overlap-and-save fashion.

To demonstrate the effectiveness of this method, the author developed a pro-
gram that synthesizes in real time the sounds triggered by events emerging from
a simultaneous run of an object motion and collision simulation program: on
the GPU, two LPC?* all-pole shaping filters (recursive by nature) are applied to
conveniently synthesized excitation signals. The two filters were designed and
computed in MATLAB using, for the recursive section, a number of coefficients
between 16 and 128: these coefficients were extracted from recorded sounds through
linear predictive coding. The residual signals extracted from the LPC method were
modeled appropriately so that approximate versions could be synthesized in real
time. The samples of the synthesized residuals were eventually used during the
final synthesis stage as coefficients of the non-recursive section of the two filters.
The synthesis of the residual signals and the filtering were implemented in CUDA
C”" (the computations to take place on the GPU) and they were designed to be
triggered by events (impulse signals) in the object collision simulation, also running
on the GPU simultaneously.

The benchmarking stage of this system aimed at testing how many filter coefficients
could be handled in real-time by the GP-GPU application, using different frame
sizes, and comparing these results to those obtained by running the audio processes
(synthesis and filtering) on the CPU only®®: while the order of the recursive section

26,PC: Linear Predictive Coding

27 As it was published in 2009, for the development of his master thesis Trebien could rely on
version 2.0 of NVIDIA CUDA platform (drivers, toolkit and compiler); AMD/ATT’s Close To
Metal platform was also available at the time but it was not chosen due to the lack of a native
FFT library (needed for filtering in the frequency domain) and was considered more complex
to work with. OpenCL was made available to developers only when this project was already in
progress, so it was not really an option.

28While, for the filtering process, the CUDA application was based on the cuFFT library
provided by NVIDIA ([21]), the CPU version exploited the FFTW library ([43]). Both libraries
are considered highly optimized for their particular platforms.

60 Chapter 2. GP-GPU Computing for Audio Applications: a Review

of the filter was kept fixed, different numbers of coefficients for the non-recursive
section were tested (starting from 8192, up to more than one million coefficients).
Unfortunately, the exact number of coefficients used for the denominator of the
transfer function is not clear; however, it is possible to speculate that 32 coefficients
were used, as the author states that using 32 coefficients produced a stable transfer
function for the recorded sounds while modelling the sources’ resonances accept-
ably?. The signal stream consisted of two channels of 32-bit floating-point samples
at a sampling rate of 44.1kHz.

Tests were run on a 1.86Ghz Intel Core 2 Duo E6300 with 2GB of DDR2 RAM at
333MHz, flanked by an NVIDIA GeForce 9800 GTX graphics card with 768MB of
memory (x16 PCI-x), all mounted on a Gigabyte 945GM-S2 motherboard.

The results show that, on average, the GPU was capable of handling, in real-time,
filters with 2 to 4 times more coefficients than the CPU (See table 2.2).

Table 2.2: Number of coefficients achievable for the non-recursive part of a real-time
IIR filter, for different block sizes. CPU-based results are compared to
GPU-based results ([45]).

Block Size | Non-recursive order (CPU) | Non-recursive order (GPU)
128 32768 -
256 65536 131072
012 131072 262144
1024 131072 524288
2048 262144 1048576

Even though this might not be an outstanding improvement per se, it is important
to stress that these results show how even recursive filters (by nature not suited for
straightforward parallel computing) can be implemented on the GPU in a real-time
application, possibly with even more coefficients. The groundbreaking aspect of
this result is to be found in those applications that need recursive filters inside a
composite signal processing chain: with this method, it is possible to cast the whole
computation chain to the GPU, removing any need of breaking it for data transfer
between host and device, which is typically the bottleneck for GP-GPU programs.
It is worth noting that, for a block size of 128 samples, the GPU implementation
could not achieve real-time performance for any number of coefficients, probably
due to the overhead of C'UDA kernel launch calls. This confirms a trend in real-
time audio GP-GPU applications: small block sizes are usually more likely to be
problematic. On the other side, when large block sizes are used, GPU application
typically achieve better results, as confirmed by data in table 2.2 for increasing
frame sizes (from 256 samples up).

Other audio applications that may benefit from this technique include equaliza-
tion, multi-band dynamic compression, vocoder, modal synthesis and subtractive

29Moreover, in audio applications, using more than 16 coefficients in the recursive section of a
filter is rare in practice.

2.8. About Recursive Filters in a Parallel Computing Scenario 61

synthesis.

It is interesting to compare this work to that of Zhang, Ye and Pan [31]:
while Trebien finds a smart way of exploiting the high throughput capabilities of
graphics processors for computing the results of a single recursive filter in a single
step launching many different threads that cooperate for the achievement of one
common result, Zhang et al. exploit the same feature in a complementary way, as
they launch many recursive filters in parallel on independent data, relying on the
straightforward implementation of the filter which computes the current output
using saved values of past outputs obtained from previous steps®.

Bradford - 2015

It is quite interesting to compare Trebien’s method with Russel Bradford’s
simpler solution to the very same problem, as illustrated in his “A short note on
long recursion” [47]. Bradford aims at computing a “long” recursive filter

Yin] = Tn] + Q0Yn-1] + G1Yn—g] + - + AN-1)Y[n—N] (2.25)

in a parallel fashion (in particular, he is interested in cases where N is large, e.g.,
N =176400). The method proposed by Bradford starts from the assumption of a
typical audio architecture that works using a block-wise processing scheme with b

samples per block; considering the b output samples obtained by processing one
block:

Yin) = T} + (@0Yn1] + @Yjas] + -+ + AN_1Yp)
Yint+1] = Lin+1] + aoYin) + (aly[n—l} +-F aNfly[n—N—i-l])

Yint+2) = T2 + GoYn+1] + a1y + (- + av_1Yn—nN42))
(2.26)

y[n+b—1] = x[n+b_1] + aoy[n+b_2] + aly[n+b—3] + e _|_
+ (ap-1Yp—1) + - + aN-1Yn-N+b-1])

the operations highlighted by parentheses are independent of all y;), i > n. These
groups of operations can actually be computed in parallel, both “horizontally” and
“vertically”. For large N this is the majority of the terms of the computation (note
that, evidently, a small sequential part to top up the partial sums is needed). The
total time complexity of this method is O(b? + logN) per block (or O(b+ 3logN)
per output sample) when O(NNb) processors are used.

Bradford also shows an improved method featuring the use of FFTs to compute
partial sums. In order to do this, a slightly different blocking structure needs to be

30More details on [31] can be found in Section 2.1

62 Chapter 2. GP-GPU Computing for Audio Applications: a Review

considered:

Y] = T[] + @0Yn—1] T G1Yn—2 + -+
+ ay—1Ypm— + (@Yp—s-1 + - + aN_1Yn—nN])
Yin+1] = Tln+1] T QY] + Q1Yp-1) + -+
+ ayp—1Ypn—b41) + (@Yp—s) + - + AN-1Yn—N41])
Ymn+2) = Tiny2] T Q0Ynt1] T Q1Yp) + -+ (2.27)
+ ap—1Ym—v+2) T (@Yp—b1] + -+ AN_1Y-N12))

Yn+b—1] = Tin+b—1] + aoYn+b—2] + a1Y[n+b-3] 4o+

+ ap—1Yp—1] + (@Yp—g) + - F AN 1Y n—N+b-1])

Now the groups of operations in the parenthesis (i.e., the partial sums) are all
independent of yp,—1) and up; they can be seen as convolution sums (or, equivalently,
as an FIR filter applied to past output samples) and they can be computed in the
frequency domain, using FFTs?*'. Note that these partial sums are shorter than
before, and thus a lower level of parallelism is exploited, but at the same time
frequency domain multiplication can be used (which is faster for a large N). The
resulting time complexity turns out to be the same as the non-FFT method, but
using only O(N) processors as opposed to O(Nb). Thus, this is theoretically more
efficient.

Bradford tested these two approaches on quad-core Intel i7 920 at 2.67GHz
coupled with a GeForce GTX 470 with 448 cores at 1.22GHz. He measured the
time to process one second of double precision samples (44100 samples) with an
IIR filter with 176400 coefficients for the recursive part (and just one coefficient
for the non-recursive part, as in the equations above). The block size was set at b
= 512 and CUDA 5.0 was used for the GPU implementation. The results can be
found in table 2.3.

Table 2.3: Processing times (in seconds) for applying an IIR filter to 44100 samples,
using two different methods (dot product and FFT-based method) on the
CPU and on the GPU ([47)).

CPU version (sequential) | GPU version (parallel)

Dot product 8.7 sec 1.1 sec
FFTs 1.1 sec 0.14 sec

A 4-threaded parallel FFT on the CPU was also tested with a resulting time
of 0.7sec. Note that the GPU implementation using FFTs greatly outperforms
all other implementations and it is the only one capable of real-time processing.
Theoretically, a 24 seconds echo (N = 1058400) could be applied in real-time.
Using single precision floats, a 56 seconds echo (N = 2469600) could be applied in
real-time.

3LCPU version is based on FFTW ([43]), while GPU version is based on cuFFT [21].

2.9. Spectral Processing 63

2.9 Spectral Processing

This thesis is focused on the specific sub-field of phase vocoder processing® on
GPUs. Although not extensively, this very topic has already been investigated in
the past and a few examples are going to be reported here. Most of the widespread
spectral processing frameworks rely on the Fourier transform in some way. Once
again, the possibility of employing, in this scenario, SIMD implementations of the
FFT algorithm is very attractive.

Bianchi and Queiroz - 2012

In [48], Bianchi and Queiroz implement GPU-based versions of plain FFT

analysis and full phase vocoder analysis/re-synthesis in the Pure Data® environment.
Their aim is that of learning the maximum frame sizes for which each task is feasible
in real-time on commodity GPUs. They exploit Pure Data’s extensible design to
implement the interaction with the GPU using C' and CUDA C code compiled as
shared libraries, in a very similar way to what will be presented in chapter 3 (in a
Csound environment, instead).
The FFT analysis module is very basic: it simply takes a signal frame, transfers
it to device memory, applies an FFT transformation and transfers the resulting
spectral data back to the host. The full phase vocoder module uses the same
amount of data transfer but comprises a lot more computations. In fact, after the
forward FFT is performed, it needs to translate amplitude/phase information into
amplitude/frequency information and the whole process is reversed for re-synthesis,
using additive synthesis instead of inverse Fourier transforms. Different methods for
additive synthesis are investigated: table lookup with 4-point cubic interpolation,
table lookup with 2-point linear interpolation, table lookup with truncated index,
direct use of the sinf () primitive and table lookup with linearly interpolated
texture fetching.

The test system is a 2.67GHz 8-core Intel Core i7 CPU 920 with 6GB of RAM

running Ubuntu 11.04. Two NVIDIA GPUs are employed for the tests: a GeForce
GTX275 (240 CUDA cores, 896MB RAM, 127.0GB/s memory bandwidth) and a
GeForce GTX470 (448 cores, 1280MB RAM, 133.9 GB/s). FFTs are implemented
via the cuFFT library ([21]) but not many more details are provided on the CUDA
C' implementation of the phase vocoder.
The authors run the two Pure Data modules for a period equal to 100 DSP blocks,
with various frame sizes of 2 (with 6 < i < 17) and they measure the mean time
for data transfers alone and for the full round-trips. The results regarding the plain
FFT analysis module are reported in figure 2.15 and those regarding the full phase
vocoder analysis/re-synthesis module are reported in figure 2.16.

32Gee section 1.2 for a detailed discussion about phase vocoder processing.
33 Pure Data: https://puredata.info/

https://puredata.info/

64 Chapter 2. GP-GPU Computing for Audio Applications: a Review

06 prT 1 T L
a2 host to device -—4-—-

0.5 p Kernel time [o -
_ device to host —— ,
g 04 Sroundtrip <o e ReCt
= i |
S 03
(b
5
Q 02

0.1

Block size

Figure 2.15: Memory transfer times and kernel times for a Pure Data FFT analysis
module running on a GeForce GTX470 for different block sizes, as in [48].

[\

DSP block period
1. cubic interp = &—

2. linearinterp --@-:-

3. truncated ---E3--

4. builtin sine ---w#--

5. texture interp ---%---
no calculation - - - - -

Duration (s)

—

Block size

Figure 2.16: Execution time for a Pure Data full phase vocoder analysis/re-synthesis
module running on a GeForce GTX470 for different block sizes, as in [48].
Different lines indicate different approaches to re-synthesis.

By looking at figures 2.15 and 2.16, it can be learned that there is a noticeable
difference, of some orders of magnitude, between the time it takes to run the plain
FFT module and the full phase vocoder module: hundreds of pure FFT executions
could occur in a DSP cycle while only a few phase vocoder round-trips can actually
be performed in the same time. Memory transfer times seem to grow linearly with
the employed block size. A comparison between the two GPUs (not shown in
figure 2.16) reveals that the GTX275 is slower in all cases and it fails to operate
in real-time for any block size bigger than 2'°. The GTX470 performs better and
it can operate phase vocoder round-trips in real-time also for a block size of 216
(but not bigger). The maximum block size achievable in each scenario is reported

2.9. Spectral Processing 65

in table 2.4.

Table 2.4: Maximum block size achievable in real-time for full phase vocoder round-trips
using different methods for the re-synthesis stage, as reported in [48] (1:
table lookup with 4-point cubic interpolation; 2: table lookup with 2-point
linear interpolation; 3: table lookup with truncated index; 4: direct use
of the sinf () primitive; 5: table lookup with linearly interpolated texture
fetching). The performance of two NVIDIA GPUs is compared.

Model \ Method | 1 2 3 4 5
GTX 275 24 | 915 [915 | 915 | old
GTX 470 215 | 216 | 916 | 915 | 915

No comparison between CPU-based and GPU-based execution is provided. Yet,
the feasibility of a real-time GPU-based phase vocoder framework in Pure Data is
assessed.

Bradford et al. - 2011

In [49], Bradford et al. implement an SIMD version of the sliding phase vocoder
(SPV) framework, which is designed to run on graphics processors via CUDA.
The SPV is a variation on the classic frame-based streaming phase vocoder that
makes use of the Sliding Discrete Fourier Transform (SDFT, see next) instead of
standard STDFTs** in order to perform a frame update for each output sample,
thus reducing the hop size to one single sample. This approach offers musical
advantages ([50]), including lower latency and the potential for new classes of effects
like transformational FM (see [51], for instance). On the downside, the SDFT
(and hence the SPV) is characterised by a very high computational cost, which
makes it intractable for real-time use, even on high-end consumer workstations.
However, massively parallel architectures are excellent candidates for accelerating
this algorithm, as it is perfectly congenial to parallel computing.

The authors show that, given the complex values X, of a frequency-domain frame
at time instant n, the DF'T of the input signal at time n + 1 can be expressed as:

Xny1) = DFT{@p111}
N-1

—jomlE

= Z Tigpyre 7N
=0
N

=z e 2Dy (2.28)
=1

N-1

ol k. ok

_ (Z O +$n+N> oI
=0

- (Xn[k] — I + xn—&-N) €j2ﬂ—%

34 Short Time Discrete Fourier Transform.

66 Chapter 2. GP-GPU Computing for Audio Applications: a Review

Thus, the cost of hopping by just one sample is N complex multiplications and 2N
additions (the value of 2"~ can be precomputed), where N is the DFT size. Note
that, for each frequency bin k, the computation of the new value is independent of
the other bins. The computation of 2.28 for each £ is thus very much congenial for
a SIMD-like parallel scheme. In this work, time domain samples are obtained by
means of the basic IDFT formula. A problem with propagating numerical errors
may arise at typical sampling rate (44.1kHz) when single precision is employed:
the authors suggest using double precision for these computation (which is now
available in modern GPU cores).

A few programs are written by Bradford et al. in a combination of C' and CUDA
C. The first application is a full SPV analysis/re-synthesis program running at a
sampling rate of 44.1kHz, with tunable number of audio channels and fixed DFT
size (1024 bins). Table 2.5 shows the execution times recorded for a few tests with
varying number of channels. The system used by the authors for these tests is a
4-core Intel i7 desktop machine running at 2.67GHz accelerated by an NVIDIA
GeForce GTX470 (14 SMs, for a total of 448 CUDA cores and 1.3GB RAM).

Table 2.5: Execution times for full sliding phase vocoder round-trips producing a 1s
sound on a GeForce GTX470 GPU. Results from [49].

No of channels | Time to produce a 1s sound
1 0.56s
2 0.59s
4 0.70s
8 0.88s

All these results are under the real-time threshold. This confirms that real-time
SPV processing is effortlessly achieved when cast to a consumer-level GPU. This is
a groundbreaking accomplishment as, before this implementation, SPV processing
was only possible on expensive and highly specialised plug-in vector hardware ([52]).
Note that the execution time grows sublinearly with the amount of data involved
(number of channels): this means that memory transfer latency is having a critical
impact on the tests with a low number of channels, which is more and more softened
as the number of channels is increased, which in turn increases the utilisation level
of the GPU cores.

In order to demonstrate the efficacy of this GPU-based real-time SPV framework,
Bradford et al. implemented two other applications: a high quality®® pitch shifting
program and a transformational FM program. They do not show execution times
but they state that both applications can be run in real-time for eight channels of
audio on the target system.

35The fact that pitch shifting is implemented in a sliding framework as opposed to a “hopping”
one provides for a better quality, i.e., less artefacts.

2.9. Spectral Processing 67

Lazzarini et al. - 2014

In [8], Lazzarini et al. design and test a CUDA-based phase vocoder frame-

work (both sliding and standard versions) in a Csound environment (similarly to
what was done in [48], even though Bianchi and Queiroz dealt with a Pure Data
integration). In addition, the authors design an additive synthesis program as an
alternative to inverse FF'T for phase vocoder re-synthesis and they compare these
two implementations.
The phase vocoder synthesis and re-synthesis Csound modules are implemented
by means of CUDA kernels that directly apply the processing steps described
in section 1.2, exploiting an SIMD model (see [8] for a detailed explanation of
each single kernel). The sliding phase vocoder is implemented on the basis of the
discussion presented in [49] and incorporates a transformational FM audio effect in
the processing chain. Additive synthesis is accomplished in a similar way to what
is presented in [32] (see section 2.2).

Table 2.6: Execution times for a 60s run of phase vocoder analysis (standard) running
on a laptop on-board GPU with different DFT sizes and hop sizes. Results
from [8]. Sampling rate: 44.1kHz.

(DFT size, hopsize) | Time (s)
(1024, 128) 2.95
(1024, 256) 1.68s
(2048, 256) 2.20s
(2048, 512) 1.285

Tests were executed on an NVIDIA GT650M GPU (compute capability 3.0)
with 384 cores (at 900MHz) and 1024MB RAM in a Csound 6 environment running
on OSX10.9. The results are compared with standard (sequential) CPU versions of
the same algorithms running on a 2.8GHz Intel i7 processor. The results of these
tests are reported in tables 2.6, 2.7, 2.8.

Table 2.7: Execution times for a 60s run of phase vocoder synthesis (standard) running
on a laptop on-board GPU with different DFT sizes and hop sizes. Results
from [8]. Sampling rate: 44.1kHz.

(DFT size, hopsize) | Time (s)
(1024, 128) 3.30
(1024, 256) 1.84
(2048, 256) 2.65
(2048, 512) 1.44s

The results reported in table 2.6 and 2.7 validate the possibility of offloading phase
vocoder analysis and/or re-synthesis stages to a (cheap) on-board GPU without
having to worry about performance issues (they run 20x faster than the real-time

68 Chapter 2. GP-GPU Computing for Audio Applications: a Review

limit). Of course, this leads to a gain in the available CPU resources, to be employed
for other tasks.

The results of table 2.8 show that the CPU performs better in almost every case.
Yet, the difference is never huge, even though the comparison is between an on-
board GPU and a high-end processor. It is worth noting that the execution time of
the full PV round-trip on the GPU is remarkably lower than the sum of the two
separate processes (analysis and re-synthesis). This is probably due to a certain
latency that is met when the GPU is called into action.

Table 2.8: Execution times for a 60s run of full phase vocoder round-trips (standard)
running on a laptop on-board GPU and on a high performance CPU with
different DFT sizes and hop sizes. Results from [8]. Sampling rate: 44.1kHz.

(DFT size, hopsize) | GPU time (s) | CPU time (s)
(1024, 128) 4.72 1.24
(1024, 256) 2.57 0.69
(2048, 256) 3.03 1.28
(2048, 512) 1.73 0.70
(4096, 512) 1.98 1.34
(4096, 1024) 1.20 0.74
(8192, 1024) 1.64 1.36
(8192, 2048) 1.01 0.75
(16384, 2048) 1.38 1.40
(16384, 4096) 0.86 0.77

Table 2.9 reports the results regarding the additive synthesis module (which also
includes a phase vocoder analysis stage used for determining the time-varying
amplitude a frequency parameters).

Additive synthesis proves to be more expensive in terms of computational load,
but, overall, the results are still well within the range of low-latency, real-time
performance. It can be acknowledged that additive synthesis is a good match
for the GPU, especially when the parallel computational load is high (synthesis
involving a high number of frequency bins) and the process granularity is low (high
hop sizes). In general, GPUs are more suited to processing larger batches of data,
which is of course in opposition to the requirements of streaming audio processing.
Nevertheless, the results are very promising.

Finally, table 2.10 shows the results regarding the sliding phase vocoder.

While real-time SPV processing with a sequential computing approach is clearly
(and predictably) out of reach on an off-the-shelf laptop computer, the adoption
of the parallel computing model drastically changes this scenario, making SPV
processing possible even with an on-board GPU. Overall, with these tests, Lazzarini
et al. prove that consumer-level GPU processing can be harnessed for spectral
audio and additive synthesis applications.

2.10. Conclusions 69

Table 2.9: Execution times for a 60s run of phase vocoder analysis plus additive re-
synthesis running on a laptop on-board GPU and on a high performance CPU
with different DFT sizes, hop sizes and number of frequency bins employed
for the additive synthesis. Results from [8]. Sampling rate: 44.1kHz.

(DFT size, bin, hopsize) | GPU time (s) | CPU time (s)
(1024, 128, 128) 4.93 3.28
(1024, 128, 256) 3.70 3.01
(1024, 256, 128) 7.20 5.77
(1024, 256, 256) 3.37 5.46
(1024, 512, 256) 4.20 10.76
(2048, 256, 512) 3.04 5.65
(2048, 512, 512) 3.94 10.55
(2048, 1024, 512) 6.87 20.89

Table 2.10: Execution times for a 60s run of full sliding phase vocoder round-trips
running on a laptop on-board GPU and on a high performance CPU with
different DFT sizes. Results from [8]. Sampling rate: 44.1kHz.

DFT size | GPU time (s) | CPU time (s)
512 33.05 68.794
1024 37.98 138.29
2048 54.99 272.33

2.10 Conclusions

This chapter reported a few examples of research studies that investigate the GP-
GPU computing framework applied to a wide variety of audio-related applications
such as sound synthesis or audio processing. The congeniality of many audio-
related algorithms to parallel computing is indeed very attractive and provides for
impressive performance speed-ups if carefully exploited on GPUs.

Section 2.1 is dedicated to older research studies dealing with audio program-
ming based on GPU architectures from the early days of heterogeneous parallel
programming, before the appearance of the unified shader architecture. Here, the
focus is set on the techniques employed for GPU programming, by means of ex-
ploiting the hardware graphics pipeline, rather than on specific audio topics. The
key aspect of these works is the need for twisting the original problem in order to
recast it in terms of graphics programming. Despite the low level of parallelism
achievable by older GPUs, these studies provide promising results and prove that
GPU-enhanced audio processing is very attractive for some applications (e.g., FIR
filtering, waveform synthesis and modal synthesis).

Sections 2.2 to 2.4 are dedicated to sound synthesis, by means of different
methods. Section 2.2 deals with the specific topic of additive synthesis with an

70 Chapter 2. GP-GPU Computing for Audio Applications: a Review

extremely high number of sine waves. The GPU proves to be an excellent candidate
for executing this kind of applications with better performances, allowing the real-
time synthesis of audio signals obtained from the superposition of almost 2 million
sine waves.

Section 2.3 deals with spectral model synthesis and shows that complex simulations
involving an extremely high number (tens of hundreds) of high quality instruments
(50 harmonics each) can be run in real time on a GPU (speed-ups in the order of a
few dozens with respect to CPU execution).

Section 2.4 is dedicated to finite difference methods for physically-based sound
synthesis. This technique benefits a great deal from parallel computing, especially
when extremely large simulations are considered (with high spatial resolution), for
high quality sound rendering. For instance, the sound of a percussed membrane
can be simulated in real-time on a GPU using a grid of 84x84 sampling points.

Section 2.5 is dedicated to the wide area of room acoustics modelling. This field
is one of the most attractive for GP-GPU computing, and one of the most studied.
A variety of methods can be applied, and all of these can benefit from a parallel
computing model. Real-time simulations are still out of reach for large rooms with
decent spatial resolution. However, much faster simulations can be achieved when
casting the computations on the GPU, with speed-up factors in the order of a few
dozens.

HRTF rendering is discussed in section 2.6. This is actually a particular
application of signal convolution (typically computed via FIR filtering). FIR
filtering can be done very efficiently on parallel architectures, especially when it is
applied in the frequency domain, thanks to the existence of fast parallel versions
of the FFT algorithm and to the possibility of performing parallel element-wise
multiplications of frequency bins. Tens of hundreds moving virtual sources can be
filtered on the GPU in order to get headphone-based spatial sound, while keeping the
CPU load to minimum levels. The efficiency of data-parallel FFT implementations
is a crucial aspect in countless audio-related GP-GPU applications, not only in
FIR filtering processes. As a matter of fact, the motivations for the development
of GPU-based spectral processing algorithms, the main objective of this thesis,
strongly rely on the existence of fast data-parallel FF'T implementations.

Section 2.7 deals with the possibility of using the GPU in the context of music
production (i.e., for tracking, mixing and mastering purposes). It turns out that
some applications benefit quite a lot in terms of speed-up with respect to CPU-
based implementations (e.g., reverberation®®) while others are not very congenial to
parallel processing (e.g., equalisation via recursive filters). Still, in those cases that
do not show a clear improvement over CPU execution, it can make sense to employ
the GPU anyway, in order to free up CPU resources for other possible concurrent
tasks, provided that the performance of the GPU implementation is somewhat
comparable to that of the CPU.

Section 2.8 delves into the delicate topic regarding the implementation of
recursive (IIR) filters on parallel computing architectures. This is a kind of algorithm
that is not implementable on parallel processors in a straightforward way, due to
its intrinsic recursive nature which causes data dependencies. Nevertheless, in the

36Which is again an application of FIR filtering.

2.10. Conclusions 71

past years, researchers have designed alternative approaches that are more suited
for parallel computing architectures like GPUs. Thanks to these techniques, high
order IIR filters can be computed in real time on the GPU even faster than on the
CPU, with speed-ups in the order of one dozen.

Finally, section 2.9 brings the attention back to the topic of spectral processing

applications (like the phase vocoder framework). This section presents a few works
that are very close to the research task that will be addressed in the following
chapters of this thesis. In these publications, the feasibility of a GPU-based real-
time phase vocoder framework is assessed. More importantly, the possibility of
executing sliding phase vocoder analysis and re-synthesis in real-time on affordable
and general-purpose (parallel) hardware is proven as well. This feature in particular
allows audio programmers to design a number of novel real-time digital effects on
unspecialised hardware (modern GPUs).
The GP-GPU computing approach has recently been explored for other audio-
related applications that have not been reported in this review. Some of these
include: wavefield synthesis ([53]), beamforming with microphone array techniques
([54]) and acoustic likelihood computations for speech recognition ([55]).

To summarise, GPUs are well suited for computationally demanding audio
applications that can be expressed in a parallel (SIMD) fashion. Only a few
limitations can be highlighted. For instance, it is essential to spawn enough
concurrent threads on the GPU so that it is fully (or at least abundantly) utilised®’,
and, in practice, this often raises the need for higher buffer sizes, which unfortunately
translate in increased input-output latencies. However, in many practical cases this
cost is acceptable and more recent hardware is providing lower and lower latencies.
Then, for some key applications (e.g., gaming), a very limited amount of GPU
resources is generally available so care must be taken when designing GP-GPU
audio processes in these contexts. The key factor that limits GPU efficiency for
audio processing is certainly the limited communication bandwidth between the
GPU and the CPU, even with current PCI-x buses. Anyway, some applications
(e.g., most synthesis processes) do not actually need any data to be transferred to
the device, since all the data could be generated on the device itself. Also, for a
very limited number of applications it could be possible to skip the device-to-host
memory transfer and output the processed/synthesised sound directly to the HDMI
port of the video card.

37This is a key concept of throughput-oriented computing: there is no point of using GPU cores
if only a small number of them is involved in the computations.

Chapter 3

Research Task and
Implementation

In this chapter, the very core of this work will be presented: the research task
will be faced and explained thoroughly, together with the actual implementation
stage of the target applications, the employed tools and the overall framework.

3.1 Tools

Two main tools were used in the development of this work: Csound', as the
main audio programming environment, and NVIDIA’s CUDA?, as an API to gain
access to the GPU, manage host-device data transfers and cast computations to
the device. The objective is that of writing and testing Csound modules that
implement spectral processing algorithms on CUDA-enabled GPUs, in order to seek
a performance improvement.

3.1.1 Csound

Csound is a domain-specific programming language (DSL) for audio computing,
sound design and computer music composition. It can also be described as an audio
compiler in the sense that it interprets textual instructions in the form of source
code and translates them into digital audio. It is a C-language-based cross-platform
and open source free software’, available under the GNU Lesser General Public
License (LGPL"). It is maintained and expanded by a core of developers with
support from a wider global community.

Csound can be thought as a series of layers, with various ‘modes of entry’ for
different kinds of users and for related applications [56]. At the lowest level, Csound
is a self-contained audio programming language implemented in a cross-platform
library, with a well-defined API which allows software developers to create programs
for audio synthesis and processing. It supports a variety of synthesis techniques and

L Csound: http://csound.github.io/about.html

2NVIDIA CUDA: http://www.nvidia.com/object/cuda_home_new.html

3 Csound’s source code is available at http://csound.github.io

4GNU Lesser General Public License: https://www.gnu.org/copyleft/lesser.html

73

http://csound.github.io/about.html
http://www.nvidia.com/object/cuda_home_new.html
http://csound.github.io
https://www.gnu.org/copyleft/lesser.html

74 Chapter 3. Research Task and Implementation

allows various means/levels of internal and external control. As it will be shown in
a few lines, it is also widely and easily extensible via custom modules.

At the middle layer, the Csound language is used for writing programs for perfor-
mance, composition, and other audio processing tasks such as sonification. At this
level, the system allows the composer to design virtual instruments, and to control
them in real time or deferred time.

At the highest level, the user unconsciously exploits Csound’s features while ac-
cessing applications that are based on the middle and lower levels. This is seen,
for instance, in some frontends, such as Cecilia® and blue®, where the user might
only need to deal with parameter setting in the graphical interface, in plugins or
applications generated by Cabbage”, in bundled packages such as CsoundForLive®,
or in mobile applications for iOS” and Android'.

Csound’s syntax is based on the use of unit generators (also called “ugens”,
or “opcodes” in the Csound jargon), i.e. basic formal units that constitute the
building blocks for designing synthesis and signal processing algorithms. There are
unit generators for very basic tasks and operations (e.g., for the communication
with A/D and D/A converters for input-output purposes), as well as for more
involved applications, such as applying effects to an audio stream or even playing
a virtual instrument based on physical modelling synthesis principles. There are
currently nearly 1700 unit generators available to the user and directly interpreted
by the compiler itself but one of Csound’s greater strengths is that it is completely
modular and extensible by the user, as new and custom unit generators are very
easily implemented. Custom unit generators can be developed through two basic
mechanisms: user-defined opcodes (UDOs), written in the Csound language itself
and, for an even greater range of possibilities, pre-compiled /binary'! opcodes written
in C' or C++ (these are known in Csound parlance as “plugin opcodes”). A detailed
guide to the opcode development API for writing custom plugin opcodes can be
found in [57] (in the same publication, a subsection addresses opcodes that are
meant to comprise spectral signals in particular).

The objectives of this work involve writing a few custom plugin opcodes (or,
rather, “translating” existing unit generators to a massively parallel scheme) in
order to validate the possibilities offered by GP-GPU computing in the scope of
spectral processing of audio signals.

3.1.2 CUDA

CUDA (Compute Unified Device Architecture) is a computing platform and
API model created by NVIDIA with the aim of allowing software developers to
use any CUDA-enabled graphic processing unit (i.e. NVIDIA GPUs) for general

5 Cecilia: http://ajaxsoundstudio.com/software/cecilia/
Splue: http://blue.kunstmusik.com/
"Cabbage: http://cabbageaudio.com/
8 CsoundForLive: http://csoundforlive.com/
9 Apple i0S: http://www.apple.com/ios/
10 Google Android: https://www.android.com/
"Tn order to add the custom opcode to the Csound environment the user simply needs to
compile and build the C' (or C++) code as a shared, dynamic library.

http://ajaxsoundstudio.com/software/cecilia/
http://blue.kunstmusik.com/
http://cabbageaudio.com/
http://csoundforlive.com/
http://www.apple.com/ios/
https://www.android.com/

3.2. Spectral Signal Processing in Csound 75

purpose computing, giving direct access to the GPU’s virtual instruction set'?. The
computing power of NVIDIA GPUs is in fact accessible to software developers
through CUDA-accelerated libraries and extensions to C/C++' or Fortran, reliev-
ing them of the need for advanced skills in graphics programming and making it
easier to translate general purpose algorithms in a massively parallel scheme.

The CUDA software development kit'? is free and cross-platform (it is available
for Microsoft Windows, Linux and Mac OSX). Nevertheless, it must be stressed that,
unlike OpenCL, the other main framework for heterogeneous computing, CUDA
is only usable in conjunction with NVIDIA GPUs: in particular, it works with
NVIDIA GPUs from the G8x series onwards, including GeForce, Quadro and Tesla
line. Notwithstanding, the CUDA platform supports other computational interfaces,
including OpenCL, and third party wrappers are also available for Python, Perl,
Fortran, Java, Ruby, Lua, Haskell, R, MATLAB, IDL and Mathematica.

CUDA plays a crucial role in this work: spectral audio computations are cast
to an NVIDIA GPU by means of writing Csound plugin opcodes in the CUDA C
extended language and compiling them via NVCC as dynamically loaded libraries
(also known as “shared objects” in UNIX systems).

3.2 Spectral Signal Processing in Csound

The choice of working on spectral (or, more precisely, phase vocoder) processing
unit generators is not arbitrary: these algorithms are in fact expected to be well
suited for parallel processing'®, the working principle behind CUDA and GP-GPU
computing in general. This kind of unit generators usually involves executing
the very same operation on multiple phase vocoder bins without any inter-bin
dependency.

Csound features a solid streaming'® frequency-domain signal framework [58],
based on the fsig variable type. In the fsig framework, Csound instruments can ma-
nipulate any input signal in the frequency domain: this is done by transforming the
time-domain input signal in a streaming frequency-domain representation through
a phase vocoder analysis unit generator, proceeding with the actual manipulation
stage based on a spectral processing unit generator (or perhaps a chain of these) and
finally going back to the time domain via a phase vocoder re-synthesis unit generator.
For the streaming phase vocoder kind of processing, the analysis stage is typically
carried out through the pvsanal unit generator'’, which is loosely modelled on

12GPUs are programmed via complex instruction sets and, for proprietary hardware related
reasons, these are not publicly available. The native assembly language is usually only accessible
to software developers through standardized higher level languages and APIs. The OpenGL
virtual instruction set and CUDA are examples of such hardware abstraction layers on top of the
specialised processor native instruction set.

13The resulting extended language is called CUDA C and it is compiled via NVCC, NVIDIA’s
LLVM-based C/C++ compiler. LLVM Project: http://11lvm.org/

14The CUDA Toolkit is available for free download at https://developer.nvidia.com/cuda-
downloads.

15Gee also the following section: Spectral signal processing with CUDA.

6Here the term streaming is used to specify an STFT scheme where a new data frame is
generated every hop size input samples.

7Other unit generators are available for similar purposes, i.e. pvsfread, used for reading a

http://llvm.org/

76 Chapter 3. Research Task and Implementation

the original CARL phase vocoder [16] (see section 1.2 for more details). The re-
synthesis stage can be performed according to two basic principles: overlap-and-add
inverse DFT (via the pvsynth'® unit generator) and additive synthesis (mainly via
pvsadd). The former is generally the most efficient way of re-synthesizing bin-frame
amplitude-frequency data and it is the one technique that was used throughout the
development of this work, since additive synthesis is better suited for partial tracks
manipulation, which was not addressed in this work.

Csound provides a comprehensive set of streaming spectral processing unit
generators that are designed to receive input fsigs and produce transformed output
fsigs in return. They can be loosely classified in four categories: frequency transfor-
mations, amplitude transformations, modifications that involve both amplitude and
frequency data and, finally, cross-synthesis effects (i.e., modules that receive two or
more fsigs and produce a single fsig obtained by some kind of combination of the
inputs). In this work, a few unit generators from each category have been examined
and translated in a parallel computing scheme, namely: pvsgain, pvsfilter!’
and pvstencil from the amplitude transformation category, pvscale and pvshift

from the frequency transformation category, pvsmooth and pvsblur from the
amplitude-frequency modification category and pvsmix and pvsmorph from the
cross-synthesis category. All these unit generators and their parallel processing
(i.e. CUDA) counterparts will be discussed thoroughly in the next sections of this
chapter.

It is meaningful to report that the phase vocoder framework is known in the
Csound community (but also in the broader community of audio signal processing)
to be a very compute-intensive one. When too many phase vocoder processes are
carried out simultaneously on multiple streams, audio programmers working on
resource-limited systems are often forced to deal with real-time execution barriers.
This is mainly ascribable to the analysis and re-synthesis stages that involve the
computation of DFTs, as described in 1.2. Given the already discussed suitability of
FFTs (and spectral processes) to the parallel scheme, this concern eventually drove
the development of GPU versions for the phase vocoder analysis and re-synthesis
stages ([8]).

3.2.1 The fsig Framework

Before proceeding to an in-depth analysis of each single unit generator, a little
more insight is needed about the working principles behind the support for streaming
frequency-domain signals in Csound (defined by the fsig variable type).

From [58]:

pre-existing non-streaming phase vocoder analysis (PVOC-EX [59]) file (.pvx extension, generated
by the pvanal utility), and pvsifd, an implementation of the instantaneous frequency distribution
analysis [60]. Yet, for the purposes of this work, pvsanal has been sufficient and no other analysis
units were used.

18Before applying the inverse DFT, the pvsynth unit generator operates the inverse steps of
phase vocoder analysis: it takes the amplitude-frequency pairs, integrates the frequencies to obtain
current phase values and converts the data from polar to rectangular representation. It then
applies the inverse DFT and the resulting time-domain signal block is overlapped and added to
the correct time-aligned position at the output.

19 Actually, pvsfilter could be considered as belonging to the cross-synthesis category as well.

3.2. Spectral Signal Processing in Csound 77

Such signals are processed at a rate that is dependent on the size of
the DFT analysis frame and the number of overlapping frames (or
the hop size), effectively the rate of generation of new spectral frames.
The ‘perform’-method?” of a spectral processing opcode is called every
control period, but it only outputs a new frame if there is a new frame
at its input. The fsig framework provides support for such checks.
Consequently, the fsig rate is independent of the control rate?!.

Fsigs are self-describing. Unlike time-domain audio and control signals,
they are furnished with the extra information about their features: DFT
length, number of overlaps (N over hop size), window size, window
type, data format and frame count (current frame number, starting
from 0). The actual format of the spectral data can vary, currently
three types are being used: PVS_AMP_FREQ, amplitude and frequency
pairs as produced by the phase vocoder and IFD?*; PVS_AMP_PHASE,
amplitude and phase (polar DFT) data; and PVS_TRACKS, partial tracks
of amplitude, frequency, phase and track ID. Of these, the first two will
have a fixed size, namely the DFT size plus two extra values (holding
the positive side of the spectrum generated by the DFT of a real signal
plus the Nyquist frequency), or N/2 + 1 bins.

All the frequency-domain processing that has been done in the scope of this work
is based on the PVS_AMP_FREQ format.

The way fsig variables will be defined in the development of new plugin opcodes is
by means of the PVSDAT data structure, which is in turn defined in the pstream.h
header file as:

typedef struct pvsdat {

int32 N; // DFT size

int sliding; // Flag to indicate sliding case

int32 NB; // Number of samples in a frame in the sliding
// case (used instead of N)

int32 overlap; // Number of overlaps on each frame

int32 winsize; // Window size in samples

int wintype; // Type of the window used for STFT analysis
// 0 = HAMMING, 1 = VonHann, 2 = Kaiser

int32 format; // PVS_AMP_FREQ, PVS_AMP PHASE or PVS_TRACKS

uint32 framecount; // Current frame number

AUXCH frame; // Actual PV data

} PVSDAT;

The AUXCH data structure is in turn defined in csoundCore.h as:

typedef struct auxch {
struct auxch* nxtchp;
size_t size;

void* auxp; // PV data is stored from this memory location...
void* endp; // ...to this memory location
} AUXCH;

20For explanations about Csound’s internal 2-phases working mechanism, see the chapter
Initialization and Performance Pass of the Csound Floss Manual [61].

21The only caveat is that the fsig framework requires the control period in samples (“ksmps”)
to be smaller or equal to the analysis hop size.

22 Instantaneous Frequency Distribution [60].

78 Chapter 3. Research Task and Implementation

In spectral processing unit generators, phase vocoder data is stored in memory
using a single precision floating-point representation (float) and according to the
following layout: amplitude-frequency information related to successive channels
is stored in an interleaved fashion, with amplitude first, followed by frequency?.
The total number of phase vocoder channels is equal to N/2 + 1 which corresponds
to twice as many floats (i.e. N + 2, where N is the DFT size): the last channel
contains data related to the Nyquist frequency?*.

3.3 Spectral Signal Processing with CUDA

Regardless of the specific audio programming environment adopted (Csound in

this case), spectral signal processing is a kind of task that is usually well suited for
parallel computing, thus for GP-GPU computing in particular. Frequency-domain
manipulations, in fact, often involve the same operations to be repeated for each
DFT bin*. In a latency-oriented processing scenario (e.g., typical CPUs) this
is performed by implementing a for loop which spawns a very small number of
threads (just one thread for a single-core CPU), thus scheduling the loop iterations
over a relatively large number of clock cycles when the DFT size is quite large.
Conversely, in a throughput-oriented processing scenario (e.g., modern GPUs)
these operations can be performed no longer in a loop fashion but in a massively
parallel model instead, allowing tens or even hundreds of operations to be performed
simultaneously®®. The difference between these two approaches becomes more and
more critical as the number of iterations needed by the original loop increases, and,
moreover, as the number and complexity of the operations to be carried out in each
iteration increases as well.
With its parallel computing features, CUDA is thus an appropriate tool for managing
the transition from a latency-oriented approach for the implementation of spectral
processing algorithms (as envisaged by a more traditional programming scheme) to
a throughput-oriented one.

3.3.1 About Performance: Limitations, Trade-offs and Im-
provements

It has to be noted that one of the strongest limitations of GP-GPU computing,
i.e. host/device memory transfer latency, applies to this scenario with no exceptions.
More specifically, the larger the DFT size, the worse the latency that is to be
expected, but, at the same time, the more computations can be carried out in
parallel. This fact implies a remarkable trade-off between the performance gain

280, for instance, myPVstream->frame.auxp points to the lowest channel’s amplitude value
and myPVstream->frame.auxp[1] is the lowest channel’s frequency value, i.e. 0Hz.

24Thus, for instance, myPVstream->frame.auxp [2%N] is the amplitude of the Nyquist frequency.
Note that the Nyquist frequency itself (myPVstream->frame.auxp[2*N+1]) is usually ignored as
it does not really carry any information: it is always equal to half the sample rate. The same
applies to the OHz component.

250f course, this also applies to the particular case of the phase vocoder.

26See also section 1.1, GP-GPU Computing.

3.4. Selected Unit Generators 79

that comes from implementing parallel-computation-congenial algorithms that in-
volve large amounts of data (like spectral manipulation processes, usually) and the
performance loss that comes from having to move large amount of data from host to
device and back. More so, these issues typically show non-linear trends and depend
on many other factors. Often, what makes the difference in this trade-off is the
actual amount of computations involved in between data transfers: when a higher
computational load is needed in each thread, and the number of parallel threads is
high (i.e., large DFT size), the resulting outstanding level of throughput may hide
the latency issues caused by memory transfers and make the GPU implementation
easily outperform the CPU implementation (if this is not already the case).

