
 
 

 

POLITECNICO DI MILANO 

School of Industrial and Information Engineering 

Master Degree in Materials Engineering and Nanotechnology 
 

 

 

 

 
 

 

 

QUANTUM CHEMICAL SIMULATIONS AND 

SPECTROSCOPIC CHARACTERIZATION OF  

POLY(P-PHENYLENE TEREPHTHALAMIDE) FIBERS 

 
 

 

 

 

Supervisor: Dr. Alberto MILANI 

     
 

 

                                                               Graduation thesis of: Lorenzo AVANZINI 

                                                                                    Registration number: 824147 

                                                    

 

                                      

                                        

Academic year 2015/2016 



1 

 

   Abstract 

 
In the field of characterization techniques of materials, and in particular of IR and Raman 

spectroscopy, this work sheds light on the usefulness and reliability achieved by state-of-

the-art computational methods for the investigation, at the molecular scale, of the 

spectroscopic and structural properties of the semi-crystalline polymers. The research and 

development of new polymeric materials, as shown by the most recent papers appeared in 

the literature, are still very active. Acting on the physical and mechanical properties of these 

materials, involves a deep knowledge of the structure and arrangement of the molecular 

chains and in particular of how they influence the physical-chemistry of the material. For 

this reason, the need for innovative characterization techniques, which lead to a rational 

design of the molecular structure of polymeric materials, is taking ground. By means of the 

current CRYSTAL14 and Gaussian09 implementations, we report a detailed study on the 

spectroscopic properties of the poly(p-phenylene terephthalamide) (PPTA). The potential of 

this code applied to polymer materials, are still almost completely unexplored. This work 

shows how these computational models are able to accurately reproduce the vibrational 

spectra (IR and Raman) of PPTA, providing an effective method to interpret in details the 

information obtained by experimental characterization techniques. In addition to the 

assignment of the main group frequencies of vibrational spectra IR and Raman of the 3D 

and 1D (infinite isolated chain) crystals by means of CRYSTAL14, we also simulated the 

effect induced by the mechanical stretching of PPTA fibers on the Raman spectrum, 

observing a downward frequency shift of the bands related to backbone vibrations. The 

results obtained turned out to be in direct agreement with data found in the literature. In 

particular, we also verified how structural changes, due to fibers stretching, play a 

fundamental role in modifying the vibrational spectra. By means of CRYSTAL14 we 

determined the elastic modulus of the PPTA crystalline phase, and we simulated the IR 

spectrum with polarized incident light, obtaining once again results in good agreement with 

experimental measurements. Furthermore, by taking advantage of Gaussian09 we also 

carried out calculations of the IR and Raman spectra of different kinds of PPTA oligomers. 

Making a comparison between these latter oligomers spectra with CRYSTAL14 and 

experimental results, we were able to deeply understand the role of intra and intermolecular 

interactions in modifying the spectroscopic properties of the polymer.  From the 

methodological point of view, this work shows the different results obtained by means of 

different exchange-correlation functionals and basis sets, sheding light on their strengths and 

weaknesses in simulating real systems and obtaining on this way useful information on the 

computational set up of the DFT calculation of polymeric systems. All the experimental 

spectra reported in this work has been carried out in the FunMat laboratory of the chemistry 

and materials department of the Politecnico di Milano, while the acquisition of the Raman 

spectrum performed during the PPTA fibers tensile test took place in collaboration with Prof. 

Claudia Marano of Politecnico di Milano. The proposed approach, emphasizes the 

importance of computational methods not only for a reliable interpretation of vibrational 

spectra, but also to understand those molecular phenomena responsible of many physical 

and chemical properties of polymeric materials. Furthermore, its potentialities are not only 
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limited to the basic study of the material, but have also a significant impact in applied 

research also in the industrial and technological fields. 
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Abstract 

 
Nell’ambito delle tecniche di caratterizzazione dei materiali e in particolare della 

spettroscopia Raman e infrarossa, questo lavoro mette in luce l’utilità e l’affidabilità 

raggiunta dai metodi computazionali allo stato dell’arte per lo studio, a livello molecolare, 

delle proprietà strutturali e spettroscopiche dei polimeri semicristallini. La ricerca e lo 

sviluppo di nuovi materiali a base polimerica, come dimostrato dalla letteratura più recente, 

è tuttora molto attiva. Intervenire sulle proprietà fisiche e meccaniche di questi materiali 

implica una profonda conoscenza della struttura e dell’organizzazione delle catene 

polimeriche, in particolare di come esse influenzino le proprietà fisico-chimiche del 

materiale. Per questo motivo, nasce la necessità di tecniche di caratterizzazione sempre più 

evolute, che permettano un design razionale della struttura molecolare dei materiali 

polimerici. Attraverso l’attuale implementazione di CRYSTAL14 e Gaussian09 proponiamo 

uno studio dettagliato sulle proprietà spettroscopiche del poly(p-phenylene terephthalamide) 

(PPTA). Le potenzialità di questo codice di calcolo applicato a materiali polimerici, sono 

quasi del tutto ancora inesplorate. Questo lavoro mostra come tali metodi computazionali 

siano in grado di riprodurre fedelmente gli spettri vibrazionali Raman e IR del PPTA, 

fornendo un valido metodo per consolidare e meglio interpretare le informazioni fornite dalle 

tecniche di caratterizzazione sperimentali. Oltre all’aver identificato le principali frequenze 

di gruppo degli spettri vibrazionali (Raman e IR) del cristallo 3D e 1D (singola catena 

infinita) attraverso il codice CRYSTAL14, abbiamo anche simulato l’effetto che la trazione 

meccanica delle fibre di PPTA ha sullo spettro Raman, osservando uno spostamento delle 

principali bande associate alle vibrazioni dello scheletro delle catene polimeriche verso 

frequenze più basse, in ottimo accordo con i dati presenti in letteratura. In particolare, 

abbiamo anche verificato come i cambiamenti strutturali, dovuti allo stretching meccanico, 

giochino un ruolo fondamentale nel modificare lo spettro vibrazionale. Per mezzo di 

CRYSTAL14 abbiamo potuto determinare il modulo elastico della fase cristallina del PPTA 

e simulare lo spettro IR in luce polarizzata, ottenendo sempre risultati in ottimo accordo con 

le misure sperimentali. Inoltre, attraverso il codice Gaussian09 abbiamo calcolato gli spettri 

vibrazionali, Raman e IR, di differenti oligomeri di PPTA. Paragonando quest’ultimi spettri 

con quelli ottenuti dalla simulazione del cristallo 3D e con gli spettri sperimentali, siamo 

stati in grado di approfondire il ruolo delle interazioni intra ed intermolecolari (per esempio 

il legame ad idrogeno) nel modificare le proprietà spettroscopiche del polimero oggetto di 

studio. Dal punto di vista metodologico, questo lavoro mostra i differenti risultati ottenuti 

attraverso i differenti funzionali di scambio-correlazione e basis set utilizzati, mettendo in 

luce i loro punti di forza e debolezze nel simulare un sistema reale, ottenendo in questo modo 

utili informazioni per il setup computazionale di calcoli DFT su sistemi polimerici. Tutti gli 

spettri sperimentali proposti in questo lavoro, sia IR che Raman, sono stati registrati da noi 

nel laboratorio FunMat del dipartimento di chimica e materiali del Politecnico di Milano, 

mentre l’acquisizione dello spettro Raman effettuato durante la prova a trazione delle fibre 

di PPTA, si è svolto in collaborazione con la Prof. Claudia Marano del Politecnico di Milano. 

L’approccio da noi presentato, enfatizza l’importanza di metodi computazionali non solo per 

un’affidabile interpretazione degli spettri vibrazionali, ma anche per la comprensione di quei 

fenomeni moleculari responsabili di molte proprietà fisico-chimiche dei materiali polimerici. 
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Inoltre, le sue potenzialità non si limitano solo allo studio di base del materiale ma hanno 

importanti ricadute anche nella ricerca applicata in campo tecnologico ed industriale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

Summary 
 

Chapter 1 ............................................................................................................................... 7 

Introduction ........................................................................................................................... 7 

1.1 The aims of this work ............................................................................................. 7 

1.2 Kevlar ..................................................................................................................... 9 

Chapter 2 ............................................................................................................................. 14 

Quantum-chemical methods for molecular crystals calculations ........................................ 14 

2.1 Crystal lattice properties ....................................................................................... 14 

2.1.1 Direct and reciprocal lattice ................................................................................ 14 

2.1.2 Bloch’s Theorem ................................................................................................ 16 

2.1.2 Non translational symmetries effects ................................................................. 18 

2.1.3 Born Von Karman boundary conditions ............................................................. 20 

2.2 Solving Schrodinger equation for molecular crystals........................................... 20 

2.2.1 The Born-Oppenheimer approximation ............................................................. 21 

2.2.2 The Hartree – Fock approximation ..................................................................... 22 

2.2.3 The Roothaan - Hall equations ........................................................................... 25 

2.2.4 Crystalline orbitals .............................................................................................. 26 

2.2.5 Hartree-Fock equations applied to a periodic system ......................................... 27 

2.2.6 The SCF procedure ............................................................................................. 28 

2.2.7 Long-range interactions calculations .................................................................. 29 

2.3 Fundamental principle of DFT ............................................................................. 30 

2.3.1 The Kohn-Sham method ..................................................................................... 32 

2.3.2 The Exchange-Correlation functional Exc ........................................................... 34 

2.3.3 Dispersion Interactions ....................................................................................... 35 

Chapter 3 ............................................................................................................................. 37 

Introduction to vibrational dynamics and vibrational spectroscopy .................................... 37 

3.1 The intramolecular potential and normal modes .................................................. 37 

3.2 Infra-red intensities ............................................................................................... 41 

3.3 Classical theory of Raman scattering ................................................................... 42 

3.4 Instrumentation for vibrational spectroscopy ....................................................... 45 

3.4.1 IR spectrometer................................................................................................... 46 

3.4.2 Raman spectrometer ........................................................................................... 48 

3.4.3 FT Raman spectrometer ..................................................................................... 51 



6 

 

3.4.3 Portable Raman spectrometer ............................................................................. 53 

Chapter 4 ............................................................................................................................. 55 

Characterization of PPTA vibrational spectra ..................................................................... 55 

4.1 Experimental spectra ............................................................................................ 55 

4.2 Computational details ........................................................................................... 58 

4.3 Crystal full geometry optimization ....................................................................... 61 

4.4 Vibrational spectra prediction of PPTA oligomers .............................................. 63 

4.4.1 PPTA monomer .................................................................................................. 64 

4.4.2 PPTA two monomers ......................................................................................... 74 

4.4.3 PPTA isolated chain described as a 1-D crystal ................................................. 82 

4.4.3.1 1D chain full geometrical optimization ....................................................... 82 

4.4.3.2 Isolated chain IR spectra.............................................................................. 84 

4.4.3.3 Isolated chain Raman spectra ...................................................................... 88 

4.4.4 PPTA dimer ........................................................................................................ 92 

4.4.5 Simulation of Kevlar 3D crystal ......................................................................... 96 

4.4.5.1 Intermolecular crystal packing effects on vibrational spectra ..................... 96 

4.4.5.2 Comparison between different computational methods adopted for 3D 

crystal simulations ................................................................................................... 98 

4.4.5.3 Kevlar crystal characterization .................................................................. 102 

4.5 Polarized IR spectroscopy of Kevlar .................................................................. 111 

4.5.1 Computational method for the prediction of polarized IR spectra ................... 112 

4.5.2 Comparison of experimental and DFT computed polarized IR spectra ........... 114 

Chapter 5 ........................................................................................................................... 117 

Quantum chemical simulation of Raman spectra of Kevlar under mechanical stretching 117 

5.1 DFT simulations of stress-dependent Raman spectra ......................................... 118 

5.3 Experimental Raman spectra ............................................................................... 122 

5.3.1 Experimental details ..................................................................................... 122 

5.3.2 Results .............................................................................................................. 124 

5.4 DFT calculation of elastic modulus ..................................................................... 128 

Chapter 6 ........................................................................................................................... 130 

Conclusions ....................................................................................................................... 130 



7 

 

Chapter 1 

Introduction 
 

1.1 The aims of this work 
 

From the middle of the last century, the study of polymers became a cornerstone of material 

science and engineering. Just 50 years ago polymeric materials, unavoidable ingredient of 

our everyday life, did not exist. Now researches and new applications for these materials are 

gaining ground increasingly and there is no reason to believe that the “polymeric revolution” 

will stop any time soon. Polymeric materials will be the main actors of the new millennium 

due to their advantages: in lightweight structural parts for vehicles and aircraft or power 

plants based on wind, in insulating materials for drastic saving in energy, new packaging 

solutions, in molecular electronics and photonics, and in a host of biomedical applications. 

Despite their great technological development in recent years, many questions about their 

chemical/physical properties still need to be answered due to their complex and variable 

nature. In order to get a more general overview of the macroscopic properties of a particular 

material and to predict how this material will be able to withstand a stimulus from the 

external environment, a more detailed description of the microscopic phenomena is indeed 

required. Almost all the properties of polymers, such as the elastic modulus, transition 

temperatures, density and conductivity could be explained on the basis of intra-molecular 

features (chemical compositions, molecular chain structure and conformation) and inter-

molecular interactions (hydrogen bond, Van der Waals forces, morphology). Polymers, 

unlike metals, are not always characterized by a regular and periodic arrangement of atoms, 

but they can be both amorphous or semi-crystalline, and in the last case they may be 

subjected even to a large degree of polymorphism. For these reasons it is not easy to 

understand the role played by the different microscopic phenomena (or even nanoscopic) at 

macroscopic scale and how they can affect the properties of a particular polymer. The 

advantage of such a high dependence on the microscopic structure makes these materials 

versatile and adaptable to a host of needs, but it’s important to understand how the processing 

techniques, the environment, etc. may affect the material characteristics.  

After this brief introduction about the fundamental role played by the microscopic structures 

in modifying the macroscopic properties of polymers (i.e. the so-called “structure property” 

correlations), we can now figure out the great relevance of understanding the atomic 

arrangement, the molecular chains properties and their supramolecular interactions. To this 

aim, suitable characterization techniques are required for an investigation of the material at 

the nanoscale. 

IR and Raman vibrational spectroscopies have been always used as a very efficient 

techniques of characterization in the molecular and polymeric materials field, and their 

employment is widely used also in the industrial environment. By means of the vibrational 

analysis it is possible to obtain qualitative and quantitative information regarding phenomena 

which take place at the molecular scale. 
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This thesis aims at employing computational techniques at the state-of-the-art and IR, Raman 

vibrational spectroscopies in order to study and characterize semi-crystalline polymers, in 

particular poly(p-phenylene terephthalamide).  

Many experimental studies to determine the PPTA structure and to characterize its marker 

bands have been already carried out [1-4,18] but in several papers there are considerable 

uncertainty, many ambiguities and discrepancies among the spectral bands assignments 

proposed by different authors. Moreover, Kevlar (the PPTA trade name by DuPont) displays 

some interesting properties, such as the modulation of the Raman response as a function of 

mechanical strain, which still needs a detailed interpretation at the nanoscale. For this reason, 

due to both its technological importance and the peculiarities of its behavior from a material 

scientist prospective, we decide to investigate in details its molecular properties. 

In recent years many molecular dynamic studies and quantum-chemical simulations have 

been done to characterize the spectroscopic properties of the most common polymers [5-6]. 

However, the lack of instruments and codes for solid state polymer calculation prevented a 

systematic verification of the structural and vibrational properties of these systems, taking 

into account the most relevant solid state effect.  

Thanks to the current implementation of CRYSTAL14 [7], taking into account the spatial 

symmetry group of the system, we can perform accurate quantum-chemical calculations for 

the prediction of IR and Raman spectra of an infinite polymer and its 3D crystal. This 

possibility makes us able to inspect the previous spectroscopic assignments of Kevlar’s 

marker bands and to show how a computational approach is extremely useful in order to 

clarify unambiguously the structural and spectroscopic properties of semi-crystalline 

polymers. 

The CRYSTAL code was originally developed for the investigation of inorganic crystalline 

systems, and only recently it has been applied to polymers and molecular materials: 

therefore, also from the computational point of view there are still several open issues, 

needing an investigation. As an example in this context the correct description of Van der 

Waals interactions is particularly important [8-12]. 

Indeed, in many chemical systems and especially in macromolecular one, dispersion 

interactions play a fundamental role, since they are responsible of the molecular chains 

packing and they govern all the possible relative motions between different chains, and 

hence a detailed description of this type of interactions is essential for a careful study of the 

crystal structure of semi-crystalline polymers. However, standard DFT functionals don’t 

describe correctly dispersion interactions, and corrections are required as done in CRYSTAL 

according to the Grimme method. 

Due to the fact that quantum chemical methods able to describe accurately a molecular 

system packed in its solid state phases have been available only recently, also the detailed 

interpretation of vibrational spectra is a quite recent field of research. Indeed, only few years 

ago the interpretation of the vibrational spectra was only derived on the basis of empirical 

correlation rules or according to eigenvectors obtained through semi-empirical quantum-

chemical calculations performed on small model systems. Now by means of CRYSTAL14 

we are able to describe the Raman spectra and relative normal modes of vibration, by taking 

into account the whole set of intra and inter-molecular interactions taking place in the real 

crystal structures. 
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This work does not only support the spectra assignment, but by comparing the properties of 

the crystal or single-infinite-chain, it sheds light on the role of molecular and supramolecular 

effects ruling the spectroscopic response of Kevlar.  

Since Kevlar was available in form of fiber and since PPTA molecular chains in fibers are 

characterized by a very well ordered arrangement (rod-like molecules), we have also 

recorded experimental IR spectra by means of polarized laser and performed calculations for 

this specific case in order to study orientation phenomena from a molecular perspective. 

Furthermore, it has been possible to simulate the effect of mechanical distortion on a single 

infinite polymer chain, to analyze the modulation of the vibrational spectra in terms of 

marker bands shifting due to mechanical stretching. This application has been developed by 

comparing the computed spectra with experimental spectra obtained by a portable FT Raman 

spectroscope during a Twaron’s fibers stretching (Twaron is the trade name of PPTA fibers 

produced by Teijin). This last research helps us to understand more deeply the complex 

molecular phenomena that occur during the stretching of polymers such as PPTA, and to 

appreciate the main microscopic mechanisms which govern the macroscopic behavior of a 

highly oriented polymer under tensile stress. This is a fundamental step to better rationalize 

the structure-properties relationships of this material, and to pave the way for the evolution 

and future employment of Kevlar.    

All experimental vibrational spectra presented in this work, both IR and Raman, have been 

properly recorded in our laboratory, and then compared with those found in literature, 

obtaining always good agreements.  

 

 

 

1.2 Kevlar 
 

Kevlar is the registered trademark (by DuPont) for the poly-para-phenylene terephthalamide 

(PPTA). These synthetic aromatic polyamide fibers are strong enough to stop bullets and 

knives, often trivially described as being “five times stronger than steel on an equal basis of 

weigh”. They have many other uses too, from boats and bowstrings to reinforcing tires and 

brake pads. Let’s take a closer look at why and how they are made. 

 

Kevlar history 

 

In order to achieve maximum strength and high modulus, polymer molecules should have 

an extended-chain conformation and high crystallinity. This could be accomplished only by 

mechanical drawing the fibers after melt spinning. This process requires chain 

disentanglement and orientation in the solid phase, unlikely achievable with nylon and 

polyester. In 1965, DuPont discovered a new method of producing an almost perfect polymer 

chain extension. The polymer poly-p-benzamide was found to form liquid crystalline 

solutions due to its peculiar molecular backbone and the strong inter-chains interactions [16]. 

This development founded the basis for the current formulation of the high-strength Kevlar 

aramid fiber. The key structural requirement for the backbone is the para orientation on the 

benzene ring, which allows the formation of rod-like molecular structures. This effect is due 
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to the formation of molecular hydrogen bonds between the carbonyl and NH groups, with 

additional strength obtained from the aromatic stacking interactions between adjacent 

strands. All these interactions have a greater influence on Kevlar than the van der Waals 

interactions and chain length that typically influence the property of other common synthetic 

polymers. 

 

 

 

 
 

Figure 1.1 – Rod-Like fiber structure by the radial stacking of Hydrogen-Bonded Sheets. 

 

The formation of Rod-Like molecular structure opened new dimensions in fibers 

manufacturing and processing. Under shear forces, as the solutions pass through a 

spinner, the randomly oriented domains become fully oriented in the direction of the 

shear and emerge with an almost perfect molecular orientation. The crystallinity varies 

from 68% to 80% for Kevlar 29, and from 76% to 90% for Kevlar49.This process 

allows us to orient polymer molecules and to achieve very strong fibers. 
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Figure 1.2 – Differences in behavior during spinning between flexible and rigid polymers. 

 

 

Kevlar production process 

 

Kevlar is synthetized through a condensation reaction by means of a solution composed of 

1,4 phenilene-diamine and teraphthaloyl chloride, obtaining hydrochloric acid as a 

byproduct. The solvents used for the polymerization is the N-methyl-pyrrolidone and 

calcium chloride. Thanks to this process we obtain a liquid crystal polymer solution which 

displays a unique behavior under shear stress. The chemical obtained is turned into fibers by 

a process called wet spinning, by forcing a hot, concentrated, and very viscous solution 

through a spinneret to make long and thin fibers that are coiled onto drums. The fibers are 

then cut and woven in a tough mat. Later these fibers are woven into sheets. 

 

 
 

Figure 1.3 – The reaction of 1,4 phenilene-diamine with teraphthaloyl chloride yielding Kevlar. 

