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Abstract

ENG

The Internet of Things is the network of physical objects that contain
embedded technology to communicate and sense or interact with their
internal states or the external environment [1]. Any object can thus become
potentially interactive thanks to the internet.

This master thesis project proposes a network prototype Contiki-based
and 6LoWPAN-based that implements a multi-interface border router that
can be used in some Internet of Things (IoT) scenarios. This prototype
wants to enable new interoperability scenarios among nodes belonging to
a WSN, which would be allowed to utilize more than one communication
interface. Possible scenarios include home automation and industrial field,
where the border router node would collect and route different subnets data
traffic and where every subnets would utilize a different communication
technology.

This project analyzes the different issues that arises with this network
prototype, such the nodes and network configuration and the packet
routing.

The proposed solution:

• has been implemented in Contiki, the de-facto standard OS for
low-power/memory-constrained IoT devices

• is based on 6LoWPAN protocol, the IETF’s standard that introduces
IPv6 in the IoT

• uses and integrates the already existing Operating System (OS)’s
routing protocols and OS data structures
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• it’s scalable: it’s possible to add as many interfaces as needed to the
border router without having to modify the kernel

• it has been tested in a real-case scenario, that is in a network based
on two communication technologies: a sub-1 GHz RF radio channel
and a power-line

• introduces a low overhead on the application footprint

• has low impact on system general performances

Keywords: 6LoWPAN, Contiki, RPL, Internet of Things, multi-interface,
multi-radio, IPv6

ITA

Internet of Things è la rete degli oggetti fisici che contengono tecnologia
embedded utilizzata per comunicare, avvertire o interagire con i loro stati
interni o con l’ambiente esterno [1]. Tutti gli oggetti dunque possono
potenzialmente acquisire un ruolo attivo grazie al collegamento alla Rete.

Questo lavoro di tesi propone un prototipo di rete basato su Contiki
e su 6LoWPAN che implementa un nodo border router multi-interfaccia
utilizzabile in alcuni scenari del mondo Internet of Things (IoT). Tale
prototipo vuole aprire nuovi scenari di interoperabilità tra i nodi di una
rete WSN, la quale sarebbe così svincolata dall’avere una sola interfaccia
di comunicazione tra nodi. Possibili scenari di utilizzo comprendono la do-
motica e l’ambito industriale, nei quali il nodo border router raccoglierebbe
ed instraderebbe il traffico dati di diverse sottoreti, ognuna basata su una
tecnologia di comunicazione differente.

In questa tesi sono state studiate le differenti problematiche afferenti
questo prototipo di rete, quali la configurazione dei nodi e i meccanismi di
instradamento dei pacchetti.

La soluzione proposta:

• è stata implementata su Contiki, l’OS standard de-facto nel mondo
dei dispositivi low-power/memory-constrained dell’IoT

• è basata sul protocollo 6LoWPAN, lo standard IETF che introduce
l’utilizzo dell’IPv6 nell’IoT
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• sfrutta e integra i protocolli di routing e le strutture dati già esistenti
nell’OS

• è scalabile: è possibile aggiungere al border router un numero arbi-
trario di interfacce senza dover apportare modifiche al kernel

• è stata testata in un caso reale di utilizzo, cioè in una rete che sfrutta
due tecnologie di comunicazione: una radio sub-1 GHz RF ed un
powerline modem

• introduce un basso overhead sul footprint del programma

• ha basso impatto sulle performance generali del sistema

Parole chiave: 6LoWPAN, Contiki, RPL, Internet of Things, multi-
interface, multi-radio, IPv6
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Introduction

Thanks to the recent technological and scientific evolution, infinite
new different possibilities are available in the Internet of Things world.
Today, we are running towards a fully-connected reality in which devices
will always more help humans, companies and state agencies in several
daily affairs allowing them to save time, money and a lot of other different
kind of resources. Different researches have been carried out to better
understand the importance of IoT revolution: for example, [2] the Internet
of Things Observatory of the School of Management of Politecnico di
Milano estimates that a national pervasive adoption of smart lighting,
smart mobility management and smart garbage collection applications
could allow citizens, public administration and companies to save up to
4,2 billion of euros/ year, and that these applications could even improve
cities liveability by avoiding the emission of 7,2 million tons of CO2/year,
and also by avoiding, for every citizen, to be stuck in the traffic or looking
for a free parking slot, saving the equivalent of 5 days every year. Other
studies tried to estimate the wideness of IoT revolution. According to
Gartner, Inc. (a technology research and advisory corporation), there will
be nearly 26 billion devices on the Internet of Things by 2020 [1], while
ABI Research estimates that more than 30 billion devices will be wirelessly
connected to the Internet of Things by 2020 [3].

For all the above reasons, IoT is currently one of the main research
trend, and great efforts will be put in this area also in the coming years.
Different topics are currently still open and under deep investigations: one
of the most important is surely related to the creation and the management
of scalable, secure and heterogeneous networks in which devices can interact
among them in a reliable and safe way. In order to implement a IoT system,
low-power-oriented and memory-constrained-oriented Operating Systems
must be utilized for the motes of a network. Many OS are available for this
purpose, but the most interesting ones are the open-source OS. In fact, every
IoT system needs customization in order to perform well, as these systems
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2 Introduction

Figure 1: Internet of Things trend

are resource-constrained. Thus, the opportunity to modify the source-code
in order to adapt the OS functionalities to a specific IoT system is very
relevant. In order to develop a IoT system, it is advisable to follow as much
as possible the standardization rules given by international organizations
like IETF and IEEE. These organizations have defined protocols to be
implemented in IoT systems’s network stack in order to obtain efficiency
and interoperability. In particular, interoperability is a hot topic in the IoT,
as these IoT systems will be composed of hundreds, even thousands devices
that will interoperate in order to furnish some services or accomplish some
tasks. In this prospective, by considering the most diffused IoT-oriented
OSs like Contiki, TinyOS and others, it has been noticed that they do
not provide interoperability to devices with different physical interfaces.
Thus, the main idea behind this work is to create a network prototype
that permits interoperability between devices with different interfaces.

Thesis Goal

Goal of this thesis is to create a 6LoWPAN-based network prototype
that exploits nodes with different communication interfaces. Such het-
erogeneous network configuration allows information exchange between
several devices, which gives users remote management opportunities for
several applications.

Thesis goal is to create a prototype to be adopted in home automation



Introduction 3

field and in industrial field. Possible home automation scenarios are
composed by sensors that communicate with household appliances, with
lightning control systems, with audio equipments (home theater, speakers..),
with entertainment devices (televisions, monitors..) and so on. Possible
industrial applications are composed of several sensors which communicate
with actuators, with automatic doors, with robots and so on. Wireless
Sensor Networks in general should benefit from 6LoWPAN multi-interface
nodes, as it should add potential to already existing IoT application fields
and even create new ones.

Furthermore, the prototype must be scalable, low-power and must have
low footprint.

Outline

This thesis work is structured as follows:

Chapter One gives a formal definition of Internet of Things and intro-
duces some underlying concepts that are needed to better focus the
topic. The chapter goes on by illustrating some enabling technologies
for the IoT and then some other relevant technologies that are needed
to fully understand this work.

Chapter Two illustrates the hardware and software state of the art. First,
Contiki (version 3.0), is introduced as the operating system selected
to implement the network prototype developed. The network stack
and the protocols already provided by Contiki are also discussed.
Then, a brief overview of other real-time operating systems running
on devices for LoWPAN networks is appended.

Chapter Three describes the developed solution, giving a brief overview
of the hardware involved, explaining the obtained working configura-
tions and detailing the introduced software modifications, which are
exposed in detail and together with some source code listings.

Chapter Four illustrates some evaluation criteria of the proposed solu-
tion.





Chapter 1

Internet of Things

The Internet of Things is the network of physical objects that contain
embedded technology to communicate and sense or interact with their
internal states or the external environment [1].

As stated by the definition, these physical objects contain embedded
technology of which some concrete examples will be given later; anyway,
these objects communicate between them, usually via radio waves (RFID),
to exchange data.

Starting from the above definition, there are some underlying technical
visions for the IoT that need to be mentioned in order to comprehend what
are the objectives in the IoT research field:

• the concept of “ubiquitous networks”, which focuses on the com-
munication aspects of technologies that are available anytime and
everywhere

• the concept of “next-generation networks” (NGN), which are inte-
grated core networks that are set to form the underlying platform
for the services and applications of the future

Ubiquitous Networks

Literally, a ubiquitous networked environment is one in which networks
are available everywhere and anytime [4]. Early forms of ubiquitous infor-
mation and communication networks are evident in the widespread use of

5



6 Chapter 1. Internet of Things

Figure 1.1: source: ITU, adapted from the Nomura Research Institute, “Ubiq-
uitous Networking: Business Opportunities and Strategic Issues”,
August 2004

mobile phones: there were over 7,2 billion mobile phones in circulation by
the end of 2014 [5]. Ubiquitous networks take mobile networks one step
further, embedding short-range mobile transceivers into a wide array of
additional gadgets and everyday items, enabling new forms of collabora-
tion and communication between people and things, and between things
themselves.

The next step in this technological revolution is to connect inanimate
objects and things to communication networks. This is the vision of a
truly ubiquitous network –“anytime, anywhere, by anyone and anything”.
Picture 1.1 gives some examples of “anytime, anywhere and anything”. In
particular, “anything” considers three main subjects: PCs, humans and
things, where things are all the generic devices which differ for some aspect
from PCs.

In this context, consumer products might be tracked using tiny radio
transmitters or tagged with embedded hyperlinks and sensors.

Today, users can connect at any time and at any location; tomorrow’s
global networks will not only consist of humans and electronic devices,
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but all sorts of inanimate things as well; these things will be able to
communicate with other things, e.g. fridges with grocery stores, laundry
machines with clothing, implanted tags with medical equipment, and
vehicles with stationary and moving objects. With the benefit of integrated
information processing capacity, industrial products will take on smart
characteristics and capabilities, e.g. electronic identities that can be queried
remotely, or they could be equipped with sensors for detecting physical
changes around them. Such developments will make the merely static
objects of today into newly dynamic things, embedding intelligence in
our environment, and stimulating the creation of innovative products and
entirely new services.

Next-Generation Networks

Nowadays the underlying mobility of services remains limited: end-user
services other than voice are hardly portable across networks, which is a
central functionality in order to exploit thing-to-thing communications.
Next-generation networks aim at offer a broader mobility. “Generalized mo-
bility” is a term closely associated with NGN, which denotes the possibility
of seamless and ubiquitous access to services, irrespective of location and
the technology used. The fundamental difference between the networks
of today and NGN will be the full transition they imply from current
circuit-switched networks to packet-based systems such as those using IP.
Future services enabled by NGN are expected to adapt to the needs of
individual users (people and things), through real-time knowledge of their
status and context: for instance, their availability and communication
status (e.g. online, offline, busy). Multiple devices, telecommunication
technologies, positioning and sensing systems, location-aware or context-
aware applications, and so on, form the integral elements of a richer NGN
communication environment. NGN will address both network and service
elements, providing new opportunities for service providers, operators,
content developers, manufacturers and users. The creation of the Internet
of Things will entail the connection of everyday objects and devices to all
kinds of networks, e.g. company intranet, peer-to-peer networks and even
the global internet; for this reason, its development is expected to be of
great impact on the telecommunication industry. It will challenge existing
structures within established companies, and form the basis for entirely
new opportunities and business models.
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1.1 ITU Enabling Technologies

After having illustrate the underlying technical visions that show how
the future will be in the next generation, the discussion moves on with the
enabling technologies for the IoT choices by the ITU.

The International Telecommunication Union is a specialized agency of
the United Nations (UN) that is responsible for issues that concern infor-
mation and communication technologies. The creation of the Internet of
Things depends on dynamic technical innovation in a number of important
fields [4]:

• in order to connect everyday objects and devices to large databases
and networks (to the internet), a simple, unobtrusive and cost-
effective system of item identification is indispensable; only then
can data about things be collected and processed. Radio-frequency
identification (RFID) offers just such a possibility

• data collection can of course benefit from the ability to detect changes
in the physical status of things, i.e. through sensor technologies

• embedded intelligence in the things themselves can further enhance
the power of the network by devolving information processing capa-
bilities to the edges of the network

• advances in miniaturization and nanotechnology mean that smaller
and smaller things will have the ability to interact and connect

A combination of all of these developments will give rise to an Internet of
Things that connects the world’s objects in both a sensory and intelligent
manner. Item-based tagging and identification will take anytime and
anywhere communications to the next revolutionary step in networking:
“anything communications”. In the chapters that follow, the characteristics
of each of the fields mentioned above will be illustrated in detail.

Radio-Frequency IDentifiers

RFID refers to those technologies that use radio waves to automatically
identify and track specific items. Technically speaking, RFID systems
consist of three main components [4]:
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• A transponder or tag to carry data, which is located on the object to
be identified; this normally consists of a coupling element (such as a
coil, or microwave antenna) and an electronic microchip, less than
1/3 millimeter in size. Tags can be passive, semi-passive or active,
based on their power source and the way they are used, and can be
read-only, read/write or read/write/re-write, depending on how their
data is encoded. Tags do not need an in-built power source, as they
take the energy they need from the electro-magnetic field emitted by
readers

• A reader or interrogator, which reads the transmitted data (e.g. on
a device that is handheld or embedded in a wall)

• A middleware which forwards the data to another system, such as
a database, a personal computer or robot control system for post-
processing or for any other kind of use

In the most common type of system, the reader transmits a low-power
radio signal to power on the tag (which, like the reader, has its own
antenna). The tag then selectively reflects energy and thus transmits some
data back to the reader, communicating its identity, location or any other
relevant information. Most of the tags are passive, and are activated only
when they are within the coverage area of the reader while, outside this
area, they remain inactive.

One of the most pivotal aspects of these kind of electronic labels is that
they enable the accurate identification of objects and the forwarding of this
information, for example, to a database stored in the Cloud or on a remote
server. In this manner, data and information processing capabilities can
be potentially associated with any kind of object. This represents one
of the first way to make not only people, but also things, connected and
contactable.

Wireless Sensor Networks (WSNs)

A sensor is an electronic device which detects, senses or measures
physical stimuli – like motion, heat or pressure – and converts them into
an analogue or digital representation, allowing the raw data detected to
be readable by machines or humans.

Sensors play a fundamental role in the building of a ubiquitous Internet
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of Things: they act as a bridge between the physical and virtual world.
Some of then most common sensors’ application areas include:

• Military – enemy tracking, battlefield surveillance etc.

• Environment – monitoring of humans or animals’ habitat, behavior
of birds, observation of environmental pollution and forecasting of
natural disasters

• Healthcare – monitoring and tracking of patients and doctors and
remote monitoring of physiological parameters, such as heart rate,
level of substances in blood, care of elderly people

• Construction – monitoring of structural integrity

• Commercial applications – remote monitoring of the temperature of
products

• Home applications – lighting, audio and video systems to security
and kitchen appliances

When a sensor is part of a sensor network, it is known as a sensor
“node”. In simple terms, sensor nodes can be connected to each other in
two ways:

• Wireline: these kind of connections provides high levels of secu-
rity and reliability, and are appropriate whenever time-critical and
mission-critical data and closed-loop control are required. However,
laying cables and relocating them at a later date can be costly and
time-consuming

• Wireless: Wireless sensor networks are generally less expensive, less
visible and more flexible. A sensor node in a wireless sensor network
is a small, low-power device, which normally includes sensors, a
power-supply source, (optionally) a data storage unit, processing
units (e.g. microcontrollers), a low-power radio module, analogue-to-
digital converters (ADCs), data transceivers and controllers that tie
all components together

One of the most important developments in sensor networks is the
possibility for nodes to self-organize themselves into a network: in this
way, information gathered and processed by a particular node identifies
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the nearest available node. This node receives the information and relays
it on to a free peer, until the information reaches its ultimate destination.

Typically, sensor nodes are constrained by technical requirements like
power consumption, size, memory and storage capacity. If the main
function of an RFID tag is to identify an object and to track the location
of a labeled product rapidly and accurately, i.e. to answer questions “what,
which and where?”, then sensor technology provides information about the
external environment and circumstances surrounding an object, thereby
answering the question: “how?”.

The main distinguishing feature of an RFID sensor tag from a normal
RFID tag is that, apart from tracking and monitoring functions, sensor-
enabled RFID can function on the basis of data collected by the sensor. As
such, it communicates information about momentous events and changes
in physical conditions, and can take action (e.g. activate an alert).

The main technical challenges for RFID sensors are their limited pro-
cessing speed, storage capacity and communication bandwidth; the effective
processing and filtering of relevant information also needs to be addressed,
as it might be costly to transmit the high volumes of data collected by
sensors. In order to overcome these technical challenges, new hardware
and software solutions are required, as is cost reduction.

