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Abstract

The two-sample permutation test for the equality of covariance operators of functional data

proposed by Pigoli et al. (2014) is extended to the case of multiple data samples. To this

end, the non-parametric combination methodology of Pesarin and Salmaso (2010) is used

to incorporate all the pairwise comparisons between the data samples into a global test.

Different combining functions and permutation strategies are proposed and analysed in detail.

The resulting test allows to make inference on the equality of the covariance operators of

multiple groups and, if there is evidence to reject the null hypothesis, to identify the pairs of

groups having different covariances. Additionally, a review of the most advanced methods for

multiplicity control is presented. It is shown that, for some combining functions, step-down

adjusting procedures are available. Also, the empirical power of this new test is computed and

compared with those of the already existing tests for different case studies. These show that

the performances are the same as those of the best methods proposed so far, whilst making

less stringent assumptions on the data-generating process. Finally, the proposed methodology

is applied to the data collected during the experiment described in Swallow et al. (1998), that

used selective breeding to study the genetics and evolution of locomotor behaviour in mice.

Key words: functional data analysis, covariance operators, permutation tests, non-parametric

combination.
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Sommario

Il presente lavoro di tesi è dedicato all’estensione del test di permutazione per l’uguaglianza

degli operatori di covarianza di due campioni di dati funzionali proposto da Pigoli et al. (2014),

al caso di confronti multipli. A tal fine, il metodo di combinazione non parametrica di Pesarin

e Salmaso (2010) viene utilizzato per incorporare tutti i confronti a coppie tra i campioni in

un test globale. Diverse funzioni di combinazione e strategie di permutazione sono proposte

ed analizzate nel dettaglio. Il test risultante permette di fare inferenza sull’uguaglianza degli

operatori covarianza di più gruppi e, se c’è evidenza per rifiutare l’ipotesi nulla, di identificare

le coppie di gruppi aventi covarianze differenti. Viene inoltre presentata una revisione dei

più avanzati metodi per il controllo della molteplicità. In particolare, per alcune funzioni

di combinazione sono disponibili procedure step-down di aggiustamento dei p-values. La

potenza empirica del test viene calcolata e confrontata con quelle dei metodi già esistenti

in diversi casi test. Questi mostrano che le prestazioni sono pari a quelle dei migliori test

proposti finora, nonostante le ipotesi sul processo che genera i dati siano meno stringenti.

Infine, il metodo è applicato ai dati raccolti durante l’esperimento descritto in Swallow et al.

(1998), nel quale l’allevamento selettivo di topi da laboratorio è stato usato per studiarne la

genetica e l’evoluzione del comportamento motorio.

Parole chiave: analisi di dati funzionali, operatori covarianza, test di permutazione, combi-

nazione non parametrica.
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Chapter 1

Introduction

1.1 Motivations

Since the 1990s, an increasing number of applications has involved the measurement of finely

sampled curves. When applying traditional statistical methods to this kind of data, two issues

arise: not only the the number of variables of interest is much larger than the number of ob-

servations (so-called large p small n problem), but there are also strong correlations between

the covariates. The field of functional data analysis emerged from the necessity of overcoming

these obstacles and has been widely studied during the last decades (see e.g. Ramsay and

Silverman, 2005, Ferraty and Vieu, 2006 and Horváth and Kokoszka, 2012). However, most of

the literature on hypothesis testing deals with the tests on the mean function (Fan and Lin,

1998, Cardot et al., 2003, Cuevas et al., 2004 and Shen and Faraway, 2004). The problem of

testing the equality of covariance operators, instead, has been studied only recently. Panaretos

et al. (2010) derived a functional testing procedure under the assumption of Gaussianity in the

two-sample case; Fremdt et al. (2013) extended it to the non-Gaussian case. In these works, the

critical points of the testing procedures are obtained using asymptotic approximations of the

test statistics distributions under the null hypothesis. Due to the complicated statistical func-

tionals involved, the efficacy of these tests heavily relies on the accuracy of the approximations.

The testing of equality of several covariance operators has been introduced by Boente et al.

(2014): in order to improve asymptotic approximations, they proposed to apply a bootstrap

procedure to calibrate the critical values of the considered test statistic. After that, Paparoditis

and Sapatinas (2014) investigated the properties of an alternative and general bootstrap-based

testing methodology, applicable to more than two populations, but its consistency has been

proven only for a few test statistics. Also, a permutation test for the equality of covariance

operators in the two-sample case has been proposed by Pigoli et al. (2014): it can be used with

1



1.2. Contributions 2

any test statistic and makes no assumptions on the data other than the exchangeability under

the null hypothesis. More recently, Kashlak et al. (2016) applied concentration inequalities to

the analysis of covariance operators. These allow to construct non-asymptotic confidence sets

which can be used to make multiple-sample tests for the equality of covariance operators.

1.2 Contributions

This thesis has the aim of extending the two-sample permutation test for covariance operators

proposed in Pigoli et al. (2014) to the multiple sample case. In particular, let us consider q

samples of random curves. We assume that curves in sample i :

xi 1, . . . , xi ni ∈ L2(I ), i = 1, . . . , q

are realisations of a random process with mean µ and covariance operator Σi . We would like

to test the hypothesis

H0 : {Σ1 =Σ2 = ·· · =Σq } against H1 : {at least one equality is not true}.

Moreover, if the null hypothesis H0 is rejected, we would like to identify all the pairs of

samples that led to that conclusion. The starting point is the non-parametric combination

methodology for permutation tests of Pesarin and Salmaso (2010), which enables to combine

many different partial tests in an overall test. In our case, the idea is to combine all the pairwise

comparisons between the q samples in order to obtain a global p-value. Using this method,

the post-hoc comparisons are straightforward: the partial p-values of the paired comparisons

are computed simultaneously. However, some care is required when jointly analysing them,

because a multiplicity problem arises. To this end, we do a review of the most advanced

methods for the control of the family-wise error rate and choose the most appropriate ones

with respect to conservativity and computational cost. Also, the empirical power of this new

test is computed and compared with those of the already existing tests for different case studies.

These show that the performances are the same as those of the best methods proposed so far,

whilst making less stringent assumptions on the data generating process. Lastly, the new test

is applied to the data collected during an experiment of evolutionary biology, described in the

next section.

All the functions implemented during the thesis to perform the permutation test for the

equality of the covariance operators have been collected in the R package fdcov. This includes

also the code related to the work of Kashlak et al. (2016), who developed an analogous test,

based on non-asymptotic confidence sets.
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1.3 Evolutionary biology dataset

We introduce here the dataset that motivated the extension of the two-sample test to the

multiple sample case. Data were collected during the experiment presented in Swallow et al.

(1998). The objective of the experiment was to use selective breeding to study the genetics and

evolution of locomotor behaviour in mice. To this end, four replicate lines of laboratory house

mice, Mus domesticus, have been compared to other four random-bred lines maintained as

controls. The selection criterion was the total number of revolutions run on days 5 and 6 of

a 6-day test. In the selected lines, the highest-running male and female from each family

were chosen as breeders. In each generation, 10 pairs of mice were used to propagate each

of eight lines. In the control lines, one male and one female from each family were chosen

randomly with respect to wheel running. Each of the eight lines was represented by ten males

and ten females. Data presented here refer to the thirteenth generation. Approximately half

the individuals were sacrificed after 80 weeks; the rest of the individuals were allowed to live

out their lifespan. One male from one of the selected lines died of unknown causes during the

early stages of the experiment. The variables in the dataset are:

– mouseid: unique id number for each mouse;

– sex: females = 0; males = 1;

– age: age in days when wheel data were taken;

– family: id of full-sib family from which mouse was drawn;

– line: lines 1, 2, 4, 5 = control; 3, 6, 7, 8 = selected;

– linetype: control = 0; selected = 1;

– week: week of wheel measure;

– whlrev: number of revolutions run in a given week.

Total activity, measured as number of revolutions run in a given day, can be decomposed

into the product of mean velocity and duration of activity. Thus, the evolution of increased

total activity levels could be accomplished by an increase in mean velocity, an increase in the

amount of time spent running, or a combination of both. In Figure 1.1 are represented the raw

data. Each line connects the number of revolutions done by a specific mouse during the first

80 weeks of the experiment. Weeks from 81 on are not considered in the present study since

only a few observations are available. Mice identified by ID numbers 90183 and 90224 will be

taken as an example of the selected and control lines respectively throughout the whole work.

The corresponding wheel-running functions have been highlighted in each figure. The first
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one is a male belonging to family number 29 and therefore line 1 (control), while the second

one is a female belonging to family number 11, line 3 (selected). At several times during the

experiment, data collection was skipped for one or two weeks. In this instances, the data

collected after the skipped week(s) was divided by number of weeks, giving multiple weeks

in a row with the same value. This is easily seen in Figure 1.1 at weeks 38, 39, 40, when the

values are constant for each mouse, because the wheel revolutions recorded for week 40 were

divided by 3 and assigned to weeks 38 and 39 as well as 40. The weeks in which this occurred

are: 34,35,38,39,40,50,51,72,73.

1.4 Thesis outline

The material is organised as follows:

Chapter 2: Functional data analysis. The fundamental definitions of functional data analysis

are presented before getting into details regarding covariance operators. Additionally, the

techniques used for data preprocessing such as smoothing and alignment are described and

applied to the evolutionary dataset.

Chapter 3: Permutation tests. This chapter deals with the theoretical foundations of permu-

tation tests, the statistical tool that allows us to make inference on complicated mathematical

objects without having to elicit their distribution. Then, the focus shifts on the algorithm for

non-parametric combination of permutation tests, which is explained in detail.

Chapter 4: State of the art of equality tests for covariance operators. In this chapter, the

existing methodologies for the test of the equality of covariance operators are explained.

Chapter 5: Permutation tests for covariance operators. This chapter describes the original

methodological contributions of the thesis. Here it is explained how the non-parametric

methodology can be used in order to extend the permutation test of Pigoli et al. (2014) to the

multiple sample case. Also, different types of permutations are proposed and analysed for this

specific application of this flexible method.

Chapter 6: Post-hoc comparisons. Once the global null hypothesis has been rejected, one

may be interested in the pairwise comparisons between the groups. Using the non-parametric

method, the p-values of each pairwise test are already known at this point. In this chapter we

show how they can be adjusted in order to control the type I error of the whole procedure. In

particular, we show that, using the Tippett combination function and the resampling-based

multiple testing, it is possible to achieve a greater test power.
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Figure 1.1: Evolutionary biology dataset, raw data.
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Chapter 7: Simulation studies. This chapter contains all the simulation studies that have

been performed in order to assess the empirical power of the proposed methodology. When

possible, this has been compared to those of the other existing tests explained in Chapter 4.

Chapter 8: Application to evolutionary biology. This chapter is dedicated to the analysis of

the dataset presented in Section 1.3. First, it is proved that the developed methodology can be

applied even if one observation is missing, then the non-parametric test for the equality of

covariance operators is applied to the wheel-running activity functions.

Appendix A: Documentation of the R package. Here is reported the documentation of the R
package “fdcov” that contains all the functions needed to perform the permutation tests for

the equality of covariance operators and the corresponding post-hoc comparisons.

Appendix B: Code. This appendix contains the code implemented for the present work.

Therefore, it includes all the functions needed in order to perform the proposed test, along

with those related to the other considered tests.



Chapter 2

Functional data analysis

Functional Data Analysis (FDA) is a branch of statistics that analyses data providing informa-

tion about curves, surfaces or other objects varying over a continuum. In its most general

form, under an FDA framework each sample element is considered to be a function. The

physical continuum over which these functions are defined is often time, but may also be

spatial location, wavelength, etc. In many applications, data are recorded as samples from

the generating curves. Thus, for each observation, we only have a finite number of values.

Nonetheless, those values are used to approximate the generating curve, so that they can be

analysed with tools specific to functional data. For this reason, FDA can be seen not only as

the natural extension of Multivariate Data Analysis (MDA) that originated from the recent

increase of dimensionality of data, but also as the abstraction of univariate analysis, in the

sense that it considers the observations as points of a functional space, instead of the real line.

This is also a special case of Object Oriented Data Analysis (OODA), the statistical analysis of

data sets of complex objects Wang et al. (2007). According to Ramsay and Dalzell (1991), there

are several practical reasons for considering data analysis from a functional perspective:

– Functional observations present themselves in applied contexts increasingly more fre-

quently;

– Some modelling problems are more natural to think through in functional terms even

though only finite numbers of observations are available;

– The objectives of an analysis can be functional in nature, as would be the case if finite data

are used to estimate an entire function, its derivatives or the values of other functionals;

– Taking considerations such as smoothness into account for multivariate data arising from

functional processes can have important implications for their analyses.

7
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Since the aim of this work is to respond to issues related to the study of covariance for this

particular kind of data, in this chapter we introduce a few basic concepts about the analysis

of functional data. First we give the main definitions and then we focus on the properties of

covariance operators and the different ways that have been proposed to measure differences

between covariance operators. At the end of the chapter, we briefly describe the preprocessing

steps that are needed to go from the raw discrete observations to functional objects that can

be analysed in this framework.

2.1 Mathematical framework

In this section we give a brief review of the mathematical setting of functional data analysis. In

the first two subsections the main definitions such as mean and covariance are given in the

most general case of random variables in Hilbert spaces. After that, we focus on the particular

case of functional variables belonging to the space of square integrable functions, which is the

one considered in the remainder of this work. More details about the topics covered in this

section can be found in Ramsay and Silverman (2005), Ferraty and Vieu (2006) and Horváth

and Kokoszka (2012).

2.1.1 Random elements in Hilbert spaces

Suppose one observes a variable of interest X on an interval I = [t min, tmax] of successive

instants. In many applications, thanks to the modern technologies, it is possible to obtain

measurements of the phenomena of interest on a very fine grid. Therefore, even if each datum

can be seen as an observation of the random family {X (t j )} j=1,...,J , it is often more interesting

to consider it as part of the continuous family {X (t), t ∈ I } to take advantage of the intrinsic

order between observations and of the smoothness of the underlying process. In this work

we will consider the random family {X (t j )} j=1,...,J as a sampling of a function X defined from

I , a compact subset of R, to R. Nevertheless, FDA can be used also when data correspond to

surfaces, vectors of curves or even more complex infinite-dimensional objects. With this in

mind, we give the following definitions, from Ferraty and Vieu (2006).

Definition 2.1. A random variable X is called functional variable (f.v.) if it takes values in an

infinite dimensional space (or functional space). An observation x of X is called a functional

datum.

Definition 2.2. A functional dataset x1, . . . , xn is the observation of n functional variables

X1, . . . , Xn identically distributed as X .
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Now, let (Ω,M,P) be a probability space andH a vector space, with aσ-algebraN. In particular,

suppose that H is an Hilbert space with inner product 〈·, ·〉H and the induced norm ‖·‖H (from

now on they shall be indicated as 〈·, ·〉 and ‖·‖). Then, a random functional variable is a

measurable function X

X :Ω→H,

while a functional datum is the function

x = X (ω) : I →R

for some fixed ω ∈Ω, i.e. a realisation of X . We can now introduce the generalisation of the

concepts of mean, variance and covariance to the case of functional data.

Definition 2.3. Suppose that X is integrable with respect to the measure P. Then the mean of

X is defined as

µ=E[X ] =
∫
Ω

X (ω)P(dω).

Median and mode can be defined analogously (Ferraty and Vieu, 2006). It is also possible to

define a covariance operator as follows:

Definition 2.4. Suppose that X is such that E[‖X ‖4] <∞. The covariance operator Σ of X , is

the operator that associates to each y ∈H a Σ(y) ∈H such that

Σ(y) = E[〈X −E[X ], y〉(X −E[X ])].

2.1.2 Estimation of mean and covariance

In applications, one observes a sample consisting of n curves x1, x2, . . . , xn . Each curve is a

realization of a random function X . We assume that the functional variables X1, X2, . . . , Xn

generating the observations are independent and identically distributed in H and have the

same distribution as X , which is square integrable.

Definition 2.5. Given a random sample x1, x2, . . . , xn we define the following sample estimators:

– Sample mean

m = 1

n

n∑
i=1

xi ;
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– Sample covariance operator

S(y) = 1

n −1

n∑
i=1

〈xi , y〉xi , t ∈ I .

2.1.3 Functions of a real variable

From now on, for simplicity, we will suppose that the considered data belong to the Hilbert

space of square-integrable functions on I ⊆R, L2(I ), equipped with the usual inner product

〈x, y〉 =
∫

I
x ydl , ∀x, y ∈ L2(I )

where l denotes the Lebesgue measure. In this case we can define the mean function of

X ∈ L2(I ) as

µ(t ) = E[X (t )], t ∈ I .

Regarding the variability measure, two definitions must be introduced:

Definition 2.6. Suppose that E[X 2(t)] < ∞ for all t ∈ I . Then we can define the variance

function as

γ(t ) = E[(X (t )−µ(t ))2], t ∈ I .

Moreover, we can define the autocovariance function as

Γ(s, t ) = Cov(X (s), X (t )) = E[(X (s)−µ(s)) · (X (t )−µ(t ))], s, t ∈ I .

Notice that this definition is strictly linked to Definition 2.4. In fact, for all y ∈ L2(I ), it holds

Σ(y)(t ) = 〈Γ(t , ·), y〉, (2.1)

=
∫

I
σ(s, t )y(s)d s, ∀y ∈ L2(I ), t ∈ I ,

where σ(t , s) = E[(X (t )−µ(t )) · (X (s)−µ(s))]. Clearly, σ(t , s) =σ(s, t ) and∫ ∫
σ(t , s)y(t )y(s)d td s =

∫ ∫
E[(X (t )−µ(t )) · (X (s)−µ(s))]y(t )y(s)d td s

= E
[(∫

(X (t )−µ(t ))y(t )d t
)2]

≥ 0.
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Definition 2.7. Given a random sample x1, x2, . . . , xn we define the following sample estimators:

– Sample mean function

m(t ) = 1

n

n∑
i=1

xi (t ), t ∈ I ;

– Sample variance function

c2(t ) = 1

n −1

n∑
i=1

(xi (t )−m(t ))2, t ∈ I ;

– Sample autocovariance function

C (s, t ) = 1

n −1

n∑
i=1

(xi (s)−m(s))(xi (t )−m(t )), s, t ∈ I .

2.2 Covariance operators

Since the main focus of this work is on inference for the covariance of functional data, this

section is dedicated to an in-depth study of covariance operators, starting from their main

theoretical properties and then introducing the concept of distance between covariance

operators. The main focus are the distances used in the present study. Other distances and

metrics can be found in Pigoli et al. (2014).

2.2.1 Main properties

We introduce here the basics definitions we need in the following chapters. For further details

about operator theory in function spaces, refer to Zhu (2007).

Definition 2.8. Let B1 be the closed ball of unitary radius in L2(I ), consisting of all y ∈ L2(I )

such that ‖y‖L2(I )≤ 1. A bounded linear operator K : L2(I ) → L2(I ) is compact if K (B1) is

compact in the norm of L2(I ).

An important property of a compact operator on L2(I ) is the existence of a canonical decom-

position. This decomposition implies that two orthonormal bases {vn}n∈N, {zn}n∈N for L2(I )

exist so that

K y =
∑

n∈N
ρn〈y, vn〉un ,
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or, equivalently, K vn = ρnun and {ρn}n∈N ∈R is called the sequence of singular values for K. If

the operator is self-adjoint, there exists a basis {vn}n∈N such that

K y =
∑

n∈N
φn〈y, vn〉vn ,

or, equivalently, K vn =φn vn . {φn}n∈N ∈R is called the sequence of eigenvalues of K.

Definition 2.9. A compact operator K is said to be trace-class if

trace(K ) :=
∑

n∈N
〈K en ,en〉 <+∞

for an orthonormal basis {en}n∈N. We indicate with S(L2(I )) the space of the trace-class operators

on L2(I ).

Definition 2.10. A compact operator K is said to be Hilbert-Schmidt if its Hilbert-Schmidt

norm is bounded, i.e.,

||K ||2HS= trace(K ′K ) <+∞.

This is a generalisation of the Frobenius norm for finite-dimensional matrices. Then the

covariance operator defined by Equation (2.1) is a trace-class, self-adjoint, compact operator

on L2(I ) with nonnegative eigenvalues (Bosq, 2012, Section 1.5).

2.2.2 Distances between covariance operators

The distances between covariance operators considered in this work are some of those pro-

posed in Pigoli et al. (2014). These are a generalisation to the functional setting of metrics that

have been proved useful for the case of positive semi-definite matrices (Dryden et al., 2009).

Distance between kernels in L2(I × I )

Distances between covariance operators can be naturally defined using the distance between

their kernels in L2(I × I ). Let Σ1 and Σ2 be two covariance operators and

Σi y(t ) =
∫

I
σi (s, t )y(s)d s, ∀y ∈ L2(I ).

We can define a distance between their kernels as

dL(Σ1,Σ2) = ‖σ1 −σ2‖L2(I×I ) =
√∫

I

∫
I
(σ1(s, t )−σ2(s, t ))2d sd t .
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This corresponds to the distance induced by the Hilbert-Schmidt norm, since for Hilbert-

Schmidt kernel operators one has

‖Σ1 −Σ2‖HS = ‖σ1 −σ2‖2
L2(I×I ).

This distance is well-defined, since it inherits all the properties of the distance in the Hilbert

space L2(I × I ). However, it does not exploit in any way the particular structure of covariance

operators and therefore its suitability to highlight significant differences between covariance

structures is questionable.

Spectral distance

Considering covariance operators as elements of L(L2(I )), the space of the linear bounded

operators on L2(I ), Pigoli et al. (2014) defined another distance between Σ1 and Σ2 as the

operator norm of the difference between the two. Remembering that the norm of a self-adjoint

bounded linear operator on L2(I ) is

‖K ‖L(L2(I )) = sup
y∈L2(I )

|〈K y, y〉|
‖y‖2

L2(I )

and that for a covariance operator this coincides with the absolute value of the largest eigen-

value, we have

dL(Σ1,Σ2) =‖Σ1 −Σ2‖L(L2(I )) = |φ̃1| (2.2)

where φ̃1 is the largest eigenvalue of the operator Σ1 −Σ2. This distance generalises the matrix

spectral norm often used in the finite-dimensional case (El Karoui, 2008). It takes into account

the spectral structure of the covariance operators, but focuses only on the behaviour of the

first mode of variation. This can describe effectively the distance between the operators only if

φ̃1 explains the majority of the variation, which is often not the case in practical applications.

Square root operator distance

Since covariance operators are trace-class, it has also been possible to generalise the square

root matrix distance of Dryden et al. (2009). Σ being a self-adjoint trace-class operator, there

exists a Hilbert-Schmidt self-adjoint operator

(Σ)1/2 y =
∑
n
φ1/2

n 〈y,υn〉υn ,
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where φn and υn are the eigenvalues and eigenfunctions of Σ respectively. Then, Pigoli et al.

(2014) define the square root distance between two covariance operators Σ1 and Σ2 as

dR (Σ1,Σ2) = ‖(Σ1)1/2 − (Σ2)1/2‖HS .

Inspiration for this kind of distance comes from the log-Euclidean distance for positive definite

matrices. In that case, the logarithmic transformation allows to map the non Euclidean space

in a linear space. Unfortunately, a logarithmic map for covariance operators is not available.