 

 

Kevlar production is expensive because of the difficulties arising by the use of concentrated 

sulfuric acid, needed to keep the water-insoluble polymer in solution during its synthesis and 

spinning. 
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Several grades of Kevlar are available: 

- Kevlar K-29: industrial applications, such as cables, brake linings, and body/vehicle 

armor. 

- Kevlar K-49: high modulus used in cable and rope products. 

- Kevlar K-100: colored version of Kevlar. 

- Kevlar K-119: higher tenacity for ballistic applications. 

- Kevlar AP: 15% higher tensile strength than K-29. 

- Kevlar XP: lighter weight resin and KM2 plus fiber combination. 

- Kevlar KM2: enhanced ballistic resistance for armor applications. 

 

Properties of Kevlar  

 

The table below lists tensile and thermal properties of Kevlar 29 and Kevlar 49 yarns [17]. 

 

 

Table 1.1 – Typical properties of Kevlar 29 and 49 yarns. 
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Kevlar is chemically stable under a wide variety of exposure conditions; however, certain 

strong aqueous acids, bases and sodium hypochlorite can cause degradation, particularly 

over long periods of time and at elevated temperatures. 

Kevlar has very impressive thermal properties, it can withstand up to 450°C and as low as -

196°C. In particular, this aramid fiber doesn’t melt, it decomposes at relatively high 

temperature, and the decomposition temperatures vary with the rate of temperature rise and 

length of exposure. 

 

 
Figure 1.4 – Typical thermogravimetric analysis of Kevlar 49 in air at the temperature rise of 

10C°/min. 

 

As usual for polymeric materials, increasing temperatures reduce modulus, tensile strength 

and break elongation of Kevlar yarns, as reported in the figure below. 

 

 
Figure 1.5 – Comparative effect of elevated temperatures. 
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Chapter 2 

Quantum-chemical methods for molecular crystals 

calculations 
 

This chapter will introduce the basic principles employed by Crystal,describing in particular 

Hartree-Fock and DFT theories in order to solve complex quantum-chemical calculations of 

crystalline systems. To this aim we will start from the definition of what a crystal is, and 

which are its quantum mechanical properties. 

 

2.1 Crystal lattice properties 
 

Crystals are particularly important. Such systems are characterized by a long range 3D order 

of atomic positions, described in terms of: translational symmetry. In sequent paragraphs we 

describe some properties of ideal crystals, free of both lattice defects end thermal motions. 

First let us consider the so-called simple crystals in which atomic positions coincide with the 

points of a Bravais lattice. 

 

 

2.1.1 Direct and reciprocal lattice 
 

An ideal crystal is the superposition of two elements: the lattice and the basis. 

We can define the lattice as a discrete infinite set of points given by the following formula:  

 

Tn = n1a1+ n2a2 + n3a3      (2.1) 

 

Where n1, n2, n3 are integer numbers and a1, a2, a3 are called basis vectors and define the 

primitive cell as the smallest repetitive unit of the lattice. The basis are the group of atoms 

(or molecules) that are located in correspondence of each lattice point and which define the 

physical and chemical nature of a crystalline solid. The basis vectors are univocally 

identified (primitive unit cell) providing the volume of the cell is minimal and the three 

vector connect the origin of the cell to the nearest neighbors. The primitive cell, which 

contains only one lattice point, is the volume of the space that, when translated through all 

the vectors in a lattice, fills the space without either overlapping itself or leaving voids. In 

addition to translational symmetry each ideal crystal can be characterized by further point 

group symmetry.  

The point group is the set of symmetry operations which leave a lattice point fixed. A point 

group contains rotations, center of inversion and rotoreflections. Groups theory shows that 

in three dimensions, only fourteen different Bravais lattices can be defined in terms of 

translation symmetry and they are grouped into seven crystal systems. 

In addition, taking into account, point group symmetry, other 32 point groups can be 



15 

 

identified. 

The overall set of symmetry translations and of point group symmetry operations which 

leave the crystal invariant can be further classified among 230 space groups. 

The minimum set of atoms that generates the crystal cell by the application of space group 

operations is indicated as the asymmetric unit. The position r of atoms belong to the 

asymmetric unit within the cell is usually given in fractional coordinates ( x1, x2, x3 ) by the 

following expression:  

 

r = x1 a1 + x2 a2+ x3 a3    for  0 ≤  xi  ≤ 1       (2.2) 
 

Since a crystal is characterized by translational invariance, all the primitive cells generated 

by translation of a reference one. More in general, due to this properties, it’s clear that the 

whole set of physical properties of the crystal must be invariant under translation, i.e. they 

are periodic. 

Given a generic physical property   ƒ(r), we can write:  

            

ƒ(r + Tn) = ƒ(r)        (2.3) 
 

Any periodic function can be described as a Fourier series:       

  

                    
 

Where Vc is the primitive cell volume: 

 

Vc = |a1 · a2 × a3|     (2.5) 
 

For reason that will be clear later, we now introduce the reciprocal lattice, defined by the 

set of points K:  

 

K = K1b1 + K2b2 + K3b3           (2.6) 

 

b1, b2, b3    being the primitive vectors of the reciprocal lattice, which are expressed by: 

 

b1 =   2 π 
𝒂𝟏 × 𝒂𝟐 

|𝒂𝟏 ∙𝒂𝟐 ×𝒂𝟑|
        b2 =   2 π 

𝒂𝟑 × 𝒂𝟏 

|𝒂𝟏 ∙𝒂𝟐 ×𝒂𝟑|
        b3 =   2 π 

𝒂𝟏 × 𝒂𝟐 

|𝒂𝟏 ∙𝒂𝟐 ×𝒂𝟑|
    (2.7)     

 
We can notice that, from the dimensional point of view, the vectors described the reciprocal 

lattice are wave vectors.A clear relation exist among direct and reciprocal lattice: each direct 

lattice is related to one and only one reciprocal lattice and viceversa: 

  

(2.4) 
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    (2.8) 

 

In the following paragraphs we will see how the introduction of reciprocal lattice allows us 

to describe the quantum theory of crystals. 

 

2.1.2 Bloch’s Theorem 
 
In quantum mechanics, all physical systems can be described by using a function dependent 

by spatial coordinates, spin and time, called wavefunction ѱ (r, s, t). Thanks to the 

wavefunction we can know all the information describing a physical system and its 

evolutions. We can obtain ѱ (r, s, t) by solving the time dependent Schroedinger equation: 

 

(2.9) 

 

By considering the separable variables wavefunction ѱ (r, s, t) = T (t) ѱ (r, s), we can derive 

the time independent Schroedinger equation, which describes the stationary states of the 

system to be studied. 

 

    (2.10) 

 

The equation above describes an eigenvalue/eigenfunction problem, where E represents the 

energy of each stationary state. In the previous paragraph we explain that all properties of a 

crystal system must be translational invariant, for this reason also the Hamiltonian operator 

must respect this symmetry. Therefore, if we consider a lattice translation Tn the solution to 

the equation:  

 

 (2.11) 

 

must coincide to the solution of the equation (2.10). Moreover, since Tn describes the ideally 

set of lattice point, an infinite number of eq. (2.11) should be slved. By means of group 

theory we can prove that for an ideal infinite crystal that is a system charcacterized by 

translation symmetry, an eigenfunction of (2.11) can be written in this form: 

 

 (2.12) 

 

Where k is the wavevector and Ф (r; k) are the so-called Bloch’s functions. 

For each different value of the k parameter, we obtain a different eigenvalue problem: 
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  (2.13) 

 

In other words, the wavevector k allows to transform the general problem of solving the 

Schroedinger equations for infinite points into one Schroedinger equation as a function of 

the k variable. 

It can be demonstrated by Bloch’s Theorem that the eigenfunctions of the stationary state 

equation for a periodical potential are the product of a plane wave exp( ik × r ), multiplied 

by a function uk (r) having the same periodicity of the crystal lattice. 

 

  (2.14) 

 

An important property of the Bloch’s theorem is that Ф (r; k) and Ф (r; k + K) are 

eigenfunctions corresponding the same value. As a matter of fact from the application of 

(2.3) is obtained: 

 

 (2.15) 

 

Being ei×K×Tn = 1 

 

 (2.16) 

 

In which Ф (r; k) and Ф (r; k + K) are eigenfunctions of the same eigenvalue and E (k + K) 

= E (k). 

In the reciprocal lattice, energy bands (that is the set of E(k) eigenvalue) have therefore a 

translational symmetry with period equal to K. And we can therefore restricte to study only 

the so-called first Brillouine zone, that is the zone ranging from – K and +K values. 

Another interesting result is related to the calculation of integrals, extended to the whole 

space, of the following form: 

 

  (2.17) 

 

where ƒ(r) is a periodic function with the same translational symmetry of the direct lattice 

and k, k' points in the first Brillouin zone defined as the geometric locus of the nearest point 

to a certain lattice point with respect to all other lattice points. From what has been said 

before, the functions u (r, i), u (r; k0) (parts of the periodic Bloch functions) and ƒ(r) can be 

expressed as a linear combination of plane waves: 

 

 (2.18) 
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 (2.19) 

By (2.4) we obtain: 

 

(2.20) 

And substituting them in the integral, we write: 

 

 (2.23) 

 

Given the orthogonality of the plane waves, the terms of the summation are zero unless 

k + K + K'' = k' + K', and this condition is satisfied only in the case in which k = k’. 

What we have found above demonstrates the benefits of working with Bloch waves in the 

case of a periodic potential: as the Hamiltonian operator is periodic, the Hamiltonian matrix 

can be transformed into a block matrix where each block refers to a particular point k of the 

reciprocal lattice. Each block is independent from the others and then it can be treated 

separately. Finally, we note that, given the translational symmetry, the Bloch functions 

cannot vanish when we are tending to infinity; in order to solve it they are normalized on a 

single cell instead of on the entire space. 

 

2.1.2 Non translational symmetries effects 
 

So far we have concentrated just on translational symmetry, but crystals possess other 

symmetry operations which will affect their properties. As we have seen before, a stationary 

state in a crystal is described in terms of  Bloch theorem. Considering Pr the operator 

corresponding to a symmetry operation R belonging to point group of the crystal: 

 

 (2.21) 
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If we apply to both sides of a scalar product the same orthogonal transformation, the value 

of the product remains unchanged. 

 

 (2.22) 

 

If the function uk (r) is a periodic function also the function uk (R-1r) is periodic, because 

symmetry operations of a crystal point group move one point to another equivalent one. 

We can rename u k(R-1r) with u'(r), substituting what obtained in (2.22) 

 

(2.23) 

 

Being ɸk' the product of a function having the same periodicity of the direct lattice, ɸk' is a 

Bloch’s wave. In particular the wave ɸk' has E(Rk) as eigenvalue and Rk as wavevector. In 

order to respect the translational invariance of the Hamiltonian operator Ĥ, we write: 

 

 
 

    (2.24) 

 

 

The energy bands in the reciprocal lattice have the same non-translational symmetry of 

crystal in its direct lattice. 

Degenerate eigenfunctions with respect to translational symmetry can be classified with 

respect to non-translational symmetry. 
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2.1.3 Born Von Karman boundary conditions 

 
Since real crystal are finite, they are not perfectly periodic.By neglecting surface effects and 

introducing appropriate boundary conditions compatible with translational invariance (PBC-

periodic boundary conditions), Bloch’s theorem holds and provides a suitable approximation 

for the real case. Considering a crystal composed by N1×N2×N3 cells, according to the 

translational symmetry, we can impose that the last cell in each directions coincides with the 

first cell of the same direction. If we consider Nj cells along the j direction, in which  j = 1, 

2, 3, for every integer value of m and j we get : 

 

(2.25) 

 

And  

 
 

From this expression we can deduce that, in order to agree with translational symmetry and 

Bloch’s theorem, only same k values within the first Brillouin zone are possible. In 

particular: 

 

 
 

n1, n2, n3 are integer numbers. The advantage of using periodic boundary conditions is the 

discretization of k-space, on this way we are creating the basis for the physical properties 

calculations of an ideal infinite crystal. 

 

 

2.2 Solving Schrodinger equation for molecular crystals 
 

Since in the previous paragraphs we said that all the properties of a physical system can be 

described by the wave function, now our goal is to solve the Schrodinger equation for an 

ideal crystal and derive the corresponding wave function. As a first step, we will first 

describe a molecular system which is not periodic. We will then introduce straightforwardly 

Bloch theorem as described in previous section. We can consider the time independent 

Schrodinger equation: 

 

(2.26) 
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Our goal is to solve this equation, where Ĥ is the Hamiltonian operator for a molecular 

system composed by M nuclei and N electrons, respectively described by RA and ri vectors. 

The distance between the electron i and the nucleus A is riA = | riA | = | ri - RA |, the distance 

between the electron i and j is rij  = | ri – rj |, and the distance between the nucleus A and the 

nucleus B is RAB = | RA – RB |. Therefore, adopting atomic units (a.u , it’s a system of natural 

units which is especially convenient for atomic physics calculations) we can express the 

Hamiltonian operator:  

 

 

(2.27) 

 

MA is the ratio between nucleus A and electron masses and ZA is the nucleus A atomic number. 

The first term is the electronic kinetic energy operator, the second the nuclei kinetic energy 

operator; the third term represents the attraction between electrons and nuclei whereas the 

last two terms are the electron-electron and nucleus-nucleus repulsion contributions. 

 

2.2.1 The Born-Oppenheimer approximation 

  
In order to solve the previous equation we have to introduce some approximations. The    first 

fundamental approximation, which is the basis of all molecular physics and quantum-

chemistry is the Born-Oppenheimer approximation. The nuclei are thousands of times 

heavier than the electrons therefore they move much more slowly. This implies that we can 

consider nuclei as frozen to study first the motion of electrons in the field of fixed nuclei. 

This assumption allows us to neglect the nuclei kinetic energy terms and consider core-core 

repulsion as a constant. What remains is the electronic Hamiltonian that describes the motion 

of N electrons in the field of M nuclei: 

 

(2.28) 

 

 

Now we have to solve: 

 

 
 

The solution ψelec = ψelec({ri};{RA}) is a parametric function of RA and depends on electrons 

coordinates, while electronic energy εelec. In order to get the total potential energy of the 



22 

 

nuclear system, we have to introduce the nucleus-nucleus repulsion term in addition to the 

eigenvalues of the electronic problem: 

 

                         (2.29) 

 

We can now write the Hamiltonian operator of nuclei, by taking into account the kinetic 

energy og nuclei and their potential energy, the total energy εtot = εtot({RA}). 

 

(2.30) 

 

 

The solution of this nuclear Schroedinger equation ψnucl = ψnucl({RA}) describes the nuclear 

motions, that is vibrations, rotations and molecular translations. In the Born-Oppenheimer 

approximation the total wave function will be therefore: 

 

  (2.31) 

 

 

 

2.2.2 The Hartree – Fock approximation 
 

Except for the hydrogen molecule, the above problem cannot be solved analytically and 

approximated techniques have been required to solve the electronic problem.  

One of the first approximations ( Hartree approximation) describes the electrons as a system 

of non-interacting particles. The interaction between different electrons is taken into account 

through a mean potential due to all the electrons themselves. In this situation the Hamiltonian 

takes the following form: 

 

 

 

h(i) is the operator describing the kinetic and potential energy of the electron I and 

the total wave function can be write as the product of the all single-electron wavefunctions 

ψi( ri )(orbitals): 

 

(2.32) 
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The total Schrodinger equation is: 

 

 

                                      

 

 

The Hartree product is a completely uncorrelated wavefunction, and the probability of 

finding the electron 1 in a precise position is independent from electron 2 position, without 

taking into account neither the coulombic electron-electron repulsion nor the antisymmetry 

principle of fermions. In order to take into account the anti-symmetry principle, a further 

step is writing the total wave function in the form of a Slater determinant: 

 

 
 

 

In order to find a solution for the electronic problem, by assuming such a wavefunction, the 

variational method is exploited: this principle states that the best wavefunction is the one 

minimizing the energy: 

 

 (2.34) 

 

Minimizing E0 with respect to the chosen orbitals which entered the slater determinant, we 

can derive, the Hartree-Fock equation, giving as a solution the one electron energies ε and 

the related orbitals φ. 

 

(2.35) 

 

 f (i) is the Fock’s operator: 

 

 

 

Where vHF
(i) is the mean potential felt by the electron i, due to the presence of all the other 

electrons. The goal of the Hartree-Fock approximation is to replace the many-electrons 

problem by a single-electron one, in which the electron-electron repulsion is taken into 

(2.33) 
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account using an average contribution. Since the vHF
(i) depends on the eigenfunctions φ i. 

e. our unknows, in order to find the solutions of the Schroedinger equation we have to use 

an iterative procedure, called SCF (Self-Consistent-Field). First of all we have to choose 

suitable guess orbitals with which we can calculate the initial mean field, This filed is use to 

solve for the first time the (2.35), from which new orbitals are obtained as solutions. These 

orbitals are used to build a new mean field to solve eqn. (2.35) again. This procedure goes 

on iteratively in this way as long as the self-consistency is reached. These orbitals therefore 

constitute the solution of the problem. The N orbitals having the lowest energies are the 

occupied orbitals. The Slater’s determinant built with these orbitals is the ground state wave 

function and it is the best variational approximation of the single determinant form. The 

remaining orbitals are called virtual or not occupied. Using the Lagrange’s multiplier 

method, we can minimize the Slater’s single-determinant energy in order to obtain the 

standard Hartree-Fock equation, whose solution gives the minimum energy wave functions. 

Equation (2.35) is an integral-differential equation: 

 

 

(2.36) 

 

 

in which: 

(2.37) 

 

is the nuclei potential and kinetic energy of the single electron (indicated electron 1). 

εa is the energy of the ψa  orbital. The second term is the Coulomb’s term, which represents 

the classical coulombic repulsion between electrons, the third one is the exchange term, due 

to the employment of an antisymmetric wave function in the determinant form. For both 

these terms we can introduce a suitable operator: 

(2.38) 

 

the Coulomb operator, and the exchange operator: 

 

(2.39) 

 

Now we can rewrite the equation (2.36) as: 
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(2.40) 

 

We can observe that the Fock operator previously introduced in eqn. (2.35) can be written 

as: 

 

 

Therefore Fock’s operator is the sum of the core Hamiltonian operator h(1) and the 

Hartree-Fock potential vHF(1). 

 

 

 

2.2.3 The Roothaan - Hall equations 
 

The integro-differential Hartree-Fock equations cannot be implemented with efficient 

numerical algorithms. However, thanks to Roothaan it’s possible to write the Hartree-Fock 

equation in a matrix form suitable for numerical calculations. First of all, it can be 

demonstrated that the equation (2.35) can be rewritten by taking into account the spatial part 

only. As result the closed-shell Hartree-Fock equations are obtained: 

 

 
 

As already mentioned, reliable procedures to obtain numerical solutions have not been yet 

found to solve this integro-differential equation. The idea by Roothaan to bypass this 

limitation, was to introduce a basis set of known functions to describe the molecular orbitals. 

In this way the HF equations becomes a set of algebraic equations resolvable by matrix 

algebra. In particular, Roothaan represented molecular orbitals (MO) as a linear combination 

of atomic orbitals (LCAO). Atomic orbitals themselves are approximated by a suitable 

gaussians contractions. Introducing a basis set of K known functions (ɸμ (r) |μ = 1, 2, . . . , 

K) we can expand MO by a linear expansion: 

 

 
   

If ɸμ was complete, we would have an exact expansion. However, due to computational 

reasons, we have to use a finite basis set, whose dimension determines the accuracy of the 

calculations. According to LCAO method, the unknowns are not φi anymore, but the 
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coefficients Cμi of the linear combination. Indeed, by substituting φi the Hartree-Fock 

equation becomes:  

 

FC = SCε      (2.41)              

 
The so-called Roothaan-Hall equations.  
F is the Fock’s matrix, S is the overlap matrix and C is the square expansion coefficients 

matrix. The Fock’s matrix is composed by two terms, the first one is about the two-electrons 

interactions, the latter regards the core Hamiltonian. The first term of Fock’s matrix depends 

on the density matrix and consequently on expansion coefficients Cµi. 

 

F = F(C). 

 

F(C)C = SCε 
 

Hence Roothan’s equations are not linear and an iterative SCF procedure is required. We 

have to keep in mind that an overlap matrix is present due to the non-ortonormality of the 

basis set. 

 

2.2.4 Crystalline orbitals 
 

Till now we only consider the single-molecule case, this section describes how the 

previously theory can be applied to a molecular crystal. First of all we have to introduce the 

concept of CO-LCAO [24, 25] (crystalline orbitals as a linear combination of atomic 

orbitals). For the CO-LCAO case, wave functions are presented as a Bloch’s functions linear 

combination: 

 

      (2.42) 

 

At the same time, ɸμ are expressed as atomic orbitals linear combination. In order to do it, 

we chose a set nf of localized functions (the AOs basis set) referred to the cell 0: this set will 

be replied in all crystal cells in order to create to periodic component µ ( r;k) of nf Bloch’s 

functions. In particular, we can define φµ (r-rμ) the μ-esimo AO referred to the 0 cell having 

origin in rμ, and φµ (r – rμ – Tn) = φµ
Tn (r-rμ) the corresponding AO referred to the Tn cell. 

 

 (2.43) 

 

Substituting the eqn. (2.43) in to the eqn. (2.14), we obtain: 
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  (2.44) 

 

The AO orbitals can be built by means of Gaussians contractions. 