Smart technologies

Current definitions of “smart” is very broad. The current trend is to
define “smart” any conventional object that can react to external stimuli.
Not only “classic “devices, such as PDAs and mobile phones, but also more
“unusual“ things like, for instance, clothes. In this regard, some of the most
interesting developments in this area include:

• Smart materials: incorporate sensors and actuators, as they sense
stimuli and respond accordingly. Currently, there are three main
kinds of smart materials:

– Passive: respond directly and uniformly to stimuli without
processing any of the signal

– Active: with a remote controller can sense a signal and determine
how to respond
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– Autonomous: carry fully integrated controllers, sensors and
actuators

• Smart clothing and wearable computing: there is no clear boundary
between smart clothing and wearable computing, although the fol-
lowing distinction may be drawn: in smart clothing, fabric remains
the basic element; optical fibers or fibers than can conduct electricity
can be woven between regular threads of fabric. By contrast, in
the case of wearable computing, computing elements are the basis
of the transformation: by miniaturizing size, decreasing weight and
adding features such as durability or laundry-compliance, computers
can be transformed into wearable computers. Wearable computing
can be seen as “the result of a design philosophy that integrates
embedded computation and sensing into everyday life to give users
continuous access to the capabilities of personal computing”[6]. Wear-
able computers could also make use of smart fabrics, incorporating
Global Positioning System (GPS), radio frequency and pressure detec-
tors, temperature and shock sensors. Wearable computer hardware
typically meets the following criteria:

– The hardware should contain a microprocessor

– The device should operate using software

– The device is usually worn or supported on the body to enable
hands-free computing

– Ideally, the computer should always be accessible and ready
to interact with its wearer through a wireline and/or wireless
communication network

Based on information about the external environment, the wearable
computer is able to respond or take certain decisions such as adjusting
to changes in temperature. Smart clothing and wearable computers
can create intimate, responsive, interactive environments, enabling
close human-to-machine interaction. Such closeness goes far beyond
the simple proximity of the body to a device. The body itself could
be used as a part of networking devices. This idea is at the heart of
the concepts of the Personal Area Network (PAN), the Body Area
Network (BAN) or the Human Area Network (HAN).

• Smart homes: networking and computing intelligence are penetrating
into every corner of the home, from lighting, audio and video systems
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to security and kitchen appliances. The smart home is not just a
collection of smart things, sensors and actuators, but an intercon-
nected network of things, enabling voice or data-activated control
from anywhere – through voicemail systems, internet, GPRS, SMS,
mobile or fixed-line telephones from outside the home.

• Smart vehicles: automobiles today represent not only safe and com-
fortable means for traveling from one place to another, but also digital
platforms for entertainment and access to information far beyond the
traveling experience. The key technologies behind the smart vehicle
have become known as “telematics”. Automotive telematics is the
blending of computers and telecommunications to enhance motor
vehicles and provide convenient online services to road users through
always-on connectivity. Using a myriad of smart materials, sensors,
and other information technology solutions, the smart vehicle could
avoid accidents, assess its own status, determine whether action needs
to be taken, and if so, take it. It may even know how to escape to
a safe haven in case of emergency. The intelligence involved in this
sort of decision-making requires self-adaptability, self-sensing and
memory.

• Robotics: automation is one of the key elements in the creation
of a smarter world. Robots will be an integral part of such an
environment. In general, a robot can be defined as an automated
machine or a mechanical device that replaces human effort and which
may, in some cases, mimic human or animal behavior or appearance.
Despite our common perception of a robot as a mechanical creature
that resembles a human being and imitates his/her behavior (a
humanoid version), robots come in a wide variety of shapes and sizes.
Robots equipped with sensors enabling them to sense and respond to
stimuli will increasingly integrate into the networked world. Robotics
introduces a greater degree of automation into everyday life, and will
play a key role in the dawn of machine-to-machine interaction, in
which data collected from the environment are forwarded to central
processing points, in order for decisions to be taken with a minimum
of human intervention. Development in personal robotics will also
change the nature of human-to-machine interaction: robots will not
only be assistants, but also friends and companions.
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Nanotechnologies

Nanotechnologies are set to change the ICT industry dramatically,
particularly reducing the size of data processing and storage devices. For
the development of a truly ubiquitous and interactive Internet of Things,
the combination of nanotechnologies and sensor technologies will be funda-
mental. Technical areas ripe for nanotechnologies include:

• Materials with properties like built-in chemical sensing or optical
switching

• Medical developments like improved drug and gene therapies, bio-
compatible materials for implants or sensors for disease detection

• Environmental benefits like purification, artificial photosynthesis of
clean energy and pollution control systems

• Information technologies, like quantum computing and computer
chips that store trillions of bits of information on a device as small
as the head of a pin

Besides the ITU enabling technologies, there are other technologies
which need to be mentioned in order to fully comprehend the evolution in
the IoT and some of the technical stuff of the project of this thesis.

1.2 Near-Field Communication (NFC)

Near field communication (NFC) is a set of communication protocols
that enable two electronic devices, one of which is usually a portable device
such as a smartphone, to establish communication by bringing them within
a 4 cm range [6].

Evolved from radio frequency identification (RFID) tech, an NFC chip
operates as one part of a wireless link. Once it is activated by another chip,
small amounts of data between the two devices can be transferred when
held a few centimeters from each other. NFC-enabled portable devices can
be provided with applications, for example to read electronic tags or make
payments when connected to an NFC-compliant apparatus. No pairing
code is necessary to link up and because it uses chips that run on very
low-power (or passive) devices, it is much more power-efficient than other
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wireless communication types. Each full NFC devices can work in three
modes:

• NFC card emulation: NFC-enabled devices such as smartphones to
act like smart cards, allowing users to perform transactions such as
payment or ticketing

• NFC reader/writer: NFC-enabled devices read information stored
on inexpensive NFC tags embedded in labels or smart posters

• NFC peer-to-peer: two NFC-enabled devices communicate with each
other to exchange information in an ad-hoc fashion

The standards were provided by the NFC Forum [nfc-forum.org], which
was responsible for promoting the technology and setting standards and
certifies device compliance. Secure communications are available by ap-
plying encryption algorithms as is done for Credit Card. NFC standards
cover communications protocols and data exchange formats and are based
on existing radio-frequency identification (RFID) standards. NFC chips
stocked inside credit cards for contact-less payments is nothing new. But
a more recent and admittedly more enticing use case for NFC is with your
smartphone, which can digitize your entire wallet.

1.3 ISM band

The industrial, scientific and medical (ISM) radio bands are reserved
internationally for the use of radio frequency (RF) energy for industrial,
scientific and medical purposes other than telecommunications. Examples
of applications in these bands include radio-frequency process heating,
microwave ovens, and medical diathermy machines. The powerful emissions
of these devices can create electromagnetic interference and disrupt radio
communication using the same frequency, so these devices were limited to
certain bands of frequencies.

Despite the intent of the original allocations, and because there are
multiple allocations, in recent years the fastest-growing uses of these bands
have been for short-range, low power communications systems: cordless
phones, Bluetooth devices, near field communication (NFC) devices, and
wireless computer networks all use frequencies allocated to low power
communications. The allocation of radio frequencies is provided according
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to Article 5 of the ITU Radio Regulations (edition 2012) and is illustrated
in picture 1.1 on the next page.

where:

• Region 1 comprises Europe, Africa, the Middle East west of the
Persian Gulf including Iraq, the former Soviet Union and Mongolia

• Region 2 covers the Americas, Greenland and some of the eastern
Pacific Islands

• Region 3 contains most of non-former-Soviet-Union Asia, east of and
including Iran, and most of Oceania

Type A frequency bands are designated for ISM applications. The use
of these frequency bands for ISM applications shall be subject to special
authorization by the administration concerned, in agreement with other
administrations whose radio-communication services might be affected. In
applying this provision, administrations shall have due regard to the latest
relevant ITU-R Recommendations.

Type B frequency bands are also designated for ISM applications.
Radio-communication services operating within these bands must accept
harmful interference which may be caused by these applications.

In Europe, the use of the ISM band is covered by Short Range Device
regulations issued by European Commission, based on technical recom-
mendations by CEPT and standards by ETSI.

Wireless LAN devices use wavebands as follows:

• Bluetooth 2450 MHz band falls under WPAN

• HIPERLAN 5800 MHz band

• IEEE 802.11/Wi-Fi 2450 MHz and 5800 MHz bands

• IEEE 802.15.4, ZigBee and other personal area networks, which will
be illustrated later, may use the 868 MHz, 915 MHz and 2450 MHz
ISM bands because of frequency sharing between different allocations
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Table 1.1: radio frequencies allocation

Center fre-
quency

Type Availability Licensed users

6.78 MHz A Subject to local
acceptance

fixed service and mobile service

13.56 MHz B Worldwide fixed and Mobile services except
Aeronautical mobile (R) service

27.12 MHz B Worldwide fixed and mobile service except
Aeronautical mobile service

40.68 MHz B Worldwide fixed, Mobile services and Earth
exploration-satellite service

433.92 MHz A only in Region 1,
subject to local
acceptance

amateur servide and radiolocation
service, additional apply the provi-
sions of footnote 5.280

915 MHz B Region 2 only
(with some excep-
tions)

fixed, Mobile except aeronautical
mobile and Radiolocation service;
in Region 2 additional Amateur ser-
vice

2.45 GHz B Worldwide fixed, mobile, radiolocation, ama-
teur and Amateur-satellite service

5.8 GHz B Worldwide fixed-satellite, radiolocation, radi-
olocation, Amateur and Amateur-
satellite service

24.125 GHz B Worldwide amateur, amateur-satellite, radi-
olocation and earth exploration-
satellite service (active)

61.25 GHz A Subject to local
acceptance

fixed, intersatellite, mobile and ra-
diolocation service

122.5 GHz A Subject to local
acceptance

earth exploration-satellite (pas-
sive), fixed, intersatellite, mobile,
space researhc (passive) and Ama-
teur service

245 GHz A Subject to local
acceptance

radiolocation, radio astronomy, am-
ateur and amateur-satellite service
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Table 1.2: LoRa details

Specification/feature LoRa Support

Range 2-5 Km in dense urban and 15 Km in suburban areas
Frequency band ISM band 868 MHz and 915 MHz
Standard IEEE 802.15.4g
Modulation spread spectrum modulation type is used which uses

wide-band linear FM pulses. The frequency increase
or frequency decrease over certain period is used to
encode data information to be transmitted. It gives
30dB improvement over FSK.

Capacity One LoRa gateway takes care of thousands of nodes.
Battery Longer battery life
LoRa Physical layer Takes care of frequency power, modulation, signaling

between nodes and gateway.

1.4 LoRa

LoRa [7] stands for Long Range Radio. It is the wireless technology
mainly targeted for Machine to Machine (aka M2M, i.e. direct commu-
nication between devices using any communications channel, including
wired and wireless) and IoT networks. This technology will enable public
or multi tenant networks to connect multiple applications running in the
same network. This LoRa technology will fulfill to develop smart city with
the help of LoRa sensors and automated products/applications. A LoRa
network can be arranged to provide coverage similar to that of a cellular
network [8]. Indeed many LoRa operators are cellular network operators
who will be able to use existing masts to mount LoRa antennas. In some
instances the LoRa antennas may be combined with cellular antennas as the
frequencies may be close and combining antennas will provide significant
cost advantages.

LoRa technology [9] is a proprietary wireless technology developed by
Semtech Corporation. It utilizes a spread spectrum modulation in the
Sub-GHz band to enable long range (greater than 10 miles) coverage, low
power consumption (up to 10 years battery power), high network capacity
(up to 1 million nodes), robust communication, and localization capability.

The LoRa protocol is a physical layer (PHY- OSI Layer 1) wireless
component. Details of the protocol are listed in table 1.2 [7].
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1.5 Wi-Fi

The Wi-Fi Alliance defines Wi-Fi as any "wireless local area network"
(WLAN) product based on the IEEE 802.11 standards. However, the term
"Wi-Fi" is used in general as a synonym for "WLAN" since most modern
WLANs are based on these standards. Many devices can use Wi-Fi, e.g.
personal computers, video-game consoles, smartphones, digital cameras,
tablet computers and digital audio players; these can connect to a network
resource such as the Internet via a wireless network access point, which
has a range of about 20 meters indoors and a greater range outdoors.

802.11b and 802.11g use the 2.4 GHz ISM band because of this choice of
frequency band, 802.11b and g equipment may occasionally suffer interfer-
ence from microwave ovens, cordless telephones, and Bluetooth devices. A
Wi-Fi signal occupies five channels in the 2.4 GHz band. Any two channel
numbers that differ by five or more, such as 2 and 7, do not overlap.

802.11a uses the 5 GHz band which, for much of the world, offers at
least 23 non-overlapping channels rather than the 2.4 GHz ISM frequency
band, where adjacent channels overlap.

1.6 Bluetooth

Bluetooth is a wireless technology standard for exchanging data over
short distances (using short-wavelength UHF radio waves in the 2.4 GHz
ISM band) from fixed and mobile devices. It was invented by telecom
vendor Ericsson in 1994 and now managed by the Bluetooth Special Interest
Group (SIG). The IEEE standardized Bluetooth as IEEE 802.15.1, but no
longer maintains the standard.

Bluetooth is a standard wire-replacement communications protocol
primarily designed for low-power consumption, with a short range based
on low-cost transceiver microchips in each device. Because the devices
use a radio (broadcast) communications system, they do not have to be
in visual line of sight of each other, however a quasi optical wireless path
must be viable. Range is power-class-dependent, but effective ranges vary
in practice: officially, class-3 radios have a range of up to 1 meter, class-2,
most commonly found in mobile devices, 10 meters, and class-1, primarily
for industrial use cases, 100 meters.
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Bluetooth is a packet-based protocol with a master-slave structure:
one master may communicate with up to eight slaves in a network called
piconet, which consists of two or more devices occupying the same physical
channel; some examples of piconets include a cell phone connected to a
computer or a laptop and a Bluetooth-enabled digital camera.

The main difference between Bluetooth and Wi-Fi is that Wi-Fi is
intended as a replacement for high speed cabling for general local area net-
work access in work areas (this category of applications is sometimes called
Wireless Local Area Networks -WLAN-), while Bluetooth was intended
for portable equipment and its applications (this category of applications
is outlined as the Wireless Personal Area Network -WPAN-).

Bluetooth exists in many products, such as telephones, tablets, media
players, robotics systems, handheld, laptops and console gaming equipment,
and some high definition headsets, modems and watches.

Bluetooth Low Energy (BLE)

Bluetooth Low Energy (LE) (also called Bluetooth Smart or Version
4.0+ of the Bluetooth specification) is the power- and application-friendly
version of Bluetooth that was built for the Internet of Things (IoT). The
power-efficiency of Bluetooth with low energy functionality makes it perfect
for devices that run for long periods on power sources such as coin cell
batteries or energy-harvesting devices.

The Bluetooth SIG identifies a number of markets for low energy
technology, particularly in the smart home, health, sport and fitness
sectors. Cited advantages include:

• low power requirements, operating for "months or years" on a button
cell

• small size and low cost

• compatibility with a large installed base of mobile phones, tablets
and computers

In the next chapters are presented a few models and protocols that will
be consistently utilized both practically and as references during this thesis
work. In particular, the OSI model and the Internet protocol suite will be
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Figure 1.2: OSI model

useful to understand the protocols utilized by Contiki and furthermore to
fully comprehend the source code modifications to enable multiple interface
communication between nodes.

1.7 OSI network stack

The Open Systems Interconnection model (OSI model) is a conceptual
model that characterizes and standardizes the communication functions of a
telecommunication or computing system without regard to their underlying
internal structure and technology. Its goal is the interoperability of diverse
communication systems with standard protocols. The model partitions a
communication system into abstraction layers. The original version of the
model defined seven layers. A layer serves the layer above it and is served
by the layer below it.
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Physical Layer

The physical layer has the following major functions:

• It defines the electrical and physical specifications of the data con-
nection

• It defines the relationship between a device and a physical transmis-
sion medium (e.g., a copper or fiber optical cable, radio frequency).
This includes the layout of pins, voltages, line impedance, cable
specifications, signal timing and similar characteristics for connected
devices and frequency (5 GHz or 2.4 GHz etc.) for wireless devices

• It defines transmission mode i.e. simplex, half duplex, full duplex

• It defines the network topology as bus, mesh, or ring being some of
the most common

• Encoding of bits is done in this layer

• It determines whether the encoded bits will be transmitted by base-
band (digital) or broadband (analog) signaling

• It mostly deals with raw data

The physical layer of Parallel SCSI operates in this layer, as do the
physical layers of Ethernet and other local-area networks, such as Token
Ring, FDDI, ITU-T G.hn, and IEEE 802.11 (Wi-Fi), as well as personal
area networks such as Bluetooth and IEEE 802.15.4.

Data link layer

The goal of the data link layer is to provide reliable, efficient communi-
cation between adjacent machines connected by a single communication
channel. Specifically:

• Group the physical layer bit stream into units called frames. Note that
frames are nothing more than packets or messages. By convention,
we’ll use the term frames when discussing DLL packets
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• Sender checksums the frame and sends checksum together with data.
The checksum allows the receiver to determine when a frame has
been damaged in transit

• Receiver recomputes the checksum and compares it with the received
value. If they differ, an error has occurred and the frame is discarded

• Perhaps return a positive or negative acknowledgment to the sender.
A positive acknowledgment indicate the frame was received without
errors, while a negative acknowledgment indicates the opposite

• Flow control. Prevent a fast sender from overwhelming a slower
receiver. For example, a supercomputer can easily generate data
faster than a PC can consume it

• In general, provide service to the network layer. The network layer
wants to be able to send packets to its neighbors without worrying
about the details of getting it there in one piece

IEEE 802 divides the data link layer into two sublayers:[10]

• Media Access Control (MAC) layer - responsible for controlling
how devices in a network gain access to medium and permission to
transmit it

• Logical Link Control (LLC) layer - responsible for identifying Net-
work layer protocols and then encapsulating them and controls error
checking and frame synchronization.