In the spectral processing framework, this reasoning brings two noteworthy im-
plications: first, computationally intensive algorithms are more likely to bring
higher speed-up factors when implemented with CUDA, provided they are suited for
parallel processing; second, chaining more parallel-implemented spectral processing
algorithms (when the desired application needs them) should decrease the negative
impact of memory transfers on GPU performance, since these would only come into
play at the very beginning (host to device) and at the very end of the chain (device
to host). Both implications will be apparent in the benchmarking stage of this
work. While the former implication is straightforward, the latter actually needs the
processing modules to be “tuned” with the analysis/re-synthesis modules in such a
way that data is kept in device memory after the analysis stage (a feature that was
not provided for in [8]) as well as after each processing stage, and eventually the
re-synthesis module needs to read data from device memory (again, this was not
provided for in [8]).

Of course, the other important limitation of GP-GPU computing in this scope is
that not all processing algorithms may be perfectly congenial to the parallel scheme.
There are actually many levels and shades of suitability for parallel processing: some
algorithms may be more suitable than others but often there is not an absolute line
of separation between the two cases. Moreover, if an algorithm is not well suited to
parallel implementation in a straightforward way, it does not necessarily mean that
there are no possible work-arounds in order to exploit the GPU: these might include
theoretical solutions to re-cast the original problem to a parallel scheme (see for
instance section 2.8, About Recursive Filters in a Parallel Computing Scenario, for
a few solutions to a classical problem in audio GPU processing) as well as operative
solutions involving the use of CUDA special features and optimizations®” (above
all, atomic operations®®). In the development of this work, all the faced algorithms
were actually well suited for parallel execution, with very few exceptions.

3.4 Selected Unit Generators

In order to assess the consistency of developing parallel computing versions of
pre-existing spectral processing Csound unit generators running on off-the-shelf
GPUs, a set of nine algorithms was chosen as a test array. These were selected
from different categories of frequency-domain manipulation algorithms: pvsgain,

27See also section 4.5.
28See section 3.6.4

80 Chapter 3. Research Task and Implementation

pvsfilter and pvstencil from the amplitude transformation category, pvscale
and pvshift from the frequency transformation category, pvsmooth and pvsblur
from the amplitude-frequency modification category and pvsmix and pvsmorph
from the cross-synthesis category.

3.4.1 pvsgain

Syntax: fsig pvsgain fsigin, kgain

This is probably the most basic spectral processing algorithm: it simply scales
the amplitude of the input phase vocoder stream according to a control-rate input
argument (“kgain”). Its effect is equivalent to that of multiplying a time-domain
signal by a scalar (thus affecting the signal’s perceived volume) but this is done in
the frequency domain instead. It is particularly useful when chained with other
spectral manipulations.

Given its simplicity, this unit generator was mainly chosen to experiment with
the general approach for GPU implementation in the first stages of this project.
It also serves as a reference for the lightest spectral manipulation algorithm that
can be thought of, among those with a straightforward and unquestionable musical
meaning.

3.4.2 pvsfilter

Syntax: fsig pvsfilter fsigin, fsigfil, kdepth [, igain]

This unit generator receives two fsig variables: the first (“fsigin”) is the
input phase vocoder stream to be processed while the second (“fsigfil”) is a
filtering phase vocoder stream. This module operates frequency-domain (possibly
time-varying) filtering: it multiplies the amplitudes of the two streams, channel
by channel, with the possibility of controlling the extent of this operation?’ via
the “kdepth” control-rate parameter. Finally, the resulting amplitudes are scaled
further (all by the same amount) according to an initialization-time parameter,
“igain”.

Note that the frequency values of the input stream are left unchanged, and those
belonging to the filtering stream are completely ignored.

3.4.3 pvstencil

Syntax: fsig pvstencil fsigin, kgain, klevel, iftable

This unit generator transforms a phase vocoder stream according to a masking
function table (“iftable”): for each channel, if the amplitude falls below the value
of the corresponding element of the function table, a certain control-rate gain
(“kgain”) is applied to that channel. Prior to this operation, the values in the

29The original input signal is actually mixed with the filtered signal in a dry/wet fashion,
kdepth being the tuning parameter for the final mix. kdepth = 1 results in an output which
solely consists of the processed signal while kdepth = 0 returns the unprocessed signal (acting as
a bypass switch).

3.4. Selected Unit Generators 81

masking table can be scaled by another control-rate parameter (“klevel”) in order
to increase or decrease the depth of the effect.

Applications of pvstencil include noise reduction, filtering and inverse-masking
(see The Canonical Csound Reference Manual [62] for more details).

3.4.4 pvscale

Syntax: fsig pvscale fsigin, kscal [, kkeepform, kgain, kcoefs]

This unit generator scales the frequency components of a phase vocoder stream,
resulting in pitch scaling. It multiplies each channel’s frequency value by the
desired control-rate scaling parameter “kscale”, that can be either between 0
and 1 (downward scaling) or higher than 1 (upward scaling). As a result, pitches
in the input stream are moved to new spectral positions, still maintaining all
harmonic relations. In addition, amplitude components can be optionally modified
in order to attempt formant preservation, a feature which might be particularly
appealing, for example, in speech signal processing. By means of an optional
parameter (“kkeepform”) a spectral envelope estimation process is triggered on the
input stream. This is achievable via two possible methods: a classic cepstrum low-
pass liftering mechanism [63] (with a step-shaped mask whose cut-off quefrency is
optionally specified by the user with “kcoefs”") or an iterative envelope detection
mechanism, also known as true envelope estimator ([64] and [65]).

Finally, consistent amplitude scaling on all channels can also be performed optionally
(as if pvsgain was added in the processing chain) thanks to the optional parameter
“kgain” (which is set to 1 by default).

3.4.5 pvshift

Syntax: fsig pvshift fsigin, kshift, klowest [, kkeepform, igain
, kcoefs]

This unit generator shifts the frequency components of a phase vocoder stream,
resulting in pitch shifting. From a certain channel upwards (specified by the user
via the “klowest” parameter), it offsets frequency values by the desired control-
rate shifting parameter “kshift”, that can be either positive (upward shifting)
or negative (downward shifting) and is expressed in hertz. As a result, pitches in
the input stream are moved to new spectral positions and harmonic relations are
altered. In addition, amplitude components can be optionally modified in order to
attempt formant preservation in the exact same way as it is carried out in pvscale
(see above). Finally, as in pvscale, consistent amplitude scaling on all channels
can also be performed optionally.

3.4.6 pvsmooth

Syntax: fsig pvsmooth fsigin, kacf, kfcf

30This parameter actually corresponds to the number of cepstrum coefficients that are meant
to be kept, while all the higher coefficients are brought down to zero in order to annihilate the
high quefrency components of the cepstrum.

82 Chapter 3. Research Task and Implementation

This unit generator smooths the spectral flux of an input signal by low-pass
filtering the time evolution functions of the amplitude and frequency components
of the input phase vocoder stream. On each channel, a first order low-pass IIR
filter with time-varying cut-off frequency is applied to the time functions of both
amplitude and frequency components. The cut-off frequency parameters (“kact” for
the amplitude time functions and “kfct” for the frequency time functions) run at
control-rate and are expressed as fractions of half the frame rate (which is actually
the phase vocoder stream sampling rate). This means that the highest cut-off
frequency is 1 and the lowest 0; the lower the frequency the smoother the resulting
spectral flux and more pronounced the effect will be. The effects produced are more
or less similar to pvsblur (see below), but with two important differences: first,
smoothing of amplitudes and frequencies use separate sets of filters; second, there is
no increase in computational cost when a higher amount of ‘blurring’ (smoothing)
is desired (and no latency is introduced).

3.4.7 pvsblur

Syntax: fsig pvsblur fsigin, kblurtime, imaxdel

As pvsmooth, this unit generator smooths the spectral flux of an input signal
by low-pass filtering the time evolution functions of the amplitude and frequency
components of the input phase vocoder stream. Instead of using IIR filters, though,
filtering is accomplished by a moving time-average (a kind of FIR filter) of successive
phase vocoder frames. Both amplitude and frequency time functions are processed
the exact same way, using a single tuning parameter “kblurtime” which sets the
length of the averaging window?! in seconds: longer periods will result in a more
pronounced effect.

The “imaxdel” parameter is used to set the maximum expected averaging window
to be used in the specific application (this is needed in order to reserve enough
memory for processed data).

3.4.8 pvsmix

Syntax: fsig pvsmix fsiginl, fsigin2

This unit generator mixes two input phase vocoder streams in a seamless way:
for each channel in the output stream, the corresponding amplitudes in the two
input streams are compared and the strongest one is selected while the weakest
is discarded. Also, the frequency information paired to the strongest amplitude
is used in the output channel. This operation is essentially different from that of
mixing two signals in the time domain but the perceived effect is actually similar.

3.4.9 pvsmorph

Syntax: fsig pvsmorph fsigl, fsig2, kampint, kfrqint
This unit generator performs interpolation (or “morphing”) between two input
phase vocoder streams. The amplitude and frequency components of the two sources

31 As a side-effect the output stream will be delayed by the same amount.

3.5. Development of GPU-operating Plugin Opcodes 83

are linearly interpolated. Optionally, emphasis can be given to one input stream or
the other depending on the control-rate values of “kampint” and “kfrqint”, for
the amplitude and frequency components respectively.

3.5 Development of GPU-operating Plugin Op-
codes

The nine algorithms described above have been transposed to the CUDA model.
In this framework, input phase vocoder data is either transferred to the GPU,
together with other parameters, or read directly from device memory, depending
on the considered version of the plugin opcode (see below). Computations are then
carried out on the GPU itself in a parallel fashion by the CUDA cores and the
output is either transferred back to host memory or stored in device memory for
future use. The original algorithms are written in C++ and the GPU versions
have been written in CUDA C| placing the computational core of these processes
inside CUDA kernels. As the nature of these algorithms implies, GPU processing is
invoked every hop size samples.

3.5.1 Host Memory Input-Output Version and Device-Only
Version

All the plugin opcodes that have been developed in the scope of this work were
written in two different versions.
The first version was developed with a certain level of abstraction from the bigger
picture and intended as a typical GP-GPU problem, in some way isolated from the
framework it was supposed to be placed in. In this version, the whole GP-GPU
processing cycle is covered: host-to-device memory transfers are followed by parallel
computation, which in turn is followed by device-to-host memory transfers, once
computation is completed. This version of the algorithm was used both as a starting
point for the author in order to practice the basics of CUDA development, and as
an initial prototype for testing the correctness of the resulting code (comparing
the resulting signals to those generated by the original CPU code). The plugin
opcodes created in this way were given the name of the original unit generators,
preceded by the prefix “cuda” (for instance, the GPU version of pvsgain was named
cudapvsgain, and so on).
This version of the new CUDA plugin opcodes can be used in a Csound instrument
in conjunction with standard pvsanal/ pvsynth pairs as well as with the CUDA
versions of these (cudanal and cudasynth, developed by Victor Lazzarini et al. in
[8]). The key concept here is that these new plugin opcodes are meant to find in
host memory the data to be processed and they will manage memory transfers
themselves through the cudaMemcpy () API function. They will eventually transfer
the output phase vocoder frame back to host memory after the conclusion of all
computations for the specific frame under analysis, again via cudaMemcpy (). As
it was already pointed out, this might not be the ideal strategy for achieving the
best results from the GPU in terms of performance. As already discussed in section

oo
=~

Chapter 3. Research Task and Implementation

3.3.1, the GPU’s computing power might get overshadowed by memory transfer
latency, even in the case of an algorithm which is congenial to parallel processing
and even in the case of a minimum possible number of displacements (i.e. two:
one host-to-device and one device-to-host). If, computationally-wise, a specific
algorithm is not particularly demanding at thread level, the potential improvement
given by the GPU might be undermined by memory transfer latency. This is most
probably the reason why some of the tested plugin opcodes belonging to this version
actually perform slightly worse than the CPU code®, even though they should be
good candidates for parallel processing.

Host memory input-output version Device-only version

original frame (time) original frame (time)

I

cudanal (load) cudanal2 (load)

original frame (time)

original frame (time)

cudanal |(process) cudanal2 |(process)
PV frame 1 PV frame 1
cudanal (download)
PV frame 1 (fsigl)
cudapvsmooth (load)
PV frame 1
cudapvsmooth [(process) cudapvsmooth2
(process)
PV frame 2
l cudapvsmooth (download)
PV frame 2 (fsig2)
cudasynth (load)
PV frame 2
cudasynth |(process) cudasynth2
(process)

result frame (time) result frame (time)

cudasynth (download) cudasynth2 (download)

result frame (time) result frame (time)

Figure 3.1: Data flow diagrams of a practical utilisation example, comparing the two
versions that were developed for each algorithm. The device-only version
involves much less memory transfers and is expected to perform better in
any case.

In order to enhance the speed-up potentials of using the GPU, a device-only
version of each algorithm was developed as well. This version is designed to minimise
host/device memory transfers in the whole processing chain, considering the analysis
and re-synthesis stages as well as the actual manipulation stage. Consequently, the
new plugin opcodes were designed to find phase vocoder frames inside device memory
already, and they only need to care about the actual computation of the output

320bviously, this happens especially when these plugin opcodes are used in conjunction with
the original CPU wunit generators for analysis and re-synthesis, since they are always slower than
cudanal and cudasynth. See chapter 4 for a more detailed comparison between the performances
of all implementations.

3.5. Development of GPU-operating Plugin Opcodes 85

phase vocoder frame, which is also kept in device memory (and not transferred
back to host memory). In order for this to be possible, the code for the analysis
and re-synthesis stages needed to be revised as well, and this was taken care of by
Victor Lazzarini, who modified the cudanal and cudasynth opcodes accordingly,
introducing cudanal2 and cudasynth2. All the processing plugin opcodes were
hence modified, eliminating all memory transfers, and taking care that memory
pointers are correctly handled®®. The resulting plugin opcodes were named using
the additional suffix ‘2’ hence cudapvsgain2, cudapvsfilter2 and so forth. In
this new framework, the number of memory transfers is drastically reduced: now
only two memory transfers are needed, regardless of the length of the processing
chain, whereas the previous version of the CUDA plugin opcodes involves a number
of transfers which is equal to twice the number of processing modules plus 4 (2
transfers for the analysis stage and 2 for the re-synthesis stage).

A graphical comparison of the two approaches is shown in figure 3.1. Here, a
practical application is depicted showing data transfers and processes involved in the
two versions. This example consists of phase vocoder analysis, spectral processing
(using cudapvsmooth and cudapvsmooth2 modules in this case®) and re-synthesis.
Each module is conceptually divided in three stages: a loading memory transfer
(host to device), a processing stage and, finally, a downloading memory transfer
(device to host). Of course, in the device-only versions, the spectral processing
modules lack the memory transfer stages and execute in one single conceptual block.

3.5.2 A General Scheme for CUDA Plugin Opcodes

The general scheme used for the development® of CUDA plugin opcodes is as
follows®®. In the initialisation function, information about the device is collected
via the cudaGetDeviceProperties() function. This information (namely, number
Streaming Multiprocessors and maximum number of threads per block) is then
used to define®” the block size and the grid size that have to be used for launching
computation kernels, depending on the particular GPU architecture under analysis.
In the same initialisation function, a device memory allocation stage is performed
via cudaMalloc () for input-output data and possibly for other useful data. Also,
output data is usually set to zero right after allocation (via cudaMemset()).

In the performance function, a check® for the presence of new input data is

331n this new framework, in-place processing for phase vocoder frames should be avoided because
what is read on device memory is the original copy of the analysis data, and that might be needed
by other unit generators.

34Note that pvsmooth also needs the previous output frame (in addition to the current input
frame) to compute the current output frame. In order to keep the picture readable and clean, this
dependency is not shown in figure 3.1. In any case, regardless of the specific version, this data is
always read from device memory.

35For a deeper insight about the rules for the development of Csound plugin opcodes in general,
see [57].

36The following scheme applies to the first version of plugin opcodes (the host memory input-
output version) which is more general. The device-only scheme can be easily derived from
that.

37See the final codes in appendix B for more details.

38 if (p->lastframe < p->inputPVstream->framecount) { ... }, where p is the data
structure that contains all the data related to a particular instance of the unit generator and

86 Chapter 3. Research Task and Implementation

made (as usual with fsig-based opcodes). Only when new input data is detected,
the following actions are scheduled: input data is transferred to device memory,
the parallel computation kernel(s) is/are called, and, finally the results are trans-
ferred back to host memory. Using pvsgain and cudapvsgain as a model, the
computational core of the original code, i.e.:

if (p->lastframe < p->fa->framecount) {
for (i = 0; i < framelength; i += 2) {
fout[i] = fa[il*gain;
fout[i+1] = fa[i+1];
b
p—>fout->framecount = p->fa->framecount;
p—>lastframe = p->fout->framecount;

}

is translated into the following lines:

if (p->lastframe < p->fa->framecount) {

// Memory transfer (host to device):

cudaMemcpy (p->deviceFrame, p->fa>frame.auxp, size,
cudaMemcpyHostToDevice) ;

// Kernel launch:

applygain<<<p->gridSize, p->blockSize>>>(p->deviceFrame, gain,

framelength) ;

// Memory transfer (device to host):

cudaMemcpy (p—>fout->frame.auxp, p->deviceFrame, size,
cudaMemcpyDeviceToHost) ;

p—>fout->framecount = p->fa->framecount;
p—>lastframe = p->fout->framecount;

3

Here p is the data structure that holds all the information related to a particular
instance of the plugin opcode under analysis (including input and output phase
vocoder streams), fa indicates the input phase vocoder frame while fout indicates
the output frame (they are both pointers® to floats in host memory). The pointer
p—>deviceFrame points in turn to device memory and is employed as a container
for both input and output data’. The integer framelength specifies the number
of elements in a phase vocoder frame, i.e. N + 2, where N is the DFT size.
Of course, more complex algorithms may involve more kernel calls and possibly
other operations between a kernel call and the next, but this general scheme can
be applied to all the nine examined modules. Note that in all device-only versions,
memory-transfers-related lines need to be erased from the scheme.
In the CUDA C implementation, the actual computations to be carried out are
defined in the kernel body:
__global__ void
applygain (float* deviceFrame, MYFLT gain, int length) {

int i threadIdx.x + blockDim.x * blockIdx.x;

int j = i<<1;

if (j < length)

deviceFrame[j] *= gain;

}

inputPVstream is the input phase vocoder stream (a PVSDAT structure).
39They are actually shortcuts for “p->fa>frame.auxp” and “p->fout>frame.auxp”.
4ONote that in the device-only version, two separate pointers will be needed.

3.5. Development of GPU-operating Plugin Opcodes 87

CUDA threads are mapped to the index i (and j, consequently) by means of the
CUDA-specific syntax*' used for defining variable i itself:

int i = threadldx.x + blockDim.x * blockIdx.x;

Index j is then used to address the amplitude components of the phase vocoder
stream which are multiplied by the gain factor (frequency components are ignored
in this specific module).

These operations are performed sequentially in the original CPU codes, by means
of a loop (see above). A typical approach in porting sequential algorithms to the
GP-GPU scheme is that of re-writing loops in terms of device kernels that spawn a
series of parallel threads on the device, in a SIMD fashion.

It is important to stress that the general scheme that has been presented in the
previous paragraphs represents a very basic implementation of a CUDA application.
A lot of optimisation techniques that could be possibly added to this scheme have
been intentionally ignored for the sake of simplicity. Some of these optimisations
are reported in section 4.5: they could be added to the basic scheme in order to
increase GPU performance.

3.5.3 Sliding Mode

All phase vocoder unit generators in Csound feature the possibility of using
a sliding DFT (SDFT) framework under the surface ([51]), the resulting scheme
being callled sliding phase vocoder (SPV). The idea behind this technique is that of
making the analysis window slide just one sample ahead at each analysis step, thus
ultimately using a hop size of just one sample. Instead of actually calculating the
DFT at each step, though, in order to update the discrete spectrum this method
makes use of the known values of the current DFT frame in addition to the new
time sample. The creation of each new DFT frame is effectively an operation of
O(N) complexity (all the mathematical insight can be found in [66]).
There are many potential advantages brought by the use of this technique, especially
regarding the audible clarity of frequency domain audio effects (i.e, less artefacts) and
the possibility for enhanced musical uses, such as mimicking classic FM modulation
in the frequency domain, and whole new families of sound transformation, such as
Transformational FM [51] (to name a few). Not least, a theoretically much lower
limit on latency?? is brought by the SDFT framework but this is only achievable
with relatively powerful hardware: the SDFT, and thus the sliding phase vocoder,
is a very expensive technique in terms of computational load. Nevertheless, an
important feature of the SDFT is that it is totally parallel and, hence, an excellent
candidate for SIMD-style parallelism ([50] and [51]). The possibility of exploiting a
commodity GPU (using CUDA) for sliding phase vocoder analysis and re-synthesis
was in fact successfully investigated by Bradford et al. in [49]: up to 8 channels of
audio could be analysed and re-synthesised in real time. The sliding scheme was
then included in the CUDA-based streaming phase vocoder analysis and re-synthesis

41Gee [13] for more details.
42The SPV reduces the latency imposed by standard phase vocoder by some 75%, with clear
and valuable advantages for real-time performance, provided top-notch hardware is available.

88 Chapter 3. Research Task and Implementation

Csound unit generators developed by Lazzarini et al. in [8] but this framework is
still under development and it is not completely supported yet.

In the development of this work, a choice was made not to include sliding
support for the CUDA versions of the spectral processing plugin opcodes. This
choice is mainly ascribable to the fact that, being sliding operations on a sample-
by-sample basis, the question of memory transfers and buffering is more complex
and a framework for sliding phase vocoder processing is therefore beyond the scope
of this work®. As of today, SPV mode is not supported by any of the developed
CUDA-operating opcodes. The development of sliding support for the new plugin
opcodes is of course one of the main directions for future work.

3.6 CUDA-based Plugin Opcodes

In this section, the CUDA implementation of each algorithm will be analysed and
a few considerations will be made in order to discuss each algorithm’s congeniality
to the GP-GPU scheme.

3.6.1 cudapvsgain and cudapvsgain2

Effect: scale the amplitude of a phase vocoder stream.

The original pvsgain internally multiplies amplitude data from each channel of
the input fsig by the scaling parameter. This operation is carried out through a for
loop over the phase vocoder channels in the original code but it is actually perfectly
suited for the massively parallel computation scheme of GP-GPU processing: the
single operations performed inside the original loop are completely independent from
one another and the actual order of completion is not relevant at all. Additionally,
when a high DFT size is chosen, the opportunity of executing many multiplications
simultaneously is very appealing.

This is the main kernel in the host memory input-output version:
__global_ _ wvoid
applygain (float* deviceFrame, MYFLT gain, int length) {
int i = threadldx.x + blockDim.x * blockIdx.x;
int j = i<<1;
if (j < length)
deviceFrame[j] *= gain;
}

It uses in-place computations and thus leaves the frequency components unchanged.
The index i is used to scan the phase vocoder channels: multiplying by two this
index (j = i<<1) amplitude values can be accessed.

In-place computations cannot be used in the device-only version:

__global__ void

applygain(float* output, float* input, MYFLT gain, int length) {

int i = threadIdx.x + blockDim.x * blockIdx.x;
int j = i<<1;

43In addition, including a study of the sliding case in this project would have taken much more
time, which was not really available.

3.6. CUDA-based Plugin Opcodes 89

if (j < length) {
output[j] = (float) input[j] * gain;
output [j+1] = input[j+1];

}

Here, the frequency component, which is accessed via j+1, is simply copied from
input memory locations to output ones.

Both implementations are based on global memory. Memory accesses are coalesced,
implying that this algorithm, as many of the others, is congenial to the way memory
bursts are managed on the device and it is likely to perform well also on older
NVIDIA GPUs, even if they do not provide global memory caching.

The only limitation that is to be expected for a performance gain over CPU
implementation is ascribable to memory transfers between host and device, as
described in section 3.3.1. Even though pvsgain can be smoothly translated into a
parallel algorithm, the computational load in each thread is extremely slight (just
one multiplication) meaning that a performance gain will be possible only from a
certain DF'T size upwards, i.e. in those cases where the latency caused by memory
transfers is indeed hidden by high computational throughput. This downside should
be less apparent in the device-only version, cudapvsgain?.

3.6.2 cudapvsfilter and cudapvsfilter2

Effect: filtering in the frequency domain by means of a multiplicative spectral
mask.

The original pvsfilter internally multiplies amplitude data from each channel
of the input fsig by the corresponding amplitude value of the filtering fsig. The
resulting values are weighted by the “wetness” parameter and summed with the
properly weighted dry signal. An overall gain is finally applied. Again, in the
original code these operations are carried out through a for loop over the phase
vocoder channels and, again, they can be made parallel in a very straightforward
way:

__global__ void
filter(float* input, float* output, float* mask, MYFLT wet,
MYFLT dry, float g, int length) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j < length) {
output[j] = (float) (input[j]=*(dry+mask[j]l*wet))*g;
output [j+1] = input[j+1];

}

, where mask is an array containing the spectral mask used for filtering. Frequency
components are just copied from input to output. Only global memory is used and
memory accesses are coalesced.

All the concepts that were faced while explaining cudapvsgain and cudapvsfilter
will apply to other opcodes as well: this is in fact the basic and most common
scheme for GP-GPU spectral processing modules where the very same operation
needs to be performed on every single channel.

90 Chapter 3. Research Task and Implementation

The per-thread computational complexity is slightly higher than the one dis-
played in cudapvsgain but it is still quite low and, again, a substantial speed-up is
expected only for DF'T sizes larger than a certain threshold.

3.6.3 cudapvstencil and cudapvstencil2

Effect: selectively apply gain to certain channels according to a spectral mask
loaded from a function table.

In the initialisation function, a preliminary step is needed in order to clip to
zero potential negative values in the stencil mask, as these would not make sense
in an amplitude-frequency phase vocoder format. In the CUDA versions, this is
accomplished very easily by means of the Thrust** [67] library:
cudaMemcpy (p->devStencil, p->func->ftable, stencilSize,

cudaMemcpyHostToDevice) ;
thrust: :device_ptr<MYFLT> dev_ptr =
thrust::device_pointer_cast(p->devStencil);
_is_less_than_zero pred;
thrust: :replace_if (thrust::device, dev_ptr, dev_ptr + chans, pred,
(MYFLT) 0.0);

, where the clipping operation is carried out by the thrust::replace_if ()
method® with a predicate defined through the following structure:
struct _is less_than zero {

__host__ __device__

bool operator() (float x) {return x < 0.0f;}
I

This operation could have been performed at host side as well, probably with little
difference from a performance point of view, but, since the memory transfer of
stencil data from the function table to device memory is needed anyway, regardless
of the particular CUDA version that is being developed, it does make sense to
exploit the Thrust library this way, instead of clipping phase vocoder data to zero in
a sequential way at host side. For that matter, this operation needs to be performed
only once, so the argument is not really critical.
The actual computations are performed on the GPU by means of launching the
following kernel from the performance function:
__global _ void
stencil (float* output, float* input, MYFLT* stencil, float level,
float gain, int length) {
int i threadIdx.x + blockDim.x * blockIdx.x;
int j = i<<1;
if (i < length) {
if (input[j] < (((float) stencill[i])*level)) {
output[j] = input[j] * gain;
output [j+1] = input[j+1];

44 Thrust is a parallel algorithms library designed to enhance programming productivity while
enabling performance portability between GPUs and multicore CPUs. Thrust interoperates with
CUDA and it is actually included in the CUDA Toolkit.

45See the Thrust documentation for more details

3.6. CUDA-based Plugin Opcodes 91

else {
output[j] = input[j];
output [j+1] = input[j+1];

}
}

, where stencil is of course the array containing the spectral mask used for selecting
the bins to modify.

From a CUDA perspective, this kernel shows a suboptimal implementation of the
task to be completed. In fact, it bears the presence of a conditional which, in
the worst case scenario, might take a different path in each thread and this is
not ideal in a CUDA framework. Nevertheless, this behaviour is highly dependent
on the nature of the input and stencil frames and, even though there is room for
improvement, the above implementation turns out to give good results in most
cases. Again, the usual reasoning about low computational complexity inside each
thread also applies to cudapvstencil and cudapvstencil?.

3.6.4 cudapvscale and cudapvscale2

Effect: pitch scaling with optional formant conservation.

Given the option to choose between two methods for spectral envelope preser-
vation or even not to keep formants at all, this module can be actually seen as
three modules in one. Only mode 0 and mode I will be addressed here (the
implementation of mode 2 can still be found in appendix A“).

Mode 0: Basic Pitch Scaling

Even in its simplest form, the GPU version of this algorithm is one of the most
convoluted amongst those examined in the development of this work. As a matter
of fact, the computations need to be split in a few steps and the device needs to be
synchronized in between steps:
if (keepform == 0) {

// Initialise the output PV frame:
thrust::device_ptr<float> dev_ptrl =

thrust::device_pointer_cast(fout);
thrust::fill(dev_ptrl, dev_ptril+framelength, -1.0f);

// Pitch scaling stage:
freqScaleBasic<<<p->gridSize,p->blockSize>>>(fin, fout, pscal,
Nhalf);

// Apply gain to all amplitudes:
fixPVandGain<<<p->gridSize,p->blockSize>>>(fin, fout, g,
framelength) ;
}

As a first step, for reasons that will be clear in a few lines, each output frame element
needs to be initialised to a certain reference value (-1 in this case). For convenience,

46The GP-GPU versions of mode 2 could not be tested due to a consistency problem with
respect to the original version (see appendix A), this is why it is not included in this chapter and
it has been moved to an appendix.

92 Chapter 3. Research Task and Implementation

the Thrust library is used for this purpose, by means of the thrust:£il1l() method.
Then, the actual frequency scaling takes place in the freqScaleBasic() kernel
and fixPVandGain takes care of a few final operations and adds a gain stage.
The frequency scaling operation can be described by the following expression:

fout[ka} = afin[k] (31)

, where f;, and f,,; are the input and output frequency components of the corre-
sponding phase vocoder frames, k is the channel (bin) index and « is the scaling
factor.

An important consideration needs to be done: this operation is not symmetric,
meaning that scaling upwards or downwards have different implications from a
CUDA implementation perspective. As a matter of fact, when the scaling is carried
out in the upward direction, each thread spawned by the GPU will write to a
different output channel, i.e. to a different memory location. This is due to the fact
that the frequency range is being stretched and the total number of channels used
is not changed. This behaviour is congenial to parallel computation: since there
is a one to one relation between input and output bins, each thread takes care of
a single channel in the output spectrum. Unfortunately, this is not the case for
scaling downwards. In this case, in fact, the frequency range is compressed (rather
than stretched) and again the number of bins used is kept constant. This means
that more than one input channel will likely fall in the same output bin (the deeper
the scaling the more channels will compete to fit in the same output bin). Since
the phase vocoder is based on a sinusoidal model that requires only one sinusoid
per channel, only one of the potential candidates*” has to be transferred to the
output (with modified frequency, of course, as in equation 3.1). In the original code,
each output channel is simply overwritten a few times. However, this is a delicate
operation in a parallel computation scenario: it is risky to let more than one thread
write a multi-byte result to the same memory location simultaneously as it might be
possible to end up with hybrid values made up of bytes from different threads. In
order to prevent this, CUDA provides atomic operations: these are special functions
that are designed to reserve the memory locations they are working on, so that
no other external action can be done on these, and to carry out their job in one
single scheduling step (read/modify/write). Conflicting atomic operations that try
to access the same memory locations are serialised, thus degrading performance.
To sum up, frequency scaling needs atomic operations when performed in a
CUDA-based framework (specifically, atomicExch() was used in this work). The
freqScaleBasic kernel is defined as:

__global__ void

freqScaleBasic(float* input, float* output, MYFLT scaleFactor,
int nhalf) {

int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = (i<<1) + 2;
int N = nhalf<<1;

int newchan;

47The choice of which channel is the best candidate for being transferred to the output is
beyond the scope of this work and was not addressed in the original pvscale. After all, choosing
an arbitrary candidate has little impact on the perceptual result.

3.6. CUDA-based Plugin Opcodes 93

if (i < nhalf-1) {
newchan = (int) (((i+1)*scaleFactor)+0.5) << 1;
if (newchan < N && newchan > 0) {
atomicExch(&output [newchan] , input[j]);
atomicExch (&output [newchan+1],
(float) (input [j+1]*scaleFactor));
}

}
}

, where nhalf is half the DFT size (N/2).
This kernel is a direct implementation of equation 3.1, taking into account the
discrete nature of the problem in the digital domain (note the casting to int when
the newchan variable is initialised in order to define the target channel). Output
channels are only considered in the range between 0Hz and the Nyquist frequency.
Regardless of the direction of scaling, many output bins are not affected by this
operation (amplitude and frequency components are thus left at the original value
of —1, which will be used as an identification flag).
As a final step in the mode 0 script, the last kernel, fixPVandGain() takes care of
setting to zero the amplitude components of each undefined bin (those not affected
by the previous kernel) and to apply the desired gain to all the valid bins:
__global__ void
fixPVandGain(float* input, float* output, float gain, int length) {

int i = threadldx.x + blockDim.x*blockIdx.x;

int j = i<<1;

if (j < length) {

if (isnan(output[jl)) {
output[j] = 0.0f;

if (output[j+1] == -1.0f) {
output[j] = 0.0f;

else
output [j] *= gain;

// Keep original DC amplitude:

if (j == 0) output[0] = input[0];

// Keep original Nyquist amplitude:

if (j == length-2) output[length-2] = input[length-2];
}
A separate kernel is needed for synchronization reasons: all threads need to get syn-
chronized after the atomic operations (even across warps) and this is automatically
accomplished in CUDA when two kernels are called successively in the same CUDA
stream™.

Mode 1: Formant Conservation via Cepstrum Liftering

When mode 1 is invoked by the user, the amplitude components of the output
frame need to be multiplied by the current spectral envelope of the input signal. This
multiplication can be achieved through a slight modification of the freqScaleBasic
() kernel:

48 All the CUDA implementations presented here are based on a single CUDA stream. See
section 4.5 for more details about CUDA streams.

94 Chapter 3. Research Task and Implementation

__global_ _ void
freqScaleFormant (float* input, float* output, float* env,
MYFLT scaleFactor, float maxAmp, int nhalf) {

int i = threadIldx.x + blockDim.x*blockIdx.x;
int j = (i<<1) + 2;
int N = nhalf<<1;

int newchan;
if (i < nhalf-1) {
env[i+1] /= maxAmp; // normalise the spectral envelope
if (env[i+1] && j < scaleFactor*N) {
input[j] /= env[i+1]; // ’equalise’ the original amplitudes so
// that formant shaping is more effective
}

newchan = (int) (((i+1)*scaleFactor)+0.5) << 1;
if (newchan < N && newchan > 0) {
atomicExch(&output [newchan], input[j]*env[newchan>>1]);
atomicExch(&output [newchan+1],
(float) (input [j+1]*scaleFactor));
}

}
}

As opposed to freqScaleBasic (), this kernel receives an extra array which contains
the shape of the input spectral envelope (env) and a scalar that keeps track of
the maximum amplitude contained in such an envelope (maxAmp). The envelope is
first normalized and then used to “equalise” the input frame in order to make the
formant shaping more effective, which is carried out right after that.
These additional operations are very well suited for parallel operation.

What really differentiates the two formant shaping modes is the way the spectral
envelope is defined and hence detected.
The simple cepstrum liftering technique employed in mode 0, as implemented in
the original pvscale code, consists of performing the following steps:

1. Take the logarithm of the input amplitude spectrum.
2. Take the DFT of the resulting log-spectrum.

3. Lifter the resulting cepstrum with a low-pass step-shaped mask that keeps
only low quefrency coefficients and brings all higher coefficients to zero.

4. Take the inverse DFT of the liftered cepstrum.

5. Exponentiate the resulting log-spectrum in order to go back to linear scale
amplitude, obtaining the desired spectral envelope.

The number of cepstrum coefficients to be kept can be specified by the user and is
80 by default.

In a CUDA framework, these steps can be carried out in a very straightforward way
as they lend themselves well to the parallel processing scheme: all these operations
are free from inter-data dependencies and, most importantly, CUDA provides a
highly efficient parallel FFT implementation in the cuFFT library [21].

The steps enumerated above are performed in the following lines of code:

3.6. CUDA-based Plugin Opcodes

95

else if (keepform==1) {

}

if (coefs<l) coefs = 80;

// Initialise the output PV frame:

thrust::device_ptr<float> dev_ptrl =
thrust::device_pointer_cast(fout);

thrust::fill(dev_ptrl, dev_ptril+framelength, -1.0f);

// Take the log:
takeLog<<<p->gridSize,p->blockSize>>>(fin, p->deviceEnv, Nhalf);

cufftEnv = (cufftComplex*) p->deviceEnv;
cufftCepstrum = (cufftComplex*) p->deviceCepstrum;

// Take the fft of the log of the spectral envelope:

if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftEnv,cufftCepstrum) !=
CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");

if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// Liftering stage:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum, coefs,
Nhalf);

// Take the inverse fft of the liftered cepstrum:

if (cufftExecC2R(p->inversePlan,cufftCepstrum, (cufftReal*)cufftEnv) !=
CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");

if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// Exponentiate:
expon<<<p->gridSize,p->blockSize>>>(p->deviceEnv, Nhalf);

// Find maximum amp in spectral envelope:

thrust::device_ptr<float> dev_ptr2 =
thrust::device_pointer_cast(p->deviceEnv) ;

max = *(thrust::max_element (dev_ptr2, dev_ptr2+Nhalf));

// Pitch scaling stage:
freqScaleFormant<<<p->gridSize,p->blockSize>>>(fin, fout,
p—>deviceEnv,
pscal, max, Nhalf);
// Apply gain to all amplitudes:
fixPVandGain<<<p->gridSize,p->blockSize>>>(fin, fout, g,
framelength) ;

, where Nhalf is the number of elements in the amplitude spectral envelope, i.e.
N/2 (since it is redundant, frequency information is absent in the amplitude spectral
envelope). To find the maximum amplitude value in the spectral envelope the
Thrust function thrust::max_element () is used. Finding the maximum of an
array is a classic reduction problem which can be efficiently performed by parallel
processors like GPUs by means of what is called parallel reduction. Thrust provides
a very easy and convenient way’” of implementing parallel reduction operations in

49This might not be the fastest possible solution in the CUDA scope but it is sufficient for the
purpose of this work.

96 Chapter 3. Research Task and Implementation

just one CUDA (' instruction.

The kernels for taking the logarithm and exponentiating phase vocoder amplitudes
are straightforward and congenial to parallel computing, and so is the kernel used
for liftering:

__global__ void
takeLog(float* input, float* env, int nhalf) {
int i threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (i < nhalf) {
env[i] = log(input[j] > 0.0 ? input[j] : 1e-20);
}
}

__global__ void
lifter(float* cepstrum, int nCoefs, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int k = i + nCoefs;
if (k < nhalf+2-nCoefs) {
cepstrum[k] = 0.0; // kill all the cepstrum coefficients
// above nCoefs (but keep replicas over Nyquist)
}

}

__global__ void
expon(float* env, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
env[i] = exp(env[i]/nhalf);
}
}

After freqScaleFormant() (i.e., the kernel for frequency scaling with spectral
envelope shaping), this algorithm employs the very same kernel presented in mode
0 in order to complete the phase vocoder frame manipulation (fixPVandGain()).

3.6.5 cudapvshift and cudapvshift2

Effect: pitch shifting with optional formant conservation.

These plugin opcodes are basically the same as cudapvscale and cudapvscale2
with only one difference: the actual frequency scaling kernels are replaced by
frequency shifting ones. Beside that, the overall structure is the very same and
the spectral envelope detection procedures are developed in the same exact way.
Therefore, only the shifting kernels will be presented in this section.

This operation can be described by the following expression:

Joutik+8) = fing) + B (3.2)

, where f;, and f,,; are the input and output frequency components of the corre-
sponding phase vocoder frames, k is the channel (bin) index, [is the frequency
offset and 4 is the corresponding number of bins (bin offset). The value of §’ is an
integer obtained by the following CUDA C' line:

int betaprime = abs((int) (beta * N * (1.0/SR)));

3.6. CUDA-based Plugin Opcodes 97

, where N is the total number of DFT bins and SR is the sampling rate.

Before discussing the shifting kernels, it must be stressed that the intrinsic asym-
metry that could be found in a parallel implementation of pitch scaling is no longer
present in the shifting scenario. In fact, when pitch shifting is performed (either
upwards or downwards) each input channel is transferred to a different output
channel, with a one to one relation. As a result, no conflicts arise with threads that
need to write to the same memory location and atomic operations can be avoided.
The following code snippet shows the kernel used for frequency shifting in the case
of no formant conservation:

__global_ _ void
freqShiftBasic(float* input, float* output, MYFLT shift,
int shiftChan, int lowestIndx, int nhalf) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
int j = i<<1;
int lowestChan = lowestIndx>>1;
int N = nhalf<<1;
int newchan;
if (i < lowestChan) {
// leave PV data as it is below a certain channel:
output [j] = input[j];
output [j+1] = input[j+1];

if (i >= lowestChan && i < nhalf) {
newchan = (i + shiftChan) << 1;
if (newchan < N && newchan >= lowestIndx) {
output [newchan] = input[j];
output [newchan+1] = (float) (input[j+1] + shift);
}
}
}

, while the following snippet shows the kernel used for frequency shifting plus
formant conservation:

__global__ void
freqShiftFormant (float* input, float* output, float* env, MYFLT shift,
int shiftChan, int lowestIndx, float maxAmp, int nhalf) {

int i threadIdx.x + blockDim.x*blockIdx.x;

int j i<<1;

int lowestChan = lowestIndx>>1;

int N = nhalf<<1;

int newchan;

if (i < lowestChan) {
// leave PV data as it is below a certain channel:
output [j] = input[j];
output[j+1] = input[j+1];

else if (i < nhalf) {
env[i] /= maxAmp; // normalize the spectral envelope
input[j] /= env[i]l; // equalise the original amplitudes
// so that formant shaping is more effective

newchan = (i + shiftChan) << 1;
if (newchan < N && newchan >= lowestIndx) {

output [newchan] = input[j]*env[newchan>>1];

output [newchan+1] = (float) (input[j+1] + shift);
}

98 Chapter 3. Research Task and Implementation

In both cases, the shifting operation is performed only by those threads that
are related to phase vocoder channels above the specified lowest frequency to be
affected (here it is expressed in terms of lowest bin index by means of the variable
lowestChan). In both cases, the pitch shifting kernel is followed by the very same
phase vocoder frame completion kernel that was exploited in cudapvscale and
cudapvscale?2, i.e. fixPVandGain().

3.6.6 cudapvsmooth and cudapvsmooth2

Effect: spectral flux smoothing, affecting both amplitude and frequency compo-
nents independently.

This is one of a few modules, among those analysed in this work, that act at
inter-frame level and need to store a record of past frames in order to work. In this
case, since first order parallel IIR filters are employed, only one past phase vocoder
frame is needed in combination with the current one.

The two sets of parallel filters used in this module are identical in structure, differing
only in the actual coefficients provided by the user:

Yank] = Tafnp] (L + @) = Yap-1y for the amplitude flux

3.3
Ytk = Tk (1 + B) = Yrm-1B for the frequency flux (3.3)

, where k is the usual bin index, n is the phase vocoder frame index (in time)
that marks the fsig processing rate, « is a coefficient derived from kacf and f is
a coefficient derived from kfcf (« and 8 are, by design, such that the resulting
filters are of the low-pass kind). The application of the two sets of parallel filters is
straightforward and is performed in the CUDA framework by the following kernel:
__global__ void

smooth(float* input, float* output, double alpha, double beta,
int length) {

int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j < length) {

output[j] = (float) (input[j] * (1.0 + alpha) - output[j] * alpha);
output [j+1] = (float) (input[j+1] * (1.0 + beta) -
output[j+1] * beta);
}

3

After each step is completed, the resulting output frame is not only used as desired
in the processing chain (or re-synthesised if it belongs to the ending module in the
chain) but it is also kept into device memory and used in the following processing
step as the past output frame, i.e. yupn—1) and ysp—1).

This kind of scheme is highly congenial to parallel processing as there is no
inter-bin dependency and each filter works in a “blind” way on the data stream from
its specific channel. The higher the number of DF'T bins, the more parallel filters
are spawned and kept busy simultaneously”. On the other hand, the usual issue
with memory transfer latency not being hidden by computational throughput looms
over. If examined at thread level, this kernel does not bring a high computational

500f course, the actual number of truly simultaneous filters depends on the GPU’s internal
resources (number of streaming multiprocessors, mainly) and on warp scheduling criteria.

3.6. CUDA-based Plugin Opcodes 99

load (this is usually a virtue of low orders IIR filters) and this means that for a small
DFT size, the parallel version might perform worse than the original sequential
version. Still, these plugin opcodes are expected to give slightly better speed-up
factors than cudapvsgain and cudapvsgain?2, for example, because the former
involve a slightly higher degree of computational load.

3.6.7 cudapvsblur and cudapvsblur2

Effect: spectral flux smoothing, affecting both amplitude and frequency compo-
nents.