In this latter case, φμ are linear combinations of gaussians in which both the exponent of 

each equations and the combination coefficients are preconditioned and no more modified 

by the SCF procedure. Among all basis sets,it is named “ minimal” , the basis set which uses 

the smallest possible number of functions describing the atomic orbitals, in other words the 

basis set containing just a single occupied atomic orbital in the ground state. A further 

evolution is represented by split-valence basis sets, in which we make a distinction between 

valence orbitals and core ones, while the latter are presented as a single contraction, the 

valence orbitals are described by more contractions in order to gain more accuracy. This 

kind of basis sets are indicated with n-ijG or n-ijkG : n stands for the number of primitives 

of the single contraction used for the internal shell, while i, k, k are the number of contraction 

primitives of the external shell. Some examples are 3-21G or 6-31G. In order to increase the 

accuracy in the description of chemical bonds, it’s possible to add “polarization functions”, 

which mean adding d type functions on the heavy atoms and p type functions on hydrogen 

atoms. So we obtain 6-31G*, 6-31G** etc…in which * represents the use of d functions and 

** the use of both d and p functions. Usually, the polarization functions are added as non-

contracted gaussians, thus they inevitably conduce to a significant increase of the 

computational cost. 

 

 

2.2.5 Hartree-Fock equations applied to a periodic system 

 
Using Bloch functions as a basis set, the Fock matrix can be rewrite as [24, 25, 26]:   

 

  (2.45) 

 

In which Fμv(Tn) is the matrix element of the Fock operator between the μ-esimo AO located 

in the 0 cell and the v-esimo AO located in the Tn cell. 

As we have already seen for the operator H(k), also F(k) assumes the form of Bloch’s matrix, 

each bloc, having a dimension equal to the dimension of the chosen AOs set for the single 

cell, is referred to a different k value and can be diagonalized in an independent way. 

The equation (2.41) becomes:  

 

     (2.46) 
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From a theoretical point of view, this equation can be solved for an infinite number of k 

values belonging to the first Brillouin zone. On the other hand, especially for the case of 

semiconductors, the eigenvalues and eigenvectors change vary slowly to the change in k 

value. C(k) and E(k) values for the first Brillouin zone are evaluated by means of the eqn. 

(2.46) solutions only for e narrow range of k. The k points density must be high enough to 

guarantee the electronic energy convergence.  

By means of the crystal translational symmetry it is possible to further reduce the number of 

Fock matrix integral orbitals to be calculated. 

We can observe that: 

 

 
 

in which m = Tn – Tn’ is a direct lattice vector. 

A generic element of the Fock matrix represented in the reciprocal space 

 

 
 

can be reduced to  

 

 
 

This last equation is the Fourier transform from the direct space the the reciprocal one of 

Fock matrix. This means that the Fock matrix is periodic in the reciprocal space with period 

K. More in general, if we introduce SACO (Symmetry-Adapted Crystalline Orbitals) it is 

possible to use narrow range of k, by which, applying all point group symmetry operations 

of the crystal, it is possible recreate the entire reciprocal lattice [27, 28]. 

 

2.2.6 The SCF procedure 
 

1. Bloch’s functions making as a linear combination of local basis sets. 

 

2. Evaluation of the S matrix with respect to the proper basis set. 

 

3. Evaluation of the Fock’s matrix elements in the direct space. 

 

4. S and F matrix representation in the basis functions set for every k point of the 

considered set, and then solving the equation: 

 

F(k)C(k) = S(k)C(k)E(k) 
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5. Fermi energy EF calculation that is the maximum energy value for an occupied state 

in the first Brillouin zone. 

 

6. Density matrix P construction and its transformation in the direct lattice according 

to Fourier transform: 

 

(2.47) 

 

Confining the integration to energy states lower than EF, by means of an Heaviside 

function we can include the total amount the empty states eigenfunctions. 

 

7. Convergence check: we have to control if the new density matrix is the same of that 

associated to the previous step according to precise convergence criterion. If the 

procedure is not conerged we have to go back to the point 3 with the new density 

matrix and repeat all the steps. 

 

8. If the calculations converge, we can use the results (C, P, F) in order to compute all 

properties of interest, such as the total energy per cell, which includes electrons and 

nuclei interactions in the 0 cell with electrons and nuclei of the all crystal. 

 

As we have seen this procedure needs the sums of the all direct lattice infinite vectors, in 

order to effort this issue we have to introduce a truncation criteria. Particularly insidious is 

the Coulombic interactions case, which for their nature are slowly convergent, this issue is 

solved by the Ewald’s method [25]. 

 

2.2.7 Long-range interactions calculations 
 

In order to take into account long-range interactions, many codes used to perform quantum-

chemical calculations employ the Ewald’s method. The Ewald summation replaces the 

summation of interacting energies in real space with an equivalent summation in Fourier 

space. In this method, the long-range interaction is divided into two parts: a short-range 

contribution, and a long-range contribution which does not have singularity. The short-range 

contribution is calculated in real space, whereas the long-range contribution is calculated 

using a Fourier transform. The advantage of this method is the rapid convergence of the 

energy compared with that of a direct summation. 

This method rewrites the interaction potential as the sum of two terms, 

 

 

where φsr represents the short-range term whose sum quickly converges in real space, and 

φlr represents the long-range term whose sum quickly converges in Fourier reciprocal lattice. 
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The method assumes that the short part can be summed easily; hence, the problem becomes 

the summation of the long-range term. Due to the use of the Fourier sum, the method 

implicitly assumes that the system under study is infinitely periodic (a sensible assumption 

for the interiors of crystals). 

The basic idea is to replace the direct summation of interacting energies between particles: 

 

 
with two summations, a direct sum Esr of the short-range potential in real space 

 

 
and a summation in Fourier space of the long-ranged part 

 

 
Where the two terms inside the summations represent rispectively the Fourier tranform of 

the potential and the charge density. Since both summation converge quickly in their 

respective spaces (real and Fourier), they may be truncated with little loss of accuracy and 

great improvment in required computational time. As we said before, due to the periodicity 

assumption implicit in Ewald summation, applications of this method to physical systems 

require the imposition of periodic symmetry. Thus, the method is best suited to systems that 

can be simulated as infinite in spatial extent. Further more, this method is more efficient for 

systems with smooth variations in density, or continuous potential functions. Localized 

systems or those with large fluctuations in density may be treated more efficiently with the 

fast multiple method of Greengard and Rokhlin [29].   

 

2.3 Fundamental principle of DFT 
 

Density functional theory (DFT) is a theory which stands out from all the others theories 

based on Hartree-Fock method. The starting point of the quantum mechanical description of 

the system is based no more on the wave function, but on the electronic density. For a system 

composed by N electrons, the wave function depends on 3N spatial coordinate plus N spin 

coordinates, whereas the electronic density depends only on the 3 spatial coordinates. It’s 

evident the convenience of a method based only on density. The proof that the properties of 

the ground state are a functional of the electronic density has been provided by Honenberg 

and Kohn, and it establishes the cornerstone of the density functional theory, and one of the 

most important achivements in quantum-mechanics (Kohn has been awarded with the Nobel 

prize in chemistry in 1998 for this discovery). In particular, the energy of the ground state 

could be write as a functional of the density and it is the minimum possible energy if the 

density is exact. Below we can see that this potential exists, but we have no information on 

how to built it. Thus DFT is an exact theory in principle, but in practice we need to introduce 
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some approximations (the exchange-correlation function which if exactly determined would 

give the exact result). 

In this thesis work we propose simulations carried out by density functional theory (DFT). 

This paragraph introduces the most general concepts of DFT and we will show how, using 

the Kohn-Sham method, the DFT equations assume a form similar to HF equations. 

In order to introduce the following arguments, we reintroduce the general Hamiltonian of 

the system: 

 

 
 

Each term represents respectively the electrons and nuclei kinetic energy, the electron-

electron interactions, nuclei-nuclei interactions and nuclei-electrons interactions. This latter 

term in the DFT is represented by the functional Vext[ρ] that is:  

 

     (2.43) 

 

Where v(r) is the external potential. 

On this basis the Hohemberg and Kohn theorems state: 

 

Theorem 2.3.1: The external potential v(r) could be determine uniquely by the electronic 

density ρ(r), except for an additive constant. 
 

Corollary 1: because density ρ(r) uniquely determines v(r), therefore it determines also the 

wave function ψ of the ground state. 

 

Theorem 2.3.2: if ρ’(r) is a non-negative density normalized to N, thus E0 < Ev [ρ’(r)], where 

Ev [ρ’(r)] is the functional for a state having an external potential determined by a ground 

state density ρ’(r). In other words, the ground state density could be computed by variational 

method implying the density only. 

 

We have already seen how, given the nuclei position,it is possible to obtain the electronic 

configuration ψelec and consequently the charge density 𝜌(𝑟). 

The above theorems guarantee also the contrary: knowing 𝜌(𝑟) we are able to univocally 

find v(r) and so the nuclei positions as well. 

Because also terms representing the electron kinetic energy and the electron-electron 

interactions are uniquely determined by electronic density, the system energy could be 

written as a density functional (i.e. a function of the function ρ(r)): 

 

     (2.44) 

 

we can define the FHK as: 
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 (2.45) 

 

Substituting eqns. (2.43) and (2.45) in (2.44) we find: 

 

 (2.46) 

 

FHK(ρ) doesn’t depend on the external potential, this is an intrinsic property of the electronic 

system; hence FHK(ρ) is a universal function and eqn (2.46) is an exact representation of the 

system. 

Previous theorems implies the possibility of calculating exactly every stationary quanto-

mechanical parameter. The main issue is that the FHK functional is an extremely complex 

physical quantity, for which the exact form has not been determined yet. 

 

2.3.1 The Kohn-Sham method 

 
Based on equation (2.44), Ve-e[ρ] could be divided in two terms: 

 

  (2.47) 

 

VH[ρ] represents the classical Coulomb repulsion energy between electrons and can be 

written as: 

 

 (2.48) 

 

Exc[ρ] collects all contributes due to non-classical electron-electron interactions, the total 

energy is thus: 

 

(2.48) 

 

Whereas VH[ρ] and Vext[ρ] can be computed in an exact way, Exc[ρ] and Te[ρ] are 

unknown. 

In order to simplify the problem related to Exc[ρ] and Te[ρ] Kohn and Sham [12, 15]  

proposed a method which consists in substituting the real system with one formed by 

independent electrons, characterized by the same density of the real system and with an 

effective external potential VKS(r). 
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So we obtain: 

 

(2.49) 

 

Ts[ρ] is the kinetic energy for the non-interacting electrons system and it can be exactly 

computed. The exchange-correlation functional Exc[ρ] now gathers all contributes due to the 

exchange-correlation energy and to the correction term for TS to obtain the true kinetic 

energy. 

Comparing (2.49) and (2.48) we obtain: 

 

 (2.50) 

 

Exc is the only unknown term of the previous equation, it’s much smaller than VH but it is 

extremely important and proper approximation are required for it.   

thus its approximation is not an issue. 

Let’s introduce now fictitious orbitals ψi(r), named Kohn-Sham orbitals. In this particular 

case, energy and density assume the form: 

 

  (2.51) 

 

 

substituting (2.51) in (2.49) and applying the variational principle, we obtain the Kohn-Sham 

equations. 

 

(2.52) 

 

in which vxc([ρ], r) is the exchange-correlation potential 

 

(2.53) 
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We now introduce the following Hamiltonian: 

 

 
 

in which: 

 

 
 

We can also rewrite Kohn-Sham equations in a more compact form: 

 

(2.54) 

 

finally we can rewrite EKS[ρ] taking into account what we found above: 

 

 
(2.55) 

 

We have to keep in mind that the eigenvalues εi doesn’t have an exact physicalnmeaning 

except for the highest energy state eigenvalue which corresponds to ionization potential. The 

only unknown term in the above equation is the exchange-correlation functional Exc[ρ], for 

which in literature many forms have been proposed. 

We can observe that equations (2.54) and (2.52) have a form similar to HF equations, so they 

can be solved by the procedure and algorithms exposed in the previous paragraph. 

 

2.3.2 The Exchange-Correlation functional Exc  
 

We already explained that the only unknown term in (2.50), (2.52) and (2.55) is the Exc[ρ] 

functional. Many approximations has been proposed to obtain a correct and reliable 

descrption of this term and of physical-chemical properties. 

 

Local density Approximation (LDA) 

 
In this approximation the electronic system, which is heterogeneous, is considered locally 

homogeneous, so we can write: 
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Where εxc
LDA[ρ] is the exchange-correlation energy for the homogeneous gas. The local 

density approximation (LDA) involves a very strong approximation on the electron density, 

so this method has to be used for system having slowly changes in electronic density. LDA 

gives indeed good results for the case of solid metals. 

 

 

General Gradient Approximation 

 
On the contrary, in the case of molecular solids LDA is not relable. Many different 

approaches have been developed in order to solve this problem, for example in some 

methods the exchange-correlation functional depends no more on the local density only, but 

also on the local density gradient. This kind of approximation is named General Gradient 

Approximation (GGA); in this particular case the Exc functional becomes: 

 

 
 

Hybrid functionals 

 
In order to obtain better results than LDA and GGA, some hybrid functional have been 

developed. In this method a part of the HF exchange is mixed with the DFT exchange 

contribution, whereas for the correlation contribution it employs one of the GGA functionals. 

An example is the Becke’s B3 in which combination parameters are obtained in a semi-

empirical way obtaining: 

 

 
 

ΔEx
B88 represents the exchange contribution of the Becke’s GGA functional; for Ex

LDA we 

use the Slater’s parametrization named S, whereas Ec
VWN is the LDA contribution for the 

correlation. The last term depends on the GGA correlation functional with which B3 is 

coupled. In chemical field the B3LYP functional is frequently used. 

 

2.3.3 Dispersion Interactions 
 

In many chemical and macromolecular systems the van der Waals dispersion interactions 

play a fundamental role. Many studies have showed that exchange-correlation functionals 

proposed so far are not able to describe correctly these interactions. In order to solve this 

serious inaccuracy Grimme proposed a simple method to obtain a precise description of 

dispersion interactions by adding an empirical potential term in the form C6R
-6 to the DFT 

energy. More in detail: 
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in which C6
ij is the dispersion coefficient for i and j atoms, s6 is the global scaling factor 

dipending on the choice of the exchange function, and Rij is the interatomic distance between 

the i atom and j atom. In bibliography different combination rules for the dispersion 

coefficient have been proposed. In crystal according to Grimme we find: 

 

 
 

C6
i are the model parameters, and describe the atomic contribution of the crystal atomic 

force. 

The damping function f dump(Rij) is defined as: 

 

 
 

and it is used to turn off the dispersion correction in the short-range region, where DFT 

functionals accurately describe the electronic wave function. The RVdW parameter is equal to 

the sum of the Van der Waals atomic radii of the i and j atoms and determines the distance 

for which the dispersion interactions correction must be activated. 
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Chapter 3 
 

Introduction to vibrational dynamics and vibrational 

spectroscopy 
 

 

In the previous chapter we focused on the solution of the quantum mechanical electronic 

problem. We turn now to the descrption of the nuclear motions, occurring in the field 

generated by the electrons and of which vibrations are one of the possible atomic motions 

displayed by our molecules.  

In these grounds, vibrational spectroscopy techniques are indeed both experimental and 

theoretical methods which allow to investigate molecular vibrations and to rationalize them 

based on intra and intermolecular phenomena. These phenomena are responsible of 

structure/properties relationships that is how molecular structure properties can modulate the 

macroscopic properties of the materials. 

Vibrational spectroscopy is thus a powerful characterization method whose importance 

ranges from analytical chemistry to molecular materials science and technology. 

This chapter resumes the vibrational spectroscopy basis fundamentals. We can define 

spectroscopy as an investigation on the interaction between electromagnetic radiation and 

matter. The nature of this specific interaction depends on radiation frequency and we can 

study many different aspect of the matter by modulating the frequency. In this chapter we 

consider the infra-red rad absorption and the Raman scattering phenomena. These techniques 

can be used for a chemical and structural characterization of molecules in a rapid a selective 

way. First of all, we have to understand the nature of molecular vibrations. 

 

3.1 The intramolecular potential and normal modes 
 

Let’s consider an isolated system containing a molecular chain composed by N atoms. As 

already analyzed in the previous chapter the total intramolecular potential V represents the 

sum of potential energy contributions due to the all interactions between all charge particles 

of molecule (nucleus-nucleus, electron-electron and electron-nucleus interactions). 

Therefore the intramolecular potential depends on the nuclei and electrons positions. Using 

the Born-Oppenhaimer approximation it’s possible to compute the potential energy for N 

nuclei, hence we obtain: 

 

 (3.1) 

 

in which V(ξ)n-n is the Coulombic interactions between nuclei and V(ξ)eff represents the 

effective potential due to electrons (i.e. the solution of the electronic problem chap.2). ξ is 

the column vector representing the displacement from the equilibrium geometry (in 

Cartesian coordinates) of the all atoms of the molecule to be studied. 
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V depends on 3N variables, and it is possible to obtain a good approximation in the 

neighborhood of the minimum energy point of the system by using a Taylor’s series at 

second order to obtain an harmonic potential (mechanical harmonic approximation), 

arranging the reference system origin in the minimum energy point, on this assumption the 

first two terms of the Taylor series are zero and the potential becomes: 

 

(3.2) 

 

in which fij
x are the strength constants and ξi and ξj are the Cartesian displacement along the 

j and i directions. We shall recall that neglecting orders higher than the second means the 

forces among atoms are assumed being elastic.  The strength constants fij
x represent, in the 

case for which i = j, the restoring forces between adjacent atoms, otherwise for i ≠ j the 

interactions between non-directly related atoms. 

By introducing the mass-weighted displacements q = M1/2ξ we get: 

 

(3.3) 

 

in which fij
q are the strength constant for the mass-weighted coordinates q. 

Now the molecule kinetic energy is: 

 

   (3.4) 

 

and by applying the Lagrange equation of motion: 

 

   (3.5) 

 

we obtain 3N differential equations of the following form: 

 

  (3.6) 

The solution can be looked for in the following form: 
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  (3.7) 

 

Where λk = 4π2c2vk
2, c is the light speed in vacuum, vk is the vibrational frequency in cm-1 

and εk the phase angle of the vibrational mode k. Hence many different vibrational modes 

do exist, the so-called normal modes, each of which is characterized by a specific vibrational 

frequency vk and by a vector Ak which collects all the oscillation amplitudes of the qk 

coordinates. We can label as Q the vector gathering the vibrational normal modes, to obtain: 

 

q = AQ, 
 

in which A is the transformation matrix from the normal coordinates to the mass-weighted 

coordinates. In order to obtain A we can substitute the eqn (3.7) in ( 3.6) obtaining: 

 

 
 

in which δij is the Kronecker’s delta. Non-trivial solution are obtained by vanishing the 

determinant: 

 

  (3.8) 

 

This is called secular equation, from which we get 3N eigenvalues λk, associated to 3N-6 
vibrational pure modes and six zero eigenvalues representing the rotations and translations 

motions of the molecule as a rigid body. From now on λk will refer to the non-zero 

vibrational eigenvalues only. Substituting the eigenvalues in the equation (3.3) we can find 

the 3N-6 eigenvectors Aik which give us the vibrational amplitudes for every q coordinates, 

i.e. they describe how the atoms are moving in the vibration of frequency vk. Amplitudes 

have been determined by imposing eqn.(3.8), thus they will not be linear independent. 

Therefore, obtaining all Aik values is not possible and we can get their ratios only. In order 

to determine Aik values a normalization is necessary: 

 

 
in which 

 

(3.9) 
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We can observe that the problem represented by the previous equations can be solved by 

using the matrix algebra, where Fq represents the force constants matrix. 

 

                                                             (3.10) 

 

In which Λ is a diagonal matrix (3N-6) x (3N-6) having the eigenvalues λk on its own 

diagonal. We can now write kinetic and potential energy as a function of the normal modes 

Q. 

 

 
 

By this way we have described the kinetic energy in a diagonal form. 

Now, taking into account the relation q = M1/2ξ, we can write: 

 

  (3.11) 

 

In conclusion, we have described molecule as a set composed by 3N-6 uncoupled harmonic 

oscillators, having vibrational frequencies vk. During every normal mode, all atoms vibrate 

at the same frequency (the so-called characteristic frequency) with different vibrational 

amplitudes described by Ak, every real molecular motion can be obtained as a combination 

of normal modes.  

In addition to Cartesian or mass-weighted coordinates, the vibrational problem can be 

described also by internal coordinates (see Fig. 3.1). We can notice that using internal 

coordinates we have a smaller number of variables, 3N-6 for a molecule composed by N 

atoms. Furthermore, internal coordinates for a polyatomic molecules have a direct chemical 

meaning, such as: chemical bonds stretching (stretching), valence angles deformations 

(bending), angular deformation with respect to a molecular plane (out of plane bending) and 

torsional angles variations. 

 

 
Figure 3.1 – Internal coordinates 
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3.2 Infra-red intensities 
 

In the previous section we analyzed the vibrational properties to understand the meaning and 

the origin of vibrational frequencies and normal modes. 

Vibrational frequencies can be measured by IR or Raman spectroscopic measurement as the 

position of the absorption / scattering bands, but they are not the not the only observable that 

can be measured. Indeed, also the intensity of these bands (i.e. IR or Raman intensities) are 

important quantities. 

According to classical electrodynamics a system emits radiation by virtue of periodic 

changes in its electric dipole moment and the frequency of emitted radiation is the same as 

that of the dipole oscillations. Absorption is the inverse of emission, and so the system is 

able to absorb electromagnetic radiations. Infra-red spectroscopy is generally concerned with 

the absorption of radiation incident upon a sample. These absorption corresponds to the 

excitation of the vibrational normal modes of the system. 