The MAC and LLC layers of IEEE 802 networks such as 802.3 Ethernet,
802.11 Wi-Fi, and 802.15.4 ZigBee, operate at the data link layer.

Network layer

The network layer provides the functional and procedural means of
transferring variable length data sequences (called datagrams) from one
node to another connected to the same network. It translates logical
network address into physical machine address. A network is a medium
to which many nodes can be connected, on which every node has an
address and which permits nodes connected to it to transfer messages to
other nodes connected to it by merely providing the content of a message
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and the address of the destination node and letting the network find the
way to deliver the message to the destination node, possibly routing it
through intermediate nodes. If the message is too large to be transmitted
from one node to another on the data link layer between those nodes, the
network may implement message delivery by splitting the message into
several fragments at one node, sending the fragments independently, and
reassembling the fragments at another node. It may, but need not, report
delivery errors.

Message delivery at the network layer is not necessarily guaranteed to
be reliable. A network layer protocol may provide reliable message delivery,
but it need not do so.

Transport layer

The transport layer provides the functional and procedural means of
transferring variable-length data sequences from a source to a destination
host via one or more networks, while maintaining the quality of service
functions.

The transport layer controls the reliability of a given link through flow
control, segmentation/desegmentation, and error control. Some protocols
are state- and connection-oriented. This means that the transport layer can
keep track of the segments and retransmit those that fail. The transport
layer also provides the acknowledgement of the successful data transmission
and sends the next data if no errors occurred. The transport layer creates
packets out of the message received from the application layer. Packetizing
is a process of dividing the long message into smaller messages. There are
two primary transport layer protocols at present:

• Transmission Control Protocol (TCP): provides reliable, ordered,
and error-checked delivery of a stream of octets between applications
running on hosts communicating over an IP network. TCP is the
protocol that major Internet applications such as the World Wide
Web, email, remote administration and file transfer rely on

• User Datagram Protocol (UDP): connectionless ("datagram") trans-
port service. It has no handshaking dialogues and thus exposes
the user’s program to any unreliability of the underlying network
protocol: there is no guarantee of delivery, ordering, or duplicate
protection. The protocol provides checksums for data integrity and
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port numbers for addressing different functions at the source and
destination of the datagram

Session layer

The session layer controls the dialogues (connections) between comput-
ers. It establishes, manages and terminates the connections between the
local and remote application. It provides for full-duplex, half-duplex, or
simplex operation, and establishes checkpointing, adjournment, termina-
tion, and restart procedures. The OSI model made this layer responsible
for graceful close of sessions, which is a property of the Transmission
Control Protocol, and also for session checkpointing and recovery, which
is not usually used in the Internet Protocol Suite. The session layer is
commonly implemented explicitly in application environments that use
remote procedure calls.

Presentation layer

The presentation layer establishes context between application-layer
entities, in which the application-layer entities may use different syntax and
semantics if the presentation service provides a big mapping between them.
If a mapping is available, presentation service data units are encapsulated
into session protocol data units, and passed down the protocol stack.

This layer provides independence from data representation (e.g., en-
cryption) by translating between application and network formats. The
presentation layer transforms data into the form that the application ac-
cepts. This layer formats and encrypts data to be sent across a network.
It is sometimes called the syntax layer.

Application layer

The application layer is the OSI layer closest to the end user, which
means both the OSI application layer and the user interact directly with
the software application. This layer interacts with software applications
that implement a communicating component. Such application programs
fall outside the scope of the OSI model. Application-layer functions typ-
ically include identifying communication partners, determining resource
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availability, and synchronizing communication. When identifying com-
munication partners, the application layer determines the identity and
availability of communication partners for an application with data to
transmit. When determining resource availability, the application layer
must decide whether sufficient network or the requested communication
exists. In synchronizing communication, all communication between appli-
cations requires cooperation that is managed by the application layer. This
layer supports application and end-user processes. Communication part-
ners are identified, quality of service is identified, user authentication and
privacy are considered, and any constraints on data syntax are identified.
Everything at this layer is application-specific.

1.8 Internet Protocol Suite

The Network Stack, also known as the Internet protocol suite is the
computer networking model and set of communications protocols used
on the Internet and similar computer networks. It is commonly known
as TCP/IP, from its most important protocols, the Transmission Control
Protocol (TCP) and the Internet Protocol (IP) were the first networking
protocols defined in this standard.

The network stack provides end-to-end connectivity specifying how
data should be packetized, addressed, transmitted, routed and received
at the destination; these functionalities are organized in four abstraction
layers which are used to sort all related protocols according to the scope
of networking involved; from lowest to highest, the layers are:

• link layer: contains communication methods for data that remains
within a single network segment (link)

• internet layer: connects independent networks, thus establishing
internetworking

• transport layer: handles host-to-host communication

• application layer: provides process-to-process data exchange for
applications

The TCP/IP model and many of its protocols are maintained by the
Internet Engineering Task Force (IETF).
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If we compare the Internet protocol suite with the OSI model, which
is the standard about communication functions of telecommunication or
computing systems, we notice that:

• the three top layers in the OSI model, i.e. the application layer,
the presentation layer and the session layer, are not distinguished
separately in the TCP/IP model, which only has an application layer
above the transport layer

• the link layer is a combination of the data link layer (layer 2) and
the physical layer (layer 1) of OSI model

In general, direct or strict comparisons should be avoided because the
layering in TCP/IP is not a principal design criterion and in general is
considered to be "harmful", as stated by RFC 3439 document. The IETF
has repeatedly stated that Internet protocol and architecture development
is not intended to be OSI-compliant.

IETF’s RFC 1122 document loosely defines a four-layer model, with
the layers having names, not numbers, as explained in the next chapters.

Application Layer

This layer contains the communications protocols and interface methods
used in process-to-process communications across an Internet Protocol (IP)
computer network. The application layer only standardizes communication
and depends upon the underlying transport layer protocols to establish
host-to-host data transfer channels and manage the data exchange in
a client-server or peer-to-peer networking model. Though the TCP/IP
application layer does not describe specific rules or data formats that
applications must consider when communicating, the original specification
(in RFC 1123) does rely on and recommend the robustness principle for
application design.

There are two categories of application layer protocols: user protocols
that provide service directly to users, and support protocols that provide
common system functions. The most common Internet user protocols
are Telnet (remote login), FTP (file transfer) and SMTP (electronic mail
delivery).
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Support protocols, used for host name mapping, booting, and man-
agement, include SNMP, BOOTP, RARP, and the Domain Name System
(DNS) protocols.

Transport Layer

This layer performs host-to-host communications on either the same
or different hosts and on either the local network or remote networks
separated by routers; it provides a channel for the communication needs of
applications and services such as connection-oriented data stream support,
reliability, flow control, and multiplexing. The two primary transport layer
protocols are TCP and UDP.

Internet Layer

This layer consists of a group of internetworking methods, protocols,
and specifications that are used to transport datagrams (packets) from the
originating host across network boundaries, if necessary, to the destination
host specified by a network address (IP address) which is defined for this
purpose by the Internet Protocol (IP). The internet layer derives its name
from its function of forming an internet (uncapitalized), or facilitating
internetworking, which is the concept of connecting multiple networks with
each other through gateways. This layer defines the addressing and routing
structures used for the TCP/IP protocol suite. The primary protocol in
this scope is the Internet Protocol, which includes provision for addressing,
type-of-service specification, fragmentation and reassembly, and security
information. The datagram or connectionless nature of the IP protocol
is a fundamental and characteristic feature of the Internet architecture.
A common design aspect in the internet layer is the robustness principle:
"Be liberal in what you accept, and conservative in what you send" as a
misbehaving host can deny Internet service to many other users.

The internet layer has three basic functions:

• For outgoing packets, select the next-hop host (gateway) and transmit
the packet to this host by passing it to the appropriate link layer
implementation

• For incoming packets, capture packets and pass the packet payload
up to the appropriate transport layer protocol, if appropriate
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• Provide error detection and diagnostic capability

Link Layer

The link layer contains the group of methods and communications
protocols that only operate on the link that a host is physically connected
to. The link is the physical and logical network component used to
interconnect hosts or nodes in the network and a link protocol is a suite of
methods and standards that operate only between adjacent network nodes
of a local area network segment or a wide area network connection. In
particular, the link layer is a combination of the data link layer (layer 2)
and the physical layer (layer 1) of the OSI model.

1.9 IEEE 802.15.4

IEEE 802.15.4 is a standard created and maintained by consultants
which specifies the physical layer and media access control for low-rate
wireless personal area networks (LR-WPANs). It is maintained by the
IEEE 802.15 working group, which has defined it in 2003.

IEEE Std 802.15.4 defines the physical layer (PHY) and medium access
control (MAC) sublayer specifications for low-data-rate wireless connec-
tivity with fixed, portable, and moving devices with no battery or very
limited battery consumption requirements typically operating in the per-
sonal operating space (POS) of 10 m. It is foreseen that, depending on
the application, a longer range at a lower data rate may be an acceptable
trade-off. [11] It can be contrasted with other approaches, such as Wi-Fi,
which offer more bandwidth and require more power.

The standard defines two types of physical device [11, 12] :

• Full-Function Device (FFD): can talk to every node in the network
(both FFD or Reduced-Function Devices) and can operate in three
logical modes:

– PAN coordinator: is fundamental to forming a new network, It
may have an overall knowledge of the entire network, whatever
that may be, but at all times it is responsible for network address
allocation
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– Router: its primary role in the network is to route packets
– End device: handles only communications and data transfer for

itself

• Reduced-Function Devices (RFD): is intended for applications that
are extremely simple, such as a light switch or an occupancy sensor;
they generally communicate infrequently, spending most of their time
in a quiescent state. An RFD may only associate with a single FFD
at a time. Consequently, the RFD can be implemented using minimal
resources and memory capacity.

Networks can be built as either peer-to-peer or star networks [11];
however, every network needs at least one FFD to work as the coordinator
of the network. Networks are thus formed by groups of devices separated
by suitable distances; each device has a unique 64-bit identifier, and if some
conditions are met short 16-bit identifiers can be used within a restricted
environment [12]; namely, within each PAN domain, communications will
probably use short identifiers. 16 bit address space implies up to 65.535
nodes in a IEE 802.15.4 network.

The IEEE 802.15.4 specification supports many applications with MAC
security requirements; however, if the networks are not secured, confiden-
tiality, privacy, and integrity could be compromised.

The 802.15.4 security layer is handled at the media access control
layer [11]; the application specifies its security requirements by setting the
appropriate control parameters into the radio stack: if the application does
not set any parameters, then security is not enabled by default.

The cryptographic mechanism in this standard is based on symmetric-
key cryptography and uses keys that are provided by higher layer processes
[11]; the establishment and maintenance of these keys are outside the
scope of this standard. The cryptographic mechanism provides particular
combinations of the following security services:

• Data confidentiality: Assurance that transmitted information is only
disclosed to parties for which it is intended

• Data authenticity: Assurance of the source of transmitted information
(and, hereby, that information was not modified in transit). This
service is also known as Access control and message integrity

• Replay protection: Assurance that duplicate information is detected
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Cryptographic frame protection may use a key shared between two peer
devices (link key) or a key shared among a group of devices (group key),
thus allowing so me flexibility and application-specific trade-offs between
key storage and key maintenance costs versus the cryptographic protection
provided. If a group key is used for peer-to-peer communication, protection
is provided only against outsider devices and not against potential malicious
devices in the key-sharing group.

The 802.15.4 specification defines eight different security suites [11]; we
can classify them by the properties that they offer: no security, encryption
only (AES-CTR), authentication only (AES-CBC-MAC) and encryption
and authentication (AES-CCM). For each suite that offers encryption, the
recipient can optionally enable replay protection.

In the IEEE 802 reference model of computer networking, the medium
access control or media access control (MAC) layer is the lower sublayer
of the data link layer (layer 2) of the seven-layer OSI model. The MAC
sublayer provides addressing and channel access control mechanisms that
make it possible for several terminals or network nodes to communicate
within a multiple access network that incorporates a shared medium, e.g.
an Ethernet network. The hardware that implements the MAC is referred
to as a media access controller.

The MAC sublayer acts as an interface between the logical link control
(LLC) sublayer and the network’s physical layer. The MAC layer emulates
a full-duplex logical communication channel in a multi-point network.
This channel may provide unicast, multicast or broadcast communication
service.

The MAC enables the transmission of MAC frames through the use
of the physical channel; besides the data service, it offers a management
interface and itself manages access to the physical channel and network
beaconing; it also controls frame validation, guarantees time slots and
handles node associations. Finally, it offers hook points for secure services.

The physical medium is accessed through a CSMA/CA protocol. Below
are listed the principal IEEE 801.15.4 MAC and PHY layers features:

• Frequency bands:

– 868.0–868.6 MHz: Europe, allows one communication channel
– 902–928 MHz: North America, up to thirty channels
– 2400–2483.5 MHz: worldwide use, up to sixteen channels.
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• Data transfer rates: 20kbit/s, 40kbit/s, 100kbit/s and 250kbit/s

• Range: 10-20m

• Addressing: IEEE 64-bit addresses

• Network nodes: Up to 264 devices

• Security: 128 AES

• Channel access: CSMA-CA

CSMA/CA

Carrier sense multiple access (CSMA) is a probabilistic media access
control (MAC) protocol in which a node verifies the absence of other traffic
before transmitting on a shared transmission medium.

Carrier sense multiple access with collision avoidance (CSMA/CA) is
a network multiple access method in which carrier sensing is used, but
nodes attempt to avoid collisions by transmitting only when the channel is
sensed to be "idle"; when they do transmit, nodes transmit their packet
data in its entirety.

• Carrier Sense: prior to transmitting, a node first listens to the shared
medium to determine whether another node is transmitting or not.
First, it tries to detect the presence of a carrier signal from another
node before attempting to transmit: if a carrier is sensed, the node
waits for the transmission in progress to end before initiating its own
transmission. In other words, CSMA is based on the principle "sense
before transmit" or "listen before talk"

• Multiple access: multiple nodes may send and receive on the medium

• Collision avoidance: used to improve the performance of the CSMA
method by attempting to divide the channel somewhat equally among
all transmitting nodes within the collision domain. If another node
was heard, it waits for a period of time for the node to stop trans-
mitting before listening again for a free communications channel

The IEEE 802.15.4 LR-WPAN uses two types of channel access mecha-
nism, depending on the network configuration [11]:
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• Non-beacon-enabled PANs use an unslotted CSMA-CA channel ac-
cess mechanism

• Beacon-enabled PANs use a slotted CSMA-CA channel access mecha-
nism, where the backoff slots are aligned with the start of the beacon
transmission; the backoff slots of all devices within one PAN are
aligned to the PAN coordinator

1.10 CoAP

Constrained Application Protocol (CoAP) is an application layer proto-
col intended to be used in very simple electronics devices. It is particularly
targeted for small low power sensors, switches, valves and similar compo-
nents that need to be controlled or supervised remotely, through standard
Internet networks; it is also intended for use in resource-constrained internet
devices, such as WSN nodes.

CoAP adopts patterns from HTTP such as resource abstraction, URIs,
RESTful interaction, and extensible header options, but uses a compact
binary representations that are designed to be easy to parse. Unlike
HTTP over TCP, CoAP uses UDP. This makes it possible to use CoAP in
one-to-many and many-to-one communication patterns.

Central CoAP mechanisms are:

• Applications can send CoAP messages reliably (“confirmable”) or
non-reliably (“non-confirmable”). Confirmables are retransmitted
with exponential timeouts until acknowledged by the receiver or
reaching the maximum number of retransmissions

• CoAP is intended to provide group communication via IP multicast

• CoAP features native push notifications through a publish/subscribe
mechanism called "observing resources". Clients can send a request
with an observe header option to a CoAP resource. The server keeps
track of these subscribers and sends a response whenever the observed
resource changes
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1.11 ICMP

The Internet Control Message Protocol (ICMP) is a control protocol
that is considered to be an integral part of IP, although it is architecturally
layered upon IP, i.e., it uses IP to carry its data end-to-end just as a
transport protocol like TCP or UDP does. ICMP provides error reporting,
congestion reporting, and first-hop gateway redirection. ICMP differs from
transport protocols such as TCP and UDP in that it is not typically used
to exchange data between systems, nor it is regularly employed by end-user
network applications (with the exception of some diagnostic tools like ping
and traceroute). Some new ICMP control messages are exploited by IPv6
in order to setup the network. These new kind of messages are explained
later.

1.12 IPv6

Definitions

LINK - RFC 4861 (Neighbor Discovery in IPv6): "a communication
facility or medium over which nodes can communicate at the link layer,
i.e., the layer immediately below IP. Examples are Ethernets (simple or
bridged), PPP links, X.25, Frame Relay, or ATM networks as well as
Internet-layer (or higher-layer) "tunnels", such as tunnels over IPv4 or
IPv6 itself."

LINK - RFC 4903 (Multi-Link Subnet Issues): "generally used to
refer to a topological area bounded by routers that decrement the IPv4
TTL or IPv6 Hop Limit when forwarding the packet."