Instead, the square root transformation has been shown to behave in a similar way in the finite

dimensional setting (Dryden et al., 2009) and is well defined for trace-class operators. In theory,

any power greater than 1/2 would be a possible candidate distance. As explained in Pigoli et al.

(2014), the reasons for this particular choice are twofold: first, for general trace-class operators,

the square root operator is the smallest power that can be defined while still ensuring finite

distances, meaning that it is the closest available to the log-Euclidean distance; in addition,

this case can be interpreted as a distance which takes into account the full eigenstructure of

the covariance operator (i.e. both eigenfunctions and eigenvalues).

Procrustes size-and-shapes distance

First of all, we recall the definition of unitary operator on L2(I ) given by Zhu (2007).

Definition 2.11. A bounded linear operator U on L2(I ) is said to be unitary if

‖U y‖L2(I ) = ‖y‖L2(I ), ∀y ∈ L2(I ).

Equivalently, we say that U is unitary if UU ′ = 1, where U ′ is the adjoint of U . Then, a

Procrustes1 size-and-shapes distance between covariance operators is defined by Pigoli et al.

(2014) as

dP (Σ1,Σ2)2 = infU∈O(L2(I ))‖D1 −D2U‖2
HS

= infU∈O(L2(I )) trace((D1 −D2U )′(D1 −D2U )),

where D i are such that Σi = Di D ′
i for i = 1,2 and O(L2(I )) is the space of unitary operators

on L2(I ). The motivation for the definition of this distance is that the distance between the

square root operators is only a particular choice in the broad family of distances based on the

mapping of the two operators Σ1 and Σ2 from the space of covariance operators to the space

of Hilbert-Schmidt operators. We may consider a generic transformation Si 7→ Di , so that

1In Greek mythology, Procrustes was a rogue smith and bandit from Attica who physically attacked people by
stretching them or cutting off their legs, so as to force them to fit the size of an iron bed. In general, when something
is Procrustean, different lengths or sizes or properties are fitted to an arbitrary standard.
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Si = D ′
i Di and define the distance as the Hilbert-Schmidt norm of D1 −D2. However, such

transformations would be defined up to a unitary operator U :

(DiU )(DiU )′ = DiUU ′D ′
i = Di D ′

i =Σi .

The Procrustes approach avoids the arbitrariness of the transformation by choosing the

unitary operator U which best matches the two operators D1 and D2. The following result

shows an easier expression of this distance that will prove useful for its approximate practical

computations.

Proposition 2.1. Let ρk be the singular values of the compact operator D ′
2D1. Then

dP (Σ1,Σ2)2 = ‖D1‖2
HS +‖D2‖2

HS −2
+∞∑
n=1

ρn .

The proof can be found in the supplementary material of Pigoli et al. (2014).

2.2.3 Finite dimensional approximation

In practical applications, we observe only a finite dimensional representation of the operators

of interest. Therefore we want the square root distance and the Procrustes size-and-shape

distance between two finite dimensional representations to be good approximations of the

distance between the corresponding infinite dimensional covariance operators. In Pigoli et al.

(2014) this is shown to be true in the case of Procrustes distance, with the square root distance

being a special case where Di = (Si )1/2 and U is the identity operator. The proof is based on

the fact that if {en}n∈N is a basis for L2(I ), then Vp = span{e1, . . . ,ep } is the subspace which

contains the finite dimensional representations of functional data and

Sp
i y =

p∑
n=1

〈y,en〉Si en , ∀y ∈Vp

is the restriction of Si on Vp . Now, if Dp
i is such that Dp

i → Li for p →∞ with respect to the

Hilbert-Schmidt norm, then the distance between the two restricted operators is

dP (Sp
1 ,Sp

2 )2 = ‖Dp
1 ‖2

HS +‖Dp
2 ‖2

HS −2
p∑

n=1
〈Ũ p Dp ′

2 Dp
1 en ,en〉.
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Since the subspaces Vp are nested, we can define a permutation s :N→N so that {vs(1), . . . , vs(p)}

is a basis for Vp , for every p ∈N. We obtain

dP (Sp
1 ,Sp

2 )2 = ‖Dp
1 ‖2

HS +‖Dp
2 ‖2

HS −2
p∑

n=1
〈Ũ p Dp ′

2 Dp
1 vs(n), vs(n)〉

= ‖Dp
1 ‖2

HS +‖Dp
2 ‖2

HS −2
p∑

n=1
ρs(n)

where {σs(k)} are singular values for D ′
2D1. This comes from the fact that the action of an oper-

ator Dp ′

2 Dp
1 should be equal to the action of the operator D ′

2D1 on every element belonging

to the subspace Vp and vs(k) ∈ Vp for k = 1, . . . , p. Finally, as D ′
2D1 is trace-class, the series

of its singular values is absolutely convergent and therefore unconditionally convergent, i.e.

convergent under any permutation. Thus,

lim
p→∞dP (Sp

1 ,Sp
2 )2 = ‖D1‖2

HS +‖D2‖2
HS −2

+∞∑
k=1

ρs(k)

= ‖D1‖2
HS +‖D2‖2

HS −2
+∞∑
k=1

ρk

= dP (S1,S2)2.

2.3 Data pre-processing

In applications, a functional dataset can originate from data collection in two ways:

1. Data are represented by their analytical expressions;

2. The data set is made of a collection of discrete data corresponding to measurements of

the function for consecutive values of the argument.

In the first case, one can easily exploit data analytical and differential properties by explicit

computation. The latter case is more frequent and requires to represent the observations as

functions, before starting the analysis.

2.3.1 Smoothing

As in Section 2.1.1, let us suppose that t1, . . . , t J are points in I = [tmin, tmax] satisfying tmin =
t1 < t2 < ·· · < t J = tmax and {x(t j )} j=1,...,J is an observation of the random family {X (t j )} j=1,...,J .

We assume throughout this section that J ≥ 3. In other words, we assume the existence of a
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random function X giving rise to the observed data. We usually want the underlying function

x to be smooth, so that adjacent data values are linked together and unlikely to be different

to each other. If this smoothness property did not apply, there would be nothing much to be

gained by treating the data as functional rather than just multivariate. By smooth, we mean

that function x possesses one or more derivatives. Smoothness, in this sense, is a property

of the latent function x. Raw data vectors, instead, usually contain observational errors. We

express this as

y j = x(t j )+ε j

where the otherwise exogenous term ε j contributes a roughness to the raw data, that can be

due to noise or measurements errors. When representing the raw data as functions we want to

filter out this exogenous term as efficiently as possible. Equivalently, in vector notation, we

have

y = x(t)+ε,

where y, x(t), t and ε are column vectors of length n.

At the end of the last century there has been an upsurge of interest and activity in the area

of non-parametric smoothing in statistics. Many methods have been proposed and studied

so far: see e.g. Hastie and Tibshirani (1990), Green and Silverman (1993) and Ramsay and

Silverman (2005). The latter will be used as a reference for the following exposition.

In general, a smoothing operator estimates the function value x̂(t j ) starting from the discrete

observations

x̂(t j ) =
p∑

i=1
F j (ti )yi ,

where F j (ti ) weights the i th discrete data value in order to estimate x(t). In matrix terms,

x̂(t) = F y, where x̂(t) is a column vector containing the values of the estimate of function x at

each sampling point t j .

Usually, one wants to approximate x(t ) as a weighted sum of some set of known functions πi

belonging to a basis function system of L2(I ). Then, the function x can be seen as the linear

expansion of dimension k

x(t ) =
k∑

i=1
ciπi = c′π.

Both k and the basis itself are parameters of the above representation. Ideally, the chosen basis
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function should have features matching those of the estimated functions, in order to achieve

satisfactory approximations with a small number of basis functions. In the literature, many

different bases systems have been used: polynomial, step-functions, exponential, wavelets,

Fourier, splines, etc. For the present work we have chosen to use splines, because they are

suitable for functional data without any strong cyclic variation.

Remembering that I is the compact subset of R over which the function x lies, let us split it

into r subintervals separated by the so-called breakpoints (or knots) and denote them as ιi , i =
1, . . . ,r . A spline of order u is composed by polynomials of degree u −1. Each one of them lies

in one subinterval. Adjacent polynomials join up smoothly at breakpoints so that derivatives

up to the order u −2 match at breakpoints. In particular, we use B-splines, i.e. splines having

the compact-support property of being non-zero over at most u adjacent intervals. In this

way, the computational cost of using splines reduces to the same as orthonormal bases (such

as Fourier and wavelets, for example).

The simplest linear smoother is the one that determines the coefficients of the expansion by

minimising the least squares criterion:

SMSSE(y|c) = (y−Πc)′(y−Πc)

However, this is based on the assumption that the ε j are independent and identically dis-

tributed with zero-mean and variance σ2 which, in most applications, is not the case. In order

to deal with non-stationary errors, we have to modify the least squares criterion:

SMSSE(y|c) = (y−Πc)′W (y−Πc)

where W is a symmetric positive definite matrix allowing unequal weighting of the errors and

Π is the matrix containing in row i the values of πi evaluated at t1, . . . , tn ., i.e. π(t)′.

The method used in the present work combines the B-spline basis system and the roughness

penalty objective. The curve x is estimated from observations y j by finding the function

minimising the Penalised Sum of Squared Errors (PENSSE)

PENSSEδ(x|y) = [y−x(t)]′W [y−x(t)]+δ PEN(x) (2.3)

over the space of functions x for which some roughness quantification PEN(x) is defined. A

natural measure of the function roughness is the L2 norm of its second derivative ẍ over the

domain of interest I

PEN2(x) = ‖ẍ‖2 =
∫

I
[ẍ(s)]2d s.
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In equation (2.3), δ is a smoothing parameter that represents the rate of exchange between

fit to the data and roughness of the function x. It is clear that, as δ→∞, the curve x tends

to the standard linear regression, while for δ→ 0 it interpolates data at points t. In other

words, the spline smoothing method estimates a curve x from observations y by making

explicit two conflicting goals in curve estimation. On the one hand, we wish to ensure that

the estimated curve gives a good fit to the data, for example in terms of the residual sum of

squares
∑

[y j −x(t j )]2. On the other hand, we do not wish the fit to be too good if this results

in a curve x that is excessively locally variable. These competing aims are usually known as the

trade off between bias and sampling variance, expressed by the following equation:

MSE[x̂(t )] = Bias2[x̂(t )]+Var[x̂(t )].

where the Mean Squared Error (MSE) is originally defined as

MSE[x̂(t )] = E[(x̂(t )−x(t ))2],

This quantity is also referred to as the L2 loss function and usually it cannot be used in this form,

since there is no way of knowing x(t) without using the data. Instead the bias in estimating

x(t ) is defined as

Bias[x̂(t )] = x(t )−E[x̂(t )],

and the variance of estimate is

Var[x̂(t )] = E[(x̂(t )−E[x̂(t )])2].

In spline smoothing, the MSE is one way of capturing the quality of estimate. A completely

unbiased estimate of the function value x(t j ) can be produced by a curve fitting y j exactly,

since this observed value is itself an unbiased estimate of x(t j ). But any such curve must

have high variance, manifested in the rapid local variation of the curve. MSE can often be

dramatically reduced by sacrificing some bias in order to reduce sampling variance, and this is

a key reason for imposing smoothness on the estimated curve. By requiring that the estimate

vary only gently from one value to another, we are effectively “borrowing information” from

neighbouring data values, thereby expressing our faith in the regularity of the underlying

function x that we are trying to estimate. This pooling of information is what makes our

estimated curve more stable, at the cost of some increase in bias. The roughness penalty

makes explicit what we sacrifice in bias to achieve an improvement MSE or some other loss

function. In De Boor (2002) it is proved that the curve x that minimises the objective functional

PENSSEδ(x|y) is a cubic spline with breakpoints at the data points t j . The cubic splines can be

obtained by using order four B-spline basis function expansion. Placing breakpoints at t allows
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to adapt to the unequal spacing of sampling points and thus automatically takes advantage of

high sampling density regions.

Lastly, in order to choose the penalisation parameter δ, Craven and Wahba (1978) developed

the Generalised Cross-Validation measure (GCV). This method avoids the need to re-smooth

data many times required by the classic cross-validation and reduces the tendency to overfit-

ting. Given p pairs of a single curve (t j , y j ), the optimal penalisation parameter δ̂ minimises

the GCV function, i.e.

δ̂= argmin
δ∈(0,+∞)

GCV(δ) = argmin
δ∈(0,+∞)

( p

p −df(δ)

)( SSE
p −df(δ)

)
where df(δ) is the number of degrees of freedom of the spline.

This method is implemented in the function spline.smooth() of the R package stats (R

Core Team, 2016). Applying it to the evolutionary dataset, we obtain the results presented in

Figure 2.1. The breakpoints correspond to the times of data collection. We have assigned null

weight to all the weeks when the number of revolutions has not been recorded correctly and

equal to one for all the others.

2.3.2 Alignment

Once that the observations are in functional form, there is still another problem that has to be

tackled before starting the actual data analysis. In fact, variation in functional observations

involves both phase and amplitude and, while most approaches to FDA ignore this type of

decomposition, it has become clear from a range of important real data analysis contexts

that such ignorance can entail very substantial loss in statistical efficiency and interpretation.

Heuristically, we can think of phase variability as the one that can be eliminated by suitably

aligning the curves, while amplitude variability is the remaining variability among the curves

once they have been aligned. This step of data pre-processing is called data registration or

alignment and it usually involves transformations of the argument t rather than the values

x(t ). Many methods exist for one dimensional curve registration and a summary of a detailed

comparison of a number of major methods can be found in Marron et al. (2014).

Let H be some set of curves x : I ⊆ R→ R. Given two curves x1, x2 ∈H, the objective of the

alignment procedure is to find a warping function h(t ) :R→R that makes the registered curves

x1◦h and x2 as similar as possible. Similarity between functions is measured by some distance

d(·, ·) : H×H→ R. The warping functions belong to a class h of functions such that for all

x ∈H and h ∈W it holds x ◦h ∈H. In other words, we want to find h̄ ∈W that minimises

d(x1 ◦h, x2). In this way it is possible separate amplitude and phase variability such that the
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Figure 2.1: Evolutionary biology data set after smoothing.
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former is captured by the optimal warping function h̄ and the former corresponds to the

variability between the aligned functions.

The dataset analysed in this work has been aligned via the elastic analysis proposed in Tucker

et al. (2013) and implemented in the R package fdasrvf (Tucker, 2016). This method has the

advantage of allowing great flexibility in the choice of the warping functions and considering

the same domain for all the functions.

In order to easily describe the method, we restrict the set of considered functions to those

that are absolutely continuous on I = [0,1]. Now, let I denote the set of all such functions. In

practice, since the observed data are discrete, this assumption is not restrictive. Also, the set of

warping functions is defined as the set of all boundary-preserving diffeomorphisms over I :

W= {h : I → I |h(0) = 0,h(1) = 1,h is a diffeomorphism}.

With the composition operation, the set W is a group with the identity element hI (t ) = t for all

t ∈ I . Then, the Square-Root Slope Function (SRSF) of x is defined as

g (t ) = sign(ẋ(t ))
√

|ẋ(t )|.

It can be shown that if the function x is absolutely continuous, then the resulting SRSF is

square-integrable (see Robinson, 2012). For every g ∈ L2 and a fixed t ∈ I , the function x can

be obtained using the equation

x(t ) = x(0)+
∫ t

0
g (s)|g (s)|d s,

since g (s)|g (s)| = ẋ(s). Therefore, the mapping from I to L2 ×R given by x 7→ (g , f (0)) is

a bijection (Robinson, 2012). If we warp a function x by h, the SRSF of x ◦h is given by

g̃ (t) = (g ,h)(t) = g (h(t))
√

ḣ(t ). Thanks to this, it can be shown that for any x1, x2 ∈ I and

h ∈W,

‖g1 − g2‖ = ‖(x1,h)− (x2,h)‖,

where g1, g2 are SRSFs of x1, x2 respectively. This isometric property offered a new cost term

for pairwise registration of functions:

inf
h∈W

‖x1 − (x2,h)‖.

This equation suggests that one can align the SRSFs of any two functions and then map them

back to I to obtain registered functions. The advantage of using this quantity is that it forms a

proper distance on the quotient space L2/W. This allows to redefine amplitude as follows:
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Definition 2.12. For any two functions x1, x2 ∈W and the corresponding SRSFs g1, g2 ∈ L2, the

amplitude or y-distance is

dy (x1, x2) = inf
h∈W

‖x1 − (x2 ◦h)
√

ḣ‖.

It can be shown that, for any h1,h2 ∈W, it holds dy (x1 ◦h1, x2 ◦h2) = dy (x1, x2). Define also

the Karcher mean of the given function as a local minimum of the following cost function:

µ f = argmin
x∈I

n∑
i=1

dy ( f , fi )2 or, equivalently, µq = argmin
g∈L2

n∑
i=1

(
inf

hi∈W

∥∥g − (gi ,hi )
∥∥2

)
.

Then, the phase-amplitude separation can be performed as stated in Algorithm 2.1.

Algorithm 2.1 (Phase-amplitude separation).

1. Compute the SRSFs g1, . . . , gn of the given x1, . . . , xn and select µ= qi where

i = argmin
1≤i≤n

∥∥∥∥∥gi −
1

n

n∑
j=1

g j

∥∥∥∥∥ ;

2. For each qi find the h̄i such that

h̄i = argmin
h∈W

(∥∥∥µ− (gi ◦h)
√

ḣ
∥∥∥)

.

The solution to this optimisation problem comes from the dynamic programming algo-

rithm.

3. Compute the aligned SRSFs using g̃i 7→ (gi ◦ h̄i )
√

˙̄hi .

4. If the increment ‖n−1 ∑n
i=1−µ‖ is “small”, then continue. Else, update the mean using

µ 7→ n−1 ∑n
i=1 g̃i and return to step 2.

5. The function µ represents a whole equivalence class of solutions and now we select the

preferred element µq of that orbit:

(a) Compute the mean hµ of all {h̄i } (an ad hoc algorithm can be found in Tucker et al.,

2013). Then compute

µq = (µ◦h−1
µ )

√
ḣ−1
µ .

(b) Update h̄i 7→ h̄i ◦h−1
µ . Then compute the aligned SRSFs using g̃i 7→ (gi ◦ h̄i )

√
˙̄hi .

This procedure results in three items:
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– µq , the preferred element of the Karcher mean class {(µq ,h)|h ∈W};

– {g̃i }, the set of aligned SRSFs;

– {h̄i }, the set of optimal warping functions.

From the aligned SRSFs, one can compute individual aligned functions using

x̃i (t ) = xi (0)+
∫ t

0
g̃i (s)|g̃i (s)|d s.

In Figure 2.2 are reported the aligned data and in Figure 2.3 the corresponding warping

functions.
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Figure 2.2: Evolutionary biology data set after alignment.
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Figure 2.3: Evolutionary biology data set, warping functions.



Chapter 3

Permutation tests

It has already been mentioned that the main contribution of this thesis is the introduction of a

new methodology that allows to test for the equality of covariance operators. Such method

relies on the permutation approach. For this reason, this chapter is devoted to the exposition

of this branch of Inferential Statistics and the presentation of the techniques used in the

following.

The theory of permutation tests has evolved from the works of Ronald Fisher and Edwin J. G.

Pitman in the 1930s: it was the first resampling technique ever used. After that, thanks to the

recent computational advances, many other resampling techniques have been proposed, such

as jackknife and delta methods (Quenouille, 1949). Another renowned resampling method

is bootstrap, introduced by Efron (1979) and inspired by earlier works on the jackknife. The

main benefit of using resampling methods is that larger classes of statistical problems may be

analysed. Diaconis and Efron (1983) wrote:

The new [resampling] methods free the statistician to attack more complicated

problems, exploiting a wider array of statistical tools.

The basic idea of permutation tests is to obtain the distribution of the test statistic under the

null hypothesis by calculating all possible values of the test statistic under rearrangements of

the labels on the observed data points. In other words, the method by which treatments are

allocated to subjects in an experimental design is mirrored in the analysis of that design: if

labels are exchangeable under the null hypothesis, the resulting tests yield exact significance

levels.

27
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3.1 Theoretical foundations

In this section we introduce the main terminology, definitions and general theory of permu-

tation tests for the case of one-dimensional problems, as presented in Pesarin and Salmaso

(2010). Particular emphasis is given to the two-sample design, taken as a guide. The analyses

for multi-aspect problems are obtained by the non-parametric combination methodology,

which is presented in Section 3.2.

Let us assume that a one-dimensional non-degenerate variable X takes values on the sam-

ple space X and that associated with (X ,X) are parent distributions P belonging to a non-

parametric1 family P. Each P gives the probability measure to events A belonging to a suitable

σ-algebra A of events. The family P may consist of distributions of either quantitative (contin-

uous, discrete or mixed) or categorical (nominal or ordered) variables. In the present work, we

consider only the first case. The notation (X ,X,A,P ), P ∈P summarises the statistical model

associated with the problem at hand. In the following, Xn denotes the usual product space,

while A(n) and P (n) are the product σ-algebra and measure on Xn respectively.

Considering the two-sample design, let X j = {Xi j , i = 1, . . . ,n j } ∈Xn j be the i.i.d. sample data

of size n j drawn from the model (X ,X,A,P j ), P j ∈P, j = 1,2, respectively. The whole data set

can be indicated as follows:

X = (X1,X2) = {Xi , i = 1, . . . ,n; n = n1 +n2}

where it is intended that the first n1 data belong to the first sample and the rest to the second.

In practice, with u∗ = (u∗
1 , . . . ,u∗

n) denoting a permutation of unit labels u = (1, . . . ,n),

X∗ = (X∗
1 ,X∗

2 ) = {X ∗
i = Xu∗

i
, i = 1, . . . ,n; n = n1 +n2}

is the related permutation of X, where X∗
1 and X∗

2 are the two permuted samples. Suppose that

we want to test for stochastic dominance. In particular, the alternative assumes that treat-

ments produce effects ∆1 and ∆2 respectively and that ∆1
d>∆2, where

d> stands for stochastic

dominance (i.e. the cumulative distribution functions are such that F1(x) ≤ F2(x), ∀x ∈R, F1 6≡
F2). Without loss of generality, we assume that effects in H1 are such that ∆1 = ∆ > 0 and

prob(∆2 = 0) = 1. This can be seen for example as an experiment that consists in assigning an

“active treatment” only to to subjects in the first group and a “placebo” to the others. Thus, the

hypotheses are

H0 : {∆= 0} = {P1 = P2} against H1 : {∆> 0}.

1Of coursePmay belong to any parametric family. However, in such cases, there are often parametric counterparts
that may perform optimally.
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First of all, we have to define the conditional reference space Xn
/X associated with X under the

assumption that H0 is true.

Definition 3.1. Given a data set X of size n and a model (X,Xn ,A(n),P (n)), P (n) ∈ P(n), the

conditional reference space is the set of points of the sample space Xn
/X which are equivalent to

X in terms of information carried by the associated underlying likelihood. It is indicated by the

symbol Xn
/X.

Thus, Xn
/X contains all points X∗ such that the likelihood ratio dP (n)(X)/dP (n)(X∗) is indepen-

dent of P : it corresponds to the orbit of equivalent points associated to X. From now on it will

be indicated as X/X for brevity. Since for finite sample sizes the number M of points in X/X is

finite and, in particular,

M =
∑
X/X

1
[
X∗ ∈X/X

]<∞,

the permutation conditional probability P of every A ∈A(n) is defined and calculated as

P(X∗ ∈ A|X/X) =
∑

X/X
1
[
X∗ ∈ A

]
M

.