As already mentioned in the description of the original pvsmooth, the main
difference between these two modules lies in the way the spectral flux is filtered:
while in pvsmooth two sets of first order IIR filters are employed, in pvsblur a single
set of variable order FIR filters is used, affecting both amplitude and frequency
fluxes in the same way. This means that a variable (and perhaps time-varying)
number of past phase vocoder frames needs to be recorded in order to compute the
output frame. This is done by means of a matrix-like data structure in which phase
vocoder frames are stored row-wise and new frames are inserted in successive rows.
Parallel filtering is then performed along the vertical direction (which corresponds
to time), in each single column (both amplitude and frequency data is processed),
over a number of rows that depends on the averaging time provided by the user.
The higher the averaging time, the higher the order of the filters, the more frames
(rows) are used in the filter computation and the higher the level of blurring. The
user also provides the longest averaging time to be considered in the application,
which translates into the maximum order of the FIR filters as well as into the total
number of rows of the record matrix.

In the plugin opcodes’s initialisation function, the record matrix is set up: all frames
amplitudes are set to zero while frequency values are set to each channel’s centre
frequency. This is done in the initialise() kernel:

9

__global_ _ void
initialise(float* matrix, float sr, int numFrames, int length) {
int frame = blockIdx.y*blockDim.y + threadIdx.y;
int chan = (blockIdx.x*blockDim.x + threadIdx.x) << 1;
if ((frame < numFrames) && (chan < length)) {
matrix[framexlength+chan] = 0.0f;
matrix[frame*length+chan+l1] = chan * sr / (length-2);
}
}

, where sr is the sampling rate as set in the Csound environment.

This kernel exploits CUDA’s feature of working with two-dimensional thread blocks
so that a straightforward mapping can be made between thread indexes and matrix
elements. The y dimension is employed for identifying rows (by means of the frame
index), while the x dimension is employed for selecting the desired column (through
the chan index).

In the performance function, the new frame is placed in the next available row
of the record matrix, wrapping around to the first row when the whole matrix is
full. Then, the filters’ computations are performed involving a limited number of
rows, namely those covered by the user-specified blurring time window. The whole

100 Chapter 3. Research Task and Implementation

process is implemented via the following CUDA C lines®':

if (p->lastframe < p->fin->framecount) {

// Clip the number of frames corresponding to the blurring time

// between 0 and the maximum blurring time:

delayframes = delayframes >= 0 ? (delayframes < maxframes 7
delayframes : maxframes - 1) : 0;

// Insert the new frame in the record matrix:
cudaMemcpy (p—>deviceMatrix+(countr*framelength) ,fin,size,
cudaMemcpyDeviceToDevice) ;

if (delayframes) {
if ((first = countr - delayframes) < 0)
first += maxframes; // wrap around the initial row

// Launch parallel FIR filters on the recorded PV frames:
blur<<<p->gridSize,p->blockSize>>>(p->deviceMatrix, fout, first,
delayframes, countr,
maxframes,framelength);
X
else {
// Bypass blurring:
cudaMemcpy (fout, fin, size, cudaMemcpyDeviceToDevice);

p—>fout->framecount = p->lastframe = p->fin->framecount;

countr++; // this variable keeps track of the row index
// of the last inserted frame

p—>count = countr < maxframes 7 countr : O;

}

The blur () kernel implements parallel FIR filtering on each phase vocoder channel.
The particular FIR filter used in this module is simply a moving average on a
number of frames specified (indirectly) by the user via the kblurtime parameter in
Csound:

__global_ _ wvoid
blur (float* matrix, float* output, int firstFrame, int numFrames,
int frameCount, int max, int length){
int chan = (blockIdx.x*blockDim.x+ threadIdx.x)<<1;
float amp = 0.0f;
float freq = 0.0f;
int frame;
if (chan < length) {
// Iterate over the involved PV frames
// (wrapping around the end of the matrix if needed):
for (frame = firstFrame; frame != frameCount;
frame = (frame + 1) % max) {
// Accumulation:
amp += matrix[framexlength+chan];
freq += matrix[frame*length+chan+1];

¥

51This code snippet is taken from the device-only version of this module (cudapvsblur2). In
this version, input and output phase vocoder frames are copied in and out of the record matrix
by means of cudaMemcpy () API function using the cudaMemcpyDeviceToDevice specifier. The
host memory input-output version is based on the very same scheme, but of course, using the
cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost specifiers.

3.6. CUDA-based Plugin Opcodes 101

// Averaging:

output [chan] =

output [chan+1]
}

(float) (amp / numFrames);
= (float) (freq / numFrames);

}

In each channel, amplitude and frequency data is accumulated by means of a for
loop. This means that computational load at thread level can be high, especially
when a substantial level of smoothing is desired and each loop iterates on a substan-
tial number of frames. When this is the case, the CUDA versions of this module are
expected to perform better than the original CPU-only version, regardless of the
DF'T size used for the phase vocoder frames (provided that at least a few hundreds
of bins are employed).

This kind of parallel filtering is of course congenial to the parallel computing scheme:
each channel is filtered independently of the others. Actually, in this scenario there
is yet another possibility for an even higher level of parallelism: the accumulation
loop carried out in each thread could be performed in a parallel fashion as well.
This could be done by means of some kind of parallel reduction in the vertical
direction of the matrix in order to obtain, at each step of the process, a single row
containing the sums of the amplitude and frequency bins over the considered past
frames. However, this approach would possibly entail some overhead and might not
be fully justified since the averaging times typically used in musical applications
imply a somewhat limited number of frames to be used in the averaging process,
probably not enough to gain in performance with parallel reduction. Hence, the
sequential approach in the accumulation turns out to be a reasonable solution but
it has to be said that there is room for further investigation.

In any case, being pvsblur one of the most demanding modules in terms of compu-
tational load (among those considered in this work) and, at the same time, very
well suited for the parallel scheme, it is safe to say that the CUDA implementations
of this algorithm are expected to perform very well.

3.6.8 cudapvsmix and cudapvsmix2

Effect: mix two input phase vocoder streams in a seamless way.

This module can be easily implemented in a parallel way by means of the
following kernel:

__global__ void
mix(float* output, float* frameA, floatx frameB, int chans) {
int i threadIdx.x + blockDim.x * blockIdx.x;
int j = i<<1;
if (i < chans) {
int test = frameA[j] >= frameB[j];

if (test) {
output[j] = frameA[j];
output [j+1] = frameA[j+1];
else {
output [j] = frameB[j];
output[j+1] = frameB[j+1];

102 Chapter 3. Research Task and Implementation

For each channel, the amplitude of the two input frames are compared and the
stronger of the two is sent to the output, together with the corresponding frequency
information.

Even though this algorithm is conceptually well suited for parallel processing, it
might turn out to be not exactly optimal in a CUDA scenario. This is because
of the presence of conditionals that might take a different path in each thread
and force each warp to make two passes on the same data. Still, this is a minor
issue’ and the main concern with this implementation is the general low level of
computational load in each thread which might penalise GP-GPU computing over
plain CPU execution when, at each step, the data to be processed is not much.

3.6.9 cudapvsmorph and cudapvsmorph?2

Effect: linearly interpolate two phase vocoder streams.

The CUDA implementation for this module is straightforward and is obtained
by the means of the following kernel:
__global__ void
morph(float* output, float* inputl, float* input2, float ampCoeff,
float freqCoeff, int length) {
int i = threadIldx.x + blockIdx.x * blockDim.x;
int j = i<<1;
if (j < length) {
output [j] = inputl[jI*(1.0-ampCoeff) + input2[j]*(ampCoeff);
output[j+1] = inputl[j+1]*(1.0-freqCoeff) + input2[j+1]*(freqCoeff);

3

In each channel, for both amplitude and frequency components, the input values
are linearly interpolated in a way that allows the presence of a bias in favour of one
of the two input frames. Each thread is completely independent of the others.

3.7 Conlcusions

Csound and CUDA are easily combined to build an efficient framework for audio
processing on the GPU. This match is especially favoured by the fact that both
tools are based on C/C++ and the translation of already existing parts of the
Csound source code into a parallel paradigm is straightforward.

Spectral signal processing is a field of application that lends itself well to the GP-
GPU computing scheme: not only its nature is well suited for a parallel computing
scenario but it is also a critical framework in terms of computational load, making
any kind of performance improvement particularly meaningful.

The likely potentials of this approach were proved by Lazzarini et al. in [8] for phase
vocoder analysis and re-synthesis. In this chapter, the same concept is expanded
further in order to include in the picture a few basic spectral processing algorithms.
These are implemented in the form of nine CUDA-C-based plugin opcodes for the
Csound environment. All the implementation details are given, both on a practical

52 After all, the operations to be carried out in both branches of this conditional are of minimal
computational load.

3.7. Conlcusions 103

side (the actual code) and on a more theoretical side (concerning performance
issues).

The analysis of performance concerns related to memory transfers leads to a slight
modification of the original analysis and re-synthesis CUDA-based modules of [§]:
the output phase vocoder data from the analysis module is kept in device memory
after computation and the input phase vocoder data for the re-synthesis module is
taken from device memory. In this way, the total number of memory transfers is
extremely reduced. This in turn leads to the need of implementing two versions
for each algorithm, a host memory input-output version and a device-only version,
in order to assess the expected performance gain of the latter with respect to the
former.

Chapter 4

Tests and Experimental Results

This chapter presents the benchmarking stage of the project: the CUDA-based
Csound modules described in 3.6 are tested and their performance is compared to

the original versions. The systems and the methodologies used for the tests are also
described.

4.1 Testing Environment

The testing phase consists of running a Csound script for each developed plugin
opcode using different settings, and eventually recording the corresponding execution
times.

4.1.1 Testing Systems: Hardware

Tests were run on two sample systems. The results that will be shown in the

next sections were obtained by running the tests only on one of these two systems'
(which, from now on, will be referred to as “system 1”), but, in a few occasions, a
comparison between the two systems will be provided as well.
As the ultimate objective of this thesis is that of assessing the efficiency of employing
the GP-GPU scheme on average computer systems, the testing environment was
chosen in such a way that it could be representative for an ordinary desktop
computer. From a practical point of view, the aim is that of studying how much
gain can be achieved in audio processing applications when a somewhat recent,
middle range PCl-express video card is added to a not so recent system. Of course,
this work can be also seen from a wider perspective and it can show how, in
general, parallel computing can help improving the execution speed of spectral
audio processing applications.

Both systems are based on the very same CPU, a 2.93GHz Intel Core 2 Duo
(released in 2009), and have very similar characteristics overall, with the exception of
the graphics card: the main system is equipped with a Gigabyte GeForce GTX750Ti
(Maxwell microarchitecture), while on the second system an ASUS GeForce GT730
(Kepler microarchitecture) was installed (both GPU chips on these cards are from

1System 1 was chosen as the main target for the tests because it is the one equipped with the
most recent GPU.

105

106 Chapter 4. Tests and Experimental Results

NVIDIA). All the details about the two system are reported in table 4.1. Additional
specifications for the two GPUs can be found in table 4.2.

Table 4.1: System specifications for the two computers used in the testing stage.

System 1 (main system) | System 2 (additional system)
CPU Intel Core 2 Duo
E7500 @ 2.93 GHz x 2 idem
RAM 2 x 2GB DDR3-1333
SDRAM @ 1066 MHz idem
GPU | NVIDIA GeForce GTX750T1i NVIDIA GeForce GT730

Table 4.2: Specifications of the target GPUs.

GeForce GTXT750Ti

GeForce GT730

Number of cores 640 384
Core clock 1085 MHz 902 MHz
Memory clock 5.4 Gbps 5 Gbps
VRAM 2048 MB GDDR5 2048 MB GDDR5
Memory bandwidth 86.4 GB/s 40 GB/s

128-bit wide bus

64-bit wide bus

Processing power

(single precision) 1306 GFLOPS 693 GFLOPS

Processing power

(double precision) 40.8 GFLOPS 28.9 GFLOPS
Thermal Design Power 60 W 25 W

The video cards were chosen from the middle range slice of the market; in
addition, small format and low power models needed to be chosen in order to fit in
the available computers. This choice is actually consistent with the setting of this
thesis, which focuses on performance improvement of modest computer systems.
From a practical point of view, a substantial difference between the two systems is
to be found in the CUDA compute capability of the corresponding graphics card,
implying that different features of the CUDA GP-GPU scheme can be exploited,
depending on the way the CUDA C code is compiled (typically, these features
are applied under the surface, in a transparent way). On system 1, which has a
GPU featuring compute capability 5.0, the —arch=sm_50 option was used inside
the NVCC' compiler command for building the shared objects. On the other hand,
since the GeForce GT730 only has compute capability 3.5, the ~arch=sm_30 option
was used on system 2 instead.

4.2. Testing Procedure 107

4.1.2 Testing Systems: Software

Both systems are based on Linux Ubuntu® operating system: system 1 runs
Ubuntu 15.04 (64-bit), while system 2 runs Ubuntu 14.10 (64-bit).
On both systems, Csound 6.07 was installed and used for running the tests.
Finally, CUDA 7.5 was installed on system 1, while CUDA 7.0 was installed on
system 2.

4.2 Testing Procedure

For each of the developed plugin opcodes®, a very basic Csound script was
written. Each of these scripts was conceptualised as a stand-alone program that is
meant to carry out only one signal processing task in the frequency domain.

Each script consists of four instruments®: each instrument implements the very
same task, only using different tools. Each time that a script is launched, it allows
for only one of the four instruments to be instantiated, so that the registered
execution time is only related to the particular combination of tools that make
up the specific instrument. When launching a Csound testing script, the desired
instrument is specified by the user, together with other parameters, by means of
additional command line options. Running different instruments results in different
modules to be employed for the completion of the desired task:

e Instrument 1: Computations are performed on the CPU only, in a single-
threaded and sequential way. This instrument employs pvsanal for the phase
vocoder analysis stage and pvsynth for the re-synthesis stage. In between
these two, the original spectral processing unit generators are employed in
order to carry out the desired manipulations.

o Instrument 2: The spectral manipulations are performed on the GPU by
means of the new plugin opcodes. Here the host memory input-output version
is employed (see 3.5.1). Analysis and re-synthesis stages are still carried out
on the CPU, again via pvsanal and pvsynth. This is a mixed approach that
is designed to assess the efficiency of adding only the new plugin opcodes
to the programming environment provided by Csound, as opposed to the
possibility of employing the GPU also for the analysis and re-synthesis stages.

e Instrument 3: Both spectral manipulations and analysis/re-synthesis op-
erations are performed on the GPU. Again, the host memory input-output
version of the new plugin opcodes (see 3.5.1) is employed, while, for phase
vocoder analysis and re-synthesis, cudanal and cudasynth are employed, as
presented in [8]. This approach involves more memory transfers between host
and device than are actually needed, potentially degrading performance.

2Canonical Ltd. Ubuntu: http://www.ubuntu.com/

3 Actually, in order to test the different operating modes of cudapvscale and cudapvshift, a
separate script for each operating mode was also set up.

4In Csound, “instruments” are basic code blocks which are comprised of ordinary statements
to set values, control the logical flow, or invoke the various signal processing subroutines that lead
to audio output.

http://www.ubuntu.com/

108 Chapter 4. Tests and Experimental Results

e Instrument J: All signal processing operations are cast to the GPU, as in
instrument 3. However, cudanal2 and cudasynth2 are employed for phase
vocoder analysis and re-synthesis and the device-only versions of the new
plugin opcodes (see 3.5.1) is employed for the actual manipulations. With
this approach, data is kept in device memory after the analysis stage as
well as after the processing stage, minimising expensive data transfers. This
is expected to be the best combination of the available modules and it is
considered, among the four, the wisest implementation for GPU-operating
spectral processing applications.

See the code snippet in the next subsection (4.2.1) for an explicit example of this
testing scheme.

The execution times that result from running each instrument for a fixed amount
of time on the same audio material can be then compared in order to understand
which combination of unit generators and plugin opcodes performs best, and which
one results in the worst performance. The same instrument is actually run many
times, using different parameters, so that numerous combinations of DFT sizes and
hop sizes are considered for the analysis/re-synthesis stages. These will be crucial
in determining the amount of data that can be processed in a parallel way on the
GPU, not only in the CUDA-based versions of the analysis/re-synthesis stages, but
also in the new CUDA-based spectral processing modules.

Note that all the modules considered in this work rely on external, user specified
parameters to some extent (for instance, the gain parameter in pvsgain). The
Csound scripts used in this benchmarking stage are designed to mimic realistic case
studies of musical nature. The specific values used for the involved parameters were
chosen in a reasonable range and varied in time, in order to explore potentially
different behaviours. In many cases, the actual values used for the input parameters
are not supposed to influence the execution time of the single modules, but this
is not always the case: as it was shown in section 3.6, these values can have a
substantial impact on the way the operations inside of kernels are executed on the
GPU. The way these parameters are varied is designed to give the most general
impression of the performance gain, if any, that can be achieved by exploiting the
graphics processor in a heterogeneous computing fashion.

As a reference, the following subsection reports the Csound script for testing the
CUDA versions of pvsgain against the original CPU version.

4.2.1 Testing Scheme

All the Csound scripts that were employed for testing purposes are reported in
appendix C. What follows is one of them, reported here in order to give an explicit
sample. This is the script for testing pvsgain and the related GP-GPU versions:

<CsoundSynthesizer>

<CsOptions>
—--opcode-lib=libcudapvsgain.so
--opcode-lib=../../libcudapvs2.dylib
--opcode-lib=libcudapvsgain2.so
</CsOptions>

4.2. Testing Procedure 109

<CsInstruments>

sr = 44100
ksmps = 128
Odbfs =1

$FFT
$HOP

gifftsize
gihopsize

instr 1
kenv linseg O, p3/4, 1, p3/4, 0, p3/4, 1.5, p3/4, 0
asig soundin "syrinx.wav"
fsig pvsanal asig, gifftsize, gihopsize, gifftsize, 1
fsigScaled pvsgain fsig, kenv
asig pvsynth fsigScaled
out asig

endin

instr 2
kenv linseg O, p3/4, 1, p3/4, 0, p3/4, 1.5, p3/4, 0
asig soundin "syrinx.wav"

fsig pvsanal asig, gifftsize, gihopsize, gifftsize, 1
fsigScaled cudapvsgain fsig, kenv

asig pvsynth fsigScaled

out asig

endin

instr 3
kenv linseg O, p3/4, 1, p3/4, 0, p3/4, 1.5, p3/4, 0
asig soundin "syrinx.wav"

fsig cudanal asig, gifftsize, gihopsize, gifftsize, 1
fsigScaled cudapvsgain fsig, kenv

asig cudasynth fsigScaled

out asig

endin

instr 4
kenv linseg O, p3/4, 1, p3/4, 0, p3/4, 1.5, p3/4, 0
asig soundin "syrinx.wav"

fsig cudanal2 asig, gifftsize, gihopsize, gifftsize, 1
fsigScaled cudapvsgain2 fsig, kenv
asig cudasynth2 fsigScaled
out asig
endin

</CsInstruments>

<CsScore>
i $INSTR O 60
</CsScore>

</CsoundSynthesizer>

Each time this script is run, it uses a triplet of parameters, passed by the user
to Csound by means of macros: in the score section (between <CsScore> and
</CsScore>), $INSTR is used to select the instrument, i.e. the desired combination
of modules, while in the orchestra section (between <CsInstruments> and </
CsInstruments>), $FFT and $HOP are used to select the DFT size and hop size,
respectively.

110 Chapter 4. Tests and Experimental Results

From a higher level of abstraction, all instruments perform the very same task: in a
real-time fashion, they set a time-varying gain level (between 0 and 1.5) via linseg,
they read a sound file called “syrinx.wav” from disk via soundin, they perform phase
vocoder analysis via either pvsanal, cudanal or cudanal?2, they perform the desired
spectral processing task via either pvsgain, cudapvsgain or cudapvsgain2, they
perform the re-synthesis operation via either pvsynth, cudasynth or cudasynth?2,
and, finally, they send the resulting time domain audio frames to the output buffer
via out. These operations are carried out for 60 seconds.

In the options section (between <CsOptions> and </CsOptions>), the shared
objects related to the custom plugin opcodes are loaded.

Once the script has completed execution, Csound returns the elapsed time at the
end of performance, which has to be under 60 seconds for clean real-time execution
(without dropout samples). This value is recorded and used as the key parameter
for assessing the speed of execution of the analysed application. In fact, speed-up
factors are computed via the ratio of pairs of recorded execution times (related to
different pairs of instruments). For instance, given a specific processing algorithm
under analysis and given the execution time results from testing instrument 1 (t)
and instrument 2 (t;) with a specific DFT size and hop size, the speed-up factor®
09,1 related to this pair is simply computed as 091 = % Actually, in order smooth
over the effect of the inevitable performance jitter caused by interrupts in a complex
operating system, each test® is run five times and the resulting execution times
are averaged to give the t; values used above. Timings are taken from the total
computation time recorded by Csound, which lumps the serial and parallel code,
but since the interest here is the feasibility of the system as whole, this is exactly
what these tests are designed to measure. Note that in this scenario, the GPU is
employed for two discrete tasks, simultaneously: on one side it is called for executing
audio signal processing computations, on the other side it still needs to drive the
video graphics subsystem. This is actually platform dependent: the computers
employed for this project did not allow the dedicated GPU to be released from
video processing but this is not a general rule.

The very same scheme is applied to all the other modules, with the obvious changes
that are needed in each single case (for instance, some modules need to work on
two audio streams).

4.2.2 Audio Specifications

Csound is set to work with an internal sampling rate of 44.1kHz, which is kept
consistent in each instrument. The audio files used as sound sources are 16-bit
mono files of the wav format, saved at a sample rate of 44.1kHz. This is arguably
one of the most widespread audio formats in the scope of computer music and it
was chosen to maximise the generality of the tests. Of course samples are internaly
converted to the floating point format by Csound for processing purposes.

For what concerns the phase vocoder framework specifications, a comprehensive
set of DF'T sizes and hop sizes is examined for these tests. DFT size is varied

5This value expresses how much instrument 2 is better than instrument 1.
6Here, “one test” refers to one execution of the testing script with a given triplets of parameters
(instrument, hop size and DFT size).

4.2. Testing Procedure 111

considering the powers of two between 1024 (2'%) and 16384 (2'*) while hop size
is varied between 128 (27) and 2048 (2!!), again considering only powers of two.
Not all possible pairs of these two parameters are tested, only the most meaningful
ones’ (see table 4.3).

Table 4.3: DFT size and hop size pairs used for the tests.

hop size \ DFT size | 1024 | 2048 | 4096 | 8192 | 16384
128 v v v v v
256 v v v v v
512 - v v v v
1024 - - v v v
2048 - - - v v

DFT size & hop size

Both DFT size and hop size have a critical impact on performance. The hop
size parameter determines the rate at which the phase vocoder processing steps®
are performed: the lower the hop size, the higher the processing rate, the more
demanding the application in terms of computational power (in fact, a higher
number of processing steps is needed in a fixed time window). More so, in terms
of GP-GPU computing, setting a low hop size results in a higher total number of
memory transfers, even for the device-only versions of the analysed modules (there
must be at least two memory displacements per processing step: one before the
analysis stage and one after the re-synthesis stage). At the end of the day, however,
if a specific module performs better on the GPU in a single processing step for a
given DFT size (meaning that the computational power of the graphics processor
succeeds in hiding the latency from memory transfers), decreasing the hop size
will necessarily magnify the performance gain measured over 60 seconds. Thus,
decreasing the hop size, in general, is expected to magnify the unbalance between
the two approaches.

The hop size is somehow related to the concept of time resolution of the phase
vocoder scheme: using a lower hop size gives to the user the opportunity of updating
processing parameters of a given module at a higher rate, thus increasing the time
granularity of any action in the frequency domain. This brings down the choice of
this parameter to a trade-off between time granularity and computational burden:
the user needs to understand what is the upper threshold for the hop size that
guarantees a good level of time granularity for a given application. Decreasing
the hop size below this threshold would result in an unjustified increment of the

"The main criterion employed here for choosing the allowed pairs of settings was that of having
hop sizes that are not bigger than one quarter of the DFT size.

8Here the term processing step refers to the whole set of operations involved by the chain of an
analysis stage, a processing stage and a re-synthesis stage. In one processing step, these operations
are executed on a number of samples which is equal to the DFT size.

112 Chapter 4. Tests and Experimental Results

computational burden. Yet, this whole issue about the time granularity of frequency-
domain manipulations is only loosely related to the concept of time resolution which
is brought about by the very essence of the Fourier transform, together with the
ultimate trade-off between time and frequency resolution (see also section 1.2.3).
The time granularity for processing parameters and the time resolution of the
Fourier transform are thus two different notions that need to be kept conceptually
separated.

The DFT size determines the amount of data which is involved in each processing

step. A high DFT size implies a high computational burden both in the computation
of the DFTs (forward and inverse ones) and in the processing stages. However,
a GP-GPU approach to this picture opens up a whole new perspective: the very
nature of the GP-GPU computing scheme is that of making, as much as possible,
a given processing task independent of the amount of data involved. In fact, the
massively parallel computing scheme is precisely based on an abundance of hardware
resources (i.e., cores) with the aim of exploiting all of them simultaneously”, while
setting them to work on different data. Thus, increasing the DFT size in a GP-GPU
framework usually results in a better usage of the available resources, having little
impact on the overall execution time, which is expected to increase of just a small
fraction'’. Most importantly, increasing the DFT size in a GP-GPU model is very
likely to result in a much lower increase in the overall execution time with respect
to a CPU-based sequential model, hence unbalancing the scale in favour of the
GP-GPU model. As a matter of fact, in the CPU-based scheme, an increase in the
amount of data to be processed has the inevitable effect of loading the same few
cores with more computations: eventually, these will need to be scheduled on a
larger time window.
The choice of the DFT size is highly dependant on the nature of the specific
application that needs to be developed. This parameter has to be chosen on the
basis of the particular specifications regarding the time vs. frequency resolution
trade-off discussed in section 1.2.3.

4.3 Results

In this section, the results obtained from each tested algorithm will be presented
and commented. At first, this analysis will focus only on the results from the main
system (system 1). In the last part of this section a comparison between the two
systems will be carried out, focusing only on a few algorithms.

The subsection about the gain modules will be used as an introductory model
for the data analysis: this subsection is wider than the others simply because it is

9This scheme is of course applicable only to those processes that can be made parallel (in
other words, expressed in a SIMD fashion). Yet, the phase vocoder framework does not raise too
many issues, as it has been shown in chapter 3. The FFT algorithm is also perfectly suited for a
parallel computing scheme and a high performance FFT library is available in the CUDA toolkit,
namely cuFFT ([21]).
More so, another actor in this scenario is the recurring argument about high computational
complexity helping to hide memory transfers’ latency, at least when the amount of data involved
in the computations is high. See section 3.3.1 for more details.

execution time

4.3. Results 113

used to introduce and explain concepts that actually apply to the other modules as
well.

4.3.1 Gain module: a Preliminary Analysis

Figure 4.1 shows five graphs where the average execution times of the four gain
instruments are plotted against the DF'T size. Each graph is related to a different
hop size setting.

gain - GTX750Ti - hop size:128 gain - GTX750Ti - hop size:256 gain - GTX750Ti - hop size:512 gain - GTX750Ti - hop size:1024 gain - GTX750Ti - hop size:2048

— Instrument 2

55 — Instrument 3
Instrument 4

Instrument 1

as
40
35

30

execution time
execution time
execution time
execution time

0 f— "
9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.1: Execution time results (in seconds) from testing the gain module on system
1 over 60 seconds of audio.

A few comments can be made about these plots. First of all, it is interesting to note
that, for highly demanding settings (i.e., low hop size and high DFT size), the basic
CPU-based version (green line) gets critically close to the real-time threshold, even
for such a simple application. This proves the fact that phase vocoder operations
can get very demanding in terms of computational power; after all, this program is
only applying some gain to a signal in the frequency domain: this is just a basic
block (yet a very useful one) for more articulated processing chains. As soon as this
block is included in a more complex project, real-time operation is very unlikely to
be guaranteed. It has to be stressed that these highly demanding settings are often
essential for high quality sound processing, especially in those situations where
frequency resolution is more important than time resolution and a considerable
time granularity is needed for the processing actions; thus, if it was possible to
decrease the execution times in some way (e.g., via GP-GPU computing), a better
quality for real-time spectral processing would be achievable on a given machine.

The five plots of figure 4.1 show that, for the gain algorithm, substituting pvsgain
with cudapvsgain does not change much the overall execution time. Actually, it
slightly degrades the performance in all cases (blue line). This can be explained by
means of the low computational complezity argument that was described in section
3.3.1: the gain module, in fact, shows a very low level of time complexity if analysed
from a parallel computing perspective.

114 Chapter 4. Tests and Experimental Results

Fortunately, this not-so-promising scenario drastically changes in favour of GP-
GPU computing as soon as instrument 3 is examined (red line): the introduction
of GPU-based phase vocoder analysis and re-synthesis stages (via cudanal and
cudasynth) cuts down execution times remarkably for almost all settings. The
actual performance gain depends on both the DF'T size and the hop size settings,
and these relations will be analysed more thoroughly in a few paragraphs, while
commenting figure 4.2 and 4.3. The general performance gain (which is more than
four times in some cases) is mainly ascribable to the use of cuFFT ([21]) in the
analysis and re-synthesis modules, which, apparently, benefits the most when it
is applied to chunks of data that are wider than (or equal to) 2048 samples. For
a DFT size of 1024 samples, it is difficult to infer the nature of the swing in the
performance (it depends on the hop size as well), but the change is not much in
any case.

Finally, by inspecting figure 4.1, it is clear that the implementation of a device-only
version (instrument 4) for the gain module helps improving the performance with
respect to the implementation of instrument 3, as anticipated in section 3.5.1. The
improvement is manifested for each pair of settings and the resulting execution
times are the lowest that have been recorded in almost all cases'!(yellow line),
arguably making instrument J the overall best performing solution.

All in all, it is evident that a GP-GPU computing implementation brings a
general performance improvement to the gain module, especially for high DFT
sizes and low hop sizes. This is a very promising result for GPU-based phase
vocoder processing in general, especially when considering the low computational
complexity (per thread) that characterises this algorithm (which is expected to
result in a bias towards the plain CPU approach). To some extent, these conclusions
could be predicted on the basis of the previous work by Lazzarini et al. on this
topic ([8]): what really makes the difference, in fact, seems to be the introduction
of CUDA-based analysis and re-synthesis stages in the phase vocoder framework.
However, these results also show that the further introduction of CUDA-based
processing stages seems to be not only viable but also desirable for an additional
performance improvement.

In order to better visualise the degree of improvement achieved by the GP-GPU
implementations of the gain module, the speed-up factors are plotted in figure 4.2
and 4.3. Putting aside for a moment the critical case of 1024-points DF'Ts and
focusing on instrument 4 (which results to be the best implementation in all other
cases), the speed-up factors that were recorded in these tests span the range between
041 = 1.62 and 04; = 6.51, depending on the employed settings. If the attention is
focused on an intermediate DFT size of 4096 points, the recorded speed-up factors
vary between o4 = 1.80 and 04; = 3.30, depending on the employed hop size.
What makes these results particularly relevant is that the speed-up factors get to
their highest values exactly for those settings that are more critical for the plain
CPU implementation. In a way, this has the effect of making the execution time of
a well-tuned GP-GPU implementation less dependant on DFT size (this is clearer
in picture 4.1).

Two final considerations can be made about figure 4.2 and 4.3. First, as it has

1 Again, the only exceptions are the two cases where the DFT size is set to 1024 samples.

4.3. Results 115

gain - GTX750Ti - hop size: 128 gain - GTX750Ti - hop size: 256 gain - GTX750Ti - hop size: 512 gain - GTX750Ti - hop size: 1024 gain - GTX750Ti - hop size: 2048

— Instrument 2 vs CPU
— Instrument 3 vs CPU

0651
Instrument 4 vs CPU

9622

#532

0491

s €494

9430

0389

4
I o a a
? ? ? 2
] ° ° °
2 9 3 b
o 9 3 b
a a a 3
& & & &
3 3.04
o2
2
i)
1 e 96 .o H—— 96
0
9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.2: Speed-up factors related to different implementations of the gain module
on system 1.

gain - GTX750Ti - DFT size: 1024 gain - GTX750Ti - DFT size: 2048 gain - GTX750Ti - DFT size: 4096 gain - GTX750Ti - DFT size: 8192 gain - GTX750Ti - DFT size: 16384
— Instrument 2 vs CPU
— Instrument 3 vs CPU

Instrument 4 vs CPU

551

522

532

L TED 8ao1

0430

4
o I a o o
3 3 H 2 3
o o - o o
g g g g g
>3 a a 329 s 1
& & & & &
3 €297
a3 .2.44 0
24
2 94
oL »1.80
152 .
152
“‘*\us\:; 31
1 0.98 R L5 9
Soom 0. 5058093 9
08 [T S—vv—" %2 05
se— o
o
6 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.3: Speed-up factors related to different implementations of the gain module
on system 1.

been pointed out already, the most naive GP-GPU implementation of instrument
2 (blue line) fails to give any improvement over the original CPU code, but, at
the same time, it does not degrade the performance too much (the lower it gets
is 091 = 0.8). It is important to stress that, even if these were the results of
the overall best performing GP-GPU implementation, it could still make sense to
consider a heterogeneous computing solution for the phase vocoder gain module.
In fact, while it is true that delegating this processing task to the GPU slightly
slows down the computations, at the same time the CPU load is diminished, hence
opening up room for utilisation by other concurring processes. Whether this can be
useful or not depends on the level of utilisation of the computer system (as well as

execution time

116 Chapter 4. Tests and Experimental Results

that of the GPU) at the time of processing, but this is an attractive option to be
considered in general. More so, under this perspective, the speed-up results achieved
by instrument 4 appear to be even more valuable: not only this implementation
brings down execution times, it also frees up CPU resources.

gain - GTX750Ti - DFT size:1024 gain - GTX750Ti - DFT size:2048 gain - GTX750Ti - DFT size:4096 gain - GTX750Ti - DFT size:8192 gain - GTX750Ti - DFT size:16384

— Instrument 2

55 — Instrument 3
Instrument 4

Instrument 1

b

@
execution time
execution time
execution time
execution time

10
o
3
’ 1\' . \\‘\ T T
- b 3 ° .
—y °

6 7 8 9 6 7 8 9 10 6 7 8 9 0 11 6 7 8 9 10 1 12 6 7 8 9 10 11 12 13

hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.4: Execution time results (in seconds) from testing the gain module on system
1 over 60 seconds of audio.

Finally, figure 4.3 clearly shows that all implementations fail to give any im-
provement for a DF'T size of 1024 points. The most reasonable explanation for this
behaviour is that the size of the data to pe processed at each step is not enough to
justify a parallel computing scheme, even for quite compute-intensive tasks like the
FFTs included in the analysis and re-synthesis stages. The overheads introduced by
a CUDA-based scheme (memory transfers, kernel scheduling, etc.) are not hidden
by massively parallel processing: basing the computation on 1024 elements seems
to be too little for vindicating the use of the term “massive”. Fortunately, this
weakness of CUDA-based 1024-points spectral processing is not really problematic
since this is also the case that exhibits the lower execution times in general, as shown
in figure 4.4, and it is therefore the least needy for a performance improvement.

4.3.2 Filter module

Figure 4.5 shows the average execution times of the four filter instruments
plotted against the DFT size. Each graph is related to a different hop size setting.
Not surprisingly, the trends are very similar to those found in figure 4.1. Being the
filtering algorithm slightly more demanding in terms of computational complexity
with respect to the gain one (after all, it involves managing two phase vocoder
frames instead of one, and it involves a little more arithmetic operations), all
execution times are shifted up with respect to the gain case. This has the effect
of bringing instrument 1 and instrument 2 out of the real-time zone of the plots
(execution times under 60 seconds), for a large DFT size of 16384 points and a small

execution time

4.3. Results 117

o filter - GTX750Ti - hop size:128 filter - GTX750Ti - hop size:256 filter - GTX750Ti - hop size:512 filter - GTX750Ti - hop size:1024 filter - GTX750Ti - hop size:2048

— Instrument 2

7 — Instrument 3
Instrument 4

Instrument 1

execution time
execution time
execution time
execution time

09 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.5: Execution time results (in seconds) from testing the filter module on system
1 over 60 seconds of audio.

hop size of 128 samples. The more advanced GP-GPU solutions of instrument 3
and instrument 4, however, provide enough performance gain to guarantee real-time
execution even in this extreme case.

The speed-up factors are plotted in figure 4.6 and 4.7. A very similar behaviour
with respect to the gain module is recorded and similar considerations apply.

filter - GTX750Ti - hop size: 128 filter - GTX750Ti - hop size: 256 filter - GTX750Ti - hop size: 512 filter - GTX750Ti - hop size: 1024 filter - GTX750Ti - hop size: 2048
P 0592
— Instrument 2 vs CPU
#5063 — Instrument 3 vs CPU
€531 Instrument 4 vs CPU

519

3.36

I I o a
3 3 3 3
3 °] - -
o @ @ @
o @ @ @
a a a a
& & & &
€255,
212
2
1 009r——035——@0IT *0-94——80.06
0
9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 2 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.6: Speed-up factors related to different implementations of the filter module
on system 1.

Instrument 4 is again the best performing overall. Putting aside the critical case of
processing 1024 channels, the speed-up factors related to this implementation range
from 041 = 1.35 to 041 = 5.98, depending on the settings employed. If the attention
is focused on an intermediate DF'T size of 4096 points, the recorded speed-up factors
vary between 047 = 2.00 and o4 = 3.39, depending on the employed hop size.

118 Chapter 4. Tests and Experimental Results

filter - GTX750Ti - DFT size: 1024 filter - GTX750Ti - DFT size: 2048 filter - GTX750Ti - DFT size: 4096 filter - GTX750Ti - DFT size: 8192 filter - GTX750Ti - DFT size: 16384
5.9
a

— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU 531

speed-up
speed-up
speed-up
speed-up

86:9i——865i——e0.89 $505—85:55—e56:54—e0.92 0.94 5:06-a0.94

6 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)
Figure 4.7: Speed-up factors related to different implementations of the filter module

on system 1.

4.3.3 Stencil module

The stencil algorithm is characterised by a computational load that is highly
dependant on the input signal and on the desired shape for the spectral mask. Thus,
the design of a test that is meant to return general results is quite problematic.
In order to try and achieve a decent level of generality, a random spectral mask
was generated for each instance of the tests'?. In addition, a spectrally rich and
dynamic input audio was used for the tests.

The speed-up factors resulted from testing the stencil module are shown in
figure 4.8 and 4.9. Again, the trends of the three lines seem to match what
have been shown until now and even the speed-up factors are similar to those
recorded for the gain and filter modules. With a DFT size of 1024 points, all
GP-GPU versions perform worse than the original CPU code; yet instrument 4
gets very close to instrument 1 even in this unfavourable case. For the other DFT
sizes, the speed-up factors achieved by instrument 4 range from o4, = 1.31 and
041 = 6.51, depending on the settings employed. For an intermediate DFT size of
4096 points, the speed-up factors related to instrument 4 vary between o471 = 1.80
and 047 = 3.29, depending on the hop size settings.

All the execution times recorded for this module stay under the real-time threshold
of 60 seconds.

12Gee appendix C for the complete Csound script used for these tests. Note that each test is
repeated five times and the results are averaged.

4.3. Results 119

stencil - GTX750Ti - hop size: 128 stencil - GTX750Ti - hop size: 256 stencil - GTX750Ti - hop size: 512 stencil - GTX750Ti - hop size: 1024 stencil - GTX750Ti - hop size: 2048
— Instrument 2 vs CPU
651 — Instrument 3 vs CPU
06.20 Instrument 4 vs CPU
05.61
9520
5 94.93 @488

e 8427

386

I o a a
? ? ? 2
] ° ° °
2 9 3 b
o 9 3 b
a a a 3
& & & &
3.04
o2
2
.88
1 5 e g sae———e17
0
9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.8: Speed-up factors related to different implementations of the stencil module
on system 1.

stencil - GTX750Ti - DFT size: 1024 stencil - GTX750Ti - DFT size: 2048 stencil - GTX750Ti - DFT size: 4096 stencil - GTX750Ti - DFT size: 8192 stencil - GTX750Ti - DFT size: 16384
— Instrument 2 vs CPU
— Instrument 3 vs CPU @551

Instrument 4 vs CPU

6.20

493 @88

w427

4
I o a a
2 3 3]
- o - -
? 2 ? 2
e 2 @329 2 2
& & & &
3 .2.97
a4 w244
227
2 194
o184 »1.50
161 _
.M\K.A 31
1 $228 108
(i 0.70
o
6 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.9: Speed-up factors related to different implementations of the stencil module
on system 1.

4.3.4 Scale module

Mode 0: Basic Pitch Scaling

As it can be learned from figure 4.10 and 4.11, when testing their basic mode
of operation (mode 0), the GP-GPU versions of the scale module achieve similar
results to what has been shown until now.

As usual, using a DFT size of 1024 samples on the GPU does not bring any speed-
up with respect to the original CPU version (yet, at the same time, the speed ratio
does not get under 0.7). In all other cases, the device-only version of this module
(instrument 4) succeeds in boosting the execution speed with speed-up factors that

120 Chapter 4. Tests and Experimental Results

scale0 - GTX750Ti - hop size: 128 scale0 - GTX750Ti - hop size: 256 scale0 - GTX750Ti - hop size: 512 scale0 - GTX750Ti - hop size: 1024 scale0 - GTX750Ti - hop size: 2048
— Instrument 2 vs CPU
96.43 — Instrument 3 vs CPU
Instrument 4 vs CPU
€610
0554

04.83
e468

I o a o 384
3 3 3 2
° ° ° °
? ? 2 9
9 @ 3 9
3 a 3 a
& & & &
3.03
.2
87
1
& cor——0%7
88
)
9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.10: Speed-up factors related to different implementations of the scale module
(mode 0) on system 1.

scale0 - GTX750Ti - DFT size: 1024 scale0 - GTX750Ti - DFT size: 2048 scale0 - GTX750Ti - DFT size: 4096 scale0 - GTX750Ti - DFT size: 8192 scale0 - GTX750Ti - DFT size: 16384

— Instrument 2 vs CPU

— Instrument 3 vs CPU
Instrument 4 vs CPU

w6.10

05.43

5
0483

4
o a I o
E; s Ej 5
° ° ° °
? 2 2 2
9 b o 9
a 2 a a
& & & &
3 a3.08
.2.79
3 w232
6
2
8169 ! 174
150 148
“4\“\‘. 2
1 0 0
P e W W W
[S— FoS—e0a_ 075 0.77 0.78
Wi .88
o
6 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.11: Speed-up factors related to different implementations of the scale module
(mode 0) on system 1.

range from o041 = 1.24 to 04 = 6.44. When focusing on an intermediate DFT size
of 4096 points, the speed-up factors range from o4, = 1.74 and o4 = 3.08.

As it was shown in subsection 3.6.4, this algorithm is more convoluted than
those that have been analysed so far. In general terms, it has been argued that
the more computationally demanding an algorithm is, the higher the potential
performance gain that can be achieved with a GP-GPU approach, provided that
the algorithm is well suited for parallel processing. This seems to be in contrast
with a comparison between the results of the tests on the scale module and, for
instance, those on the gain module: they are in fact very similar, regardless of

execution time

4.3. Results 121

the different level of complexity'® (whereas one could expect the former to achieve
higher speed-ups). This can actually be explained by means of two arguments.
First, it is not completely true that the pitch scaling algorithm is perfectly congenial
to parallel processing (as it has been discussed in subsection 3.6.4, there is a need for
atomic operations when scaling downwards); the presence of inter-bin dependencies
also raise the need for some kind of synchronisation among all threads (not only at
block level): to achieve this, separate kernels (and Thrust functions) are launched
one after the other'*, and this introduces a significant level of overhead. Second,
both the employed kernels contain some level of intra-warp branching, and this is
potentially degrading for the overall performance in a CUDA environment. All in
all, these factors could limit the potentially better achievements of a more compute-
intensive algorithm that is run on the GPU.

All the execution times recorded for this module stay under the real-time threshold
of 60 seconds.

Mode 1: Formant Conservation (Cepstrum Liftering)

While the basic pitch scaling algorithm is more computationally demanding
than the gain one (for instance), the level of complexity remains quite low. When
a cepstrum-based formant preservation method is introduced in the pitch scaling
module, however, the complexity of the whole scheme is very much increased,
especially because of the additional two FF'T passes that are needed for this.
Figure 4.12 and 4.13 show the execution times recorded while testing this technique.

scalel - GTX750Ti - hop size:128 scalel - GTX750Ti - hop size:256 scalel - GTX750Ti - hop size:512 scalel - GTX750Ti - hop size:1024 scalel - GTX750Ti - hop size:2048

— Instrument 2

— Instrument 3

80 L Instrument 4
Instrument 1

30
25
20 4 .
o
15
7 L3 '’

10 p . . a

5 o o 2

. g/,/:
1 12 13 14 1

09 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 1 5 12 13 14
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

execution time
execution time
execution time
execution time

15

Figure 4.12: Execution time results (in seconds) from testing the scale module (mode
1) on system 1 over 60 seconds of audio.