ON-LINK ADDRESS : in RFC 5942 (IPv6 Subnet Model: The
Relationship between Links and Subnet Prefixes): "In IPv6, an address is
on-link (with respect to a specific LINK), if the address has been assigned
to an interface attached to that LINK. Any node attached to the LINK
can send a datagram directly to an on-link address without forwarding the
datagram through a ROUTER.”

in RFC 4861: “If a packet destination address is on-link, the next-hop
address is that exactly address. Otherwise, the sender selects a router from
the Default Router List.”
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INTERFACE - RFC 4861: "a node’s attachment to a LINK."

ADDRESS - RFC 4861: "an IP-layer identifier for an INTERFACE
or a set of interfaces"

ROUTER - RFC 4861: "a node that forwards IP packets not explicitly
addressed to itself."

LINK-LAYER ADDRESS - RFC 4861: "a link-layer identifier for
an INTERFACE. Examples include IEEE 802 addresses for Ethernet links."

PREFIX - RFC 4861: "a bit string that consists of some number of
initial bits of an address."

SUBNET - RFC 4903: "generally used to refer to a topological
area that uses the same address prefix, where that prefix is not further
subdivided except into individual addresses."

NEIGHBORS - RFC 4861: "nodes attached to the same LINK."

LINK, ROUTER and SUBNET - RFC 4862 (IPv6 Stateless Ad-
dress Autoconfiguration): "ROUTERS advertise prefixes that identify the
SUBNET(S) associated with a LINK, while hosts generate an "interface
identifier" that uniquely identifies an interface on a SUBNET. An address
is formed by combining the two. In the absence of ROUTERS, a host
can only generate link-local addresses. However, link-local addresses are
sufficient for allowing communication among nodes attached to the same
LINK."
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Internet Protocol version 6 (IPv6) [13] is the most recent version of
the Internet Protocol (IP), the communications protocol that provides an
identification and location system for computers on networks and routes
traffic across the Internet. IPv6 was developed by the Internet Engineering
Task Force (IETF) to deal with the long-anticipated problem of IPv4
address exhaustion. IPv6 is intended to replace IPv4.

With the rapid growth of the Internet after commercialization in the
1990s, it became evident that far more addresses than the IPv4 address
space were necessary to connect new devices in the future; by 1998, the
IETF had formalized the successor protocol.

IPv6 uses a 128-bit address, theoretically allowing 2128, or approximately
3, 4 ∗ 1038 addresses. The actual number is slightly smaller, as multiple
ranges are reserved for special use or completely excluded from use.

The total number of possible IPv6 address is more than 7, 9∗1028 times
as many as IPv4, which uses 32-bit addresses and provides approximately
4.3 billion addresses. The two protocols are not designed to be interoperable,
complicating the transition to IPv6; however, several IPv6 transition
mechanisms have been devised to permit communication between IPv4
and IPv6 hosts.

IPv6 provides other technical benefits in addition to a larger addressing
space: in particular, it permits hierarchical address allocation methods
that facilitate route aggregation across the Internet, and thus limit the
expansion of routing tables.

Packet Header

In IPv6, the packet header and the process of packet forwarding have
been simplified. Although IPv6 packet headers are at least twice the size of
IPv4 packet headers, packet processing by routers is generally more efficient
because less processing is required in routers. This furthers the end-to-end
principle of Internet design, which envisioned that most processing in the
network occurs in the leaf nodes.

The IPv6 header is not protected by a checksum. Integrity protection
is assumed to be assured by both the link layer or error detection and
correction methods in higher-layer protocols, such as TCP and UDP. The
TTL field of IPv4 has been renamed to Hop Limit in IPv6, reflecting the
fact that routers are no longer expected to compute the time a packet has
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Figure 1.3: IPv6 header

spent in a queue.

An octet consists of 8 bits, i.e. a byte. Octets are often expressed and
displayed using a variety of representations, for example in the hexadecimal,
decimal, or octal number systems. The binary value of all 8 bits set (or
turned on) is 11111111, equal to the hexadecimal value FF, the decimal
value 255, and the octal value 377. One octet can be used to represent
decimal values ranging from 0 to 255. Octets are used in the representation
of Internet Protocol computer network addresses. An IPv4 address consists
of four octets, usually shown individually as a series of decimal values
ranging from 0 to 255, each separated by a full stop (dot). Using octets
with all eight bits set, the representation of the highest numbered IPv4
address is 255.255.255.255. An IPv6 address consists of sixteen octets,
shown using hexadecimal representation (two digits per octet) and using a
colon character (:) after each pair of octet for readability for readability,
like this FE80:0000:0000:0000:0123:4567:89AB:CDEF. The IPv6 packet
header has a minimum size of 40 octets. Options are implemented as
extensions. This provides the opportunity to extend the protocol in the
future without affecting the core packet structure.

An IPv6 packet has two parts: a header and a payload. The header
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consists of a fixed portion with minimal functionality required for all
packets and may be followed by optional extensions to implement special
features. The fixed header occupies the first 40 octets (320 bits) of the
IPv6 packet. It contains the source and destination addresses, traffic
classification options, a hop counter, and the type of the optional extension
or payload which follows the header. This Next Header field tells the
receiver how to interpret the data which follows the header. If the packet
contains options, this field contains the option type of the next option. The
"Next Header" field of the last option, points to the upper-layer protocol
that is carried in the packet’s payload. Extension headers carry options
that are used for special treatment of a packet in the network, e.g., for
routing, fragmentation, and for security using the IPsec framework.

Unlike with IPv4, routers never fragment a packet. Hosts are expected
to use Path MTU Discovery to make their packets small enough to reach
the destination without needing to be fragmented.

IPv6 Addressing

In this paragraph is not discussed neither site-local addresses nor IPv4-
Compatible IPv6 addresses as they are considered deprecated.

IPv6 addresses consist of two parts. The most-significant 64 bits are
the subnet prefix to which the host is connected, and the least-significant
64 bits are the identifier of the host interface on the subnet. This means
that the identifier need only be unique on the subnet to which the host is
connected, which simplifies the detection of duplicate addresses.

There are three types of addresses:

• Unicast: An identifier for a single interface. A packet sent to a unicast
address is delivered to the interface identified by that address.

• Anycast: An identifier for a set of interfaces (typically belonging to
different nodes). A packet sent to an anycast address is delivered to
one of the interfaces identified by that address (the "nearest" one,
according to the routing protocols’ measure of distance).

• Multicast: An identifier for a set of interfaces (typically belonging to
different nodes). A packet sent to a multicast address is delivered to
all interfaces identified by that address.
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There are no broadcast addresses in IPv6, their function is superseded
by multicast addresses.

IPv6 addresses of all types are assigned to interfaces, not nodes.

The preferred text representation form of addresses is x:x:x:x:x:x:x:x,
where the ’x’s are one to four hexadecimal digits of the eight 16-bit pieces
of the address. Examples:

ABCD:EF01:2345:6789:ABCD:EF01:2345:6789

2001:DB8:0:0:8:800:200C:417A

Due to some methods of allocating certain styles of IPv6 addresses, it is
common for addresses to contain long strings of zero bits. In order to make
writing addresses containing zero bits easier, a special syntax is available
to compress the zeros. The use of "::" indicates one or more groups of
16 bits of zeros. The "::" can only appear once in an address. The "::"
can also be used to compress leading or trailing zeros in an address. For
example, the following addresses:

a unicast address 2001:DB8:0:0:8:800:200C:417A
a multicast address FF01:0:0:0:0:0:0:101
the loopback address 0:0:0:0:0:0:0:1
the unspecified address 0:0:0:0:0:0:0:0

may be represented as

a unicast address 2001:DB8:0:0:8:800:200C:417A
a multicast address FF01::101
the loopback address ::1
the unspecified address ::

An IPv6 address prefix is represented by the notation:

ipv6-address/prefix-length

For example, the following are legal representations of the 60-bit prefix
20010DB80000CD3 (hexadecimal):

2001:0DB8:0000:CD30:0000:0000:0000:0000/60

2001:0DB8::CD30:0:0:0:0/60

2001:0DB8:0:CD30::/60
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When writing both a node address and a prefix of that node address
(e.g., the node’s subnet prefix), the two can be combined as follows:

the node address 2001:0DB8:0:CD30:123:4567:89AB:CDEF
and its subnet number 2001:0DB8:0:CD30::/60
can be abbreviated as 2001:0DB8:0:CD30:123:4567:89AB:CDEF/60

The type of an IPv6 address is identified by the high-order bits of the
address, as follows:

Address type Binary prefix IPv6 notation

Unspecified 00...0 (128 bits) ::/128
Loopback 00...1 (128 bits) ::1/128
Multicast 11111111 FF00::/8

Link-Local unicast 1111111010 FE80::/10
Global Unicast (everything else)

Unicast Addresses

An IPv6 unicast address refers to a single interface. Since each interface
belongs to a single node, any of that node’s interfaces’ unicast addresses
may be used as an identifier for the node. All interfaces are required to
have at least one Link-Local unicast address. A single interface may also
have multiple IPv6 addresses of any type (unicast, anycast, and multicast)
or scope. There is one exception to this addressing model: A unicast
address or a set of unicast addresses may be assigned to multiple physical
interfaces if the implementation treats the multiple physical interfaces as
one interface when presenting it to the internet layer. This is useful for
load-sharing over multiple physical interfaces.

There are several types of unicast addresses in IPv6, in particular,
Global Unicast and Link-Local unicast

IPv6 nodes may have considerable or little knowledge of the internal
structure of the IPv6 address, depending on the role the node plays (for
instance, host versus router). At a minimum, a node may consider that
unicast addresses (including its own) have no internal structure:

128 bits
node address

A slightly sophisticated host (but still rather simple) may additionally
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be aware of subnet prefix(es) for the link(s) it is attached to, where different
addresses may have different values for n:

n bits 128-n bits
subnet prefix interface ID

Interface Identifiers

Interface identifiers in IPv6 unicast addresses are used to identify
interfaces on a link. They are required to be unique within a subnet prefix.
It is recommended that the same interface identifier not be assigned to
different nodes on a link. They may also be unique over a broader scope.
In some cases, an interface identifier is derived directly from that interface’s
link-layer address. The same interface identifier may be used on multiple
interfaces on a single node, as long as they are attached to different subnets.

Note that the uniqueness of interface identifiers is independent of the
uniqueness of IPv6 addresses. For example, a Global Unicast address may
be created with a local scope interface identifier and a Link-Local address
may be created with a universal scope interface identifier.

For all unicast addresses, except those that start with the binary value
000, Interface IDs are required to be 64 bits long and to be constructed in
Modified EUI-64 format. Modified EUI-64 format-based interface identifiers
may have universal scope when derived from a universal token (e.g., IEEE
802 48-bit MAC or IEEE EUI-64 identifiers) or may have local scope where
a global token is not available or where global tokens are undesirable.
Derivation method for Modified EUI-64 format is not deepen, as it does
not affect this work.

Unspecified Address

The address 0:0:0:0:0:0:0:0 is called the unspecified address. It must
never be assigned to any node. It indicates the absence of an address. One
example of its use is in the Source Address field of any IPv6 packets sent
by an initializing host before it has learned its own address.
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Loopback Address

The unicast address 0:0:0:0:0:0:0:1 is called the loopback address. It
may be used by a node to send an IPv6 packet to itself. It must not
be assigned to any physical interface. It is treated as having Link-Local
scope, and may be thought of as the Link-Local unicast address of a virtual
interface (typically called the "loopback interface") to an imaginary link
that goes nowhere.

Global Unicast Addresses

The general format for IPv6 Global Unicast addresses is as follows:

n bits m bits 128-n-m bits
global routing prefix subnet ID interface ID

where the global routing prefix is a (typically hierarchically- structured)
value assigned to a site (a cluster of subnets/links), the subnet ID is an
identifier of a link within the site, and the interface ID is as defined as
before illustrated.

Link-local Unicast Addresses

Link-Local addresses are for use on a single link. Link-Local addresses
have the following format:

10 bits 54 bits 64 bits
1111111010 0 interface ID

Link-Local addresses are designed to be used for addressing on a single
link for purposes such as automatic address configuration (illustrated in
the next paragraphs), neighbor discovery (next paragraphs), or when no
routers are present. Routers must not forward any packets with Link-Local
source or destination addresses to other links.

IPv6 Addresses with Embedded IPv4 Addresses

The "IPv4-Mapped IPv6 address" was defined to assist in the IPv6
transition and is used to represent the addresses of IPv4 nodes as IPv6
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addresses. The format is as follows:

80 bits 16 bits 32 bits
0000.......0000 FFFF IPv4 address

Note: The IPv4 address used must be a globally-unique IPv4 unicast
address.

Anycast Addresses

An IPv6 anycast address is an address that is assigned to more than
one interface (typically belonging to different nodes), with the property
that a packet sent to an anycast address is routed to the "nearest" interface
having that address, according to the routing protocols’ measure of distance.
Anycast addresses are allocated from the unicast address space, using
any of the defined unicast address formats. Thus, anycast addresses are
syntactically indistinguishable from unicast addresses. When a unicast
address is assigned to more than one interface, thus turning it into an
anycast address, the nodes to which the address is assigned must be
explicitly configured to know that it is an anycast address.

Multicast Addresses

An IPv6 multicast address is an identifier for a group of interfaces
(typically on different nodes). An interface may belong to any number of
multicast groups. Multicast addresses have the following format:

8 bits 4 bits 4 bits 112 bits
11111111 flgs scop group ID

flags is a set of 4 flags: | 0 | R | P | T |

The high-order flag is reserved, and must be initialized to 0.

T = 0 indicates a permanently-assigned ("well-known") multicast ad-
dress, assigned by the Internet Assigned Numbers Authority (IANA).

T = 1 indicates a non-permanently-assigned ("transient" or "dynami-
cally" assigned) multicast address.

scop is a 4-bit multicast scope value used to limit the scope of the
multicast group. Some of the values are interface-Local, link-local, admin-
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local and global.

Interface-Local scope spans only a single interface on a node and is
useful only for loopback transmission of multicast. Link-Local multicast
scope spans the same topological region as the corresponding unicast scope.
Admin-Local scope is the smallest scope that must be administratively
configured, i.e., not automatically derived from physical connectivity or
other, non-multicast-related configuration.

Group ID identifies the multicast group, either permanent or transient,
within the given scope.

Pre-defined Multicast Addresses

The following well-known multicast addresses are pre-defined.

All Nodes Addresses:

FF01:0:0:0:0:0:0:1

FF02:0:0:0:0:0:0:1

The above multicast addresses identify the group of all IPv6 nodes,
within scope 1 (interface-local) or 2 (link-local).

All Routers Addresses:

FF01:0:0:0:0:0:0:2

FF02:0:0:0:0:0:0:2

FF05:0:0:0:0:0:0:2

The above multicast addresses identify the group of all IPv6 routers,
within scope 1 (interface-local) or 2 (link-local).

Solicited-Node Address:

FF02:0:0:0:0:1:FFXX:XXXX

Solicited-Node multicast address are computed as a function of a node’s
unicast and anycast addresses. A Solicited-Node multicast address is
formed by taking the low-order 24 bits of an address (unicast or anycast)
and appending those bits to the prefix FF02:0:0:0:0:1:FF00::/104 resulting
in a multicast address in the range
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FF02:0:0:0:0:1:FF00:0000

to

FF02:0:0:0:0:1:FFFF:FFFF

For example, the Solicited-Node multicast address corresponding to
the IPv6 address 4037::01:800:200E:8C6C is FF02::1:FF0E:8C6C.

Solicited-node multicast address utilization is described in paragraph
1.14.

All RPL nodes addresses (link-local scope):

FF02::1a

Node’s Required Addresses

A host is required to recognize the following addresses for identifying
itself:

• Its required Link-Local address for each interface

• Any additional Unicast and Anycast addresses that have been con-
figured for the node’s interfaces (manually or automatically)

• The loopback address

• The All-Nodes multicast addresses

• The Solicited-Node multicast address for each of its unicast and
anycast addresses

• Multicast addresses of all other groups to which the node belongs

A router is required to recognize all addresses that a host is required
to recognize, plus the following addresses as identifying itself:

• The Subnet-Router Anycast addresses for all interfaces for which it
is configured to act as a router

• All other Anycast addresses with which the router has been configured

• The All-Routers multicast addresses
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Default Address Selection

The IPv6 addressing architecture allows multiple unicast addresses to
be assigned to interfaces. These addresses may have different reachability
scopes (link-local or global) and may also be "preferred" or "deprecated".
Privacy considerations have introduced the concepts of "public addresses"
and "temporary addresses". The mobility architecture introduces "home
addresses" and "care-of addresses". The end result is that IPv6 implemen-
tations is very often faced with multiple possible source and destination
addresses when initiating communication. It is desirable to have default
algorithms, common across all implementations, for selecting source and
destination addresses so that developers and administrators can reason
about and predict the behavior of their systems.

Source Address Selection

The source address selection algorithm uses the concept of a "candidate
set" of potential source addresses for a given destination address. The
candidate set is the set of all addresses that could be used as a source
address; the source address selection algorithm picks an address out of
that set. It is recommended that the candidate source addresses be the
set of unicast addresses assigned to the interface that will be used to send
to the destination. (The "outgoing" interface.) On routers, the candidate
set may include unicast addresses assigned to any interface that forwards
packets.

1

For multicast and link-local destination addresses, the set of candi-
date source addresses must only include addresses assigned to interfaces
belonging to the same link as the outgoing interface.