Therefore, the restriction of the collection of events A over the permutation sample space X/X,

that is

A(n) ∩X/X =A(n)
/X ,

consisting of conditional events given X, defines the permutation measurable space (X/X,A(n)
/X )

on which the permutation probability P(A|X/X) is defined. As a consequence, the following

proposition holds:

Proposition 3.1. In H0 : {X1
d= X2} = {P1 = P2}, provided that in X/X there are no multiple

points, that is

∑
X/X

1
[
X∗ = x

]=
1 if x ∈X/X

0 otherwise

permutations X∗ are equally likely:

P(X∗ = x|X/X) =


1
M if x ∈X/X

0 otherwise.

In other words, the permutations X∗ of the dataset are uniformly distributed over X/X condi-

tionally on X.
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This property shows that the null permutation distribution P(X∗ = x |X/X) only depends on

the data set X. In H1, where it is assumed that

∃A ∈A(n) s.t. P1(A) 6= P2(A), P1(A) > 0, P2(A) > 0

a set of sufficient statistics is the pair (X1,X2). Consequently, the data are exchangeable within

but not between the samples, and so the data set permutations are not uniformly distributed

over X/X conditionally. Hence, if we are able to find statistics sensitive to such a non-uniform

distribution, then we are able to construct permutation tests. However, the problem of

establishing the best test when P is unknown remains open (Lehmann and Romano, 2005). A

test statistic is a non-degenerate measurable function T , mapping Xn into R, which satisfies

properties suitable for inference. Suppose that T :Xn →R is such an appropriate test statistic

for which, without loss of generality, we assume that large values are evidence against H0.

Definition 3.2. The permutation support TX induced by the pair (T,X) is the set

TX = {T ∗ = T (X∗) : X∗ ∈X/X}

containing all possible values assumed by T as X∗ varies in X/X.

Of course, when more than one aspect is of interest for the analysis, a test can be associated

with a vector of statistics T = (T1, . . . ,Tk ) : Xn → Rk where k ≥ 1 is the (finite or countable)

number of aspects under consideration. This kind of statistics is used for example in the

theory of multidimensional permutation tests, developed in Section 3.2. In the two-sample

case considered above, a test statistic could be the difference between the sample means:

T ∗ = m∗
1 −m∗

2 =
n1∑

i=1

X ∗
1i

n1
−

n2∑
i=1

X ∗
2i

n2

Suppose now that H0 is true. According to Proposition 3.1, X∗ is uniformly distributed over

X/X and put the M members of TX in non-decreasing order T ∗
(1) ≤ T ∗

(2) ≤ ·· · ≤ T ∗
(M). For each

value of α ∈ (0,1),

T ∗
(Mα) = Tα(X) = Tα

where Mα = M −dαMe defines the permutation critical value associated with the pair (T,X)

and corresponds to
∑

X/X
1[T (X∗) < Tα], the number of permutation values T ∗ that are strictly

less than Tα. We define T 0 = T (X) and we reject the null hypothesis associated with the

pair (T,X) if T 0 ≥ Tα. Instead, if T 0 < Tα, we say that there is no evidence to reject H0.The

attainable α-values belong to the setΛX = {LX(t ) : dLX(t ) > 0} of step points of the significance

level function LX =P(T ∗ ≥ t |X/X). ΛX is always a discrete set, the elements of which depend on
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the pair (T,X). Therefore, for permutation tests not all values of type I error rates are possible

in practice. Then, if we wish to test a desired type I error rate of ᾱ and choose supα ≤ ᾱ,

with α ∈ΛX, the permutation tests become conservative. Of course, if the desired α-value ᾱ

belongs toΛX, then α= ᾱ.

3.1.1 p-value

It is often more convenient to refer to the p-value associated to (T,X), instead of determining

the critical value Tα. This is defined as

λ(X) = LX(T 0) =P(T ∗ ≥ T 0|X/X),

and can be computed exactly by complete enumeration of TX or estimated, to the desired

degree of accuracy, by a conditional Monte Carlo algorithm based on a random sampling

from X/X. Note that the p-value is a non-increasing function of T 0 and has a one-to-one

relationship with the attainableα-values of the test, in the sense that λ(X) >α implies T 0 < Tα

and vice versa. Hence, we reject H0 if λ(X) ≤α. It is important to notice that the attainable

α-values play the role of critical values, in the sense that α is the exact critical value for λ(X).

In this sense, the p-value λ(X) can be used as a test statistic; this fact will be used in Section

3.2.2. Moreover, in H0 we have that P(λ(X)|X/X) =α for every α ∈ΛX.

A Monte Carlo algorithm for estimating the p-value

The Monte Carlo (MC) algorithm for evaluating the p-value λ of a test statistic T on a data set

X, includes the following steps (see e.g. Pesarin and Salmaso, 2010):

Algorithm 3.1 (Monte Carlo approximation of permutation tests).

1. Calculate, on the given data set X, the observed value T 0 of the test statistic T ;

2. Take a random permutation X∗ of X and calculate T ∗ = T (X∗);

3. Independently repeat step 2. B times;

4. The set {X∗
b , b = 1, . . . ,B} is a random sample from the permutation sample space X/X and

so the corresponding values {T ∗
b , b = 1, . . . ,B} simulate the null permutation distribution

of T . Therefore, the p-value is estimated as

λ̂=
∑

1≤b≤B

1
[
T ∗

b ≥ T 0
]

B
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that is the proportion of permutation values greater or equal than the observed one.

The symbol ˆ indicates that the so obtained p-value is a Monte Carlo approximation.

3.2 Non-parametric combination methodology

In this section we present a natural extension of permutation testing to a vast range of multi-

aspect problems. In particular, we introduce a method for Non-Parametric Combination

(NPC) of a finite number of dependent permutation tests, proposed in Pesarin and Salmaso

(2010). Indeed, when many response variables are involved or many different aspects are of

interest, it is convenient to process data using a finite set of k > 1 different partial tests, that

may be useful for marginal inference and, considering them together, to extract information

on an overall hypothesis.

3.2.1 Main assumptions

Here we introduce the notation and main assumptions regarding the data structure, the set

of partial tests and the hypotheses being tested in NPC contexts. In this case, without loss of

generality, we refer to a one-way Analysis of Variance (ANOVA) design. Consider a data set

X = {Xi j , i = 1, . . . , q, j = 1, . . . ,ni }.

that consists of q ≥ 2 samples or groups of size ni ≥ 2, with n =∑
i ni . The groups are related

to q levels of a treatment and the data Xi j are supposed to be independent and identically

distributed with distributions Pi ∈ P, i = 1, . . . , q . The null hypothesis refers to equality of

distributions of responses on q groups:

H0 : {P1 = ·· · = Pq } = {X1
d= . . .

d= Xq }.

Let us suppose that H0 may be properly and equivalently broken down into a finite set of

sub-hypotheses H0i , i = 1, . . . ,k, each appropriate for a partial aspect of interest. In the case of

a one-way ANOVA, this corresponds to

H0i : {Ph = P j } = {Xh
d= X j }, for some h, j = 1, . . . , q, h 6= j .

Therefore, H0 is true if all the H0i are jointly true:

H0 :

{
k⋂

i=1
H0i

}
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H0 is called the global (or overall) null hypothesis and implies that data are exchangeable

with respect to the groups. The alternative hypothesis states that at least one of the null

sub-hypotheses H0i is not true. Hence, the alternative may be represented by the union of k

sub-alternatives,

H1 :

{
k⋃

i=1
H1i

}

T = T(X ) represents a k-dimensional vector of test statistics, in which the i th component

Ti = Ti (X ), i = 1, . . . ,k, represents the non-degenerate i th partial test which is assumed to

be appropriate for testing sub-hypothesis H0i against H1i . We also have to specify the as-

sumptions regarding the set of partial tests T = {Ti , i = 1, . . . ,k} which are needed for NPC. In

particular,

Assumption 3.1. All permutations partial tests Ti are marginally unbiased and significant for

large values, so that they are stochastically larger in H1 than in H0.

This implies that

P(Ti ≥ Tiα|X/X, H1i ) ≥α,∀α> 0, i = 1, . . . ,k,

and

P(Ti ≤ z|X/X, H0i ) =P(Ti ≤ z|X/X, H0i ∩ Ȟi )

≥P(Ti ≤ z|X/X, H1i )

=P(Ti ≤ z|X/X, H1i ∩ Ȟi ), ∀z ∈R, i = 1, . . . ,k,

where irrelevance with respect to the complementary set of hypotheses

Ȟi :
⋃
i 6= j

(H0 j ∪H1 j )

means that it does not matter which among H0 j and H1 j , j 6= i , is true when testing for the i th

sub-hypothesis.

Assumption 3.2. All permutation partial tests Ti are marginally consistent, i.e. as the sample

sizes tend to infinity

P(Ti ≥ Tiα|H1i ) → 1, ∀α ∈ (0,1)

where Tiα, which is assumed to be finite, is the critical value of Ti at level α.
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3.2.2 Combining functions

In order to perform the test, we also have to define functionΨ :Rk →R to combine the partial

test statistics or p-values. For the sake of simplicity and uniformity of analysis, but without

loss of generality, we only refer to combining functions applied to p-values associated with

partial tests. The application to the other cases is straightforward. All combining functionsΨ

must satisfy at least the following reasonable properties.

Property 3.1. Ψ must be non-decreasing in each argument: Ψ(. . . ,λi , . . . ) ≥ Ψ(. . . ,λ′
i , . . . ) if

λi ≤λ′
i , i ∈ {1, . . . ,k}.

Property 3.2. Every combining function Ψ must attain its supremum value Ψ̄, possibly not

finite, even when only one argument attains zero: Ψ(. . . ,λi , . . . ) → Ψ̄ if λi → 0, i = 1, . . . ,k.

Property 3.3. For all α> 0, the critical value Tα
Ψ of everyΨ is assumed to be finite and strictly

smaller than Ψ̄.

In the following, we will indicate by C the class of combining functions that satisfy Properties

3.1, 3.2 and 3.3. Also, it is generally desirable for Ψ to be symmetric i.e. invariant with

respect to rearrangements of the input arguments: Ψ(λui , . . . ,λuk ) where (ui , . . . ,uk ) is any

permutation of (1, . . . ,k). Below we list some convex combining functions with appealing

power and consistency properties. We assume that, under the null hypothesis, the p-values

are uniformly distributed on [0,1].

Fisher omnibus function

TF =−2
∑

i
log(λi )

This is a good default choice: it has greatest statistical power when most but not all the partial

alternative hypotheses are true. If the partial test statistics are independent and continuous,

then under the null hypothesis TF follows a central χ2 distribution with 2k degrees of freedom.

Lipták function

TL =
∑

i
Φ−1(1−λi )

It is used when one has confidence that under the alternative hypothesis every sub-alternative

will be true. If the partial tests are independent and continuous, under the null hypothesis TL

is normally distributed with 0 mean and variance k (Lipták, 1958).
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Tippett function

TT = max
1≤i≤k

(1−λi )

It has optimal power when only one sub-alternative is expected to be true under the alter-

native hypothesis. As explained in Chapter 5, if interested in post-hoc comparisons, this

combining function enables computation to be speeded up. Its null distribution, if the partial

tests are independent and continuous, behaves according to the largest of k random values

uniformly distributed on (0,1). For dependent partial tests it allows for bounds on the rejection

probability according to the Bonferroni inequality.

Direct combination

TD =
∑

i
Ti

This function allows us to avoid the quite intensive calculations for the computation of the

permutational distributions of the partial p-values (see Algorithm 3.3, step 3.). However, its

use requires some additional assumptions: all partial test statistics must be homogeneous and

their asymptotic support must be at least unbounded on the right. Under the null hypothesis,

if the partial test statistics are independent and continuous, this is a sum of n independent

and identically distributed random variables.

Figure 3.1 shows the critical regions for these combination functions when the considered

number of partial tests is equal to 2, the level of the test is α = 0.1 and the partial tests are

independent and continuous.

3.2.3 Algorithm

This section deals with a two-phase algorithm used to obtain a conditional Monte Carlo

estimate of the permutation distribution of combined tests. In this setting, simulations from

the permutation sample spaceX/X by a Monte Carlo method are carried out in analogy with the

Algorithm 5.1 discussed for univariate problems. The first phase of the algorithm is dedicated

to the estimation of the k-variate distribution of the vector of test statistics T:

Algorithm 3.2 (Non-parametric combination methodology, phase I).

1. Calculate the vector of observed values of tests: T0 = T(X);

2. Consider a random permutation X∗ ∈X/X of X, where X/X = {
⋃

u∗ [X (u∗
i ), i = 1, . . . ,

∑
i ni ]}

in which u∗ is a permutation of unit labels and compute T∗ = T(X∗);
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Figure 3.1: Critical regions of the combined tests for the case k = 2, α= 0.1, independent and
continuous partial tests and the Fisher, Tippett, Liptak and direct combination functions.

3. Carry out B independent repetitions of the previous step: {T(b)}B
b=1 is a random sampling

from the permutation k-variate distribution of T , b = 1, . . . ,B;

4. A consistent estimate of the cumulative distribution function F (t|X/X) is

F̂ (t|X/X) =
∑

b 1
[
T(b) ≤ t

]
B

;

5. A consistent estimate of λi =P{T ∗
i ≥ t |X/X} is

λ̂i (t |X/X) =
∑

b 1
[
T (b)

i ≥ t
]

B
.

Note that, with respect to traditional empirical distribution function estimators, 1/2 and 1 can

be added respectively to the numerators and denominators of equations in steps 4 and 5. This

is done in order to obtain estimated values of the cumulative distributions function and of the

significance distribution functions compatible with the combining functions mentioned in

Section 3.2.2. The following result is stated in Pesarin and Salmaso (2010):

Theorem 3.1. As B tends to infinity, ∀t ∈Rk , F̂ (t|X/X) and L̂i (t|X/X) almost surely converge to

the permutation cumulative distribution function F (t|X/X) and the permutation significance

level function L(t|X/X), respectively.
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The second phase of the algorithm consists in estimating the global p-value of the test:

Algorithm 3.3 (Non-parametric combination methodology, phase II).

1. The k observed p-values are estimated by λ̂i = λ̂i (T 0
i |X/X);

2. The combined observed value of the test is T 0
Ψ =Ψ(λ̂1, . . . , λ̂k );

3. The bth combined value is

T (b)
Ψ =Ψ(λ̂(b)

1 , . . . , λ̂(b)
k ), λ̂(b)

i = λ̂i (T (b)
i |X/X) i = 1, . . . ,k, b = 1, . . . ,B ;

4. The p-value of the combined test T is estimated as

λ̂Ψ =
∑

b 1
[
T (b)
Ψ ≥ T 0

Ψ

]
B

;

5. If λ̂Ψ ≤α, H0 is rejected.

According to Theorem 3.1, as by assumption k is a fixed finite integer andΨ is continuous,

when B tends to infinity, the combined empirical distribution function of TΨ tends to the

actual cumulative distribution function with probability one. The same holds for the approxi-

mate combined p-value.





Chapter 4

State of the art of equality tests for

covariance operators

Let us recall the problem of interest: consider a multiple sample dataset X = (X1, . . . ,Xq ), where

xi 1, . . . , xi ni ∈ L2(I ), i = 1, . . . , q,

are realisations of a random process with mean function µ and covariance operator Σi . We

would like to test the hypothesis

H0 : {Σ1 =Σ2 = ·· · =Σq } against H1 : {at least one equality is not true}.

In this chapter we review the statistical tests that have been proposed so far, highlighting

their strengths and weaknesses. These methods will be compared in the following with the

proposed permutation approach (see Chapter 7). The works are presented in chronological

order. First a generalisation of Levene’s test is shown. Then we introduce the theory of

bootstrap, that is fundamental to understand the other considered methods. After that, we

briefly explain a more recent asymptotic approach by Boente et al. (2014) and the bootstrap-

based methodology proposed in Paparoditis and Sapatinas (2014). The last part of the chapter

is dedicated to the newest method: it has been proposed by Kashlak et al. (2016) and is based

on non-asymptotic confidence sets.

39



4.1. Generalisation of Levene’s test 40

4.1 Generalisation of Levene’s test

Levene’s test is used to assess the equality of variances for a variable calculated for two or

more groups (Levene, 1960). In the univariate case, let xi j be a set of j = 1, . . . ,ni observations

in each of i = 1, . . . , q groups. Levene’s test statistic is then the ANOVA F -ratio comparing

the groups, calculated on the absolute deviations zi j = |xi j − x̄i | from the groups means

x̄i = n−1
i

∑ni

j=1 xi j . In other words, calling n the total number of observations n = n1 +·· ·+nq ,

z̄i the mean of zi j for group i and z̄ the mean of all zi j , the idea is to compare the test statistic

T = n −q

q −1

∑q
i=1(z̄i − z̄)2∑q

i=1

∑ni

j=1(zi j − z̄i )2

against F (α, q −1,n −q) where F is a quantile of the F -test distribution with q −1 and n −q

degrees of freedom and α is the chosen level of significance. For the multivariate case, let

xi j be the vector which denotes the point for the j th observation in the i th group in the

multivariate space of p variables. Let de (·, ·) denote the Euclidean distance between two points

of Rp . The centroid vector ci for group i is defined as the point that minimises the sum of

squared distances to points within that group, i.e.
∑ni

j=1 d 2
e (xi j ,ci ).

Anderson (2006) multivariate analogue to Levene’s test is to perform ANOVA on the Euclidean

distances from individual points within a group to their group centroid,

zi j = de (xi j ,ci ).

A p-value for the F -statistic calculated on distances to centroids may be obtained either by

using the traditional F -distribution (which assumes the errors in the zi j are approximately

normal), or by using a permutation procedure. For data with normally distributed errors, the

permutation test and normal-theory test will give similar results (Manly, 2006). Note that the

use of an appropriate permutation procedure avoids making any particular assumption re-

garding the distribution of the distances. Only the exchangeability of points in the multivariate

space under the null hypothesis of equal dispersions after centring is assumed.

In the case of functional data analysis, we follow this approach performing an ANOVA analysis

on the distances from individual points within each group to the group centroid, i.e. the

sample functional mean:

zi j = d(xi j , x̄ j ), i = 1, . . . , q, j = 1, . . . ,ni ,

as it has been done in Pigoli et al. (2014). The ANOVA analysis can be both parametric or

non-parametric, exploiting all the existing techniques. In the present work we use for the
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univariate permutation version of the ANOVA in order to compare its empirical power with

the method presented in Chapter 4. Any distance between covariance operators can be used,

so we resort to those listed in Section 2.2.2.

The main advantage of using this test is that it is easy to implement and not computationally

heavy. On the other hand, for the same reasons, it is not very accurate: it focuses only on

the differences in global dispersion and it does not contain any reference to the shape of the

covariance structure.

4.2 Asymptotic approach

In this section we explore the main steps of the asymptotic test to compare covariance opera-

tors of several functional data samples proposed in Boente et al. (2014). The methodology is

based on the squared norm of the distances between the estimated covariance operators of

each population. The asymptotic distribution of the test statistic under the null hypothesis is

derived and, since it depends on parameters of the underlying distribution, also a bootstrap

procedure is proposed.

Let us assume that we have independent observations Xi = (Xi 1, . . . , Xi ni ) for each group

i = 1, . . . , q and define the tensor product operator x ⊗ y : L2(I ) → L2(I ), x, y ∈ L2(I ) as

(x ⊗ y)z = 〈y, z〉x, ∀z ∈ L2(I ).

The starting point is the result given in Dauxois et al. (1982) about the asymptotic behaviour

of the sample covariance operator Si .

Proposition 4.1. If E‖Xi j‖4 <∞, then
p

ni (Si −Σi ) converges in distribution to a zero-mean

Gaussian random element of F, the Hilbert space of Hilbert-Schmidt operators, with covariance

operatorΥi given by

Υi =
∑

m,r,o,p
si m si r si o si pE[ fi m fi r fi o fi p ]υi m ⊗υi r ⊗̃υi o ⊗υi p (4.1)

−
∑
m,r

φi mφi rυi m ⊗υi m⊗̃υi r ⊗υi r

where ⊗̃ stands for the tensor product in F and {υi l , l ≥ 1} is an orthonormal basis of eigenfunc-

tions ofΣi with associated eigenvalues {φi l : l ≥ 1} such thatφi l ≥φi ,l+1. The coefficients si m are

such that s2
i m =φi m while fi m are standardized coordinates of Xi −µi on the basis {υi l : l ≥ 1}.
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Two-sample test

We first consider the problem of testing the hypothesis

H0 : {Σ1 =Σ2} against H1 : {Σ1 6=Σ2}.

The considered test statistic is based on the Hilbert-Schmidt distance between the sample

covariance operators, i.e. T = n‖S1−S2‖HS , where n = n1+n2. The idea is to study the asymp-

totic behaviour of T when H0 is true. The following result can be derived from Proposition 4.1:

Theorem 4.1. Let xi 1, . . . , xi ni for i = 1,2 be independent observations from two independent

samples in L2(I ) with mean µi and covariance operator Σi . Assume that ni /n → τi with

τi ∈ (0,1). Let Si , i = 1,2 be the sample covariance operators of the i th population such that
p

ni (Si −Σi )
d→Ui , with Ui a zero-mean Gaussian random element with covariance operator

Υi . Denote by {ιl }l≥1 the eigenvalues of the operator

Υ= 1

τ1
Υ1 +

1

τ2
Υ2

with
∑

l≥1 ιl <∞. Then,

n‖(S1 −Σ1)− (S2 −Σ2)‖2
HS

d→
∑
l≥1

ιl Z 2
l ,

where Z l are i.i.d. standard normal random variables. In particular, if Σ1 =Σ2 we have that

n‖S1 −S2‖2
HS

d→ ∑
l≥1

ιl Z 2
l .

The result presented in Boente et al. (2014) can actually be used for any set of independent

estimators of the covariance operators S̃i such that
p

ni (S̃i −Σi )
d→Ui . It is also shown that

if qn is a sequence of integers such that qn →∞, the fact that
∑

l≥1 ιl <∞ implies that the

sequence Un =∑qn

l=1 ιl Z 2
i is Cauchy in L2 and therefore the limit U=∑

l≥1 ιl Z 2
l is well defined.

Theorem 4.1 implies that, under the null hypothesis, H0 :Σ1 =Σ2, we have that

T = n‖S1 −S2‖ d→U=
∑
l≥1

ιl Z 2
l .

Hence, an asymptotic test based on T , rejecting for large values of T , allows to test for H0. It is

also worth noticing that under H0 :Σ1 =Σ2, for i = 1,2,Υi given in (4.1) reduces to

Υi =
∑

m,r,o,p
sm sr so spE[ fi m fi r fi o fi p ]υm ⊗υr ⊗̃υo ⊗υp −

∑
m,r

φmφrυm ⊗υm⊗̃υr ⊗υr

where, for the sake of simplicity, the subscript 1 has been omitted and sm denotes φ1/2
m with
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φm the mth largest eigenvalue and vm the corresponding eigenfunction. In particular, if the

two populations have the same underlying distribution except for the mean and covariance

operator, as it happens when comparing Gaussian processes, the random functions f2m have

the same distribution as f1m and so,Υ1 =Υ2. Boente et al. (2014) thus propose the following

bootstrap calibration for the distribution of the test:

Algorithm 4.1 (Bootstrap procedure for the two-sample asymptotic test).