13 Anyway, the level of computational complexity of the pitch scaling algorithm is not extremely
higher than that of the gain one.
14See subsection 3.6.4.

execution time

122 Chapter 4. Tests and Experimental Results

scalel - GTX750Ti - DFT size:1024 scalel - GTX750Ti - DFT size:2048 scalel - GTX750Ti - DFT size:4096 scalel - GTX750Ti - DFT size:8192 scalel - GTX750Ti - DFT size:16384

— Instrument 2

— Instrument 3

80 Instrument 4
Instrument 1

v o o o
50 £ £ £ £

c c c c
45 S S 8 s

=1 S = =1

E] El E] E]

] 4 3 3
40 x x x 1 x

b 3 3 3
35
30
25
20
15

o
b
10 -
3
5 . -
o e al e
6 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.13: Execution time results (in seconds) from testing the scale module (mode
1) on system 1 over 60 seconds of audio.

From these graphs it can be learned that, indeed, the execution times related to
the plain CPU version are higher with respect to all other analysed cases (so far).
As in the filter case, extreme settings bring the execution time above the real-time
threshold but the more refined GP-GPU versions succeed in bringing execution
times back to a real-time scenario. Interestingly enough, instrument 2 does not
always perform worse than instrument 1 and its performance strongly depends
on the DFT size: for low DFT sizes it is strongly worsened, while for 8192-points
DFTs and above it is even improved. This behaviour is a clear consequence of the
introduction of a computationally expensive process in the GPU code (forward and
inverse FFT to get to the cepstral domain and back).

scalel - GTX750Ti - hop size: 128 scalel - GTX750Ti - hop size: 256 scalel - GTX750Ti - hop size: 512 scalel - GTX750Ti - hop size: 1024 scalel - GTX750Ti - hop size: 2048

@490

— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU

477

04.19

#3.64

a a a o
3 3 3 3
- o - -
? ? ? 2
2 2 b 2
a a a a
& & & &
2 o5
177
118
111
1 oo /
5
’ 76
6
0
9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.14: Speed-up factors related to different implementations of the scale module
(mode 1) on system 1.

4.3. Results 123

scalel - GTX750Ti - DFT size: 1024 scalel - GTX750Ti - DFT size: 2048 scalel - GTX750Ti - DFT size: 4096 scalel - GTX750Ti - DFT size: 8192 scalel - GTX750Ti - DFT size: 16384

— Instrument 2 vs CPU 1 477

— Instrument 3 vs CPU
Instrument 4 vs CPU

speed-up
speed-up
speed-up
speed-up

! $ro0-asoagigs o : |
593 90.30 27 MW’K 7
4 0.41
6 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.15: Speed-up factors related to different implementations of the scale module
(mode 1) on system 1.

Now, turning the attention to the speed-up factors, the plots in figure 4.14
and 4.15 can be analysed. Two main differences can be noticed in these trends.
First, the highest speed-up factors (those resulting from instrument /) are not as
good as in the other cases (they stay below a ratio of 5). Second, the speed-up
increase rate with respect to an increasing DFT size seems to be higher than that
seen in the previous cases: while in the gain module, for instance, the speed-up
factor increases of a somewhat fixed amount'® for each doubling of the DFT size
(second derivative close to zero in figure 4.14), in this case the speed-up factor
grows of a greater and greater amount as the DFT size is doubled (positive second
derivative). As a consequence, as it has been mentioned already, instrument 2
actually achieves positive speed-ups (up to around 1.2) for high DFT sizes, even if it
goes down to a very bad 0.4 for the lowest DFT size of 1024 points. Note that also
2048-points-based processing gets critical for GPU-based spectral manipulations
(figure 4.15, second graph).

While the latter phenomenon (second derivative increase) can be easily explained
by the introduction of CUDA-based FFTs in the processing module, the general
decrease of the speed-up factors related to instrument 3 and instrument 4 is quite
unexpected. Perhaps it has to do with the fact that these algorithms comprise of
many different kernels. As it is well known, in fact, kernel launches introduce a
certain delay from the time the host executes the kernel on the device until the
device begins execution of the kernel itself. Kernel launch overhead can be a limiting
factor, especially when an algorithm, such as the one under analysis, needs to be
split into more kernels, thus resulting in more overhead. Usually, GPU instructions
are split into separate kernels for synchronisation reasons'® (before and after FFTs,

15This mainly concerns instrument 8 and instrument 4. Instrument 2 actually shows a different
trend (negative second derivative in the gain case and zero second derivative in the scale case)
but a similar reasoning also applies to this case.

16Tt could be interesting to implement and test another version of this algorithm such that, when

124

Chapter 4. Tests and Experimental Results

for instance). Of course, synchronisation barriers themselves represent another
limiting factor for the performance of this module. Yet, instrument 4 is again
the best performing overall: putting aside the critical case of a 1024-points DFT,
the speed-up factors related to this implementation range from o4, = 0.74 (this
is actually a performance degradation) to 41 = 4.90, depending on the settings
employed. If the attention is focused on an intermediate DF'T size of 4096 points,
the recorded speed-up factors vary between o4, = 1.28 and o4, = 1.61, depending

on the employed hop size.

4.3.5 Shift module
Mode 0: Basic Pitch Shifting

As it was pointed out in chapter 3, the shift module is almost identical to the
scale one, with a very subtle difference which has a strong effect on the perceived
result but does not change much the computational complexity.

shift0 - GTX750Ti - hop size: 128 shift0 - GTX750Ti - hop size: 256

speed-up
speed-up

shift0 - GTX750Ti - hop size: 512

shift0 - GTX750Ti - hop size: 1024

speed-up

e1/1
146

speed-up

shift0 - GTX750Ti - hop size: 2048
— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU

15 9 10 11 12 13 14 15

DFT size (power of 2)

9 10 11 12 13 14
DFT size (power of 2)

Figure 4.16:

14
DFT size (power of 2)

10 1 12 13

(mode 0) on system 1.

W”l

15 11 12 13 14

DFT size (power of 2)

13 14
DFT size (power of 2)

15

Speed-up factors related to different implementations of the shift module

In the CUDA versions, the atomic operations needed for the scale module can
be removed from the shift module and this could potentially lead to a further
improvement. By analysing figure 4.16 and 4.17, though, this hypothetical improve-
ment is not really measured'”: the speed-up factors achieved by both modules are
comparable in all cases (see also figure 4.10 and 4.11 for a comparison).

Instrument 4 is as usual the best performing overall: putting aside the critical
case of a 1024-points DFT, the speed-up factors related to this implementation

possible, cudaDeviceSynchronize () API function [13] is used inside one single kernel instead of
breaking up GPU computations in multiple kernels. This solution was not investigated because of

a lack of time.

"There are other minor differences between the two algorithms that could influence their

relative performances.

speed-up

4.3. Results

125

shift0 - GTX750Ti - DFT size: 1024 shift0 - GTX750Ti - DFT size: 2048 shift0 - GTX750Ti - DFT size: 4096

speed-up

6 7 8 9 6 7 8 9 10 6 7 8 9

shift0 - GTX750Ti - DFT size: 8192

— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU

speed-up
speed-up
speed-up

o301

269

shift0 - GTX750Ti - DFT size: 16384

ws.43

476

speed-up

10 1 6 7 8 9 10 11 12

hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.17:
(mode 0) on system 1.

6 7 8 9 10 11 12 13
hop size (power of 2)

Speed-up factors related to different implementations of the shift module

range from o047 = 1.21 to 04; = 6.29, depending on the settings employed. If
the attention is focused on an intermediate DFT size of 4096 points, the recorded
speed-up factors vary between o041 = 1.71 and 047 = 3.01. All the execution times
recorded for this module stay under the real-time threshold of 60 seconds.

Mode 1: Formant Conservation (Cepstrum Liftering)

Again, the shift module shows very similar results with respect to what has
been displayed for the scale module, also when mode 1 is activated in order to

preserve formants in the output spectrum.

shiftl - GTX750Ti - hop size: 128 shiftl - GTX750Ti - hop size: 256 shiftl - GTX750Ti - hop size: 512

®4.84
0470

94.43

94.09

speed-up
speed-up
speed-up

% 10 1 12 13 14 15 9 10 1 12 13 W 15 10 1 12 13 1 15 1 12 13 14
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.18: Speed-up factors related to different implementations
(mode 1) on system 1.

shiftl - GTX750Ti - hop size: 1024 shiftl - GTX750Ti - hop size: 2048

— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU

speed-up

15 12 15

13 14
DFT size (power of 2)

of the shift module

126 Chapter 4. Tests and Experimental Results

shiftl - GTX750Ti - DFT size: 1024 shiftl - GTX750Ti - DFT size: 2048 shiftl - GTX750Ti - DFT size: 4096 shiftl - GTX750Ti - DFT size: 8192 shiftl - GTX750Ti - DFT size: 16384

— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU

speed-up
speed-up
speed-up
speed-up

2 5
0

0.42 0 095
0.40
93
6 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.19: Speed-up factors related to different implementations of the shift module
(mode 1) on system 1.

The speed-up factors related to this module can be found in figure 4.18 and
4.19.
Instrument 4 is as usual the best performing overall: putting aside the critical case
of a 1024-points DF'T, the speed-up factors related to this implementation range
from 047 = 0.73 to 041 = 4.84, depending on the settings employed. If the attention
is focused on an intermediate DF'T size of 4096 points, the recorded speed-up factors
vary between 041 = 1.24 and o4 = 1.58, depending on the employed hop size.
The CPU version of this module fails to perform in real-time for a DFT size of
16384 points and a hop size of 128 samples (while the GP-GPU versions succeed).

4.3.6 Smooth module

This module exhibits very similar results to those of the gain, filter and stencil
modules. The speed-up factors achieved by the three CUDA-based versions of this
algorithm are reported in figure 4.20 and 4.21.

As always, instrument j achieves the best results overall: its speed-up ratios
range from o4; = 1.32 to 04; = 6.56, depending on the specific settings (not con-
sidering the unfavourable case of a 1204-points DFT). Focusing on the intermediate
DFT size of 4096 points, the recorded speed-up factors are between 047 = 1.82 and
041 = 3.32, depending on the specific hop size.

All the execution times recorded for this module stay under the real-time threshold
of 60 seconds.

4.3. Results

127

smooth - GTX750Ti - hop size: 128

8656

smooth - GTX750Ti - hop size: 256

9630

9498

speed-up

smooth - GTX750Ti - hop size: 512

speed-up

9569

®434

speed-up

smooth - GTX750Ti - hop size: 1024

smooth - GTX750Ti - hop size: 2048
— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU

®4.94

®3.91

speed-up

DFT size (power of 2)

9 10 11 12 13 14 15 9 10 11 12 13 14 15

DFT size (power of 2)

10

11 12 13 14
DFT size (power of 2)

15 1

12

DFT size (power of 2)

13 14 15
DFT size (power of 2)

13 14 15 12

Figure 4.20: Speed-up factors related to different implementations of the smooth module

smooth - GTX750Ti - DFT size: 1024

— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU

on system 1.

smooth - GTX750Ti - DFT size: 2048

o
3
3
@
@
g
B
3
2
g
e
N\K:\ 32
H 109
1 099 .
087 00-9+——e09—a0.89
[a— e
078 0.71
o
6 7 8 9 6 7 8 9 10

hop size (power of 2)

hop size (power of 2)

smooth - GTX750Ti - DFT size: 4096

speed-up

€332

.2.99

speed-up

smooth - GTX750Ti - DFT size: 8192

smooth - GTX750Ti - DFT size: 16384

@656

6.30

L EEn

0434

speed-up

7 8 9 10
hop size (power of 2)

11

7

hop size (power of 2)

8

555—80.90 5

9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2)

Figure 4.21: Speed-up factors related to different implementations of the smooth module

on system 1.

4.3.7 Blur module

As it has been pointed out in section 3.6.7, the blur module is quite demanding
in terms of computational load and, being very well suited for parallel processing,
it is expected to perform very well on the GPU.
It is important to stress that the computational load of this algorithm is very
much dependant on the specific averaging time employed in the application. To try
and simulate a generic situation, the tests were designed in such a way that this
parameter is changed over time, linearly, from a null averaging window (which has
no effect on the output) to a blurring period of one second (which, in turn, strongly
affects the output stream). The imaxdel parameter is thus set to one second.

execution time

DFT size (power of 2)

128 Chapter 4. Tests and Experimental Results

Figure 4.22 shows the execution times recorded after these tests.

blur - GTX750Ti - hop size:128 blur - GTX750Ti - hop size:256 blur - GTX750Ti - hop size:512 blur - GTX750Ti - hop size:1024 blur - GTX750Ti - hop size:2048

— Instrument 2
— Instrument 3
Instrument 4
Instrument 1

NN
DI I
NSRS

AN

001 DD
it tvistv

execution time
execution time
execution time
execution time

ENNWW B U0 NDOO OO
EstmsiistvrtariviieiEtattvictviss

= —— —r—t

Sl
9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.22: Execution time results (in seconds) from testing the blur module on system
1 over 60 seconds of audio.

Instrument 1 Instrument 2 Instrument 3 Instrument 4
15 15 15 15
B X X 6 0 o o “u @ & 0 0 0 o u @ 6 & o o o 0 & 0 0 0 o
B X 6 & 0 @ 3 @ & 0 o o 3@ & & o o 30 6 0 o o
~ ~ ~
— “ u“
o o o
= . =
o [v
5 g 5
12 X o o o o o O o o a1 o O o o s o O o o
o [o
N N N
@ @ @
= = =
| | o
a [a) a
1 o o o 1 o o o 1 o o o 11 o o o
10 o O 10 o O 10 o © 10 o O
9 9 9 9
6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.23: Real-time analysis for the four different versions of the blur module. Red
crosses reveal real-time operation failure while green dots indicate success.

It is evident that, for what concerns the original CPU version (green line) the
resulting execution times grow very fast as the hop size is decreased. They rapidly
get out of scale, crossing the real-time threshold in more than one case and by some
very large amounts (in the extreme case, the CPU version is more than four times
slower than the real-time limit).

Interestingly, this is not the case for the CUDA-based implementations: in fact,
they all turn out to be capable of real-time operation, under all settings. Figure
4.23 shows that any GP-GPU implementation succeeds in cutting the execution

speed-up

4.3. Results 129

time enough, making real-time operation possible in four critical cases (red crosses).
Turning the attention to the speed-up factors, these are reported in figure 4.24 and
4.25.

blur - GTX750Ti - hop size: 128 blur - GTX750Ti - hop size: 256 blur - GTX750Ti - hop size: 512 blur - GTX750Ti - hop size: 1024 blur - GTX750Ti - hop size: 2048

— Instrument 2 vs CPU
. 23.83 — Instrument 3 vs CPU
z Instrument 4 vs CPU
21
20
19
18
5 017.37
16
15
14
13
12

speed-up
speed-up
speed-up
speed-up

11
10
9

ok N WA OO N ®

9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.24: Speed-up factors related to different implementations of the blur module
on system 1.

These plots exhibit a few differences with respect to those related to all previous
modules. First of all, the speed-up factors are greatly improved in many cases.
Instrument J even achieves a speed-up factor as high as almost two dozens. It is safe
to speculate that these exceptional improvements could be stretched even further if
a higher degree of blurring was employed in the testing application for somewhat
extreme effects (one second of maximum averaging time is not an extreme value,
after all). In fact, these extraordinary speed-up ratios are certainly ascribable to
the presence of the accumulation process which is performed inside of each GPU
thread: the more frames are involved in this accumulation process, the more time
GPU resources are kept busy for, simultaneously. This has the double effect of
hiding the latencies related to memory transfers and boosting the execution speed
even further, especially for high DFT sizes. In the original CPU implementation
all the accumulation processes (each one is related to a different phase vocoder
channel) need to be spread out over time, rather than over hardware resources, as
in the CUDA versions. Quite surprisingly, even the least refined CUDA version,
instrument 2, happens to perform better (even much better, in some cases) than
the original CPU implementation.

Also, while it has been recognised as a critical case throughout the analysis of all the
modules so far, the 1024-points spectral processing scenario actually brings good
results for this kind of manipulation. As a consequence, instrument J turns out to
be the best performing version under all conditions. It achieves speed-up factors
that range from o4; = 2.25 to 041 = 23.83, depending on the employed settings. If
the DF'T size is kept to an intermediate level of 4096, the resulting speed-up ratios
range between 047 = 2.44 and 0,7 = 15.10, depending on the specific hop size.

speed-up

speed-up

130 Chapter 4. Tests and Experimental Results

blur - GTX750Ti - DFT size: 1024 blur - GTX750Ti - DFT size: 2048 blur - GTX750Ti - DFT size: 4096 blur - GTX750Ti - DFT size: 8192 blur - GTX750Ti - DFT size: 16384

— Instrument 2 vs CPU

023583

23 — Instrument 3 vs CPU
22 Instrument 4 vs CPU
21
20
19
a18.40
18
17
16
15 a15.10
14
o o o o
E; E; 3 E;
13 T T
° ° ° °
34 34 34 34
12 [7] (7] (7] @
a a a a
11 o o a &
10
9
8
7 *7.09
6
5
4 3.60
°
3 2
Nz 25
2 2.07
177 .
1 111
)
6 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.25: Speed-up factors related to different implementations of the blur module
on system 1.

4.3.8 Mix Module

The speed-up factors resulted from testing the different versions of the mix
module are shown in figure 4.26 and 4.27.

mix - GTX750Ti - hop size: 128 mix - GTX750Ti - hop size: 256 mix - GTX750Ti - hop size: 512 mix - GTX750Ti - hop size: 1024 mix - GTX750Ti - hop size: 2048

— Instrument 2 vs CPU
— Instrument 3 vs CPU

9622 Instrument 4 vs CPU
6 06.03

o532

0522

a6

94.60

a E 5 o377 e 53
o ° ° £
? ? ? 4 343
9 @ b 9
a a a a
& & & &
3
588
@272
h24
o
2
174
1 69— @5I5——80.96 5949095
0
9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.26: Speed-up factors related to different implementations of the mix module
on system 1.

These values and their trends are very similar to those analysed for the gain
module, for instance. The same comments apply to this scenario as well.
The concerns that were raised in section 3.6.8 about the potentially undermining
presence of conditionals in the CUDA C' implementations seem to be negligible,
indeed, as the speed-up factors are comparable to those resulted from other modules

4.3. Results 131

mix - GTX750Ti - DFT size: 1024 mix - GTX750Ti - DFT size: 2048 mix - GTX750Ti - DFT size: 4096 mix - GTX750Ti - DFT size: 8192 mix - GTX750Ti - DFT size: 16384

— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU 522
25.03

speed-up

speed-up
speed-up
speed-up

o159
.71

*\;\:Hb

1.01 e

= 3 6916510090

e [
6 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.27: Speed-up factors related to different implementations of the mix module
on system 1.

that are not characterised by this issue.

Instrument 4 is again the best performing overall. Putting aside, as usual, the
critical case of a 1024-points DF'T, the speed-up factors related to this implementa-
tion range from o047 = 1.46 to 041 = 6.22, depending on the settings employed. If
the attention is focused on an intermediate DF'T size of 4096 points, the recorded
speed-up factors vary between o4 = 2.12 and 047 = 3.42.

Both instrument 1 and instrument 2 fail to achieve real-time performance under
critical settings (16384-points DFT and 128-samples hop size), but instrument 3
and instrument 4 actually succeed.

4.3.9 Morph Module

The speed-up factors resulted from testing the different versions of the morph
module are shown in figure 4.28 and 4.29.
These values and their trends are very similar to those analysed for the gain
module, for instance. The same comments apply to this scenario as well.
Instrument 4 is again the best performing overall. Putting aside, as usual,
the critical case of a 1024-points DF'T, the speed-up factors related to this im-
plementation range from o4; = 1.45 to 0431 = 6.18, depending on the settings
employed. If the attention is focused on an intermediate DFT size of 4096 points,
the recorded speed-up factors vary between o4, = 2.12 and o041 = 3.38, depending
on the employed hop size.
Both instrument 1 and instrument 2 fail to achieve real-time performance under
critical settings (16384-points DFT and 128-samples hop size), but instrument 3
and instrument 4 actually succeed.

speed-up

132 Chapter 4. Tests and Experimental Results

morph - GTX750Ti - hop size: 128 morph - GTX750Ti - hop size: 256 morph - GTX750Ti - hop size: 512 morph - GTX750Ti - hop size: 1024 morph - GTX750Ti - hop size: 2048
— Instrument 2 vs CPU
— Instrument 3 vs CPU
e Instrument 4 vs CPU
6 #6.03
9563
¢5.32 0524
s #5.09
da68 04.64
4
B El s #3756 a373 B
° ° ° o
@ 34 4 1 346
@ @ @ o
a a a a
& & & &
3
5.8
€273,
224
o2
2
173
1 -5 I oo
% 10 1 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)
. . . .
Figure 4.28: Speed-up factors related to different implementations of the morph module
on system 1.
morph - GTX750Ti - DFT size: 1024 morph - GTX750Ti - DFT size: 2048 morph - GTX750Ti - DFT size: 4096 morph - GTX750Ti - DFT size: 8192 morph - GTX750Ti - DFT size: 16384
— Instrument 2 vs CPU
— Instrument 3 vs CPU
Instrument 4 vs CPU 0618
6 25.03
0563
532 526
5 5.09
w468 va.6a
4
o o o o o
2 2 3 3 3
3 3 3 3 3
9 @ I3 a338 2 9
a a a a a
& & & .3.16 & &

w271

4
32
212
5 08
a1g7
173

170

4 145
N\Kﬂj
0,54

1 1.00
. o2 653 ——e051—a0.90 93 $55—a0.94
'“:24 75 oo
05 7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.29: Speed-up factors related to different implementations of the morph module
on system 1.

4.4 GPU Comparison

All the tests that have been shown in the previous section were actually run on
system 2 as well'®. In this section, some of the results from the two systems will be
compared in order to draw a more complete picture of CUDA-based spectral audio
processing.

Not all the results from system 2 will be reported here: the performance of the two
systems will be compared only for what concerns three modules that have shown
distinctive behaviours, and can thus be chosen as representative for different classes

18Please refer to section 4.1 for both systems’ detailed specifications.

0.

0.

4.4. GPU Comparison 133

of algorithms. These are the gain module (the simplest of all), the blur module (the
one characterised by the highest density of operations per thread) and the scale
module with formant conservation (mode 1, which is the one that has the most
articulated internal structure and achieves the lowest speed-up factors).

Also, in order to keep data analysis simple, only the performance of instrument 4
will be addressed. The meter chosen for this comparison is thus the ratio between
the execution time of instrument 4 on system 2 over the execution time of the
same instrument on system 1: oy, 5, = %’ where t;, and tg, are the execution
times related to instrument 4 on system 1 and 2 respectively. This parameter will
be addressed as a “speed-up factor” even though it turns out that system 2 is not
always slower than system 1 (see below).

4.4.1 Gain Module

Figure 4.30 and 4.31 show how much of a difference exists between the execution
speeds resulting from running the tests on the two different GPUs, while varying
the DFT size and the hop size settings.

gain - hop size:128 gain - hop size:256 gain - hop size:512 gain - hop size:1024 gain - hop size:2048

GTX750Ti vs GT730
(Instrument 4)

speed-up
speed-up
speed-up
speed-up

8

0.84
/

‘79 10 11 12 13 14 15 9 10 11 12 13 14 15 10 11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.30: Speed-up ratios obtained from the two different systems used for running
the gain module (instrument 4 only).

The horizontal dark blue line highlights the points of the graphs characterised
by an equal performance from the two systems. Above this line system 1 (with a
GeForce GTXT750T1) performs better than system 2 (GeForce GT730). Vice versa,
under this line system 1 performs worse than system 2.
These plots show that, for this module in particular, there is not a substantial
difference between the two systems, as the recorded ratios turn out to be close to 1
in all cases. Quite surprisingly, system 1 seems to be a little slower than system 2
in most cases. However, if the attention is focused on trends rather than on single
speed-up factors, it seems that the GeForce GTX750Ti of system 1 is a potentially
better candidate for massively parallel tasks. In fact, figure 4.30 clearly shows that

134 Chapter 4. Tests and Experimental Results

gain - DFT size:1024 gain - DFT size:2048 gain - DFT size:4096 gain - DFT size:8192 gain - DFT size:16384
GTX750Ti vs GT730

(Instrument 4)

104
1.0 o
0.98
0.04
91
0.9 \ 0.90
0.88
0.5

7 8 9 6 7 8 9 10 6 7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

speed-up
speed-up
speed-up
speed-up

Figure 4.31: Speed-up ratios obtained from the two different systems used for running
the gain module (instrument 4 only).

system 1 performs better and better when the DFT size is increased. It is safe
to speculate that, if a set of higher DFT sizes was considered, system 1 would
have performed better than system 2 in most cases. Still, it has to be said that a
DF'T size higher than 16384 points is rarely useful in the audio scope, especially
when real-time applications for live musical performances are considered. Also,
when analysing 4.31, it can be learned that the difference between the two systems
changes quite rapidly as the hop size is changed: system 1 improves its performance,
with respect to system 2, when the hop size is reduced. Reducing the hop size
eventually translates into a higher level of utilisation of the GPU, as it is required
to operate more often. This means that the more the GeForce GTX750T1 is utilised,
the better its performance gets if compared to the older GeForce GT730. Bringing
together this observation and the previous one, it can be inferred that system 1
performs better than system 2 when the GPU is called into action frequently and
with a lot of data to be processed in parallel. In other words, it seems that for this
module the GeForce GTX750Ti is under-utilised for the employed settings.

4.4.2 Scale Module (Mode 1)

Figure 4.32 and 4.33 show a performance comparison between the two computer
systems used for testing the scale module (mode 1).

Comparing these plots with those obtained for the gain module, it can be observed
that there is not much difference: the trends are in fact very similar. The same
observations can be made as well: the GeForce GTX750Ti seems to be under-utilised
for all the employed settings but it is in theory a better candidate for data-intensive
and high throughput parallel computation.

4.4. GPU Comparison 135

scalel - hop size:256 scalel - hop size:512 scalel - hop size:1024 scalel - hop size:2048

GTX750Ti vs GT730
(Instrument 4)

scalel - hop size:128

1.07

spee; up
speed-up
speed-up
speed-up
speed-up

97

o1

0.9
6.8

08
9 10 11 12 13 14 15 9 10 11 12 13 14 15 10 1 12 13 14 15 11 12 13 14 15 12 13 14 15

DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.32: Speed-up ratios obtained from the two different systems used for running
the scale module (mode 1, instrument 4 only).

12 scalel - DFT size:1024 scalel - DFT size:2048 scalel - DFT size:4096 scalel - DFT size:8192 scalel - DFT size:16384
__ GTX750Ti vs GT730
(Instrument 4)

11
o a a a o
? ? ? 3 3
0 ° °]]
1] @ @ o Q
1 @ @ o o
a a a a a
& 98 & & & &

0.97 X
9%
0.93
0.9
88
0.8
6 7 8 9 6 7 8 9 0 6 7 8 9 o 11 6 7 8 9 10 1 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.33: Speed-up ratios obtained from the two different systems used for running
the scale module (mode 1, instrument 4 only).

4.4.3 Blur Module

Figure 4.34 and 4.35 show a performance comparison between the two computer
systems used for testing the blur module.

As it can be learned from these plots, as well as by comparison to those obtained in
the gain and scale case, this module shows a clear advantage of system 1 over system
2, on average. As a matter of fact, the blur module seems to be computationally
demanding enough to exploit the computing power of the GeForce GTXT750Ti even
for non-extreme DFT size and hop size settings. For example, when the hop size is
kept under 512 samples, system 1 performs better than system 2 regardless of the
DFT size employed (figure 4.34, first two graphs). In order to make the GeForce

Chapter 4. Tests and Experimental Results

blur - hop size:128

%

speed-up

blur - hop size:256

speed-up

blur - hop size:1024 blur - hop size:2048

GTX750Ti vs GT730
(Instrument 4)

blur - hop size:512

speed-up
speed-up

114

10 11

12

13

14

DFT size (power of 2)

15

9

10 11

12

13 14

DFT size (power of 2)

15

10

0.08

0ss
b /

11 12 13 14 15 11 12 13 14 15 12 13 14 15
DFT size (power of 2) DFT size (power of 2) DFT size (power of 2)

Figure 4.34: Speed-up ratios obtained from the two different systems used for running
the blur module (instrument 4 only).

blur - DFT size:1024

speed-up

blur - DFT size:2048

21

speed-up

blur - DFT size:16384

GTX750Ti vs GT730
(Instrument 4)

blur - DFT size:4096 blur - DFT size:8192

speed-up
speed-up

124

7

hop size (powel

8
rof 2)

6

7

8

\u 9

9

hop size (power of 2)

10

6

1.04
0.90
0.81
78 0.77

7 8 9 10 11 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13
hop size (power of 2) hop size (power of 2) hop size (power of 2)

Figure 4.35: Speed-up ratios obtained from the two different systems used for running
the blur module (instrument 4 only).

GTX750Ti actually stand out, however, the hop size needs to be kept small, even
when high DFT sizes are employed (figure 4.35, last two graphs).

4.5 Possible Improvements: Code Optimisation

It is very important to stress that the generally positive results obtained by
testing the GP-GPU versions of phase vocoder unit generators have been achieved
while developing quite basic implementations of CUDA-based shared objects. CUDA
is a programming environment that can be approached very easily: it allows any
beginner to program the GPU by means of a few simple steps and does not require

4.5. Possible Improvements: Code Optimisation 137

much preliminary knowledge about GPU architecture. At the same time, CUDA
offers to the more experienced programmer a wide range of tools that can be
exploited in order to optimise GP-GPU programs and achieve much greater speed-
up factors with respect to a basic implementation. For what concerns some kinds
of algorithms, it could be the case that only a properly optimised GP-GPU code
has a chance to compete in terms of execution speed with a normal sequential code
running on a high-end CPU.

The shared objects presented in chapter 3 (and tested in this chapter) were written
using only the very basic concepts of CUDA programming. Unfortunately, there was
no time to try and develop more sophisticated versions of the same algorithms so
that they could be optimised for CUDA-enabled GPUs'. Besides, the experimental
results obtained via the most basic versions are very promising in general and they
were enough to validate the benefits of GP-GPU computing in the framework of
spectral audio manipulations.

For completeness, this section presents a few techniques that can be possibly
employed in order to try and further optimise the codes that have been shown in
chapter 3. These are classic strategies that are provided to the CUDA programmer
and that usually lead to a performance improvement. The concepts that are going
to be presented here are mostly taken from [9].

4.5.1 Task Parallelism & CUDA Streams:

As it has been shown in section 3.5.2; any kind of GP-GPU application involves
a computation scheme that is made of three separate stages: host-to-device data
transfer, parallel computation on the GPU and device-to-host data transfer. These
stages are usually called tasks in GP-GPU parlance. The CUDA environment
provides ways to execute different kind of tasks simultaneously”’. Not only it is
possible to overlap computations with memory transfers in general®!, but it is also
possible to overlap in-going and out-going data displacements. In fact, the PCle
interconnection that usually links host and device in a computer system actually
supports the simultaneous transmission of data in both directions. As a result,
CUDA allows for some level of task parallelism: specifically, up to three tasks (one
of each kind) can be executed simultaneously (see figure 4.36). This feature is
obviously very useful when the GPU is employed for more than one process at
the same time (and each process is based on different data), but it can also be
convenient even when dealing with one single process at a time: in some cases, the
data to be processed can be partitioned in subsets that are sent to the device and
handled sequentially; in this way, portions of data are transferred to the device as
other subsets are processed and results are moved back to the host. Task parallelism
is achievable in CUDA by means of so-called CUDA streams, a software abstraction

19Tn this whole argument, the development of device-only versions of the modules is being given
for granted, even though it could be classified as some sort of code optimisation (see section 3.5.1).

20 Actually, this is a feature that was not available in older CUDA-enabled GPUs: it is only
available in models that support device overlap.

2L(Of course, computations must be performed on data that has already been transferred to the
device in a previous step and results can be moved back to the host only after the computations
are completed.

138 Chapter 4. Tests and Experimental Results

that groups together the tasks that make up a processing chain. The programmer is
given the possibility of assigning each process to a particular CUDA stream or even
partition a single process into two or three of these. Streams are then automatically
handled and scheduled by means of two functional units (a copy engine for memory
transfers and a kernel engine for GPU-based parallel computations) and a queuing
system called hyper queues in order to maximise stream overlap while assuring a
correct data flow.

host-to-device parallel device-to-host
memory transfer computation memory transfer
host-to-device parallel device-to-host
memory transfer computation memory transfer
host-to-device parallel device-to-host
memory transfer computation memory transfer

time

Figure 4.36: A graphical representation of task parallelism and CUDA streams. Each
box represents a task. The yellow rectangle in the middle highlights a
situation for which task parallelism is optimised.

4.5.2 Shared Memory

In addition to global memory, CUDA-enabled GPUs feature at least one extra
level of on-chip memory inside the Streaming Multiprocessors. This memory level
is much faster than global memory, both in terms of latency and throughput (it
is highly parallel) but it is also much smaller. This storage area is divided into
two conceptually different kinds of memory: an automatically managed L1 cache
between the CUDA cores and the global memory (or the L2 cache when present), and
a so-called shared memory, which is meant to be managed by the programmer. It
is called shared memory because the scope of its content is actually shared between
threads inside the same block. In many cases, exploiting the shared memory in a
clever way can help achieving much better performances, given its lower latency
and higher throughput. The idea is that of loading from global memory into shared
memory data that is meant to be accessed more than once (most of the times by
more than one thread) so to reduce the total number of global memory accesses. The
fact that shared memory is quite limited, though, raises the need to design “tiled”
versions of the desired algorithms. In a tiled algorithm, operations are carried out,
step by step, only on a limited subset of input data in order to give partial output
results that will become definitive only after the last iteration. A typical example of
an application that can easily exploit shared memory when it is performed using a
tiled algorithm is matrix multiplication. See the CUDA Programming Guide ([13])
for more details about shared memory management.

4.6. Conclusions 139

4.5.3 Shared Memory Privatisation and Atomic Opera-
tions

Shared memory can be also used in combination with atomic operations in order
to decrease the level of serialisation that they might cause. This is done by creating
different copies of the output data, so that each of these is private to each specific
thread block. Once each needed operation has been performed, all the partial (and
private) results are combined into one single definitive result in the global memory.
In this way, many output conflicts (those that actually raised the need for atomic
operations) are avoided and there is much less need for serialisation. At the same
time, atomic operations are performed faster, thanks to shared memory. Of course,
the operations involved in this process need to be associative and commutative.
Also, the size of the output result needs to be small, so that all the private copies
can fit in shared memory.

4.5.4 Pinned Host Memory

When memory transfers between host and device are performed, pinned host
memory has to be employed in order to avoid that the involved data is paged out
by the operating system while the displacement is taking place. The use of pinned
memory is provided automatically by the CUDA API memory transfer functions
and it is transparent to the programmer. However, this introduces some overhead:
for instance, when data is copied to device memory from host memory, it actually
needs to be copied to a pinned memory area before the displacement is actually
started, otherwise the same data could be potentially (and accidentally) paged out
by the operating system during the course of the slow transfer. This extra step
can be avoided if data is allocated into pinned memory in the first place. CUDA
provides special API functions to do just that. See the CUDA Programming Guide
([13]) for more details about pinned memory allocation.

4.6 Conclusions

The tests presented in section 4.3 confirm that a GP-GPU approach to phase-
vocoder-based sound manipulations generally leads to a good level of speed-up
with respect to plain CPU processing, especially when data transfers between host
and device are kept limited??. In some cases, this speed-up factor can be higher
than one or two dozens. This can lead to a dramatic shift in the execution speed
of phase-vocoder-based applications, allowing highly demanding processes to run
in real time on less powerful machines, provided that they are equipped with a
graphics processor. At the same time, CPU resources are freed and made available
to other possible concurring tasks.

22Thus, when considering the device-only version of the developed plugin opcodes.

140 Chapter 4. Tests and Experimental Results

Table 4.4: A recap of the results presented in section 4.3: GPU vs CPU speed-up
factors when considering DFT sizes between 2048 points and 16384 points
and varying hop size.

Module | Lowest speed-up factor | Highest speed-up factor
Gain 1.62 6.51
Filter 1.35 5.98
Stencil 1.31 6.51

Scale (0) 1.24 6.44

Scale (1) 0.74 4.90

Shift (0) 1.21 6.29

Shift (1) 0.73 4.84

Smooth 1.32 6.56
Blur 2.25 23.83
Mix 1.46 6.22
Morph 1.45 6.18

As it can be quickly learned from table 4.4 and 4.5, most of the modules
considered in this project have shown a homogeneous set of results (the blur module
being the only substantial exception). Eventually, these algorithms are characterised
by very short chains of simple operations to be carried out on each phase vocoder
channel (sometimes as short as one single operation). This model has proven to
benefit from a parallel computing scheme, especially when the total number of
channels is high, but it has also proven not to be optimal. In fact, much better
results can be achieved when longer chains of operations are required on the data
related to each channel. This can be learned from analysing the results obtained by
the blur module in particular, which stands out for its impressive speed-up ratios.
The scale and shift modules with formant conservation seem to be an exception
to this: even though they contain forward and inverse FFT stages (which were
proven to be well suited for GPU-based parallel processing), they seem to suffer
from synchronisation issues between different stages of these algorithms. Still, these
two modules also show the fastest rate of speed-up increase with respect to doubling
the DFT size: this leads to speculate that if larger DFT sizes had been tested?’
these modules could have shown speed-up ratios in between those from gain (i.e.,
from the main group of modules) and those from blur.

The three different versions of a CUDA-based spectral manipulation framework
(i.e., the three GP-GPU Csound instruments) that were analysed in this chapter
have shown the predicted behaviour. Instrument 2 is the slowest of them: it
seldom performs better than the original CPU version (still, it never performs
critically worse). Instrument 3 shows much better speed-up factors in general,

ZHowever, DFT sizes higher than 16834 are seldom useful in an audio processing framework.

4.6. Conclusions 141

especially for higher DFT sizes. Instrument 4 increases these speed-up factors
even more: it is in fact the best combination of GP-GPU tools for phase-vocoder-
based processing in Csound. There is no reason not to choose this solution in real
life applications. The significant gap between the performance of instrument 2
and that of instrument 3 suggests that what really makes the difference in the
performance boost gained when employing CUDA is actually the introduction of
the GPU-based phase vocoder analysis and re-synthesis stages provided by cudanal
and cudasynth (or, even better, cudanal2 and cudasynth2). Still, the results
obtained by instrument 4 show that CUDA-based spectral processing can provide
for an extra performance boost. Also, these results show how the whole phase
vocoder chain (analysis, processing and re-synthesis) can be cast to the GPU as a
single block, avoiding extra memory transfers, which are very expensive in terms of
latency. It is safe to speculate that if we had considered longer spectral processing
chains, intrument 4 would have performed even better if compared to intrument
3. This is because instrument 3 needs to bounce data between host and device at
every single processing step, while the device-only version only needs two memory
transfers in total.

Table 4.5: A recap of the results presented in section 4.3: GPU vs CPU speed-up factors
when considering a DFT size of 4096 points and varying hop size.

Module | Lowest speed-up factor | Highest speed-up factor
Gain 1.80 3.30
Filter 2.00 3.39
Stencil 1.80 3.29

Scale (0) 1.74 3.08

Scale (1) 1.28 1.61

Shift (0) 1.71 3.01

Shift (1) 1.24 1.58

Smooth 1.82 3.32
Blur 2.44 15.10
Mix 2.12 3.42
Morph 2.12 3.38

Considering instrument 4 in particular, the performance of CUDA-based spectral
processing Csound instruments ranges from being more than six times faster®* than
the original CPU-based opcodes to being slightly slower, depending on the employed
DFT size and hop size. The only cases for which there is a loss of execution speed
are typically those based on a 1024-points-wide spectral representation, which turns

24In the case of the blur module: much more than six times faster (see table 4.4).

142 Chapter 4. Tests and Experimental Results

out to be too narrow, on average?’, to actually exploit the parallel computation
horsepower of modern GPUs. Nevertheless, the performance degradation expe-
rienced with narrow spectral frames is usually a minor one: even in these cases
it does make sense to use the GP-GPU version of these algorithms so to free up
computational resources for other tasks on the host side. The user might not get
a direct benefit from the computations related to the specific GP-GPU module,
but an overall performance gain can be experienced in more complex and involved
applications that require a higher utilisation level of the CPU%C.

Overall, these results validate that the use of CUDA-based plugin opcodes for
spectral manipulations is indeed very attractive for Csound users?’. From a wider
perspective, they are also very promising in showing that the whole audio spectral
processing framework can be successfully ported to parallel computing architectures.

25The blur module is an exception to this: it actually gains in execution speed even when the
DF'T size is set to 1024 points.

26 Also note that 1024-points-based spectral processing is in general less problematic than ma-
nipulations based on wider spectral frames. Thus, it is less needy for a performance improvement.

270f course, they will need to own CUDA-enabled NVIDIA GPUs.

Conclusions

This thesis provides eloquent information about the practice of harnessing
graphics processors in the wide scope of audio programming and computing. A
particular focus is set on the investigation of the GP-GPU computing model
in relation to a set of widespread spectral manipulation processes in a Csound
environment.

Audio Computing in the GP-GPU Framework

From this thesis, it can be learned that using GPUs for audio computing can
have different outcomes in terms of performance, depending on the specific process
under analysis and its congeniality to the massively parallel scheme implied by any
modern GPU architecture. Research studies have been carried out mainly in those
areas of audio computing involving processes that are particularly well suited for a
parallel implementation. In these areas the GP-GPU computing framework often
proves to be much more efficient than normal CPU-based execution, even when the
SSE model is exploited on multi-core CPUs. Speed-up factors®® in the order of a
few dozens have been recorded in particularly favourable situations.

A key aspect in the field of GP-GPU computing is in fact the need for operations
to fit the GPU architecture well, meaning that, in order to be good candidates for
being cast to the GPU, they should be suitable for the SIMD computation model,
with a null or minimal level of data interdependency. More specifically, the best
results are achieved when a massively parallel SIMD model can be applied, meaning
that the data involved by one single instruction is at least in the order of hundreds
or, better, thousands of elements. This way, the huge amount of processing cores
featured on modern GPUs can be fully utilised.

Some simple algorithms are immediate candidates for a massively parallel scheme
but often there is not a sharp separation line between processes that are congenial
to the parallel scheme and those that are not. This is particularly true for more
involved algorithms that can be conceptually split in multiple steps: some steps
could be easily ported to the parallel scheme, while others might not. Some studies
have been carried out also focusing on operations characterised by a sub-optimal
level of potential parallelism or on operations which cannot be easily expressed in
an SIMD way. In some cases the aim is that of finding alternative computational
schemes for these operations in order to exploit a massively parallel architecture
nonetheless (the most obvious example is represented by recursive operations, like

28In favour of the GP-GPU model against the CPU-only scheme.

143

144 Conclusions

the computation of IIR filters*”). In other cases, the aim is that of testing the
performance of these sub-optimal parallel algorithms®’ on the GPU in order to
assess the degree of the hypothetical loss (if any). Indeed, another key aspect of
GP-GPU computing is represented by the possibility of relieving the CPU from
excessive computational load when GPU resources are available, thus allowing
more tasks to be carried out concurrently. This can be very appealing, especially
in general-purpose, highly multi-tasking systems that could possibly experience
situations of CPU overload while GPU resources are mostly idle. This is often
the case, indeed, in the scenario of pure audio processing®' on general-purpose
devices such as computers, tablets and smartphones. In this scenario, it is worth
considering the GP-GPU computing approach even for sub-optimal algorithms,
provided that they do not slow down the execution too much. As a matter of
fact, if the GPU-based performance of a specific process is comparable with the
one achieved with a standard CPU-based approach, it could be worth exploiting
the heterogeneous computing solution for resource economy reasons. Under this
perspective, highly efficient GP-GPU processes are even more valuable: not only
they can significantly improve the execution speed of computationally demanding
algorithms, but they also free up CPU resources and they allow more tasks to be
run simultaneously.

The scope of audio computing can be generally divided into two broad categories:
off-line/batch processing and real-time processing. While the batch framework is
particularly congenial to GPU-based implementations, when a GP-GPU computing
approach to real-time applications is considered, a few implications must be faced.
The real-time context is in fact one of the key aspects that needs to be considered
in the scope of High-Performance Audio Computing (HiPAC): unlike standard High
Performance Computing (HPC), HiPAC demands exceptional awareness of latency
and the many demands of real-time operation (see [68], [2] and [3]). The issue with
this context is related to the very nature of the throughput-oriented computation
model on which modern GPUs are based: in order to be effective, a massively parallel
GP-GPU algorithm needs to involve a large amount of data, which is typically
available in batch applications but not in low-latency real-time situations, no matter
the nature of the process (being it for sound analysis, manipulation or synthesis).
As a matter of fact, real-time applications need to split their operation in successive
processing steps that are meant to deal with limited portions of audio signals, hence
a limited amount of information is involved in each step and only a limited number
of processing elements can be considered. This is of course in contrast with the
ideal utilisation scheme of modern GPUs, and a trade-off between low-latency®* and
high-throughput GPU-operating implementations is met. Nevertheless, even though

29Gee section 2.8.