In any case, anycast addresses, multicast addresses, and the unspecified
address must not be included in a candidate set.

The source address selection algorithm produces as output a single

1Contiki’s source address selection algorithm (SAS in the following) refers to an
obsoleted RFC document [14] that has been updated by the RFC 6724 [15]. In
this paragraph, is presented the obsoleted version in order to understand Contiki’s
implementation. Anyway, the main concepts that are here reported are still valid in the
updated version of sas.
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source address for use with a given destination address. This algorithm
only applies to IPv6 destination addresses, not IPv4 addresses. In this
algorithm, the most relevant rules in order of relevance are the following:

• Prefer the same address: If SA = D, then prefer SA. Similarly, if SB
= D, then prefer SB

• Prefer appropriate scope: If Scope(SA) < Scope(SB): If Scope(SA)
< Scope(D), then prefer SB and otherwise prefer SA

• Avoid deprecated addresses

• Prefer outgoing interface: If SA is assigned to the interface that will
be used to send to D and SB is assigned to a different interface, then
prefer SA

• Use longest matching prefix: If CommonPrefixLen(SA, D) > Com-
monPrefixLen(SB, D), then prefer SA

The specification of source address selection assumes that routing (more
precisely, selecting an outgoing interface on a node with multiple interfaces)
is done before source address selection.

For example, suppose a node has interfaces on two different links, with
both links having a working default router. Both of the interfaces have
preferred global addresses. When sending to a global destination address,
if there’s no routing reason to prefer one interface over the other, then an
implementation may preferentially choose the outgoing interface that will
allow it to use the source address that shares a longer common prefix with
the destination.

Implementations may also use the choice of router to influence the
choice of source address. For example, suppose a host is on a link with two
routers. One router is advertising a global prefix A and the other router is
advertising global prefix B. Then when sending via the first router, the
host may prefer source addresses with prefix A and when sending via the
second router, prefer source addresses with prefix B.

Destination Address Selection

The destination address selection algorithm [45] takes a list of destina-
tion addresses and sorts the addresses to produce a new list. The most
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important rules of this algorithm are:

• Avoid unusable destinations: If DB is known to be unreachable or if
Source(DB) is undefined, then prefer DA

• Prefer matching scope

• Avoid deprecated addresses

• Prefer smaller scope

• Use longest matching prefix

1.13 6LoWPAN

6LoWPAN [10, 16] is an acronym of IPv6 over Low power Wireless
Personal Area Networks; 6LoWPAN is the name of the working group in the
internet area of IETF and a specification to allow the use of IPv6 over IEEE
802.15.4 networks. Low-power wireless personal area networks (LoWPANs)
comprise devices that conform to the IEEE 802.15.4-2003 standard by the
IEEE. IEEE 802.15.4 devices are characterized by short range, low bit rate,
low power, and low cost. Many of the devices employing IEEE 802.15.4
radios are limited in their computational power, memory, and/or energy
availability. A LoWPAN is a simple low cost communication network that
allows wireless connectivity in applications with limited power and relaxed
throughput requirements. A LoWPAN typically includes devices that work
together to connect the physical environment to real-world applications,
e.g., wireless sensors.

Some of the characteristics of LoWPANs are as follows:

• Small packet size. Given that the maximum physical layer packet
(MTU) with 802.15.4 is 127 bytes, the resulting maximum frame size
at the media access control layer is 102 octets, as 802.15.4 maximum
frame overhead is of 25 bytes. Link-layer security imposes further
overhead up to 21 bytes, which in the maximum case leaves 81 octets
for data packets. IP header then is 40 bytes, and 8 byte are required
by UDP header. Thus, the remaining bytes for actual data are only
33
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• Support for both 16-bit short or IEEE 64-bit extended media access
control addresses

• Low bandwidth. Data rates of 250 kbps, 40 kbps, and 20 kbps for
each of the currently defined physical layers (2.4 GHz, 915 MHz, and
868 MHz, respectively)

• Topologies include star and mesh operation

• Low power. Typically, some or all devices are battery operated

• Low cost. These devices are typically associated with sensors,
switches, etc. This drives some of the other characteristics such
as low processing, low memory, etc. Numerical values for "low"
elided on purpose since costs tend to change over time

• Large number of devices expected to be deployed during the lifetime
of the technology. This number is expected to dwarf the number of
deployed personal computers, for example

• Location of the devices is typically not predefined, as they tend to be
deployed in an ad-hoc fashion. Furthermore, sometimes the location
of these devices may not be easily accessible. Additionally, these
devices may move to new locations

• Devices within LoWPANs tend to be unreliable due to variety of
reasons: uncertain radio connectivity, battery drain, device lockups,
physical tampering, etc

• In many environments, devices connected to a LoWPAN may sleep
for long periods of time in order to conserve energy, and are unable
to communicate during these sleep periods

6LoWPAN operates packet fragmentation below the network layer: in
fact, this protocol logically add a layer called “adaptation layer” between
the network layer and the MAC layer of the TCP/IP stack. The header
compression compress IP addresses when they can be derived from other
headers, such as the 802.15.4 MAC header. For instance, it compress prefix
for link-local addresses (fe80::) and elide address completely when it can
be fully derived from the link-layer address. Furthermore, it compress
common headers, as TCP, UDP and ICMP.

Devices in 6LoWPAN can be divided in two groups as mentioned in
IEEE 802.15.4 section: full function and reduced function devices. FFDs
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Figure 1.4: IPv6 plus UDP header

typically have more resources and may be main powered. Accordingly,
FFDs aid RFDs by providing functions such as network coordination, packet
forwarding, interfacing with other types of networks, etc. In figure 1.4 is
illustrated a IPv6 plus UDP header.

A standard IPv6/UDP header is 48 bytes in length. Figure 1.5 on the
facing page gives an example of 6LoWPAN/UDP header in its simplest
form (equivalent to the lower packet in Figure 1.6 on the next page), with
a dispatch value and IPv6 header compression (LOWPAN IPHC), all IPv6
fields compressed, then followed by a UDP next-header compression byte
(LOWPAN NHC) with compressed source and destination port fields and
the UDP checksum (4 bytes).

Therefore in the likely best case the 6LoWPAN/UDP header is just 6
bytes in length.
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Figure 1.5: 6LoWPAN header in its simplest form

Figure 1.6: IEEE 802.15.4 frame with 6LoWPAN/UDP header
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Figure 1.7: LLN: Mesh VS RouteOver

Mesh-Under and Route-Over Routing

In general, there are two categories of routing protocols [17, 18]: the
mesh-under and the route-over. Figure 1.7 shows layers on which the
routing decision occurs in TCP/IP protocol stack for 6LoWPAN. For mesh-
under scheme the routing decision is taken in adaptation layer, whereas
for route-over scheme the decision is taken in network layer.

In mesh-under scheme, the network layer does not perform any IP
routing inside a LoWPAN. The adaptation layer performs the mesh routing
and forwards packets to the destination over multiple radio hops. In mesh-
under scheme, routing and forwarding are performed at link layer based on
802.15.4 frame or the 6LoWPAN header. To send a packet to a particular
destination, the EUI 64 bit address or the 16 bit short address is used and
sent it to a neighbor node to move the packet closer to the destination.
Multiple link layer hops are used to complete a single IP hop and so it is
called mesh-under. The networks which should adopts mesh-under protocol
should present these characteristics:

• Single broadcast domain: All devices appear directly attached to the
same broadcast medium and the IP layer can transmit a datagram
to any number of devices attached to the same link. More formally,
all communication is transitive within a single broadcast domain (if
A can send to B and B can send to C, then A can send to C)

• Deterministic link characteristics: any differences in link characteris-
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tics (e.g. communication latency, throughput, and loss rates) between
different node pairs attached to the same link are insignificant. From
a routing perspective, the link cost rarely varies

• High reliability: the link delivers messages to their intended destina-
tion with relatively high reliability

Some of the issues that arise with tentative to exploit mesh-under
routing protocol in LLNs are reported here [36]. Mesh-under routing is
exploited by ethernet networks.

In route-over scheme all routing decisions are taken in the network
layer where each node acts as an IP router. In route-over, each link layer
hop is an IP hop. The IP routing supports the forwarding of packets
between these links. In the forwarding process IP routing tables and IPv6
hop-by-hop options are used. For routing and forwarding processes the
network layer takes decision using the additional encapsulated IP header.
This kind of protocol was adopted by RPL, the standard routing protocol
for LLN.

1.14 Neighbor Discovery Protocol for IPv6

Nodes (hosts and routers) use Neighbor Discovery for IPv6 (ND6) [19]
to determine the link-layer addresses for neighbors known to reside on
attached links and to quickly purge cached values that become invalid.
Hosts also use Neighbor Discovery to find neighboring routers that are
willing to forward packets on their behalf. Finally, nodes use the protocol
to actively keep track of which neighbors are reachable and which are not,
and to detect changed link-layer addresses. When a router or the path to
a router fails, a host actively searches for functioning alternates.

This protocol solves a set of problems related to the interaction between
nodes attached to the same link. It defines mechanisms for solving each of
the following problems:

• Router Discovery: How hosts locate routers that reside on an attached
link

• Prefix Discovery: How hosts discover the set of address prefixes that
define which destinations are on-link for an attached link (Nodes use
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prefixes to distinguish destinations that reside on-link from those
only reachable through a router)

• Parameter Discovery: How a node learns link parameters (such as
the link MTU) or Internet parameters (such as the hop limit value)
to place in outgoing packets

• Address Autoconfiguration: Introduces the mechanisms needed in
order to allow nodes to configure an address for an interface in a
stateless manner. Stateless address autoconfiguration is explained in
the next paragraphs

• Address resolution: How nodes determine the link-layer address of
an on-link destination (e.g., a neighbor) given only the destination’s
IP address

• Next-hop determination: The algorithm for mapping an IP destina-
tion address into the IP address of the neighbor to which traffic for
the destination should be sent. The next- hop can be a router or the
destination itself

• Neighbor Unreachability Detection: How nodes determine that a
neighbor is no longer reachable. For neighbors used as routers,
alternate default routers can be tried. For both routers and hosts,
address resolution can be performed again

• Duplicate Address Detection: How a node determines whether or
not an address it wishes to use is already in use by another node

• Redirect: How a router informs a host of a better first-hop node to
reach a particular destination

ICMPv6 Protocol Packets

Neighbor Discovery defines five different ICMP packet types: A pair of
Router Solicitation and Router Advertisement messages, a pair of Neigh-
bor Solicitation and Neighbor Advertisements messages, and a Redirect
message. The messages serve the following purpose:

• Router Solicitation: When an interface becomes enabled, hosts may
send out Router Solicitations that request routers to generate Router
Advertisements immediately rather than at their next scheduled time
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• Router Advertisement: Routers advertise their presence together with
various link and Internet parameters either periodically, or in response
to a Router Solicitation message. Router Advertisements contain
prefixes that are used for determining whether another address shares
the same link (on-link determination) and/or address configuration,
a suggested hop limit value, etc. In a RA, in the option fields of the
packet can be present the Prefix Information Option. These options
specify the prefixes that are on-link and/or are used for stateless
address autoconfiguration. A router should include all its on-link
prefixes (except the link-local prefix) so that multihomed hosts have
complete prefix information about on-link destinations for the links
to which they attach. If complete information is lacking, a host with
multiple interfaces may not be able to choose the correct outgoing
interface when sending traffic to its neighbors

• Neighbor Solicitation: Sent by a node to determine the link-layer
address of a neighbor, or to verify that a neighbor is still reachable
via a cached link-layer address. Neighbor Solicitations are also used
for Duplicate Address Detection

• Neighbor Advertisement: A response to a Neighbor Solicitation
message. A node may also send unsolicited Neighbor Advertisements
to announce a link-layer address change

• Redirect: Used by routers to inform hosts of a better first hop for a
destination

On multicast-capable links, each router periodically multicasts a Router
Advertisement packet announcing its availability. A host receives Router
Advertisements from all routers, building a list of default routers.

Router Advertisements contain a list of prefixes used for on-link de-
termination and/or autonomous address configuration; flags associated
with the prefixes specify the intended uses of a particular prefix. Hosts
use the advertised on-link prefixes to build and maintain a list that is
used in deciding when a packet’s destination is on-link or beyond a router.
Note that a destination can be on-link even though it is not covered by
any advertised on- link prefix. In such cases, a router can send a Redirect
informing the sender that the destination is a neighbor.

Nodes accomplish address resolution by multicasting a Neighbor Solici-
tation that asks the target node to return its link-layer address. Neighbor
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Solicitation messages are multicast to the solicited-node multicast address
of the target address. The target returns its link-layer address in a unicast
Neighbor Advertisement message. A single request-response pair of packets
is sufficient for both the initiator and the target to resolve each other’s
link-layer addresses; the initiator includes its link-layer address in the
Neighbor Solicitation.

Neighbor Unreachability Detection detects the failure of a neighbor or
the failure of the forward path to the neighbor. Doing so requires positive
confirmation that packets sent to a neighbor are actually reaching that
neighbor and being processed properly by its IP layer. When positive
confirmation is not forthcoming through such "hints", a node sends unicast
Neighbor Solicitation messages that solicit Neighbor Advertisements as
reachability confirmation from the next hop.

Data Structures

Hosts need to maintain the following pieces of information for each
interface:

• Neighbor Cache: A set of entries about individual neighbors to which
traffic has been sent recently. Entries are keyed on the neighbor’s
on-link unicast IP address and contain such information as its link-
layer address, a flag indicating whether the neighbor is a router or a
host, a pointer to any queued packets waiting for address resolution
to complete, etc. A Neighbor Cache entry also contains information
used by the Neighbor Unreachability Detection algorithm, including
the reachability state, the number of unanswered probes, and the
time the next Neighbor Unreachability Detection event is scheduled
to take place

• Destination Cache: A set of entries about destinations to which traffic
has been sent recently. The Destination Cache includes both on-link
and off-link destinations and provides a level of indirection into the
Neighbor Cache; the Destination Cache maps a destination IP address
to the IP address of the next-hop neighbor. This cache is updated
with information learned from Redirect messages. Implementations
may find it convenient to store additional information not directly
related to Neighbor Discovery in Destination Cache entries, such
as the Path MTU (PMTU) and round-trip timers maintained by
transport protocols
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• Prefix List - A list of the prefixes that define a set of addresses that
are on-link (see paragraph [Definitions] for on-link address definition).
Prefix List entries are created from information received in Router
Advertisements. Each entry has an associated invalidation timer
value (extracted from the advertisement) used to expire prefixes
when they become invalid. A special "infinity" timer value specifies
that a prefix remains valid forever, unless a new (finite) value is
received in a subsequent advertisement. The link-local prefix is
considered to be on the prefix list with an infinite invalidation timer
regardless of whether routers are advertising a prefix for it

• Default Router List: A list of routers to which packets may be
sent. Router list entries point to entries in the Neighbor Cache; the
algorithm for selecting a default router favors routers known to be
reachable over those whose reachability is suspect. Each entry also
has an associated invalidation timer value (extracted from Router
Advertisements) used to delete entries that are no longer advertised

The Neighbor Cache contains information maintained by the Neighbor
Unreachability Detection algorithm. A key piece of information is a
neighbor’s reachability state, which is one of five possible values:

• INCOMPLETE: Address resolution is in progress and the link-layer
address of the neighbor has not yet been determined.

• REACHABLE: Roughly speaking, the neighbor is known to have
been reachable recently (within tens of seconds ago).

• STALE: The neighbor is no longer known to be reachable but until
traffic is sent to the neighbor, no attempt should be made to verify
its reachability.

• DELAY: The neighbor is no longer known to be reachable, and
traffic has recently been sent to the neighbor. Rather than probe
the neighbor immediately, however, delay sending probes for a short
while in order to give upper-layer protocols a chance to provide
reachability confirmation.

• PROBE: The neighbor is no longer known to be reachable, and unicast
Neighbor Solicitation probes are being sent to verify reachability.
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Sending Algorithm

When sending a packet to a destination, a node uses a combination
of the Destination Cache, the Prefix List, and the Default Router List
to determine the IP address of the appropriate next hop, an operation
known as "next-hop determination". Once the IP address of the next hop
is known, the Neighbor Cache is consulted for link-layer information about
that neighbor.

Next-hop determination for a given unicast destination operates as
follows. The sender performs a longest prefix match against the Prefix
List to determine whether the packet’s destination is on- or off-link. If the
destination is on-link, the next-hop address is the same as the packet’s
destination address. Otherwise, the sender selects a router from the Default
Router List.

For efficiency reasons, next-hop determination is not performed on
every packet that is sent. Instead, the results of next-hop determination
computations are saved in the Destination Cache (which also contains
updates learned from Redirect messages). When the sending node has
a packet to send, it first examines the Destination Cache. If no entry
exists for the destination, next-hop determination is invoked to create a
Destination Cache entry.

Once the IP address of the next-hop node is known, the sender examines
the Neighbor Cache for link-layer information about that neighbor. If
no entry exists, the sender creates one, sets its state to INCOMPLETE,
initiates Address Resolution, and then queues the data packet pending
completion of address resolution. For multicast-capable interfaces Address
Resolution consists of sending a Neighbor Solicitation message and waiting
for a Neighbor Advertisement. When a Neighbor Advertisement response
is received, the link-layer addresses is entered in the Neighbor Cache entry
and the queued packet is transmitted.