The electric dipole μ of a molecule is a vector, and so it has three components μx, μy, μz in a 

Cartesian coordinates system. On the basis of classical electrodynamics we can say that the 

molecule will only be able to absorb (or emit) radiation of the frequency v, provided that μ 

(or in greater detail at least one of its three components) can oscillates with this frequency. 

Now the dipole moment is a function of the nuclear configuration and so, when the molecule 

vibrates, it varies correspondingly. In the simple-harmonic approximation, all the molecular 

vibrations can be regarded as superpositions of a limited number of normal modes, each with 

its own normal frequency vk. It follows therefore that electric dipole moment can only 

oscillates with these normal frequencies, and that only radiation with these frequencies can 

be absorbed, (and they lie in the infra-red region of the spectrum). We shall see later that, in 

the case of certain normal modes, due to implicit properties of our molecules, the amplitudes 

of vibration of μ may necessary be zero. Due to proper selection rules the intensity of 

absorption of radiation of the corresponding normal frequency will then also be zero. And 

the transition is forbidden. 

In general, the magnitude of the components of the molecular dipole moment will be 

functions of all the vibrational coordinates Q, and also in this case a Taylor expansion can 

be introduced. We may conveniently adopt the convention whereby the three separate 

expression for μx, μy, μz are all implied by the single condensed form 

 

𝝁 =  𝝁𝟎 + ∑ {(
𝜕𝝁

𝜕𝑸𝒌
)

𝟎
 𝑸𝒌}𝒌  + higher terms               ( 3.12 ) 

 

Since all the amplitudes of the normal vibrations are very small. It is a good approximation 

to neglect terms of higher than the first degree in the Qs (electrical harmonic approximation). 

We may therefore write: 

 

𝝁 =  𝝁𝟎 + ∑ {(
𝜕𝝁

𝜕𝑸𝒌
)

𝟎
 𝑸𝒌}𝒌  .             ( 3.13 ) 
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Evidently the condition that the molecular dipole moment shall be able to oscillate with the 

frequency vk, i.e the condition that this normal frequency shall be capable of being absorbed, 

is that: 

 

(
𝜕𝝁

𝜕𝑸𝒌
)

𝟎
≠ 0 

 

for at least one of the components (i = x, y, or z). 

This is a general statement of the selection rule or infra-red absorption. It is clear that these 

selections rules are the results of two special approximation adopted. The first is that the 

molecular vibrations are simple-harmonic, otherwise the normal modes would not be 

separable and the meaning of the individual normal coordinates Qk would be lost. The second 

assumption is that in the Taylor expansion of the electric dipole moment represented by eqn 

(3.12) all the higher terms are negligible. As already mentioned these are called mechanical 

and electrical harmonic approximation and all those effects lying outside their range of 

validity are called “anharmonic” effects and usually play a minor (but not negligible) role in 

spectroscopic analysis.  

As we said before, if we know the characteristic frequency of a molecule, we are able to 

obtain some information about chemical bonds strength between atoms of the molecule 

itself. Another data that we can acquire from the infra-red spectroscopy is the absorbed 

radiation intensity related to the variation of the dipole moment, and thus to the charges 

distributions of our system also from this parameter it is possible to rationalize peculiar intra 

and intermolecular phenomena. The light intensity is defined as the number of photons 

through a unit beam cross-section per unit of time. Infra-red spectra show, depending on the 

frequency, absorbing bands. The absorbance is defined as: 

 

    (3.14) 

 

In which I(v) is the transmitted radiation from the sample, whereas I0(v) is the incident 

radiation. Spectra are usually plotted as a curve where on the x-axis we have the wave 

numbers and on the y-axis the absorbance. The amplitude of the peaks depends on the 

number of molecules along the incident beam path and on the magnitude of the interaction 

between the incident radiation electric-field and the molecule dipole moment.  

 

 

3.3 Classical theory of Raman scattering 
 

The Raman spectroscopy measures the vibrational motions of a molecule such as infrared 

spectroscopy. The physical phenomenon is, however, different from infrared spectroscopy. 

In Raman spectroscopy one measures the light scattering while the infrared spectroscopy is 

based on an absorption process. Raman scattering takes place when the incident electric field 

induced a dipole moment through a polarizability variation of the molecule, so we can state 
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that in the Raman effect we have an electronic perturbation. This change in polarizability 

can be saw as a shape distortion of the electronic cloud around the nucleus. 

 

 
 

Figure 3.2 – electronic cloud distortion due to an applied electric field 

 
The induced dipole moment will be oscillating because stimulated by an oscillating electric 

field, so the amplitude of radiation emitted by the dipole moment will be: 

 

 

 
in which P is the induced dipole moment: 

 

P = α · E    (3.15) 

 

where in this case α is the polarizability and E is the oscillating electric field: 

 

   (3.16) 

 

If now we consider a normal mode q of frequency vk  and describe as: 

 

       (3.17 )                       

 

Such as the dipole moment, the electric polarizability of a molecule will in general be a 

function of all the normal vibrational coordinates. We may therefore expand α as a Taylor 

series with respect to these coordinates and neglect powers higher than the first. We thus 

obtain: 

 

(3.18) 

 

In this equation, α0 is the polarizability tensor in the equilibrium configuration of the 

molecule, and the derivative in the second term is the so-called derived polarizability for the 

kth normal mode. 
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Substituting equations (3.16) and (3.18) in (3.15) we obtain this expression: 

 

 
 

Since every component of α0 is simply a molecular constant and every component of E 

oscillates with the incident light frequency v0 , it follows that the corresponding part of every 

component of P must oscillate with this same frequency. Thus light of the incident frequency 

v0 will be emitted and will be observable in directions which differ from that of the incident 

light. This is the phenomenon known as classical or Rayleigh scattering. It is of no interest 

to us, as it in no way involve the vibrations of the scattering molecule. We can therefore 

ignore the first term on the right hand side of the equation. 

Considering now the second term, let us fix our attention on the contribution from the 

particular vibrational mode with the normal coordinate qk. We can notice that under a 

specific condition all the corresponding contribution to all the components of the induced 

dipole are characterized by the two new frequencies v0+vk and v0-vk called Stokes and anti-

Stokes lines. 

They constitute the contribution of the kth normal mode to the Raman spectrum of the 

scattering molecule. The frequency shifts are known as Raman frequencies. They are equal 

to the normal vibration frequencies of the molecule investigated, such as might have been 

observed directly in the infra-red. 

Clearly the condition that a particular normal frequency vk shall be active in Raman 

scattering is that: 

 

(
𝜕𝛼

𝜕𝑞𝑘
) ≠ 0 

 

for at least one of the component of the polarizability tensor α. 

This classical description of Raman scattering allows to understand in a qualitative way the 

nature of the interaction, but it doesn’t provide any kind of quantitative information. For 

example, a classical description would expect that Stokes and anti-Stokes lines have the 

same amplitude, but this is not true (it will be explained later). We can depict the different 

Raman scattering stages in the following picture:  
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Figure 3.3 – Simple representation of the energy levels involved in Raman scattering. 

 

Stokes line are provoked by a virtual transition from the g, v (electronic ground state) to 

the virtual level m. The anti-Stokes lines are due to a transition from the ground state to a 

virtual level m’. In a more detailed description we can state that Raman interactions leads 

to two possible outcomes: 

- The material absorbs energy and the emitted photon has a lower energy than the 

absorbed photon. This outcome is called Stokes Raman scattering. 

- The material loses energy and the emitted photon has a higher energy than the 

absorbed one. This outcome is called Anti-Stokes Raman scattering. 

The energy difference between the absorbed and emitted photon corresponds to the energy 

difference between two resonant states of the material and is independent of the absolute 

energy of the photon. 

Thanks to Boltzmann’s statistic, in a system having a specific temperature, the lower energy 

state m results more populated and so the transition probability from this level is higher than 

from the state m’. Therefore, on this basis we can understand why the Stokes lines are more 

intense than anti-Stokes ones. The quantum theory of Raman scattering is quite complex, we 

just say that only transition between neighboring energy levels (Δv=+-1) are permitted and 

selection rules imposed by symmetry do exist in harmonic approximations. 

For what concerns the Raman scattering intensity of a single molecule, from a classical point 

of view, we can state: 

 

 
 

in which the terms inside the summation represent the derivatives of the polarizability tensor 

components with respect to a specific normal mode. 

 

 

3.4 Instrumentation for vibrational spectroscopy 
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3.4.1 IR spectrometer 
 

The spectrometer we used for the infra-red spectroscopy is a NEXUS FT-IR made by 

Thermo Instruments.  

This instrument is composed by five main parts, that are: 

 

 

 

Radiation source. 

 

 

 

IR intensity modulation through  

interference between different monochromatic 

components 

 

 

 

 

For the sample placement 

 

 

               

 

Optical signal recording 

 

 

 

 

 

System for the monitoring and elaboration 

of the signal by means of Fourier transform 

 

 

 

Technical specifications 

 

Detectable wave length range: 6000-400 cm-1 

Radiation sources: Silicon carbide. 

Detector: 

- DTGS thermoelectrically cooled. 

- MCT cooled by liquid nitrogen. 

                        Modalities: analysis by Fourier transform.   

                        Maximum resolution: 0.125 cm-1. 

 

SOURCE 

 

INTERFEROMETER 

 

SAMPLE-HOLDER 

 

DETECTOR 

 

MONITORING       

ELECTRONIC 
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                        Interferometer: Michelson type. 

                        Microscope: infra-red microscope Thermo Nicolet Continuµm IR 

                                             made by thermo instruments. 

 

                         Objective: 

             - IR Cassegrain 15x 

             - Visibile 10x 

             - Cassegrain grazing angle 32x 

              Modalities: 

              - reflection 

              - transmission 

              - ATR “single bounce” made in silicon 

              Minimum analyzable area: 50µm2 

              Detector: MCT 

 

The image of the optical bench is the sequent: 

 

 
Figure 3.4 – Optical path of the infra-red radiation.  

  

The source is heated by Joule effect up to 1200°C applying an electrical current. At this 

temperature, the black body emission is maximum in the IR region. The emitted radiation is 

focused on a diaphragm which calibrates the beam diameter sent to the interferometer. The 

single monochromatic components are subjected to an interference process which modulates 

the intensities. The exiting radiation is made pass through the sample to be analyzed and 

collected by a detector. The recorded signal is the interferogram composed by the 

convolution of the single component intensities.  
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Figure 3.5 – Infrared radiation optical path toward the microscope. 

 

When we use microscope the optical path is different, the exiting radiation is directed toward 

the microscope and focused by means objectives placed above the sample. Radiation then is 

collected by the microscope optic in order to be directed toward a detector located inside the 

microscope itself.  

The conversion mathematic operation allows us to pass from the recorded interferogram to 

the vibrational absorption spectrum is the Fourier transform. 

Samples have to be placed through supports transparent to the infra-red radiation. 

 

 

 
 

Figure 3.6 – Nicolet Nexus Ft-IR spectrometer. 

 

 

3.4.2 Raman spectrometer 
 

The spectrometer used during our experimentations is HORIBA JOBIN YVON LabRAM 

HR800. 

The instrument is composed 5 subsets: 
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Exciter monochromatic radiation source 

 

 

 

 

Focalization and collection of the light diffused by the 

sample 

 

 

 

Monochromator + detector for selection and recording light 

diffused by the sample 

 

 

 

Series of mirrors, lens, filters and clefts, all these 

components constitute the optical path 

 

 

The hardware and software interface for the elaboration 

and monitoring 

 

 

 

 

Photons coming from the laser are directed to the instrument inlet through a mirrors system 

and filtered by an interferential filter in order to remove the spurie lines. A series of filters 

having a variable optical density adjust the power, then they direct photons toward the LIRS 

system which in turn reflects light toward the sample. The radiation emitted by the sample 

then is transmitted by the LIRS system into the spectrometer. 

The entering radiation is diffracted by a flat lattice and then it’s sent to the detector in order 

to be recorded and developed.  

 

Laser 

 

Diode laser: 

- λ = 784.5 nm 

- polarization of 45 degree in the x-y plane of the samples-holder 

 

 

 

LASER 

 

MICROSCOPE 

 

SPECTROMETER 

 

OPTIC 

 

ELECTRONIC 

MONITORING 
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Argon ions laser: 

- λ = 514.53 nm 

- polarization parallel to the y-axis of the x-y plane of the sample-holder 

 

 
Microscope 

 

Olympus BX41 microscope with lens 

- 10x NA 0.25 

- 50x NA 0.7 

- 100x NA 0.9 

 

A camera allows us to observe the sample image and where laser is illuminating. 

 

Spectrometer 

The spectrometer used a CZERNY TURNER ASIMMETRIC configuration and has a depth 

of focus of 800 mm. We can use different diffraction lattices placed upon a specific turret. 

 

Diffraction lattices 

The spectrometer is provided with three lattices having 600, 1800 and 2400 lines/mm, 

optimized for its specific laser sources. 

The choice of the lattice is based on the laser source we are going to use, we want to underline 

different lattices, means different resolution: the higher is the lines density, the higher is 

dispersion and so the resolution. 

 

The spectrometer gives us a quasi-constant dispersion in λ (0.05 nm/mm for a lattice having 

1800 lines/mm). The dispersion formula is: 

 

 
 

in which n is the diffraction order and N the number of lines per mm. 

 

Detector 

 

CCD detector cooled by Peltier cells, of 1024x256 pixel. 

 

Spectrometer inlet optic  
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The optical instruments are: 

- Mirrors 

- Different optical density neutral filters  

 

 

Table 3.1 – Power attenuation due to different optical density D filters inside the optical path.  

 

 
  

 

-LIRS system: Laser Injection Rejection System: this system is composed by a notch filter 

and a mirror, thus laser is totally reflected by the filter toward the sample and the Raman 

scattering is completely transmitted toward the spectrograph inlet through the filter. 

 

Electronic monitoring  

 

The hardware and software interface for acquisition parameters monitoring and the contents 

development. 

- Hardware: allows us to control gaps, lattices, shutters, camera and the alignment 

system. 

- Software: the informatics program LabSpec through which we can define many 

acquisition parameters, such as: spectral range, acquisition time and number. 

 

 

 

 

3.4.3 FT Raman spectrometer 
 

NXR 9650 FT-Raman made by Thermo Scientific. 

The instrument is composed by the sequent sections: 

 

POWER ATTENUATION 

 



52 

 

                                               

 LASER radiation source. 

 

                                                                                  

                       

Sample placement. 

 

 

                                                                                                                                   

 

Modulation of the light diffused by the sample. 

 

 

 

 

Acquisition system. 

 

 

 

 

 

Monitoring system for the signal development by Fourier 

transform. 

 

 

 

Technical specifications 

 

Spectral range: 100-4000 cm-1 

                  Source: laser Nd: YAG, λ = 1064 nm, power 2W. 

 Detector: 

- Liquid nitrogen cooled Germanium. 

- Thermoelectrically cooled InGaAs. 

Interferometer: Michelson type. 

Beam-splitter: optimized silicon on CaF2 for NIR. 

Resolution: 1-4 cm-1. 

Measure modality: Fourier transform. 

The optical table is represented by the sequent figure: 

 

 

SOURCE 

 

SAMPLE-HOLDER 

 

INTERFEROMETER 

 

 

DETECTOR 

      

ELECTRONIC 

MONITORING 
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Figure 3.8 – FT Raman optical table. 

 

The laser beam is focused on the sample inside the instrument and the diffused radiation is 

collected by a mirror and sent to the interferometer. 

Similarly to the IR spectroscopy the Raman scattering spectrum is obtained through Fourier 

transform. 

 

 
 

Figure 3.9 – NXR 9650 FT-Raman made by Thermo Scientific. 

 

 

 

3.4.3 Portable Raman spectrometer 
 

Raman analysis during the tensile test on Twaron fibers were performed using a portable i-

Raman 785 spectrometer produced by B&W Tek. The Raman module (17 x 34 x 23 cm and 

approximately 3 kg) was equipped with a CleanLaze (B&W Tek) laser emitting at 785 nm 

with a continuously adjustable power from 0 to 450 mW and 600 groove/mm grating, which 

disperses the scattered light on a thermoelectrically cooled CCD (2048 pixels), covering a 

spectral range of 175-3200 cm-1 at a resolution of approximately 4 cm-1.  Spectral data-

acquisition software, BWSpecTM,  installed on a portable computer was used for the control 

of the spectrometer and the collection of Raman spectra. 
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Figure 3.10 – Portable i-Raman 785 made by B&W Tek. 
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Chapter 4 

Characterization of PPTA vibrational spectra 
 

This chapter deals with the spectroscopic characterization of Kevlar by means of both 

experimental and computational techniques. In particular, it analyzes how, by means of 

computational methods based on density functional theory (DFT), we were able to assign in 

details the vibrational spectra of this polymer to give a detailed interpretation of the intra and 

intermolecular effects ruling its structure and properties. In order to choose the best method 

describing the above-mentioned molecular system, a precise setup of the calculation is 

required including a proper comparison between different functionals and basis sets. Starting 

from an isolated chain model, we first applied the “oligomer approach” by using small 

molecular models of increasing length up to the real infinite chain (described as a 1D crystal) 

in order to study the peculiar intramolecular effects ruling the vibrational properties of 

Kevlar. We then described it in its true crystal packing to investigate also the relevant 

supramolecular effects. To completely characterize the behavior of this polymer, 

calculations have been complemented by an experimental investigation, carried out in our 

laboratory. 

 

4.1 Experimental spectra 
 

A few spectroscopic characterizations of Kevlar are found in the literature, but most of 

them are not accurate enough for a detailed investigation of its properties. For this reason, 

we chose to carry out experimental IR and Raman measurement in our laboratory, in order 

to obtain reference spectra with reliable and controlled conditions. Twaron (PPTA fibers 

produced by Teijin) samples have been kindly provided by Prof. Claudia Marano (Polimi). 

 

IR spectra 

 

IR spectra have been recorded by means of Nexus FT-IR spectrometer, we have performed 

analysis both by using a non-polarized radiation source and by means of a polarizer filter. 

Polarized IR spectra has been recorded locating the PPTA fiber axis at 0° and 90° with 

respect to the electric field vector of the incident light. Unfortunately, no sufficient detailed 

spectra have been found in literature for a comparison. All characteristic features of each 

spectrum will be explained in the following sections. 
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FT-Raman spectra 

 

FT-Raman analysis have been carried out by means of NXR 9650 FT-Raman spectrometer. 

Spectra has been recorded with sample located with both a vertical and horizontal 

arrangement on the sample holder. Some difference, between the two spectra (horizontal and 

vertical arrangement), could be observed especially for low frequencies, but for a detailed 

description of the polarization effects on the Raman spectra a more complex and precise 

experimental set up is required and it will be not treated in this work. 

 

 
 

Figure 4.1- Twaron IR spectra performed by means of non-polarized radiation source, and 

by a polarized light locating the fibers axis along (0°) the electric field of the incident beam 

and perpendicular (90°) to it . 
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In [1] a Raman spectrum of good quality has been reported by Washer and Brooks, as we 

can observe in Figure 4.3 Washer-Brooks spectrum and our experimental Raman spectrum 

perfectly match and in our case a better resolution is also obtained. 

 

 
Figure 4.2 – Twaron FT-Raman spectra performed locating the fibers sample with vertical 

and horizontal arrangement on the sample holder. 

 
Figure 4.3 – Comparison between Experimental Raman spectrum performed in our 

laboratory, and Raman spectrum proposed by Washer and Brooks in [1]. 
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Raman spectrum performed with portable spectrometer 

 

In order to verify the reliability of the portable Raman spectrometer, which will be used for 

the vibrational spectroscopic analysis of Kevlar fibers subjected to a tensile strain, a 

comparison with the NXR 9650 FT-Raman spectra has be made. Both spectra, recorded by 

means of the portable spectrometer, have been performed by a polarized laser beam with a 

wavelength of 785nm. As we can deduce by the comparison below, the portable 

spectrometer is a bit noisy at high frequency, but after all the Raman spectra are of very good 

quality and resolution, thus assessing the reliability of the spectrometer for the aims of the 

work. 

 

 
 

4.2 Computational details 
 

The quantum-chemical calculations carried out in this thesis have been performed by means 

of two different codes, Gaussian09 [33] and Crystal14 [34]. By means of Gaussian 09 we 

carried out the fully geometry optimization and frequencies calculations for the following 

models: one single Kevlar monomer, one Kevlar chain formed by 2 monomeric units and 

two interacting Kevlar chains each composed by two monomeric units. In all these models, 

we used CH3 endgroups since no periodic boundary conditions are applied and finite-length 

models are adopted. These groups are arbitrary chosen and related vibrational modes would 

give spurious bands in the simulated spectra, therefore with the intent of simulating the 

 
 

Figure 4.4 – Comparison between Raman spectra performed by NXR 9650 FT-Raman 

spectrometer, and Raman spectra recorded by portable Raman spectrometer. 
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dynamic effect of the whole macromolecular chain and to make negligible the influence of 

the terminal groups, we also post-processed the calculations increasing the mass of the atoms 

belonging to the terminal groups. More in details, we chose to increase the mass of the carbon 

and hydrogen atoms, belonging to the methyl groups, of three orders of magnitude, 

simulating the “weight” and thus the kinetic contribution of the missing part of the chain. 

The effect of the “heavy” atoms results in lowering significantly the frequency of the 

vibrational contributions due to methyl groups, isolating them from the characteristic region 

of the IR and Raman spectra. As result we obtain a theoretical spectra closer to the 

experimental ones. The whole set of Gaussian09 calculations has been performed in the 

framework of DFT, employing the hybrid exchange-correlation potential B3LYP and the 

basis set 6-31G(d, p).  