39Sometimes the number of elements involved by one instruction is very limited or perhaps the
algorithm itself needs a substantial degree of barrier synchronisation due to the presence of data
interdependency.

31Tn contrast, this might not be the case for applications that also involve a high degree of
graphics or video processing and rendering. GPU-based audio processing and synthesis in the
scope of videogams, for example, needs some extra care in terms of the availability of GPU
resources.

32Low-latency applications imply the use of small chunks of data per processing step.

Conclusions 145

real-time applications in the GP-GPU computing framework are not ideal, this
thesis provides many examples®® of such a scheme being successfully applied, and
in many cases being superior, in terms of performance, to a standard CPU-based
implementation, even in low-latency applications.

Another key concept that emerges from this study about audio-related GP-GPU

computing is the impact of the intrinsic time complexity of a specific algorithm
on the observed efficiency of a GPU-based implementation. Quite intuitively, if
the computation of one single operation on multiple data (in an SIMD fashion)
brings some kind of benefit to the processing speed, this improvement is expected
to build up significantly when many consecutive operations are needed in a more
complex algorithm. As a result, computation-bound algorithms are usually more
likely to benefit from the GP-GPU model, as opposed to memory bandwidth-
bound algorithms, which, on the GPU, tend to suffer from the presence of a more
articulated memory structure®*.
This concept gets even more decisive when considering the well-known, main
limitation of heterogeneous computing: data transfer latency between host and
device. Those algorithms characterised by a low level of computational complexity
on each data element might not experience a sufficient improvement build-up,
making the latency caused by memory transfers prevail on the speed-up obtained by
the parallel computation scheme, hence undermining the potential benefits of this
approach. This might happen even though a particular algorithm is theoretically
well suited for parallel processing but, of course, the more data is involved by
SIMD instructions, the less critical this problem gets, as memory transfer latency
is eventually hidden by a high computation throughput, anyway. Conversely, those
algorithms characterised by a sufficiently high level of computational complexity
on each data element might succeed in hiding memory transfer latency even when
they do not involve a huge amount of data in a parallel fashion.

Knowing that memory transfers are very expensive in terms of latency and, in
general, in terms of performance, it is very important to minimise the total number
of these. It is worth noting that, in the audio computing scope, some applications
do not need data to be sent to the device, as, in some cases, it could be generated
on the GPU directly. In this case, the generated data could be either needed by the
host for further use or it could be ready for playback. In the former scenario, at
least one memory displacement is inevitably needed (from device to host), while in
the latter scenario, sending out the audio signal to the HDMI port of the graphics
card might be an option, hence calling off the need for any memory transfer in
either direction®. In the majority of cases, however, data originates at host side and
needs to me moved to the device for manipulation purposes and then back to host
(for recording purposes, for instance). This is indeed the case for what concerns

33Many examples can be found in chapter 2. Still, also the empirical part of this work is
based on the assessment of real-time audio processes: in chapter 4 a performance improvement of
GPU-based spectral processing algorithms over CPU-based implementations of the same processes
is proven.

34However, the relatively recent introduction of cache memory on modern GPUs and the
possibility of exploiting shared memory (much faster than global memory) significantly reduce
this issue.

35Tt has to be said that this is actually a very unlikely and rare scenario.

146 Conclusions

all the applications addressed in the empirical part of this project (described in
chapter 3), and, in general, for what concerns the area of digital audio effects.

In any case, care must be taken so that the implementation of the desired
algorithm does not involve more memory transfers than actually needed. As already
mentioned, each memory transfer between host and device is very expensive in
terms of latency and strongly limits the potential benefits of a GP-GPU approach,
especially in a real-time scenario. In most cases it is possible to reduce the number
of transfers to only two. For instance, all the spectral processing applications that
have been developed in this work could be implemented in such a way that only
two memory transfers are needed. Also, the processing chain can be extended at
will without increasing the number of memory transfers beyond two. The longer
the processing chain within any two displacements, the finer the utilisation of GPU
resources (as discussed above), the better the performance improvement that can
be expected over the sequential model.

Spectral Processing of Audio in the GP-GPU Framework

In the particular case of phase vocoder processing, it has been shown that
merging the analysis stage with the manipulation and re-synthesis stages in a
compact GPU-based processing chain brings a remarkable improvement over a more
naive implementation that needs to move data back and forth at each processing step
(as well as for the analysis and re-synthesis stages). With the compact processing
chain solution developed in this project, spectral processing in a Csound environment
becomes a much lighter task for the CPU, and it can also be computed potentially
faster (sometimes much faster) than it would be if the original, CPU-based unit
generators were employed (at least this is what was measured on the two computer
systems used in this project).

It has been shown that performance varies quite significantly depending on the
spectral resolution considered for the target manipulations and on the rate at which
the processing steps are carried out (i.e., on the analysis hop size). Interestingly,
the higher the desired frequency resolution, the better the performance of the GPU
if compared to the original CPU-based implementation. This is a very significant
result: higher frequency resolution applications are in fact characterised by higher
computational complexity and, thus, by higher execution times on a standard
latency-orineted CPU. With a GP-GPU approach, however, execution time is cut
more severely exactly in the more critical situations. Not to mention, a higher
frequency resolution often translates in better quality audio effects. In the computer
systems employed for this project, the separation line between performance gain
and loss was found to sit amidst 1024-channels-wide and 2048-channels-wide phase
vocoder frames: on average, using a DFT size of 1024 points (or lower) for GPU-
based spectral manipulation processes did not provide any gain in performance?®,
while using a DFT size of 2048 points or higher provided for an ever growing
speed-up over CPU-based execution. Nevertheless, the performance degradation
experienced with narrow spectral frames is usually a minor one: even in these cases

36The blur module is an exception to this: it actually gains in execution speed even when the
DF'T size is set to 1024 points.

Conclusions 147

it does make sense to use the GP-GPU version of these algorithms so to free up
computational resources for other tasks on the host side. The user might not get
a direct benefit from the computations related to the specific GP-GPU module,
but an overall performance gain can be experienced in more complex and involved
applications that require a higher utilisation level of the CPU.

For what concerns the rate at which the processing steps are carried out (i.e.,
the analysis hop size), this parameter influences the performance of GPU-based
phase vocoder processing applications in a very predictable way: if processing a
single frame on the GPU brings about some level of speed-up over CPU execution,
then the repetition of this process at a high rate (i.e., low hop-size) has the effect
of magnifying the beneficial effect.

Actually, the performance of GPU-operating spectral processing algorithms does
not depend only on parameters such as DFT size and hop size, but it also depends
on the very nature of the specific algorithm under analysis. Among the nine Csound
modules for spectral manipulation addressed in this project, it was possible to
identify three main classes, depending on their performance in a parallel computing
framework. On the target systems®’, the majority of the tested algorithms showed
an intermediate behaviour characterised by a performance which is, on average,
roughly 3 times faster (in somewhat standard conditions) than that obtained by the
original CPU-based implementation (see chapter 4 for more details). A second class
of algorithms was found to perform a little worse, with speed-ups around 1.5, in
standard conditions. One module in particular (i.e., the application of spectral flux
blurring®®) was instead found to be particularly well suited for parallel processing
on GPUs and it showed speed-up factors between 3 and 15 when an intermediate
DFT size of 4096 was employed (varying significantly depending on the hop size
setting). The same module was found to perform almost 24 times faster than its
CPU-based counterpart in particularly favourable conditions, namely a high DFT
size of 16384 points and a low hop size of 128 samples.

To summarise, the results obtained in this thesis not only validate the pos-
sibility of using mid-range dedicated GPUs (instead of the CPU) for real-time
streaming phase vocoder processing in the Csound environment, but also prove
that a substantial (sometimes outstanding) performance gain can be obtained in
most situations, on the target systems. This means that more and better-sounding
digital audio effects can be applied in real-time on these systems and on similar
computers. These results also suggest that phase vocoder processing applications
are good candidates for parallel computing to the greatest extent, not only on
GPUs but also on other kinds of parallel processors characterised by a wide vector
architecture, which have increasingly gained popularity in the last few years (see
for instance AMD’s APUs and NVIDIA Tegra systems-on-a-chip). Thus, massively
parallel spectral audio processing should not be confined to dedicated hardware and
desktop computers but it could also be efficiently carried out on other platforms
such as gaming consoles, notebooks, tablets, smartphones and systems-on-a-chip.

3TThe system used for the tests were based on a quite old CPU (released in 2009) flanked by a
quite recent, mid-range dedicated GPU. See subsection 4.1.1 for detailed specifications.

38Gpecifically, the spectral flux blurring effect is achieved by means of applying a moving average
on the time evolution functions of each phase vocoder channel (both amplitude and frequency
components).

148 Conclusions

Future Work

A few directions for future work can be outlined. First of all, in addition to the

nine modules considered in this project, many more streaming spectral processing
Csound unit generators already exist, and it would be proper to transpose these
as well to the massively parallel computing model, as they are all likely to benefit
form it. Note that the GPU-based scale and shift modules are not really complete
yet, as they lack a verified implementation for their alternative mode of operation
which uses the true envelope estimation algorithm for formant conservation (see
appendix A).
All phase-vocoder-based unit generators in Csound actually feature a sliding mode
that can be employed for enhanced quality and reduced latency. As discussed in
subsection 3.5.3, a GPU-based sliding mode was not implemented in this project
for any of the addressed modules, even though it is expected to be a very good
candidate for the parallel computing model. This needs to be investigated further.
When the previously outlined shortcomings will be fixed, it would be nice to include
the resulting source code in a future Csound official release. For what concerns the
CUDA implementation, as it was already discussed in section 4.5, the developed
applications might need some level of code optimisation. It would be interesting to
implement and test the optimisation techniques outlined in section 4.5, in order to
see if further improvement can be achieved.

A huge limitation of this whole project is the fact that the developed applications
are only available to users that own NVIDIA GPUs, specifically those NVIDIA
GPUs that are CUDA-enabled®. In order to make these applications more general
and widely applicable on a broader set of devices, the OpenCL* standard must be
considered. In fact, OpenCL is an open, royalty-free, and, most importantly, cross-
platform standard for parallel programming of diverse processors found in personal
computers, servers, mobile devices and embedded platforms. Note that, if an
OpenCL version of the GPU-based Csound modules was desired, a complete rework
of the actual implementations would be needed. In this case, it would be interesting
to compare the performance results obtained by CUDA-based and OpenCL-based
implementations of the same algorithm, running on the same NVIDIA device and/or
on comparable GPUs from NVIDIA and AMD.

Finally, a further investigation of an even more massively parallel computing
scheme applied to spectral processing could be carried out by means of running the
addressed applications on multiple GPUs, simultaneously, in the same system. This
is a parallel computing architecture that is quickly and easily constructed from
readily available hardware, and it is well supported by both CUDA and OpenCL.

39All recent releases by NVIDIA are actually compatible with CUDA functionalities.
40 OpenCL: Open Computing Language

Appendix A

True Envelope Estimation
Algorithm for Formant

Conservation in scale and shift
modules (Mode 2)

This appendix is thought as a continuation to 3.6.4 and 3.6.5 subsections. It
was included in this work in order to report a possible CUDA-based implementation
for mode 2 in the scale and shift modules. In fact, for the development of these
two plugin opcodes, mode 2 was not addressed in chapter 3. The reason for this is
that mode 2 could not be tested due to a discrepancy between the CUDA versions
and the original CPU-only version, which caused them to run a different number of
iterations with a given input signal and a given number of cepstral coefficients to
be preserved. Unfortunately there was not enough time to properly analyse and
fix this problem, but the developed code is not buggy per se and it returns the
expected results from a perceptual point of view.

The true envelope estimation technique ([64] and [65]) is more accurate than

simple cepstrum liftering (i.e., it produces smoother envelopes), but it is also
computationally more demanding.
This method is again based on the concept of cepstral smoothing and consists
of an iterative process that progressively adjusts successive estimations of the
spectral envelope, until a particular exit condition is met. The algorithm iteratively
updates the smoothed input spectrum A;j with the maximum between the original
spectrum and the current cepstral representation:

Airy = maz(log(| X1]), Cipny) (A.1)

and applies the cepstral smoothing to A;j to obtain Cj, in the exact same way
as it is carried out in mode 1. The algorithm stops if for all k£ the relation

is true with ¢ being a user supplied threshold.
In the performance function of cudapvscale and cudapvscale2 this whole
process is implemented as follows:

149

Appendix A. True Envelope Estimation Algorithm for Formant
150 Conservation in scale and shift modules (Mode 2)

else if (keepform==2) {

int cond = 1;

if (coefs<l) coefs = 80;

cufftEnv = (cufftComplex*) p->deviceEnv;

cufftCepstrum = (cufftComplex*) p->deviceCepstrum;

cufftTrueEnv = (cufftComplex*) p->deviceTrueEnv;

cufftSmoothTrueEnv = (cufftComplex*) p->deviceSmoothTrueEnv;
thrust::device_ptr<float> dev_ptrl = thrust::device_pointer_cast(fout);
thrust::fill(dev_ptrl, dev_ptril+framelength, -1.0f);

takeLog<<<p->gridSize,p->blockSize>>>(fin, p->deviceEnv, Nhalf);

// loop initialization stage: smooth the original log spectral envelope

// first, take the fft of the log of the spectral envelope...

if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftEnv,cufftCepstrum)!=
CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");

if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message(csound, "CUDA error: Failed to synchronize\n");

// liftering stage
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum, coefs, Nhalf);

// take the inverse fft of the liftered cepstrum...

if (cufftExecC2R(p->inversePlan,cufftCepstrum,
(cufftReal*)cufftSmoothTrueEnv) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");

if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

while (cond) {

// update the smoothed input spectrum:
update<<<p->gridSize,p->blockSize>>>(p->deviceEnv, p->deviceTrueEnv,
p—>deviceSmoothTrueEnv, Nhalf);

// take the fft of the true envelope...

if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftTrueEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");

if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// liftering stage
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum, coefs, Nhalf);

// take the inverse fft of the liftered cepstrum...

if (cufftExecC2R(p->inversePlan,cufftCepstrum,
(cufftReal*)cufftSmoothTrueEnv) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");

if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// test the exit condition:
test<<<p->gridSize,p->blockSize>>>(p->deviceTrueEnv,
p—>deviceSmoothTrueEnv,
p->deviceMask, Nhalf);
thrust: :device_ptr<int> dev_ptrd =
thrust::device_pointer_cast(p->deviceMask);

151

if ((thrust::reduce(dev_ptr4, dev_ptr4+Nhalf)) == 0)
cond = 0;

}
expon<<<p->gridSize,p->blockSize>>>(p->deviceSmoothTrueEnv, Nhalf);

thrust::device_ptr<float> dev_ptr3 =
thrust::device_pointer_cast(p->deviceSmoothTrueEnv) ;
max = *(thrust::max_element (dev_ptr3, dev_ptr3+Nhalf));

freqScaleFormant<<<p->gridSize,p->blockSize>>>(fin, fout,
p—>deviceSmoothTrueEnv,
pscal, max, Nhalf);

fixPVandGain<<<p->gridSize,p->blockSize>>>(fin, fout, g, framelength);

3

The framework here is very similar to that on which mode I is based, the only
difference being the presence of a while loop in which spectral smoothing is iterated
and the spectral envelope is updated by means of the update() kernel:
__global__ void
update(float* original, float* newTE, float* current, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
current[i] /= nhalf;
newTE[i] = (original[i] < current[i]) ? current[i] : originallil;
}
}

Finally, the exit condition A.2 is tested by means of the test () kernel:

__global__ void
test(float* nonSmoothed, float* smoothed, int* mask, int nhalf) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
int diff;
if (i < nhalf) {
diff = fabs(nonSmoothed[i] - smoothed[i]/nhalf);
mask[i] = (diff > 0.23) ? 1 : 0; // here 0.23 is the threshold

}
by

Here each thread fills the corresponding element of a boolean mask with 1 or 0
depending on the result of comparing the difference between smoothed and non-
smoothed envelope values to the threshold (equation A.2). After the boolean mask
is built, all its elements are summed (using thrust: :reduce()) and the result of
this summation is compared with zero in order to assess the exit condition'.

The kernel for the actual frequency scaling and the one for completing the output
phase vocoder frame are not different from those employed in mode 1.

Of course, cudapvshift and cudapvshift2 are based on the very same structure.
The only difference is in the kernel used for frequency shifting, instead of frequency
scaling: freqScaleFormant () needs to be swapped with freqShiftFormant () (see
section 3.6.5).

!There is definitely room for improvement in the way the whole process of checking the exit
condition is implemented.

Appendix B
Plugin Opcodes: CUDA C Scripts

In this appendix, the nine CUDA C' shared objects for streaming phase vocoder
processing that were presented and described in chapter 3 are reported in their
entirety. They can be easily compared by the reader to the original C/C++ versions,
which are included in the Csound source code'. For each module, both the host
memory input-out version and the device-only version are reported for completeness.

Common Functions

A few common functions are employed in many plugin opcodes. These are all
reported in this section for convenience.

handleCudaError ()

This function is used to inform the user of a device memory management error
by printing an error message to the screen:

static void handleCudaError (CSOUND #*csound, cudaError_t error) {
if (error!= cudaSuccess) {
csound->Message(csound, "%s in %s at line %d\n",
cudaGetErrorString(error),
__FILE_ , _LINE_);
return csound->InitError(csound, "Oops, something went wrong"
"while managing the GPU memory \n");

AuxCudaAlloc()

This function is used to allocate memory in the device and set it to zero:

static void AuxCudaAlloc(int size, AUXCH *p){
float *mem;
cudaMalloc (&mem, size);
cudaMemset (mem, 0, size);
p->auxp = mem;
p—>size size;

L Csound’s source code is available at http://csound.github.io

153

http://csound.github.io

154 Appendix B. Plugin Opcodes: CUDA C Scripts

Gaitn Module

cudapvsgain

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsgain {

OPDS h;
PVSDAT =*fout;

PVSDAT xfa;

MYFLT *xkgain;

float* deviceFrame; // pointer to device memory

int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
uint32 lastframe;

} CUDAPVSGAIN;

// kernel for scaling PV amplitudes
__global__
void devicepvsgain (float* deviceFrame, MYFLT gain, int framesize) {
int i = threadIldx.x + blockDim.x * blockIdx.x;
if(i < framesize>>1)
deviceFrame[i<<1] *= gain;
X

static int free_device(CSOUND* csound, voidx* pp){
CUDAPVSGAIN* p = (CUDAPVSGAIN*) pp;
cudaFree(p->deviceFrame) ;
return 0OK;

}
static int cudapvsgainset(CSOUND *csound, CUDAPVSGAIN *p) {

int32 N = p->fa->N;

int size = (N+2) * sizeof(float);
int maxBlockDim;

int SMcount;

int totNumThreads = (N+2)/2;
cudaError_t error;

cudaDeviceProp deviceProp;

cudaGetDeviceProperties (&deviceProp,0) ;

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message(csound, "cudapvsgain running on device ¥%s
(capability %d.%d)\n",
deviceProp.name, deviceProp.major,
deviceProp.minor);

error = cudaMalloc(&p->deviceFrame, size);
handleCudaError(csound, error);

p—>fout->sliding = O;
if (p—>fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2))

csound->AuxAlloc(csound, (N + 2) * sizeof(float), &p->fout->frame);

p—>blockSize = (((totNumThreads/SMcount)/32)+1)*32;

155

¥

if (p—>blockSize > maxBlockDim) p->blockSize = maxBlockDim;

p—>gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;

p—>fout->overlap

p—>fout->winsize = p->fa->winsize;

p—>fout->wintype = p->fa->wintype;

p—>fout->format = p->fa->format;

p—>fout—>framecount = 1;

p—>lastframe = O;

if (UNLIKELY(!(p->fout->format == PVS_AMP_FREQ) ||
(p—>fout->format == PVS_AMP_PHASE)))

p—>fa->overlap;

return csound->InitError(csound, Str("cudapvsgain: signal format "
"must be amp-phase or amp-freq."));

csound->RegisterDeinitCallback(csound, p, free_device);
return 0OK;

static int cudapvsgain(CSOUND *csound, CUDAPVSGAIN *p)

{

3

int32 framelength = p->fa->N + 2;
int size = (int) framelength * sizeof(float);
MYFLT gain = *p->kgain;

if (p->lastframe < p->fa->framecount) {
cudaMemcpy (p->deviceFrame, p->fa->frame.auxp, size,
cudaMemcpyHostToDevice) ;

devicepvsgain<<<p->gridSize,p->blockSize>>>(p->deviceFrame, gain,

framelength) ;
cudaMemcpy (p->fout->frame.auxp, p->deviceFrame, size,
cudaMemcpyDeviceToHost) ;
p—>fout->framecount = p->fa->framecount;
p—>lastframe = p->fout->framecount;

3

return 0K;

static OENTRY localops[] = {

{"cudapvsgain", sizeof (CUDAPVSGAIN), 0, 3, "f", "fk",

(SUBR) cudapvsgainset, (SUBR) cudapvsgain, NULL}

¥

extern "C" {
LINKAGE

¥

cudapvsgain2

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsgain2 {

OPDS h;
PVSDAT *fout;
PVSDAT x*fa;

MYFLT *kgain;

int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
uint32 lastframe;

CUDAPVSGAIN2;

156 Appendix B. Plugin Opcodes: CUDA C Scripts

// kernel for scaling PV amplitudes
__global__
void applygain(float* output, float* input, MYFLT g, int length) {
int i = threadIdx.x + blockDim.x * blockIdx.x;
int j = i<<1;
if (j < length) {}
output[j] = (float) input[j] * g;
output [j+1] = input[j+1];

}

static int free_device(CSOUND* csound, voidx pp){
CUDAPVSGAIN2* p = (CUDAPVSGAIN2%) pp;
cudaFree (p->fout->frame.auxp) ;
return OK;

}
static int cudapvsgain2set (CSOUND *csound, CUDAPVSGAIN2 *p){

int32 N = p->fa->N;

int size = (N+2) * sizeof(float);
int maxBlockDim;

int SMcount;

int totNumThreads = (N+2)/2;

cudaDeviceProp deviceProp;
cudaGetDeviceProperties (&deviceProp,0) ;
maxBlockDim = deviceProp.maxThreadsPerBlock;
SMcount = deviceProp.multiProcessorCount;
csound->Message (csound,
"cudapvsgain2 running on device %s (capability %d.%d)\n"

deviceProp.name, deviceProp.major,
deviceProp.minor) ;

p—>fout->sliding = O;

if (p->fout->frame.auxp == NULL || p->fout->frame.size < size)
AuxCudaAlloc(size, &p->fout->frame);

p—>blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p->blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p->gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;
p—>fout->overlap
p—>fout->winsize = p->fa->winsize;
p—>fout->wintype = p->fa->wintype;
p—>fout->format = p->fa->format;
p—>fout->framecount = 1;
p—>lastframe = O;

p—>fa->overlap;

csound->RegisterDeinitCallback(csound, p, free_device);
return OK;

157

static int cudapvsgain2(CSOUND *csound, CUDAPVSGAIN2 *p)
{

int32 framelength = p->fa->N + 2;

MYFLT gain = *p->kgain;

float* fo = (float*) p->fout->frame.auxp;

float* fi = (floatx*) p->fa->frame.auxp;

if (p->lastframe < p->fa->framecount) {
applygain<<<p->gridSize,p->blockSize>>>(fo, fi, gain, framelength);
p—>fout->framecount = p->fa->framecount;
p—>lastframe = p->fout->framecount;

3

return 0K;

3

static OENTRY localops[] = {
{"cudapvsgain2", sizeof (CUDAPVSGAIN2), O, 3, "f", "fk",
(SUBR) cudapvsgain2set, (SUBR) cudapvsgain2, NULL}
s

extern "C" {
LINKAGE
}

158 Appendix B. Plugin Opcodes: CUDA C Scripts

Filter Module

cudapvsfilter

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsfilter {
0PDS h;
PVSDAT xfout;
PVSDAT xfin;
PVSDAT *fmask;
MYFLT xkdepth;
MYFLT *igain;

float* devicelnput; // pointer to device memory (input frame)
float*x deviceQutput; // pointer to device memory (output frame)
float* deviceMask; // pointer to device memory (mask frame)

int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
uint32 lastframe;

} CUDAPVSFILTER;

// kernel for filtering in the frequency domain, given a spectral mask

__global__

void filter(float* input, float* output, float* mask, MYFLT wet,
MYFLT dry, float g, int length) {

int i = threadIldx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j < length) {

output[j] = (float) (input[jl*(dry+mask[jl*wet))x*g;
output [j+1] = input[j+1];

}

static int fsigs_equal(const PVSDAT *fl, const PVSDAT *f2)
{
if (
(f1->sliding == f2->sliding) &&
(f1->overlap == f2->overlap) &&
(f1->winsize == f2->winsize) &&
(f1->wintype == f2->wintype) && /* harsh, maybe... */
(f1->N == £2->N) &&
(f1->format == f2->format)
) return 1;
return O;

3

static int free_device(CSOUND* csound, void* pp) {
CUDAPVSFILTER* p = (CUDAPVSFILTER*) pp;
cudaFree(p->devicelnput);
cudaFree (p->deviceQutput) ;
cudaFree (p->deviceMask) ;
return OK;

159

static int cudapvsfilterset(CSOUND *csound, CUDAPVSFILTER *p)
{

int N = p->fin->N;

int size = (N+2) * sizeof(float);

int maxBlockDim;

int SMcount;

int totNumThreads = (N+2)>>1;

cudaError_t error;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties (&deviceProp,0) ;

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvsfilter running on device s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// device memory allocation (input data)
error = cudaMalloc(&p->deviceInput, size);
handleCudaError(csound, error);

// device memory allocation (input mask)
error = cudaMalloc(&p->deviceMask, size);
handleCudaError(csound, error);

// device memory allocation and set to zero (output data to be computed)
error = cudaMalloc(&p->deviceQutput, size);

handleCudaError(csound, error);

cudaMemset (p->deviceOutput,0,size);

if (UNLIKELY(p->fin == p->fout || p->fmask == p->fout))
csound->Warning(csound, Str("Unsafe to have same

fsig as in (or filter) and out"));
if (UNLIKELY(! (p->fout->format == PVS_AMP_FREQ) ||

(p—>fout->format == PVS_AMP_PHASE)))
return csound->InitError(csound, Str("cudapvsfilter: signal format "

"must be amp-phase or amp-freq."));

p—>fout->sliding = 0;

if (p—>fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2))
csound->AuxAlloc(csound, sizeof (float) * (N + 2), &p->fout->frame);

p—>blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p->blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p->gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;
p—>fout->overlap
p—>fout->winsize = p->fin->winsize;
p—>fout->wintype = p->fin->wintype;
p—>fout->format = p->fin->format;
p—>fout->framecount = 1;

*p->igain = 1.0;

p—>lastframe = O;

p->fin->overlap;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0K;

160 Appendix B. Plugin Opcodes: CUDA C Scripts

static int cudapvsfilter (CSOUND *csound, CUDAPVSFILTER *p) {
int N = p->fout->N;
int framelength = N+2;
int size = framelength * sizeof(float);
float* fout = (float*) p->fout->frame.auxp;
float* fin = (float*) p->fin->frame.auxp;
float* fmask = (float*) p->fmask->frame.auxp;
MYFLT depth = *p->kdepth;
float gain = (float) *p->igain;
MYFLT dirgain;

if (UNLIKELY(fout == NULL)) goto erril;
if (UNLIKELY(!fsigs_equal(p—>fin,p->fmask))) goto err2;

if (p—>lastframe < p->fin->framecount) {

cudaMemcpy (p->deviceInput,fin,size, cudaMemcpyHostToDevice) ;
cudaMemcpy (p->deviceMask, fmask,size, cudaMemcpyHostToDevice) ;

// clip depth between zero and one...
depth = depth >= 0 ? (depth <= 1 ? depth : 1) : FL(0.0);
dirgain = (1 - depth);

// filtering on the GPU:
filter<<<p->gridSize,p->blockSize>>>(p->devicelnput,

p—>deviceOutput, p->deviceMask,
depth, dirgain, gain, framelength);

cudaMemcpy (fout ,p->deviceOutput,size, cudaMemcpyDeviceToHost) ;

p—>fout->framecount = p->lastframe = p->fin->framecount;

}
return 0OK;

errl: return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsfilter: not initialised"));
err2: return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsfilter: formats are
different."));
}

static OENTRY localops[] = {
{"cudapvsfilter", sizeof (CUDAPVSFILTER),0, 3, "f", "ffxp",
(SUBR) cudapvsfilterset, (SUBR) cudapvsfilter},
s

extern "C" {
LINKAGE
}

161

cudapvsfilter?2

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsfilter2 {
OPDS h;
PVSDAT *fout;
PVSDAT *fin;
PVSDAT *fmask;
MYFLT *kdepth;
MYFLT *igain;
int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
uint32 lastframe;
} CUDAPVSFILTER2;

// kernel for filtering in the frequency domain, given a spectral mask
__global__
void filter(float* input, float* output, float* mask, MYFLT wet,
MYFLT dry, float g, int length) {
int i threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j < length) {
output [j] = (float) (input[jl*(dry+mask[j]*wet))x*g;
output[j+1] = input[j+1];

}

static int fsigs_equal(const PVSDAT *fl, const PVSDAT *f2)
{
if (
(f1->sliding == f2->sliding) &&
(f1->overlap == f2->overlap) &&
(f1->winsize == f2->winsize) &&
(f1->wintype == f2->wintype) && /* harsh, maybe... */
(f1->N == £2->N) &&
(fi->format == f2->format)
) return 1;
return O;

¥

static int free_device(CSOUND* csound, voidx pp){
CUDAPVSFILTER2* p = (CUDAPVSFILTER2%) pp;
cudaFree (p—>fout->frame.auxp) ;
return 0OK;

}

static int cudapvsfilter2set(CSOUND *csound, CUDAPVSFILTER2 *p)
{

int N = p->fin->N;

int size = (N+2) * sizeof(float);

int maxBlockDim;

int SMcount;

int totNumThreads = (N+2)>>1;

// get info about device

cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp,0) ;
maxBlockDim = deviceProp.maxThreadsPerBlock;
SMcount = deviceProp.multiProcessorCount;

162 Appendix B. Plugin Opcodes: CUDA C Scripts

csound->Message(csound, "cudapvsfilter2 running on device %s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

if (UNLIKELY(p->fin == p->fout || p->fmask == p->fout))
csound->Warning(csound, Str("Unsafe to have same fsig as in
(or filter) and out"));

p—>fout->sliding = 0;

if (p->fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2))
AuxCudaAlloc(size, &p->fout->frame);

p—>blockSize = (((totNumThreads/SMcount)/32)+1)*32;
if (p—>blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p->gridSize = totNumThreads / p->blockSize + 1;
p—>fout->N = N;

p—>fout->overlap = p->fin->overlap;
p—>fout->winsize = p->fin->winsize;
p—>fout->wintype = p->fin->wintype;

p—>fout->format = p->fin->format;
p—>fout->framecount = 1;

*p->igain = 1.0;

p—>lastframe = O;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0K;

3

static int cudapvsfilter2(CSOUND *csound, CUDAPVSFILTER2 *p) {
int N = p->fout->N;
int framelength = N+2;
float* fout = (float*) p->fout->frame.auxp;
float* fin = (float*) p->fin->frame.auxp;
float* fmask = (float*) p->fmask->frame.auxp;
MYFLT depth = *p->kdepth;
float gain = (float) *p->igain;
MYFLT dirgain;

if (UNLIKELY(fout == NULL)) goto errl;
if (UNLIKELY(!fsigs_equal (p->fin,p->fmask))) goto err2;

if (p—>lastframe < p->fin->framecount) {

// clip depth between zero and one...
depth = depth >= 0 ? (depth <= 1 ? depth : 1) : FL(0.0);
dirgain = (1 - depth);

// filtering on the GPU:

filter<<<p->gridSize,p->blockSize>>>(fin, fout, fmask,
depth, dirgain, gain,
framelength) ;

p—>fout->framecount = p->lastframe = p->fin->framecount;

¥

return 0OK;

163

errl: return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsfilter2: not initialised"));

err2: return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsfilter2: formats are different."));

}

static OENTRY localops[] = {

{"cudapvsfilter2", sizeof (CUDAPVSFILTER2),0, 3, "f", "ffxp",
(SUBR) cudapvsfilter2set, (SUBR) cudapvsfilter2},

s

extern "C" {
LINKAGE
}

164

Appendix B. Plugin Opcodes:

CUDA C Scripts

Stencil Module

cudapvstencil

#include <csdl.h>

#include <pstream.h>

#include <thrust/replace.h>
#include <thrust/transform.h>
#include <thrust/device_ptr.h>

#include
#include

<thrust/functional.h>
<thrust/execution_policy.h>

typedef struct _cudapvstencil {

OPDS
PVSDAT
PVSDAT
MYFLT
MYFLT
MYFLT
FUNC
floatx*
MYFLT*

int
int
uint32

h;
*fout;
*xfin;
*kgain;
*xklevel;
*xifn;
*func;

devFrame; // device memory pointer (input/output frame)

devStencil; // device memory pointer

// (function table to use as stencil)
gridSize; // number of blocks in the grid (1D)
blockSize; // number of threads in one block (1D)

lastframe;

} CUDAPVSTENCIL;

struct _is_less_than_zero {

__host
¥
__global

int i

int j
if (4

if (frame[j]l < (((float) stencil[i])x*level)) {

__device

bool operator() (float x) {return x < 0.0f;}

void stencilkernel (float* frame, MYFLT* stencil, float level,

N

float gain, int length) {
threadIdx.x + blockDim.x * blockIdx.x;

i1,
length) {

frame[j] *= gain;

}
}

static int free_device(CSOUND* csound, voidx pp) {
CUDAPVSTENCIL* p = (CUDAPVSTENCIL*) pp;

cudaFree (p->devFrame) ;
cudaFree (p->devStencil);
return 0OK;

3

static int cudapvstencilset(CSOUND *csound, CUDAPVSTENCIL *p)

{
int32

N = p—>fin->N;

int framelength = N+2;
int chans = framelength>>1;

int size = framelength*sizeof (float);
int stencilSize = chans*sizeof (MYFLT);

165

int maxBlockDim;

int SMcount;

int totNumThreads = chans;
cudaError_t error;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp,0);

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvstencil running on device %s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// device memory allocation (PV frame)
error = cudaMalloc(&p->devFrame, size);
handleCudaError(csound, error);

// device memory allocation (stencil)
error = cudaMalloc(&p->devStencil, stencilSize);
handleCudaError(csound, error);

p->fout->sliding = 0;

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p—>blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;

p—>fout->overlap = p->fin->overlap;

p—>fout->winsize = p->fin->winsize;

p—>fout->wintype = p—->fin->wintype;

p—>fout->format = p->fin->format;

p—>fout->framecount = 1;

p—>lastframe = O;

p—>fout->NB = chans;

if (p—>fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2))
csound->AuxAlloc(csound, (N + 2) * sizeof(float), &p->fout->frame);

if (UNLIKELY(! (p->fout->format == PVS_AMP_FREQ) ||
(p->fout->format == PVS_AMP_PHASE)))
return csound->InitError(csound, Str("cudapvstencil: signal format "
"must be amp-phase or amp-freq."));

p—>func = csound->FTnp2Find(csound, p->ifn);
if (p—>func == NULL)
return 0OK;

if (UNLIKELY(p->func->flen + 1 < (unsigned int)chans))

return csound->InitError(csound, Str("cudapvstencil: ftable needs"
"to equal the number of bins"));

cudaMemcpy (p—>devStencil, p->func->ftable,
stencilSize, cudaMemcpyHostToDevice);

thrust::device_ptr<MYFLT> dev_ptr =
thrust::device_pointer_cast(p->devStencil);

_is_less_than_zero pred;

166 Appendix B. Plugin Opcodes: CUDA C Scripts

thrust::replace_if (thrust::device, dev_ptr,
dev_ptr + chans, pred, (MYFLT) 0.0);

cudaMemcpy (p->func->ftable, p->devStencil,
stencilSize, cudaMemcpyDeviceToHost) ;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;

3

static int cudapvstencil (CSOUND *csound, CUDAPVSTENCIL *p)
{

int framelength = p->fin->N + 2;

int chans = framelength>>1;

int size = framelength * sizeof(float);

float* fout = (float *) p->fout->frame.auxp;

float* fin = (float *) p->fin->frame.auxp;

float g = fabsf((float)*p->kgain);

float level = fabsf((float)*p->klevel);

if (UNLIKELY(fout == NULL)) goto errl;
if (p->lastframe < p->fin->framecount) {
cudaMemcpy (p->devFrame, fin, size, cudaMemcpyHostToDevice);
stencilkernel<<<p->gridSize,p->blockSize>>>(p->devFrame,
p—>devStencil, level,
g, chans);

cudaMemcpy (fout, p->devFrame, size, cudaMemcpyDeviceToHost);

p—>fout->framecount = p->lastframe = p->fin->framecount;

}
return 0OK;
errl:
return csound->PerfError(csound, p->h.insdshead,
Str("cudapvstencil: not initialised"));
}

static OENTRY localops[] = {
{"cudapvstencil", sizeof (CUDAPVSTENCIL), TR, 3, "f", "fkki",
(SUBR) cudapvstencilset, (SUBR) cudapvstencil}

+;

extern "C" {
LINKAGE

}

cudapvstencil?2

#include <csdl.h>

#include <pstream.h>

#include <thrust/replace.h>
#include <thrust/transform.h>
#include <thrust/device_ptr.h>
#include <thrust/functional.h>
#include <thrust/execution_policy.h>

167

typedef struct _cudapvstencil2 {
0PDS h;
PVSDAT *fout;
PVSDAT *fin;
MYFLT *xkgain;
MYFLT *klevel;
MYFLT xifn;
FUNC *func;
MYFLT* devStencil; // device memory pointer
// (function table to use as stencil)
int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
uint32 lastframe;
} CUDAPVSTENCIL2;

struct _is_less_than_zero {
__host__ __device
bool operator() (float x) {return x < 0.0f;}
¥

__global _
void stencilkernel (float* output, float* input, MYFLT* stencil,
float level, float gain, int length) {

int i = threadIldx.x + blockDim.x * blockIdx.x;
int j = i<<{;
if (i < length) {

if (input[j] < (((float) stencil[i])*level)) {
output[j] = input[j] * gain;
output[j+1] = input[j+1];

else {
output [j] = input[j];
output[j+1] = input[j+1];

}
}

static int free_device(CSOUND* csound, void* pp){
CUDAPVSTENCIL2* p = (CUDAPVSTENCIL2%) pp;
cudaFree(p->fout->frame.auxp) ;
cudaFree(p->devStencil);
return 0OK;

}

static int cudapvstencil2set(CSOUND *csound, CUDAPVSTENCIL2 *p)
{

int32 N = p->fin->N;

int framelength = N+2;

int chans = framelength>>1;

int size = framelength*sizeof (float);

int stencilSize = chans*sizeof (MYFLT);

int maxBlockDim;

int SMcount;

int totNumThreads = chans;
cudaError_t error;

// get info about device
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp,0) ;

168 Appendix B. Plugin Opcodes: CUDA C Scripts

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvstencil2 running on device %s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// device memory allocation (stencil)
error = cudaMalloc(&p->devStencil, stencilSize);
handleCudaError(csound, error);

p—>fout->sliding = 0;

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p—>blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;

p—>fout->overlap = p->fin->overlap;

p—>fout->winsize = p->fin->winsize;

p—>fout->wintype = p—>fin->wintype;

p—>fout->format = p->fin->format;

p—>fout->framecount = 1;

p—>lastframe = O;

p—>fout->NB = chans;

if (p->fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2))
AuxCudaAlloc(size, &p->fout->frame);

p—>func = csound->FTnp2Find(csound, p->ifn);
if (p->func == NULL)
return 0K;

if (UNLIKELY(p->func->flen + 1 < (unsigned int)chans))
return csound->InitError(csound, Str("cudapvstencil2:
ftable needs to equal "
"the number of bins"));

cudaMemcpy (p—>devStencil, p->func->ftable,
stencilSize, cudaMemcpyHostToDevice);

thrust::device_ptr<MYFLT> dev_ptr =
thrust::device_pointer_cast(p->devStencil);

_is_less_than_zero pred;
thrust::replace_if (thrust::device, dev_ptr, dev_ptr + chans,
pred, (MYFLT) 0.0);

cudaMemcpy (p->func->ftable, p->devStencil,
stencilSize, cudaMemcpyDeviceToHost) ;

csound->RegisterDeinitCallback(csound, p, free_device);

return OK;

}

static int cudapvstencil2(CSOUND #*csound, CUDAPVSTENCIL2 *p)
{

int framelength = p->fin->N + 2;

int chans = framelength>>1;

float* fout = (float *) p->fout->frame.auxp;

169

float* fin = (float *) p->fin->frame.auxp;
float g = fabsf((float)*p->kgain);
float level = fabsf((float)*p->klevel);

if (UNLIKELY(fout == NULL)) goto erri;
if (p->lastframe < p->fin->framecount) {

stencilkernel<<<p->gridSize,p->blockSize>>>(fout, fin,
p—>devStencil, level,
g, chans);

p—>fout->framecount = p->lastframe = p->fin->framecount;

}

return 0OK;
errl:
return csound->PerfError(csound, p->h.insdshead,
Str("cudapvstencil2: not initialised"));

static OENTRY localops[] = {

{"cudapvstencil2", sizeof (CUDAPVSTENCIL2), TR, 3, "f", "fkki",
(SUBR) cudapvstencil2set, (SUBR) cudapvstencil2}

extern "C" {

LINKAGE

170

Appendix B. Plugin Opcodes: CUDA C Scripts

Scale Module

cudapvscale

// Consider writing another "freqScaleBasic" kernel for scaling
// upwards only (without atomic operations, as they are not needed)

#include
#include
#include
#include
#include
#include
#include

<csdl.h>

<pstream.h>

<cufft.h>
<thrust/extrema.h>
<thrust/device_ptr.h>
<thrust/fill.h>
<thrust/reduce.h>

typedef struct _cudapvscale {

OPDS
PVSDAT
PVSDAT
MYFLT
MYFLT
MYFLT
MYFLT
AUXCH
floatx*
float*
floatx*

float*
floatx*
floatx*

intx*

h;
*xfout;
*xfin;
*xkscal;
*keepform;
*gain;
*xcoefs;
fenv, ceps;
deviceInput; // pointer to device memory (input frame)
deviceOutput; // pointer to device memory (output frame)
deviceEnv; // pointer to device memory

// (amplitude spectral envelope frame)
deviceCepstrum; // pointer to device memory (cepstrum frame)
deviceTrueEnv; // pointer to device memory (true envelope)
deviceSmoothTrueEnv; // pointer to device memory

// (true envelope, smoothed)

deviceMask; // pointer to device memory

// (boolean mask for condition checking)

int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
cufftHandle forwardPlan; // forward cuFFT plan
cufftHandle inversePlan; // inverse cuFFT plan
uint32 lastframe;

} CUDAPVSCALE;

// kernel for frequency scaling without formant keeping (part one)
__global_ _
void freqScaleBasic(float* input, float* output,

int i
int j
int N

MYFLT scaleFactor, int nhalf) {
threadIdx.x + blockDim.x*blockIdx.x;
(ik<1) + 2;
nhalf<<1;

int newchan;
if (i < nhalf-1) {
newchan = (int) (((i+1)*scaleFactor)+0.5) << 1;
if (newchan < N && newchan > 0) {
atomicExch(&output [newchan] ,input[j]); // move amplitude data

// to new positions

atomicExch (&output [newchan+1],

(float) (input [j+1]*scaleFactor)); // change bin
// frequencies

171

// kernel for frequency scaling
// (part two, with or without formant keeping)
__global _
void fixPVandGain(float* output, float gain, int length) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j < length) {
if (isnan(output[jl))
output[j] = 0.0f; // set to zero any invalid amplitude
if (output[j+1] == -1.0f) {
output[j] = 0.0f; // set to zero the amp related to any
// undefined frequency
}

else
output[jl *= gain; // scale all amplitudes
// by the gain factor
}
}

__global__
void takelog(float* input, float* env, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (i < nhalf) {
env[i] = log(input[j] > 0.0 ? input[j] : 1e-20); // take the log
// of the amplitudes
}

}

__global _
void lifter(float* cepstrum, int nCoefs, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int k = i + nCoefs;
if (k < nhalf+2-nCoefs) {
cepstrum[k] = 0.0; // kill all the cepstrum coefficients
// above nCoefs
}

3

__global__
void expon(float* env, int nhalf) {
int i = threadldx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
env[i] = exp(env[i]/nhalf); // exponentiate
}
}

// kernel for frequency scaling with formant keeping (part one)
__global__
void freqScaleFormant(float* input, float* output, float* env,
MYFLT scaleFactor, float maxAmp, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int j (ick1) + 2;
int N = nhalf<<i;
int newchan;
if (i < nhalf-1) {
env[i+1] /= maxAmp; // normalize the spectral envelope
input[j] /= env[i+1]; // equalize the original amplitudes so that
// formant shaping is more effective
newchan = (int) (((i+1)*scaleFactor)+0.5) << 1;