For multicast packets, the next-hop is always the (multicast) destination
address and is considered to be on-link.

Each time a Neighbor Cache entry is accessed while transmitting a
unicast packet, the sender checks Neighbor Unreachability Detection related
information according to the Neighbor Unreachability Detection algorithm.
This unreachability check might result in the sender transmitting a unicast
Neighbor Solicitation to verify that the neighbor is still reachable.
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Next-hop determination is done the first time traffic is sent to a desti-
nation. As long as subsequent communication to that destination proceeds
successfully, the Destination Cache entry continues to be used. If at some
point communication ceases to proceed, as determined by the Neighbor
Unreachability Detection algorithm, next-hop determination may need to
be performed again.

IPv6 Stateless Address Autoconfiguration

The stateless address autoconfiguration mechanism [20] allows a host
to generate its own addresses using a combination of locally available infor-
mation and information advertised by routers. (Classic) routers advertise
prefixes that identify the subnet(s) associated with a (classic) link, while
hosts generate an "interface identifier" that uniquely identifies an interface
on a subnet. An address is formed by combining the two. In the absence of
routers, a host can only generate link-local addresses. However, link-local
addresses are sufficient for allowing communication among nodes attached
to the same link.

The stateless approach is used when a site is not particularly concerned
with the exact addresses hosts use, so long as they are unique and properly
routable. On the other hand, Dynamic Host Configuration Protocol for
IPv6 (DHCPv6) [21] is used when a site requires tighter control over
exact address assignments. Both stateless address autoconfiguration and
DHCPv6 may be used simultaneously.

Each address has an associated lifetime that indicates how long the
address is bound to an interface. When a lifetime expires, the binding (and
address) become invalid and the address may be reassigned to another
interface elsewhere in the Internet. To handle the expiration of address
bindings gracefully, an address goes through two distinct phases while
assigned to an interface. Initially, an address is "preferred", meaning
that its use in arbitrary communication is unrestricted. Later, an address
becomes "deprecated" in anticipation that its current interface binding
will become invalid. While an address is in a deprecated state, its use is
discouraged, but not strictly forbidden.

To ensure that all configured addresses are likely to be unique on a given
link, nodes run a "duplicate address detection" algorithm on addresses
before assigning them to an interface. The Duplicate Address Detection
algorithm is performed on all addresses, independently of whether they are



60 Chapter 1. Internet of Things

obtained via stateless autoconfiguration or DHCPv6.

Since host autoconfiguration uses information advertised by (classic)
routers, routers need to be configured by some other means.

Nodes (both hosts and routers) begin the autoconfiguration process by
generating a link-local address for the interface. A link-local address is
formed by combining the well-known link-local prefix FE80::0 (of appro-
priate length) with an interface identifier as follows:

• The left-most ’prefix length’ bits of the address are those of the
link-local prefix

• The bits in the address to the right of the link-local prefix are set to
all zeroes

• If the length of the interface identifier is N bits, the right- most N
bits of the address are replaced by the interface identifier

A link-local address has an infinite preferred and valid lifetime; it is
never timed out.

Before the link-local address can be assigned to an interface and used,
however, a node must attempt to verify that this "tentative" address is
not already in use by another node on the link. Specifically, it sends
a Neighbor Solicitation message containing the tentative address as the
target. If another node is already using that address, it will return a
Neighbor Advertisement saying so.

If a node determines that its tentative link-local address is not unique,
autoconfiguration stops and manual configuration of the interface is re-
quired. To simplify recovery in this case, it should be possible for an
administrator to supply an alternate interface identifier that overrides the
default identifier in such a way that the autoconfiguration mechanism can
then be applied using the new (presumably unique) interface identifier.
Alternatively, link-local and other addresses will need to be configured
manually.

Once a node ascertains that its tentative link-local address is unique,
it assigns the address to the interface. At this point, the node has IP-level
connectivity with neighboring nodes. The remaining autoconfiguration
steps are performed only by hosts.
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The next phase of autoconfiguration involves obtaining a Router Ad-
vertisement or determining that no routers are present. If routers are
present, they will send Router Advertisements that specify what sort of
autoconfiguration a host can do.

Routers send Router Advertisements periodically, but the delay between
successive advertisements will generally be longer than a host performing
autoconfiguration will want to wait. To obtain an advertisement quickly, a
host sends one or more Router Solicitations to the all-routers multicast
group.

Router Advertisements also contain zero or more Prefix Information
options that contain information used by stateless address autoconfigu-
ration to generate global addresses. One Prefix Information option field,
the "autonomous address-configuration flag", indicates whether or not the
option even applies to stateless autoconfiguration. If it does, additional op-
tion fields contain a subnet prefix, together with lifetime values, indicating
how long addresses created from the prefix remain preferred and valid.

1.15 ND over 6LoWPANs

IPv6 Neighbor Discovery provides several important mechanisms used
for router discovery, address resolution, Duplicate Address Detection, and
Redirect messages, along with prefix and parameter discovery. Following
power-on and initialization of the network in IPv6 Ethernet networks, a
node joins the solicited-node multicast address on the interface and then
performs Duplicate Address Detection (DAD) for the acquired link-local
address by sending a solicited-node multicast message to the link. After
that, it sends multicast messages to the all-routers multicast address to
solicit Router Advertisements (RAs). If the host receives a valid RA with
the A (autonomous address configuration) flag, it autoconfigures the IPv6
address with the advertised prefix in the RA message. Besides this, the IPv6
routers usually send RAs periodically on the network. RAs are sent to the
all-nodes multicast address. Nodes send Neighbor Solicitation/ Neighbor
Advertisement messages to resolve the IPv6 address of the destination on
the link. The Neighbor Solicitation messages used for address resolution
are multicast. The Duplicate Address Detection procedure and the use
of periodic Router Advertisement messages assume that the nodes are
powered on and reachable most of the time.
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In Neighbor Discovery, the routers find the hosts by assuming that
a subnet prefix maps to one broadcast domain, and then they multicast
Neighbor Solicitation messages to find the host and its link-layer address.
Furthermore, the DAD use of multicast assumes that all hosts that au-
toconfigure IPv6 addresses from the same prefix can be reached using
link-local multicast messages.

Note that the L (on-link) bit in the Prefix Information Option (PIO) of
the RA can be set to zero in Neighbor Discovery, which makes the host not
use multicast Neighbor Solicitation (NS) messages for address resolution of
other hosts, but routers still use multicast NS messages to find the hosts.

Considering the characteristics previously illustrated in a LoWPAN,
and the IPv6 Neighbor Discovery protocol design, some optimizations and
extensions to Neighbor Discovery are useful for the wide deployment of
IPv6 over low-power and lossy networks [22].

The optimized protocol defines three new ICMPv6 message options:
the Address Registration Option (ARO), the Authoritative Border Router
Option (ABRO), and the 6LoWPAN Context Option (6CO). It also defines
two new ICMPv6 message types: the Duplicate Address Request (DAR)
and the Duplicate Address Confirmation (DAC).

Definitions

• 6LoWPAN link: A link determined by single IP hop reachability of
neighboring nodes. These are considered links with undetermined
connectivity properties

• 6LoWPAN Node (6LN): A 6LoWPAN node is any host or router
participating in a LoWPAN. This term is used when referring to
situations in which either a host or router can play the role described

• 6LoWPAN Router (6LR): An intermediate router in the LoWPAN
that is able to send and receive Router Advertisements (RAs) and
Router Solicitations (RSs) as well as forward and route IPv6 packets.
6LoWPAN routers are present only in route-over topologies.

• 6LoWPAN Border Router (6LBR): A border router located at the
junction of separate 6LoWPAN networks or between a 6LoWPAN
network and another IP network. There may be one or more 6LBRs
at the 6LoWPAN network boundary. A 6LBR is the responsible



1.15. ND over 6LoWPANs 63

authority for IPv6 prefix propagation for the 6LoWPAN network it is
serving. An isolated LoWPAN also contains a 6LBR in the network,
which provides the prefix(es) for the isolated network

• Router: Either a 6LR or a 6LBR. Note that nothing precludes a
node being a router on some interfaces and a host on other interfaces

• Mesh-under: A topology where nodes are connected to a 6LBR
through a mesh using link-layer forwarding. Thus, in a mesh-under
configuration, all IPv6 hosts in a LoWPAN are only one IP hop
away from the 6LBR. This topology simulates the typical IP-subnet
topology with one router with multiple nodes in the same subnet

• Route-over: A topology where hosts are connected to the 6LBR
through the use of intermediate layer-3 (IP) routing. Here, hosts
are typically multiple IP hops away from a 6LBR. The route-over
topology typically consists of a 6LBR, a set of 6LRs, and hosts

• Non-transitive link: A link that exhibits asymmetric reachability,
i.e. a link where non-reflexive and/or non-transitive reachability is
part of normal operation. (Non- reflexive reachability means packets
from A reach B, but packets from B don’t reach A. Non-transitive
reachability means packets from A reach B, and packets from B reach
C, but packets from A don’t reach C.) Many radio links exhibit these
properties

• Header compression context: Address information shared across a
LoWPAN and used by 6LoWPAN header compression to enable
the elision of information that would otherwise be sent repeatedly.
In a "context", a (potentially partial) address is associated with a
Context Identifier (CID), which is then used in header compression
as a shortcut for (parts of) a source or destination address

• Registration: The process during which a LoWPAN node sends a
Neighbor Solicitation message with an Address Registration Option
to a router creating a Neighbor Cache Entry (NCE) for the LoWPAN
node with a specific timeout. Thus, for 6LoWPAN routers, the
Neighbor Cache doesn’t behave like a cache. Instead, it behaves as a
registry of all the host addresses that are attached to the router

These Neighbor Discovery optimizations are applicable to both mesh-
under and route-over configurations. In a mesh-under configuration, only
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6LoWPAN Border Routers and hosts exist; there are no 6LoWPAN routers
in mesh-under topologies. The most important part of the optimizations
is the evolved host-to-router interaction that allows for sleeping nodes
and avoids using multicast Neighbor Discovery messages except for the
case of a host finding an initial set of default routers, and redoing such
determination when that set of routers have become unreachable.

The protocol also provides for header compression by carrying header
compression information in a new option in Router Advertisement messages.

In addition, there are separate mechanisms that can be used between
6LRs and 6LBRs to perform multihop Duplicate Address Detection and
distribution of the prefix and compression context information from the
6LBRs to all the 6LRs, which in turn use normal Neighbor Discovery
mechanisms to convey this information to the hosts.

The protocol is designed so that the host-to-router interaction is not af-
fected by the configuration of the 6LoWPAN; the host-to-router interaction
is the same in a mesh-under and route-over configuration.

The optimizations and extensions to IPv6 Neighbor Discovery protocol
are the following:

• Host-initiated refresh of Router Advertisement information. This
removes the need for periodic or unsolicited Router Advertisements
from routers to hosts. However, if the routers use RAs to distribute
prefix and/or context information across a route-over topology, that
might require periodic RA messages

• No Duplicate Address Detection (DAD) is performed if EUI-64-based
IPv6 addresses are used (as these addresses are assumed to be globally
unique)

• DAD is optional if DHCPv6 is used to assign addresses

• A new address registration mechanism using a new Address Regis-
tration Option between hosts and routers. This removes the need
for routers to use multicast Neighbor Solicitations to find hosts and
supports sleeping hosts. This also enables the same IPv6 address
prefix(es) to be used across a route-over 6LoWPAN. It provides the
host-to-router interface for Duplicate Address Detection

• A new Router Advertisement option, the 6LoWPAN Context Option,
for context information used by 6LoWPAN header compression. The
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6LoWPAN Context Option (6CO) carries prefix information for
LoWPAN header compression and is similar to the PIO. However,
the prefixes can be remote as well as local to the LoWPAN, since
header compression potentially applies to all IPv6 addresses. This
option allows for the dissemination of multiple contexts identified by
a CID. A context may be a prefix of any length or an address (/128),
and up to 16 6COs may be carried in an RA message

• A new mechanism to perform Duplicate Address Detection across a
route-over 6LoWPAN using the new Duplicate Address Request and
Duplicate Address Confirmation messages. For the multihop DAD
exchanges between a 6LR and 6LBR the protocol avoids reusing
the NS and NA messages for this purpose, since these messages are
not subject to the hop limit=255 check as they are forwarded by
intermediate 6LRs

• New mechanisms to distribute prefixes and context information across
a route-over network that uses a new Authoritative Border Router
Option to control the flooding of configuration changes. ABRO
is needed when RA messages are used to disseminate prefixes and
context information across a route-over topology. In this case, 6LRs
receive PIOs from other 6LRs. This implies that a 6LR can’t just
let the most recently received RA win. In order to be able to
reliably add and remove prefixes from the 6LoWPAN, we need to
carry information from the authoritative 6LBR. This is done by
introducing a version number that the 6LBR sets and that 6LRs
propagate as they propagate the prefix and context information
with this ABRO. When there are multiple 6LBRs, they would have
separate version number spaces. Thus, this option needs to carry the
IP address of the 6LBR that originated that set of information. A
6LBR should always include an ABRO in the RAs it sends, listing
itself as the 6LBR address

The 6LBRs are responsible for managing the prefix(es) assigned to the
6LoWPAN, using manual configuration, DHCPv6 Prefix Delegation or
other mechanisms. In an isolated LoWPAN, a Unique Local Address (ULA)
prefix should be generated by the 6LBR. If the LoWPAN has multiple
6LBRs, then they should be configured with the same set of prefixes. The
set of prefixes is included in the RA messages.
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Host-to-Router Interaction

A host sends Router Solicitation messages at startup and also when
the Neighbor Unreachability Detection (NUD) of one of its default routers
fails.

Hosts receive Router Advertisement messages typically containing the
Authoritative Border Router Option (ABRO) and may optionally contain
one or more 6LoWPAN Context Options (6COs) in addition to the existing
Prefix Information Options (PIOs).

The routers need to know the set of host IP addresses that are directly
reachable and their corresponding link-layer addresses. This needs to be
maintained as the radio reachability changes. For this purpose, an Address
Registration Option (ARO) is introduced, which can be included in unicast
NS messages sent by hosts. Thus, it can be included in the unicast NS
messages that a host sends as part of NUD to determine that it can still
reach a default router. The same option is included in corresponding
NA messages with a Status field indicating the success or failure of the
registration. This option is always host initiated.

When a host has configured a non-link-local IPv6 address, it registers
that address with one or more of its default routers using the ARO in an
NS message. The host chooses a lifetime of the registration and repeats the
ARO periodically (before the lifetime runs out) to maintain the registration.

As part of the optimizations, address resolution is not performed by
multicasting Neighbor Solicitation messages. Instead, the routers maintain
Neighbor Cache Entries for all registered IPv6 addresses. If the address is
not in the Neighbor Cache in the router, then the address either doesn’t
exist, is assigned to a host attached to some other router in the 6LoWPAN,
or is external to the 6LoWPAN. In a route-over configuration, the routing
protocol is used to route such packets toward the destination. Hosts in a
LoWPAN use the ARO in the NS messages they send as a way to maintain
the Neighbor Cache in the routers, thereby removing the need for multicast
NSs to do address resolution.

When the ARO is used by hosts, an SLLAO (Source Link-Layer Address
Option) must be included, and the address that is to be registered must
be the IPv6 source address of the NS message.
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Figure 1.8: ND6: RS and RA exchange

Figure 1.9: ND6: NS and NA exchange, with registration
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Router-to-Router Interaction

The new router-to-router interaction is only for the route-over con-
figuration where 6LRs are present. 6LRs MUST act like a host during
system startup and prefix configuration by sending Router Solicitation
messages and autoconfiguring their IPv6 addresses, unlike routers in the
non-6LoWPAN ND6. When multihop prefix and context dissemination are
used, then the 6LRs store the ABRO, 6CO, and prefix information received
(directly or indirectly) from the 6LBRs and redistribute this information
in the Router Advertisement they send to other 6LRs or send to hosts in
response to a Router Solicitation. There is a Version Number field in the
ABRO, which is used to limit the flooding of updated information between
the 6LRs.

A 6LR can perform Duplicate Address Detection against one or more
6LBRs using the new Duplicate Address Request (DAR) and Duplicate
Address Confirmation (DAC) messages, which carry the information from
the Address Registration Option. The DAR and DAC messages will be
forwarded between the 6LR and 6LBRs; thus, the old rule for checking
hop limit=255 does not apply to the DAR and DAC messages. Those
multihop DAD messages MUST NOT modify any Neighbor Cache Entries
on the routers, since we do not have the security benefits provided by the
hop limit=255 check.

1.16 RPL

RPL [23] stands for "IPv6 Routing Protocol for Low-Power and Lossy
Networks".

Low-power and Lossy Networks (LLNs) consist largely of constrained
nodes (with limited processing power, memory, and sometimes energy when
they are battery operated or energy scavenging) which are interconnected
by lossy links, typically supporting only low data rates, that are usually
unstable with relatively low packet delivery rates. Unlike traditional IP
networks, LLNs must handle the lossy and dynamic nature of low-power
link technologies (e.g. IEEE 802.15.4). To address these concerns, the
IETF began to focus work on the use of IP in LLNs by forming the IPv6
over Low-Power Wireless Personal Area Networks (6LoWPAN) working
group to standardize the use of IPv6 in IEEE 802.15.4 networks. The
IETF then formed the Routing over Low Power and Lossy Links (ROLL)
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group to specify the Routing Protocol for LLNs (RPL), i.e. an IP-layer
routing protocol designed specifically for LLNs. RPL now is a proposed
standard and is the most exploited in LLNs.