 

Table 4.1 - Oligomer models investigated by means of Gaussian09 

 

 

PPTA single monomer 

 

PPTA two monomers 

 

PPTA dimer 
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Fully geometry optimization and vibrational spectra calculations both for the Kevlar 3D-

crystal and for the infinite single Kevlar chain (1D crystal), have been carried out by means 

of CRYSTAL14 code, in the framework of DFT and by adopting periodic boundary 

conditions (PBC) (i.e. describing infinite systems). In order to assess the best method 

describing the structure of Kevlar crystal, these calculations have been carried out by 

adopting two different functionals, B3LYP and PBE0, and two different basis sets, 6-

31G(d,p) and pob-TZVP (suitably developed for crystal calculations). The aim of performing 

calculations also for the isolated Kevlar chain, is to deeply understand, by employing the 

single molecule vibrational frequencies and eigenvectors, the vibrational normal modes of 

the crystal and the influence of inter-molecular interactions on the spectra. 

All calculations made by means of Crystal14 include the empirical correction for dispersion 

interactions proposed by Grimme [13, 14], and a more detailed description of this method 

has been already reported in the previous section (2.3.3). According to previous works on 

the subject [14] we chose the following empirical parameters: 

 

Table 4.2 - Summary of the C6 and RvdW parameters adopted in the present work for the Grimme’s 

empirical dispersion correction. A cutoff distance of 25.0 Å was used to truncate direct lattice 

summation. C6 are in units of J nm6 mol-1 RvdW are in unit of Å. For the d parameter a standard 

value of 20 has been chosen and for s6 parameter a value of 1.00. 

 

 
 

In order to obtain a better matching with experimental results, all frequencies computed by 

CRYSTAL14 and Gaussian09 have been scaled by factor of 0.9614 for the B3LYP/6-31G(d, 

p), 0.9688 for B3LYP/pob-TZVP,  0.9512 PBE0/6-31G(d, p) and 0.9594 for the PBE0/pob-

TZVP. Furthermore, to obtain a correct comparison among the different models adopted, all 

intensities have been normalized to one monomeric unit. 
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4.3 Crystal full geometry optimization 
 

In order to obtain a reliable geometry and hence a reliable prediction of the vibrational 

spectra, a “full” geometry optimization, of both the atomic positions and the cell parameters 

of the crystalline system is required. 

To carry out a full geometry optimization by means of CRYSTAL14 code we need some 

input data, such as atomic Cartesian coordinates, space group symmetry of the system and 

lattice parameters of the unit cell. All these structural information have been found in 

literature [31] based on experimental measurements. In particular, we found a model for the 

crystal and molecular structure of poly (p-phenylene terephthalamide) on the basis of an x-

ray diffraction study. All the reflections observed by the PPTA diffraction pattern, could be 

satisfactorily indexed by assuming a monoclinic (pseudo-orthorhombic) unit cell with 

dimension a = 7.87Å, b = 5.18Å, c = 12.9Å and γ being approximately 90°, as reported in 

Table 4.3. 

 

 
 

Due to steric hindrance, in particular repulsion between the amide hydrogen and an ortho 

hydrogen within the phenyl group of the molecule, coplanarity of the planes through the 

centeres of the atoms of the amide groups and through the centers of the atoms of the 

phenylene groups had to be excluded [32].  

The orientation angles of the axes, defined by the carbon atoms in the one and four positions 

of both phenylene groups, with respect to the c axis is approximately 6° for the para-

phenylenediamine segment and approximately 14° for the terephthalic segment, implying a 

different tilt angle for each segment. Furthermore, an angle of -30° between the amide plane 

and the terephthalic segment, and an angle of 38° between the amide plane and the phenylene 

plane of the p-phenylenediamine segment have been found.  

 

Table 4.3 – Comparison of the unit cell data of poly(p-phenylene terephthalamide), poly(p-

phenylene oxide) and poly(p-phenylene sulphide) as reported in Ref.[31]. 
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The most significant intramolecular interactions governing the molecular conformation, are: 

the resonance effect trying to stabilize coplanarity of the amide groups and the phenylene 

groups, the counteracting steric hindrance found between the oxygen and an ortho-hydrogen 

of the p-phenylene diamine segment, and the steric hindrance between the amide hydrogen 

and an ortho-hydrogen of the terephthalic segment.  

In the literature [31, 35], due to the presence of stereochemically centrosymmetric segments 

together with the possibility for the amide group to form centro-symmetric pairs of hydrogen 

bonds, it is suggested that the most favorable symmetry may indeed be Pn. 

As already explained, the full geometry optimization has been carried out with two different 

exchange-correlation functionals (B3LYP and PBE0) and two basis sets (6-31-G(d, p) and 

pob). Unfortunately, vibrational frequencies calculation by means of PBE0/pob-TZVP, 

despite numerous attempts, failed to converge.  A table reporting the results of the 

optimization and the geometrical error with respect to the starting experimental data are 

reported below: 

 

 

 

 

 

 

 

                     
(a) (b)    

 

Figure 4.5 – (a) A layer of hydrogen-bonded chains. Projection parallel to the a axis. Glide 

planes n with orientation (001) are located halfway between the centers of the phenylene 

groups.(b)Fracional positions in the unit cell. All these data are taken from Ref.[31]. 
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Table 4.4 – Summary of the unit cell parameters obtained by four different full geometry 

optimizations, each carried out by means of different exchange-correlations functionals and basis 

sets. The parameters a, b, c are expressed in Angstrom, the value the percentage error with respect 

to the experimental model is reported in brackets. 

 

 

 
Functional 

 

Basis set 
 

a 

 

b 

 

c 

 

α 

 

β 

 

γ 

Total 

Error 

(%) 

 

 
 

 

B3LYP 

 

 

6-31G 

(d, p) 

 
7,994198 
(+1,57%) 

 
5,177199 
(-0,05%) 

 
13,04411 
(+1,11%) 

 
90° 

 
109,9875° 

(+22%) 

 
90° 

 
6,18 

 
pob-TZVP 

 
7,372264 
(-6,32%) 

 
5,196993 
(+0,32%) 

 
12,98725 

(0,67%) 

 
90° 

 
108,6811° 

(+20%) 

 
90° 

 
6,82 

 
 

 

 

PBE0 

 
6-31G 

(d, p) 

 

7,588622 
(-3,57%) 

 
5,168784 
(-0,21%) 

 
12,97547 
(+0,58%) 

 

90° 

 
108,9198° 

(+21%) 

 
90° 

 
6,34 

 

pob-

TZVP 

 
7,130465 
(-9,39%) 

 
5,153160 
(-0,51%) 

 
12,91611 
(+0,12%) 

 

90° 

 
106,0202° 

(+17%) 

 

90° 

 

6,75 

 
Experimental data 

 
7,87 

 
5,18 

 
12,9 

 
90° 

 
90° 

 

90° 
 

    - 

 

 

Referring to the total error illustrated in the table 4.3, we can notice that the method which 

provides a structure as close as possible to the real crystal is the one adopting B3LYP/6-

31G(d, p). For this reason, “oligomers models” and stretching of Kevlar chain calculations 

will be carry out only by means of these functional and basis set. 1D crystal model has been 

computed also with the other functionals and basis sets, in order to provide a comparison 

with 3D crystal calculations and to understand which method better describe the 

intermolecular interactions. 

 

 

 

4.4 Vibrational spectra prediction of PPTA oligomers 
 

Many mechanical and thermal properties of molecular systems, such as Young modulus, 

glass and melting temperatures, of many of polymers, (e.g Nylons, PPTA (p-phenylene 

terephthalamide)), are widely influenced by Van der Waals interactions and Hydrogen 
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bonding between molecular chains [1, 2, 19, 21]. Solvents or a prolonged exposure to heat 

may affect significantly these inter-molecular interactions, inducing a significant change in 

material performances. This suggest that changes in the material on a molecular scale 

resulting from external variables such as stress, temperature, moisture, etc.., may be 

detectable by examining the features of vibrational spectra.  

In order to study the influence of the inter-molecular forces on the vibrational spectra, we 

performed fully geometry optimization and vibrational normal modes calculations for the 

case of Kevlar oligomers. We then carried out comparison with the CRYSTAL calculations, 

with the aim of pointing out the main differences due to the effect of intermolecular 

interactions 

 

 

 

4.4.1 PPTA monomer 
 

As a first case, we consider the simplest model that we can use to simulate the properties of 

PPTA as a single monomer with CH3 endgroups (see figure 4.6). 

 
Figure 4.6 – PPTA monomer with methyl groups as terminal groups 

 

 

For this model a full geometry optimization and vibrational frequencies calculations have 

been carried out by means of Gaussian09 code, at B3LYP/6-31G(d, p) level of theory. We 

report in the following the picture of the computed spectra and a table with frequencies and 

IR intensity values and normal modes assignments. 
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Figure 4.7 – DFT computed (B3LYP/6-31G(d, p)) IR spectrum of PPTA monomer model. 

 

 

Table 4.5- DFT computed vales of frequencies and IR intensities and normal modes assignment of 

PPTA monomer model. 

 

 

Frequency (cm-1) 
(scaling factor 0.9614) 

 

IR Intensity               
( km/mol ) 

 

Respective  vibrations 

 

397 

 

91 

 

 
 

 

541 

 

75 
 

 

1218 

 

169 
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1310 

 

201 

 

 

1390 

 

80 
 

 

 

1453 

 

79 

 

 

 

1511 

 

659 

 

 

 

1576 

 

63 
 

 

1615 

 

68 

 

 

1683 

 

224 
 

 

1709 

 

168 
 

 

3039 

 

23 
 

 

3483 

 

23 
 

 

3496 

 

14 
 



67 

 

 
 

Figure 4.8 – DFT computed (B3LYP/6-31G(d, p)) Raman spectrum of PPTA monomer model. 

 

 

 

 

 

Table 4.6- DFT computed vales of frequencies and Raman intensities and normal modes 

assignment of PPTA monomer model. 

 

 

 

Frequency (cm-1) 
(scaling factor 0.9614) 

 

Raman activity 
(A4/amu) 

 

Respective vibration 

 

 

1167 

 

 

342 

 

 

1218 

 

919 

      

 

1313 

 

412 
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1262 

 

917 

 

 

1453 

 

666 

 

 

1511 

 

1213 

 
 

 

1595 

 

2892 
 

 

1615 

 

1860 

 

 

1683 

 

262 
 

 

1709 

 

288 
 

 

3080 

 

101 
 

 

3483 

 

267 
 

 

3496 

 

173 
 

 

 

This model allows to carry out a first characterization of the most significant marker bands 

of the PPTA vibrational spectra, keeping in mind that this is just a very simple model of the 
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real polymer. We will analyze in next section the changes occurring in the spectra when 

taking into account more reliable and complex PPTA molecules. 

In any case, we can recognize obviously some features (having slight differences in 

amplitude and frequency) that we will find also in the IR and Raman spectra of the whole 

crystalline system: N-H stretching mode are predicted at 3483 and 3496 cm-1, C-H stretching 

mode from 3052 to 3138 cm-1; at 1683 and 1709 cm-1 we find C=O stretching mode (amide 

I); at 1615 and 1595 cm-1, aromatic ring vibrations are obtained; at 1453 and 1511 cm-1, N-

H bending, C-N stretching and C=C aromatic ring stretching vibrations (amide II band) are 

found. All these values, are in agreement with previous experimental characterizations [1, 

19, 23]. 

Bands exclusively due to methyl group vibrations, have not been mentioned here, since they 

are spurious bands due to the model adopted in this calculation and they are not observed for 

the real polymer. 

 

 

Effects of the terminal –CH3 groups on the vibrational spectra 
 

The “oligomer approach” that we are using (i.e. describing the polymer by means of a small, 

short length oligomer), has two implicit strong approximations. From one hand, 

intermolecular interactions are completely lacking, from the other hand the length of the 

chain should be long enough to take into account all the relevant intramolecular interactions. 

In addition to these approximations we must also consider that the terminal groups chosen 

are completely arbitrary and we have to remove their contribution from the vibrational 

spectra. In our case, CH3 groups have been adopted, as already explained. In order to remove 

their contribution a possible method consist in increasing the masses of these terminal 

groups: this will shift the associated vibrational frequencies to very low values, removing 

them from the spectral region relevant for the characterization of the polymer. Moreover, by 

this way we are also artificially describing the very large mass of the remaining polymers 

chain that is linked to our monomer model, thus we are taking into account the kinetic effect 

of a very long polymer chain. 
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Figure 4.9 – DFT computed IR spectra of PPTA monomer model where heavy masses have been 

used for the atoms in CH3 end groups. 

 

 

 
 

Figure 4.10 – DFT computed IR spectra of PPTA monomer model where heavy masses have been 

used for the atoms in CH3 end groups. 
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Figure 4.11 – Comparison between the experimental IR spectrum of Kevlar and DFT computed IR 

spectra of PPTA monomer and PPTA monomer with heavy CH3 groups. 

 

In Fig. 4.11, experimental and DFT computed IR spectra are reported:  we can notice that 

our model succeeds in predicting the most significant bands of the experimental spectrum 

and it is already a quite good model system. Anyway a few discrepancies are observed: in 

particular we can appreciate that the calculated frequency gap between amide I and II bands 

(marked as 1 in Fig 4.11) is larger than in the experimental spectrum. We will verify that 

this effect is mainly due to the hydrogen bond, which is totally absent in our model. 

Hydrogen bonding causes indeed a downshift of the amide I band, and an upshift of the 

amide II band. It’s also curious to notice that in the monomer vibrational spectrum, two 

bands for the C=O stretching appears, while only one is experimentally observed. More in 

detail the first peak, having frequency of 1709 cm-1 corresponds to the stretching of the C=O 

bonds near to the methyl group, while the second peak (1683 cm-1) is associated to the 

stretching of the C=O embedded between two aromatic rings (see table 4.2). These effects 

are therefore directly related to the arbitrary choice of our model: indeed the first band, due 

to the C=O stretching close to the methyl group is not observed in the real system since there 

are no C=O bonds “feeling” such a chemical environment. In the next paragraph we shall 

see more in details the effect of the chain length on these bands, in particular the longer the 

molecular chain becomes, the smaller the 1709 cm-1 band will be, getting closer and closer 

to the experimental spectrum.  

We can also appreciate the good result of the “heavy” masses calculations: many bands due 

to the fictitious endgroups, such as 2869 cm-1 peak, complete disappear, making our model 

closer again to the experimental one.  

A more detailed explanation of the effects introduced by using “heavy masses” is explained 

in the following.  

1 
2 

3 4 
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Group 2 in Fig 4.11:   1235 cm-1; 283 km/mol 

 

 
This band is observed only for calculations performed without the heavy masses on the 

methyl group, and it is indeed mainly due to the bending modes of the hydrogens belonging 

to the methyl group, C-C stretching between amide and phenyl group and the hydrogen 

bending belonging to the aromatic ring. 

 
Group 3 in Fig. 4.11:  1341 cm-1 ; 52 km/mol 

 

 
This band is mainly due to hydrogens bending modes of methyl group, and it disappears in 

the spectrum obtained by means of heavy masses on the endgroups. 

       

 

Group 4 in Fig. 4.11: 2869 cm-1 105 km/mol  

 

 
This mode corresponds to the CH stretching of the CH3 groups and for this reason doesn’t 

appear in the spectrum obtained by means of heavy masses on these groups. 

 

   
Figure 4.12 – normal modes corresponding to the band at 1235 cm-1  

 
Figure 4.13 – normal modes corresponding to the band at 1341 cm-1 

                    
               Figure 4.14 – Normal mode corresponding to the band at 2869 cm-1 
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Also in the analysis of Raman spectra, we are able to identify the highest bands, even if, for 

the bands group (2), a significant shift to lower frequencies is observed. As we have already 

explained above, among the two bands due to the C=O stretching, only the band having 

frequency 1683 cm-1 (corresponding to the stretching of the C=O in between two aromatic 

rings) is also found in the experimental spectra (the explanation of this phenomenon is 

already proposed in the previous section). The blue shifting of the peak, not observed in the 

DFT computed spectra (1), is due to the absence of hydrogen bonds in our model. We can 

observe how, by means of “heavy masses” calculations, we are able to remove also in this 

case spurious bands due to CH3 groups, as labeled with (3), (4) and (5). A more detailed 

description of these findings is proposed below: 

 

 

 Group 3 in Fig. 4.11: 1479 cm-1 213 A4/amu  

This normal mode is a bending mode of CH3 endgroups, for this reason the corresponding 

 
 

Figure 4.15 – Comparison between the experimental Raman spectrum of Kevlar and DFT 

computed IR spectra of PPTA monomer and PPTA monomer with heavy CH3 groups. 

 

 
Figure 4.16– Normal mode corresponding to the band at 1479 cm-1 

1 3 

4 

1 

5 

2 
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band disappears in spectrum computed by taking into account “fixed” the ends of the 

molecule, since we are using a very large masses for the CH3 groups.  

 

 

 

Group 4 in Fig 4.11: 1008 cm-1 110 A4/amu  

     
Also in this case the contribution of end groups is significant. 

 

 

Group 5 in Fig. 4.11:  2783 cm-1   147 A4/amu         2931 cm-1  134 A4/amu      3011     

cm-1  140 A4/amu       

 
These vibrational normal modes are only due to CH stretching of methyl groups, and they 

are completely removed in the spectrum calculated by associating “heavy” masses to the 

endgroups. 

 

 

4.4.2 PPTA two monomers 
 

Starting from the previous case, we verify now if and how increasing the size of the 

molecular model allow to approach better the description of the real polymer. Indeed, we 

will study, step by step, Kevlar vibrational dynamics moving from the single PPTA 

monomer to the entire crystal. 

 
 

Figure 4.17 – Normal mode corresponding to the band at 1008 cm-1 

 
 

Figure 4.18 – normal modes corresponding to the bands at 2783 cm-1, 2931 cm-1 and 3011 

cm-1    
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In this section we analyze a model of PPTA composed by two connected monomer units 

(see Fig 4.19), in order to identify the chain length contribution to the dynamic behavior of 

the molecule. Also in this case CH3 endgroups have been used and as before we have also 

performed simulations increasing the masses of the endgroups to remove all spurious 

contributions. 

 
Figure 4.19 – PPTA two monomers 

 

 

In this section we will analyze the vibrational spectra of PPTA monomer and two monomers 

models, focusing on the most significant differences when interpreting the experimental 

spectra of Kevlar. First of all we report below the IR and Raman spectra calculated for the 

PPTA two monomers. 

 

 
 

 

 
 

Figure 4.20 – DFT computed (B3LYP/6-31G(d, p)) IR spectrum of PPTA two monomers 

model. 
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Effects of the terminal –CH3 groups on the vibrational spectra 
 

Also in this case we have post-processed the calculation increasing the masses of the atoms 

belonging to the terminal group, in order to better simulate the real vibrational motion of the 

molecules inside the crystal. 

 
 

Figure 4.21 – DFT computed (B3LYP/6-31G(d, p)) Raman spectrum of PPTA two 

monomers model. 

 



77 

 

 

 
 

 

 

 
 

Figure 4.22 – DFT computed IR spectra of PPTA two monomers model where heavy masses 

have been used for the atoms in CH3 end groups. 

 
 

Figure 4.23 – DFT computed Raman spectra of PPTA two monomers model where heavy 

masses have been used for the atoms in CH3 end groups. 
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Comparisons 

 
By this comparison we can identify the main changes obtained by the connection of two 

monomeric units, to verify if such a larger model is significantly better or not to improve the 

rationalization of the experimental spectra. 

 
 
As reported in the previous section, increasing the molecular chain length, the band labeled 

as (1) in Fig 4.24, which corresponds to the C=O stretching near to the terminal group and 

which describes a vibration not observed for the real polymer is now less significant. 

Furthermore, we can observe the appearance of the band (2), due to C-C stretching and C-H 

bending, that, even if shifted to an higher frequency is also found in the experimental 

spectrum. Even if the relative position of amide I and II bands is again too large due to the 

absence of inter-molecular interactions, a slight improvement has been found with respect 

to the monomer spectrum. Here below, a more detailed description of the most significant 

changes is reported.  

 

 

 

 
 

Figure 4.24  – Comparison between the experimental IR spectrum of Kevlar and DFT 

computed IR spectra of: PPTA monomer, PTTA monomer with heavy CH3, PPTA two 

monomers and PPTA two monomers with heavy CH3 groups. 

1 

2 

3 
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Band 1 in Fig. 4.24: 1711 cm-1 151 km/mol

 
This normal mode mainly corresponds to the C=O stretching directly connected to the 

methyl group: the frequency remains the same of the monomer model, but its relative 

intensity is now lower with respect to the other C=O stretching band which takes 

contribution from 3 different C=O groups.   

 

Band 2 in Fig. 4.24: 1494 cm-1 242 km/mol 

 
This band, which is better distinguished in the two monomers spectrum, is mainly due to 

C-C stretching and N-H bending  
 

Band 3 in Fig. 4.24: 1389 cm-1 90 km/mol  

  
For this band we appreciate a small frequency shifting and a relative intensity increase. 

 

 
 

Figure 4.25 – normal mode corresponding to the band at 1711 cm-1 

 

 
 

Figure 4.26 – normal mode corresponding to the band at 1494 cm-1 

 
 

Figure 4.27 – normal modes relative to the band at 1389 cm-1 
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As we have already notice, the amide I band (1) obviously increases as the number of C=O 

increases. The band (2) has a higher relative intensity with respect to the monomer spectra 

and it corresponds to the highest peak of the experimental spectra, even if its relative position 

in frequency with respect to (1) is not correctly described due to the absence of the hydrogen 

bonds. We can also observe an increase in the relative intensity of the bands (3) and (4). 