172 Appendix B. Plugin Opcodes: CUDA C Scripts

if (newchan < N && newchan > 0) {
// move amp data to new positions and
// weight by normalized env:
atomicExch(&output [newchan], input[j]*env[newchan>>1]%0.9);
// change bin frequencies:
atomicExch(&output [newchan+1],
(float) (input [j+1]*scaleFactor));
}

X
X

// after completing the inverse fft,
// this kernel updates the true envelope:
// for each bin, the max of input and smoothed spectral envelopes is taken
__global__
void update(float* original, float* newTE, float* current, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
current[i] /= nhalf;
newTE[i] = (original[i] < current[i]) ? current[i] : originallil;
}
}

// kernel for testing the true envelope condition
__global_ _
void test(float* nonSmoothed, float* smoothed, int* mask, int nhalf) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
int diff;
if (i < nhalf) {
diff = fabs(nonSmoothed[i] - smoothed[i]/nhalf);
mask[i] = (diff > 0.23) 7 1 : O; // WHAT THRESHOLD TO USE?
}
}

static int free_device(CSOUND* csound, void* pp){
CUDAPVSCALE* p = (CUDAPVSCALE*) pp;
cudaFree (p->devicelnput) ;
cudaFree(p->deviceQutput) ;
cudaFree (p->deviceEnv) ;
cudaFree (p->deviceCepstrum) ;
cudaFree(p->deviceTrueEnv) ;
cudaFree (p->deviceSmoothTrueEnv) ;
cudaFree (p->deviceMask) ;
cufftDestroy(p->forwardPlan);
cufftDestroy(p->inversePlan);
return 0OK;

}

static int cudapvscaleset (CSOUND *csound, CUDAPVSCALE *p)
{

int N = p—>fin->N;

int Nhalf = N>>1;

int size = (N+2) * sizeof (float);

int smallSize = ((Nhalf>>1)+1) * sizeof (cufftComplex) ;

int maxBlockDim;

int SMcount;

int totNumThreads = Nhalf;

cudaError_t error;

// get info about device
cudaDeviceProp deviceProp;

173

cudaGetDeviceProperties(&deviceProp,0);

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvscale running on device
%s (capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// create a cuFFT plan to use later

cufftPlanild (&p->forwardPlan, Nhalf, CUFFT_R2C, 1);

cufftPlanld (&p->inversePlan, Nhalf, CUFFT_C2R, 1);
cufftSetCompatibilityMode (p->forwardPlan, CUFFT_COMPATIBILITY_NATIVE);
cufftSetCompatibilityMode (p—>inversePlan, CUFFT_COMPATIBILITY_NATIVE);

// device memory allocation and copy from host (input data)
error = cudaMalloc(&p->deviceInput, size);
handleCudaError(csound, error);

// device memory allocation and set to zero (output data to be computed)
error = cudaMalloc(&p->deviceOutput, size);

handleCudaError(csound, error);

cudaMemset (p->deviceOutput,0,size);

// device memory allocation and set to zero

// (amplitude spectral envelope, approx half the length)
error = cudaMalloc(&p->deviceEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceEnv,0,smallSize) ;

// device memory allocation and set to zero

// (cepstrum, approx half the length)

error = cudaMalloc(&p->deviceCepstrum, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceCepstrum,0,smallSize) ;

// device memory allocation and set to zero

// (true envelope, approx half the length)

error = cudaMalloc(&p->deviceTrueEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceTrueEnv,0,smallSize) ;

// device memory allocation and set to zero

// (smoothed true envelope, approx half the length)
error = cudaMalloc(&p->deviceSmoothTrueEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceSmoothTrueEnv,0,smallSize) ;

// device memory allocation and set to one (mask)
error = cudaMalloc(&p->deviceMask, Nhalf*sizeof (int));
handleCudaError(csound, error);

cudaMemset (p->deviceMask,1,Nhalf*sizeof (int));

if (UNLIKELY(p->fin == p->fout))
csound->Warning(csound, Str("Unsafe to have same
fsig as in and out"));
p—>fout->NB = p->fin->NB;
p—>fout->sliding = p->fin->sliding;

if (p->fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2)) /* RWD MUST
be 32bit */
csound->AuxAlloc(csound, sizeof (float) * (N + 2), &p->fout->frame);

174

3

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p->blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;

p—>fout->overlap = p->fin->overlap;

p—>fout->winsize = p->fin->winsize;

p—>fout—>wintype = p->fin->wintype;

p—>fout->format = p->fin->format;

p—>fout->framecount = 1;

p—>lastframe = O;

csound->RegisterDeinitCallback(csound, p, free_device);
return 0K;

static int cudapvscale(CSOUND *csound, CUDAPVSCALE *p)

{

int i, N = p—>fout->N;

int Nhalf = N>>1;

int framelength = N+2;

int size = (framelength) * sizeof(float);
float max = 0.0f;

MYFLT pscal = (MYFLT) *p->kscal;

int keepform = (int) *p->keepform;

float g = (float) *p->gain;

float *fin = (float *) p->fin->frame.auxp;
float x*fout = (float *) p->fout->frame.auxp;
int coefs = (int) *p->coefs;

cufftComplex* cufftEnv;
cufftComplex* cufftCepstrum;
cufftComplex* cufftTrueEnv;
cufftComplex* cufftSmoothTrueEnv;

thrust: :device_ptr<float> dev_ptrl =
thrust::device_pointer_cast(p->deviceOutput);
thrust::device_ptr<float> dev_ptr2 =
thrust::device_pointer_cast(p->deviceEnv) ;
thrust::device_ptr<float> dev_ptr3 =
thrust: :device_pointer_cast(p->deviceSmoothTrueEnv) ;
thrust::device_ptr<int> dev_ptrd =
thrust::device_pointer_cast(p->deviceMask);

if (UNLIKELY(fout == NULL)) goto errl;
if (p->lastframe < p->fin->framecount) {
cudaMemcpy (p->deviceInput,fin,size, cudaMemcpyHostToDevice) ;
if (keepform == 0) {
// resets the output:

thrust::fill(dev_ptrl, dev_ptri+framelength, -1.0f);
// freq scaling:

freqScaleBasic<<<p->gridSize,p->blockSize>>>(p->devicelnput,

Appendix B. Plugin Opcodes: CUDA C Scripts

p—>deviceOutput,

pscal, Nhalf);

// apply gain to all amplitudes:
fixPVandGain<<<p->gridSize,p->blockSize>>>(p->devicelutput,
g, framelength);

175

else if (keepform==1) {

3

if (coefs<l) coefs = 80;

// resets the output:

thrust::fill(dev_ptrl, dev_ptri+framelength, -1.0f);

// take log:

takeLog<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>deviceEnv, Nhalf);

cufftEnv = (cufftComplex*) p->deviceEnv;
cufftCepstrum = (cufftComplex*) p->deviceCepstrum;

// take the fft of the log of the spectral envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// liftering stage: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum, coefs,
Nhalf);

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan, cufftCepstrum,
(cufftReal*)cufftEnv)!= CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// scale the result of the inverse transform and exponentiate
// to go back to true amplitudes:
expon<<<p->gridSize,p->blockSize>>>(p->deviceEnv, Nhalf);

// find maximum amp in spectral envelope:
max = *(thrust::max_element(dev_ptr2, dev_ptr2+Nhalf));

// ormalize spectral env and freq scale the input:

freqScaleFormant<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>deviceOutput,
p—>deviceEnv,
pscal, max,
Nhalf);

// apply gain to all amplitudes:

fixPVandGain<<<p->gridSize,p->blockSize>>>(p->deviceOutput, g,

framelength) ;

else if (keepform==2) {

int cond = 1;

if (coefs<1l) coefs = 80;

cufftEnv = (cufftComplex*) p->deviceEnv;

cufftCepstrum = (cufftComplex*) p->deviceCepstrum;
cufftTrueEnv = (cufftComplex*) p->deviceTrueEnv;
cufftSmoothTrueEnv = (cufftComplex*) p->deviceSmoothTrueEnv;

// resets the output:

thrust::fill(dev_ptrl, dev_ptri+framelength, -1.0f);

takeLog<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>deviceEnv, Nhalf);

176

Appendix B. Plugin Opcodes: CUDA C Scripts

// loop initialization stage:
// smooth the original log spectral envelope...
// take the fft of the log of the spectral envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// liftering: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum,
coefs, Nhalf);

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan, cufftCepstrum,
(cufftReal*)cufftSmoothTrueEnv) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message(csound, "CUDA error: Failed to synchronize\n");

// main loop:
while(cond) {
update<<<p->gridSize,p->blockSize>>>(p->deviceEnv,
p—>deviceTrueEnv,
p—>deviceSmoothTrueEnv,
Nhalf);

// take the fft of the true envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftTrueEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message(csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error:
Failed to synchronize\n");

// liftering: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum,
coefs, Nhalf);

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan, cufftCepstrum,
(cufftReal*)cufftSmoothTrueEnv) != CUFFT_SUCCESS)
csound->Message(csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error:
Failed to synchronize\n");

test<<<p->gridSize,p->blockSize>>>(p->deviceTrueEnv,
p—>deviceSmoothTrueEnv,
p—>deviceMask, Nhalf);
if ((thrust::reduce(dev_ptr4, dev_ptr4+Nhalf)) == 0)
cond = 0;
}

// scale the result of the inverse transform

// and exponentiate to go back to true amplitudes:

expon<<<p->gridSize,p->blockSize>>>(p->deviceSmoothTrueEnv,
Nhalf);

177

3

3

// find maximum amp in spectral envelope:
max = *(thrust::max_element (dev_ptr3, dev_ptr3+Nhalf));

// normalize spectral env and freq scale the input:

freqScaleFormant<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>devicelutput,
p—>deviceSmoothTrueEnv,
pscal, max, Nhalf);

// apply gain to all amplitudes:

fixPVandGain<<<p->gridSize,p->blockSize>>>(p->deviceOutput, g,

framelength) ;

cudaMemcpy (fout, p->deviceOutput, size, cudaMemcpyDeviceToHost) ;
fout[0] = £fin[0]; // keep original DC amplitude

fout[N] = fin[N]; // keep original Nyquist amplitude
p—>fout->framecount = p->lastframe = p->fin->framecount;

return 0K;

errl:
return csound->PerfError(csound, p->h.insdshead,

Str("cudapvscale: not initialised"));

¥

static OENTRY localops[] = {

{"cudapvscale", sizeof (CUDAPVSCALE),0, 3, "f", "fxOPQ",
(SUBR) cudapvscaleset, (SUBR) cudapvscale}

};

extern "C" {

LINKAGE

}

cudapvscale2

// Consider writing another "freqScaleBasic" kernel for scaling
// upwards only (without atomic operations, as they are not needed)

#include
#include
#include
#include
#include
#include
#include

typedef struct _cudapvscale2 {

0OPDS
PVSDAT
PVSDAT
MYFLT
MYFLT
MYFLT
MYFLT
AUXCH

<csdl.h>

<pstream.h>

<cufft.h>
<thrust/extrema.h>
<thrust/device_ptr.h>
<thrust/fill.h>
<thrust/reduce.h>

h;

*xfout;
*fin;
*kscal;
xkeepform;
*gain;
*coefs;
fenv, ceps;

178 Appendix B. Plugin Opcodes: CUDA C Scripts

float* deviceEnv; // pointer to device memory
// (amplitude spectral envelope frame)
float* deviceCepstrum; // pointer to device memory (cepstrum frame)
float* deviceTrueEnv; // pointer to device memory (true envelope)
float* deviceSmoothTrueEnv; // pointer to device memory
// (true envelope, smoothed)
int* deviceMask; // pointer to device memory

// (boolean mask for condition checking)
int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
cufftHandle forwardPlan; // forward cuFFT plan
cufftHandle inversePlan; // inverse cuFFT plan
uint32 lastframe;
} CUDAPVSCALE2;

// kernel for frequency scaling without formant keeping (part one)
__global__
void freqScaleBasic(float* input, float* output,

MYFLT scaleFactor, int nhalf) {

int i = threadIldx.x + blockDim.x*blockIdx.x;
int j = (i<<1) + 2;
int N = nhalf<<1;

int newchan;
if (i < nhalf-1) {
newchan = (int) (((i+1)*scaleFactor)+0.5) << 1;
if (newchan < N && newchan > 0) {
// move amplitude data to new positions:
atomicExch(&output [newchan] ,input[j]);
// change bin frequencies:
atomicExch(&output [newchan+1],
(float) (input [j+1]*scaleFactor));
}

¥
X

// kernel for frequency scaling
// (part two, with or without formant keeping)
__global__
void fixPVandGain(float* input, float* output, float gain, int length) {
int i threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j < length) {
if (isnan(output[j]))
output[j] = 0.0f; // set to zero any invalid amplitude
if (output[j+1] == -1.0f) {
output[j] = 0.0f; // set to zero the amplitude
// related to any undefined frequency
}

else
output [j] *= gain; // scale all amplitudes
// by the gain factor

}

// keep original DC amplitude:

if (j == 0) output[0] = input[0];

// keep original Nyquist amplitude:

if (j == length-2) output[length-2] = input[length-2];

179

__global _
void takeLog(float* input, float* env, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (i < nhalf) {
// take the log of the amplitudes:
env[i] = log(input[j] > 0.0 7 input[j] : 1e-20);
}
}

__global__
void lifter(float* cepstrum, int nCoefs, int nhalf) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
int k = i + nCoefs;
if (k < nhalf+2-nCoefs) {
cepstrum[k] = 0.0; // kill all the cepstrum
// coefficients above nCoefs
}

¥

__global__
void expon(float* env, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
env[i] = exp(env[i]/nhalf); // exponentiate
}
}

// kernel for frequency scaling with formant keeping (part one)

__global__

void freqScaleFormant(float* input, float* output, float* env,
MYFLT scaleFactor, float maxAmp, int nhalf) {

int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = (i<<1) + 2;
int N = nhalf<<i;

int newchan;
if (i < nhalf-1) {
env[i+1] /= maxAmp; // normalize the spectral envelope
input[j] /= env[i+1]; // equalize the original amplitudes so that
// formant shaping is more effective
newchan = (int) (((i+1)*scaleFactor)+0.5) << 1;
if (newchan < N && newchan > 0) {
// move amp data to new positions and weight by normalized env:
atomicExch(&output [newchan], inputl[j]l*env[newchan>>1]%0.9);
// change bin frequencies:
atomicExch (&output [newchan+1],
(float) (input [j+1]*scaleFactor));
}

}
}

// after completing the inverse fft this kernel updates the true envelope:
// for each bin, the max of input and smoothed spectral envelopes is taken
__global _
void update(float* original, float* newTE, float* current, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
current[i] /= nhalf;
newTE[i] = (original[i] < current[i]) 7 current([i] : originall[i];
}
}

180 Appendix B. Plugin Opcodes: CUDA C Scripts

// kernel for testing the true envelope condition
__global__
void test(float* nonSmoothed, float* smoothed, int* mask, int nhalf) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
int diff;
if (i < nhalf) {
diff = fabs(nonSmoothed[i] - smoothed[i]/nhalf);
mask[i] = (diff > 0.23) ? 1 : 0; // WHAT THRESHOLD TO USE?
}
}

static int free_device(CSOUND* csound, voidx* pp){
CUDAPVSCALE2* p = (CUDAPVSCALE2*) pp;
cudaFree (p—>fout->frame.auxp) ;
cudaFree (p->deviceEnv) ;
cudaFree (p->deviceCepstrum) ;
cudaFree(p->deviceTrueEnv) ;
cudaFree (p->deviceSmoothTrueEnv) ;
cudaFree(p->deviceMask) ;
cufftDestroy(p->forwardPlan);
cufftDestroy(p->inversePlan);
return OK;

}

static int cudapvscale2set(CSOUND *csound, CUDAPVSCALE2 *p)
{

int N = p—>fin->N;

int Nhalf = N>>1;

int size = (N+2) * sizeof(float);

int smallSize = ((Nhalf>>1)+1) * sizeof (cufftComplex) ;

int maxBlockDim;

int SMcount;

int totNumThreads = Nhalf;

cudaError_t error;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp,0);

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvscale2 running on device %s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// create a cuFFT plan to use later

cufftPlanid(&p->forwardPlan, Nhalf, CUFFT_R2C, 1);
cufftPlanld(&p->inversePlan, Nhalf, CUFFT_C2R, 1);
cufftSetCompatibilityMode (p->forwardPlan, CUFFT_COMPATIBILITY_NATIVE);
cufftSetCompatibilityMode (p->inversePlan, CUFFT_COMPATIBILITY_NATIVE);

// device memory allocation and set to zero

// (amplitude spectral envelope, approx half the length)
error = cudaMalloc(&p->deviceEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p—>deviceEnv,0,smallSize) ;

// device memory allocation and set to zero

// (cepstrum, approx half the length)

error = cudaMalloc(&p->deviceCepstrum, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceCepstrum,0,smallSize) ;

181

// device memory allocation and set to zero

// (true envelope, approx half the length)

error = cudaMalloc(&p->deviceTrueEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceTrueEnv,0,smallSize) ;

// device memory allocation and set to zero

// (smoothed true envelope, approx half the length)
error = cudaMalloc(&p->deviceSmoothTrueEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceSmoothTrueEnv,0,smallSize) ;

// device memory allocation and set to one (mask)
error = cudaMalloc(&p->deviceMask, Nhalf*sizeof (int));
handleCudaError(csound, error);

cudaMemset (p—>deviceMask, 1,Nhalf*sizeof (int));

if (UNLIKELY(p->fin == p->fout))
csound->Warning(csound, Str("Unsafe to have same fsig
as in and out"));
p—>fout->NB = p->fin->NB;

p—>fout->sliding = 0;

if (p->fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof(float) * (N + 2)) /* RWD MUST be
32bit */
AuxCudaAlloc(size, &p->fout->frame);

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p—>blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;

p—>fout->overlap = p->fin->overlap;

p—>fout->winsize = p->fin->winsize;

p—>fout->wintype = p—>fin->wintype;

p—>fout->format = p->fin->format;

p—>fout->framecount = 1;

p—>lastframe = O;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0K;

}

static int cudapvscale2(CSOUND *csound, CUDAPVSCALE2 *p)
{
int i, N = p—>fout->N;
int Nhalf = N>>1;
int framelength = N+2;
float max = 0.0f;
MYFLT pscal = (MYFLT) *p->kscal;
int keepform = (int) *p->keepform;
float g = (float) *p->gain;
float x*fin = (float *) p->fin->frame.auxp;
float *fout = (float *) p->fout->frame.auxp;
int coefs = (int) *p->coefs;

cufftComplex* cufftEnv;
cufftComplex* cufftCepstrum;

182

Appendix B. Plugin Opcodes: CUDA C Scripts

cufftComplex* cufftTrueEnv;
cufftComplex* cufftSmoothTrueEnv;

thrust::device_ptr<float> dev_ptrl =
thrust::device_pointer_cast(fout);
thrust::device_ptr<float> dev_ptr2 =
thrust::device_pointer_cast(p->deviceEnv) ;
thrust::device_ptr<float> dev_ptr3 =
thrust::device_pointer_cast(p->deviceSmoothTrueEnv) ;
thrust::device_ptr<int> dev_ptré =
thrust::device_pointer_cast(p->deviceMask) ;

if (UNLIKELY(fout == NULL)) goto errl;

if (p—>lastframe < p->fin->framecount) {

if (keepform == 0) {

}

// resets the output:

thrust::fill(dev_ptrl, dev_ptril+framelength, -1.0f);

// freq scaling:

freqScaleBasic<<<p->gridSize,p->blockSize>>>(fin, fout,

pscal, Nhalf);

// apply gain to all amplitudes:

fixPVandGain<<<p—>gridSize,p—>blockSize>>>(fin, fout, g,
framelength) ;

else if (keepform==1) {

if (coefs<1) coefs = 80;

// resets the output:
thrust::fill(dev_ptrl, dev_ptri+framelength, -1.0f);
takeLog<<<p->gridSize,p->blockSize>>>(fin, p->deviceEnv, Nhalf);

cufftEnv = (cufftComplex*) p->deviceEnv;
cufftCepstrum = (cufftComplex*) p->deviceCepstrum;

// take the fft of the log of the spectral envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal#*)cufftEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// liftering stage: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum,
coefs, Nhalf);

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan, cufftCepstrum,
(cufftReal*)cufftEnv)!= CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// scale the result of the inverse transform
// and exponentiate to go back to true amplitudes:
expon<<<p->gridSize,p->blockSize>>>(p->deviceEnv, Nhalf);

// find maximum amp in spectral envelope:
max = *(thrust::max_element (dev_ptr2, dev_ptr2+Nhalf));

183

¥

// normalize spectral env and freq scale the input:

freqScaleFormant<<<p->gridSize,p->blockSize>>>(fin, fout,
p—>deviceEnv,
pscal, max,
Nhalf);

// apply gain to all amplitudes:

fixPVandGain<<<p->gridSize,p->blockSize>>>(fin, fout, g,

framelength) ;

else if (keepform==2) {

int cond = 1;

if (coefs<1) coefs = 80;

cufftEnv = (cufftComplex*) p->deviceEnv;

cufftCepstrum = (cufftComplex*) p->deviceCepstrum;
cufftTrueEnv = (cufftComplex*) p->deviceTrueEnv;
cufftSmoothTrueEnv = (cufftComplex*) p->deviceSmoothTrueEnv;

// resets the output:
thrust::fill(dev_ptrl, dev_ptri+framelength, -1.0f);
takeLog<<<p->gridSize,p->blockSize>>>(fin, p->deviceEnv, Nhalf);

// loop initialization stage:
// smooth the original log spectral envelope:
// take the fft of the log of the spectral envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// liftering: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum,
coefs, Nhalf);

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan, cufftCepstrum,
(cufftReal*)cufftSmoothTrueEnv) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

while(cond) {
update<<<p->gridSize,p->blockSize>>>(p->deviceEnv,
p—>deviceTrueEnv,
p—>deviceSmoothTrueEnv,
Nhalf);

// take the fft of the true envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftTrueEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message(csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to
synchronize\n") ;

// liftering: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum,
coefs, Nhalf);

184 Appendix B. Plugin Opcodes: CUDA C Scripts
// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan, cufftCepstrum,
(cufftReal*)cufftSmoothTrueEnv) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error:
Failed to synchronize\n");
test<<<p->gridSize,p->blockSize>>>(p->deviceTrueEnv,
p—>deviceSmoothTrueEnv,
p->deviceMask, Nhalf);
if ((thrust::reduce(dev_ptr4, dev_ptr4+Nhalf)) == 0)
cond = 0;
b
// scale the result of the inverse transform
// and exponentiate to go back to true amplitudes:
expon<<<p->gridSize,p->blockSize>>>(p->deviceSmoothTrueEnv,
Nhalf);
// find maximum amp in spectral envelope:
max = *(thrust::max_element (dev_ptr3, dev_ptr3+Nhalf));
// normalize spectral env and freq scale the input:
freqScaleFormant<<<p->gridSize,p->blockSize>>>(fin, fout,
p—>deviceSmoothTrueEnv,
pscal, max, Nhalf);
// apply gain to all amplitudes:
fixPVandGain<<<p->gridSize,p->blockSize>>>(fin, fout,
g, framelength);
}

}

p—>fout->framecount = p->lastframe = p->fin->framecount;

return 0K;

errl:
return csound->PerfError(csound, p->h.insdshead,

}

Str("cudapvscale2: not initialised"));

static OENTRY localops[] = {
{"cudapvscale2", sizeof (CUDAPVSCALE2),0, 3, "f", "fx0OPQ",

¥

(SUBR) cudapvscale2set, (SUBR) cudapvscale2}

extern "C" {
LINKAGE

3

185

Shift Module

cudapvshift

#include <csdl.h>

#include <pstream.h>

#include <cufft.h>

#include <thrust/extrema.h>
#include <thrust/device_ptr.h>
#include <thrust/fill.h>
#include <thrust/reduce.h>

typedef struct _cudapvshift {
OPDS h;
PVSDAT =*fout;
PVSDAT *fin;
MYFLT xkshift;
MYFLT *lowest;
MYFLT *keepform;
MYFLT *gain;
MYFLT *coefs;
AUXCH fenv, ceps;

float* devicelnput; // pointer to device memory (input frame)
float*x deviceQutput; // pointer to device memory (output frame)
float* deviceEnv; // pointer to device memory

// (amplitude spectral envelope frame)
float* deviceCepstrum; // pointer to device memory (cepstrum frame)
float* deviceTrueEnv; // pointer to device memory (true envelope)
float* deviceSmoothTrueEnv; // pointer to device memory

// (true envelope, smoothed)

intx* deviceMask; // pointer to device memory

// (boolean mask for condition checking)
int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
cufftHandle forwardPlan; // forward cuFFT plan
cufftHandle inversePlan; // inverse cuFFT plan
uint32 lastframe;
} CUDAPVSHIFT;

// kernel for frequency shifting without formant keeping (part one)
__global__
void freqShiftBasic(float* input, float* output, MYFLT shift,
int shiftChan, int lowestIndx, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
int lowestChan = lowestIndx>>1;
int N = nhalf<<i;
int newchan;
if (i < lowestChan) {
// leave PV data as it is below a certain channel:
output [j] = input[j];
output[j+1] = input[j+1];

if (i >= lowestChan && i < nhalf) {
newchan = (i + shiftChan) << 1;
if (newchan < N && newchan >= lowestIndx) {
// move amplitude data to new positions:
output [newchan] = input[j];
// change bin frequencies:
output [newchan+1] = (float) (input[j+1] + shift);

186 Appendix B. Plugin Opcodes: CUDA C Scripts

X
3
3

// kernel for frequency shifting
// (part two, with or without formant keeping)
__global _
void fixPVandGain(float* output, float gain, int lowestIndx,
int length) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j >= lowestIndx && j < length) {
if (isnan(output([j]))
output[j] = 0.0f; // set to zero any invalid amplitude
if (output[j+1] == -1.0f) {
output[j] = 0.0f; // set to zero the amplitude
// related to any undefined frequency

}
else {
output[j] *= gain; // scale all amplitudes
// by the gain factor
}
}

}
__global__

void takeLog(float* input, float* env, int nhalf) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (i < nhalf) {
// take the log of the amplitudes:
env[i] = log(input[j] > 0.0 7 input[j] : 1e-20);
}
}

__global _
void lifter(float* cepstrum, int nCoefs, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int k = i + nCoefs;
if (k < nhalf+2-nCoefs) {
cepstrum[k] = 0.0; // kill all the cepstrum coefficients
// above nCoefs
}

}

__global__
void expon(float* env, int nhalf) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
env[i] = exp(env[i]/nhalf); // exponentiate
}
}

187

// kernel for frequency shifting with formant keeping (part one)
__global__
void freqShiftFormant(float* input, float* output, float* env,
MYFLT shift, int shiftChan, int lowestIndx,
float maxAmp, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
int lowestChan = lowestIndx>>1;
int N = nhalf<<1;
int newchan;
if (i < lowestChan) {
// leave PV data as it is below a certain channel:
output[j] = input[j];
output [j+1] = input[j+1];

else if (i < mnhalf) {
env[i] /= maxAmp; // normalize the spectral envelope
input[j] /= env[il; // equalize the original amplitudes
// so that formant shaping is more effective
newchan = (i + shiftChan) << 1;
if (newchan < N && newchan >= lowestIndx) {
// move amp data to new positions and weight by normalized env:
output [newchan] = input[j]l*env[newchan>>1]%0.9;
// change bin frequencies:
output [newchan+1] = (float) (input[j+1] + shift);
}
}
}

// after completing the inverse fft,
// this kernel updates the true envelope:
// for each bin, the max of input and smoothed spectral envelopes is taken
__global _
void update(float* original, float* newTE, float* current, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
current[i] /= nhalf;
newTE[i] = (original[i] < current[i]) ? current[i] : originallil;
}
}

// kernel for testing the true envelope condition
__global_ _
void test(float* nonSmoothed, float* smoothed, int* mask, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int diff;
if (i < nhalf) {
diff = fabs(nonSmoothed[i] - smoothed[i]/nhalf);
mask([i] = (diff > 0.23) 72 1 : 0; // WHAT THRESHOLD TO USE?7?
}

188 Appendix B. Plugin Opcodes: CUDA C Scripts

static int free_device(CSOUND* csound, voidx pp){
CUDAPVSHIFT* p = (CUDAPVSHIFT*) pp;
cudaFree(p->devicelnput);
cudaFree (p->devicelutput) ;
cudaFree (p->deviceEnv) ;
cudaFree (p—>deviceCepstrum) ;
cudaFree(p->deviceTrueEnv) ;
cudaFree(p->deviceSmoothTrueEnv) ;
cudaFree (p->deviceMask) ;
cufftDestroy(p->forwardPlan);
cufftDestroy(p->inversePlan);
return 0OK;

3

static int cudapvshiftset(CSOUND *csound, CUDAPVSHIFT *p)
{

int N = p->fin->N;

int Nhalf = N>>1;

int size = (N+2) * sizeof(float);

int smallSize = ((Nhalf>>1)+1) * sizeof (cufftComplex) ;

int maxBlockDim;

int SMcount;

int totNumThreads = Nhalf;

cudaError_t error;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties (&deviceProp,0) ;

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message(csound, "cudapvshift running on device ¥%s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// create a cuFFT plan to use later

cufftPlanid(&p->forwardPlan, Nhalf, CUFFT_R2C, 1);
cufftPlanid(&p->inversePlan, Nhalf, CUFFT_C2R, 1);
cufftSetCompatibilityMode (p->forwardPlan, CUFFT_COMPATIBILITY_NATIVE);
cufftSetCompatibilityMode (p—>inversePlan, CUFFT_COMPATIBILITY_NATIVE);

// device memory allocation and copy from host (input data)
error = cudaMalloc(&p->deviceInput, size);
handleCudaError(csound, error);

// device memory allocation and set to zero (output data to be computed)
error = cudaMalloc(&p->deviceQutput, size);

handleCudaError(csound, error);

cudaMemset (p->deviceOutput,0,size);

// device memory allocation and set to zero

// (amplitude spectral envelope, approx half the length)
error = cudaMalloc(&p->deviceEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceEnv,0,smallSize) ;

// device memory allocation and set to zero

// (cepstrum, approx half the length)

error = cudaMalloc(&p->deviceCepstrum, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceCepstrum,0,smallSize) ;

189

// device memory allocation and set to zero

// (true envelope, approx half the length)

error = cudaMalloc(&p->deviceTrueEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceTrueEnv,0,smallSize) ;

// device memory allocation and set to zero

// (smoothed true envelope, approx half the length)
error = cudaMalloc(&p->deviceSmoothTrueEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceSmoothTrueEnv,0,smallSize) ;

// device memory allocation and set to one (mask)
error = cudaMalloc(&p->deviceMask, Nhalf*sizeof(int));
handleCudaError (csound, error);

cudaMemset (p->deviceMask,1,Nhalf*sizeof (int));

if (UNLIKELY(p->fin == p->fout))
csound->Warning(csound, Str("Unsafe to have same fsig
as in and out"));

if (p—>fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof(float) * (N + 2)) /* RWD MUST be
32bit */
csound->AuxAlloc(csound, (N + 2) * sizeof(float), &p->fout->frame);
else memset (p->fout->frame.auxp, 0, (N+2)*sizeof(float));

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;
if (p—>blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;
p—>fout->N = N;

p—>fout->overlap = p->fin->overlap;
p—>fout->winsize = p->fin->winsize;
p—>fout->wintype = p—>fin->wintype;

p—>fout->format = p->fin->format;
p—>fout->framecount = 1;

p—>lastframe = O;

p—>fout->sliding = p->fin->sliding;

p—>fout->NB = p->fin->NB;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;
}
static int cudapvshift(CSOUND *csound, CUDAPVSHIFT *p)
{

int i, N = p—>fout->N;

int Nhalf = N>>1;

int framelength = N+2;

int size = framelength * sizeof(float);
float max = 0.0f;

MYFLT pshift = (MYFLT) *p->kshift;

int cshift = (int) (pshift * N * (1.0/csound->GetSr(csound)));

int lowest = abs((int) (*p->lowest * N *
(1.0/csound->GetSr(csound))));

int keepform = (int) *p->keepform;

float g = (float) *p->gain;

float x*fin = (float *) p->fin->frame.auxp;
float *fout = (float *) p->fout->frame.auxp;
int coefs = (int) *p->coefs;

190 Appendix B. Plugin Opcodes: CUDA C Scripts

cufftComplex* cufftEnv;
cufftComplex* cufftCepstrum;
cufftComplex* cufftTrueEnv;
cufftComplex* cufftSmoothTrueEnv;

thrust::device_ptr<float> dev_ptrl =
thrust::device_pointer_cast(p->deviceOutput);
thrust::device_ptr<float> dev_ptr2 =
thrust::device_pointer_cast(p->deviceEnv);
thrust::device_ptr<float> dev_ptr3 =
thrust::device_pointer_cast(p->deviceSmoothTrueEnv) ;
thrust::device_ptr<int> dev_ptrd =
thrust::device_pointer_cast(p->deviceMask) ;

if (UNLIKELY(fout == NULL)) goto errl;

if (p->lastframe < p->fin->framecount) {
lowest = lowest ? (lowest > Nhalf ? Nhalf : lowest<<1l) : 2;
cudaMemcpy (p->deviceInput,fin,size, cudaMemcpyHostToDevice) ;

if (keepform == 0) {
// resets the output:
thrust::fill(dev_ptrl, dev_ptril+framelength, -1.0f);
// freq shifting:
freqShiftBasic<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>devicelOutput,
pshift, cshift,
lowest, Nhalf);
// apply gain to all amplitudes:
fixPVandGain<<<p->gridSize,p->blockSize>>>(p->deviceOutput, g,
lowest,
framelength) ;

3

else if (keepform==1) {
if (coefs<l) coefs = 80;

// resets the output:

thrust::fill(dev_ptrl, dev_ptrl+framelength, -1.0f);

takeLog<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>deviceEnv, Nhalf);

cufftEnv = (cufftComplex*) p->deviceEnv;
cufftCepstrum = (cufftComplex*) p->deviceCepstrum;

// take the fft of the log of the spectral envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// liftering stage: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum, coefs,
Nhalf);

191

// take the inverse fft of the liftered cepstrum...
if (cufftExecC2R(p->inversePlan, cufftCepstrum,
(cufftReal*)cufftEnv)!= CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound—>Message(csound,“CUDA error: Failed to synchronize\n");

// scale the result of the inverse transform
// and exponentiate to go back to true amplitudes:
expon<<<p->gridSize,p->blockSize>>>(p->deviceEnv, Nhalf);

// find maximum amp in spectral envelope:
max = *(thrust::max_element (dev_ptr2, dev_ptr2+Nhalf));

// normalize spectral env and freq scale the input:
freqShiftFormant<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>devicelutput,
p—>deviceEnv,
pshift, cshift,
lowest, max,
Nhalf);
// apply gain to all amplitudes:
fixPVandGain<<<p->gridSize,p->blockSize>>>(p->devicelutput,
g, lowest,
framelength) ;
b

else if (keepform==2) {
int cond = 1;
if (coefs<l) coefs = 80;
cufftEnv = (cufftComplex*) p->deviceEnv;
cufftCepstrum = (cufftComplex*) p->deviceCepstrum;
cufftTrueEnv = (cufftComplex*) p->deviceTrueEnv;
cufftSmoothTrueEnv = (cufftComplex*) p->deviceSmoothTrueEnv;

// resets the output:

thrust::fill(dev_ptrl, dev_ptri+framelength, -1.0f);

takeLog<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>deviceEnv, Nhalf);

// loop initialization stage:
// smooth the original log spectral envelope:
// take the fft of the log of the spectral envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// liftering: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum,
coefs, Nhalf);

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan,cufftCepstrum,
(cufftReal*)cufftSmoothTrueEnv) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

192 Appendix B. Plugin Opcodes: CUDA C Scripts

while(cond) {
update<<<p->gridSize,p->blockSize>>>(p->deviceEnv,
p—>deviceTrueEnv,
p—>deviceSmoothTrueEnv,
Nhalf);

// take the fft of the true envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftTrueEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to
synchronize\n") ;

// liftering: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum,
coefs, Nhalf);

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan,cufftCepstrum,
(cufftRealx)cufftSmoothTrueEnv) !=
CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to
synchronize\n") ;

test<<<p->gridSize,p->blockSize>>>(p->deviceTrueEnv,
p—>deviceSmoothTrueEnv,
p—>deviceMask, Nhalf);
if ((thrust::reduce(dev_ptr4, dev_ptr4+Nhalf)) == 0)
cond = 0;
}

// scale the result of the inverse transform

// and exponentiate to go back to true amplitudes:

expon<<<p->gridSize,p->blockSize>>>(p->deviceSmoothTrueEnv,
Nhalf);

// find maximum amp in spectral envelope:
max = *(thrust::max_element(dev_ptr3, dev_ptr3+Nhalf));

// normalize spectral env and freq scale the input:
freqShiftFormant<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>deviceQutput,
p—>deviceSmoothTrueEnv,
pshift, cshift,
lowest, max, Nhalf);
// apply gain to all amplitudes:
fixPVandGain<<<p->gridSize,p->blockSize>>>(p->devicelutput,
g, lowest, framelength);
}

cudaMemcpy (fout, p->deviceOutput, size, cudaMemcpyDeviceToHost);
fout[0] = fin[0]; // keep original DC amplitude

fout[N] = fin[N]; // keep original Nyquist amplitude
p—>fout->framecount = p->lastframe = p->fin->framecount;

¥

return 0K;

193

¥

errl:
return csound->PerfError(csound, p->h.insdshead,
Str("cudapvshift: not initialised"));

static OENTRY localops[] = {

{"cudapvshift", sizeof (CUDAPVSHIFT),0, 3, "f", "fxkOPQ",
(SUBR) cudapvshiftset, (SUBR) cudapvshift}

3

extern "C" {
LINKAGE

3

cudapvscale2

#include <csdl.h>

#include <pstream.h>

#include <cufft.h>

#include <thrust/extrema.h>
#include <thrust/device_ptr.h>
#include <thrust/fill.h>
#include <thrust/reduce.h>

typedef struct _cudapvshift2 {

3

OPDS h;

PVSDAT =*fout;
PVSDAT *fin;
MYFLT *kshift;
MYFLT *]lowest;
MYFLT *keepform;
MYFLT *gain;
MYFLT *coefs;
AUXCH fenv, ceps;

float* deviceEnv; // pointer to device memory
// (amplitude spectral envelope frame)
float* deviceCepstrum; // pointer to device memory (cepstrum frame)
float* deviceTrueEnv; // pointer to device memory (true envelope)
float* deviceSmoothTrueEnv; // pointer to device memory
// (true envelope, smoothed)
intx* deviceMask; // pointer to device memory

// (boolean mask for condition checking)
int gridSize; // number of blocks in the grid (1D)
int DblockSize; // number of threads in one block (1D)
cufftHandle forwardPlan; // forward cuFFT plan
cufftHandle inversePlan; // inverse cuFFT plan
uint32 lastframe;
CUDAPVSHIFT2;

// kernel for frequency shifting
// without formant keeping (part one)

void freighiftBasic(float* input, float* output, MYFLT shift,

global

int shiftChan, int lowestIndx, int nhalf) {
int i threadIdx.x + blockDim.x*blockIdx.x;
int j i<<1;
int lowestChan = lowestIndx>>1;
int N = nhalf<<i;

194 Appendix B. Plugin Opcodes: CUDA C Scripts

int newchan;

if (i < lowestChan) {
// leave PV data as it is below a certain channel:
output[j] = input[j];
output [j+1] = input[j+1];

if (i >= lowestChan && i < nhalf) {
newchan = (i + shiftChan) << 1;
if (newchan < N && newchan >= lowestIndx) {
// move amplitude data to new positions:
output [newchan] = inputl[j];
// change bin frequencies:
output [newchan+1] = (float) (input[j+1] + shift);
}
}
}

// kernel for frequency shifting
// (part two, with or without formant keeping)
__global__
void fixPVandGain(float* input, float* output, float gain,
int lowestIndx, int length) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j >= lowestIndx && j < length) {
if (isnan(output([j]))
output[j] = 0.0f; // set to zero any invalid amplitude
if (output[j+1] == -1.0f) {
output[j] = 0.0f; // set to zero the amplitude
// related to any undefined frequency
}
else
output [j] *= gain; // scale all amplitudes
// by the gain factor
}

if (j == 0) output[0] = input[0]; // keep original DC amplitude
if (j == length-2) output[length-2] = input[length-2]; // keep original
// Nyquist
amplitude
}

__global _
void takeLog(float* input, float* env, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (i < nhalf) {
env[i] = log(input[j] > 0.0 ? input[j] : 1e-20); // take the log
// of the amplitudes
}

3

__global__
void lifter(float* cepstrum, int nCoefs, int nhalf) {
int i = threadIldx.x + blockDim.x*blockIdx.x;
int k = i + nCoefs;
if (k < nhalf+2-nCoefs) {
cepstrum[k] = 0.0; // kill all the cepstrum coefficients
// above nCoefs

195

__global _
void expon(float* env, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
env[i] = exp(env[i]/nhalf); // exponentiate
}
}

// kernel for frequency shifting with formant keeping (part one)
__global _
void freqShiftFormant(float* input, float* output, float* env,
MYFLT shift, int shiftChan, int lowestIndx,
float maxAmp, int nhalf) {
int i threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
int lowestChan = lowestIndx>>1;
int N = nhalf<<i;
int newchan;
if (i < lowestChan) {
// leave PV data as it is below a certain channel:
output [j] = input[j];
output[j+1] = input[j+1];

else if (i < nhalf) {
env[i] /= maxAmp; // normalize the spectral envelope
input[j] /= envl[il; // equalize the original amplitudes so that
formant shaping is more effective
newchan = (i + shiftChan) << 1;
if (newchan < N && newchan >= lowestIndx) {
// move amp data to new positions and weight by normalized env:
output [newchan] = input[j]l*env[newchan>>1]%0.9;
// change bin frequencies:
output [newchan+1] = (float) (input[j+1] + shift);
}
}
}

// after completing the inverse fft,
// this kernel updates the true envelope:
// for each bin, the max of input and
// smoothed spectral envelopes is taken
__global _
void update(float* original, float* newTE, float* current, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (i < nhalf) {
current[i] /= nhalf;
newTE[i] = (original[i] < current[i]) 7 current[i] : originall[il;
}
}

// kernel for testing the true envelope condition
__global__
void test(float* nonSmoothed, float* smoothed, int* mask, int nhalf) {
int i = threadIdx.x + blockDim.x*blockIdx.x;
int diff,;
if (i < nhalf) {
diff = fabs(nonSmoothed[i] - smoothed[i]/nhalf);
mask([i] = (diff > 0.23) 72 1 : 0; // WHAT THRESHOLD TO USE??
}

196

Appendix B. Plugin Opcodes: CUDA

C Scripts

static int free_device(CSOUND* csound, void* pp){

3

CUDAPVSHIFT2* p = (CUDAPVSHIFT2x) pp;
cudaFree (p->fout->frame.auxp) ;
cudaFree (p->deviceEnv) ;

cudaFree (p->deviceCepstrum) ;
cudaFree(p->deviceTrueEnv) ;

cudaFree (p->deviceSmoothTrueEnv) ;
cudaFree (p->deviceMask) ;

cufftDestroy (p->forwardPlan) ;
cufftDestroy(p->inversePlan);

return 0K;

static int cudapvshift2set(CSOUND *csound, CUDAPVSHIFT2 *p)

{

int N = p->fin->N;

int Nhalf = N>>1;

int size = (N+2) * sizeof(float);

int smallSize = ((Nhalf>>1)+1) * sizeof (cufftComplex) ;
int maxBlockDim;

int SMcount,;

int totNumThreads = Nhalf;

cudaError_t error;

// get info about device

cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp,0) ;
maxBlockDim = deviceProp.maxThreadsPerBlock;
SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvshift2 running on device %s

(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// create a cuFFT plan to use later
cufftPlanid(&p->forwardPlan, Nhalf, CUFFT_R2C, 1);
cufftPlanid(&p->inversePlan, Nhalf, CUFFT_C2R, 1);

cufftSetCompatibilityMode (p->forwardPlan, CUFFT_COMPATIBILITY_ NATIVE);
cufftSetCompatibilityMode (p—>inversePlan, CUFFT_COMPATIBILITY_NATIVE) ;

// device memory allocation and set to zero

// (amplitude spectral envelope, approx half the length)
error = cudaMalloc(&p->deviceEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p—>deviceEnv,0,smallSize) ;

// device memory allocation and set to zero

// (cepstrum, approx half the length)

error = cudaMalloc(&p->deviceCepstrum, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceCepstrum,0,smallSize);