RPL supports the route-over routing mechanism.

RPL is a distance vector protocol: routers using distance-vector protocol
do not have knowledge of the entire path to a destination. Distance-vector
protocols are based on calculating the direction and distance to any link
in a network: "Direction" usually means the next hop address and the
exit interface, while "Distance" is a measure of the cost to reach a certain
node. The least expensive route between any two nodes is the route with
minimum distance. Each node maintains a vector (table) of minimum
distance to every node.

RPL forms a tree-like topology also called Destination Oriented Directed
Acyclic Graph (DODAG): each node in a RPL network has a preferred
parent which acts like a gateway for that node. If a node does not have
an entry in its routing table for a packet, the node simply forwards it to
its preferred parent and so on until it either reaches the destination or a
common parent which forwards it down the tree towards the destination.
The nodes in a RPL network have routes for all the nodes down the tree.
When a node instead wants to send a packet to the root, it simply sends
the packet to its preferred parent in the tree, and the preferred parent then
sends the packet to his preferred parent and so on until the packet reaches
the root.

A RPL Instance contains one or more DODAG roots. These roots may
operate independently, or they may coordinate over a network that is not
necessarily as constrained as an LLN.

RPL builds the DODAG using the Objective Function (OF), illustrated
in the next paragraph.

Objective Functions

The Objective Function (OF) uses routing metrics to form the DODAG
based on some algorithm or calculation formula. Basically the objective
functions optimize or constrain the routing metrics that are used to form
the routes and hence help in choosing the best route. The OF defines how
RPL nodes select and optimize routes within a RPL Instance. An OF
defines how nodes translate one or more metrics and constraints into a
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Rank, which approximates the node’s distance from a DODAG root. For
example, if an RPL instance uses an Objective Function that minimizes
hop count, RPL will select paths with a minimum hop count. RPL requires
that all nodes in a network use a common Objective Function.

The cost of reaching a destination for a node is calculated using various
route metrics. LLN’s metrics can be categorized as:

• Node metrics: e.g. node energy, hop count..

• Link metrics: e.g. throughput, latency, link quality level, ETX, link
color..

The Expected Transmission Count (ETX) of a link is the expected
number of transmissions required to send a packet over that link. A path’s
ETX is the sum of the ETX of all the links along the path: for instance,
the ETX of a path with 3 links of 100 percent delivery ratio is 3, whereas
the ETX of a path with 2 links of 50 percent delivery ratio is 4.

RPL Identifiers

Different terms need to be defined to fully understand RPL manage-
ment:

• RPLInstanceID: identifies a set of one or more DODAGs. A network
can have multiple RPLInstanceIDs, each one defines an independent
set of DODAGs, optimized for different OFs and/or applications.
The set of DODAGs identified by a RPLInstanceID is called a RPL
Instance. All DODAGs in the same RPL Instance use the same
Objective Function

• DODAGID: the scope of a DODAGID is a RPL Instance. The
combination of RPLInstanceID and DODAGID uniquely identifies a
single DODAG in the network. A RPL Instance may have multiple
DODAGs, each one has a unique DODAGID

• DODAGVersionNumber: the scope of a DODAGVersionNumber is a
DODAG. A DODAG is sometimes reconstructed from the DODAG
root, by incrementing the DODAGVersionNumber. The combination
of RPLInstanceID, DODAGID, and DODAGVersionNumber uniquely
identifies a DODAG Version
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• Rank: the scope of Rank is a DODAG Version. Rank establishes
a partial order over a DODAG Version, defining individual node
positions with respect to the DODAG root

A RPL Instance may comprise:

• a single DODAG with a single root: for example, a DODAG optimized
to minimize latency rooted at a single centralized lighting controller
in a Home Automation application

• multiple uncoordinated DODAGs with independent roots (differing
DODAGIDs): for example, multiple data collection points in an urban
data collection application that do not have suitable connectivity
to coordinate with each other or that use the formation of multiple
DODAGs as a means to dynamically and autonomously partition
the network

• a single DODAG with a virtual root that coordinates LLN sinks
(with the same DODAGID) over a backbone network: for exam-
ple, multiple border routers operating with a reliable transit link,
e.g., in support of an IPv6 Low-Power Wireless Personal Area Net-
work (6LoWPAN) application, that are capable of acting as logically
equivalent interfaces to the sink of the same DODAG

• a combination of the above as suited to some application scenario

Each RPL packet is associated with a particular RPLInstanceID.

Figure 1.10 on the next page depicts an example of a RPL Instance
comprising three DODAGs with DODAG roots R1, R2, and R3. Each of
these DODAG roots advertises the same RPLInstanceID. The lines depict
connectivity between parents and children.

ICMPv6 RPL Control Messages

RPL uses three types of control messages for creating and maintaining
RPL topology and routing table: DODAG Information Object (DIO),
DODAG Information Solicitation (DIS) and DODAG Destination Ad-
vertisement Object (DAO). These messages are new types of ICMPv6
messages with different purposes and structured as follow:
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Figure 1.10: RPL instance example

• DODAG Information Object (DIO): carries information that allows a
node to discover a RPL Instance, learn its configuration parameters,
select a DODAG parent set and maintain the DODAG. When a RPL
network starts, the nodes start exchanging the information about the
DODAG using DIO messages which contains information about the
DODAG configuration and help the nodes to join the DODAG and
select parents. The format of the DIO is illustrated in figure 1.11 on
the facing page:

The DIO message may carry valid options. Between these options,
there are the DAG Metric Container Option and the Prefix Infor-
mation Option. The metric that MRHOF uses is determined by
the metrics in the DIO Metric Container Option. In the absence of
a metric in the DIO Metric Container, MRHOF defaults to using
ETX to compute Rank. A RPL node may use the Prefix Information
Option (PIO) for the purpose of Stateless Address Autoconfiguration
(SLAAC) from a prefix advertised by a parent, and to advertise its
own address. The prefix information exchange in RPL is carried
by the DIO messages, thus there’s no need to exploit RS and RA
messages (in Contiki it’s possible to disable the sending of RS and
RA via the UIP_ND6_SEND_RA label). It is not correct to think at
RPL and ND6 as two conflicting protocols: in fact, NS and NA
messages are still useful exploited in parallel with RPL as they report
the connectivity status between two devices

• DODAG Information Solicitations (DIS): used by any node to explic-
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Figure 1.11: RPL DIO message

itly solicit the DIO messages from the neighbor nodes. It is triggered
by the node in case it could not receive a DIO after a predefined
time interval. Its use is analogous to that of a Router Solicitation as
specified in IPv6 Neighbor Discovery

• Destination Advertisement Object (DAO): used to propagate des-
tination information Upward along the DODAG and to maintain
Downward routes. How RPL constructs and maintains Downward
routes is explained later. The DAO RPL Target option is used to
indicate a target IPv6 address, prefix, or multicast group that is
reachable or queried along the DODAG. In Contiki 3.0, RPL target
option contains IPv6 addresses and not prefixes

RPL control messages have the scope of a link. The source address of
RPL control messages is a link-local address, and the destination address is
either the all-RPL-nodes multicast address or a link-local unicast address
of the destination. The all-RPL-nodes multicast address is a new address
with a value of ff02::1a. the RPL Control Message consists of an ICMPv6
header followed by a message body. The message body is comprised of a
message base and possibly a number of options as illustrated in Figure 1.12
on the next page.

The RPL control message is an ICMPv6 information message with a
Type of 155.
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Figure 1.12: RPL Control message

The Code field identifies the type of RPL control message:

• 0x00: DODAG Information Solicitation

• 0x01: DODAG Information Object

• 0x02: Destination Advertisement Object

• 0x03: Destination Advertisement Object Acknowledgment

A high-level overview of the distributed algorithm, which constructs
the DODAG, is as follows:

• Some nodes are configured to be DODAG roots, with associated
DODAG configurations

• Nodes advertise their presence, affiliation with a DODAG, routing
cost, and related metrics by sending link-local multicast DIO messages
to all-RPL-nodes

• Nodes listen for DIOs and use their information to join a new DODAG
(thus, selecting DODAG parents), or to maintain an existing DODAG,
according to the specified Objective Function and Rank of their
neighbors

• Nodes provision routing table entries, for the destinations specified
by the DIO message, via their DODAG parents in the DODAG
Version. Nodes that decide to join a DODAG can provision one or
more DODAG parents as the next hop for the default route and a
number of other external routes for the associated instance
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Downward Routes

RPL constructs and maintains Downward routes with DAO messages.
There are two modes a RPL Instance may choose from for maintaining
Downward routes.

In the first mode, called "Storing", nodes store Downward routing
tables for their sub-DODAG. Each hop on a Downward route in a storing
network examines its routing table to decide on the next hop. In the
second mode, called "Non-Storing", nodes do not store Downward routing
tables. Contiki supports only the Storing mode.

To establish Downward routes, RPL nodes send DAO messages Upward.
The next-hop destinations of these DAOmessages are called "DAO parents".
The collection of a node’s DAO parents is called the "DAO parent set".

In Storing mode, the DAO message is unicast by the child to the
selected parent(s). In Non-Storing mode, the DAO message is unicast
to the DODAG root. The DAO message may optionally, upon explicit
request or error, be acknowledged by its destination with a Destination
Advertisement Acknowledgement (DAO-ACK) message back to the sender
of the DAO.

Destination Advertisement may be configured to be entirely disabled,
or operate in either a Storing or Non-Storing mode, as reported in the
MOP in the DIO message.

• All nodes who join a DODAG must abide by the MOP setting from
the root. Nodes that do not have the capability to fully participate
as a router, e.g., that do not match the advertised MOP, may join
the DODAG as a leaf

• If the MOP is 0, indicating no Downward routing, nodes must not
transmit DAO messages and may ignore DAO messages

• In Non-Storing mode, the DODAG root should store source routing
table entries for destinations learned from DAOs. The DODAG root
must be able to generate source routes for those destinations learned
from DAOs that were stored

• In Storing mode, all non-root, non-leaf nodes must store routing
table entries for destinations learned from DAOs
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1.17 Power-Line Communication (PLC)

Power-line communication (PLC) [24] is a communication technology
that enables the transfer of data over existing power line cables. Like any
communication technology, PLC, works as follows: a sender modulates the
data to be sent, injects it onto the medium (in this case power lines), and
the receiver de-modulates (like a modem) the data to read it.

Unlike other communication technologies like Ethernet or optical fiber,
PLC does not need extra wiring, but re-uses existing wiring; this means
that theoretically any line-powered appliance can be part of a data network.

Power-Line Communication solutions are divided in two big categories:
narrowband and broadband.

Functionally, there are two basic forms for both narrowband and broad-
band PLC [25] :

• Narrowband in-house applications: where household wiring is used
for low bit rate services like home automation and intercoms

• Narrowband outdoor applications. These are mainly used by the
utility companies for automatic meter reading and remote surveillance
and control

• Broadband In-house mains power wiring can be used for high speed
data transmission for home networking

• Broadband over Power Line: outdoor mains power wiring can be
used to offer broadband internet access

1.17.1 Narrowband PLC

Narrowband PLC works at low frequencies (3–500 kHz), low data rates
(up to 100s of kbps), and has long range (up to several kilometers), which
can be extended using repeaters. It can be applied in the Smart Grid and
for smart energy generation (for instance, micro-inverters for solar panels)
or in Smart Home/Home Control applications.

Typically home-control power-line communication devices operate by
modulating in a carrier wave of between 20 and 200 kHz into the household
wiring at the transmitter. The carrier is modulated by digital signals. Each
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receiver in the system has an address and can be individually commanded
by the signals transmitted over the household wiring and decoded at the
receiver. These devices may be either plugged into regular power outlets,
or permanently wired in place. Since the carrier signal may propagate
to nearby homes (or apartments) on the same distribution system, these
control schemes have a "house address" that designates the owner.

Outdoor Protocols

There are two main protocols in narrowband PLC outdoor application:
G3 and PRIME.

G3 In 2011, several companies including distribution network operators,
meter vendors and chip vendors (Maxim Integrated, Texas Instruments,
STMicroelectronics) founded the G3-PLC Alliance to promote G3-PLC
technology. G3-PLC, or 3rd Generation Power Line Communication, is
the low layer protocol to enable large scale infrastructure on the electrical
grid. The G3-PLC is a plug-and-play solution that uses the existing
electric networks to carry information, so installation efforts are minimal.
It is a radio-free solution that allows consumers to effectively monitor
and manage their electricity consumption. With the ability to cross
transformers, infrastructure costs are reduced and with its support of IPv6,
G3-PLC will support powerline communications into the future. Two-way
communications networks based on G3-PLC will provide electricity network
operators with intelligent monitoring and control capabilities. Operators
will be able to monitor electricity consumption throughout the grid in
real time, implement variable tariff schedules, and set limits on electricity
consumption to better manage peak loads.

In turn, consumers will have real-time visibility into their electricity
consumption, thus promoting demand-side conservation. With the addition
of variable tariff schedules, users will be encouraged to reduce electricity
consumption during peak usage times.

Ultimately, intelligent network management techniques provide a smarter
solution for the environment. Rather than build more power plants to
support worst-case scenarios, network operators will be able to optimally
utilize existing resources. At the same time, demand-side management
will function as a form of indirect generation by better balancing the
distribution of loads.
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G3-PLC may operate on CENELEC A band (35 kHz to 91 kHz) or
CENELEC B band (98 kHz to 122 kHz)

PRIME PRIME is an acronym for "PoweRline Intelligent Metering
Evolution" and was conceived in 2007. Most popular usage of PRIME
is in Advanced Metering Infrastructures (AMI), which are systems that
measure, collect, and analyze energy usage, and communicate with me-
tering devices such as electricity meters, gas meters, heat meters, and
water meters, either on request or on a schedule. These systems include
hardware, software, communications, consumer energy displays and con-
trollers, customer associated systems, Meter Data Management (MDM)
software, and supplier business systems. Government agencies and utilities
are turning toward advanced metering infrastructure (AMI) systems as part
of larger “Smart Grid” initiatives. AMI extends current advanced meter
reading (AMR) technology by providing two way meter communications,
allowing commands to be sent toward the home for multiple purposes,
including “time-of-use” pricing information, demand-response actions, or
remote service disconnects.

The PRIME specification [26] is structured into Physical Layer, MAC
Layer and Convergence Layer. Since specification version 1.4, PRIME
exploits high frequencies up to 471 kHz. Thus, raw data rates are eight
times as high as in CENELEC A band.

In a PRIME subnetwork two device types exist: Base nodes and Service
nodes. Base nodes manage subnetwork resources and connections. All
devices, which are not Base nodes are Service nodes. Service nodes register
with Base nodes to become part of a subnetwork.

The topology generated by a PRIME subnetwork is a tree with the
Base node as trunk. To extend the subnetwork range, a Base node can
promote a Service node from terminal state to switch state. Switches relay
data in the subnetwork and build the branch points of the tree.

Powerline is a shared communication media. Base nodes and switches
announce their presence with beacon messages in well specified intervals.
These beacons provide a common time notion to a subnetwork. Time
is split into shared contention period (SCP) and contention free period
(CFP). During SCP, nodes can access the channel using CSMA/CA. For
the CFP period, the base node arbitrates channel access.

To reduce transmission overhead, PRIME uses dynamic addresses to
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address nodes in a subnetwork. The addressing scheme resembles the tree
structure of the subnetwork and consists of local switch id, local node
id and local connection id. Routes are established during service node
registration. PRIME makes use of address structure for packet routing,
which reduces state information needed by service nodes. Base node and
service nodes monitor network attachment based on periodic exchanged
control messages, so called "keep alive messages".

PRIME allows connection oriented communication. The PRIME MAC
layer includes control mechanism/messages to open and close unicast,
multicast and broadcast connections.

PRIME specifies a security profile for encryption of MAC layer packets.
Encryption is based on AES-CCM with 128bit keys and key derivation
mechanism recommended by NIST.

In-house Protocols

Main powerline narrowband in-house protocols are [27]:

• universal powerline bus, introduced in 1999, uses pulse-position
modulation

• X10

• LonTalk, part of the LonWorks home automation product line, was
accepted as part of some automation standards

1.17.2 Broadband PLC

Broadband PLC works at higher frequencies (1.8-250 MHz), high data
rates (up to 100s of Mbps) and is used in short-range applications. High
frequency communication may (re)use large portions of the radio spectrum
for communication, or may use select (narrow) band(s), depending on the
technology.

Broadband over power line (BPL) is a system to transmit two-way
data over existing AC MV (medium voltage) electrical distribution wiring,
between transformers, and AC LV (low voltage) wiring between transformer
and customer outlets (typically 110 to 240V). This avoids the expense of a
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dedicated network of wires for data communication, and the expense of
maintaining a dedicated network of antennas, radios and routers in wireless
network.

In-house Protocols

Power line networking is being developed by the HomePlug Power-
line Alliance and there are two main standards [28]: HomePlug 1.0 and
HomePlug AV.