Given a sample xi ,1, . . . , xi ,ni , let Υ̂i be consistent estimators of Υi i = 1,2.

1. Define Υ̂= τ̂−1
1 Υ̂1 + τ̂−1

2 Υ̂2 with τ̂i = ni /(n1 +n2).

2. For 1 ≤ l ≤ qn denote by ι̂l the positive eigenvalues of Υ̂

3. Generate Z∗
1 , . . . , Z∗

qn
i.i.d. such that Z∗

i ∼N(0,1) and let U∗
n =∑qn

j=1 ι̂ j Z∗2
j

4. Repeat the previous step B times, to get B values of U∗
n

The (1−α)-quantile of the asymptotic distribution of T can be approximated by the (1−α)-

quantile of the empirical distribution of U∗
nr for 1 ≤ r ≤ B . The p-value of the test can be

evaluated by the number of U∗
nr larger or equal than the observed value of T divided by the

number of repetitions B .

Multiple-sample test

This test is then generalised for the multiple sample case. That is, if Σi denotes the covariance

operator of the i th population, we wish to test the hypothesis

H0 : {Σ1 = ·· · =Σq } against H1 : {at least one equality is not true}.

Let n = n1 +·· ·+nq and assume that ni /n → τi , 0 ≤ τi ≤ 1,
∑q

i=1τi = 1. The generalisation of

the test described above uses the test statistic

T = n
q∑

j=2
‖S j −S1‖2

HS ,

where Si stands for the sample covariance operator of the i th population.

Theorem 4.2. Let xi 1, . . . , xi ni , for 1 ≤ i ≤ q, be independent observations from q independent

distributions, with mean µi and covariance operator Σi such that E(‖Xi 1‖4) <∞. Let Si be the

sample covariance operator of the i th population. Assume that ni /n → τi with τi ∈ (0,1) where
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n =∑q
i=1 ni . DenoteΥW the linear operatorΥW : L2(I )q−1 → L2(I )q−1 defined as

ΥW (u1, . . . ,uq−1) =
(

1

τ2
Υ2(u1), . . . ,

1

τq
Υq (uC−1)

)

where theΥi are given in (4.1). Let {ιl }l≥1 stand for the sequence of eigenvalues ofΥW ordered

in decreasing order. Under H0, we have:

n
q∑

j=2
‖S j −S1‖2

HS
d→

∑
l≥1

ιl Z 2
l

where Zl ∼N(0,1) are independent.

This theorem is a natural extension of its analogous in the finite-dimensional case. Here too, a

bootstrap procedure can be considered. In order to estimate ιl , one can consider estimators of

the operatorsΥi for 1 ≤ i ≤ q and thus estimateΥW . Therefore, if ι̂l are positive eigenvalues of

Υ̂W , a bootstrap procedure can be defined using steps 3. and 4. of Algorithm 4.

4.3 Empirical bootstrap for the equality of covariance operators

Paparoditis and Sapatinas (2014) presented a bootstrap-based methodology for testing hy-

potheses about equality of certain characteristics of the distributions between different pop-

ulations in the context of functional data. It is very flexible: it can potentially be applied to

different test statistics and for more than two populations. Among other things, the proposed

procedure can be applied to the problems of comparing the covariance operators between

several populations. The basic idea behind this test is to resample the observed functional

data set in such a way that the obtained bootstrap functional pseudo-observations satisfy

the null hypothesis of interest. This requirement leads to a particular resampling scheme

that, when (for example) testing the equality of covariance operators, automatically generates

pseudo-functional observations with identical covariance operators of the observed functional

data. We show here how the methodology proposed in Paparoditis and Sapatinas (2014) can

be used for the case of covariance operators.

Let X = (X1, . . . ,Xq ) be the observed collection of random functions satisfying

xi j (t ) =µi (t )+εi j (t ), i = 1, . . . , q, j = 1, . . . ,ni , t ∈ I .

Let Σi be the covariance operators of the i th population. It is assumed that the q populations

are independent and, for each i = 1,2, . . . , q and j = 1, . . . ,ni , the εi j are independent and

identically distributed random elements with E[εi j (t)] = 0, t ∈ T and E‖εi j‖4 <∞. It is also
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assumed that there exist at least p distinct (positive) eigenvalues of the covariance operators

Σi , i = 1, . . . , q .

The objective is to test the hypothesis:

H0 : {Σ1 =Σ2 = ·· · =Σq } against H1 : {at least one equality is not true}. (4.2)

Let T be a given test statistic of interest for testing (4.2) which is based on X . Assume, without

loss of generality, that T rejects the null hypothesis H0 when T > Tα where, for α ∈ (0,1), Tα

denotes the critical value of the test. The algorithm is composed by the following steps:

Algorithm 4.2 (Empirical bootstrap procedure).

1. Calculate the sample mean function of each population:

mi =
1

ni

ni∑
j=1

xi j , i = 1,2, . . . , q.

2. Calculate the residual function with respect to the mean for each observation:

εi j = xi j −mi , i = 1,2, . . . , q, j = 1,2, . . . ,ni .

3. Generate bootstrap functional pseudo-observations according to

x∗
i j = mi +ε∗i j , i = 1,2, . . . , q, j = 1,2, . . . ,ni

where ε∗i , j = εI ,J where (I , J) is a pair of random variables. I takes values in {1,2, . . . , q}

with probability P(I = i ) = ni /n and, given I = i , the random variable J has the discrete

uniform distribution in the set {1,2, . . . ,ni }, i.e. P(J = j |I = i ) = n−1
i for i = 1,2, . . . , q, j =

1,2, . . . ,ni .

4. Let T ∗ be the same test statistic as T calculated using the bootstrap functional pseudo-

observations X ∗.

5. For any given α ∈ (0,1), reject the null hypothesis H0 if and only if T > T ∗
α where T ∗

α

denotes the α-quantile of the distribution of T ∗ given the functional observations X .

In the specific case of two-sample tests for covariance operators, three different test statistics

have been considered by Paparoditis and Sapatinas (2014). First, the Hilbert-Schmidt norm of

the difference between the sample covariance operators, which is also used in Boente et al.

(2014)

T = n‖S1 −S2‖HS .
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Then, the approach that looks at the distance between the sample covariance operators S1

and S2 and the pooled sample covariance function Spool, based on the entire set of functional

observations, is studied. The idea is to look at the projections of S1 and S2 on certain directions.

Such approach has been considered by Panaretos et al. (2010) and Fremdt et al. (2013) and

requires some preliminary definitions. With the same notation used in Section 2.2.1, we denote

by (φk , vk ), k = 1, . . . ,n the eigenvalues and eigenfunctions of the pooled sample covariance

operator Spool with φ1 ≥φ2 ≥ . . . and assume that the vk form an orthonormal system. Select

a natural number p and consider, for i = 1,2, . . . , p the projections

ak, j = 〈xk, j − x̄k,nk , vi 〉 =
∫

T
(xk, j −mk )vi d t , j = 1,2, . . . ,nk , k = 1,2

Now, for 1 ≤ r,m ≤ p, consider the matrices Ak,nk with elements

Ak,nk (r,m) = 1

nk

nk∑
j=1

ak, j (r )ak, j (m), k = 1,2

and define

∆(r,m) = A1,n1 (r,m)− A2,n2 (r,m).

∆(r,m) is the projection of the difference S1 − S2 in the direction of vr vm . Based on this,

Panaretos et al. (2010) defined the following test statistic for the Gaussian case:

T = n1

n2

∑
1≤r,m≤p

∆(r,m)

2φrφm
.

As regarding the non-Gaussian framework, Fremdt et al. (2013) considered the matrix ∆ =
(∆(r,m))r,m=1,...,p and defined ξ = vech(∆), i.e. the vector containing the elements on and

below the main diagonal of ∆. The proposed test statistic is

T = n1n2

n
ξ
′
L−1ξ

where L is an estimator of the asymptotic covariance matrix of ξ. For these three test statistics,

the asymptotic distributions are known, so Paparoditis and Sapatinas (2014) showed that

Algorithm 4.2 correctly approximates them.
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4.4 Inference on covariance operators via concentration

inequalities

More recently, Kashlak et al. (2016) proposed another approach to the multiple testing of

covariance operators, based on non-asymptotic confidence sets. In Section 4.4.1 we recall the

definition given by Kashlak et al. (2016) of such confidence regions and in Section 4.4.2 we

show how they are used to define a global test for the equality of covariance operators.

4.4.1 Confidence sets for covariance operators

Let x1, . . . , xn ∈ L2(I ) be independent and identically distributed observations with mean zero

and covariance operator Σ. The initial goal is to construct a confidence set for Σwith respect

to some metric d(·, ·) of the form

{
Σ : d(S,Σ) ≤ r (n,S,α)

}
,

which has coverage 1−α for any desired α ∈ (0,1) and a radius r depending only on the data

and α. The metrics used by Kashlak et al. (2016) are the p-Schatten norms.

Definition 4.1. Given two separable Hilbert spaces H1 and H2, a bounded linear operator

Σ :H1 →H2 and p ∈ [1,∞), then the p-Schatten norm is

‖Σ‖p
p = trace

[
(Σ′Σ)p/2].

For p =∞, the Schatten norm is the operator norm:

‖Σ‖∞ = sup
x∈H1

‖Σx‖H2

‖x‖H1

.

In the case that Σ is compact, self-adjoint and trace-class, then, given the associated eigenvalues

{φ̃n}∞n=1, the p-Schatten norm coincides with the l p norm of the eigenvalues

‖Σ‖p
p =

‖φ̃‖p
l p =

∑∞
n=1 |φ̃

p
n |, if p ∈ [1,∞),

maxn∈N |φ̃n |, if p =∞.

Clearly, for p =∞ this is equivalent to the spectral distance defined in Equation (2.2). The

construction of the confidence set is based on Talagrand’s concentration inequality (Talagrand,

1996) with explicit constants and the Rademacher symmetrisation technique (Giné and Nickl,

2015). The latter requires the use of the namesake Rademacher random variables.
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Definition 4.2. A random variable χ ∈R has a Rademacher distribution if

P(χ= 1) =P(χ=−1) = 1

2
.

Now, for some desired p-Schatten norm ‖·‖p , with p ∈ [1,∞), define the weak variance ς2 as

ς2 = 1

n

n∑
i=1

sup
‖Ξ‖ p

p−1
≤1
E
[
〈xi −E[x⊗2

i ],Ξ〉2
]

where x⊗2 = x ⊗ x and the supremum is being taken over a countably dense subset of the

unit ball of the Hilbert space of bounded linear operators mapping L2(I ) to L2(I ). The (1−α)-

confidence set defined by Kashlak et al. (2016) is{
Σ : ‖S −Σ‖p ≤ ‖Rn‖p +ς

[
− 2

n
log(2α)

]1/2
− ς log(2α)

3n

}
, (4.3)

where Rn is the Rademacher average

Rn = 1

n

n∑
i=1

χi
[
(xi −m)⊗2 −S

]
.

4.4.2 Multiple-sample comparison

Now, let the q samples be xi 1, . . . , xi ni , i = 1, . . . , q where for each sample i = 1, . . . , q and all

elements j = 1, . . . ,ni , xi j has covariance Σi . In order to design a test for the following two

hypotheses

H0 : {Σ1 = ·· · =Σq } against H1 : {at least one equality is not true},

the p-Schatten norms with the concentration inequality based confidence sets of Equation

(4.3) are used. Let Si be the empirical estimate of the covariance operator for the i th sample

and let S be the estimate of the covariance operator for the total dataset. Also, let the total data

size be n = n1 +·· ·+nq and ςi be the weak variance for sample i , then the pooled variance is

defined as ς2
pool = n−1 ∑q

i=1 niς
2
i . In practice, ς2

pool is estimated from the data in order to have

confidence regions only depend on the data. More details about the practical computation of

the weak variance can be found in the original work. Taking inspiration from the standard

analysis of variance (Casella and Berger, 2002, Chapter 11), the rejection region is

{
x :

q∑
i=1

‖Si −S‖p >
q∑

i=1

∥∥∥∥∥ ni∑
j=1

χi j (x⊗2
i j −S)

∥∥∥∥∥
p

+
( q∑

i=1

ςpool

ni

)1/2

(−2log2α)1/2+
( q∑

i=1

ςpool

ni

)
log

2α

3

}
.
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The size of the test induced by this rejection region is significantly less than the target size α,

due to the use of multiple concentration inequalities. Hence, tuning inequalities is required

to yield a useful test. Kashlak et al. (2016) determined experimentally that the coefficients of

1−q−1/2 for the Rademacher term and (q +2)/(q +3) for the deviation term improve the size

of the confidence region.





Chapter 5

Permutation tests for covariance

operators

In this chapter we show how the distances introduced in Section 2.2.2 can be used to make

inference on the covariance operators of multiple data samples. First of all, we briefly describe

the permutation test proposed by Pigoli et al. (2014) for the two-sample case. Then, we present

the methodological development of the thesis: the extension of this method to the multiple-

sample case, by means of the NPC methodology of Pesarin and Salmaso (2010) explained

in Chatper 3. Lastly, we discuss the different possible choices for the permutation strategy.

Three different approaches are considered and their impact on the performance of the test is

illustrated with a few synthetic examples.

5.1 The two-sample case

A permutation test for assessing the equality of the covariance operators of two functional

data samples has been formulated in Pigoli et al. (2014). The main idea is to use the distance

between two sample covariance operators to carry out inference on the equality of the true

covariance operators. In order to test the hypotheses

H0 :Σ1 =Σ2 against H1 :Σ1 6=Σ2,

it has been proposed to use a distance between covariance operators like, for example, those in-

troduced in Section 2.2.2 as a test statistic. In this way, the two hypotheses can be reformulated

51
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as:

H0 : d(Σ1,Σ2) = 0 against H1 : d(Σ1,Σ2) 6= 0,

where d(·, ·) is a generic distance between covariance operators. For this formulation of the

permutation test, equality of mean functions is essential to ensure the exchangeability of

the observations under the null hypothesis. However, if the two groups have different (and

unknown) means, an approximated permutation test can be performed, having first centred

the curves using their sample means. This is a common strategy for testing scaling parameters,

such as variance, for univariate real random variables (Good, 2005).

In analogy with the two-sample univariate permutation test explained in Section 3.1, the MC

algorithm for computing a p-value for the test is the following:

Algorithm 5.1 (Two-sample permutation test for the equality of covariance operators).

1. Compute the observed test statistic, that corresponds to the distance between the two

sample covariance operators according to the chosen metric:

T 0 = d(S1,S2);

2. Apply B random permutations to the labels of the sample curves u∗
(b), b = 1, . . . ,B;

3. For each of them, let S(b)
i be the sample covariance of the permuted sample X∗

i , i = 1,2,

compute d(S(b)
1 ,S(b)

2 ), b = 1, . . . ,B;

4. The p-value of the test is the proportion of permutations that give a greater distance

between the sample covariance operators than the one observed:

λ̂=

B∑
b=1

1

[
d

(
S(b)

1 ,S(b)
2

)≥ d
(
S1,S2

)]
B

.

5.2 The multiple-sample case

In this section we show how it is possible to extend the approach proposed in Pigoli et al.

(2014) to the case of multiple samples of functional data. Let us suppose we have q groups of

functional data

xi 1, . . . , xi ni ∈ L2(I ), i = 1, . . . , q.
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We assume they are independent and identically distributed samples from a random process

with distribution Pi , meanµ and covariance operatorΣi . We would like to test if the covariance

operators are all equal. The global null hypothesis can be viewed as an intersection of partial

null hypotheses

H0 : {Σ1 =Σ2 = ·· · =Σq } =
⋂
i 6= j

H i j
0 , where H i j

0 : {Σi =Σ j }

and the global alternative hypothesis can be viewed as the union of the corresponding alterna-

tive hypotheses

H1 : {at least one equality is not true} =
⋃
i 6= j

H i j
1 , where H i j

1 : {Σi 6=Σ j }.

The idea is to combine the k = q(q −1)/2 two-sample tests for each pair of groups in a global

test. This kind of approaches is called Union-Intersection (UI). This term encompasses any

testing framework in which it is assumed that the hypotheses H0 and H1 can be equivalently

broken down as

H0 :

{
k⋂

i=1
H0i

}
and H1 :

{
k⋃

i=1
H1i

}

and that the global test is obtained by combining a suitable list of partial tests Ti , each one

specific for testing H0i against H1i , i = 1, . . . ,k. The UI principle for multivariate testing has

been studied for the first time by Roy (1953). When they are known, the provided UI solutions

usually coincide with those obtained by likelihood techniques. But, outside that setting, no

other solutions in closed form have been found so far. In this respect, Sen (2007) stated:

The crux of the problem is however to find the distribution theory for the maximum

of these possibly correlated statistics. Unfortunately, this distribution depends on

the unknown P, even under the null hypothesis. An easy way to eliminate this

impasse is to take recourse to the permutation distribution theory.

This proposal is not easy to achieve if one wishes to treat the underlying dependence by using

suitable estimators of all coefficients, the number and type of which are usually unknown.

Indeed, we will see in Section 5.3 how dependencies among the partial hypotheses can be

much more complex than linear. However, this proposal has a general solution when it is

possible to deal with such a dependence in a non-parametric way. The goal is obtained within

the conditional testing principle by conditioning on the whole data set X. If under H0 the data

set X is a sufficient statistic for the underlying distribution P , this principle provides exact

permutation solutions even in multivariate settings and constrained alternatives. The related

methods are based on the NPC presented in Section 3.2.
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So we want to apply NPC to the considered problem. That is, we would like to use the

algorithms reported in Section 3.2.3 setting each element of the vector of partial test statistics

T = {T1, . . . ,Tk } to the distance between the permutation sample covariance operators d(S∗
i ,S∗

j )

for some 1 ≤ i , j ≤ q . It is immediate to verify that the so-defined partial tests H0 : d(Σi ,Σ j ) = 0

against H0 : d(Σi ,Σ j ) 6= 0 marginally satisfy Assumptions 3.1 and 3.2 for any of the distances

presented in Section 2.2.2. Therefore, Algorithms 3.2 and 3.3 can be applied to any functional

dataset X using T = {d(S∗
i ,S∗

j ), i , j = 1, . . . ,k, i 6= j } and any combining function Ψ satisfying

Properties 3.1, 3.2 and 3.3, i.e. Ψ ∈C. The choice of the combining function will be analysed in

more detail in Chapters 6 and 7, while the possible permutation strategies are investigated in

the next section. We obtain the following algorithm:

Algorithm 5.2 (Multiple-sample permutation test for the equality of covariance operators).

Let xi j , j = 1, . . . , q, i = 1, . . . ,n j be the considered dataset.

1. For all j = 1, . . . , q, i = 1, . . . ,n j , let

x̃i j = xi j −m j ,

where m j is the sample mean of group j ;

2. Let T0 be the k-dimensional vector containing the pairwise distances between the covari-

ance operators

d(S j ,Sl ),∀ j = 1, . . . , q, l = 1, . . . , q, j 6= l ;

3. Consider a random permutation u∗ of the data labels and compute the k-dimensional

vector T∗ containing

d(S∗
j ,S∗

l ),∀ j = 1, . . . , q, l = 1, . . . , q, j 6= l ;

4. Carry out B independent repetitions of the previous step, obtaining {T(b)}B
b=1, a random

sampling from the permutational distribution of T;

5. Let

λ̂i (d |X/X) =
∑

b 1
[
d(S(b)

i ,S(b)
j ) ≥ d

]
B

be consistent estimates of λ j l =P(d |X/X), d ∈R,d ≥ 0;

6. Compute the estimated partial p-values of the test as

λ̂ j l = λ̂ j l (d(Si ,Sl )|X/X);
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7. Combine the λ̂i to obtain the observed global test statistic

T 0
Ψ =Ψ(λ̂1,2, λ̂1,3, . . . , λ̂k,k−1);

8. Compute the bth combined value as

T (b)
Ψ =Ψ(λ̂(b)

1,2, λ̂(b)
1,3, . . . , λ̂(b)

k,k−1),b = 1, . . . ,B ,

where λ̂(b)
j l = λ̂ j l (d(S(b)

j ,S(b)
l )|X/X), j = 1, . . . , q, l = 1, . . . , q, j 6= l ;

9. The p-value of the combined test is estimated as

λ̂Ψ =
Σb1[T (b)

Ψ ≥ T 0
Ψ]

B
;

10. If λ̂Ψ ≤α, H0 is rejected.

If we make the following additional assumptions

1. when n goes to infinity, then so also do the sample sizes of all groups, that is n →∞
implies mini ni →∞,

2. the number B of MC iterations goes to infinity,

3. k and α are fixed,

then it is possible to prove that the test we obtain is strongly consistent and unbiased test for

the overall null hypothesis H0 against the alternative H1. To be more precise, the following

theorems hold:

Theorem 5.1. If partial permutation tests Ti , i = 1, . . . ,k, are marginally unbiased and at least

one is strongly consistent for respectively H0i against H1i , then TΨ =Ψ(λ1, . . . ,λk ), for every

Ψ ∈C, is a strongly consistent combined test for H0 : {∩i H0i } against H1 : {∪i H1i }.

Theorem 5.2. If, given a data set X and any α> 0, partial permutation tests Ti , i = 1, . . . ,k are

all marginally unbiased for respectively H0i against H1i , i = 1, . . . ,k, so that their associated

p-values λi , i = 1, . . . ,k, are positively dependent, then TΨ =Ψ(λ1, . . . ,λk ), for everyΨ ∈C, is an

unbiased combined test for H0 : {∩i H0i } against H1 : {∪i H1i }.

The proofs of these statements can be found in Pesarin and Salmaso (2010).

It is important to note that, even if the test statistic is based on the sample covariance operator,

we are supposing, under the null hypothesis, that the distributions related to the groups of
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data are the same, i.e.

H0 : {P1 = ·· · = Pq } against H1 : {at least one equality is not true}.

Therefore, if the null hypothesis is rejected, it is more appropriate to say that there is evidence

to affirm that at least two of the distributions generating the observed data samples are

different.

Algorithm 5.2 has been implemented in the function ksample.perm of the R package “fdcov”.

For further details, refer to Appendix A.

5.3 Permutation strategies

Step 3. of Algorithm 5.2 requires to choose a permutation of the original dataset X. It is

important to note that any subset of the permutations available can be used, provided that its

cardinality N is known, so that one can assign probability 1/N to each of them. In Solari et al.

(2009), three different ways of permuting data are proposed.

Pooled permutations

This is the simplest idea: to perform permutations involving the whole dataset. This can

be done because, under H0, the observations of all groups are exchangeable. However, this

strategy does not allow to test also the partial hypotheses, since each comparison involves not

only the observations belonging to the pair of considered groups, but also those of the other

groups. Therefore, the resulting global p-value is correct, yet the partial p-values would not be

accurate when doing post-hoc comparisons.

Paired permutations

The second proposal could be to apply paired permutations: while comparing the i th and

j th groups, the inference is made on the paired vector xi j = (xi , x j ) independently. The result

would be opposite than the one obtained with pooled permutations. The partial tests are done

exactly as in the two-sample case, but the global test is not reliable since this method does not

take properly into account the dependencies between the marginal tests.
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Synchronised permutations

In conclusion, we want paired permutations to be done not independently but jointly. At

the same time, we would like to keep the partial comparisons separate, so as to be able

to do post-hoc comparison with no additional computational effort. Then, if the design is

balanced, i.e. n1 = ·· · = nq = n̄, a further possibility is to apply synchronised permutations.