 

Band 1 in Fig. 4.28: 1716 cm-1 769 A4/amu

 
This normal mode is characterized by the stretching of the C=O bond between aromatic 

rings, as observed in the real PPTA polymer. 

 

 

 
 

Figure 4.28 – Comparison between monomer and two monomers Raman spectra 

  
Figure 4.29 – normal mode corresponding to the band at 1716 cm-1 

1 

2 
3 4 
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Band 2 in Fig. 4.28: 1597 cm-1 3415 A4/amu

 
This normal mode corresponds to the aromatic ring vibration in between two C atoms and 

C-H bending.  
 

Band 3 in Fig. 4.28: 1476 cm-1 1063 A4/amu 1489 cm-1 1518 A4/amu   

 
These two bands are not distinguished in the monomer spectrum, and they are associated to 

C-C and C=O stretching, and C-H bending. 

 

Band 4 in Fig. 4.28: 1244 cm-1 1523 A4/amu 

 
This band is subjected to a significant relative intensity increase, it’s mainly due to C-C 

and C=O stretching, and C-H and N-H bending.       
 

 

 

 

  
 

Figure 4.30 – normal mode corresponding to the band at 1597 cm-1 

 
 

 
 

Figure 4.31 – normal modes corresponding to the bands at 1476 cm-1 and 1489 cm-1 

 

 
 

Figure 4.32 -  normal mode corresponding to the band at 1244 cm-1 
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4.4.3 PPTA isolated chain described as a 1-D crystal 
 

In the previous paragraph, we have interpreted the experimental spectra of PPTA based on 

the spectra computed for two finite-length models (oligomers approach). We stressed in 

particular the importance of the chain length and of a correct treatment of endgroups 

properties. In order to approach even better the real system, we have also performed 

calculations for the isolated single PPTA chain described as 1-D crystal. Indeed, by using 

CRYSTAL14 code, we can optimized the geometry and compute the vibrational spectra of 

an infinite chain where a monomeric unit is replicated by adopting periodic boundary 

condition along the chain direction, thus truly describing an infinite one-dimensional system 

with no arbitrary endgroups. By means of this simulation we should be able to obtain a 

spectrum even closer to the experimental one, where all intramolecular effects are described 

properly. We will see that discrepancies still observed are associated to the relevant role of 

intermolecular interactions, lacking even in the infinite chain model. 

 

 

 
 

4.4.3.1 1D chain full geometrical optimization  
 

While Gaussian09 calculations in the oligomer approach are a well-established tool in the 

science and characterization of macromolecular materials, the applications of the CRYSTAL 

code in the field have been explored only in recent years. CRYSTAL14 is the only program 

where PBC calculations are carried out by employing a Gaussian basis set and careful testing 

of the computational setup is required to test the most reliable method for the system under 

study.  

For vibrational spectroscopy purposes, a very careful geometry optimization should be 

carried out preliminarily that and not only atomic positions, but also cell parameters must be 

optimized, (full geometry optimization). This is true for a 3D crystal, but also for the 1D 

crystal which are now considering. Therefore, in order to perform the full geometry 

optimization for a PPTA single infinite chain by means of CRYSTAL14, we chose unit cell 

parameters (chain repetition distance and atomic position) obtained by the geometry 

optimization of the entire 3D crystal (described in paragraph 4.3) as first guess input 

structure. In order to avoid any constraint due to symmetry, no line group symmetry has been 

imposed to the atomic positions. A very detailed analysis of the calculations carried out for 

the 3D crystal, have been already proposed in paragraph 4.3. For testing purposes all the 

calculations have been performed by using two different DFT functionals (B3LYP and 

 
 

Figure 4.33- PPTA infinite single chain (1D crystal) 
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PBE0) and two different basis set (6-31G(d, p) and pob-TZVP). In details, we chose the 

space group P1 and the following c parameters: 

 

 

Table 4.7 – The different c parameters used as geometry input, for the full geometry optimization 

of the single infinite chain 

 

 

 

 

A significant difference between the geometries obtained by the optimization of the 1D chain 

and the starting geometries has been observed: we have to keep in mind that these starting 

value are taken from the 3D crystal structure, where molecular chains are embedded into the 

crystal, where hydrogen bonding interactions and steric hindrance are very effective and 

promote a quite different spatial arrangement with respect to the isolated chain (in agreement 

with [31]). As a matter of fact, we can appreciate a significant change of the torsional angle 

between two consecutive aromatic rings; in particular, in the case of the isolated chain, 

aromatic rings tend to be coplanar, reducing the torsional angle between them, as depicted 

in the following figures: 

 

 

Functional 

 

Basis set 

 

    Input  c (Å) 

 

Output c(Å) 

 

B3LYP 

 

6-31G(d, p) 

 

13.04411 

 

13.08787 

 

B3LYP 

 

pob-TZVP 

 

12.98725 

 

12.96772 

 

PBE0 

 

6-31G(d, p) 

 

12.97547 

 

13.01667 

 

PBE0 

 

pob-TZVP 

 

12.91611 

 

12.90593 
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In the case of the 3D crystal by means of B3LYP/6-31G(d, p) we calculated an angle of 22° 

between the amide plane and the p-phenylenediamine segment, and an angle of 30° between 

the amide plane and the theraphthalic segment, while for the 1D crystal we obtained 

respectively 1,78° and 27,58°. 

This significant variation of the chain structure will also result in a further consequent change 

in the spectroscopic spectra, in addition to the effects generated by the lack of hydrogen 

bonds for the 1D chain. This effect emphasizes the importance of the intermolecular forces 

which affect not only the vibrations of the chemical groups involved in the bond, but causes 

also significant and indirect changes in the intramolecular chain conformation. Similar 

geometrical effect has been obtained with all the different DFT functionals and basis sets 

adopted, demonstrating that it is not a result due to the different setup. As general case, the 

structure obtained with 6-31G(d, p) basis set appears to be more planar. How and why this 

conformations difference will affect the IR and Raman spectra will be provided in the next 

section. Significant discrepancies or different behaviours among the four geometrical 

optimizations with different functionals and basis sets, have not been found. 

 

4.4.3.2 Isolated chain IR spectra 
 

In this section we will compare the IR spectra computed by different functionals and basis 

sets and we make a comparison between the results obtained by using the “oligomer 

       
(a) 

 

        
(b) 

 

Figure 4.34 – (a) Conformation of the  PPTA chains embedded into the  3D crystal, (b) 

conformation of the isolated PPTA chain (1D crystal). 
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approach” and the PBC approach to further evaluate the most suitable method for the 

interpretation of the experimental spectra.  

 

Comparison between isolated PPTA chain and two monomers 

 

  
 

As reported in the previous section the vibrational spectra for the two monomers of PPTA 

have been calculated by means of Gaussian09 at B3LYP/6-31G(d, p) level of theory, for this 

reason they are compared only with single chain data obtained with the same functional and 

basis set. The comparison is reported in Fig 4.35 where we can verify that the 1D chain 

spectrum is evolving in the right direction, and it is very similar to the experimental one. In 

particular, we can observe that almost all the most significant bands have been predicted by 

the isolated chain model, and the discrepancies still present are indeed due to the absence of 

intermolecular interactions. As the matter of facts, we can appreciate the effect of hydrogen 

bonding and of the difference in the tilt angle between two consecutive aromatic rings (a 

more detailed description of this phenomenon will be given in the next section) on the 

distance between the amide I and amide II bands (5). The band at 1208 cm-1 is subjected to 

a redshift (6) with respect to the experimental spectrum, moving away from the band at 1306 

cm-1. The first is related to aromatic rings vibrations and N-C stretching, and it’s probably 

shifted due to the backbone conformational chain observed in absence of intermolecular 

interactions. The bands group (2) is not present in the isolated chain spectrum, because those 

peaks are related to the aromatic rings vibrations close to the endgroups and which are thus 

 
 

Figure 4.35 –Comparison between experimental IR Kevlar spectrum, Kevlar 1D crystal IR 

spectrum computed in the framework of DFT by means of B3LYP/6-31G(d, p), DFT two 

monomers IR spectrum and DFT two monomers with “heavy” CH3 groups IR spectrum. 
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slightly affected by CH3 groups, not present for the real polymer. These contributions in the 

infinite single chain disappears since no terminations are present and all the aromatic rings 

are feeling the same environment. In support of this hypothesis a relative intensity reduction 

of these bands can be also appreciated by the comparison between PPTA monomer and two 

monomers spectra (figure 4.24) where the spurious contributions become less effective for 

increasing length of the chain. In proximity of the amide II band, in the two monomers 

spectrum two different peaks appear (3), while in the experimental and single chain spectra, 

only one band is reported. These two peaks have frequency of 1520 cm-1 and 1513 cm-1, the 

first corresponds to the N-H bending and C-N stretching of the amide group near to the end 

of the chain, while the higher frequency band is related to the N-H bending and C-N 

stretching of the amide group far from the terminal groups. The contribution of the 1520 cm-

1 normal modes is thus not present for the case of the infinite isolated chain, and in the 

experimental spectrum since it is again an effect associated to the arbitrary endgroups 

introduced in the oligomer calculations. The same reasoning can be also applied to the band 

(1), which is related to stretching of the C=O bond belonging to the amide group close to the 

end of the chain. 

 

 

Comparison between spectra obtained by different functionals and basis sets 

 

 
 

 
 

Figure 4.36 – Comparison between DFT Kevlar 1D crystal IR spectra, calculated by means of 

B3LYP/6-31G(d, p), B3LYP/pob-TZVP, PBE0/6-31G(d, p) and PBE0/pob-TZVP,  and 

experimental Kevlar IR spectrum.  

1 2 
3 
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At first glance, the best model describing the experimental spectrum, from a general point 

of view, is the B3LYP 6-31G(d,p), but also the other cases give a good description of the 

spectrum. More in details, at B3LYP/6-31G(d,p) level of theory we are able to better 

describe bands (2) and (3), but the most reliable prediction of the frequency gap between 

amide I and II bands is obtained by means of the B3LYP/pob-TZVP method. On the other 

hand, the weakness of B3LYP/pob-TZVP is the absence of bands (2) and (3), which have 

been replaced by a single peak having frequency 1503 cm-1. These peaks are well predicted 

by B3LYP/6-31G(d,p), in particular band (2) is the amide II band, while band (3) is related 

to C-N stretching and C-H bending, even if a significant frequency shift is still present. 

 

IR spectrum assignment 

 

 

 
 

 

Table 4.8 – Bands assignment for the isolated PPTA chain IR spectrum as obtained by 

B3LYP/6-31G(d, p) calculations. 

 

Frequency (cm-1) 
(scaling factor of 0.9614) 

 

IR 

Intensity ( km/mol ) 

 
Normal modes 

 
1088 

 
165 

 

 
Figure 4.37 – Comparison between DFT calculated Kevlar IR spectrum for the 1D crystal 

case and experimental Kevlar IR spectrum. 
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4.4.3.3 Isolated chain Raman spectra 
 

As well as for the IR calculations, in this chapter a general overview of the most significant 

Raman spectra features will be provided. Furthermore, we propose a comparison between 

the different computed spectra and the experimental one, highlighting the differences and 

similarities.  
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Also in this case, the most significant bands are recognizable, with similar accuracy as 

described for IR spectra. 

Indeed, as we have already notice, we can observe an increase in the relative position 

between the computed amide I band (1) and band (2) with respect to the experiments, due to 

the lack of hydrogen bonding. A similar effect is shown by bands (4), (5), (6), (7) including 

also relative intensities differences, especially for peaks (4), (1), (5) and (6). Furthermore, 

we can observe that the band group (a), which appears in theoretical calculations, becomes 

a single band in the experimental spectrum. The same happens for the band group (b), three 

of these four bands are related to N-H bending, C-N stretching and aromatic rings vibrations 

of the groups close to the ends of the chain, for this reason only the band of frequency 1483 

cm-1, which is related to vibrations inside the chain, is observed  in the infinite chain 

spectrum (4). We will see in the next section, that some of these discrepancies could be 

caused not only by the absence of inter-molecular interactions, but also by the method 

adopted for calculations, and some of this spectral features are indeed differently described 

by changing the functional and/or the basis set. 

 
 

Figure 4.38 – Comparison between experimental Raman Kevlar spectrum, Kevlar 1D crystal 

Raman spectrum computed in the framework of DFT by means of B3LYP/6-31G(d, p), DFT 

two monomers Raman spectrum and DFT two monomers with “heavy” CH3 groups Raman 

spectrum.  
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As well as in the IR calculations, the best model describing the band (1) relative position is 

the one having B3LYP as functional and pob-TZVP as basis set. No models describe 

properly neither the relative band positions, nor the relative intensity. This band, related to 

N-C stretching and N-H bending normal modes, is probably deeply affected by the 

interactions with the other molecules within the crystal. Bands (5) and (6), which correspond 

to C-H and N-H bending, are better predicted by the PBE0 functional, in particular by the 

model adopting 6-31G(d, p) basis set, while B3LYP method tends to split very much bands 

(6). 

 

 

Raman spectrum characterization 

 

Even if, we stated that the best theoretical model to describe the single Kevlar chain is 

B3LYP/pob-TZVP, we have chosen B3LYP/6-31G(d,p) model in order to obtain a 

comparison with the IR characterization. 

 

 
 

Figure 4.39 – Comparison between DFT Kevlar 1D crystal IR spectra, calculated by means of 

B3LYP/6-31G(d, p), B3LYP/pob-TZVP, PBE0/6-31G(d, p) and PBE0/pob-TZVP,  and 

experimental Kevlar IR spectrum. 
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Table 4.9 – Bands assignment for the isolated PPTA chain Raman spectrum as obtained by 

B3LYP/6-31G(d, p) calculations. 

 

 

Frequency (cm-1) 
(scaling factor of 0.9614) 

 

  Intensity (A4/amu) 

 

Normal mode 

 

 

1162 

 

 

1383 
 

 

 

1222 

 

 

2730 
 

 

 

1243 

 

 

3041 
 

 

 

1295 

 

 

2861 
 

 

 
 

Figure 4.40 – Comparison between DFT computed Raman spectrum for the Kevlar 1D 

crystal by means of B3LYP/6-31G(d, p) and experimental Kevlar spectrum. 
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4.4.4 PPTA dimer 
 

 
In this paragraph by applying again the oligomer approach, we briefly analyze a dimer model 

(see fig.4.41) for Kevlar, in order to study the hydrogen bonding effects on the vibrational 

spectra of PPTA polymer. By this model, we carry out the simulation of the vibrational 

spectra of two interacting Kevlar chains: the spurious bands due to the CH3 endgroups are 

still present in this case and for this reason we also solved again the vibrational problem by 

assuming “heavy” masses for the endgroups. As depicted in figure 4.41, Kevlar chains 

interact through hydrogen bonding between oxygen atoms and hydrogen atoms belonging to 

the amide group. In addition to hydrogen bonding, other molecular interactions occur into 

the real crystalline structure (such as Van der Walls interactions between phenyl group) and 

a more detailed description, taking into account the whole set of intermolecular forces acting 

on the Kevlar molecules packed in the crystal, will be reported in the following sections. 

 
Figure 4.41-PPTA dimer model 
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In the spectra reported in fig. 4.42, we can appreciate the effect of the hydrogen bonding by 

observing the relative frequency difference between amide I and II bands ((1) and (2)): 

indeed the distance between the groups labeled as (a) and (b) in fig. 4.42, is significant 

reduced in the dimer spectrum, becoming closer and closer to the experimental one. 

Hydrogen bonding is indeed responsible for a redshift of the C=O stretching (amide I) band 

and an upshift of the amide II band, thus decreasing the gap between them. In our case these 

shifts, with respect to the isolated chain are of  35 cm-1 and 14 cm-1 respectively. 

Furthermore, we can observe an increase in the number of bands belonging to the groups (a) 

and (b). The number of peaks of these bands groups is smaller for the two monomers case 

and again smaller for the experimental spectrum. This is due to the fact that these bands are 

related to vibrations of atoms close to the ends of the chain which experience a different 

“environment” than the real case. Now this is further magnified since two different 

oligomers are present in the dimer. For example, the only band belonging to the group (a) 

remaining also in the experimental spectrum, is the band at 1656 cm-1 (amide I band), which 

is related to the C=O stretching mode of the amide groups far from the ends of the chain, 

experiencing the same environment of the amide groups inside the real polymer (see fig 

4.44). 

 
 

Figure 4.42 – Comparison between DFT computed (B3LYP/6-31G(d,p)) IR spectra of the 

PPTA dimer, dimer with heavy CH3 groups, two monomers with heavy CH3 and experimental 

IR spectrum in the range between 2200 and 500 cm-1. 
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Indeed, from the spectrum calculated with heavy methyl endgroups, a reduction of the 

number of the peaks belonging to the bands groups (a) and (b) is observed, because the 

“heavy” atoms well-simulate the dynamical and mass effects of the polymer chain. A similar 

behavior is observed also in group (b). In figure 4.43 we report a zoom on the high 

frequencies range, in order to illustrate a further and well-known effect of hydrogen bonding, 

in particular band (8) which is associated to the N-H stretching vibration has a very low 

intensity both in the case of two monomers and 1D crystal model and it is widely affected 

by hydrogen bonding both in frequency and intensity. It is indeed well-known that hydrogen 

bonding implies a partial charge transfer from C=O bonds (which becomes weaker causing 

the redshift of amide I) to the antibonding orbital localized on N-H groups. Therefore, N-H 

bonds become much weaker and NH stretchings shift of hundreds of cm-1 to lower values. 

Moreover, it has been demonstrated that this causes a significant variations of charge fluxes, 

causing a massive increase of IR intensity [41, 44]. 

 

 
 

Figure 4.43 – Comparison between DFT computed (B3LYP/6-31G(d, p)) IR spectra for the 

PPTA dimer , dimer with heavy CH3 groups, two monomers with heavy CH3 and 

experimental IR spectrum in the range between 3700 and 2500 cm-1. 
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In figure 4.45 the Raman spectra of different models are also compared with the 

experimental one. 

As in the previous case, we can appreciate the hydrogen bonding influence on the reduction 

of the relative position between band (1) and (2), due mainly to the redshift of the band (1). 

 
(e)                                                            (f) 

 
(g)                                                           (h) 

 

Figure 4.44 – (e) normal modes corresponding to the band at 1694 cm-1, (f) normal mode 

corresponding to the band at 1711 cm-1, (g) normal mode corresponding to the band at 1656 

cm-1, (h) normal mode corresponding to the band at 1674 cm-1 

 
 

Figure 4.45 - Comparison between DFT computed (B3LYP/6-31G(d,p)) Raman spectra by 

means of B3LYP/6-31G(d, p) for the PPTA dimer , dimer with heavy CH3 groups, two 

monomers with heavy CH3 and experimental Raman spectrum. 
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Hydrogen bonding effect could be also observed for the bands groups marked as (a) in 

fig.4.45: their relative intensities significantly reduce moving from the two monomers 

Raman spectrum, to the dimer one. These bands are related to N-H bending mode and 

aromatic ring vibrations, which are affected by H bonding. 

 

 

 

 

 

4.4.5 Simulation of Kevlar 3D crystal 
 

In this paragraph we discuss the Raman and IR spectra obtained from the Kevlar 3D crystal 

calculations, obtained by means of CRYSTAL14. For the first time, we can take into account 

all inter-molecular interactions, approaching as much as possible the real crystalline system 

and we obtained theoretical spectra very close to the experimental ones. We have however, 

to keep in mind that these calculations are considering an ideal infinite 3D crystal, described 

by periodic boundaries conditions. In the real material amorphous domains, molecular 

disorder and boundary effects are always present, and they are probably responsible for the 

small discrepancies still present. 

 

 

 
 

4.4.5.1 Intermolecular crystal packing effects on vibrational spectra 
 

From the figure 4.47 we can appreciate the reliability of the Kevlar 3D crystal calculation in 

the description of the vibrational properties of this polymer. Many of the discrepancies 

present in the 1D crystal have been solved giving a substantial improvement and a theoretical 

spectrum very close to the experimental one. 

 
 

Figure 4.46 – Schematic rapresentation of the PPTA molecular chains arrangement inside 

the Kevlar crystal 
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In particular, we can observe the fundamental role played by the hydrogen bonding between 

C=O and N-H, which shifts upward the amide II band (2) and downward the amide I band 

(1), reducing their relative position in the spectrum. Also bands (4), (5), (6) and (7) are 

subjected to a significant frequency shift in switching from the 1D to the 3D crystal, probably 

due to a synergic effect of the hydrogen bonding and of the molecular conformation changes 

induced by the intermolecular interactions with the other chains. The discrepancies which 

are still present in our simulation are related to the prediction of the relative intensities of the 

band (3), related to C-H, N-H bending modes and aromatic rings vibrations, and band (6), 

which mainly corresponds to aromatic rings vibrations. Also considering the Raman 

spectrum, from the figure 4.48, we can appreciate the effect of crystal packing in reducing 

the frequency gap between bands (1) and (2). 3D crystal and experimental spectra present a 

significant relative intensity reduction of the band (4) with respect to the 1D crystal 

spectrum: this band corresponds indeed to the N-H bending modes which are obviously 

affected by hydrogen bonding. Unlikely to IR theoretical 3D crystal spectrum, in Raman 

calculated spectrum we still have some relative positions shifts, especially for (4), (5) and 

(6) bands, while bands (7) and (8) are well predicted both in terms of frequency and relative 

intensities.  

 

 

 
 

Figure 4.47 – Comparison between DFT computed IR spectra of Kevlar for 1D crystal and 3D 

crystal (both carried out by B3LYP/6-31G(d, p)) and Kevlar experimental spectrum 
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4.4.5.2 Comparison between different computational methods adopted 

for 3D crystal simulations 
 

 

 
 

Figure 4.48 - Comparison between DFT computed Kevlar IR spectra for 1D crystal and 3D 

crystal (both carried out by B3LYP/6-31G(d, p)) and Kevlar experimental spectrum.  