// device memory allocation and set to zero

// (true envelope, approx half the length)

error = cudaMalloc(&p->deviceTrueEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceTrueEnv,0,smallSize) ;

197

// device memory allocation and set to zero

// (smoothed true envelope, approx half the length)
error = cudaMalloc(&p->deviceSmoothTrueEnv, smallSize);
handleCudaError(csound, error);

cudaMemset (p->deviceSmoothTrueEnv,0,smallSize) ;

// device memory allocation and set to one (mask)
error = cudaMalloc(&p->deviceMask, Nhalf*sizeof(int));
handleCudaError (csound, error);

cudaMemset (p->deviceMask,1,Nhalf*sizeof (int));

if (UNLIKELY(p->fin == p->fout))
csound->Warning(csound, Str("Unsafe to have same fsig
as in and out"));

if (p—>fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof(float) * (N + 2)) /* RWD MUST
be 32bit */
AuxCudaAlloc(size, &p->fout->frame);
else cudaMemset(p->fout->frame.auxp, 0, size);

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;
if (p—>blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;
p—>fout->N = N;

p—>fout->overlap = p->fin->overlap;
p—>fout->winsize = p->fin->winsize;
p—>fout->wintype = p—->fin->wintype;

p—>fout->format = p->fin->format;
p—>fout->framecount = 1;

p—>lastframe = O;

p->fout->sliding = 0;

p—>fout->NB = p->fin->NB;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;

}

static int cudapvshift2(CSOUND *csound, CUDAPVSHIFT2 *p)
{

int i, N = p—>fout->N;

int Nhalf = N>>1;

int framelength = N+2;

float max = 0.0f;

MYFLT pshift = (MYFLT) #p->kshift;

int cshift = (int) (pshift * N * (1.0/csound->GetSr(csound)));

int lowest = abs((int) (xp->lowest * N *

(1.0/csound->GetSr(csound))));

int keepform = (int) *p->keepform;

float g = (float) *p->gain;

float x*fin = (float *) p->fin->frame.auxp;

float *fout = (float *) p->fout->frame.auxp;

int coefs = (int) *p->coefs;

cufftComplex* cufftEnv;
cufftComplex* cufftCepstrum;
cufftComplex* cufftTrueEnv;
cufftComplex* cufftSmoothTrueEnv;

198 Appendix B. Plugin Opcodes: CUDA C Scripts

thrust::device_ptr<float> dev_ptrl =
thrust::device_pointer_cast(fout);
thrust::device_ptr<float> dev_ptr2 =
thrust::device_pointer_cast(p->deviceEnv) ;
thrust::device_ptr<float> dev_ptr3 =
thrust::device_pointer_cast(p->deviceSmoothTrueEnv) ;
thrust::device_ptr<int> dev_ptrd =
thrust::device_pointer_cast(p->deviceMask) ;

if (UNLIKELY(fout == NULL)) goto errl;
if (p->lastframe < p->fin->framecount) {
lowest = lowest ? (lowest > Nhalf ? Nhalf : lowest<<1l) : 2;

if (keepform == 0) {
// resets the output:
thrust::fill(dev_ptrl, dev_ptril+framelength, -1.0f);
// freq shifting
freqShiftBasic<<<p->gridSize,p->blockSize>>>(fin, fout, pshift,
cshift, lowest,
Nhalf);
// apply gain to all amplitudes:
fixPVandGain<<<p—>gridSize,p—>blockSize>>>(fin, fout,
g, lowest, framelength);
}

else if (keepform==1) {
if (coefs<1) coefs = 80;

// resets the output:
thrust::fill(dev_ptrl, dev_ptri+framelength, -1.0f);
takeLog<<<p->gridSize,p->blockSize>>>(fin, p->deviceEnv, Nhalf);

cufftEnv = (cufftComplex*) p->deviceEnv;
cufftCepstrum = (cufftComplex*) p->deviceCepstrum;

// take the fft of the log of the spectral envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal#*)cufftEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message(csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// liftering stage: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum,
coefs, Nhalf);

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan, cufftCepstrum,
(cufftReal*)cufftEnv) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// scale the result of the inverse transform
// and exponentiate to go back to true amplitudes:
expon<<<p->gridSize,p->blockSize>>>(p->deviceEnv, Nhalf);

// find maximum amp in spectral envelope:
max = *(thrust::max_element(dev_ptr2, dev_ptr2+Nhalf));

199

}

// normalize spectral env and freq scale the input:

freqShiftFormant<<<p->gridSize,p->blockSize>>>(fin, fout,
p—>deviceEknv,
pshift, cshift,
lowest, max,
Nhalf);

// apply gain to all amplitudes:

fixPVandGain<<<p—>gridSize,p—>blockSize>>>(fin, fout, g,

lowest, framelength);

else if (keepform==2) {

int cond = 1;

if (coefs<l) coefs = 80;

cufftEnv = (cufftComplex*) p->deviceEnv;

cufftCepstrum = (cufftComplex*) p->deviceCepstrum;
cufftTrueEnv = (cufftComplex*) p->deviceTrueEnv;
cufftSmoothTrueEnv = (cufftComplex*) p->deviceSmoothTrueEnv;

// resets the output:
thrust::fill(dev_ptrl, dev_ptri+framelength, -1.0f);
takeLog<<<p->gridSize,p->blockSize>>>(fin, p->deviceEnv, Nhalf);

// loop initialization stage:
// smooth the original log spectral envelope:
// take the fft of the log of the spectral envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftEnv,
cufftCepstrum) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

// liftering: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum, coefs,
Nhalf);

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R(p->inversePlan, cufftCepstrum,
(cufftReal*)cufftSmoothTrueEnv) != CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error: Failed to synchronize\n");

while(cond) {
update<<<p->gridSize,p->blockSize>>>(p->deviceEnv,
p—>deviceTrueEnv,
p—>deviceSmoothTrueEnv,
Nhalf);

// take the fft of the true envelope:
if (cufftExecR2C(p->forwardPlan, (cufftReal*)cufftTrueEnv,
cufftCepstrum) '= CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error:
Failed to synchronize\n");

// liftering: keep only low quefrency coefficients:
lifter<<<p->gridSize,p->blockSize>>>(p->deviceCepstrum,
coefs, Nhalf);

200 Appendix B. Plugin Opcodes: CUDA C Scripts

// take the inverse fft of the liftered cepstrum:
if (cufftExecC2R (p->inversePlan, cufftCepstrum,
(cufftRealx)cufftSmoothTrueEnv) !=
CUFFT_SUCCESS)
csound->Message (csound, "CUDA FFT error\n");
if (cudaDeviceSynchronize() != cudaSuccess)
csound->Message (csound, "CUDA error:
Failed to synchronize\n");

test<<<p->gridSize,p->blockSize>>>(p->deviceTrueEnv,
p—>deviceSmoothTrueEnv,
p—>deviceMask, Nhalf);
if ((thrust::reduce(dev_ptr4, dev_ptr4+Nhalf)) == 0)
cond = 0;
X

// scale the result of the inverse transform

// and exponentiate to go back to true amplitudes:

expon<<<p->gridSize,p->blockSize>>>(p->deviceSmoothTrueEnv,
Nhalf);

// find maximum amp in spectral envelope:
max = *(thrust::max_element (dev_ptr3, dev_ptr3+Nhalf));

// normalize spectral env and freq scale the input:
freqShiftFormant<<<p->gridSize,p->blockSize>>>(fin, fout,
p—>deviceSmoothTrueEnv,
pshift, cshift,
lowest, max,
Nhalf);
// apply gain to all amplitudes:
fixPVandGain<<<p->gridSize,p->blockSize>>>(fin, fout, g,
lowest, framelength);
b

p—>fout->framecount = p->lastframe = p->fin->framecount;

}
return 0OK;

errl:
return csound->PerfError(csound, p->h.insdshead,
Str("cudapvshift2: not initialised"));
}

static OENTRY localops[] = {
{"cudapvshift2", sizeof (CUDAPVSHIFT2),0, 3, "f", "fxkOPQ",
(SUBR) cudapvshift2set, (SUBR) cudapvshift2}
s

extern "C" {
LINKAGE
}

201

Smooth Module

cudapvsmooth

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsmooth {
OPDS h;
PVSDAT *fout;
PVSDAT *fin;
MYFLT *kfra;
MYFLT *kfrf;
// AUXCH del; // not needed anymore
float* devicelnput; // pointer to device memory (input frame)
float* deviceQutput; // pointer to device memory (output frame)
int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
uint32 lastframe;
} CUDAPVSMOOTH;

// kernel for smoothing the time evolution functions of each channel
// (both amp and freq)
__global__
void smoothing(float* input, float* output, double alpha,
double beta, int length) {
int i threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j < length) {
output[j] = (float) (input[j] * (1.0 + alpha) - output[j] * alpha);
output[j+1] = (float) (input[j+1] * (1.0 + beta) -
output [j+1] * beta);
X

¥

static int free_device(CSOUND* csound, voidx pp){
CUDAPVSMOOTH* p = (CUDAPVSMOOTH*) pp;
cudaFree(p->deviceInput);
cudaFree (p->devicelutput) ;
return 0OK;

}

static int cudapvsmoothset (CSOUND *csound, CUDAPVSMOOTH *p)
{

int N = p->fin->N;

int size = (N+2) * sizeof (float);

int maxBlockDim;

int SMcount;

int totNumThreads = (N+2)>>1;

cudaError_t error;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties (&deviceProp,0) ;

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvsmooth running on device %s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

202 Appendix B. Plugin Opcodes: CUDA C Scripts

}

// device memory allocation (input data)
error = cudaMalloc(&p->devicelInput, size);
handleCudaError(csound, error);

// device memory allocation and set to zero (output data to be computed)
error = cudaMalloc(&p->deviceQutput, size);

handleCudaError(csound, error);

cudaMemset (p—>deviceOutput,0,size);

if (UNLIKELY(p->fin == p->fout))

csound->Warning(csound, Str("Unsafe to have same fsig

as in and out"));
p—>fout->NB = (N/2)+1;
p—>fout->sliding = 0;
if (p->fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2))
csound->AuxAlloc(csound, (N + 2) * sizeof(float), &p->fout->frame);

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p—>blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;
p->fout->overlap
p—>fout->winsize = p->fin->winsize;
p—>fout->wintype = p—>fin->wintype;
p—>fout->format = p->fin->format;
p—>fout->framecount = 1;
p—>lastframe = O;

p—>fin->overlap;

if (UNLIKELY(! (p->fout->format == PVS_AMP_FREQ) ||
(p->fout->format == PVS_AMP_PHASE)))
return csound->InitError(csound, Str("cudapvsmooth: signal format
must be amp-phase or amp-freq."));

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;

static int cudapvsmooth(CSOUND *csound, CUDAPVSMOOTH *p) {

int N = p—>fout->N;

int framelength = N+2;

int size = framelength * sizeof (float);

double ffa = (double) *p->kfra; // cutoff frequency in fractions of PI
// (for the amplitude stream)

(double) *p->kfrf; // cutoff frequency in fractions of PI
// (for the frequency stream)

double ffr

if (p->lastframe < p->fin->framecount) {
float *fout, *fin;
double costhl, costh2, coefl, coef2;
fout = (float *) p->fout->frame.auxp;
fin = (float *) p->fin->frame.auxp;

cudaMemcpy (p->deviceInput,fin,size, cudaMemcpyHostToDevice) ;

ffa = ffa < FL(0.0) ? FL(0.0) : (ffa > FL(1.0) 7 FL(1.0) : ffa);
ffr = ffr < FL(0.0) ? FL(0.0) : (ffr > FL(1.0) ? FL(1.0) : ffr);
costhl = 2.0 - cos(PI * ffa);
costh2 = 2.0 - cos(PI * ffr);

203

coefl = sqrt(costhl * costhl - 1.0) - costhil;
coef2 = sqrt(costh2 * costh2 - 1.0) - costh2;

// channel by channel parallel filtering on the GPU

// (both amp and freq):

smoothing<<<p->gridSize,p->blockSize>>>(p->devicelnput,
p—>deviceOutput, coefl,
coef2, framelength);

cudaMemcpy (fout ,p->deviceOutput,size, cudaMemcpyDeviceToHost) ;

p—>fout->framecount = p->lastframe = p->fin->framecount;

3

return 0OK;

¥

static OENTRY localops[] = {
{"cudapvsmooth", sizeof (CUDAPVSMOOTH),0, 3, "f", "fxx",
(SUBR) cudapvsmoothset, (SUBR) cudapvsmooth, NULL}
};

extern "C" {
LINKAGE
}

cudapvsmooth2

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsmooth2 {
OPDS h;
PVSDAT *fout;
PVSDAT *fin;
MYFLT *kfra;
MYFLT *kfrf;
int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
uint32 lastframe;
} CUDAPVSMOOTH2;

// kernel for smoothing the time evolution functions of each channel
// (both amp and freq)
__global__
void smoothing(float* input, float* output, double alpha,
double beta, int length) {

int i = threadIdx.x + blockDim.x*blockIdx.x;
int j = i<<1;
if (j < length) {

output[j] = (float) (input[j] * (1.0+alpha) - output[j] * alpha);
output[j+1] = (float) (input[j+1] * (1.0+beta) - output[j+1] * beta);

204 Appendix B. Plugin Opcodes: CUDA C Scripts

static int free_device(CSOUND* csound, voidx pp){
CUDAPVSMOOTH2* p = (CUDAPVSMOOTH2%) pp;
cudaFree (p->fout->frame.auxp) ;
return OK;

}

static int cudapvsmooth2set (CSOUND *csound, CUDAPVSMOOTH2 *p)
{

int N = p->fin->N;

int size = (N+2) * sizeof(float);

int maxBlockDim;

int SMcount;

int totNumThreads = (N+2)>>1;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp,0);

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message(csound, "cudapvsmooth2 running on device ¥%s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

if (UNLIKELY(p->fin == p->fout))
csound->Warning(csound, Str("Unsafe to have same fsig
as in and out"));
p—>fout->NB = (N/2)+1;
p—>fout->sliding = O;
if (p->fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2))
AuxCudaAlloc(size, &p->fout->frame);

p—>blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p->blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p->gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;

p—>fout->overlap = p->fin->overlap;

p—>fout->winsize = p->fin->winsize;

p—>fout->wintype = p->fin->wintype;

p—>fout->format = p->fin->format;

p—>fout->framecount = 1;

p—>lastframe = O;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;

}

static int cudapvsmooth2(CSOUND *csound, CUDAPVSMOOTH2 *p) {
int N = p->fout->N;
int framelength = N+2;
double ffa = (double) *p->kfra; // cutoff frequency in fractions of PI
// (for the amplitude stream)
double ffr = (double) *p->kfrf; // cutoff frequency in fractions of PI
// (for the frequency stream)

if (p->lastframe < p->fin->framecount) {
float *fout, *fin;
double costhl, costh2, coefl, coef2;
fout = (float *) p->fout->frame.auxp;
fin = (float *) p->fin->frame.auxp;

205

3

ffa
ffr

costh2
coefl
coef2

ffa < FL(0.0) 7
ffr < FL(0.0) 7
costhl = 2.0 - cos(PI

2.0 - cos(PI
sqrt(costhl *
sqrt (costh2 *

// channel by channel
// (both amp and freq):
smoothing<<<p->gridSize,p->blockSize>>>(fin, fout, coefl, coef2,

FL(0.0) : (ffa > FL(1.0) ? FL(1.0)
FL(0.0) : (ffr > FL(1.0) ? FL(1.0)
*x ffa);

* ffr);

costhl - 1.0) - costhil;

costh2 - 1.0) - costh2;

parallel filtering on the GPU

framelength) ;

p—>fout->framecount = p->lastframe = p->fin->framecount;

3

return 0K;

static OENTRY localops[] = {
{"cudapvsmooth2", sizeof (CUDAPVSMOOTH2),0, 3, "f", "fxx",
(SUBR) cudapvsmooth2set, (SUBR) cudapvsmooth2, NULL}

};

extern "C" {

3

LINKAGE

: ffa);
: ffr);

206 Appendix B. Plugin Opcodes: CUDA C Scripts

Blur Module

cudapvsblur

#include <csdl.h>
#include <pstream.h>

#define SR (csound->GetSr(csound))

typedef struct _cudapvsblur{
OPDS h;
PVSDAT* fout;
PVSDAT* fin;
MYFLT* kdel; // averaging window length (in sec)
MYFLT#* maxdel; // maximum expected time
// for the averaging window (in sec)
float* deviceOutput; // pointer to device memory (result frame)
float* deviceMatrix; // pointer to decive memory
// (matrix to store current and past frames)

int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
MYFLT frpsec; // frames per second

int32 count;
uint32 lastframe;
} CUDAPVSBLUR;

__global__
void initialize(float* matrix, float sr, int numFrames, int length) {
int frame = blockIdx.y*blockDim.y + threadldx.y;
int chan = (blockIdx.x*blockDim.x + threadIdx.x) << 1;
if ((frame < numFrames) && (chan < length)) {
matrix[framexlength+chan] = 0.0f;
matrix[framexlength+chan+1] = chan * sr / (length-2);
}
}

// blur kernel
__global__
void blur(float* matrix, float* output, int firstFrame, int numFrames,
int frameCount, int max, int length){
int chan = (blockIdx.x*blockDim.x+ threadIdx.x)<<1;
float amp = 0.0f;
float freq = 0.0f;

int frame;
if (chan < length) {
for (frame = firstFrame; frame != frameCount; frame = (frame+1)%max) {

amp += matrix[framexlength+chan];
freq += matrix[frame*length+chan+1];
}
output [chan]

= (float) (amp / numFrames);
output [chan+1] =

(float) (freq / numFrames);
}
}

static int free_device(CSOUND* csound, voidx pp){
CUDAPVSBLUR* p = (CUDAPVSBLUR*) pp;
cudaFree (p->devicelutput) ;
cudaFree (p->deviceMatrix);
return 0K;

207

static int cudapvsblurset (CSOUND *csound,

{

int32 N = p—>fin->N;

int olap = p—>fin->overlap;

int maxframes, framelength = N + 2;
int size = (N+2) * sizeof(float);

int bigSize;

int maxBlockDim;

int SMcount;

int totNumThreads = (N+2)>>1;

cudaError_t error;

// get info about device
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp,0);

maxBlockDim =

CUDAPVSBLUR *p)

deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;
csound->Message(csound, "cudapvsblur running on device ¥%s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// device memory allocation

error =

handleCudaError(csound, error);
cudaMemset (p—>deviceOutput,0,size);

if (UNLIKELY(p->fin == p->fout))
csound->Warning(csound, Str("Unsafe to have same fsig
as in and out"));

p->frpsec = SR / olap;
maxframes = (int) (xp->maxdel * p->frpsec);
bigSize = size * maxframes;

// device memory allocation

error =

handleCudaError (csound, error);

cudaMalloc (&p->deviceOutput, size);

// max number of frames
// considered, i.e. number
// of rows

cudaMalloc (&p->deviceMatrix, bigSize);

// REVISE THIS...(this might prevent memory coalescence)

// temporary gridSize and blockSize, just for "initialize" kernel
dim3 initBlockSize((int) maxBlockDim / maxframes, maxframes, 1);

dim3 initGridSize((framelength*maxframes>>1) / maxBlockDim + 1, 1, 1);

/%

// REVISE THIS...(this should be a little better, NOT SURE)

// NOTE:

//

IF THESE SIZES ARE USED,
THE "INITIALIZE"

KERNEL NEEDS TO BE CHANGED!

// temporary gridSize and blockSize, just for "initialize" kernel:

dim3 initBlockSize (maxBlockDim,

1, 1);

dim3 initGridSize((framelength*maxframes>>1) / maxBlockDim + 1, 1, 1);

*/

initialize<<<initGridSize,initBlockSize>>>(p->deviceMatrix, SR,

maxframes, framelength);

208

Appendix B. Plugin Opcodes: CUDA C Scripts

¥

if (p—>fout->frame.auxp == NULL ||
p->fout->frame.size < sizeof (float) * (N + 2))

csound->AuxAlloc(csound, (N + 2) * sizeof(float), &p->fout->frame);

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;
if (p->blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;
p—>fout->N = N;

p—>fout->overlap = olap;

p—>fout->winsize = p->fin->winsize;
p—>fout—>wintype = p->fin->wintype;

p—>fout->format = p->fin->format;
p—>fout->framecount = 1;

p—>lastframe = O;

p—>count = O;

p—>fout->sliding = p->fin->sliding;

p—>fout->NB = p->fin->NB;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;

static int cudapvsblur(CSDUND *csound, CUDAPVSBLUR *p)

{

int32 N = p->fout->N, first, framelength = N + 2;

int32 countr = p->count;

int size = (N+2) * sizeof(float);

int delayframes = (int) (*p->kdel * p->frpsec);
int maxframes = (int) (*p->maxdel * p->frpsec);

float xfin = (float *) p->fin->frame.auxp;
float *fout = (float *) p->fout->frame.auxp;
float *delay = (float *) p->delframes.auxp;

if (UNLIKELY(fout == NULL || delay == NULL)) goto erril;
if (p->lastframe < p->fin->framecount) {

delayframes = delayframes >= 0 ? (delayframes < maxframes 7
delayframes : maxframes - 1)

cudaMemcpy (p->deviceMatrix+(countr*framelength), fin, size,
cudaMemcpyHostToDevice) ;

if (delayframes) {
if ((first = countr - delayframes) < 0)
first += maxframes;

blur<<<p->gridSize,p->blockSize>>>(p->deviceMatrix,
p—>deviceOutput, first,
delayframes, countr,
maxframes, framelength);

: 0

cudaMemcpy (fout, p->deviceQutput, size, cudaMemcpyDeviceToHost);

}
else {
memcpy (fout, fin, size); // bypass blurring

p—>fout->framecount = p->lastframe = p->fin->framecount;
countr++;

209

p—>count = countr < maxframes 7 countr : O;

}

return 0OK;
errl: return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsblur: not initialised"));

¥

static OENTRY localops([] = {
{"cudapvsblur", sizeof (CUDAPVSBLUR),0, 3, "f", "fki",
(SUBR) cudapvsblurset, (SUBR) cudapvsblur, NULL}

};

extern "C" {
LINKAGE

}

cudapvsblur?2

// To enhance performance, it might be a good idea not to use cudaMemcpy
// with DeviceToDevice specifier: instead, write a kernel just to copy and
// paste data from one location to the other. (it seems that cudaMemcpy is
// quite slow even when transferring data internally)

#include <csdl.h>
#include <pstream.h>

#define SR (csound->GetSr(csound))

typedef struct _cudapvsblur2{
OPDS h;
PVSDAT* fout;
PVSDAT* fin;

MYFLT* kdel; // averaging window length (in sec)
MYFLT* maxdel; // maximum expected time for the averaging window (
in sec)

float* deviceMatrix; // pointer to decive memory
// (matrix to store current and
// past frames)

int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
MYFLT frpsec; // frames per second

int32 count;
uint32 lastframe;
} CUDAPVSBLUR2;

__global _
void initialize(float* matrix, float sr, int numFrames, int length) {
int frame = blockIdx.y*blockDim.y + threadldx.y;
int chan = (blockIdx.x*blockDim.x + threadIdx.x) << 1;
if ((frame < numFrames) && (chan < length)) {
matrix[framexlength+chan] = 0.0f;
matrix[frame*length+chan+l1] = chan * sr / (length-2);
}
}

210 Appendix B. Plugin Opcodes: CUDA C Scripts

// blurring kernel
__global__
void blur(float* matrix, float* output, int firstFrame, int numFrames,
int frameCount, int max, int length){
int chan = (blockIdx.x*blockDim.x+ threadIdx.x)<<1;
float amp = 0.0f;
float freq = 0.0f;

int frame;
if (chan < length) {
for (frame = firstFrame; frame != frameCount; frame = (frame+1)%max) {

amp += matrix[framexlength+chan];
freq += matrix[framexlength+chan+1];
X
output [chan]

= (float) (amp / numFrames);
output [chan+1] =

(float) (freq / numFrames);
}
}

static int free_device(CSOUND* csound, voidx pp){
CUDAPVSBLUR2* p = (CUDAPVSBLUR2*) pp;
cudaFree (p->fout->frame.auxp) ;
cudaFree(p->deviceMatrix) ;
return 0K;

3

static int cudapvsblur2set (CSOUND *csound, CUDAPVSBLUR2 *p)
{
int32 N = p—>fin->N;
int olap = p->fin->overlap;
int maxframes, framelength = N + 2;
int size = (N+2) * sizeof(float);
int bigSize;
int maxBlockDim;
int SMcount;
int totNumThreads = (N+2)>>1;
cudaError_t error;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp,0) ;

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvsblur2 running on device %s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// device memory allocation

//error = cudaMalloc(&p->deviceOutput, size);
//handleCudaError (csound, error);
//cudaMemset (p->deviceOutput,0,size);

if (UNLIKELY(p->fin == p->fout))
csound->Warning(csound, Str("Unsafe to have same fsig
as in and out"));

p—>frpsec = SR / olap;

(int) (*p->maxdel * p->frpsec); // max number of frames
// considered, i.e. number
// of rows

maxframes

211

bigSize = size * maxframes;

// device memory allocation
error = cudaMalloc(&p->deviceMatrix, bigSize);
handleCudaError(csound, error);

// REVISE THIS...(this might prevent memory coalescence)

// temporary gridSize and blockSize, just for "initialize" kernel
dim3 initBlockSize((int) maxBlockDim / maxframes, maxframes, 1);

dim3 initGridSize((framelength*maxframes>>1) / maxBlockDim + 1, 1, 1);

/%

// REVISE THIS...(this should be a little better, NOT SURE)

// NOTE: IF THESE SIZES ARE USED,

// THE "INITIALIZE" KERNEL NEEDS TO BE CHANGED!

// temporary gridSize and blockSize, just for "initialize" kernel:
dim3 initBlockSize(maxBlockDim, 1, 1);

dim3 initGridSize ((framelength*maxframes>>1) / maxBlockDim + 1, 1, 1);

*/

initialize<<<initGridSize,initBlockSize>>>(p—>deviceMatrix, SR,
maxframes, framelength);

if (p->fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2))
AuxCudaAlloc(size, &p->fout->frame);

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;
if (p—>blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;
p—>fout->N = N;

p—>fout->overlap = olap;

p—>fout->winsize = p->fin->winsize;
p—>fout->wintype = p—>fin->wintype;

p—>fout->format = p->fin->format;
p—>fout->framecount = 1;

p—>lastframe = O;

p—>count = 0;

p—>fout->sliding = 0;

p—>fout->NB = p->fin->NB;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0K;

}

static int cudapvsblur2(CSOUND *csound, CUDAPVSBLUR2 *p)

{
int32 N = p->fout->N, first, framelength = N + 2;

int32 countr = p->count;

int size = (N+2) * sizeof(float);

int delayframes = (int) (*p->kdel * p->frpsec);
int maxframes = (int) (*p->maxdel * p->frpsec);

float *fin = (float *) p->fin->frame.auxp;
float x*fout = (float *) p->fout->frame.auxp;

if (UNLIKELY(fout == NULL)) goto errl;

212 Appendix B. Plugin Opcodes: CUDA C Scripts

if (p—>lastframe < p->fin->framecount) {

delayframes = delayframes >= 0 7 (delayframes < maxframes 7
delayframes : maxframes - 1) : 0;

cudaMemcpy (p—>deviceMatrix+(countr*framelength), fin, size,
cudaMemcpyDeviceToDevice) ;

if (delayframes) {
if ((first = countr - delayframes) < 0)
first += maxframes;

blur<<<p->gridSize,p->blockSize>>>(p->deviceMatrix, fout,
first, delayframes, countr,
maxframes, framelength);
X
else {
// bypass blurring:
cudaMemcpy (fout, fin, size, cudaMemcpyDeviceToDevice);

p—>fout->framecount = p->lastframe = p->fin->framecount;
countr++;
p—>count = countr < maxframes 7 countr : O;

}

return 0OK;
errl: return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsblur2: not initialised"));
}

static OENTRY localops[] = {

{"cudapvsblur2", sizeof (CUDAPVSBLUR2),0, 3, "f", "fki",
(SUBR) cudapvsblur2set, (SUBR) cudapvsblur2, NULL}

s

extern "C" {
LINKAGE
}

213

Mix Module

cudapvsmix

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsmix {

}

OPDS h;

PVSDAT x*fout;

PVSDAT xfa;

PVSDAT x*fb;

float* devOutput; // device memory pointer (output PV frame)
float* devFrameA; // device memory pointer (PV frame #1)
float* devFrameB; // device memory pointer (PV frame #2)
int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
uint32 lastframe;

CUDAPVSMIX;

global

void mix(float* output, float* frameA, float* frameB, int chans) {

int i = threadIldx.x + blockDim.x * blockIdx.x;
int j = i<<1;
if (i < chans) {

int test = frameA[j] >= frameB[j];

if (test) {
output[j] = frameA[j];
output[j+1] = frameA[j+1];
else {
output[j] = frameB[j];
output[j+1] = frameB[j+1];
}
}
static int fsigs_equal(const PVSDAT *fl, const PVSDAT *f2)
{
if (

¥

(f1->sliding == f2->sliding) &&

(f1->overlap == f2->overlap) &&

(f1->winsize == f2->winsize) &&

(f1->wintype == f2->wintype) && /* harsh, maybe... */
(f1->N == f2->N) &&

(f1->format == f2->format))

return 1;
return O;

static int free_device(CSOUND* csound, void* pp){

CUDAPVSMIX* p = (CUDAPVSMIX*) pp;
cudaFree (p->dev0Output) ;

cudaFree (p->devFrameA) ;

cudaFree (p->devFrameB) ;

return 0K;

214

Appendix B. Plugin Opcodes: CUDA C Scripts

static int cudapvsmixset(CSOUND *csound, CUDAPVSMIX *p)

{

int32 N = p—>fa->N;

int framelength = N+2;

int chans = framelength>>1;

int size = framelength*sizeof (float);

int maxBlockDim;
int SMcount;

int totNumThreads
cudaError_t error

3

chans;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp,0) ;

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvsmix running on device %s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

// device memory allocation (PV frame A)
error = cudaMalloc(&p->devFramedA, size);
handleCudaError(csound, error);

// device memory allocation (PV frame B)
error = cudaMalloc(&p->devFrameB, size);
handleCudaError(csound, error);

// device memory allocation (PV output frame)
error = cudaMalloc(&p->devOutput, size);
handleCudaError(csound, error);

cudaMemset (p->devOutput,0,size) ;

p->fout->sliding = 0;

if (p->fout->frame.auxp == NULL ||
p—>fout->frame.size < sizeof (float) * (N + 2))
csound->AuxAlloc(csound, (N + 2) * sizeof(float), &p->fout->frame);

p—>blockSize = (((totNumThreads/SMcount)/32)+1)*32;
if (p->blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;

p—>fout->overlap
p—>fout->winsize
p—>fout->wintype

p—>fa->overlap;
p—>fa->winsize;
p—>fa->wintype;

p—>fout->format = p->fa->format;
p—>fout->framecount

p—>lastframe = O;

=1,

if (UNLIKELY(! (p->fout->format == PVS_AMP_FREQ) ||
(p->fout->format == PVS_AMP_PHASE)))
return csound->InitError(csound, Str("cudapvsmix: signal format "

"must be amp-phase or amp-freq."));

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;

215

static int cudapvsmix(CSOUND *csound, CUDAPVSMIX *p)
{

int32 N = p->fa->N;

int framelength = N+2;

int chans = framelength>>1;

int size = framelength*sizeof (float);

float* fout = (float *) p->fout->frame.auxp;

float* fa = (float *) p->fa->frame.auxp;

float* fb = (float *) p->fb->frame.auxp;

if (UNLIKELY(!fsigs_equal(p->fa, p->fb))) goto erril;
if (p->lastframe < p->fa->framecount) {

cudaMemcpy (p->devFrameA, fa, size, cudaMemcpyHostToDevice);
cudaMemcpy (p->devFrameB, fb, size, cudaMemcpyHostToDevice);

mix<<<p->gridSize,p->blockSize>>>(p->devOutput, p->devFramel,
p—>devFrameB, chans);

cudaMemcpy (fout, p->devOutput, size, cudaMemcpyDeviceToHost);

p—>fout->framecount = p->fa->framecount;
p—>lastframe = p->fout->framecount;

¥

return 0OK;
errl:
return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsmix: formats are different."));

}

static OENTRY localops[] = {
{"cudapvsmix", sizeof (CUDAPVSMIX),0, 3, "f", "ff",
(SUBR) cudapvsmixset, (SUBR)cudapvsmix, NULL}

};

extern "C" {
LINKAGE

}

cudapvsmix2

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsmix2 {

OPDS h;
PVSDAT *fout;

PVSDAT *fa;

PVSDAT *fb;

int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)

uint32 lastframe;
} CUDAPVSMIX2;

216 Appendix B. Plugin Opcodes: CUDA C Scripts

global _

void mix(float* output, float* frameA, float* frameB, int chans) {

int i = threadIldx.x + blockDim.x * blockIdx.x;
int j = i<<1;
if (i < chans) {

int test = frameA[j] >= frameB[j];

if (test) {
output [j] = frameA[j];
output [j+1] = frameA[j+1];
else {
output [j] = frameB[j];
output[j+1] = frameB[j+1];
}
}
static int fsigs_equal(const PVSDAT *f1, const PVSDAT *£f2)
{
if (

¥

(f1->sliding == f2->sliding) &&

(f1->overlap == f2->overlap) &&

(f1->winsize == f2->winsize) &&

(f1->wintype == f2->wintype) && /* harsh, maybe... */
(f1->N == £2->N) &&

(f1->format == f2->format))

return 1;
return O;

static int free_device(CSOUND* csound, void* pp){

3

CUDAPVSMIX2* p = (CUDAPVSMIX2%) pp;
cudaFree (p->fout->frame.auxp) ;
return 0K;

static int cudapvsmix2set (CSOUND *csound, CUDAPVSMIX2 *p)

{

int32 N = p->fa->N;

int framelength = N+2;

int chans = framelength>>1;

int size = framelength*sizeof (float);

int maxBlockDim;
int SMcount;
int totNumThreads = chans;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp,0);

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message(csound, "cudapvsmix2 running on device %s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

p—>fout->sliding = O;

217

if (p->fout->frame.auxp == NULL ||
p->fout->frame.size < sizeof (float) * (N + 2))
AuxCudaAlloc(size, &p->fout->frame);

p->blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p->blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;

p—>fout->overlap = p->fa->overlap;

p—>fout->winsize = p->fa->winsize;

p—>fout->wintype = p->fa->wintype;

p—>fout->format = p->fa->format;

p—>fout->framecount = 1;

p—>lastframe = O;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;

¥

static int cudapvsmix2(CSOUND *csound, CUDAPVSMIX2 *p)
{

int32 N = p—>fa->N;

int framelength = N+2;

int chans = framelength>>1;

float* fout = (float *) p->fout->frame.auxp;

float* fa = (float *) p->fa->frame.auxp;

float* fb = (float *) p->fb->frame.auxp;

if (UNLIKELY(!fsigs_equal(p->fa, p->fb))) goto erri;
if (p->lastframe < p->fa->framecount) {
mix<<<p->gridSize,p->blockSize>>>(fout, fa, fb, chans);

p—>fout->framecount = p->fa->framecount;
p—>lastframe = p->fout->framecount;

}

return 0OK;
errl:
return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsmix2: formats are different."));

}

static OENTRY localops[] = {

{"cudapvsmix2", sizeof (CUDAPVSMIX2),0, 3, "f", "ff",
(SUBR) cudapvsmix2set, (SUBR)cudapvsmix2, NULL}

I

extern "C" {
LINKAGE
}

218 Appendix B. Plugin Opcodes: CUDA C Scripts

Morph Module

cudapvsmorph

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsmorph {
OPDS h;
PVSDAT =*fout;
PVSDAT *fin;
PVSDAT x*ffr;
MYFLT xkampDepth;
MYFLT xkfreqDepth;

float* devOutput; // pointer to device memory (output frame)
float* devInputl; // pointer to device memory (input frame #1)
float* devInput2; // pointer to device memory (input frame #2)
int gridSize; // number of blocks in the grid (1D)

int blockSize; // number of threads in one block (1D)

uint32 lastframe;
} CUDAPVSMORPH;

__global__
void morph(float* output, float* inputl, float* input2, float ampCoeff,
float freqCoeff, int length) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = i<<1;
if (j < length) {
output [j] = inputl[jl*(1.0-ampCoeff) + input2[j]*(ampCoeff);
output [j+1] = inputl[j+1]*(1.0-freqCoeff) + input2[j+1]*(freqCoeff);

}

static int free_device(CSOUND* csound, voidx pp){
CUDAPVSMORPH#* p = (CUDAPVSMORPH*) pp;
cudaFree (p->dev0utput) ;
cudaFree (p->devInputl) ;
cudaFree(p->devInput?2) ;
return 0OK;

¥

static int cudapvsmorphset (CSOUND *csound, CUDAPVSMORPH *p)
{

int32 N = p->fin->N;

int framelength = N+2;

int size = framelength * sizeof (float);

int maxBlockDim;

int SMcount;

int totNumThreads = framelength>>1;

cudaError_t error;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp,0) ;

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvsmorph running on device %s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

219

}

// device memory allocation (output frame)
error = cudaMalloc(&p->devOutput, size);
handleCudaError (csound, error);

cudaMemset (p->devOutput,0,size) ;

// device memory allocation (input 1)
error = cudaMalloc(&p->devInputl, size);
handleCudaError(csound, error);

// device memory allocation (input 2)
error = cudaMalloc(&p->devInput2, size);
handleCudaError (csound, error);

if (p->fout->frame.auxp==NULL ||

p—>fout->frame.size<(N+2)*sizeof (float))
csound->AuxAlloc(csound, (N+2) *sizeof (float) ,&p->fout->frame) ;

p—>blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p—>blockSize > maxBlockDim) p->blockSize

= maxBlockDim;

p->gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;
p—>fout->overlap
p—>fout->winsize = p->fin->winsize;
p—>fout->wintype = p->fin->wintype;
p—>fout->format = p->fin->format;
p—>fout—>framecount = 1;
p—>lastframe = O;

p->fin->overlap;

if (UNLIKELY(! (p->fout->format==PVS_AMP_FREQ) ||
(p—>fout->format==PVS_AMP_PHASE))) {
return csound->InitError(csound, Str("signal format must be
amp-phase ""or amp-freq.""\n"));

}

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;

static int cudapvsmorph(CSOUND *csound, CUDAPVSMORPH *p)

{

int32 N = p->fout->N;

int framelength = N + 2;

int size = framelength * sizeof (float);
float ampDepth = (float) *p->kampDepth;
float freqDepth = (float) *p->kfreqDepth;
float *fil = (float *) p->fin->frame.auxp;
float *fi2 = (float *) p->ffr->frame.auxp;

float *fout = (float *) p->fout->frame.auxp;

if (UNLIKELY(fout==NULL)) goto errl;

if (p->lastframe < p->fin->framecount) {

cudaMemcpy (p->devInputl,fil,size, cudaMemcpyHostToDevice) ;
cudaMemcpy (p->devInput2,fi2, size, cudaMemcpyHostToDevice) ;

ampDepth = ampDepth > O ? (ampDepth <= 1 ?

ampDepth : FL(1.0)): FL(0.0);
freqDepth = freqDepth > 0 7

(fregDepth <= 1 ? fregDepth :

FL(1.0)): FL(0.0);

220

3

morph<<<p->gridSize,p->blockSize>>>(p->devOutput, p->devInputl,
p—>devInput2, ampDepth,
freqDepth, framelength);

cudaMemcpy (fout,p->devOutput, size, cudaMemcpyDeviceToHost) ;

p—>fout->framecount = p->lastframe = p->fin->framecount;

3

return 0K;
errl:
return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsmorph: not initialised\n"));

static OENTRY localops[] = {

};

{"cudapvsmorph", sizeof (CUDAPVSMORPH), 0,3, "f", "ffkk",
(SUBR) cudapvsmorphset, (SUBR) cudapvsmorph}

extern "C" {

3

LINKAGE

cudapvsmorph?2

#include <csdl.h>
#include <pstream.h>

typedef struct _cudapvsmorph2 {

3

OPDS h;

PVSDAT *fout;
PVSDAT *fin;

PVSDAT *ffr;

MYFLT *kampDepth;
MYFLT *kfreqDepth;

int gridSize; // number of blocks in the grid (1D)
int blockSize; // number of threads in one block (1D)
uint32 lastframe;

CUDAPVSMORPH2;

global_ _

void morph(float* output, float* inputl, float* input2, float ampCoeff,

}

float freqCoeff, int length) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = 1i<<1;
if (j < length) {
output [j] = inputl[jl*(1.0-ampCoeff) + input2[j]*(ampCoeff);
output [j+1] = inputl[j+1]1*(1.0-freqCoeff) + input2[j+1]*(freqCoeff);

static int free_device(CSOUND* csound, voidx pp){

}

CUDAPVSMORPH2* p = (CUDAPVSMORPH2*) pp;
cudaFree (p->fout->frame.auxp) ;
return 0OK;

Appendix B. Plugin Opcodes: CUDA C Scripts

221

static int cudapvsmorph2set (CSOUND *csound, CUDAPVSMORPH2 *p)

{

}

int32 N = p->fin->N;

int framelength = N+2;

int size = framelength * sizeof(float);
int maxBlockDim;

int SMcount;

int totNumThreads = framelength>>1;

// get info about device

cudaDeviceProp deviceProp;

cudaGetDeviceProperties (&deviceProp,0) ;

maxBlockDim = deviceProp.maxThreadsPerBlock;

SMcount = deviceProp.multiProcessorCount;

csound->Message (csound, "cudapvsmorph2 running on device s
(capability %d.%d)\n", deviceProp.name,
deviceProp.major, deviceProp.minor);

if (p->fout->frame.auxp==NULL ||
p—>fout->frame.size<(N+2)*sizeof (float))
AuxCudaAlloc(size, &p->fout->frame);

p—>blockSize = (((totNumThreads/SMcount)/32)+1)*32;

if (p->blockSize > maxBlockDim) p->blockSize = maxBlockDim;
p—>gridSize = totNumThreads / p->blockSize + 1;

p—>fout->N = N;
p—>fout->overlap
p—>fout->winsize = p->fin->winsize;
p—>fout->wintype = p->fin->wintype;
p—>fout->format = p->fin->format;
p—>fout->sliding = O;
p—>fout->framecount = 1;
p—>lastframe = O;

p->fin->overlap;

csound->RegisterDeinitCallback(csound, p, free_device);

return 0OK;

static int cudapvsmorph2(CSOUND *csound, CUDAPVSMORPH2 *p)

{

int32 N = p->fout->N;

int framelength = N + 2;

float ampDepth = (float) *p->kampDepth;
float freqDepth = (float) *p->kfreqDepth;
float *fil = (float *) p->fin->frame.auxp;
float *fi2 = (float *) p->ffr->frame.auxp;
float *fout = (float *) p->fout->frame.auxp;

if (UNLIKELY(fout==NULL)) goto erril;
if (p->lastframe < p->fin->framecount) {
ampDepth = ampDepth > O ? (ampDepth <= 1 ?

ampDepth : FL(1.0)): FL(0.0);
freqDepth = freqDepth > 0 7

(freqDepth <= 1 ? freqDepth : FL(1.0)): FL(0.0);

morph<<<p->gridSize,p->blockSize>>>(fout, fil, fi2, ampDepth,
freqDepth, framelength);

222 Appendix B. Plugin Opcodes: CUDA C Scripts

p—>fout->framecount = p->lastframe = p->fin->framecount;

}
return OK;

errl:
return csound->PerfError(csound, p->h.insdshead,
Str("cudapvsmorph2: not initialised\n"));

3

static OENTRY localops[] = {

{"cudapvsmorph2", sizeof (CUDAPVSMORPH2), 0,3, "f", "ffkk",
(SUBR) cudapvsmorph2set, (SUBR) cudapvsmorph2}

s

extern "C" {
LINKAGE
}

Appendix C

Csound Scripts for Testing
Purposes

This appendix reports the Csound scripts used for testing the performance of
the plugin opcodes described in chapter 3. These are presented here in order to show
the tests’ structure, as the way tests are designed may affect the actual performance
of the Csound modules under analysis. Thus, the information contained in this
appendix makes the results reported in chapter 4 more objective.

In the Csound scripts of the scale and shift modules, the mode of operation of
pvscale, cudapvscale, cudapvscale2, pvshift, cudapvshift, and cudapvshift?2
needs to be selected appropriately. Here, only mode 0 is reported for convenience.