The basic concept of synchronised permutations is exchanging the same number ν of units

between each pair of blocks. Applying synchronised permutations allows both maintaining

the dependencies among partial tests and involving the observations of each comparison at

the same time. First of all, we build the pseudo-data matrix

[
x1 x1 . . . xq−1

x2 x3 . . . xq

]
=



x1
1 x1

1 . . . xq−1
1

x1
2 x1

2 . . . xq−1
2

...
...

...

x1
n̄ x1

n̄ . . . xq−1
n̄

x2
1 x3

1 . . . xq
1

x2
2 x3

2 . . . xq
2

...
...

...

x2
n̄ x3

n̄ . . . xq
n̄



(5.1)

where each column is composed by two different samples of curves. The Constrained Synchro-

nized Permutations (CSPs) consist in exchanging units in the same original position within

each block. This can be done by permuting the rows of the pseudo-data matrix. Since there

are

NCSP =
(

2n̄

n̄

)

possible ways to exchange units in the first pair of blocks, NCSP is the cardinality of the CSPs.

If the distance d(·, ·) is symmetric, then the number of distinct values of T ∗ is NCSP/2. As

pointed out in Section 3.1, being a permutation test, the attainable significance levels are

multiples of 1/N , where N is the cardinality of distinct values of the test statistic. Hence, if the

number of observations in each sample n is very small, CSPs may give a minimum achieved

significance level that is higher than the first type error rates commonly used. For this reason,

Unconstrained Synchronized Permutations (USPs) have been introduced. USPs do not require

the exchange units to be in the same original position within the blocks. The only requirement

is that the number of exchanges is the same. Since the number of distinct values of T rapidly

increases with n, in general it is recommended to use this strategy when few replicates are

available (Solari et al., 2009). However, in FDA applications the dimension of the sample is
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usually large enough to not incur in this problem.

We give here an heuristic explanation of the differences between these methods and compare

the performances of the three types of permutations by applying them to synthetic data. First

we show the simple example of making inference on the mean of three groups of univariate

data. Then we simulate three groups of functional data and repeat the experiment. Synthetic

data for the first case are generated by sampling 40 observations from a Gaussian distribution

with mean equal to zero for the first two groups and equal to 10 for the third (Figure 5.1a).

In the case of functional data, instead, first we define the two sample covariance operators

Σ1 and Σ2 as in Pigoli et al. (2014), that is we set Σ1 and Σ2 equal to the sample covariance

operators for the male and female subjects, respectively, of the Berkeley growth study dataset

Ramsay and Silverman (2005), rescaled to lie in [0,1]. Then we simulate data with with the

same mean function sin(x). and covariance operators Σ1 for the first two and

Σ10 = [(Σ1)1/2 +10{(Σ2)1/2R̃ − (Σ1)1/2}][(Σ1)1/2 +10{(Σ2)1/2R̃ − (Σ1)1/2}]′

for the third, where R̃ is the operator minimizing the Procrustes distance between Σ1 and

Σ2. The synthetic dataset obtained is shown in Figure 5.2a. Figures 5.1 and 5.2 show the

joint distributions of the vectors of partial statistics T = (T1, . . . ,Tk ) when applying pooled,

paired, and synchronised permutations, respectively, with the number of replicates B equal

to 200. Note how the inner dependencies among partial tests are maintained by pooled and

synchronised permutations, while they are cancelled by the independent permutations of the

pairwise strategy. Also, these examples illustrate how synchronised permutations perform

better than pooled permutations when the dependencies are way more complex than linear,

as in the case of test statistic related to covariance operators.
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(a) Synthetic univariate data.
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Figure 5.1: Joint distribution of T = (T ∗
12,T ∗

13,T ∗
23) when permuting the whole data vector

(pooled permutations, first row), when permuting x j k independently (paired permutations,
second row) and when using synchronised permutations (third row). The test statistic used is

the difference between sample means, i.e. T ∗
i j = m∗

i −m∗
j .
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(a) Synthetic functional data.
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Figure 5.2: Functional data. Joint distribution of T = (T ∗
12,T ∗

13,T ∗
23) when permuting the whole

data vector (pooled permutations, first row), when permuting x j k independently (paired
permutations, second row) and when using synchronised permutations (third row). The test

statistic used is the square root distance between sample covariance operators, i.e.
T ∗

i j = dSQ(S∗
i ,S∗

j ).



Chapter 6

Post-hoc comparisons

After performing the global test, if the null hypothesis H0 is rejected in favour of the alternative

H1, it is often of interest to find out which of the data samples led to this conclusion. In other

words, if the null hypothesis

H0 :
⋂
i 6= j

H i j
0 , with H i j

0 : {Σi =Σ j }

is rejected in favour of

H1 :
⋃
i 6= j

H i j
1 , with H i j

1 : {Σi 6=Σ j },

i.e. at least one of the H i j
1 is true. In this chapter we show how to simultaneously assess which

of the partial alternative hypotheses are true. It has been pointed out in Chapter 5 that one of

the advantages of the NPC is that partial p-values are computed at the same time of the global

one. Therefore, the post-hoc comparisons can be done with a small computational effort.

Thus, we investigate here the methods that allow to control the Family-Wise Error Rate (FWE).

In particular, in Section 6.1 we introduce the basic definitions and notations. In Section 6.2 are

illustrated some single-step methods that can be used to adjust the partial p-value in order to

account for the multiplicity. In Section 6.3, it is explained how single-step methods can be

made less conservative by introducing an order of the partial hypotheses. The so-obtained

procedures are referred to as step-down methods. However, we will see that they can only be

applied for one of the combining functions introduced in Section 3.2.2. Therefore, in Section

6.4 we present the closed testing procedure, which is a little more conservative but can be

utilised with any combining function.

61
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6.1 Family-wise error rate and adjusted p-values

One solution for solving the multiplicity problem is to make the individual tests more con-

servative, using a procedure by which each of the k hypotheses H0i , i = 1, . . . ,k is determined

to be rejected or accepted at a particular level α. Suppose one wants to test a family of k null

hypotheses H01, . . . , H0k each against H11, . . . , H1k respectively. Summing the test results gives

the following table and related random variables:

H0 true H1 true Total

H1 declared significant V W r

H1 declared non-significant U Y k-r

Total k0 k −k0 k

Definition 6.1. The Family-Wise Error Rate is the probability of making at least one type I error

in the family, i.e.

FWE =P(V ≥ 1) = 1−P(V = 0).

More precisely, according to Westfall and Young (1993), a simultaneous procedure is said to

control the Family-Wise Error Rate in the weak sense (FWEC) if

FWEC =P(Reject at least one H0i |All H0i are true) ≤α,

that is, it controls the FWE under the complete null hypothesis. It also controls the Family-Wise

Error Rate in the strong sense (FWEP)

FWEP =P(Reject at least one H0i , i = j1, . . . , jt |H0 j1 , . . . , H0 jt are true) ≤α,

regardless of which subset of hypotheses happens to be true.

Thus, once we have computed the partial p-values by means of Algorithm 5.2, we would like

to compute an adjusted p-value λ̃i , i = 1, . . . ,k for each test so that the decision to reject H0i

at FWE = α is obtained merely by noting whether λ̃i ≤ α. Similarly to the definition of an

ordinary (unadjusted) p-value, the mathematical definition of an adjusted p-value, λ̃i , is

λ̃i = inf{α|H0i is rejected at FWE =α}

In other words, λ̃i is the smallest significance level for which one still rejects Hi , given a

particular simultaneous test procedure.
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6.2 Single-step methods

Single-step methods are Simultaneous Test Procedures (STPs) that perform equivalent multi-

plicity adjustments for all tests, regardless of the ordering of the observed p-values λ1, . . . ,λk

and without considering any predetermined sequence of hypotheses.

Bonferroni-type methods

The simplest single-step method is the Bonferroni method (Bonferroni, 1936), which rejects

hypothesis H0i when the p-value λi is less than α/k, where α is the chosen FWE level and k is

the number of tests, i.e.

λ̃i = min(kλi ,1).

Using this adjustement, the FWE is always controlled in the weak sense:

P(Reject at least one H0i |H0) =P( min
1≤i≤k

Λi ≤α/k|H0)

≤
k∑

i=1
P(Λi ≤α/k|H0).

where Λi is the random variable associated to the observed p-value λi and the inequality

is given by the well known Bonferroni inequality. Assuming that all p-value distributions

are uniform on [0,1] under their respective null hypotheses H0i , the upper bound becomes

k(α/k) =α. Since the actual probability of rejecting at least one null hypothesis is less than

the nominal FWE level α, the Bonferroni method is conservative.

Very closely related to the Bonferroni method is the Šidák method (Šidák, 1967), which rejects

hypothesis H0i when the p-value λi is less than 1− (1−α)1/k , i.e.

λ̃i = 1− (1−λi )k .

While the Šidák adjustments are usually conservative, they are less conservative than those

obtained with the Bonferroni method.

Resampling method

Bonferroni-type methods fail to incorporate dependence and distributional characteristics

of the λi . Westfall and Young (1993) pointed out for the first time that if we knew the joint
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distributions of the p-values, we could compute the single-step adjusted p-values as

λ̃i =P( min
1≤ j≤k

Λ j ≤λi |H0),

i.e. the proportion of replicated experiments for which the minimum p-value is smaller than

the given experimentally observed p-value. Incorporation of the correlation structure results

in a smaller adjusted p-value and, consequently, more powerful tests. As an extreme example,

consider what would happen if all the p-values were perfectly correlated and uniformly

distributed under the complete null hypothesis. In this case:

P( min
1≤ j≤k

Λ j ≤λ j |H0) =P(Λi ≤λi |H0) =λi ,

i.e. no adjustment is needed. This suggests that incorporation of correlation structures can

be very important when correlations are extremely large, as is the case for the test studies

in this thesis. Sometimes this probability can be computed analytically, but in situations

involving dependence among the λi , such as the multiple test for the equality of covariance

operators, the distribution of (min1≤ j≤kΛ j |H0) is usually intractable. In the case of interest,

however, we have seen in Section 3.2.3 that it is possible to simulate vectors λλλ∗ having the

same null distribution as the original p-value vectorλλλ. Then, the adjusted p-values may be

approximated by the distribution obtained by taking the minimum of those vectors. A more

formal description of this process is given in the following algorithm:

Algorithm 6.1 (Single-step p-value adjustment for generic NPC method).

1. Perform the NPC Algorithms 3.2 and 3.3. The λ̂λλ
(b)

, b = 1, . . . ,B computed in step 3. of the

second phase are vectors of p-values from the same distribution as the actual p-values

λ1, . . . ,λk under the complete null hypothesis.

2. For b = 1, . . . ,B compute p(b) = min
1≤ j≤k

λ(b)
j ;

3. The estimated adjusted p-value is

ˆ̃λi =
∑

b 1(p(b) ≤λi )

B
. (6.1)

Since the single-step adjusted p-values are all computed under the complete null hypothesis

H0, it is straightforward to prove that the FWEC is controlled. The proof given by Westfall and

Young (1993) holds also in this particular case.

Proposition 6.1. The FWE is controlled in the weak sense by the rule λ̃i ≤ α, where λ̃i are

computed as in Algorithm (6.1).
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Proof. If a null hypothesis is rejected when λ̃i ≤α, then

P(Reject at least one H0i |H0) =P(At least one Λ̃i ≤α|H0).

By definition, λ̃i ≤α if and only if λi ≤ cα, where cα denotes the α quantile of the minimum

p-value distribution. Formally, letting L denote the sample space of the minimum p-value,

cα = max{λ ∈L|P( min
1≤ j≤k

Λ j |H0) ≤α}.

In words, cα is the largest observable value of the random variable min1≤ j≤k λ j for which the

cumulative probability is at most α. Then we have

P( min
1≤ j≤k

Λ̃ j ≤α|H0) =P( min
1≤ j≤k

Λ j ≤ cα|H0) ≤α.

so that this simultaneous test procedure controls the FWEC at (or below) level α.

It is important to note that, when using permutation approaches to estimate (min1≤ j≤kΛ j |H0),

we can only approximate the control of the FWE and the closeness of the approximation de-

pends upon the accuracy of the permutation-based estimates of the underlying distributions.

Simulation analysis can be helpful when attempting to evaluate such approximations.

Since all probabilities have been computed under the complete null hypothesis, it might seem

that partial error rates are not controlled. However, Westfall and Young (1993) introduced an

additional condition that allowed to prove that the FWE is controlled also in the strong sense.

Condition 6.1 (Subset Pivotality). The distribution of λλλ, vector of partial p-values, has the

Subset Pivotality (SP) property if the joint distribution of the sub-vector {λi , i ∈ K̄ } is identical

under the restrictions
⋂

i∈K̄ H0i and H0, for all subsets K̄ = {i1, . . . , i j } ⊆ K of true null hypotheses.

In many cases the analyses considered are approximate in an asymptotic sense, so Westfall and

Young (1993) defined a less restrictive condition. Suppose the data X is assumed to come from

a sequence of experiments involving an increasing amount of data. Indexing the experiments

by t = 1,2, . . . , the p-value for testing H0i is indexed correspondingly as λi t and the entire

vector isλλλt .

Condition 6.2 (Asymptotic Subset Pivotality). Let K = {1, . . . ,k} be the index set for the tested

hypotheses H0i and K̄ = {i1, . . . , i j } any set of true null hypotheses. The distribution of λλλt has

the asymptotic subset pivotality property if the joint distribution of the sub-vector {λi t , i ∈ K }

converges to the same limit law (as t →∞) under the restrictions
⋂

i∈K H0i and H0.

While the subset pivotality condition is easily satisfied in many cases, researchers have ques-

tioned the assumption. For example, Romano et al. (2008) stated:
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The condition of subset pivotality assumed in Westfall and Young (1993) is quite

restrictive.

However, Westfall and Troendle (2008) proved that in the permutational tests framework, in

which everything will be embedded within the null hypotheses, under H0, being all observa-

tions exchangeable, SP condition is always satisfied.

Then, the following proposition holds.

Proposition 6.2. Under Condition 6.1, the FWE is controlled in the strong sense by the rule

λ̃i ≤α, where λ̃i are computed as in Algorithm (6.1).

We give here a special case of the original proof written by Westfall and Young, 1993.

Proof. Suppose that K̄ = {i1, . . . , i j } is the collection of hypotheses H0i which are true. Then

P(At least one H0i is rejected for i ∈ K̄ |∩i∈K̄ H0i ) =P(min
i∈K̄

Λ̃i ≤α|∩i∈K H0i )

=P(min
i∈K̄

Λi ≤ cα|∩i∈K H0i )

(SP) =P(min
i∈K̄

Λi ≤ cα|H0)

≤P( min
1≤i≤k

Λi ≤ cα|H0)

≤α

Again, it is assumed that the adjusted p-values are evaluated without error. If this is not the

case, then the method approximately controls the FWE in the strong sense.

6.3 Step-down methods

As mentioned at the beginning of the chapter, it is possible to improve the power of the

procedure by making the adjusted p-values uniformly smaller, while retaining the same error

rate protection. The idea is that, rather than adjusting all p-values according to the minimum

p-value distribution, one should only adjust the minimum p-value using this distribution and

then adjust the remaining p-values according to smaller and smaller sets of p-values. The

effect of using restricted sets of p-values is to make the adjusted p-values smaller, thereby

improving the power of the method.
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Holm’s sequentially rejective algorithm

Holm (1979) derived a simultaneous test procedure based on the Bonferroni inequality which

strongly controls the FWE. Holm’s sequentially rejective algorithm is based on the ordered p-

values λ(1) ≤ . . . ≤λ(k), corresponding to the hypotheses H(1), . . . , H(k). The intuitive reasoning

is as follows: once H(1) has been rejected using the Bonferroni critical value α/k, we should

believe that H(1) is false. Thus, there are only k −1 hypotheses which might still be true, so

that the critical value for for H(2) can be augmented to α/(k −1). If H(2) is rejected, we can use

α/(k −2) for H(3), and so on. As in the case of the single-step Bonferroni method, adjusted

p-values greater than one must be set to one. While the FWE is strongly protected using

this step-down method, it is based on the Bonferroni probability inequality, and therefore is

conservative.

Resampling method

Also in this case, the adjustments can be made less conservative by incorporating the precise

dependence characteristics, as with the single-step adjusted p-values. Let the ordered p-values

have indexes r1, . . . ,rk so that λ(1) = λr1 ,λ(2) = λr2 , . . . ,λ(k) = λrk . The step-down adjusted p-

values are defined sequentially as follows:

λ̃(1) =P( min
j∈{r1,...,rk }

Λ j ≤λ(1)|H0)

λ̃(i ) = max{λ̃(i−1),P( min
j∈{ri ,...,rk }

Λ j ≤λ( j )|H0)}, i = 2, . . . ,k (6.2)

The use of max operator insures that the order of the adjusted p-values is the same as that

of the original p-values. The adjustments (6.2) are uniformly smaller than the single-step

adjusted p-values, since the minima are taken over successively smaller sets. Westfall and

Young (1993) proved that this procedure too, controls the FWE in the strong sense. We retrieve

here the main ideas of the proof because they are the key to understand the methods that

follow.

Proposition 6.3. Under Condition 6.1, the FWE is controlled in the strong sense by the rule

λ̃i ≤α, where λ̃i are computed as in (6.2).

Proof. Let K = {1, . . . ,k} be the index set for the tested hypotheses H0i . To control the FWE

in the strong sense, it is required that the probability of rejecting at least one true H0i is no

larger than α, no matter what subset of the K0 ⊆ K of hypotheses happen to be true. Suppose

that K0 6=∅ (if K0 =∅ then there can be no type I errors). Let c K̄
α denote the α quantile of
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(min j∈K̄ Λ j |H0):

c K̄
α = max{λ ∈ S|P(min

j∈K̄
Λ j |H0) ≤α}.

Define Ki = {ri , . . . ,rk }, i = 1, . . . ,k. We have the following relationships:

{There is at least one type I error} = {Reject at least one H0i , i ∈ K0} ⊆ {min
i∈K0

Λi ≤ c
K j
α }

where j ≤ k −|K |+1 is defined by mini∈K0 λi =λ( j ) =λr j , i.e. it is the true hypothesis with the

smallest p-value. Then

P(There is at least one type I error) =P(Reject at least one H0i , i ∈ K0|∩i∈K0 H0i )

≤P(min
i∈K0

Λi ≤ c
K j
α |∩i∈K0 H0i )

(SP) =P(min
i∈K0

Λi ≤ c
K j
α |H0).

Since K j ⊆ K , we have c
K j
α ≤ cK

α , implying

P(min
i∈K0

Λi ≤ c
K j
α |H0) ≤P(min

i∈K0

Λi ≤ cK0
α |H0) ≤α

that is, the step-down adjustments strongly control the FWE.

As in Section 6.2, it is assumed once again that the adjusted p-values are evaluated without

error. When this is not true, then the resampling method approximately controls the FWE in

the strong sense.

In view of this considerations, it is easy to see that this method is equivalent to iteratively use

the NPC with the Tippett combining function, as explained in Pesarin and Salmaso (2010):

Algorithm 6.2 (Step-down method for Tippett combining function).

Let λ(1), . . . ,λ(k) be the increasing ordered p-values corresponding to the set of minimal hypothe-

ses.

1. λ̃(1) =λ(1),...,(k),Tippett

– If λ̃(1) ≤α, reject the corresponding hypothesis H0(1) and continue;

– Otherwise retain the hypotheses H0(1), . . . , H0(k) and stop.

2. λ̃(i ) = max{λ(i ),...,(k),Tippett, λ̃(i−1)}

– If λ̃(i ) ≤α, reject also H0(i ) and continue;
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– Otherwise retain the hypotheses H0(i ), . . . , H0(k) and stop.

Furthermore, Lehmann and Romano (2005) presented a more generic step-down method. The

basic idea is to use the test statistics T instead of the p-values. So, for example, suppose that the

individual tests H0i are based on test statistics Ti with large values indicating evidence against

the partial null hypotheses. The method is equivalent to that based on the Tippett combining

function but allows to avoid the computations of the of the permutational distributions of the

partial p-values.

Algorithm 6.3 (Step-down method for maxT combining function).

Let Tr1 ≥ Tr2 ≥ . . . ≥ Trk denote the observed ordered test statistics and let H(1), H(2), . . . , H(k) be

the corresponding hypotheses.

1. Let K = {1, . . . ,k},

– If Tr1 ≥ cK (α) reject H(1) and continue;

– Otherwise retain the hypotheses H0(1), . . . , H0(k) and stop.

2. For i = 2, . . . ,k, let Ki be the set of hypotheses not previously rejected,

– If Tri ≥ cKi (α) reject H(i ) and continue;

– Otherwise retain the hypotheses H0(i ), . . . , H0(k) and stop.

The problem is how to construct the cK̄ (α) so that the FWE is controlled in the strong sense.

The following holds (Lehmann and Romano, 2005):

Proposition 6.4. Consider Procedure 5.2. The following two conditions are sufficient for con-

trolling the FWE at level α:

1. monotonicity of the critical values: for any K̄ ⊃ K0, cK̄ (α) ≥ cK0 (α);

2. weak control of the family-wise error rate at each step, i.e., when K̄ is true,

P{max
i∈K̄

(Ti ) ≥ cK̄ } ≤α.

In Solari et al. (2009) the critical value cK̄ (α) is defined as the smallest qth value among the

permutation distributions of TK̄ = max
i∈K̄

Ti ,

cK̄ (α) = {max
i∈K̄

T ∗
i (b),b = 1, . . . ,B}
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with q = B −bBαc. For this reason, in the following we will refer to this as the step-down

method for the maxT combining function. The so-defined critical values clearly satisfy the

monotonicity requirement. In order to satisfy also the second requirement of Proposition 6.4,

the considered model must guarantee the randomisation hypothesis. That is, under the null

hypothesis, the distribution of the subset of data that is used for the calculation of Ti , i ∈ K̄

must not be affected by the transformations considered (here, permutations). Thus we require

exchangeability of the observed data.

6.4 Closed testing procedure

In case one wants to use another combining function and still perform post-hoc comparisons,

a possibility is to use the closed testing procedure (Marcus et al., 1976). The idea behind the

closure method is that one may reject any hypothesis H0i , while controlling the FWE, when

the test of Hi itself is significant and the test of every intersection hypothesis that includes H0i

is significant. Hence,

λ̃i = max(λi ,λi j ,λi j h , . . . ).

When using permutation tests, the algorithm to be used is the following:

Algorithm 6.4 (Closed testing for permutation tests).

Consider the closure of the set, which is the set of all possible intersection hypotheses.

1. Test all the hypotheses simultaneously by using permutation tests:

(a) Calculate the statistics TK̄ for each non-empty K̄ ⊆ {1, . . . ,k};

(b) For b = 1, . . . ,B, perform the bth permutation and compute the statistics T ∗(b)
K̄

for

each non-empty K̄ ⊆ {1, . . .k} on the bth permutation of the data;

(c) Calculate the raw p-values as

λK̄ =
∑

b 1(T ∗
K̄

(b) ≥ TK̄ )

B
;

2. Reject any hypothesis H0i when the test of H0i itself is significant and the test of every

intersection hypothesis that includes H0i is significant.