 

 
 

Figure 4.49 – Comparison between DFT computed IR spectrum of Kevlar 3D crystal at 

B3LYP/6-31G(d,p), B3LYP/pob-TZVP, PBE0/6-31G(d,p) level of theory and experimental 

Kevlar IR spectrum in the range 3700-3000 cm-1 . We adopted the following scaling factor: 

0.9614 for B3LYP/6-31G(d,p), 0,9688 for B3LYP/pob-TZVP, 0,9512 PBE0/6-31G(d,p).   
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As we have already mentioned, 3D crystal calculations have been carried out by means of 

two different exchange correlation functionals and two different basis sets. From the 3D 

crystal full geometrical optimization we have observed that the best method describing the 

Kevlar crystalline structure is B3LYP/6-31G(d, p); now we also check if this level of theory 

is again the most reliable also in predicting the vibrational spectra of Kevlar. 

In fig. 4.50 we can observe that bands (1), (2) and (3) are well described at B3LYP/6-31G(d, 

p) level of theory, even if the relative intensity of the band (3) is more well predicted by the 

pob-TZVP basis set. Furthermore, we can notice, that B3LYP/pob-TZVP method presents a 

frequency gap between amide I and II bands smaller than in the experimental spectrum. 

Relative positions of the bands (4), (5), (6) and (7), also for this case, are well calculated by 

means of B3LYP/6-31G(d, p), even if (6) and (7) relative intensities still need an 

improvement. Normal modes at lower frequencies are also predicted, but their relative 

positions are subjected to a significant redshift.  

In figure 4.49 the part of the IR spectrum containing the bands relative to the N-H stretching 

modes is reported: the band frequency corresponding to N-H stretching mode is still 

overestimated by all theoretical methods, but in this case anharmonic effects have a 

significant and well-known role in affecting the vibrational spectrum.   

 

 
 

Figure 4.50 – Comparison between DFT computed IR spectrum of Kevlar 3D crystal at 

B3LYP/6-31G(d,p), B3LYP/pob-TZVP, PBE0/6-31G(d,p) level of theory and experimental 

Kevlar IR spectrum in the range 2200-500 cm-1 . We adopted the following scaling factor: 

0.9614 for B3LYP/6-31G(d,p), 0,9688 for B3LYP/pob-TZVP, 0,9512 PBE0/6-31G(d,p).   
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Figure 4.51 – Comparison between DFT computed Raman spectrum of Kevlar 3D crystal at 

B3LYP/6-31G(d,p), B3LYP/pob-TZVP, PBE0/6-31G(d,p) level of theory and experimental 

Kevlar Raman spectrum in the range 2200-500 cm-1 . We adopted the following scaling 

factor: 0.9614 for B3LYP/6-31G(d,p), 0,9688 for B3LYP/pob-TZVP, 0,9512 PBE0/6-

31G(d,p). 

 

 
 

Figure 4.52 – Comparison between DFT computed IR spectrum of Kevlar 3D crystal at 

B3LYP/6-31G(d,p), B3LYP/pob-TZVP, PBE0/6-31G(d,p) level of theory and experimental 

Kevlar IR spectrum in the range 3700-3000 cm-1 . We adopted the following scaling factor: 

0.9614 for B3LYP/6-31G(d,p), 0,9688 for B3LYP/pob-TZVP, 0,9512 PBE0/6-31G(d,p).   
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In figure 4.51, we can appreciate the reliability of the Raman spectrum obtained by 

B3LYP/6-31G(d, p) method, where only few minor discrepancies with respect to the 

experimental Raman spectrum are observed, that are: relative positions displacement for 

bands (4), (5) and (6), and a relative intensities modulation for the bands (4) and (5). 

B3LYP/pob-TZVP is able to describe the frequency gap between bands (2) and (4) more 

accurately, but it fails in predicting band (5) relative intensity. At the same time vibrational 

calculations carried out at PBE0/6-31G(d, p) level predict with good agreement relative 

intensities of bands having frequencies lower than 1400 cm-1, and it’s the only method 

predicting band (6) with a lower intensity than band (5). 

In figure 4.52 the Raman spectra in the range from 3600 cm-1 to 2700 cm-1 is reported, in 

this range we can appreciate the bands group labeled as (a) related to C-H belonging to 

aromatic rings stretching modes and band (8) associated to N-H stretching mode. These 

calculated bands have a very low relative intensity, and they are not clearly detected in the 

experimental spectra. 
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4.4.5.3 Kevlar crystal characterization 
 

In this paragraph a detailed characterization of the IR and Raman spectra of Kevlar is 

reported, clarifying the assignments of the most significant bands of vibrational spectra and 

their corresponding frequencies and intensities. 

 

IR spectrum characterization 

 

 
 
The assignments reported in Table 4.10 are in agreement with the data found in literature, 

especially with the work done by P. K. Pim, C. Chang and L. S. Hsu [2]. Except for some 

exceptions at high frequencies, many bands are associated to normal modes having many 

different contributions and in particular at low frequencies, the complexity and the lacking 

of dominating features make the assignment of these bands not so straightforward. A brief 

description can be done anyway: bands at 674 and 733 cm-1 have a large contribution due to 

N-H and C-H bending and C-C stretching modes, at 811, 871, 996 and 1106 cm-1 are bands 

assigned to C-H bending and C-C stretching, bands at 1246 cm-1 is predominantly due to the 

in-phase combination of N-H in plane bending and C-H bending vibrations (amide III band), 

at 1319 and 1398 cm-1 we find contributions due to skeletal stretching mode and band at 

1505 cm-1 has a large contribution from the N-H in-plane bending mode. The band observed 

at 1527 cm-1 is assigned to the Amide II vibration, while at 1631 cm-1 we find the Amide I 

 
 

Figure 4.53 – Comparison between DFT calculated IR spectrum for Kevlar 3D crystal at 

B3LYP/6-31G(d, p) level of theory and experimental IR Kevlar spectrum in the range 2200 – 500 

cm-1 
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band related to C=O stretching mode. N-H stretching vibration is observed at higher 

frequencies, with the highest band at 3364 cm-1.  

 

 
 

 

 

 

Table 4.10 – Bands assignment for the PPTA 3D crystal IR spectrum as obtained by 

B3LYP/6-31G(d, p) calculations. 
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Figure 4.54 - Comparison between DFT calculated IR spectrum for Kevlar 3D crystal at 

B3LYP/6-31G(d, p) level of theory and experimental IR Kevlar spectrum in the range 3600 

– 3100 cm-1 
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Raman spectrum characterization 

 

 
 

Table 4.11 – Bands assignment for the PPTA 3D crystal Raman spectrum as obtained by 

B3LYP/6-31G(d, p) calculations.  
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Figure 4.55 - Comparison between DFT calculated Raman spectrum for Kevlar 3D 

crystal at B3LYP/6-31G(d, p) level of theory and experimental Raman Kevlar 

spectrum in the range 2200 – 500 cm-1 
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From Table 11 we can propose a characterization of the 3D Kevlar crystal Raman spectrum, 

also in this case bands at low frequencies are composed by many contributions, so they 

cannot be associated to only one chemical group. Bands in the region between 544 and 1095 

cm-1 have a large contribution from C-C and C-H stretching vibration, especially band at 

745 cm-1 is also characterized by N-H bending mode. At 1172 cm-1 we find a band mainly 

associated to C-H bending mode, bands at 1263, 1310 and 1495 cm-1  are due to C-H and N-

H vibrations. Bands at 1555 cm-1 is related to C-C stretching and C-H bending modes , while 

band at 1603 cm-1 corresponds to C-C and N-H stretching vibration and C-H bending mode. 

We find C=O stretching modes at 1639 cm-1, C-H stretching at 3151 cm-1 and N-H stretching 

mode at 3364 cm-1. 
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4.5 Polarized IR spectroscopy of Kevlar 
 

Many physical properties of polymeric materials, such as Young modulus and toughness, 

can strongly depend on the degree of orientation of the polymeric chains. There are several 

methods available to detect the molecular orientation of a particular polymer, such as X-ray 

diffraction, NMR and polarized vibrational spectroscopies (IR and Raman). In this chapter 

we will predict by means of DFT calculation polarized IR spectrum of Kevlar.   

As explained in previous chapters, molecular vibrations only give rise to infrared absorption 

if the molecular dipole moment changes during the vibration. However, to observe an 

absorption this could not be enough since this transition dipole moment should have a 

nonzero component parallel to the electric field of the incident IR beam. The absorbance will 

be proportional to the square of the scalar product of the transition moment and the electric 

field vector, which is in turn is proportional to the cosine of the angle between them. If the 

molecules are randomly oriented in the material, a non zero scalar product is always obtained 

and thus absorption is observed. However, this could not be true for highly oriented fibers: 

in this case since the dipole moment vector is fixed for polymeric molecules by varying the 

polarization of the incident radiation, we can modulate the absorption properly. Therefore, 

by using suitable polarization of the incoming light and the orientation of the dipole moment 

change due to the atoms vibrations, we could find a method to determine the orientation of 

the chains.  

We can label the dipole moment change μ associated with a normal mode of vibration and 

E the electric vector associated with the incoming radiation: in a polar coordinate system, 

μx, μy, μz are the projections onto the Cartesian axes, μ0 and E0 are the scalar magnitudes of 

the vectors μ and E and i, j, and k are the unit vectors along the directions x, y and z.  

In a randomly oriented polymer there will be a distribution of the dipole moment directions 

in this space, and in order to compute the absorption intensity we need to sum over all the 

individual dipole contributions, μi. 

 

          (4.1) 

 

 

This summation is not so straightforward to deal with analytical methods, and it’s usually 

converted in an integral using a distribution functions. All the numerical steps to convert 4.1 

in an integral go beyond the scope of this work, for this reason we will report the final results 

only: 

 

(4.2) 
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(4.3) 

 

(4.4) 

 

 

Where, g(ϕ, θ) is the polar coordinates function, which is proportional to the number of 

dipoles oriented at polar angles (ϕ, θ). For examples, if we have a single unique direction for 

all dipoles g(ϕ, θ) = 1 for a specific (ϕ, θ) and equal to zero for all other angles. 

The average of A over  all the orientations is found to be A0: 

 

(4.5) 

 

A0 is thus defined as the structural absorbance and is orientation independent and 

proportional only to the number of oscillators being observed. 

When we record an IR spectrum by means of an unpolarized radiation, the final result is 

given by summation of all dipoles contributions, but if we perform an experiment by a 

polarized laser we will observe absorption only for that normal modes which do posses a 

dipole moment with a component parallel to the electric field of the incident radiation. In the 

case of an amorphous polymers, where no orientation is present and the molecules are 

randomly oriented, there will be always dipole moment vectors parallel to the polarized 

radiation. However, for this reason, for a well-oriented polymer such as Kevlar fibers, 

peculiar polarization effects could be observed. 

 

 

 

 

4.5.1 Computational method for the prediction of polarized IR 

spectra 
 

CRYSTAL14 code, or any other quantum chemical code, must calculate the three cartesian 

components of the dipole moment derivatives with respect to each Qi vibrational normal 

mode in order to compute the IR crystal spectrum, and on this basis can provide the total 

“unpolarised” IR spectrum. In order to predict the IR polarized spectra, the IR intensity 

calculation for each dipole moment components should be carried out separately, by using 

the dipole moment derivatives already computed by CRYSTAL14. In this way we will be 

able to compute the IR spectra for the three polarization directions, which can be then 
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compared with experimental spectra recorded for parallel and perpendicular polarization 

with respect to the chain axis. 

We have carried out the computation of polarized IR spectra, for the 3D and 1D Kevlar 

crystal, by using the dipole moment derivatives obtained at B3LYP/6-31G(d, p) level of 

theory. 

CRYSTAL14 computes IR intensities by means of the following equation: 

 

 (4.6) 

 

 

         (4.7) 

 

 

where Ii
IR

 is the IR intensity in km/mol, μ is the dipole moment and Qi  is the ith  vibrational 

normal mode. CRYSTAL14 performs IR spectra calculation by taking into account in eqn. 

4.7 all the components of dipole moment derivatives with respect to the ith vibrational normal 

mode, and this is indeed the case of “unpolarized” incident light. In order to simulated the 

IR spectrum behavior with polarized laser, we have to partition the total IR intensity, in the 

component parallel to the molecule chain axis, and in the two components perpendicular to 

the chain axis. In the first case we will predict the spectra in the case of polarized light having 

the electric field direction along the molecular chain axis, while in the second case we will 

be able to predict the spectrum for polarization perpendicular to the chain axis. To this aim, 

the chains should be oriented along one of the three Cartesian directions. Unfortunately, the 

polymer chain axis, in our CRYSTAL14 calculations of Kevlar, was not oriented along one 

of the three specific Cartesian directions. To overcome this problem, we had first to find a 

proper rotation matrix R, to align the molecular chain axis along the X coordinate. By means 

of the R matrix so-determined, we then rotated the dipole moment derivatives in order to 

obtain their X, Y and Z components, where now X is the direction parallel to the chain axis 

and Y and Z perpendicular to it 

 

   (4.8) 

 
Once we have these components of the dipole moment derivatives with respect to the Qi 

normal mode, we can now easily calculate the IR intensity parallel to the chain (I// ) and the 

perpendicular one (I┴), to be compared with the polarized IR spectra recorded in our 

laboratory. 
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         (4.9) 

 

                                     (4.10) 

 

 

 

4.5.2 Comparison of experimental and DFT computed polarized 

IR spectra 
 

In figure 4.56 we show the differences between the IR spectrum of the 3D crystal calculated 

by simulating the light polarization of the electric field parallel and perpendicular to the 

chain axis. As a check of our calculations, we have also plotted the IR spectrum calculated 

as the summation of I//   and I┴ and comparing it with the usual “unpolarized” spectrum 

calculated by CRYSTAL14.  
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At first, in Figure 4.56 we can notice that CRYSTAL IR spectrum and IR spectrum 

calculated as the summation of the two components (parallel and perpendicular) of the total 

IR intensity perfectly match, demonstrating that no mistakes are present in our procedure. 

Furthermore, we can appreciate the significant differences between the spectra obtained by 

simulating the two different polarization orientations, where we observe that many bands 

appear only in one of the two spectra. This indicates that many IR active normal modes 

generate an instantaneous dipole moment with a cartesian component which prevails over 

the others, or that certain dipole moment components annihilate for symmetry reasons due 

to the regular packing of the chains in the crystal. 

Bands (1), (2) and (7) which are respectively associated to N-H stretching, C=O stretching 

and N-H out of plane bending modes, appear only in the IR spectrum calculated with 

perpendicular polarization, as expected. Indeed, these vibrations involve a significant 

variation of the dipole moment along the y and z directions, for this reason they are observed 

in the case of perpendicular polarization only. On the other hand, the IR spectrum computed 

for parallel polarization shows a large contribution from bands (3), (4), (5) and (6), which 

are related to N-H in-plane bending, C-H in-plane bending, C-C and C-N stretching modes. 

All these vibrations induce an instantaneous dipole moment mainly oriented along the x 

directions (chain directions), thus giving a predominant contribution in IR spectrum with 

electric field polarization parallel to the molecular chain axis. 

 
 

Figure 4.56 – Comparison between the IR spectra for the 3D Kevlar crystal by simulating 

perpendicular and parallel polarization with respect to the molecular chain axis, IR spectrum 

for the 3D Kevlar crystal calculated as the summation of the perpendicular and parallel 

component of the IR intensity and the standard IR spectrum calculated by CRYSTAL14. 
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In figure 4.56, we can appreciate a huge discrepancy between the two spectra calculated with 

different polarization orientation, because CRYSTAL14 calculations are carried out by 

taking into account perfectly oriented crystal. In the real polymer, even if Kevlar is highly 

oriented, domains with a different chains orientation can be present, leading to a non 

completely perfect selectivity between parallel and perpendicular spectra (see figure 4.57). 

However, also in the experimental spectra, polarization effects are very clear and evident in 

very good agreement with our computations. The comparison between experimental and 

theoretical spectra shown in figure 4.57 proves the reliability of our calculations and 

demonstrates the ability of DFT calculations in predicting also the IR spectra of polymer 

materials. 

 

 

 

 

 
 

Figure 4.57 - Comparison between the IR spectra of the 3D Kevlar crystal by simulating 

perpendicular (90°) and parallel (0°) polarization with respect to the molecular chain axis and 

the polarized experimental IR spectra recorded for parallel and perpendicular polarization. 
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Chapter 5 

 

Quantum chemical simulation of Raman spectra of 

Kevlar under mechanical stretching 
 

The characterization of mechanical properties is obviously one of the most important tasks 

in polymer science and technology. Also in this context vibrational spectroscopy can play a 

significant role, helping the understanding of the effects of mechanical deformation on the 

molecular structure of the material. Also in the case of Kevlar, a few investigations have 

been presented in the literature to analyze the dependence of the Raman spectra on applied 

stress or strain [36-40]. Literature reports that most of the Raman bands in the region between 

1100 and 1700 cm-1 shift to lower wavenumbers upon the application of a tensile strain. In 

particular,in the Raman spectrum the reference band at 1610 cm-1 mainly associated to 

aromatic rings and C-N stretching vibrations shifts in frequency (-4.5 cm-1/% for Kevlar 49) 

and broaden (2.8 cm-1/ GPa for Kevlar 49) linearly under under tensile stress up to fracture 

and an increase in the frequency shift for increasing fiber modulus (higher grade of Kevlar) 

has been reported. On the other hand, the stress-induced band broadening factor decreases 

with increasing fiber modulus, with Kevlar 149 having the lowest value. This is due to the 

higher level of molecular orientation in Kevlar 149 fibers which turns out in a more even 

load distribution on molecules within the fibers during tensile deformation. If the broadening 

is due to an uneven distribution of molecular stress, then it should fall to zero for a perfect 

PPTA crystal, as in the case of our CRYSTAL14 calculations. Values of the stress-induced 

band broadening factors and frequency shifts are listed in Table 5.1. 

In all the tensile experiments, once the stress has been released, aromatic rings vibrations 

bands restore at 1610 cm-1 and a similar behavior is observed for the broadening effect. This 

finding, once again, emphasizes the fundamental role played by the highly crystalline 

polymeric structure of Kevlar in giving an elastic behavior to this polymer.  

 

Table 5.1 – Values of Raman band shift due to strain and stress for the Kevlar fiber 

 
Fiber           Strain-induced Raman      Stress-induced Raman     Stress-induced Raman  

                      band shift (cm-1/%)           band shift (cm-1/GPa)        band broadening  

                                                                                                                (cm-1/GPa) 

Kevlar29                -3.2                                     -3.9                                      +3.4 

 

Kevlar49                -4.5                                     -3.9                                      +2.8 

 

Kevlar149              -5.1                                     -4.0                                      +1.1 
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5.1 DFT simulations of stress-dependent Raman spectra 
 

By means of CRYSTAL14, it is possible to carry out simulations of the mechanical 

stretching of 1D Kevlar chain. At first, we computed the full geometry optimization by 

taking into account the deformations due to the mechanical stretching, followed by further 

calculations of IR and Raman spectra on the geometry so obtained. All calculations have 

been performed at B3LYP/6-31G(d, p) level of theory, that, as commented before, turned 

out to be the best method in describing our system.  

In order to simulate the mechanical stretching, we performed full geometry optimization in 

ten steps, by increasing at each step the lattice parameter along the chain axis of 0.3%. 

During each optimization, lattice parameters are considered as fixed, and only the atomic 

 
 

Figure 5.1 – Experimental Raman band shift at 1610 cm-1 for Kevlar  

 

 
 

Figure 5.2 – Structural differences between Kevlar 29 and Kevlar 149 suggested by Y. 

Rao, A.J. Waddon and R.J Farris [48]. 
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positions are optimized to find their new minimum energy arrangement inside the deformed 

unit cell. The atomic Cartesian coordinates, used as input for each simulation correspond to 

the Cartesian coordinates obtained as output of the previous step. As a result of all 

calculations, we finally obtain a total strain of 3%, involving structural variations in the 

polymer chain. In particular, we can appreciate a remarkable modification of the torsional 

angle between the amide group and the teraphthalic segment, ranging from 28° for the 

undeformed 1D crystal to in 14° for the 3% deformed chain; a similar behavior is shown by 

the angle between the amide group and the p-phenylenediamine, which switches from 2° for 

the undeformed 1D crystal to 0,5° for the stretched chain. These data demonstrate that under 

certain tensile stress, molecular chains tend to become more planar and this conformation 

transitions can significantly affect the vibrational spectra. Furthermore, we also observe an 

average bond elongation of a few tenths of angstrom for each bond.  

It is important to point out that we are simulating the stretching of a 1D Kevlar chain 

stretching, and therefore we are not taking into account the inter-molecular effects due to 

crystal chain packing. For this reason, our model is just an approximation of the real system. 