Gaitn Module

<CsoundSynthesizer>

<CsOptions>
—--opcode-lib=libcudapvsgain.so
--opcode-1ib=../../libcudapvs2.dylib
—--opcode-lib=libcudapvsgain2.so
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 128
Odbfs = 1

$FFT
$HOP

gifftsize
gihopsize

instr 1
kenv linseg O, p3/4, 1, p3/4, 0, p3/4, 1.5, p3/4, 0
asig soundin "syrinx.wav"
fsig pvsanal asig, gifftsize, gihopsize, gifftsize, 1
fsigScaled pvsgain fsig, kenv
asig pvsynth fsigScaled
out asig

endin

223

224 Appendix C. Csound Scripts for Testing Purposes

instr 2
kenv linseg O, p3/4, 1, p3/4, 0, p3/4, 1.5, p3/4, 0
asig soundin "syrinx.wav"

fsig pvsanal asig, gifftsize, gihopsize, gifftsize, 1
fsigScaled cudapvsgain fsig, kenv

asig pvsynth fsigScaled

out asig

endin

instr 3
kenv linseg 0, p3/4, 1, p3/4, 0, p3/4, 1.5, p3/4, 0
asig soundin "syrinx.wav"

fsig cudanal asig, gifftsize, gihopsize, gifftsize, 1
fsigScaled cudapvsgain fsig, kenv

asig cudasynth fsigScaled

out asig

endin

instr 4
kenv linseg 0, p3/4, 1, p3/4, 0, p3/4, 1.5, p3/4, 0
asig soundin "syrinx.wav"

fsig cudanal2 asig, gifftsize, gihopsize, gifftsize, 1
fsigScaled cudapvsgain2 fsig, kenv
asig cudasynth2 fsigScaled
out asig
endin

</CsInstruments>
<CsScore>
i $INSTR O 60

</CsScore>

</CsoundSynthesizer>

Filter Module

<CsoundSynthesizer>

<CsOptions>
—--opcode-lib=libcudapvsfilter.so
—--opcode-lib=libcudapvsfilter2.so
--opcode-lib=../../libcudapvs2.dylib
</CsOptions>

<CsInstruments>

128
1

ksmps =
Odbfs =

giSine ftgen 0, 0, 4096, 10, 1

$FFT
$HOP

gifftsize
gihopsize

225

instr 1
kfreq expseg 500, p3/3, 4000, p3/3, 500, p3/3, 4000 ; 3-octave
; sweep
kdepth linseg 1, p3/2, 0.5, p3/2, 1 ; varying filter depth
asig soundin "syrinx.wav" ; input
afil oscili 1, kfreq, giSine ; filter t-domain signal
fim pvsanal asig,gifftsize,gihopsize,gifftsize,0 ; pvoc analysis
fil pvsanal afil,gifftsize,gihopsize,gifftsize,0
fou pvsfilter fim, fil, kdepth
aout pvsynth fou ; pvoc synthesis
out (aout)
endin
instr 2
kfreq expseg 500, p3/3, 4000, p3/3, 500, p3/3, 4000 ; 3-octave
; sweep
kdepth linseg 1, p3/2, 0.5, p3/2, 1 ; varying filter depth
asig soundin "syrinx.wav" ; input
afil oscili 1, kfreq, giSine ; filter t-domain signal
fim pvsanal asig,gifftsize,gihopsize,gifftsize,0 ; pvoc analysis
fil pvsanal afil,gifftsize,gihopsize,gifftsize,0
fou cudapvsfilter fim, fil, kdepth
aout pvsynth fou ; pvoc synthesis
out (aout)
endin
instr 3
kfreq expseg 500, p3/3, 4000, p3/3, 500, p3/3, 4000 ; 3-octave
; sweep
kdepth linseg 1, p3/2, 0.5, p3/2, 1 ; varying filter depth
asig soundin "syrinx.wav" ; input
afil oscili 1, kfreq, giSine ; filter t-domain signal
fim cudanal asig,gifftsize,gihopsize,gifftsize,0 ; pvoc analysis
fil cudanal afil,gifftsize,gihopsize,gifftsize,0
fou cudapvsfilter fim, fil, kdepth
aout cudasynth fou ; pvoc synthesis
out (aout)
endin
instr 4
kfreq expseg 500, p3/3, 4000, p3/3, 500, p3/3, 4000 ; 3-octave
; sweep
kdepth linseg 1, p3/2, 0.5, p3/2, 1 ; varying filter depth
asig soundin "syrinx.wav" ; input
afil oscili 1, kfreq, giSine ; filter t-domain signal
fim cudanal2 asig,gifftsize,gihopsize,gifftsize,0 ; pvoc analysis

fil cudanal2 afil,gifftsize,gihopsize,gifftsize,0
fou cudapvsfilter2 fim, fil, kdepth

aout cudasynth2 fou ; pvoc synthesis
out (aout)
endin

</CsInstruments>

226 Appendix C. Csound Scripts for Testing Purposes

<CsScore>
i $INSTR 0 60
</CsScore>

</CsoundSynthesizer>

Stencil Module

<CsoundSynthesizer>

<CsOptions>
—--opcode-lib=libcudapvstencil.so
--opcode-lib=../../libcudapvs2.dylib
—--opcode-lib=libcudapvstencil2.so
</CsOptions>

<CsInstruments>
sr = 44100

ksmps = 128
Odbfs = 1

$FFT
$HOP

gifftsize
gihopsize

instr 1
kgain linseg O, p3, 1.5
klevel linseg 0, p3, .5
asigl soundin "ends.wav"
fsigl = pvsanal(asigl, gifftsize, gihopsize, gifftsize, 1)
ftps pvstencil fsigl, kgain, klevel, 1
atps pvsynth ftps
out atps
endin

instr 2
kgain linseg 0, p3, 1.5
klevel 1linseg O, p3, .5
asigl soundin "ends.wav"
fsigl = pvsanal(asigl, gifftsize, gihopsize, gifftsize, 1)
ftps cudapvstencil fsigl, kgain, klevel, 1
atps pvsynth ftps
out atps
endin

instr 3
kgain linseg O, p3, 1.5
klevel 1linseg O, p3, .5
asigl soundin "ends.wav"
fsigl = cudanal(asigl, gifftsize, gihopsize, gifftsize, 1)
ftps cudapvstencil fsigl, kgain, klevel, 1
atps cudasynth ftps
out atps
endin

227

instr 4
kgain linseg 0, p3, 1.5
klevel linseg 0, p3, .5
asigl soundin "ends.wav"
fsigl cudanal2 asigl, gifftsize, gihopsize, gifftsize, 1
ftps cudapvstencil2 fsigl, kgain, klevel, 1
atps cudasynth2 ftps
out atps
endin

</CsInstruments>

<CsScore>

f1 0 —-[$FFT+1] 21 1
i $INSTR O 60
</CsScore>

</CsoundSynthesizer>

Scale Module

<CsoundSynthesizer>

<CsOptions>
--opcode-lib=libcudapvscale.so
--opcode-1lib=../../libcudapvs2.dylib
—--opcode-lib=libcudapvscale2.so0
</CsOptions>

<CsInstruments>
sr = 44100

ksmps 128
Odbfs =1

$FFT
$HOP

gifftsize
gihopsize

instr 1
kscale 1linseg .3, p3, 3
kgain linseg 1, p3/3, 0, p3/3, 1.5, p3/3, 1
asig soundin "syrinx.wav"
fsig = pvsanal(asig, gifftsize, gihopsize, gifftsize, 1)
fsigScaled pvscale fsig, kscale, 0, kgain
asig pvsynth fsigScaled
out asig
endin

instr 2
kscale 1linseg .3, p3, 3
kgain linseg 1, p3/3, 0, p3/3, 1.5, p3/3, 1
asig soundin "syrinx.wav"
fsig = pvsanal(asig, gifftsize, gihopsize, gifftsize, 1)
fsigScaled cudapvscale fsig, kscale, 0, kgain
asig pvsynth fsigScaled
out asig
endin

228 Appendix C. Csound Scripts for Testing Purposes

instr 3
kscale linseg .3, p3, 3
kgain linseg 1, p3/3, 0, p3/3, 1.5, p3/3, 1
asig soundin "syrinx.wav"
fsig = cudanal(asig, gifftsize, gihopsize, gifftsize, 1)
fsigScaled cudapvscale fsig, kscale, 0, kgain
asig cudasynth fsigScaled
out asig
endin

instr 4
kscale 1linseg .3, p3, 3
kgain linseg 1, p3/3, 0, p3/3, 1.5, p3/3, 1
asig soundin "syrinx.wav"
fsig cudanal2 asig, gifftsize, gihopsize, gifftsize, 1
fsigScaled cudapvscale2 fsig, kscale, 0, kgain
asig cudasynth2 fsigScaled
out asig
endin

</CsInstruments>

<CsScore>
i $INSTR 0 60
</CsScore>

</CsoundSynthesizer>

Shift Module

<CsoundSynthesizer>

<CsOptions>
--opcode-lib=libcudapvshift.so
--opcode-1lib=../../libcudapvs2.dylib
—--opcode-lib=libcudapvshift2.so
</CsOptions>

<CsInstruments>
sr = 44100

ksmps = 128
Odbfs = 1

$FFT
$HOP

gifftsize
gihopsize

instr 1
kgain linseg .4, p3, 2
kshift linseg -2000, p3, 2000
klowest 1linseg 20, p3, 400
asig soundin "syrinx.wav"
fsig = pvsanal(asig, gifftsize, gihopsize, gifftsize, 1)
fsigShifted pvshift fsig, kshift, klowest, 0, kgain
asig pvsynth fsigShifted
out asig
endin

229

instr 2

kgain linseg .4, p3, 2

kshift 1linseg -2000, p3, 2000

klowest 1linseg 20, p3, 400

asig soundin "syrinx.wav"

fsig = pvsanal(asig, gifftsize, gihopsize, gifftsize, 1)

fsigShifted cudapvshift fsig, kshift, klowest, 0, kgain

asig pvsynth fsigShifted

out asig
endin

instr 3
kgain linseg .4, p3, 2
kshift linseg -2000, p3, 2000
klowest 1linseg 20, p3, 400
asig soundin "syrinx.wav"
fsig = cudanal(asig, gifftsize, gihopsize, gifftsize, 1)
fsigShifted cudapvshift fsig, kshift, klowest, 0, kgain
asig cudasynth fsigShifted
out asig
endin

instr 4
kgain linseg .4, p3, 2
kshift 1linseg -2000, p3, 2000
klowest linseg 20, p3, 400
asig soundin "syrinx.wav"
fsig cudanal2 asig, gifftsize, gihopsize, gifftsize, 1
fsigShifted cudapvshift2 fsig, kshift, klowest, 0, kgain
asig cudasynth2 fsigShifted
out asig
endin

</CsInstruments>

<CsScore>
i $INSTR O 60
</CsScore>

</CsoundSynthesizer>

Smooth Module

<CsoundSynthesizer>

<CsOptions>
--opcode-lib=libcudapvsmooth.so
--opcode-1ib=../../libcudapvs2.dylib
—--opcode-lib=1libcudapvsmooth2.so
</CsOptions>

<CsInstruments>
sr = 44100

ksmps = 128
Odbfs = 1

230 Appendix C. Csound Scripts for Testing Purposes

gifftsize = $FFT
gihopsize = $HOP
instr 1

kacf linseg 0.001, p3, 1
kfct linseg 1, p3, 0.001
asig soundin "syrinx.wav"
fsig = pvsanal(asig, gifftsize, gihopsize, gifftsize, 1)
ftps pvsmooth fsig, kacf, kfcf
atps pvsynth ftps
out atps
endin

instr 2
kact linseg 0.001, p3, 1
kfcf linseg 1, p3, 0.001
asig soundin "syrinx.wav"
fsig = pvsanal(asig, gifftsize, gihopsize, gifftsize, 1)
ftps cudapvsmooth fsig, kacf, kfcf
atps pvsynth ftps
out atps
endin

instr 3
kacf linseg 0.001, p3, 1
kfcf linseg 1, p3, 0.001
asig soundin "syrinx.wav"
fsig = cudanal(asig, gifftsize, gihopsize, gifftsize, 1)
ftps cudapvsmooth fsig, kacf, kfcf
atps cudasynth ftps
out atps
endin

instr 4
kacf linseg 0.001, p3, 1
kfcf linseg 1, p3, 0.001
asig soundin "syrinx.wav"
fsig cudanal2 asig, gifftsize, gihopsize, gifftsize, 1
ftps cudapvsmooth2 fsig, kacf, kfcf
atps cudasynth2 ftps
out atps
endin

</CsInstruments>
<CsScore>
i $INSTR O 60

</CsScore>

</CsoundSynthesizer>

231

Blur Module

<CsoundSynthesizer>

<CsOptions>
—--opcode-lib=libcudapvsblur.so
--opcode-lib=../../libcudapvs2.dylib
—--opcode-lib=libcudapvsblur2.so
</CsOptions>

<CsInstruments>

sr = 44100
ksmps = 128
Odbfs = 1

gifftsize = $FFT
gihopsize = $HOP

instr 1
asig soundin "syrinx.wav"
kblurtime line 0, 60, .99

fsig = pvsanal(asig, gifftsize, gihopsize, gifftsize, 1)

ftps pvsblur fsig, kblurtime, 1
atps pvsynth ftps

out atps
endin
instr 2
asig soundin "syrinx.wav"

kblurtime line 0, 60, .99

fsig = pvsanal(asig, gifftsize, gihopsize, gifftsize, 1)

ftps cudapvsblur fsig, kblurtime, 1
atps pvsynth ftps
out atps

endin

instr 3
asig soundin "syrinx.wav"
kblurtime line 0, 60, .99

fsig = cudanal(asig, gifftsize, gihopsize, gifftsize, 1)

ftps cudapvsblur fsig, kblurtime, 1
atps cudasynth ftps
out atps

endin

instr 4
asig soundin "syrinx.wav"
kblurtime line 0, 60, .99

fsig cudanal2 asig, gifftsize, gihopsize, gifftsize, 1

ftps cudapvsblur2 fsig, kblurtime, 1
atps cudasynth2 ftps
out atps

endin

</CsInstruments>

232 Appendix C. Csound Scripts for Testing Purposes

<CsScore>
i $INSTR 0 60
</CsScore>

</CsoundSynthesizer>

Mix Module

<CsoundSynthesizer>

<CsOptions>
—--opcode-lib=libcudapvsmix.so
--opcode-lib=../../libcudapvs2.dylib
—--opcode-lib=libcudapvsmix2.so

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 128

Odbfs = 1

gifftsize = $FFT

gihopsize = $HOP

instr 1
asigl soundin "syrinx.wav"
asig?2 soundin "ends.wav"
fsigl = pvsanal(asigl, gifftsize, gihopsize, gifftsize, 1)

fsig2 = pvsanal(asig2, gifftsize, gihopsize, gifftsize, 1)
ftps pvsmix fsigl, fsig2

atps pvsynth ftps

out atps

endin
instr 2
asigl soundin "syrinx.wav"
asig?2 soundin "ends.wav"
fsigl = pvsanal(asigl, gifftsize, gihopsize, gifftsize, 1)
fsig2 = pvsanal(asig2, gifftsize, gihopsize, gifftsize, 1)

ftps cudapvsmix fsigl, fsig2
atps pvsynth ftps

out atps
endin
instr 3
asigl soundin "syrinx.wav"
asig2 soundin "ends.wav"
fsigl = cudanal(asigl, gifftsize, gihopsize, gifftsize, 1)

fsig2 = cudanal(asig2, gifftsize, gihopsize, gifftsize, 1)
ftps cudapvsmix fsigl, fsig2
atps cudasynth ftps
out atps

endin

233

instr 4
asigl soundin "syrinx.wav"
asig2?2 soundin "ends.wav"

fsigl cudanal2 asigl, gifftsize, gihopsize, gifftsize, 1
fsig2 cudanal2 asig2, gifftsize, gihopsize, gifftsize, 1

ftps cudapvsmix2 fsigl, fsig2
atps cudasynth2 ftps
out atps

endin

</CsInstruments>
<CsScore>
i $INSTR O 60

</CsScore>

</CsoundSynthesizer>

Morph Module

<CsoundSynthesizer>

<CsOptions>
—--opcode-lib=libcudapvsmorph.so
--opcode-1ib=../../libcudapvs2.dylib
—--opcode-lib=1libcudapvsmorph2.so
</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 128

Odbfs = 1

gifftsize = $FFT

gihopsize = $HOP

instr 1
asigl soundin ‘"syrinx.wav"
asig?2 soundin "ends.wav"

kampint linseg O, p3, 1
kfrqgint linseg O, p3, 1

fsigl = pvsanal(asigl, gifftsize, gihopsize, gifftsize, 1)
pvsanal (asig2, gifftsize, gihopsize, gifftsize, 1)
ftps pvsmorph fsigl, fsig2, kampint, kfrqint

fsig2

atps pvsynth ftps
out atps
endin

234 Appendix C. Csound Scripts for Testing Purposes
instr 2

asigl soundin "syrinx.wav"

asig?2 soundin "ends.wav"

kampint linseg O, p3, 1

kfrqint linseg O, p3, 1

fsigl = pvsanal(asigl, gifftsize, gihopsize, gifftsize, 1)
fsig2 = pvsanal(asig?, gifftsize, gihopsize, gifftsize, 1)

ftps cudapvsmorph fsigl, fsig2, kampint, kfrqint
atps pvsynth ftps
out atps
endin
instr 3
asigl soundin ‘"syrinx.wav"
asig?2 soundin "ends.wav"
kampint linseg O, p3, 1
kfrqint linseg O, p3, 1
fsigl = cudanal(asigl, gifftsize, gihopsize, gifftsize, 1)
fsig2 = cudanal(asig?2, gifftsize, gihopsize, gifftsize, 1)
ftps cudapvsmorph fsigl, fsig2, kampint, kfrqint
atps cudasynth ftps
out atps
endin
instr 4
asigl soundin ‘"syrinx.wav"
asig? soundin "ends.wav"
kampint linseg 0, p3, 1
kfrqint linseg O, p3, 1
fsigl cudanal2 asigl, gifftsize, gihopsize, gifftsize, 1
fsig2 cudanal2 asig2, gifftsize, gihopsize, gifftsize, 1
ftps cudapvsmorph2 fsigl, fsig2, kampint, kfrqint
atps cudasynth2 ftps
out atps
endin
</CsInstruments>
<CsScore>
i $INSTR O 60
</CsScore>

</CsoundSynthesizer>

Acronyms

ALU

API

CPU

CUDA

DFT

Arithmetic Logic Unit

An arithmetic logic unit is a combinational digital electronic circuit that performs
arithmetic and bitwise logical operations on integer binary numbers.
www.en.wikipedia.org

Application Programming Interface

In computer programming, an application programming interface is a set of routine
definitions, protocols, and tools for building software and applications. An API
expresses a software component in terms of its operations, inputs, outputs, and
underlying types, defining functionalities that are independent of their respective
implementations, which allows definitions and implementations to vary without
compromising the interface. A good API makes it easier to develop a program by
providing all the building blocks, which are then put together by the programmer.
www.en.wikipedia.org

Central Processing Unit

A central processing unit is the electronic circuitry within a computer that carries out
the instructions of a computer program by performing the basic arithmetic, logical,
control and input/output (I/O) operations specified by the instructions. The term has
been used in the computer industry at least since the early 1960s. Traditionally, the
term CPU refers to a processor, more specifically to its processing unit and control
unit, distinguishing these core elements of a computer from external components such
as main memory and I/O circuitry.

www.en.wikipedia.org

Compute Unified Device Architecture

CUDA is a parallel computing platform and application programming interface (API)
model created by NVIDIA. It allows software developers to use a CUDA-enabled
graphics processing unit (GPU) for general purpose processing - an approach known
as GPGPU. The CUDA platform is a software layer that gives direct access to the
GPU’s virtual instruction set and parallel computational elements, for the execution
of compute kernels.

www.en.wikipedia.org

Discrete Fourier Transform

In mathematics, the discrete Fourier transform converts a finite sequence of equally-
spaced samples of a function into an equivalent-length sequence of equally-spaced
samples of the discrete-time Fourier transform (DTFT), which is a complex-valued
function of frequency. The interval at which the DTFT is sampled is the reciprocal
of the duration of the input sequence.

www.en.wikipedia.org

235

https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/Discrete_Fourier_transform

236

Acronyms

DSP

FFT

FIR

GP-GPU

GPU

Digital Signal Processing/Processor

Digital signal processing is the numerical manipulation of signals, usually with the
intention to measure, filter, produce or compress continuous analog signals. It is
characterized by the use of digital signals to represent these signals as discrete time,
discrete frequency, or other discrete domain signals in the form of a sequence of
numbers or symbols to permit the digital processing of these signals.
www.en.wikipedia.org

A digital signal processor is a specialized microprocessor, with its architecture op-
timized for the operational needs of digital signal processing. The goal of DSPs is
usually to measure, filter and/or compress continuous real-world analog signals. Most
general-purpose microprocessors can also execute digital signal processing algorithms
successfully, but dedicated DSPs usually have better power efficiency thus they are
more suitable in portable devices.

www.en.wikipedia.org

Fast Fourier Transform

A fast Fourier transform algorithm computes the discrete Fourier transform (DFT)
of a sequence, or its inverse. An FFT rapidly computes such transformations by
factorizing the DFT matrix into a product of sparse (mostly zero) factors. As a result,
it manages to reduce the complexity of computing the DFT from O(n?), which arises
if one simply applies the definition of DFT, to O(nlogn), where n is the data size.
www.en.wikipedia.org

Finite Impulse Response

In signal processing, a finite impulse response filter is a filter whose impulse response
(or response to any finite length input) is of finite duration, because it settles to zero
in finite time.

www.en.wikipedia.org

General-Purpose Graphics Processing Unit

General-purpose computing on graphics processing units is the use of a graphics
processing unit, which typically handles computation only for computer graphics, to
perform computation in applications traditionally handled by the central processing
unit. The use of multiple graphics cards in one computer, or large numbers of
graphics chips, further parallelizes the already parallel nature of graphics processing.
In addition, even a single GPU-CPU framework provides advantages that multiple
CPUs on their own do not offer due to the specialization in each chip.
www.en.wikipedia.org

Graphics Processing Unit

A graphics processing unit is a specialized electronic circuit designed to rapidly
manipulate and alter memory to accelerate the creation of images in a frame buffer
intended for output to a display. GPUs are used in embedded systems, mobile phones,
personal computers, workstations, and game consoles. Modern GPUs are very efficient
at manipulating computer graphics and image processing, and their highly parallel
structure makes them more efficient than general-purpose CPUs for algorithms where
the processing of large blocks of data is done in parallel. In a personal computer, a
GPU can be present on a video card, or it can be embedded on the motherboard or -
in certain CPUs - on the CPU die.

www.en.wikipedia.org

https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Graphics_processing_unit

Acronyms 237

HDMI

HiPAC

HPC

HRTF

HSA

IIR

PCle

High-Definition Multimedia Interface

HDMTI is a proprietary audio/video interface for transferring uncompressed video
data and compressed or uncompressed digital audio data from an HDMI-compliant
source device, such as a display controller, to a compatible computer monitor, video
projector, digital television, or digital audio device.

www.en.wikipedia.org

High-Performance Audio Computing

HiPAC is a domain of study that explores the potential for new advanced processor
architectures to transform the current landscape of audio synthesis, processing and
music composition. Taking its name from the well established domain of general High-
Performance Computing (HPC), it addresses the emergence of new and forthcoming
generations of highly parallel floating-point processors, and of large-scale multi-core
platforms offering TeraFlop-scale computation power. This offers the possibility
of running processes previously disregarded as too computationally expensive, in
real-time.

http://quod.lib.umich.edu/

High-Performance Computing

High-Performance Computing most generally refers to the practice of aggregating
computing power in a way that delivers much higher performance than one could get
out of a typical desktop computer or workstation in order to solve large problems in
science, engineering, or business.

http://insidehpc.com/

Head-Related Transfer Function

A head-related transfer function is a response that characterizes how an ear receives a
sound from a point in space; a pair of HRTF's for two ears can be used to synthesize
a binaural sound that seems to come from a particular point in space. It is a transfer
function, describing how a sound from a specific point will arrive at the ear (generally
at the outer end of the auditory canal).

www.en.wikipedia.org

Heterogeneous System Architecture

Heterogeneous System Architecture is a cross-vendor set of specifications that allow
for the integration of central processing units and graphics processors on the same bus,
with shared memory and tasks. The HSA is being developed by the HSA Foundation,
which includes (among many others) AMD and ARM. The platform’s stated aim is
to reduce communication latency between CPUs, GPUs and other compute devices,
and make these various devices more compatible from a programmer’s perspective.
www.en.wikipedia.org

Infinite Impulse Response

Infinite impulse response is a property applying to many linear time-invariant sys-
tems. Systems with this property are known as IIR systems or IIR filters, and are
distinguished by having an impulse response which does not become exactly zero past
a certain point, but continues indefinitely.

www.en.wikipedia.org

Peripheral Component Interconnect Express

PCI Ezxpress is a high-speed serial computer expansion bus standard, designed
to replace the older PCI, PCI-X, and AGP bus standards. PCle has numerous
improvements over the older standards, including higher maximum system bus

https://en.wikipedia.org/wiki/HDMI
http://quod.lib.umich.edu/cgi/p/pod/dod-idx?c=icmc;idno=bbp2372.2008.093
http://insidehpc.com/hpc-basic-training/what-is-hpc/
https://en.wikipedia.org/wiki/Head-related_transfer_function
https://en.wikipedia.org/wiki/Heterogeneous_System_Architecture
https://en.wikipedia.org/wiki/Infinite_impulse_response

238

Acronyms

PCM

SIMD

SIMT

SSE

STFT

throughput, lower I/O pin count and smaller physical footprint, better performance
scaling for bus devices, a more detailed error detection and reporting mechanism, and
native hot-plug functionality.

www.en.wikipedia.org

Pulse-Code Modulation

Pulse-code modulation is a method used to digitally represent sampled analog signals.
It is the standard form of digital audio in computers, Compact Discs, digital telephony
and other digital audio applications. In a PCM stream, the amplitude of the analog
signal is sampled regularly at uniform intervals, and each sample is quantized to the
nearest value within a range of digital steps.

www.en.wikipedia.org

Single Instruction Multiple Data

Single instruction, multiple data is a class of parallel computers in Flynn’s taxonomy.
It describes computers with multiple processing elements that perform the same
operation on multiple data points simultaneously. Thus, such machines exploit data
level parallelism, but not concurrency: there are simultaneous (parallel) computations,
but only a single process (instruction) at a given moment.

www.en.wikipedia.org

Single Instruction Multiple Thread

Single instruction, multiple thread is an execution model used in parallel computing
where single instruction, multiple data (SIMD) is combined with multi threading.
www.en.wikipedia.org

Streaming SIMD Extension

In computing, Streaming SIMD Extensions is an SIMD instruction set extension to
the x86 architecture, designed by Intel and introduced in 1999 in their Pentium IIT
series processors as a reply to AMD’s 3DNow!. SSE contains 70 new instructions,
most of which work on single precision floating point data. SIMD instructions can
greatly increase performance when exactly the same operations are to be performed on
multiple data objects. Typical applications are digital signal processing and graphics
processing.

www.en.wikipedia.org

Short-Time Fourier Transform

The short-time Fourier transform is a Fourier-related transform used to determine
the sinusoidal frequency and phase content of local sections of a signal as it changes
over time. In practice, the procedure for computing STFT's is to divide a longer time
signal into shorter segments of equal length and then compute the Fourier transform
separately on each shorter segment. This reveals the Fourier spectrum on each shorter
segment.

www.en.wikipedia.org

https://en.wikipedia.org/wiki/PCI_Express
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Single_instruction,_multiple_threads
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/Short-time_Fourier_transform

Bibliography

[10]

[11]

[12]

[13]

Zhiwei Xu et al. “Four styles of parallel and net programming”. In: Frontiers
of Computer Science in China 3.3 (2009), pp. 290-301 (cit. on p. 2).

Richard Dobson, Russell Bradford, et al. “High performance audio computing:
a position paper”. In: (2008) (cit. on pp. 2, 144).

Richard Dobson, Russell Bradford, et al. “The Imperative for High-Performance
Audio Computing”. In: (2009) (cit. on pp. 2, 144).

Niklas Rober, Ulrich Kaminski, and Maic Masuch. “Ray acoustics using
computer graphics technology”. In: 10th International Conference on Digital
Audio Effects (DAFz-07), S. Citeseer. 2007, pp. 117124 (cit. on pp. 3, 46).

Lauri Savioja, Dinesh Manocha, and M Lin. “Use of GPUs in room acoustic
modeling and auralization”. In: Proc. Int. Symposium on Room Acoustics.
2010 (cit. on pp. 3, 46).

Pei-Yin Tsai, Tien-Ming Wang, and Alvin Su. “GPU-based spectral model
synthesis for real-time sound rendering”. In: 15th International Conference
on Digital Audio Effects. 2010, pp. 1-5 (cit. on pp. 3, 40, 41).

Brian Hamilton and Craig J Webb. “Room acoustics modelling using GPU-
accelerated finite difference and finite volume methods on a face-centered
cubic grid”. In: Proc. Digital Audio Effects (DAF'z), Maynooth, Ireland (2013),
pp. 336-343 (cit. on pp. 3, 46).

Victor Lazzarini, Joseph Timoney, Russell Bradford, et al. “Streaming Spectral
Processing with Consumer-level Graphics Processing Units”. In: (2014) (cit.
on pp. 3, 4, 25, 67-69, 76, 79, 83, 88, 102, 103, 107, 114).

Wen mei W. Hwu ; University of Illinois at Urbana-Champaign ; Coursera.

Heterogeneous Parallel Programming. URL: https://www. coursera.org/
course/hetero (cit. on pp. 7, 137).

Chris McClanahan. “History and evolution of GPU architecture”. In: A Survey
Paper (2010) (cit. on p. 9).

Tomas Akenine-Moéller and Jacob Strom. “Graphics processing units for
handhelds”. In: Proceedings of the IEEE 96.5 (2008), pp. 779-789 (cit. on

p. 11).

Wilzzard. NVIDIA GeForce GTX 750 Ti 2 GB. URL: https://www.techpowerup.
com/reviews/NVIDIA/GeForce GTX_750_Ti/1.html (cit. on pp. 12-14).

CUDA Nvidia. Programming Guide 7.5. 2015 (cit. on pp. 16, 87, 124, 138,
139).

239

https://www.coursera.org/course/hetero
https://www.coursera.org/course/hetero
https://www.techpowerup.com/reviews/NVIDIA/GeForce_GTX_750_Ti/1.html
https://www.techpowerup.com/reviews/NVIDIA/GeForce_GTX_750_Ti/1.html

240

Bibliography

[20]

[21]

[22]

[23]

Mark Harris. Unified Memory in CUDA 6. URL: https://devblogs.nvidia.
com/parallelforall/unified-memory-in-cuda-6/ (cit. on p. 15).

James L Flanagan and RM Golden. “Phase vocoder”. In: Bell System Technical
Journal 45.9 (1966), pp. 1493-1509 (cit. on pp. 17, 18).

Mark Dolson. “The phase vocoder: A tutorial”. In: Computer Music Journal
10.4 (1986), pp. 14-27 (cit. on pp. 18-20, 24, 76).

Richard Boulanger and Victor Lazzarini. The Audio Programming Book. the
MIT Press, 2010 (cit. on p. 19).

Thomas F Quatieri and Robert J McAulay. “Audio signal processing based
on sinusoidal analysis/synthesis”. In: Applications of digital signal processing
to audio and acoustics. Springer, 2002, pp. 343-416 (cit. on pp. 20, 24).

Jean Laroche. “Time and pitch scale modification of audio signals”. In:
Applications of digital signal processing to audio and acoustics. Springer, 2002,
pp. 279-309 (cit. on p. 21).

Toshihiko Abe, Takao Kobayashi, and Satoshi Imai. “The IF spectrogram: a
new spectral representation”. In: Proc. ASVA 97 (1997), pp. 423-430 (cit. on

p. 22).
NVIDIA. cuFFT. URL: https://developer .nvidia.com/cufft (cit. on
pp. 25, 48, 54, 55, 59, 62, 63, 94, 112, 114).

Naga K Govindaraju et al. “High performance discrete Fourier transforms on
graphics processors”. In: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE Press. 2008, p. 2 (cit. on p. 25).

Ramesh C Agarwal, Fred G Gustavson, and Mohammad Zubair. “A high
performance parallel algorithm for 1-D FFT”. In: Proceedings of the 1994
ACM/IEEE conference on Supercomputing. IEEE Computer Society Press.
1994, pp. 34-40 (cit. on p. 25).

ELEAnoR Chu and ALAn GEoRGE. “FFT algorithms and their adaptation
to parallel processing”. In: Linear Algebra and its Applications 284.1 (1998),
pp. 95-124 (cit. on p. 25).

Franz Franchetti et al. “Discrete Fourier transform on multicore”. In: Signal
Processing Magazine, IEEE 26.6 (2009), pp. 90-102 (cit. on p. 25).

Li-Yi Wei. “A Crash Course on Programmable Graphics Hardware”. In:
Microsoft Research Asia, Tsinghua University, Beijing (2005) (cit. on p. 28).

Sean Whalen. “Audio and the graphics processing unit”. In: Author report,
University of California Davis 47 (2005), p. 51 (cit. on pp. 29, 30).

Frederik Fabritius. “Audio processing algorithms on the GPU”. PhD thesis.
Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark,
2009 (cit. on pp. 30, 32, 51, 52).

Alexey Smirnov and Tzi-cker Chiueh. “An Implementation of a FIR Filter on
a GPU”. In: Ezperimental Computer Systems Lab, Stony Brook University,
Tech. Rep (2005) (cit. on pp. 30-32).

https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://developer.nvidia.com/cufft

Bibliography 241

[30]

[31]

[32]

33]

[34]

[35]

[36]

CURSO DE CIENCIA DA COMPUTACAO. “A GPU-based Real-Time Mod-
ular Audio Processing System”. PhD thesis. UNIVERSIDADE FEDERAL
DO RIO GRANDE DO SUL, 2006 (cit. on p. 33).

Qiong Zhang, Lu Ye, and Zhigeng Pan. “Physically-based sound synthesis on
GPUs”. In: Entertainment Computing-ICEC 2005. Springer, 2005, pp. 328—
333 (cit. on pp. 34-36, 61).

Lauri Savioja, Vesa Valiméaki, and Julius O Smith III. “Real-time additive
synthesis with one million sinusoids using a GPU”. In: Audio Engineering
Society Convention 128. Audio Engineering Society. 2010 (cit. on pp. 3739,
55, 67).

Marc Sosnick and William Hsu. “Efficient finite difference-based sound syn-

thesis using GPUs”. In: Proceedings of the Sound and Music Computing
Conference. 2010 (cit. on pp. 42, 44).

Bill Hsu and Marc Sosnick-Pérez. “Realtime GPU Audio”. In: Queue 11.4
(Apr. 2013), 40:40-40:55. 18SSN: 1542-7730. DOI: 10.1145/2466486.2484010.
URL: http://doi.acm.org/10.1145/2466486.2484010 (cit. on p. 45).

Marcin Jedrzejewski and Krzysztof Marasek. “Computation of room acoustics
using programmable video hardware”. In: Computer Vision and Graphics.
Springer, 2006, pp. 587-592 (cit. on p. 45).

Nicolas Tsingos. “Using programmable graphics hardware for auralization”.
In: Proc. EAA Symposium on Auralization, Espoo, Finland. 2009 (cit. on
p. 46).

Niklas Rober, Martin Spindler, and Maic Masuch. “Waveguide-based room

acoustics through graphics hardware”. In: Proceedings of ICMC. 2006 (cit. on
p. 46).

Jose A Belloch et al. “Headphone-based spatial sound with a GPU accelerator”.
In: Procedia Computer Science 9 (2012), pp. 116-125 (cit. on pp. 48, 49).

Thomas G Stockham Jr. “High-speed convolution and correlation”. In: Pro-
ceedings of the April 26-28, 1966, Spring joint computer conference. ACM.
1966, pp. 229-233 (cit. on p. 52).

Jia-sien Soo and Khee K Pang. “A new structure for block FIR adaptive
digital filters”. In: Proceedings IRECOON, volume 38. 1987, pp. 364-367
(cit. on p. 52).

Jia-sien Soo and Khee K Pang. “Multidelay block frequency domain adaptive

filter”. In: Acoustics, Speech and Signal Processing, IEEE Transactions on
38.2 (1990), pp. 373-376 (cit. on p. 52).

Avery Wang and Julius O Smith III. “On fast FIR filters implemented as
tail-canceling IIR filters”. In: Signal Processing, IEEE Transactions on 45.6
(1997), pp. 1415-1427 (cit. on p. 52).

Matteo Frigo and Steven G. Johnson (MIT). FFTW. URL: http://wuw.fftw.
org/ (cit. on pp. 54, 55, 59, 62).

http://dx.doi.org/10.1145/2466486.2484010
http://doi.acm.org/10.1145/2466486.2484010
http://www.fftw.org/
http://www.fftw.org/

242

Bibliography

[44]

[49]

[50]
[51]

[52]

[56]

[57]

[58]

Lauri Savioja, Vesa Viliméki, and Julius O Smith. “Audio signal processing
using graphics processing units”. In: Journal of the Audio Engineering Society
59.1/2 (2011), pp. 3-19 (cit. on pp. 55, 56).

Fernando Trebien. “An efficient GPU-based implementation of recursive linear
filters and its application to realistic real-time re-synthesis for interactive
virtual worlds”. In: (2009) (cit. on pp. 58, 60).

Fernando Trebien and Manuel M Oliveira. “Realistic real-time sound re-
synthesis and processing for interactive virtual worlds”. In: The Visual Com-
puter 25.5-7 (2009), pp. 469-477 (cit. on p. 58).

Russel Bradford. “A short note on long recursion”. Unpublished. 2015 (cit. on
pp. 61, 62).

André J Bianchi and Marcelo Queiroz. Measuring the Performance of Realtime
DSP Using Pure Data and GPU. Ann Arbor, MI: Michigan Publishing,
University of Michigan Library, 2012 (cit. on pp. 63-65, 67).

Russell Bradford, Richard Dobson, et al. Real-time sliding phase vocoder
using a commodity GPU. University of Huddersfield and ICMA, 2011 (cit. on
pp. 65-67, 87).

Russell Bradford, Richard Dobson, et al. “The sliding phase vocoder”. In:
(2007) (cit. on pp. 65, 87).

R Dobson, R Bradford, et al. “Sliding DFT for fun and musical profit”. In:
(2008) (cit. on pp. 65, 87).

Iryna Tsimashenka. “The Development, Implementation and Analysis of a
Real-Time Parallel Algorithm of Sliding Discrete Fourier Transform”. PhD
thesis. University of Bath, 2011 (cit. on p. 66).

Dimitris Theodoropoulos, Georgi Kuzmanov, and Georgi Gaydadjiev. “Multi-
core platforms for beamforming and wave field synthesis”. In: IEEE Transac-
tions on multimedia 13.2 (2011), pp. 235-245 (cit. on p. 71).

Jorge Lorente et al. “Parallel implementations of beamforming design and
filtering for microphone array applications”. In: Signal Processing Conference,
2011 19th European. IEEE. 2011, pp. 501-505 (cit. on p. 71).

Paul R Dixon, Tasuku Oonishi, and Sadaoki Furui. “Harnessing graphics pro-
cessors for the fast computation of acoustic likelihoods in speech recognition”.
In: Computer Speech & Language 23.4 (2009), pp. 510-526 (cit. on p. 71).

ffitch J. et al. “The New Developments in Csound 6”. In: ICMC 2015 — Sept.
25 - Oct. 1, 2015 — CEMI, University of North Texas. ICMC. 2015 (cit. on
p. 73).

Victor Lazzarini. “Extensions to the Csound language: from user-defined to
plugin opcodes and beyond”. In: Proc. of the 3rd Linux Audio Conf. Citeseer.
2005, pp. 13-20 (cit. on pp. 74, 85).

V Lazzarini, J Timoney, and T Lysaght. “Spectral Signal Processing in
Csound 5”. In: Proc. Intl. Computer Music Conf., New Orleans, USA. 2006

(cit. on pp. 75, 76).

Bibliography 243

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Richard Dobson. PVOC-EX, File format for Phase Vocoder data. 2000. URL:
http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/
pvocex.html (cit. on p. 76).

Victor Lazzarini, Joseph Timoney, and Thomas Lysaght. “Time-stretching
using the instantaneous frequency distribution and partial tracking”. In: (2005)
(cit. on pp. 76, 77).

Collaborative Documentation. The Csound Floss Manual. 2016. URL: http:
//write.flossmanuals.net/csound/ draft/_v/1.1/preface/ (cit. on

p. 77).

Barry Vercoe et al. The Canonical Csound Reference Manual. URL: http:
//www .csounds . com/manual/html/ (cit. on p. 81).

Bruce P Bogert, Michael JR Healy, and John W Tukey. “The quefrency
alanysis of time series for echoes: Cepstrum, pseudo-autocovariance, cross-
cepstrum and saphe cracking”. In: Proceedings of the symposium on time
series analysis. Vol. 15. chapter. 1963, pp. 209-243 (cit. on p. 81).

S. Imai and Y. Abe. “Spectral envelope extraction by improved cepstral
method”. In: Electron. Comm. (in Japan) 62 (4), 10-17 (1979) (cit. on
pp. 81, 149).

Axel Robel, Fernando Villavicencio, and Xavier Rodet. “On cepstral and
all-pole based spectral envelope modeling with unknown model order”. In:
Pattern Recognition Letters 28.11 (2007), pp. 1343-1350 (cit. on pp. 81, 149).

Russell Bradford, Richard Dobson, et al. “Sliding is Smoother than Jumping”.
In: International Computer Music Conference 2005 (ICMC 2005). University
of Bath. 2005, pp. 287290 (cit. on p. 87).

Jared Hoberock and Nathan Bell. Thrust. URL: http://thrust.github.io/
(cit. on p. 90).

Roger Dannenberg et al. “Reinventing Audio and Music Computation for
Many-Core Processors”. In: () (cit. on p. 144).

http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html
http://www.cs.bath.ac.uk/~jpff/NOS-DREAM/researchdev/pvocex/pvocex.html
http://write.flossmanuals.net/csound/_draft/_v/1.1/preface/
http://write.flossmanuals.net/csound/_draft/_v/1.1/preface/
http://www.csounds.com/manual/html/
http://www.csounds.com/manual/html/
http://thrust.github.io/

	Frontespizio
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Sommario
	Abstract
	Introduction
	Background: the General-Purpose GPU Computing Framework and the Phase Vocoder
	General-Purpose Computing on GPUs
	The GPU
	A Brief History of GPU Architecture
	Modern NVIDIA GPUs: Architecture and Programming Model
	Heterogeneous Computing via the CPU-GPU Pair

	The Phase Vocoder
	STFT-Based Phase Vocoder Analysis
	ISTFT-Based Phase Vocoder Re-Synthesis
	Limitations of the Phase Vocoder

	Conclusions

	GP-GPU Computing for Audio Applications: a Review
	Early Examples of GP-GPU Computing for Audio Applications
	Additive Synthesis
	Spectral Model Synthesis
	Physically-based Synthesis via Finite Difference Methods
	Room Acoustics Modelling
	Headphone-based Spatial Sound (HRTF)
	Using the GPU in the Context of Music Production
	About Recursive Filters in a Parallel Computing Scenario
	Spectral Processing
	Conclusions

	Research Task and Implementation
	Tools
	Csound
	CUDA

	Spectral Signal Processing in Csound
	The fsig Framework

	Spectral Signal Processing with CUDA
	About Performance: Limitations, Trade-offs and Improvements

	Selected Unit Generators
	|pvsgain|
	|pvsfilter|
	|pvstencil|
	|pvscale|
	|pvshift|
	|pvsmooth|
	|pvsblur|
	|pvsmix|
	|pvsmorph|

	Development of GPU-operating Plugin Opcodes
	Host Memory Input-Output Version and Device-Only Version
	A General Scheme for CUDA Plugin Opcodes
	Sliding Mode

	CUDA-based Plugin Opcodes
	|cudapvsgain| and |cudapvsgain2|
	|cudapvsfilter| and |cudapvsfilter2|
	|cudapvstencil| and |cudapvstencil2|
	|cudapvscale| and |cudapvscale2|
	|cudapvshift| and |cudapvshift2|
	|cudapvsmooth| and |cudapvsmooth2|
	|cudapvsblur| and |cudapvsblur2|
	|cudapvsmix| and |cudapvsmix2|
	|cudapvsmorph| and |cudapvsmorph2|

	Conlcusions

	Tests and Experimental Results
	Testing Environment
	Testing Systems: Hardware
	Testing Systems: Software

	Testing Procedure
	Testing Scheme
	Audio Specifications

	Results
	Gain module: a Preliminary Analysis
	Filter module
	Stencil module
	Scale module
	Shift module
	Smooth module
	Blur module
	Mix Module
	Morph Module

	GPU Comparison
	Gain Module
	Scale Module (Mode 1)
	Blur Module

	Possible Improvements: Code Optimisation
	Task Parallelism & CUDA Streams:
	Shared Memory
	Shared Memory Privatisation and Atomic Operations
	Pinned Host Memory

	Conclusions

	Conclusions
	True Envelope Estimation Algorithm for Formant Conservation in scale and shift modules (Mode 2)
	Plugin Opcodes: CUDA C Scripts
	Csound Scripts for Testing Purposes
	Acronyms
	Bibliography