This method has two major drawbacks: it requires a greater number of computations and it is

very conservative. However, it has proved useful in many cases when the use of the Tippett or

maxT combining functions is not suitable.
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Simulation studies

This chapter contains all the simulation studies that have been performed in order to assess

the empirical power of the proposed methodology. In Section 7.1 are explained the two

considered case studies. Section 7.2 is dedicated to the comparisons between the permutation

strategies illustrated in Chapter 5. In Section 7.3, simulations are used in order to quantify the

loss of empirical power due to the adjustment of partial p-values in order to control the FWE.

In Section 7.4, we illustrate how the different distances introduced in Chapter 2 behave, when

applied to the considered case studies. We will explain why we have chosen the square root

distance and the maxT combining function for the analysis of the wheel-running dataset. In

Section 7.5 the test is applied to non-Gaussian data. The reported results show that the test

performs well also in this case, because the assumption of gaussianity is not required. Because

of the computational effort required in order to assess the empirical power of these tests, all

simulations have been performed in a three-sample setting. However, in Section 7.6 we also

show the empirical power of the test in some cases in which the number of sample groups is

greater than three. Lastly, in Section 7.7, the proposed permutation test is compared, when

possible, to the other tests that can be used for the problem of interest, presented in Chapter 4.

7.1 Case studies

The covariance operators used for the case studies are the same as in Pigoli et al. (2014).

In particular, we select Σ1 and Σ2 as in Section 5.3, that is, equal to the sample covariance

operators for the male and female subjects, respectively, of the Berkeley growth study dataset

(Ramsay and Silverman, 2005), rescaled to lie in [0,1]. In most of the simulations reported

in this chapter, synthetic data have been generated as follows: the first data sample has

covariance operator Σ1, the others have covariance equal to Σ(γ). Σ(γ) depends on Σ1 and Σ2

71
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and varies according to the test case. The mean function is sin(x) for all the samples. In the

first test case we consider

Σ(γ) = [(Σ1)1/2 +γ{(Σ2)1/2R̃ − (Σ1)1/2}][(Σ1)1/2 +γ{(Σ2)1/2R̃ − (Σ1)1/2}]′

where R̃ is the operator minimizing the Procrustes distance between Σ1 and Σ2 (Pigoli et al.,

2014). In the second test case the covariance are equal up to a scaling factor:

Σ(γ) = (1+γ)Σ1.

Unless otherwise stated, the curves are simulated from a multivariate Gaussian process,

generated on a grid of p = 31 points and the sample size of each group is N = 20. Each

permutation test is performed with B = 1000 iterations of the MC Algorithm 5.2 and is repeated

for 1000 different synthetic data samples.

7.2 Empirical power of synchronised, paired and pooled tests

The aim of this section is to evaluate the empirical power of the proposed test, when using

the three permutation strategies introduced in Section 5.3: pooled, paired and synchronised.

Figures 7.3 and 7.4 show the results obtained with the direct and maxT combining functions

respectively, for both case studies and three of the considered distances between covariance

operators: square root, Procrustes and L2 distance between the kernels (see Section 2.2.2).

We have chosen not to take into account the spectral distance since, as it has already been

pointed out by Pigoli et al. (2014), it is not suitable in the second test case, because it cannot

discern between an operator and one of its multiples. The values of the empirical levels of the

tests are reported in Table 7.1 for a more detailed analysis.

We can see that the global test is anti-conservative when paired permutations are applied,

because the dependence among partial tests is not taken into account. Pooled and paired

permutations, instead, lead to the right empirical level and have approximately the same

empirical power in all cases. However, in the balanced case, we prefer to use synchronised

permutations, because they allow for straightforward post-hoc comparisons.
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Figure 7.1: Covariance operators, test case 1.
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Figure 7.2: Covariance operators, test case 2.
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Figure 7.3: Comparison between pooled, paired and synchronised permutations.
Direct combining function, case studies 1 and 2 (first and second row respectively).
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Figure 7.4: Comparison between pooled, paired and synchronised permutations.
maxT combining function, case studies 1 and 2 (first and second row respectively).
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Table 7.1: Rejection rates of H0i , i = 1,2,3 and H0, γ= 0, direct combining function.

Test α Distance Case study 1 Case study 2

Paired 0.05 Procrustes 0.091 0.095
Paired 0.05 Square root 0.090 0.088
Paired 0.05 Kernel L2 0.084 0.092
Pooled 0.05 Procrustes 0.051 0.050
Pooled 0.05 Square root 0.051 0.051
Pooled 0.05 Kernel L2 0.058 0.044
Synchronised 0.05 Procrustes 0.064 0.061
Synchronised 0.05 Square root 0.061 0.063
Synchronised 0.05 Kernel L2 0.058 0.051

7.3 p-values adjustment

Having chosen to use synchronised permutations, here we show the empirical power of the

partial tests with and without adjustment. In particular, Figures 7.5 and 7.6 show the empirical

power of the global and partial tests done using the synchronised permutations and direct

combining function, for the first and second case studies respectively. In Figures 7.7 and 7.8

are reported the same tests, where the partial p-values have been adjusted with the closed

testing procedure (see Section 6.4). For Figures 7.9 and 7.10 the maxT combining function has

been used, coupled with the ad-hoc step-down procedure for the strong control of the FWE

(see Section 6.3). The graphs of the analogous with unadjusted partial tests are not shown

because the values of the global test are the same as in Figures 7.9a (7.10a) and the empirical

power of the partial tests is that of Figures 7.5b, 7.5c and 7.5d (7.6b, 7.6c and 7.6d) for the first

(second) case study.

It is immediate to see that, while unadjusted partial tests for multiple comparisons achieve

the nominal level α, the methods of FWE control make them very conservative. Without the

adjustment, the empirical power of the partial tests is, of course, the same as the pairwise

permutations tests reported by Pigoli et al. (2014). When corrected by the closed testing

procedure, the empirical power of the partial tests declines slightly. On the contrary, if the

step-down procedure is used, the empirical power remains almost unchanged.

7.4 Choice of the distance and the combining function

Concerning the choice of the distances, it is evident that the test has greater empirical power

when using Procrustes and square root distances. For the analysis of the wheel-running

dataset, we have chosen to use the second because not only it performs, in some cases, better
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Figure 7.5: Empirical power of synchronised permutation global and partial tests applied to
the first case study using direct combining function.
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Figure 7.6: Empirical power of synchronised permutation global and partial tests applied to
the second case study using direct combining function.
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Figure 7.7: Empirical power of synchronised permutation global and partial tests applied to
the first test case using direct combining function. P-values have been adjusted using the

closed testing procedure.
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Figure 7.8: Empirical power of synchronised permutation global and partial tests applied to
the second test case using direct combining function. P-values have been adjusted using the

closed testing procedure.
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Figure 7.9: Empirical power of synchronised permutation global and partial tests applied to
the first test case using maxT combining function. P-values have been adjusted using the

maxT step-down procedure.
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Figure 7.10: Empirical power of synchronised permutation global and partial tests applied
to the first test case using maxT combining function. P-values have been adjusted using the

maxT step-down procedure.
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than the others, but it also has a lower computational cost. As regards the combining function,

the choice should be based mainly on two aspects: the synergy of the partial tests that best suits

the considered application and the computational effort required to compute the partial p-

values λ1, . . . ,λk and then to adjust them to control the FWE, obtaining λ̃1, . . . , λ̃k . For reasons

of time, having to repeat the test thousands of times, in this chapter we have chosen to use

only the combining functions that do not require to compute the empirical distributions of the

partial p-values by means of the λ(b)
i (see Algorithm 3.3, step 3.), i.e. the maxT and the direct

combining functions. Between these two, the first requires a lower number of computations

to adjust the partial p-values, because an ad-hoc step-down procedure is available. For this

reason we chose to use this combining function also in the following. However, in different

applications, one may be interested in studying different combinations of the partial tests and

therefore use other functions. Depending on the size of the dataset, this may take from a few

seconds up to a minute more, which in some cases are worth spending for a more accurate

analysis.

7.5 Non-Gaussian data

All the simulations reported so far in this chapter have been done with synthetic data drawn

from Gaussian processes. In this section we reproduce some of the simulations reported above,

with data simulated from a multivariate t-Student with 4 degrees of freedom. In particular,

Figures 7.11 and 7.12 are exactly the same as Figures 7.9 and 7.10, except for the data generating

process.

The empirical power of the test in both cases is almost equal to the previous case. Indeed, the

assumption of gaussianity is not needed in order to perform the test.

7.6 Simulations with more than three groups

Figure 7.13 shows the empirical power of the global test when the number of groups is equal to

4, 6 and 8. The data samples are simulated as explained in Section 7.1. Figure 7.13a is related

to synthetic data samples that have one group with fixed covariance operator Σ1 and all the

others have covariance equal to Σ(γ). Figure 7.13b, instead, corresponds to the case of two

groups of data samples with the same cardinality: one with covariance Σ1 and the other with

covariance Σ(γ). As usual, γ varies from 0 to 5.

The graphics shows that the test has a great empirical power even for number of groups greater

than three. In the first one, it decreases when the number of data samples grows, while the
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other one displays the opposite trend. In both cases, however, performances change slowly

with respect to the number of groups. For this reason, we can suppose that they are almost the

same for any reasonable number of data samples.

7.7 Comparison with similar tests

In this section we compare the permutation test to two of the other existing tests introduced

in Chapter 4. Figure 7.14 shows the empirical power of the Levene’s test and the empirical

bootstrap for the two case studies. In the first row they are compared to the results obtained

using the permutation test with the maxT combining function, in the second row with the

direct combining function. The test statistic used for the empirical bootstrap is the same as

the one used for the permutation test (see Appendix A). Levene’s test has been implemented

using the permutation ANOVA. We have decided not to consider here the test of Boente et al.

(2014) because its implementation would require to compute the infinite eigenvalues of the

operatorΥ (see Section 4.2) and is therefore challenging.

It is clear that the empirical bootstrap has approximately the same power as the permutation

test. On the contrary, Levene’s test performs very differently. As expected, it outperforms in

the second case study, where it captures very well the differences in scale, but it does not

compete with the others in the other cases. The non-asymptotic test of Kashlak et al. (2016) is

much faster than the others and has almost the same power as the resampling-based methods.

Thus, if data are supposed to be Gaussian, it is a valid alternative to them. Unfortunately,

being based on the Gaussian assumption, it has a limited range of applications. However,

the permutation test the only one that allows for straightforward computation of the partial

p-values.
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(c) Partial test,
samples 2 and 3.
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(d) Partial test,
samples 1 and 3.

Figure 7.11: Synchronised permutation global and partial tests applied to the first case study
using maxT combining function. P-values have been adjusted using the maxT step-down

procedure.
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(d) Partial test,
samples 1 and 3.

Figure 7.12: Synchronised permutation global and partial tests applied to the first case study
using maxT combining function. P-values have been adjusted using the maxT step-down

procedure.
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Figure 7.13: Synchronised permutation global tests applied to the first case study using maxT
combining function, with an increasing number of data samples.
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(a) Case study 1,
Gaussian data.
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(b) Case study 2,
Gaussian data.
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(c) Case study 1,
non-Gaussian data.
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(d) Case study 2,
non-Gaussian.

Figure 7.14: Synchronised permutation (red), Levene’s generalisation (blue), empirical boot-
strap (orange) and concentration measure (green) global tests applied to the first (left) and
second (right) case studies. In the first row are shown the results given by these methods
when synthetic data are generated from a Gaussian process, the second row shows the values
obtained when data are drawn from a multivariate t-Student. The combining function is
maxT and the p-values have been adjusted with the step-down procedure of Algorithm 6.3.





Chapter 8

Application to evolutionary biology

In this chapter we analyse the wheel-running activity dataset presented in Section 1.3. The

objective of the experiment was to use selective breeding to study the genetics and evolution

of locomotor behaviour in mice. Four replicate lines of laboratory house mice have been

compared to other four random-bred lines maintained as controls. The selection criterion was

the total number of revolutions run on days 5 and 6 of a 6-day test. In the selected lines, the

highest-running male and female from each family were chosen as breeders. In Section 8.2 we

use the proposed permutation methodology to test the equality of the covariance operators of

the eight lines of mice used for the experiment, where each function represents the level of

voluntary wheel-running of one mice.

Before that, however, we have to deal with the missing observation. In fact, we have seen

in Chapter 5 that, ideally, one would want to have a balanced dataset, i.e. with the same

number of observations in each sample, so that synchronised permutations can be used. In

the wheel-running activity dataset, all groups are composed by 20 mice, but one of them died

of unknown causes during the early stages of the experiment. For this reason, one group only

has 19 observations and, in order to apply the synchronised permutations, we have to prove

that the presence of a missing observation does not affect the inference.

8.1 Dealing with the missing observation

First, we introduce some basic concepts of the theory of missing data and make some prelimi-

nary assumptions. Then, following the guidelines given by Pesarin and Salmaso (2010), we give

a new formulation of the test that takes into account the presence of missing data. Thanks to

this, we are able to prove that it is possible to apply the proposed test to an unbalanced dataset
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with one missing observation, under certain assumptions on the process that generates the

missing observations.

8.1.1 Assumptions on the process producing missing data

Rubin (1976) formalised the definition of data missing at random and gave the conditions in

which it is appropriate to ignore the process producing missing data when making inferences

about the distribution of observed data. Let us use θ to denote the parameter regulating the

distribution of the observable variable and ξ to denote that of the missing data process; thus,

the vector (θ,ξ) identifies the whole probability distribution of observed data within a family P

of non-degenerate distributions. The ignorability of the missing data process depends on the

method of inference and on three conditions which the data generating process must satisfy.

Definition 8.1. The missing data are Missing At Random (MAR) if for each possible value of

the parameter ξ, the conditional probability of the observed pattern of missing data given the

missing data and the value of the observed data, is the same for all possible values of the missing

data.

Definition 8.2. The observed data are Observed At Random (OAR) if for each possible value of

the missing data and the parameter ξ, the conditional probability of the observed pattern of

missing data given the missing data and the observed data, is the same for all possible values of

the observed data. The parameter ξ is distinct from θ if there are no a priori ties, via parametric

space restrictions or prior distributions, between ξ and θ.

Definition 8.3. If the missing data are MAR and the observed data are OAR, the missing data

are Missing Completely At Random (MCAR).

In this case, missingness does not depend on observed or unobserved values, and observed

values may be considered as a random subsample of the complete dataset. In these situations,

therefore, it is appropriate to ignore the process that causes missing data when making

inferences on θ. We will assume in the following that this is true for the considered dataset.

8.1.2 Permutation tests for the equality of covariance operators with missing data

We show here how this applies to our case. Consider again a functional dataset of the form

X = {Xi j , i = 1, . . . , q, j = 1, . . . ,ni },

that consists of q ≥ 2 samples or groups of size ni ≥ 2, with n =∑
i ni . The groups are related

to q levels of a treatment and the data Xi j are supposed to independent and identically
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distributed with distributions Pi ∈ P, i = 1, . . . , q . In order to take into account that, for

whatever reason, some of the data are missing, Pesarin and Salmaso (2010) suggested to

consider the inclusion indicator associated to the considered dataset, that is

O = {Oi j , i = 1, . . . , q, j = 1, . . . ,ni },

where Oi j = 1 if Xi j has been observed and collected, Oi j = 0 otherwise. This indicator

represents the observed configuration in the dataset. Hence, the whole set of observed data

is summarized by the pair of associated matrices (X,O). We define by κi =
∑

j Oi j the actual

sample size of the observed data of each sample. Assuming that data are jointly exchangeable

under the null hypothesis with respect to the groups, we would like to perform the following

test

H0 : {(X1,O1)
d= . . .

d= (Xq ,Oq )} against H1 : {H0 is not true}.

Thus, the hypotheses and assumptions are such that the permutation testing principle ap-

plies. If P represents the joint multivariate distribution of (Xi ,Oi ), i = 1, . . . , q under the null

hypothesis, we may write

P = PO ∗PX|O.

With this in mind, we can break down the null hypothesis in the following way:

H0 : {[O1
d= . . .

d=Oq ]∩ [X1
d= . . .

d= Xq |O]} = {H O
0 ∩H X|O

0 }.

Furthermore, if the missing data are MCAR, we may, according to Rubin (1976), proceed

conditionally with respect to the observed inclusion indicator and ignore H O
0 , assuming that

O does not provide any discriminative information about treatment effects. Thus, as sub-

hypotheses on O are true by assumption, H O
0 : {O1 = ·· · = Oq } may be ignored. Hence, we may

write the null hypothesis in the simpler form

H0 = H X|O
0 = {X1

d= . . .
d= Xq |O}.

Now, consider a vector of partial test statistics T based on functions of sample valid data and

denote its permutation distribution as F (t|(X,O)), t ∈Rk . The set of permutations O∗ of O, that

is the set of possible permuted inclusion indicators according to the random attribution of

data to the q groups, induces a partition into sub-orbits on the whole permutation sample

space (X,O)/(X,O). These sub-orbits are characterized by points which exhibit the same matrix

of permutation actual sample sizes of valid data κ∗ = κ1, . . . ,κk . Then, if the permutation sub-

distributions of the partial test statistics are invariant with respect to the sub-orbits induced by
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O∗, then we may evaluate F [t|(X,O)] by a simple MC procedure, that is, ignoring the missing

values. Indeed, the distributional invariance with respect to permuted inclusion indicators O∗

of sample totals implies that the equality

F [t|(X,O)] = F [t|(X,O∗)]

holds for every t ∈ Rk , for every permutation O∗ of O and for all datasets X. This is true

because in the case of the tests for covariance operators, the test statistic T of the global

test is a combination of the partial test statistics of the pairwise comparisons between the

groups. These, in turn, depend only on the distances between covariance operators and their

permutations. We can suppose that, under the null hypothesis, the permutation distribution

of the d(S∗
i ,S∗

j ) depend essentially on the number κi , i = 1, . . . , q of summands. Thus, just like

in the case of the multivariate analysis of variance studied in Pesarin and Salmaso (2010), the

previous distributional equality becomes equivalent to

F [t|(X,κ)] = F [t|(X,κ∗)], (8.1)

where κ∗ represents the vector of permutation of actual sample sizes of valid data associated

to O∗. Hence, we would like our partial test statistics to be invariant with respect to κ∗ and for

all X. Now, suppose we are in the balanced case, i.e. n1 = ·· · = nq = n̄ and one observation is

missing in one of the groups, say group a, where 1 ≤ a ≤ q . In the wheel-running dataset, for

instance, q = 8, n̄ = 20 and one observation is missing in group 1. All the pairwise comparisons

between groups i , with 1 ≤ i ≤ q , i 6= a and group j , with 1 ≤ j ≤ q , j 6= i , a are not affected by

problem of missing data since κ∗i = κ∗j = n̄. As regarding the others, at each iteration of the

algorithm, we could have κ∗a = n̄ and κ∗j = n̄ −1 or viceversa, depending on the permutation.

However, since distances are symmetric, this two cases are permutationally equivalent under

the null hypothesis and Equation (8.1) is always satisfied. For this reason, we can simply

redefine the pseudo-data matrix given in Equation (5.1) as follows:

[
x1 x1 . . . xq−1

x2 x3 . . . xq

]
=



x1
1 x1

1 . . . xq−1
1

x1
2 x1

2 . . . xq−1
2

...
...

...

NA NA .. . xq−1
n̄

x2
1 x3

1 . . . xq
1

x2
2 x3

2 . . . xq
2

...
...

...

x2
n̄ x3

n̄ . . . xq
n̄
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and apply the synchronised permutations as usual. At each iteration of Algorithm 5.2 the

sample covariance of each pseudo-group is computed only with the available data. The

situation becomes more complicated when the number of missing data becomes greater than

one, since the vector κ of actual sample sizes can assume other values.

8.2 Testing the equality of the covariance operators

The aim of this analysis is to check if the covariance operators of the eight groups of mice are

the same and, if this is not the case, to find out what are the mice lines that have different

covariances. Figures 8.1 and 8.2 illustrate the estimated covariance operators of the aligned

and smoothed data reported in Section 2.3.2. Covariances, in this experiment, represent

the wheel-running behaviour of mice. The graphical representation already shows some

differences between the control and selected lines. In fact, while the selected groups present

an high peak around the diagonal in correspondence of week 20, this is less evident for the

covariances of the control groups 2 and 5 and completely absent in groups 1 and 4. From the

exploratory data analysis performed in Sections 2.3.1 and 2.3.2, it is evident that the mean of

revolutions per week is greater in the selected groups. However, the covariance operators give

a precious complementary information about the rise and falls of voluntary wheel-running

during the life of laboratory mice. We want to test the hypothesis

H0 : {Σ1 = ·· · =Σ8} against H1 : {at least one of equalities is not true}.

To this end, we use the MC Algorithm 5.2 to obtain an estimate of the permutation test pro-

posed in Section 5.2. We have shown in the previous section that synchronised permutations

can be used, even if one of the observations is missing. We use the square root distance

between covariance operators as partial test statistic and we choose the maxT combining

function. We set the number of iterations B to 1000. The global test indicates that there is

strong evidence to reject the null hypothesis. This is due mainly to the first group of mice for

which almost all the partial null hypotheses are rejected and, when using the maxT combining

function, we reject H0 even if only one of the partial tests is rejected. In Figure 8.3 are reported

the p-values of each partial test between two families of mice adjusted with the step-down

method.
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Figure 8.1: Sample covariance operators, control lines. All values are divided by 106.
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Figure 8.2: Sample covariance operators, selected lines. All values are divided by 106.
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Chapter 9

Conclusions

The aim of this work was to study how the two-sample permutation test for the equality of

covariance operators suggested by Pigoli et al. (2014) could be extended to the case of multiple

samples. To this end, we have introduced in Chapter 3 the non-parametric combination

methodology of Pesarin and Salmaso (2010) that enabled us to generate Algorithm 5.2 to

perform the test of interest.

The permutation approach has many advantages. Not only it allows to use any metric, but

also permits to choose among a wide range of combining functions. Besides, it makes no

assumption on the process generating the functional data. Indeed, it is so general that it could

be applied, for instance, also to the comparison of the mean functions, provided that apposite

distance are used.

The empirical power of the test has been assessed through the use of simulation studies,

reported in Chapter 7. Synthetic data sets have been generated from Student-t and Gaussian

processes, with the number of samples ranging from three to ten. The simulations have

been performed with different test statistics, varying both the distances between covariance

operators and the combining functions, and with three distinct types of permutations. These

have shown that, among the distances proposed by Pigoli et al. (2014), those that better capture

the differences between covariance operators are the square root and the Procrustes distances.

Simulation studies also helped verify that the best results are obtained when the permutations

applied in Algorithm 5.2 are synchronised.

Moreover, we have used simulation studies to compare the new method with the existing ones.

We evinced that the permutation approach has the same empirical power as the bootstrap

proposed by Paparoditis and Sapatinas (2014). However, the former allows for more flexibility

in the choice of the test statistics. On the contrary, these two methods perform very differently
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with respect to the generalisation of the Levene’s test (Anderson, 2006). In fact, it captures

very well the differences in scale, but lacks of precision in the other cases. Finally, the test by

Kashlak et al. (2016) is a valid alternative if data are Gaussian, but cannot be used otherwise.

In addition to that, we wanted to find a way to carry out pairwise comparisons between the

data samples, if the global null hypothesis is rejected. The great advantage of using the NPC

methodology is that no computational effort is needed to compute the partial p-values of the

tests. In order to control the family-wise error rate of the whole procedure, in Chapter 6 we

have reviewed different ways of correcting the p-values and we have indicated which are the

most suitable, according to the combining function used in Algorithm 5.2.