When polymer fibers are affected by a tensile stress, material strain is ideally due to two 

contributions, one due to the molecular chain elongation itself and the other due to the 

relative motions between chains. Since Kevlar is characterized by a highly crystalline 

structure, its molecular chains are interacting one with each other by means of strong 

hydrogen bonds and its molecules are uniformly oriented along the fiber axis. Therefore 

according to Ref.[42] we can assuming that Kevlar fibers elongation is mainly due to 

molecular chain deformations. Under this assumption, we can consider our 1D model as a 

representative scenario of the real mechanism occurring in this polymeric material upon 

mechanical stretching. 
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5.2 DFT computed Raman spectra  

 

 
 
In agreement with previous works presented in the literature [36-40, 43], our calculated 

Raman spectra show a frequency downshift for increasing strain (see Fig. 5.3). All bands are 

characterized by a strain-induced down shift, but not all with the same magnitude. In 

particular, the band labeled as (1) in figure 5.4 is affected by a strain-induced Raman band 

shift of -3 cm-1/%, bands (2) and (3) are redshifted of 10 cm-1/%, band (4) presents a 

frequency downshift of 4.33cm-1/%, band (5) 13 cm-1/%, band (6) shifts downward of 18 

cm-1/% and band (7) has a redshift of only 1cm-1/%. Relative frequency shifts are well 

appreciable in Fig. 5.3. We can also observe that bands (1) and (7), which are the bands less 

susceptible to stretching, are associated respectively to C=O stretching mode and C-H 

bending vibrations, and these chemical bonds, are slightly affected by a strain occurring 

along the molecular chain axis. On the other hand, the most affected bands are (2), (5) and 

(6) associated to aromatic rings vibrations, C-C and C-N stretching modes. These chemical 

bonds have a large component along the chain axis, and for this reason they are widely 

influenced by the mechanical stretching. 

 

 

 
 

Figure 5.3 – DFT calculated Raman spectra evolution during the simulated 

stretching of a 1D Kevlar crystal. The Raman spectrum has been calculated for 10 

steps, each of them correspond to a strain increment of 0.3%, from the undeformed 

molecular chain to a total strain of 3%. 



121 

 

In particular, in Fig. 5.3, we can observe the progressive redshift of band (6), which also 

loses intensity and increasingly moves away from band (5), finally merging with band (7). 

Certainly, also the molecular planarity change due to the strain, plays an important role on 

these trends, but it seems to be less important in the interpretation of strain-dependent Raman 

spectrum. From experimental studies (see Table 5.1) it has been found that the strain-induced 

Raman band shift increases with the increasing of the molecular orientation (an explanation 

has been already proposed in the previous section). We can assume that our 1D Kevlar 

crystal is perfectly oriented (even if we cannot speak of a true molecular orientation because 

we are considering one single chain only) and for its nature our system is intrinsically free 

from uneven molecular stress distribution. For these reasons, the calculated redshift for the 

band (2) is almost two times higher than the one found in literature for Kevlar 149 (see Table 

5.1). 
In addition to the Raman frequency shifts, we can observe some relative intensity 

modulation. In particular, we can appreciate a relative intensity reduction for the bands (2) 

and (3), and a significant increase for the bands (4), (5) and (7).  

 

 

 

 
 

Figure 5.4 – Comparison between DFT computed Raman spectrum of 1D Kevlar 

crystal Raman spectrum at  3% of strain and in its undeformed state. 
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5.3 Experimental Raman spectra 

 

5.3.1 Experimental details  

 
In order to carry out a comparison with DFT calculations we recorded Raman spectra of 

PPTA fibers under tensile stress test in strain control in our laboratories, by means of the 

portable i-Raman 785 spectrometer (see paragraph 3.4.3) and the tensile machine. We 

performed this kind of test on Twaron strands, which is the trade name of PTTA aramid 

fibers produced by Teijin [52]. As in the case of Kevlar, many grade of Twaron exist, 

depending on the molecular orientation level, for example the Twaron grade having the less 

oriented molecular structure is Twaron LM (low modulus), while the most oriented one is 

Twaron HM (high modulus) which has almost the same mechanical properties of Kevlar 

149. This investigations has been done in collaboration with Prof. Claudia Marano (Polimi). 

 

 
 

In addition to the tensile stress test, a second test composed by two loading cycles alternated 

by a full unloading cycle has been performed: it has been done in order to check the presence 

of residual deformation and to verify if the polymer completely restores its mechanical 

properties after being unloaded. The first test was performed up to fibers breaking, by means 

of a strain-rate of 1mm per minute, while at the first stage of the second test we stretched 

fibers (at 1mm/min rate) up to a strain of 1.6% suddenly followed by a full unloading cycle, 

and at the second stage we load fibers again up to breaking with the same strain-rate. In both 

cases we obtained strands failure at a strain equal to 2.1%. In Fig. 5.6 we can observe that 

the load-strain curve is not linear for very small deformation, this non-linearity is probably 

due to a permanent deformation of the fibers caused by the locations of the fibers within the 

woven from which they were extracted.  

 

 

 

 
Figure 5.5- Stress-strain curve of Twaron fibers found in the literature [49] 

. 
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Fixing the fibers to the test machine has not been very straightforward, because fibers under 

tensile stress can slide between the clamps, and if we fix the sliding of the fibers by coiling 

them around a holder, a cutting effect may occur. In order to solve this problem related to 

the cutting effect and to the sliding, we prepared samples where the ends of a Twaron strand 

are fixed between two fiberglass tabs by means of epoxy resin (see figure 5.7), cured for one 

hour at 80°C. By this way samples are fixed to the tensile machine by plunging the 

fibersglass tabs inside the clamps, significantly reducing the cutting effects.  

Raman spectra has been recorded simultaneously to the tensile test with an acquisition rate 

of 10 seconds, on samples 15cm long with an elongation speed of 1mm/min, recording a 

spectrum every 0.11% of strand strain. During the test, no pauses have been done, in order 

to avoid relaxation phenomena. Raman spectra recorded at different times may present some 

absolute intensity discrepancies, due to the fact that the spot dimension of the incident laser 

can change as a result of the strand thinning during the test. 

 

 

 
 

Figure 5.6 - Load-strain curve of Twaron fibers carried out in our laboratory 
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5.3.2 Results 

 

 
 

 

In agreement with data found in literature, we observe that Twaron as well as Kevlar has a 

pure elastic mechanical behavior (see figure 5.5); furthermore, after the unloading cycle it 

completely restores its mechanical properties. As we can appreciate from the Fig. 5.8, Raman 

spectra, as expected, shows a downward frequency shift with increasing strain, in particular 

the most affected band is the one at 1609 cm-1. It’s important to underline that the relation 

between frequency shift and strain is quite linear, and there are not significant differences 

between first loading cycle and second one; the very minor differences that we can appreciate 

between these two cases, are probably due to spectrometer resolution and accuracy. For the 

band at 1609 cm-1, we observe a downshift of 3.5 cm-1/%, in agreement with data found in 

 
 

Figure 5.7-Twaron fibers sample 

 
 

Figure 5.8- Strain-induced frequency shift of the Raman bands of Twaron, and band shift 

obtained by DFT calculation for the isolated PTTA chain. 
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literature (see table 5.2). We can notice that the frequency downshift obtained by DFT 

calculations is higher than the experimental one, and as already explained in the previous 

sections, this discrepancy may be due to the fact that Twaron fibers are not perfectly oriented 

with respect to the ideal perfect orientation of the simulated 1D PPTA chain; indeed the 

higher is the molecular orientation, the larger will be the effect on vibrational frequencies. 

By observing the Raman spectra recorded during the tensile test (see figure 5.9 and 5.10), as 

we have predicted by means of CRYSTAL14, bands labeled (1) and (6) in figure 5.9 result 

to be less sensible to the strain effect than the other bands. In the previous sections we have 

already reported that bands (1) and (6) are related to C=O stretching mode and C-H 

stretching vibration respectively and since none of these two vibrations has a significant 

contribution from back-bone motions they are thus less affected by a mechanical stretching 

acting mainly along the chain axis. 

 

 

Table 5.2 – Values of Raman band shift due to strain and stress for the Twaron fibers 

 
Fiber              Strain-induced Raman        Stress-induced Raman        Stress-induced 

Raman   

                        band shift (cm-1/%)           band shift (cm-1/GPa)        band broadening  

                                                                                                                (cm-1/GPa) 

Twaron LM                -3.2                                     -3.9                                 +3.4 

 

Twaron IM                 -3.5                                     -4.0                                 +3.5 

 

Twaron HM               -3.7                                     -4.0                                  +2.5 

 
 

In ref. [49] C. Chang and S. L. Hsu suggested that the band (1) at 1645 cm-1 (amide I, C=O 

stretching mode) should not be strain-dependent, and the frequency change, that is anyway 

observed, can be explained by the contraction of the unit cell when the fibers are stressed, 

implying a shorter intermolecular distance and a stronger hydrogen bonding between 

adjacent molecules. However, in our isolated PPTA chain stretching simulation, where an 

isolated molecule and no hydrogen bonding is present, we observed the downward shift of 

the band related to the C=O stretching mode (see figure 5.4). This means that the unit cell 

contraction is not the main reason to explain the 1645 cm-1 band shift. As already 

demonstrated by calculations, when the fibers are stretched they get a more planar 

conformation (see paragraph 5.1): the planar conformation promotes a higher molecular 

conjugation between the phenyl groups and the amide group which implies a higher C=O 

bond charge delocalization. This phenomenon reduces the force constant of C=O bond, thus 

explaining the frequently downshift of the related stretching mode. We can also observe a 

relative intensity decrease of the band (3) due to stretching, as already found in the Raman 

spectrum obtained by DFT calculation. On the other hand, we can notice a relative intensity 

increase of the band labeled as (5) in figure 5.10 and a decrease of the band (4), and also in 
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this case these trends are in agreement with DFT calculations (see figure 5.4), even if the 

effects is larger for the latter.  

 

 

 
 

 
 

Figure 5.9- Raman spectrum evolution during mechanical stretching of Twaron fibers. 

 
 

Figure 5.10 – Comparison between Raman spectra of the unloaded and stretched (2.09%) 

Twaron strand.  
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No significant discrepancy exists between the Raman spectra obtained by mechanical 

stretching on PPTA and those predicted by CRYSTAL14 by simulating the chain strain, thus 

assessing further the validity of our approach and the reliability of the computational method 

adopted. 

In figure 5.11 it’s shown the comparison between the Twaron Raman spectrum recorded 

before the tensile test, during the mechanical stretching of the fibers and after the unloading. 

We can observe that Twaron completely restores its molecular structure after the unloading, 

since its Raman spectra before and after the mechanical stress perfectly match, both in terms 

of relative intensities and relative bands position. This result is a further proof of the highly 

crystalline structure of Kevlar, which make this polymer an elastic material.  

 

 

 
 
These experiments, once again, demonstrate the reliability of our procedure for simulating 

the mechanical stretching of polymers and the accuracy of CRYSTAL14 code in predicting 

the strain effect on the Raman spectra. We have to keep in mind that in this case we have 

simulated the mechanical stretching of an isolated infinite PPTA chain, neglecting the 

hydrogen bonding and the other effects related to the crystalline packing; despite this 

significant lack, our results are in agreement with experiments, with the only minor 

exception of the predicted intensity changes which are higher for the DFT calculations than 

in the experimental spectra. For a more detailed description of the mechanical stretching 

effects on the vibrational spectra, a 3D crystal simulation should be carried out but this is 

much more time consuming and not so relevant for Kevlar based on the present findings 

 
 

Figure 5.11-Comparison between the Raman spectrum of Twaron before the mechanical 

stretching, Twaron 1.2% strained and Twaron after the unloading cycle. 
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5.4 DFT calculation of elastic modulus 

 
Most of polymer materials, for their own macromolecular nature, are composed by very long 

chains which are not generally straight and conformationally ordered, but tend to form a 

random coil. They can be pictured as a mass of intertwined chains, where the binding forces 

are the result of van der Waals forces and hydrogen bonding (where possible) between 

molecules and mechanical entanglement between chains. When a polymeric material is 

subjected to tensile stress, molecular chains tend to orient by sliding one over the other, a 

phenomenon which is governed both by intermolecular interactions, and intramolecular 

effects due to conformational flexibility. For this reason, in general, polymer elastic modulus 

depends both on intramolecular forces but it is also widely affected by the intermolecular 

interactions between chains and by the mechanical effects due to entanglements. According 

to this reasoning, measuring the elastic modulus of a polymeric materials on the basis of a 

perfect crystalline system is a reliable procedure only for highly crystalline systems. 

Fortunately, Kevlar, as already shown and explained in previous sections, has a high 

crystalline structure and its molecular chains are well oriented along the fibers direction. 

Therefore, when Kevlar fibers undergo to a tensile stress, their elastic modulus will mainly 

depend on the molecular chain features, while intermolecular forces should play a minor 

role. This plausible assumption would explain the almost completely elastic behavior of 

Kevlar and its negligible stress relaxation reported in the literature and by our experiments.  

By means of CRYSTAL14, we performed elastic modulus calculations both for the 1D 

Kevlar chain and for the 3D Kevlar crystal according to the methods implemented in the 

code. We have to keep in mind that the elastic constants are the second derivatives of the 

energy density with respect to the strain components: 

 

 
in which V is the unit cell volume. 

The energy derivatives are evaluated by performing a perturbation to the lattice vectors of 

the equilibrium unit cell.  

In a crystalline system a point r is usually defined in terms of its fractional components: 

 

 
 

Where 11, l2, l3, are the fundamental vectors of the primitive cell and h the fractional vector. 

Under an elastic strain, any particles at r position move microscopically to r’. 



129 

 

 

 
where ε is the so-called Lagrangian elastic tensor. 

According to Voigt convention we can define: 

 

 
 

We can calculate the energy of the unit cell in the strain components yields using a Taylor 

expansion to second order, where E(0) is the energy of the equilibrium configuration. 

 

 
 

Finally, the elastic constants are computed by evaluating the energy as a function of 

deformations of the unit cell parameters. 

The elastic modulus of Kevlar depends on the grade of molecular order along the fibers 

direction and for this reason it varies from 128 GPa for Kevlar 49 to 155 GPa for Kevlar 

149, while some researchers found an elastic modulus of 200 GPa for extremely high 

oriented Kevlar fibers (by means of heat treatment under tension)[47]. 

 By means of CRYSTAL14 calculations we find out a value of 252 GPa for the 3D Kevlar 

crystal and 130 GPa for the isolated Kevlar chain. Our first results are in direct agreement 

with the one obtained by R.J. Young and co-workers in [50] and by P.K. Kim, C. Chang and 

L.S. Hsu (see reference [4]), who found a value of 241 GPa on the base of longitudinal 

acoustic mode (LAM) analysis. They stated that the fibers tensile deformation takes place 

by a combinations of chain stretching and crystal rotation, so that the fibers tensile modulus 

is controlled by the initial degree of overall orientation plus the additional orientation which 

occurs as a result of crystal rotation. Therefore, the value of 252 GPa corresponds to the 

situation when there is only crystal stretching and no rotation, and it is practically the crystal 

modulus along the chain directions. 

The lower calculated value of 130 GPa for the 1D Kevlar crystal may be due to the complete 

lack of intermolecular interactions effects which would so play an important role. Indeed, in 

a real polymer, chains would form strong hydrogen bonds with adjacent chains in the crystal, 

and the stretching of these intermolecular interactions is quite relevant and could be the 

reason for the value of the modulus so predicted [4]. A detailed investigation of how adopting 

DFT calculations properly for a very precise prediction of the tensile properties of crystalline 

polymers is out of the aim of this thesis and will be left for further studies.  
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Chapter 6 
 

Conclusions 
 

This work explored the characterization of poly(p-phenylene terephthalamide) using Raman 

and IR spectroscopy by means of both experimental and computational techniques. The goal 

of the research is the application of state-of-the-art quantum chemical calculations, in order 

to study the structural and spectroscopic properties of the crystal phase of aramid fibers, 

including also the behavior displayed upon mechanical deformation. This class of materials 

such as Kevlar, Twaron and Technora have already reach a wide number of applications in 

the technological and industrial field, even if their molecular properties have been not 

investigated in details. The rapidly growing applications for Kevlar includes ballistic 

protections, truck and bike tyres, and with its lightweight dielectric properties, tension 

reinforcement for optic-fibers above ground cables and protective coverings for underground 

and underwater optic-fibers cable. From a scientific point of view, there are many questions 

which still need an answer, especially related to the Kevlar behavior upon strain, 

compression and fatigue, interpreted at the molecular scale. In particular, the direct 

connection between mechanical behavior of polymers and molecular phenomena, make us 

able, in principle, to obtain guidelines to modify the macroscopic characteristic by means of 

a rationale design of the polymer nanostructure. Acting at these scale requires a profound 

knowledge of the molecular structure of the polymeric chains and how they affect the 

physical-chemical properties of the bulk material. In this context the importance of a detailed 

characterization of polymer materials is evident.   

A few studies, carried out by different research groups, to understand the mechanical 

behavior of Kevlar and their molecular structures have been the starting point of this work 

and most of them are based on experimental techniques, such as vibrational spectroscopy or 

X-Ray diffraction, while no computational investigation have been carried out for Kevlar.  

From the experimental hand, besides the characterization of the Raman and IR spectra for 

PPTA fibers, including the effects of polarization, we also performed Raman analysis during 

the mechanical stretching of Twaron fibers, exploring the structural changes occurring at the 

molecular scale, and the resulting behavior of Raman spectra. In agreement with results 

reported in the literature, a frequency red-shift induced by strain on the bands related to 

backbone vibrations was observed: it results, in particular, that the most strain-affected 

normal mode is the one having frequency 1609 cm-1 being associated to the aromatic rings 

vibrations. Furthermore, trough experiments performed with polarized light, it was noticed 

that many bands related to vibrations generating a parallel dipole moment with respect to the 

chain axis, disappear in the IR spectrum performed with perpendicular polarized light and 

viceversa; this fact underlines the high molecular orientation of Kevlar and Twaron fibers, 

which turns to be the primary reason these materials exhibit such highly anisotropic elastic 

behavior, with very high axial tensile strength. These experiments may provide a foundation 

for the development of NDE (non-destructive examination) technologies intended to detect 

the in-situ deterioration of Kevlar used for engineering applications that can later be 

extended to other materials such as aramid fibers composites. 



131 

 

Our experimental investigation of the vibrational properties and spectra was supported by 

state-of-the-art DFT calculations, which constituted the main part of this thesis. These kind 

of calculations have played a fundamental role in the characterization of complex molecular 

systems and proved to be an unavoidable tool for the correct and complete interpretation of 

the experimental data and materials properties. In the past, computational investigation 

focused on the structural and spectroscopic properties of polymers have been already 

reported in the literature, but all of them were based on semi-empirical methods applied only 

to small oligomers or on classical molecular dynamics. This limitation was due to the lack 

of suitable quantum chemical tools for a detailed prediction of vibrational spectra prediction 

of molecular crystals. Recently, the CRYSTAL code, developed to perform quantum-

chemical calculations for crystalline systems described by periodic boundary conditions, 

gives us the opportunity to study polymer materials, both as infinite molecular chains (the 

so-called 1D crystal) and as an ideal infinite 3D crystal. Our research group has been 

particularly active in this context and adopted this code to study in details the structure and 

vibrational properties of many polymeric materials. 

With this thesis, a further contribution to this line of research is presented: by means of 

CRYSTAL14 code we carried out DFT simulations of the Kevlar 3D crystal, isolated infinite 

Kevlar chain (the so-called 1D crystal) and Kevlar oligomers (in this case by means of the 

Gaussian code), exploring the potentiality of quantum-chemical calculations applied to 

polymer materials [14]. 

In particular, by computing the vibrational frequencies for the PPTA 3D crystal, we were 

able to characterize with high accuracy, the Raman and IR spectra, proposing an 

unambiguous band assignment in terms of the normal modes in the whole spectrum. By 

means of calculations performed on PPTA oligomers, we clarified the effects due both to 

intermolecular and intramolecular interactions on the structure and consequently on the 

vibrational spectra; in particular, we showed the capability of DFT calculations in predicting 

the significant effect of hydrogen bonding in shifting toward lower frequency the band 

associated to C=O bond stretching mode, and structural changes due to steric hindrance 

between different molecules. The mechanical stretching of Kevlar fibers was also simulated 

at the molecular scale, showing the structural changes leading to the modulations of the 

vibrational spectra and giving the possibility to rationalize these effects based on intra and 

intermolecular phenomena without any arbitrarity or assumption. 

The IR polarized spectrum calculations, provided a comparison between the response of 

Twaron fibers and the ideally perfect PPTA crystal, demonstrating the highly ordered fibers 

structure and the reliability of DFT calculations also in the prediction of the polarized 

vibrational spectra. By means of CRYSTAL14 we were also able to compute the PPTA 

crystal elastic modulus along the chain direction, which turns out to be 254 GPa in agreement 

with the value proposed by other authors. We also carried out PPTA oligomers simulations, 

in particular the PPTA monomer, two monomers and dimer models. The comparisons 

between their respective vibrational spectra shed light on the fundamental role played by the 

intermolecular and conformational phenomena in affecting the spectral features of Kevlar, 

leading to a precise rationalization of the material behavior at the molecular scale.  
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From the methodological point of view, we compared the results obtained by means of 

different exchange-correlation functionals and basis sets, underlining their weaknesses and 

strengths in simulating the real system and thus obtaining information useful in the field of 

computational quantum chemistry for the computational setup of periodic DFT calculations 

of polymeric systems.  

On more general grounds, through a combined experimental-computational approach, this 

thesis demonstrated the importance of quantum chemical calculations in materials science 

and engineering. These tools are now not only related to the interpretation of the material 

properties at the molecular scales, but have outcomes which do possess a much larger 

significance and importance. The possibility to give an unambiguous and complete 

interpretation of spectroscopic measurements has indeed relevant applications in applied 

research and technology, solving the discrepancies and limitations associated to the 

employment of experimental techniques only. 

Indeed, computational approaches are becoming more and more popular also in the industrial 

environment and it is to be expected that in the next future they will probably become a 

standard tool both in connection to experimental measurements and also for the design of 

new molecular materials with tailored properties. 
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