Furthermore, in Chapter 8 we have shown the practical utility of the test by applying it to the

evolutionary biology data set of Swallow et al. (1998) presented in the Introduction. The data

set is composed of eight groups, each corresponding to a line of laboratory mice. The permu-

tation test for the equality of the covariance operators of the eight lines of mice evidenced

that only one of the groups presents a covariance that is significantly different from the others.

Instead, there are no substantial dissimilarities in the covariances of the other lines, even if

some of the corresponding families of mice were bred differently.

All the functions needed to run the permutation test and are implemented in R and are now

available on CRAN (Cabassi and Kashlak, 2016). In particular, the function ksample_perm

allows to perform Algorithm 5.2 with different distances and combining functions. The

package also enables users to make inference on covariance operators through the non-

asymptotic methods of Kashlak et al. (2016), if the global null hypothesis is rejected. For

further details, refer to Appendix A.

9.1 Future work

We have mentioned earlier that, when the post-hoc comparisons are of interest, it is better

to use synchronised permutations. Unfortunately, these can only be performed when the

considered data samples have the same cardinality. Therefore, the possibility to apply syn-

chronised permutations with non-balanced groups would make this test more efficient in

many situations. For the moment, we have proven that this method can be applied also if one

observation is missing. We believe that extending this proof to other, more general cases when

the number of missing observations is greater than one could make the test even more useful.

Another possible improvement the implementation in C++ of the functions provided in the

R package. In fact, permutation tests are computationally heavy especially in the case of

functional data analysis, where the number of variables p is usually high. For this reason, the
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tests can require a significant amount of time when applied to large data sets.

Finally, it could also be interesting to develop an extension of this method to the two-way

ANOVA framework, analysing the effect of two different variables and their interaction on

the covariance operators. In that framework, however, the ideas used for similar problems

by Pesarin and Salmaso (2010) could not be applied. In fact they are based on the linearity of

the test statistics employed in the univariate and multivariate cases, that does not hold in this

case. Consequently, new approaches should be explored.





Appendix A

Documentation of the R package

The R package “fdcov” has been developed in collaboration with Adam B. Kashlak. It is

intended to be a tool that makes available to R users all the functions needed in order to

perform the permutation tests proposed in this thesis as well as the non-asymptotic test

introduced by Kashlak et al. (2016). Even if the tests are based on very different principles, we

wanted to reunite in a single place all the code related to the statistical inference on covariance

operators of functional data. We hope that this will make it easier for end-users to choose

which approach to adopt, according to their needs.

The functions related to the permutation tests are ksample.perm and perm.plot. The first

one takes as input the data set and the group labels and performs the permutation test for the

equality of the covariance operators of the groups. Many parameters have default values but

can be also set by the user. These are: the number of iterations of the Monte Carlo Algorithm

5.2, the type of permutations, the distance between covariance operators and the combining

function. Moreover, it is also possible to perform the post-hoc comparisons. In that case, the

user can decide to let the function automatically adjust the p-values to control the family-wise

error rate of the whole procedure or to be given the raw p-values. The other function plots the

partial p-values in a matrix like the one in Figure 8.3.

The data set taken as example was developed by a joint collaboration between Andreas Buja,

Werner Stuetzle and Martin Maechler, and used as illustration by Kashlak et al. (2016). The

description of the data set is available at http:www-stat.stanford.edu/ElemStatLearn. Data

can be downloaded from the R package fds (Shang and Hyndman, 2013).

For all details regarding the package, please refer to the documentation reported hereafter,

also available at https://cran.r-project.org/web/packages/fdcov/.
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2 classifier-com

fdcov-package Analysis of Covariance Operators.

Description

fdcov provides a variety of tools for the analysis of covariance operators.

Details

This package contains a collection of tools for performing statistical inference on functional data
specifically through an analysis of the covariance structure of the data. It includes two methods
for performing a k-sample test for equality of covariance in ksample.perm and ksample.com. For
supervised and unsupervised learning, it contains a method to classify functional data with respect to
each category’s covariance operator in classif.com, and it contains a method to cluster functional
data, cluster.com, again based on the covariance structure of the data.

The current version of this package assumes that all functional data is sampled on the same grid at
the same intervals. Future updates are planned to allow for the below methods to interface with the
fda package and its functional basis representations of the data.

Author(s)

Alessandra Cabassi <alessandra.cabassi@mail.polimi.it>, Adam B Kashlak <ak852@cam.ac.uk>

References

Kashlak, Adam B, John AD Aston, and Richard Nickl (2016). "Inference on covariance opera-
tors via concentration inequalities: k-sample tests, classification, and clustering via Rademacher
complexities", April, 2016 (in review)

Pigoli, Davide, John AD Aston, Ian L Dryden, and Piercesare Secchi. "Distances and inference for
covariance operators." Biometrika (2014): asu008.

classifier-com Functional data classifier via concentration inequalities

Description

classif.com trains a covariance operator based functional data classifier that makes use of con-
centration inequalities. predict.classif.com uses the previously trained classifier to classify new
observations.

Usage

classif.com(datGrp, dat)

## S3 method for class 'classif.com'
predict(object, dat, SOFT = FALSE, LOADING = FALSE,

...)
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Arguments

datGrp A vector of group labels.

dat (n X m) data matrix of n samples of m long vectors.

object A concentration-of-measure classifier object of class inheriting from classif.com.

SOFT Boolean flag, which if TRUE, returns soft classification for each observation.

LOADING Boolean flag, which if TRUE, prints a loading bar.

... additional arguments affecting the predictions produced.

Details

These functions are used to train a functional data classifier and to predict the labels for a new
set of observations. This method classifies based on the distances between each groups’ sample
covariance operator. A simplified version of Talagrand’s concentration inequality is used to achieve
this.

If the flag SOFT is set to TRUE, then soft classification occurs. In this case, given k different
labels, a k-long probability vector is returned for each observation whose entries correspond to the
probabilities that the observed function belongs to each specific label.

Value

classif.com returns a functional data classifier object. predict.classif.com returns a vector of
n labels ( or an array of n probability vectors if SOFT=TRUE )

Author(s)

Adam B Kashlak <ak852@cam.ac.uk>

References

Kashlak, Adam B, John AD Aston, and Richard Nickl (2016). "Inference on covariance opera-
tors via concentration inequalities: k-sample tests, classification, and clustering via Rademacher
complexities", (in review)

Examples

## Not run:
library(fds);
# Setup training data
dat1 = rbind(

t(aa$y[,1:100]), t(ao$y[,1:100]), t(dcl$y[,1:100]),
t(iy$y[,1:100]), t(sh$y[,1:100])

);
# Setup testing data
dat2 = rbind(

t(aa$y[,101:400]), t(ao$y[,101:400]), t(dcl$y[,101:400]),
t(iy$y[,101:400]), t(sh$y[,101:400])

);
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datgrp = gl(5,100);
clCom = classif.com( datgrp, dat1 );
grp = predict( clCom, dat2, LOADING=TRUE );
acc = c(

sum( grp[1:300]==1 ), sum( grp[301:600]==2 ), sum( grp[601:900]==3 ),
sum( grp[901:1200]==4 ), sum( grp[1201:1500]==5 )

)/300;
print(rbind(gl(5,1),signif(acc,3)));

## End(Not run)

cluster.com Functional data clustering via concentration inequalities

Description

cluster.com clusters sets of functional data via their covariance operators making use of an EM
style algorithm with concentration inequalities.

Usage

cluster.com(dat, labl = NULL, grpCnt = 2, iter = 30, SOFT = FALSE,
PRINTLK = TRUE, LOADING = FALSE, IGNORESTOP = FALSE)

Arguments

dat (n X m) data matrix of n samples of m long vectors.

labl An optional vector of n labels to group curves. (see Details)

grpCnt Number of clusters into which to split the data.

iter Number of iterations for EM algorithm.

SOFT Boolean flag for whether or not category probabilities should be returned.

PRINTLK Boolean flag, which if TRUE, prints likelihood values for each iteration.

LOADING Boolean flag, which if TRUE, prints a loading bar.

IGNORESTOP Boolean flag, which if TRUE, will ignore early stopping conditions and cause
the EM algorithm to run for the total amount of desired iterations.

Details

This function clusters individual curves or sets of curves by considering the distance between their
covariance operator and each estimated category covariance operator. The implemented algorithm
reworks the concentration inequality based classification method classif.com into an EM style
algorithm. This method iteratively updates the probability of a given observation belonging to each
of the k categories. These probabilities are in turn used to update the category means. This process
continues until either the total number of iterations is reached or a computed likelihood begins to
decrease signaling the arrival of a local optimum.
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If the argument labl is NULL, then every curve is clustered separately. If labl contains factors used
to group the curves, then each set of curves is classified as one group. For example, if you have
multiple speakers and multiple speech samples from each speaker, you can group the data from
each speaker together in order to cluster based on each speakers’ covariance operator rather than
based on each speech sample individually.

If the flag SOFT is set to TRUE, then soft clustering occurs. In this case, given k different labels, a k-
long probability vector is returned for each observation whose entries correspond to the probability
that the observed function belongs to a specific label.

Value

cluster.com returns a vector a labels with one entry for each row of data corresponding to one of
the k categories ( or an array of probability vectors if SOFT=TRUE ).

Author(s)

Adam B Kashlak <ak852@cam.ac.uk>

References

Kashlak, Adam B, John A D Aston, and Richard Nickl (2016). "Inference on covariance opera-
tors via concentration inequalities: k-sample tests, classification, and clustering via Rademacher
complexities", in review

Examples

## Not run:
# Load phoneme data
library(fds);
# Setup data to be clustered
dat = rbind( t(aa$y[,1:20]),t(iy$y[,1:20]),t(sh$y[,1:20]) );
# Cluster data into three groups
clst = cluster.com(dat,grpCnt=3);
matrix(clst,3,20,byrow=TRUE);

# cluster groups of curves
dat = rbind( t(aa$y[,1:40]),t(iy$y[,1:40]),t(sh$y[,1:40]) );
lab = gl(30,4);
# Cluster data into three groups
clst = cluster.com(dat,labl=lab,grpCnt=3);
matrix(clst,3,10,byrow=TRUE);

## End(Not run)
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ksample.com k-sample test for equality of covariance operators

Description

ksample.com performs a k-sample test for equality of covariance operators using concentration
inequalities.

Usage

ksample.com(dat, grp, p = 1, alpha = 0.05, scl1 = 1, scl2 = 1)

Arguments

dat (n X m) data matrix of n samples of m long vectors.
grp n long vector of group labels.
p p-Schatten norm in [1,Inf], Default is 1. (see Details)
alpha the desired size of the test, Default is 0.05.
scl1 scales the deviation part of the concentration inequality. (see Details)
scl2 scales the Rademacher part of the concentration inequality. (see Details)

Details

This function tests for the equality of k covariance operators given k sets of functional data. It
makes use of Talagrand’s concentration inequality in the Banach space setting. The argument p
specifies the p-Schatten norm used in the test. As detailed in Kashlak et al (2016), the most power
is achieved using the trace class norm (p=1), which is the default value.

This test is inherently conservative as it constructed by concatenating many concentration inequal-
ities together. Consequently, the method may be tuned by adjusting the arguments scl1 and scl2 to
achieve the desired empirical size for the users specific data set. Otherwise, it can be used as a quick
first pass before a more powerful but more computational test, such as specifically ksample.perm,
is run. More information on tuning this method can be found in the reference.

Value

Boolean value for whether or not the test believes the alternative hypothesis is true. ( i.e. Does there
exist at least two categories of the k whose covariance operators are not equal? )

Author(s)

Adam B Kashlak <ak852@cam.ac.uk>

References

Kashlak, Adam B, John AD Aston, and Richard Nickl (2016). "Inference on covariance opera-
tors via concentration inequalities: k-sample tests, classification, and clustering via Rademacher
complexities", (in review)
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Examples

# Load in phoneme data
library(fds)
# Setup data arrays
dat1 = rbind( t(aa$y)[1:20,], t(sh$y)[1:20,] );
dat2 = rbind( t(aa$y)[1:20,], t(ao$y)[1:20,] );
dat3 = rbind( dat1, t(ao$y)[1:20,] );
# Setup group labels
grp1 = gl(2,20);
grp2 = gl(2,20);
grp3 = gl(3,20);
# Compare two disimilar phonemes (should return TRUE)
ksample.com(dat1,grp1);
# Compare two similar phonemes (should return FALSE)
ksample.com(dat2,grp2);
# Compare three phonemes (should return TRUE)
ksample.com(dat3,grp3);

ksample.perm Multiple-sample permutation test for the equality of covariance oper-
ators of functional data

Description

The method performs a test for the equality of the covariance operators of multiple data samples.
It can also perform all of the pairwise comparisons between the groups and compute a p-value for
each of them. This feature is useful when the global null hypothesis is rejected, so one may want to
find out which samples have different covariances.

Usage

ksample.perm(dat, grp, iter = 1000, perm = "sync", dist = "sq",
adj = TRUE, comb = "tipp", part = FALSE, cent = FALSE, load = FALSE)

Arguments

dat n X p data matrix of n samples of p long vectors.

grp n long vector of group labels.

iter Number of permutations. Defaults to 1000.

perm Type of permutation, can be ’sync’ (if all the data samples are of the same size)
or ’pool’. Defaults to ’sync’

dist Distance between covariance operators. Can be ’sq’ (square-root distance), ’tr’
(trace distance),’pr’ (Procrustes distance), ’hs’(Hilbert-Schmidt distance) or ’op’
(operator distance). Defaults to ’sq’.

adj p-value adjustment. Defaults to TRUE.
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comb Can be ’tipp’ (for Tippett), ’maxT’, ’dire’ (direct), ’fish’ (Fisher) or ’lipt’ (Lip-
tak). Defaults to ’tipp’.

part If FALSE, the function computes only the global p-value; otherwise it computes
also all the p-values corresponding to the pairwise comparisons. Defaults to
FALSE.

cent If FALSE, the mean functions of the groups are supposed to be different, there-
fore data are centred before performing the test. Defaults to FALSE.

load Boolean flag, which if TRUE, prints a loading bar.

Value

If part is set to FALSE, the output is the p-value associated to the global test. If part is TRUE, the
function returns also all the p-values of the pairwise comparisons.

Author(s)

Alessandra Cabassi <alessandra.cabassi@mail.polimi.it>

References

Pigoli, Davide, John A. D. Aston, Ian L. Dryden, and Piercesare Secchi (2014). "Distances and
inference for covariance operators." Biometrika: asu008.

Examples

## Not run:
## Phoneme data

library(fdcov)
library(fds)

# Create data set
data(aa); data(ao); data(dcl);data(iy);data(sh)
dat = cbind(aa$y[,1:20],ao$y[,1:20],dcl$y[,1:20],iy$y[,1:20],sh$y[,1:20])
dat = t(dat)
grp = c(rep(1,20),rep(2,20),rep(3,20),rep(4,20),rep(5,20))

# Test the equality of the covariance operators
p = ksample.perm(dat, grp, iter=100, part = TRUE)
p$global # global p-value
p$partial # partial p-values

## End(Not run)

111 Appendix A. Documentation of the R package



perm.plot 9

perm.plot Plot partial p-values

Description

perm.plot plots all of the partial comparison p-values in a matrix.

Usage

perm.plot(p, k, lab = NULL, save = FALSE, name = "pvalues.eps")

Arguments

p Output of function perm.test, if part = TRUE.

k Number of groups, must be greater than 2.

lab Group labels. Defaults to 1, 2, ..., k.

save Boolean variable that indicates if the plot must be saved as an .eps. Defaults to
FALSE.

name If save is TRUE, this is the filename of the plot. Defaults to pvalues.eps.

Value

perm.plot plots the partial p-values in a matrix.

Author(s)

Alessandra Cabassi <alessandra.cabassi@mail.polimi.it>

References

Pigoli, Davide, John A. D. Aston, Ian L. Dryden, and Piercesare Secchi (2014). "Distances and
inference for covariance operators." Biometrika: asu008.

Examples

## Not run:
## Phoneme data

library(fdcov)
library(fds)

# Create data set
data(aa); data(ao); data(dcl);data(iy);data(sh)
dat=cbind(aa$y[,1:20],ao$y[,1:20],dcl$y[,1:20],iy$y[,1:20],sh$y[,1:20])
dat=t(dat)
grp=c(rep(1,20),rep(2,20),rep(3,20),rep(4,20),rep(5,20))

# Test the equality of the covariance operators
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p=ksample.perm(dat,grp,iter=100,only.glob=FALSE)

# Plot partial p-values
perm.plot(p,5, lab=c('aa','ao','dcl','iy','sh'))

## End(Not run)
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Appendix B

Code

We report here the code produced for this work. In Section B.1 are given all the functions

implemented for the permutation tests. Section B.2 contains the functions used in order to

control the family-wise error rate, according to the different methods explained in Chapter 6.

The code presented in the first two sections can be downloaded from the package webpage,

https://cran.r-project.org/web/packages/fdcov/. Lastly, Sections B.3 and B.4 are dedicated

to the empirical bootstrap and the generalisation of the Levene’s test respectively. The non-

asymptotic test based on the concentration measure of Kashlak et al. (2016), instead, has been

run using the function contained in the R package “fdcov”.

B.1 Multiple-sample permutation test

Main function

1 #’ Multiple-sample permutation test for the equality of covariance operators of
functional data

2 #’
3 #’ The method performs a test for the equality of the covariance operators of

multiple data samples.
4 #’ It can also perform all of the pairwise comparisons between the groups and

compute a p-value for each of them.
5 #’ This feature is useful when the global null hypothesis is rejected, so one

may want to find out which samples have different covariances.
6 #’
7 #’ @param dat n X p data matrix of n samples of p long vectors.
8 #’ @param grp n long vector of group labels.
9 #’ @param iter Number of permutations. Defaults to 1000.
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10 #’ @param perm Type of permutation, can be ’sync’ (if all the data samples are
of the same size) or ’pool’. Defaults to ’sync’

11 #’ @param dist Distance between covariance operators. Can be ’sq’ (square-root
distance), ’tr’ (trace distance),’pr’ (Procrustes distance), ’hs’(Hilbert-
Schmidt distance) or ’op’ (operator distance). Defaults to ’sq’.

12 #’ @param adj p-value adjustment. Defaults to TRUE.
13 #’ @param comb Can be ’tipp’ (for Tippett), ’maxT’, ’dire’ (direct), ’fish’ (

Fisher) or ’lipt’ (Liptak). Defaults to ’tipp’.
14 #’ @param part If FALSE, the function computes only the global p-value;

otherwise it computes also all the p-values corresponding to the pairwise
comparisons. Defaults to FALSE.

15 #’ @param cent If FALSE, the mean functions of the groups are supposed to be
different, therefore data are centred before performing the test. Defaults
to FALSE.

16 #’ @param load Boolean flag, which if TRUE, prints a loading bar.
17 #’
18 #’ @return If \code{part} is set to FALSE, the output is the p-value associated

to the global test. If \code{part} is TRUE, the function returns also all
the p-values of the pairwise comparisons.

19 #’
20 #’ @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
21 #’
22 #’ @references Pigoli, Davide, John A. D. Aston, Ian L. Dryden, and Piercesare

Secchi (2014). "Distances and inference for covariance operators."
Biometrika: asu008.

23 #’
24 #’ @examples
25 #’ \dontrun{
26 #’ ## Phoneme data
27 #’
28 #’ library(fdcov)
29 #’ library(fds)
30 #’
31 #’ # Create data set
32 #’ data(aa); data(ao); data(dcl);data(iy);data(sh)
33 #’ dat = cbind(aa$y[,1:20],ao$y[,1:20],dcl$y[,1:20],iy$y[,1:20],sh$y[,1:20])
34 #’ dat = t(dat)
35 #’ grp = c(rep(1,20),rep(2,20),rep(3,20),rep(4,20),rep(5,20))
36 #’
37 #’ # Test the equality of the covariance operators
38 #’ p = ksample.perm(dat, grp, iter=100, part = TRUE)
39 #’ p$global # global p-value
40 #’ p$partial # partial p-values
41 #’ }
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42 #’ \dontshow{
43 #’ library(fdcov)
44 #’ library(fds)
45 #’
46 #’ # Create data set
47 #’ data(aa); data(ao); data(dcl);data(iy);data(sh)
48 #’ dat = cbind(aa$y[,1:20],ao$y[,1:20],dcl$y[,1:20],iy$y[,1:20],sh$y[,1:20])
49 #’ dat = t(dat)
50 #’ grp = c(rep(1,20),rep(2,20),rep(3,20),rep(4,20),rep(5,20))
51 #’
52 #’ # Test the equality of the covariance operators
53 #’ p = ksample.perm(dat,grp,iter=2)
54 #’ }
55 #’ @export
56

57 ksample.perm = function(dat, grp, iter = 1000, perm = ’sync’, dist = ’sq’, adj
= TRUE, comb = ’tipp’, part = FALSE, cent = FALSE, load = FALSE){

58

59 table_groups = table(grp) # groups table
60 C = length(table_groups) # number of groups
61 if(C < 2) stop(’The number of groups must be at least 2.’)
62 if(C == 2) return(list(global = twosample.perm(dat, grp, iter, dist, load)))

63

64 ### Step 1: data centring
65

66 if(cent == FALSE){
67 nonalign_dat = dat
68 for(i in 1:length(grp)){
69 dat[i,] = nonalign_dat[i,]-colMeans(nonalign_dat[grp == grp[i],],na.

rm=TRUE)
70 }
71 }
72

73 ### Steps 2, 3 and 4: apply ’iter’ permutations and compute the test
statistic for each permuted data set

74

75 T = switch (perm,
76 sync = perm.sync(dat, grp, iter, dist, load),
77 pool = perm.pool(dat, grp, iter, dist, load),
78 stop(’The selected permutation strategy is not available’))
79

80

81
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82 ### Global p-values
83

84 if (comb == ’tipp’ | comb == ’fish’ | comb == ’lipt’ | adj == FALSE) P =
perm.t2p(T)

85

86 P.glob = switch (comb,
87 tipp = mean(min(P[1,]) ≥≥≥apply(P[-1,],1,min)),
88 maxT = mean(max(T[1,]) ≤≤≤apply(T[-1,],1,max)),
89 dire = mean(sum(T[1,]) ≤≤≤apply(T[-1,],1,sum)),
90 fish = mean(comb.fish(P[1,]) ≤≤≤apply(P[-1,],1,comb.fish)),
91 lipt = mean(comb.lipt(P[1,]) ≤≤≤apply(P[-1,],1,comb.lipt)),
92 stop(’The selected combining function is not available’))
93

94 ### Partial p-values
95

96 if(part == TRUE){
97 if(adj == TRUE){ # Corrected p-values
98 P.part = switch (comb,
99 tipp = FWE.tipp(P),

100 maxT = FWE.maxT(T),
101 dire = FWE.clos(T, comb, load),
102 fish = FWE.clos(P, comb, load),
103 lipt = FWE.clos(P, comb, load))
104 }else{P.part = matrix(P[1,],nrow = C*(C-1)/2,ncol = 1) # Raw p-values
105 }
106

107 # Group names definition
108 name = character()
109 cont = 1
110 for(i in 1:(C-1)){
111 for(j in (i+1):C){
112 name[cont] = paste(i,j,sep="-")
113 cont = cont+1
114 }
115 }
116

117 P.part = data.frame(dist = T[1,],p_value = P.part, signif = perm.sig(P.
part))

118 rownames(P.part) = name
119

120 return(list(global = P.glob,partial = P.part))
121 }
122 else{return(list(global = P.glob))}
123 }
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1 # Synchronised permutations of a data set
2 #
3 # @param dat n x p data set matrix
4 #
5 # @return This function returns a matrix containing the partial test statistics

of each pairwise comparison for each permutation applied to the data set
6 #
7 # @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
8 #
9

10 perm.sync = function(dat, grp, iter, dist, load = FALSE){
11

12 table_groups = table(grp) # groups table
13 C = length(table_groups) # number of groups
14 K = C*(C-1)/2 # number of partial tests
15 p = dim(dat)[2] # number of samplings per function
16

17 T = array(5,dim = c((iter+1),K)) # test statistics vector initialisation
18

19 ### Step 2: compute test statistic
20

21 cont = 1
22 for(i in 1:(C-1)){
23 for(j in (i+1):C){ # for each pair of groups
24 # compute test statistic for initial data
25 T[1,cont] = distCov(cov(dat[grp==i,],use=’pairwise’),cov(dat[grp==j

,],use=’pairwise’),dist)
26 cont = cont+1
27 }
28 }
29

30 ### Steps 3 and 4: apply iter permutations and compute the test statistic
for each permuted data set

31

32 # Build pseudomatrix
33

34 n = (dim(dat)[1])/C
35 X = array(0,dim = c((2*n),p,K)) # matrix 2*n X p X number of groups
36 cont = 1
37 for(i in 1:(C-1)){ # for each pair of groups
38 for(j in (i+1):C){
39 X[,,cont] = rbind(dat[grp==i,],dat[grp==j,]) # fill in the matrix
40 cont = cont+1
41 }
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42 }
43

44

45 # Apply ’iter’ permutations to the pseudomatrix and compute test statistics
46

47 if(load) pb = txtProgressBar(min = 0, max = iter, style = 3) # create
progress bar

48 for(bb in 2:(iter+1)){
49 X.perm = X[sample(2*n),,] # select permutation
50 cont = 1
51 for(i in 1:(C-1)){ # for each pair of groups
52 for(j in (i+1):C){ # compute test statistic for the permuted dataset
53 T[bb,cont] = distCov(cov(X.perm[c(1:n),,cont],use = ’pairwise’),

cov(X.perm[-c(1:n),,cont],use = ’pairwise’),dist)
54 cont = cont+1
55 }
56 }
57 if(load) setTxtProgressBar(pb, bb-1) # update progress bar
58 } # end iter
59 if(load) close(pb) # close progress bar
60

61 return(T)
62 }
63

64 # Pooled permutations of a data set
65 #
66 # @param dat n x p data set matrix
67 #
68 # @return This function returns a matrix containing the partial test statistics

of each pairwise comparison for each permutation applied to the data set
69 #
70 # @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
71 #
72

73 perm.pool = function(dat, grp, iter, dist, loading){
74

75 table_groups = table(grp) # groups table
76 C = length(table_groups) # number of groups
77 K = C*(C-1)/2 # number of partial tests
78 p = dim(dat)[2] # number of samplings per function
79 N = dim(dat)[1] # total number of observations
80

81 T = array(5,dim=c((iter+1),K)) # test statistics vector initialisation
82
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83 ### Step 2: compute test statistic
84

85 cont=1
86 for(i in 1:(C-1)){
87 for(j in (i+1):C){ # for each pair of groups
88 # compute test statistic for initial data
89 T[1,cont] = distCov(cov(dat[grp==i,],use=’pairwise’),cov(dat[grp==j

,],use=’pairwise’),dist)
90 cont = cont+1
91 }
92 }
93

94 ### Steps 3 and 4: apply iter permutations and compute the test statistic
for each permuted data set

95

96 if(loading) pb = txtProgressBar(min = 0, max = iter, style = 3) # create
progress bar

97 for(bb in 2:(iter+1)){
98

99 dat.perm = dat[sample(N),] # apply permutation
100 cont = 1
101

102 for(i in 1:(C-1)){
103 for(j in (i+1):C){ # compute test statistic for the permuted dataset
104

105 T[bb,cont] = distCov(cov(dat.perm[grp==i,],use=’pairwise’),cov(
dat.perm[grp==j,],use=’pairwise’),dist)

106 cont = cont+1
107

108 }
109 }
110 if(loading) setTxtProgressBar(pb, bb-1) # update progress bar
111 } # end iter
112 if(loading) close(pb) # close progress bar
113

114 return(T)
115 }
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p-value computation

1 # Permutation p-value
2 #
3 # Given a vector of test statistics, where the first one is considered to be

the one corresponding to the observed data set, computes the p-value of the
test

4 #
5 # @param t Vector of test statistics
6 # @param extr To set which values are more extreme than the one observed. Can

be \code{greater} or \code{lesser}.
7 #
8 # @return This function returns the p-value of the test, that is the

percentages of test statistics in the vector that are more extreme than the
one observed

9 #
10 # @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
11 #
12 perm.pval = function(t, extr = ’greater’){
13 if(extr == ’greater’) p = mean(t ≥≥≥t[1],na.rm=TRUE)
14 else p = mean(t ≤≤≤t[1],na.rm=TRUE)
15 return(p)
16 }

1 # Liptak combining function
2 #
3 # @param v Vector of p-values
4 #
5 # @return This function returns a global p-value computed according to the

Fisher combining function
6 #
7 # @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
8 #
9 # @references Pesarin, Fortunato, and Luigi Salmaso (2010). Permutation tests

for complex data: theory, applications and software. John Wiley and Sons.
10 #
11 # @export
12 #
13 comb.lipt = function(v, iter){
14

15 q = rep(0,length(v))
16 for (i in 1:length(v)){
17 p = (v[i] + 1/(2*iter))/(1 + 1/iter)
18 q[i] = qnorm(p)
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19 }
20

21 return(-sum(q))
22 }

1 # Fisher combining function
2 #
3 # @param v Vector of p-values
4 #
5 # @return This function returns a global p-value computed according to the

Fisher combining function
6 #
7 # @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
8 #
9 # @references Pesarin, Fortunato, and Luigi Salmaso (2010). Permutation tests

for complex data: theory, applications and software. John Wiley and Sons.
10 #
11

12 comb.fish = function(v){
13

14 return(-2*sum(log(v)))
15

16 }

1 # Convert test statistics into p-values
2 #
3 # @param T Matrix of test statistics
4 #
5 # @return Matrix containing p-values
6 #
7 # @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
8 #
9

10 perm.t2p = function(T){
11

12 oth = 2
13

14 B = dim(T)[1]-1
15 p = dim(T)[2]
16

17 rango = function(x){
18 r=1-rank(x[-1],ties.method="min")/B+1/B
19 return(c(mean(x[-1]≥≥≥x[1]),r))
20 }
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21

22 P=apply(T,oth,rango)
23 return(P)
24 }

Distances between covariance operators

1 # General distances function
2 #
3 # @param mat1 First covariance matrix
4 # @param mat2 Second covariance matrix
5 # @param dist Distance between covariance operators. Can be ’sq’ (square-root),

’tr’ (trace),’pr’ (Procrustes), ’hs’(Hilbert-Schmidt) or ’op’ (operator).
6 #
7 # @return Distance.
8 #
9 distCov = function( mat1, mat2, type )

10 {
11 switch( type,
12 sq = distSqrt(mat1,mat2),
13 tr = distTrac(mat1,mat2),
14 pr = distProc(mat1,mat2),
15 hs = distHsno(mat1,mat2),
16 op = distOper(mat1,mat2)
17 );
18 }

1 # Trace Class distance
2 #
3 # @param mat1 First covariance matrix
4 # @param mat2 Second covariance matrix
5 #
6 # @export
7 #
8 distTrac = function( mat1, mat2 )
9 {

10 return( pschnorm( mat1-mat2,1 ) );
11 }

1 # Hilbert-Schmidt distance
2 #
3 # @param mat1 First covariance matrix
4 # @param mat2 Second covariance matrix
5 #
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6 # @export
7 #
8 distHsno = function( mat1, mat2 )
9 {

10 return( pschnorm( mat1-mat2, 2 ) );
11 }

1 # Operator norm distance
2 #
3 # @param mat1 First covariance matrix
4 # @param mat2 Second covariance matrix
5 #
6 # @export
7 #
8 distOper = function( mat1, mat2 )
9 {

10 return( pschnorm( mat1-mat2, -1 ) );
11 }

1 # Square Root distance
2 #
3 # @param mat1 First covariance matrix
4 # @param mat2 Second covariance matrix
5 #
6 # @export
7 #
8 distSqrt = function( mat1, mat2 )
9 {

10 smat1 = sqrtMat(mat1);
11 smat2 = sqrtMat(mat2);
12 return( pschnorm( smat1-smat2, 2 ) );
13 }

1 # Procrustes distance
2 #
3 # @param mat1 First covariance matrix
4 # @param mat2 Second covariance matrix
5 #
6 # @export
7 #
8 distProc = function( mat1, mat2 )
9 {

10 smat1 = sqrtMat(mat1);
11 smat2 = sqrtMat(mat2);
12 matC = t(smat2)%*%smat1;
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13 svdC = svd(matC);
14 matR = svdC$u%*%t(svdC$v);
15 return( pschnorm( smat1-smat2%*%matR, 2 ) );
16 }

1 # Hilbert-Schmidt (Frobenius) Norm
2 #
3 # @param sig covariance matrix (i.e. symmetric positive definite)
4 #
5 # @param HS Norm of sig
6 #
7 # @export
8 #
9 hsnorm = function( sig )

10 {
11 return(sqrt(sum(abs(sig)∧∧∧2)));
12 }

1 # p-Schatten Norm
2 #
3 # @param sig covariance matrix (i.e. symmetric positive definite)
4 # @param p [1,Inf] or 1/2
5 #
6 # @return p-Schatten Norm of sig
7 #
8 # @export
9 #

10 pschnorm = function( sig, p )
11 {
12 if( p==2 )
13 return( hsnorm(sig) );
14 if(p==1/2)
15 return( sqrt(pschnorm(sig,1)) );
16 eigval = eigen( sig, symmetric=TRUE, only.values=TRUE );
17 if( p==-1||is.infinite(p) )
18 return( max( abs(eigval$values) ) );
19 return( sum(abs(eigval$values)∧∧∧p)∧∧∧(1/p) );
20 }

1 # Computes Square Root of matrix A
2 #
3 # @param A matrix
4 #
5 # @return Square root of A
6 #
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7 # @export
8 #
9 sqrtMat = function(A)

10 {
11 eig = eigen( A );
12 val = eig$values;
13 #val = pmax( eig$values, rep(0,nrow(A)) );
14 d = sqrt( as.complex(val) );
15 D = diag( d );
16 V = eig$vectors;
17 return( V%*%D%*%t(V) );
18 }

Plot

1 #’ Plot partial p-values
2 #’
3 #’ \code{perm.plot} plots all of the partial comparison p-values in a matrix.
4 #’
5 #’ @param p Output of function perm.test, if part = TRUE.
6 #’ @param k Number of groups, must be greater than 2.
7 #’ @param lab Group labels. Defaults to 1, 2, ..., k.
8 #’ @param save Boolean variable that indicates if the plot must be saved as an .

eps. Defaults to FALSE.
9 #’ @param name If \code{save} is TRUE, this is the filename of the plot.

Defaults to \code{pvalues.eps}.
10 #’
11 #’ @return \code{perm.plot} plots the partial p-values in a matrix.
12 #’
13 #’ @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
14 #’
15 #’ @references Pigoli, Davide, John A. D. Aston, Ian L. Dryden, and Piercesare

Secchi (2014). "Distances and inference for covariance operators."
Biometrika: asu008.

16 #’
17 #’ @examples
18 #’ \dontrun{
19 #’ ## Phoneme data
20 #’
21 #’ library(fdcov)
22 #’ library(fds)
23 #’
24 #’ # Create data set
25 #’ data(aa); data(ao); data(dcl);data(iy);data(sh)
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26 #’ dat=cbind(aa$y[,1:20],ao$y[,1:20],dcl$y[,1:20],iy$y[,1:20],sh$y[,1:20])
27 #’ dat=t(dat)
28 #’ grp=c(rep(1,20),rep(2,20),rep(3,20),rep(4,20),rep(5,20))
29 #’
30 #’ # Test the equality of the covariance operators
31 #’ p=ksample.perm(dat,grp,iter=100,only.glob=FALSE)
32 #’
33 #’ # Plot partial p-values
34 #’ perm.plot(p,5, lab=c(’aa’,’ao’,’dcl’,’iy’,’sh’))
35 #’ }
36 #’
37 #’ @export
38

39 perm.plot = function(p, q, lab = NULL, save = FALSE, name = ’pvalues.eps’){
40

41 if(q<3) stop(’The number of groups comparisons must be at least 3.’)
42

43 # put the p-values in a q X q matrix
44 pmatrix = matrix(1,q,q)
45 cont = 1
46 for(i in 1:(q-1)){
47 for(j in (i+1):q){
48 pmatrix[i,j] = p$partial$p_value[cont]
49 cont = cont+1
50 }
51 }
52

53 if(!is.null(lab)){ # if there are no group labels in input
54 colnames(pmatrix) = rownames(pmatrix) = lab # assign labels "1", ..., "q

"
55 }
56

57 # select palette
58 col = c(0,0,0,0,’#b30000’,’#e34a33’,’#fc8d59’,’#fdcc8a’,’#fef0d9’)
59

60 # plot partial p-values in a matrix
61 corrplot::corrplot(t(pmatrix),method = "color",type = "lower",tl.col=’black’

,addCoef.col = "black", is.corr = FALSE, cl.lim = c(0,1), col = col, tl.
pos = ’ld’)

62

63 # save plot in an external .eps file
64 if(save){
65 setEPS()
66 postscript(name)
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67 corrplot::corrplot(t(pmatrix),method = "color",type = "lower",tl.col = ’
black’,addCoef.col = "black",

68 is.corr = FALSE, cl.lim = c(0,1), col=col, tl.pos = ’ld’)
69 dev.off()
70 }
71

72 }

B.2 Multiplicity control

Step-down maxT procedure

1 # Step-down Tippett procedure for strong FWE control
2 #
3 # @param T (iter+1) X k matrix of permutation test statistics
4 #
5 # @return The global p-value and a vector of adjusted p-values
6 #
7 # @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
8

9 FWE.maxT = function(T){
10

11 ord = order(T[1,],decreasing=TRUE) # put the vector of observed test
staiistics in decreasing order and store the order

12 T.ord = T[,ord] # put the columns of matrix T in the new order ’ord’
13

14 k = dim(T)[2] # number of tests
15 p.ris = array(5,dim=c(k,1)) # create vector of adjusted p-values
16

17 # Compute smallest p-value
18 Tcomb = apply(T.ord,1,max) # combine vectors of p-values with max comb. fct.
19 p.ris[1] = p.glob=mean(Tcomb[-1] ≥≥≥Tcomb[1]) # the first adjusted p-value

corresponds with the global p-value
20

21 # Compute the other p-values
22 if(k>2){ # apply general step-down algorithm for p-value adjustement
23 for(j in 2:(k-1)){
24 Tcomb = apply(T.ord[,j:k],1,max)
25 p.ris[j] = max(mean(Tcomb[-1] ≥≥≥Tcomb[1]),p.ris[(j-1)])
26 }
27 }
28

29
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30 # Compute greatest p-value
31 Tcomb = T.ord[,k]
32 p.ris[k] = max(mean(Tcomb[-1] ≥≥≥Tcomb[1]),p.ris[k-1]) # last adjusted p-value
33

34 # Put the ajusted p-values in the correct order
35 p.ris[ord] = p.ris
36

37 rownames(p.ris) = colnames(T)
38 return(p.ris)
39 }

Step-down Tippett procedure

1 # Step-down Tippett procedure for strong FWE control
2 #
3 # @param P (iter+1) X k matrix of permutation p-values
4 #
5 # @return A vector of adjusted p-values
6 #
7 # @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
8

9 FWE.tipp = function(P){
10

11 ord = order(P[1,],decreasing=FALSE) # sort the observed p-values in
increasing order and store the order

12 P.ord = P[,ord] # put the columns of matrix P in the new order orde
13

14 k = dim(P)[2] # number of tests
15 p.ris = array(5,dim=c(k,1)) # create vector of adjusted p-values
16

17 Pcomb = apply(P.ord,1,min) # combine vectors of p-values with Tippett’s
comb. fct.

18 p.ris[1] = p.glob = mean(Pcomb[-1]≤≤≤Pcomb[1]) # first adjusted p-value
corresponds with the global p-value

19

20 if(k>2){ # apply tippett step-down algorithm for p-value adjustement
21 for(j in 2:(k-1)){
22 T = apply(P.ord[,j:k],1,min)
23 p.ris[j] = max(mean(Pcomb[-1]≤≤≤Pcomb[1]),p.ris[(j-1)])
24 }
25 }
26

27 p.ris[k] = max(P.ord[1,k],p.ris[k-1]) # last adjusted p-value
28 p.ris[ord] = p.ris # put the ajusted p-values in the right order
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29 rownames(p.ris) = colnames(P)
30

31 return(p.ris)
32 }

Closed testing procedure

1 # Closed testing procedure for strong FWE control
2 #
3 # @param T (iter+1) X k matrix of permutation test statistics
4 # @param comb Combining function
5 #
6 # @return A vector of adjusted p-values
7 #
8 # @author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}
9 #

10 # @export
11

12 FWE.clos = function(T, comb = ’dire’, loading = FALSE){
13

14 #library(matlab)
15

16 iter = dim(T)[1] # number of permutations
17 k = dim(T)[2] # number of partial tests
18 rows = ncycles = 2∧∧∧k # total number of tests
19

20 x = matrix(0,rows,k)
21

22 if(loading) pb = txtProgressBar(min = 0, max = k, style = 3) # create
progress bar

23 for (i in 1:k){
24 nreps = rows/ncycles
25 ncycles = ncycles/2
26 zo = matrix(c(0,1),nreps,2,byrow=TRUE)
27 zoc = rbind(as.matrix(zo[,1]),as.matrix(zo[,2]))
28 settings = matlab::repmat(zoc,c(1,ncycles))
29 x[,k-i+1] = settings
30 if(loading) setTxtProgressBar(pb, k) # update progress bar
31 }
32 if(loading) close(pb) # close progress bar
33 x = x[-1,]
34

35 print(T[1:10,])
36
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37 T2 = matrix(0,iter,(rows-1))
38 for(j in 1:(rows-1)){
39 # for (i in 1:(iter+1)){
40 T2[,j] = switch(comb,
41 dire = apply(as.matrix(T[,x[j,]==1]),1,sum),
42 fish = apply(as.matrix(T[,x[j,]==1]),1,comb.fish),
43 lipt = apply(as.matrix(T[,x[j,]==1]),1,comb.lipt),
44 warning(’The selected combining function is not

available’))
45 # }
46 }
47

48 print(T2[1:5,1:5])
49

50 rawP = apply(T2,2,perm.pval)
51 adjP = rep(5,k)
52 for(l in 1:k) adjP[l] = max(rawP[x[,l]==1])
53

54 return(adjP)
55 }

B.3 Empirical bootstrap

1 # Empirical bootstrap multiple sample test for the equality of covariance
operators

2 #
3 #@param x dataset
4 #@param y group labels
5 #@param B number of permutations
6 #@param permutation type of permutation, ’synchro’, ’paired’ or ’pooled’
7 #
8 #@return list(global=P.glob) global p-value
9 #@return if(onlyglob==FALSE) list(global=P.glob, partial=P.part) global and

partial p-values
10 #
11 #@author Alessandra Cabassi i \email{alessandra.cabassi@mail.polimi.it}
12

13 bootstrap = function(x, y, B=1000, mean=FALSE, distance=’sq’, adjust=TRUE,
combfun=’tippett’, onlyglob=TRUE){

14

15 table_groups=table(y) # groups table
16 C=length(table_groups) # number of groups
17 K=C*(C-1)/2 # number of partial tests
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18 p=dim(x)[2] # number of samplings per function
19 N=length(y) # total number of observations
20

21 # Group names definition
22 name=character()
23 cont=1
24 for(i in 1:(C-1)){
25 for(j in (i+1):C){
26 name[cont]=paste(i,j,sep="-")
27 cont=cont+1
28 }
29 }
30

31 # calculate the sample mean functions in each population and the residual
functions

32 group_mean = matrix(NA,N,p)
33 residual = matrix(NA,N,p)
34 pseudo_obs=matrix(NA,N,p)
35

36 for(i in 1:N){
37 group_mean[i,]=colMeans(x[y==y[i],],na.rm=TRUE)
38 residual[i,] =x[i,]-group_mean[i,]
39 }
40

41 T=array(0,dim=c((B+1),K)) # test statistics vector initialization
42

43 cont=1
44 for(i in 1:(C-1)){
45 for(j in (i+1):C){ # for each pair of groups
46 # compute test statistic for initial data
47 T[1,cont] = distCov(cov(dat[grp==i,],use=’pairwise’),cov(dat[grp==j

,],use=’pairwise’),dist)
48 cont=cont+1
49 }
50 }
51

52 for(bb in 2:(B+1)){# B iterations
53 pseudo_obs = group_mean + residual[sample(1:N, N, replace=TRUE),]
54 cont=1
55 for(i in 1:(C-1)){ # for each pair of groups
56 for(j in (i+1):C){ # apply permutation and compute test statistic
57 T[bb,cont] = distCov(cov(pseudo_obs[grp==i,],use=’pairwise’),cov(

pseudo_obs[grp==j,],use=’pairwise’),dist)
58 cont=cont+1
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59 }
60 }
61 }
62 return(compute_pvalue(P, T, C, combfun, adjust,onlyglob))
63 }#end MC algorithm

B.4 Generalisation of Levene’s test

1 # Generalisation of Levene’s test: ANOVA analysis on the Euclidean distances
from individual points to the group centroid

2 #
3 #@param x dataset
4 #@param y group labels
5 #@param B number of permutations
6 #
7 #@return list(global=P.glob, partial=P.part) # global and partial p-values
8 #
9 #@author Alessandra Cabassi \email{alessandra.cabassi@mail.polimi.it}

10 #
11

12 anderson_test=function(x,y,B=1000){
13

14 table_groups=table(y) # groups table
15 C=length(table_groups) # number of groups
16 K=C*(C-1)/2 # number of partial tests
17 p=dim(x)[2] # number of samplings per function
18 N=length(y) # total number of observations
19

20 z=rep(0,N)
21 for(i in 1:N){
22 group=y[i]
23 z[i]=Fdist(x[i,],colMeans(x[y==group,],na.rm=TRUE))
24 }
25

26 fit = aov(z ∼∼∼y)
27 T0 = summary(fit)[[1]][1,4]
28

29 T_stat = numeric(B)
30

31 for(perm in 1:B){
32 perm = sample(1:N) # choose permutation
33 z_perm = z[perm] # apply permutation
34 fit_perm = aov(z_perm ∼∼∼y) # use anova test on permuted data
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35 T_stat[perm] = summary(fit_perm)[[1]][1,4] # save test statistic
36 } ## end MC algorithm
37

38 p_val = sum(T_stat≥≥≥T0)/B # p-value
39 }
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