• HomePlug 1.0 was first introduced back in 2001 and has a cap speed
of 14Mbps. It’s now becoming obsolete

• HomePlug AV, introduced in 2005, has an initial cap speed of
200Mbps, which is fast enough to carry multimedia content, hence the
AV designation for Audio and Video. This standard also supports
128-bit AES encryption for security. HomePlug AV is backward-
compatible with HomePlug 1.0 and is marketed as Powerline AV (or
Powerline AV 200)

• Powerline AV adapters have a real cap of just 100Mbps as they also
support the regular 10/100 Ethernet standard. In testing, the actual
sustained speed of these adapters is somewhere from 20Mbps to
60Mbps

HomePlug AV got a boost with the ratification of the IEEE 1901
specification in 2010. Whereas previously Powerline was an independent
standard, this brought it under the same umbrella as the other networking
standards and protocols. This specification guarantees interoperability
between adapters from different vendors, and on top of that the cap speed
is now increased to 500Mbps. This much faster HomePlug AV is marketed
as Powerline AV 500.

Powerline AV 500 offers real-life cap speeds of either 100Mbps or
500Mbps depending on the type of network port the adapter device sup-
ports, be it regular 10/100 Ethernet or Gigabit Ethernet. In real-world
testing, Powerline AV 500 indeed offers significantly higher sustained speed
than Powerline AV, giving speeds ranging from 90Mbps to 200Mbps.
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State of the Art

2.1 Hardware

Internet of things is made by sets of physical objects that use network
support to exchange data. These objects can be sensors, software, boards
and so on. From the hardware point of view, the market offers a lot of
platforms that allow people to build their own IoT projects. The most
known boards for building IoT projects are Arduino (with its several
versions) and Raspberry. Even if in this thesis neither of these two boards
are used, it’s important to understand the difference between these two
types of devices in order to understand the choice of the platform exploited
in this work.

Arduino VS Raspberry

A Raspberry Pi, from different points of view, is similar to a computer,
with a dedicated processor, memory, and a graphics driver for output
through HDMI. It even runs a specially designed version of the Linux
operating system. That makes it easy to install most Linux software,
and allows to use the Pi as a functioning media streamer or video game
emulator with a bit of effort.

Arduino boards are instead powered by a micro-controller, and are very
simpler than a computer. They don’t run a full operating system, but only
execute a simpler firmware. Even if it’s not possible to access to the basic
functions that an operating system provides, on the other hand directly
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executing simple code is easier, and is accomplished with no operating
system overhead. The main purpose of the Arduino board is to interface
with sensors and devices, so it’s great for hardware projects in which things
have to respond to various sensor readings and manual input. It’s great
for interfacing with other devices and actuators, where a full operating
system would be overkill for handling simple read and response actions.

Arduino is best suited when the main task is reading sensor data and
changing values on motors or other devices [29]. Given the Arduino’s low
power requirements and upkeep, it’s also a good choice if the device will
be constantly running and requires little to no interaction.

Raspberry Pi is best suited when a certain task can not be handled by
a microcontroller. The Pi makes a slew of operations easier to manage,
whether you intend to connect to the Internet to read and write data, view
media of any kind, or connect to an external display.

A rough comparison between the main boards is reported in table 2.1
on the facing page.

Microcontrollers

Main difference between IoT microcontrollers is the architecture number
of bits, i.e. 8-bit, 16-bit and 32 bit architectures. There is no doubt that
a 32-bit MCU has a higher performance capability than an 8-bit device,
but the engineer is faced with the traditional decision of choosing between
what is the best device available in the market against what the application
actually needs.

Main IoT microcontrollers characteristics are reported in table 2.2 on
page 84:

2.2 Software

Two WSN-oriented operating systems clearly stand out in the IoT
domain: TinyOS and Contiki. Both are open-source projects, providing
free systems to the WSN and more generally embedded devices oriented
community of scientists and developers. This work utilizes the latter as
software platform, since it is written in standard C language (whereas
TinyOS uses a specific derivative named nesC), more well structured,
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Table 2.1: main boards comparison

Arduino
UNO

Arduino
DUE

Raspberry Pi
2 B

Raspberry Pi
3 B

e 22,05 40,98 42,97 46,98
Architecture8-bit 32-bit 32-bit 64-bit
Processor ATmega 328 SAM3X8E

ARM Cortex-
M3

Quad-core ARM
cortex -A7

Quad-core ARM
Cortex -A53

Processor
Speed

16 MHz 84 MHz 900 MHz 1,2 GHz

Pins 20 66 40 40
Memory SRAM 2KB, SRAM 96KB 1 GB RAM 1 GB RAM,

EEPROM
1KB

microSD card
slot

microSD card
slot

Ethernet N/A N/A 10/100 10/100
Bluetooth N/A N/A N/A BLE and 4,1

classic
Wireless N/A N/A N/A 802.11n
Video N/A N/A HDMI, HDMI,

Camera Serial
Interface (CSI),

Camera Serial
Interface (CSI),

Display Serial In-
terface (DSI),

Display Serial In-
terface (DSI),

GPU Broadcom
VideoCore IV

GPU Broadcom
VideoCore IV

Audio N/A N/A HDMI, HDMI,
3.5mm analogue
audio-video jack

3.5mm analogue
audio-video jack

Supply
voltage

5V 3,3V 5V 5,1V

Current
cons (ac-
tive mode)

200 uA/MHz 6 mA/MHz 4*20 mA 4*34,31 mA

Power
cons

1 mW/MHz 19,8 mW/MHz 4*100 mW 4*175 mW
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Table 2.2: main IoT microcontrollers features

8-bit architecture 32-bit architecture

Min Max Min Max

Clock Speed 10 Megaherz 24 Megaherz 50 Megaherz 216 Megaherz
RAM 64 Bytes 6 Kilobytes 8 Kilobytes 512 Kilobytes
EEPROM 64 Bytes 2 Kilobytes - -
Flash 1 Kilobytes 128 Kilobytes 16 Kilobytes 2 Megabytes
I/O pins 6 70 28 216
Supply voltage 1,8 V 5,5 V 1,7 V 3,6 V
Current cons 5 uA/MHz 500 uA/MHz 1,7 uA/MHz 472 uA/MHz
Power cons 9 uW/MHz 2,75 mW/MHz 0,51 uW/MHz 1,7 mW/MHz

and is more actively used and supported by both scientific and industrial
communities.

2.2.1 Contiki 3.X OS

Contiki [30] is an open source, highly portable, multi-tasking operating
system for memory-efficient networked embedded systems and wireless
sensor networks.

Contiki is maintained by a group of developers from industry and
academia lead by Adam Dunkels from the Swedish Institute of Computer
Science. The Contiki team currently consists of sixteen developers from
SICS, SAP AG, Cisco, Atmel, NewAE and TU Munich.

The Contiki operating system includes a network simulator called Cooja
that allows to simulate networks of Contiki nodes, which may belong to
either of the following three classes:

• emulated nodes: the entire hardware of each node is emulated

• Cooja nodes: the Contiki code for the node is compiled for and
executed on the simulation host

• Java nodes: the behavior of the node must be reimplemented as a
Java class

A single Cooja simulation may contain a mixture of nodes from either of
the three classes. Emulated nodes can also be used to include non-Contiki
nodes in a simulated network.
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Another Contiki’s utility that is exploited in this work is Tunslip.
Tunslip is a tool used to bridge IP traffic between a host and another
network element, typically a border router, over a serial line. Tunslip
creates a virtual network interface (tun) on the host side and uses SLIP
(serial line internet protocol) to encapsulate and pass IP traffic to and
from the other side of the serial line. The network element sitting on the
other side of the line does a similar job with it’s network interface. The
tun interface can be used like any real network interface: routing, traffic
forwarding, Wireshark analysis, etc.

Current major version of Contiki is 3.0, released the 25th August 2015.

Tree Structure

Contiki tree structure holds the following main folders:

• apps: contains some ready-to-use applications

• core: contains the kernel code

• cpu: contains the CPUs configuration source code of the CPUs
supported by Contiki

• dev: contains some devices implementation source code, as radio
drivers, spi driver and other

• doc: contains the Contiki official documentation

• examples: contains some ready-to-use simple applications

• platform: contains the platforms configuration source code of the
platforms supported by Contiki

• regression-tests: contains some regression tests to run in Cooja

• tools: contains some tools, among which can be found Tunslip and
Cooja

Protothreads

Contiki is designed to run on classes of hardware devices that are
severely constrained in terms of memory, power, processing power, and
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communication bandwidth. A typical Contiki system has memory on the
order of kilobytes, a power budget on the order of milliwatts, processing
speed measured in megahertz, and communication bandwidth on the order
of hundreds of kilobits/second. This class of systems includes both various
types of embedded systems as well as a number of old 8-bit computers.

To run efficiently on memory-constrained systems, the Contiki pro-
gramming model is based on protothreads. A protothread [31, 32] is a
memory-efficient programming abstraction that shares features of both
multi-threading and event-driven programming to attain a low memory
overhead of each protothread. Event-driven programming is a common
programming model for memory-constrained embedded systems, includ-
ing sensor networks. Compared to multi-threaded systems, event-driven
systems do not need to allocate memory for per-thread stacks, which
leads to lower memory requirements. For this reason, many operating
systems for sensor networks, including TinyOS and Contiki, are based on
an event-driven model.

An event-driven model does not support a blocking wait abstraction.
Therefore, programmers of such systems frequently need to use state
machines to implement control flow for high-level logic that cannot be
expressed as a single event handler. Unlike state machines that are part of
a system specification, the control-flow state machines typically have no
formal specification, but are created on-the-fly by the programmer.

In the Contiki operating system, processes are implemented as pro-
tothreads running on top of the event-driven Contiki kernel. A process’
protothread is invoked whenever the process receives an event. The event
may be a message from another process, a timer event, a notification of
sensor input, or any other type of event in the system. Processes may wait
for incoming events using the protothread conditional blocking statements.
Protothreads can be seen as blocking event handlers in that protothreads
can run on top of an existing event-based kernel, without modifications
to the underlying event-driven system. Protothreads running on top of
an event-driven system can use the PT_WAIT_UNTIL() statement to block
conditionally. The underlying event dispatching system does not need
to know whether the event handler is a protothread or a regular event
handler.

Source Code 2.1: the radio sleep cycle implemented with protothreads in
pseudocode

1 radio_wake_protothread:
2 PT_BEGIN
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3 while(true)
4 radio_on ()
5 timer <- t_awake
6 PT_WAIT_UNTIL(expired(timer))
7 timer <- t_sleep
8 if(not communication_complete ())
9 wait_timer <- t_wait_max

10 PT_WAIT_UNTIL(communication_complete () or
11 expired(wait_timer))
12 radio_off ()
13 PT_WAIT_UNTIL(expired(timer))
14 PT_END

Contiki Network Stack

Contiki provides three network stacks: the uIP [33] TCP/IP stack which
provides IPv4 networking, the uIPv6 stack (developed by and contributed
to Contiki by Cisco) for IPv6 networking, and the Rime stack which is
a set of custom lightweight networking protocols designed specifically for
low-power wireless networks. Rime stack is used mainly when IP overhead
is too prohibitive. Rime is not deepen in this work as it is not exploited.

The uIP TCP/IP stack is intended to make it possible to communicate
using the TCP/IP protocol suite even on small 8-bit micro-controllers.
The uIP implementation is designed to have only the absolute minimal set
of features needed for a full TCP/IP stack. It can only handle a single
network interface and contains the IP, ICMP, UDP and TCP protocols.
uIP is written in the C programming language.

The uIP stack can be run either as a task in a multitasking system,
or as the main program in a single task system. In both cases, the main
control loop, which is named “tcpip_process” and can be found in the
core/net/tcpip.c source file, does two things repeatedly:

• Check if a packet has arrived from the network

• Check if a periodic timeout has occurred

If a packet has arrived, the input handler function, uip_input(), should
be invoked by the main control loop. The input handler function will never
block, but will return at once. When it returns, the stack or the application
for which the incoming packet was intended may have produced one or
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more reply packets which should be sent out. If so, the network device
driver should be called to send out these packets.

Periodic timeouts are used to drive TCP mechanisms that depend on
timers, such as delayed acknowledgments, retransmissions and round-trip
time estimations. When the main control loop infers that the periodic timer
should fire, it should invoke the timer handler function uip_periodic().
Because the TCP/IP stack may perform retransmissions when dealing
with a timer event, the network device driver should be called to send out
the packets that may have been produced.

The uIP stack does not use explicit dynamic memory allocation. Instead,
it uses two global buffers for holding packets and has a fixed table for
holding connection state. The global packet buffers are large enough to
contain one packet of maximum size. When a packet arrives from the
network, the device driver places it in one global buffer (which is called
“packetbuf”) and calls the TCP/IP stack. If the packet contains data,
the TCP/IP stack will notify the corresponding application. Because the
data in the buffer will be overwritten by the next incoming packet, the
application will either have to act immediately on the data or copy the
data into a secondary buffer for later processing. The packet buffer will
not be overwritten by new packets before the application has processed
the data. Packets that arrive when the application is processing the data
must be queued, either by the network device or by the device driver. If
the buffers are full, the incoming packet is dropped.

The uIP stack is highly customizable: in fact, Contiki provides a lot of
C macros that can be configured in order to achieve different objectives of
power consumption, routing, performance etc. The Contiki build system
is designed to make it easy to compile Contiki applications for either
an hardware platform or for the Cooja simulation platform by simply
supplying a different target parameter to the make command, without
having to edit makefiles or modify the application code. For instance, to
compile the application and a Contiki system for the ESB platform the
command “make TARGET=esb” is used.

Main Contiki networking protocols and components are illustrated in
figure 2.1 on the facing page, where the Network stack (“Netstack”) is
included in the yellow box. Instead, all the blue boxes are abstraction
layers which interact between each others by exploiting the respective API:
all layers in fact are conceived as drivers that hold several functions as
“init”, “packet_input”, “send_packet”, “on”, “off” and so on.
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Figure 2.1: Contiki Netstack

For instance, the MAC driver is defined as follow:

Source Code 2.2: MAC driver
1 struct mac_driver {
2 char *name;
3

4 /** Initialize the MAC driver */
5 void (* init)(void);
6

7 /** Send a packet from the Rime buffer */
8 void (* send)(mac_callback_t sent_callback , void *ptr);
9

10 /** Callback for getting notified of incoming packet. */
11 void (* input)(void);
12

13 /** Turn the MAC layer on. */
14 int (* on)(void);
15

16 /** Turn the MAC layer off. */
17 int (* off)(int keep_radio_on);
18

19 /** Returns the channel check interval , expressed in
clock_time_t ticks. */

20 unsigned short (* channel_check_interval)(void);
21 };
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CoAP

Contiki implements the IETF CoAP [34]: it is designed to provide
a REST-like interface, but with a lower cost in terms of bandwidth and
implementation complexity than HTTP-based REST interfaces. The Rep-
resentational State Transfer (REST)[35] style is an abstraction of the
architectural elements within a distributed hypermedia system; Perry and
Wolf [36] distinguish three classes of architectural elements: processing
elements (a.k.a. components), data elements and connecting elements
(a.k.a. connectors); REST ignores the details of component implementa-
tion and protocol syntax in order to focus on the roles of components,
the constraints upon their interaction with other components, and their
interpretation of significant data elements.

Network Drivers

There are two network drivers in Contiki: 6LoWPAN and Rime. 6LoW-
PAN is discussed in the next paragraphs, Rime is not discussed.

The adaptation layer, i.e. the layer which holds the network driver and
the Radio layer are the only ones which can not be implemented by the
“null protocols”, i.e. the protocols which hold functions which do nothing
but invoke the adjacent layers.

LLSEC Drivers

The LLSec is the abbreviation for MAC Link Layer Security. The
purpose of a Link Layer Security protocol is to ensure specific security
properties of link layer PDUs, that is the PDUs of the protocol layer
carrying the PDUs of the network layer (e.g. IP).

Encryption and security support was always sorely lacking in the
previous versions of Contiki. Contiki 3.0 brings support for 802.15.4 link
layer encryption with AES128 with CCM (Counter with CBC-MAC) mode,
which is an encryption algorithm designed to provide both authentication
and confidentiality. In addition, Contiki offers anti-replay protection, that
assures the detection of duplicate information.
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MAC Drivers

Contiki provides two MAC drivers, CSMA and NullMAC. CSMA is the
default mechanism. The MAC layer receives incoming packets from the
RDC layer and uses the RDC layer to transmit packets. If the RDC layer
or the radio layer detects a radio collision, the MAC layer may retransmit
the packet at a later point in time. The CSMA mechanism is currently
the only MAC layer that retransmits packets if a collision is detected.

RDC Drivers

The Radio Duty-Cycle driver controls how the radio transceiver is
turned on and off during the duty cycles, thus implementing the energy-
saving strategy.

In the Contiki Netstack there is a distinction between the RDC layer and
the MAC layer. This separation is done probably only in Contiki OS, which
leaves the MAC layer only tasked with ordering and sequencing packet
transmissions. Most modern MAC protocols do manage both of these
aspects: as an example, the ContikiMAC protocol is itself implemented
as a sole RDC driver. Furthermore, consider the CSMA protocol, which
stands for “Carrier-Sense Medium Access”: the implementation of CSMA
protocol in ContikiOS does not rely on the carrier sensing because the
medium access is performed by RDC protocol.

Contiki has several RDC drivers. The most commonly used are Contiki-
MAC, X-MAC, CX-MAC, LPP, and NullRDC. ContikiMAC is the default
mechanism that provides a very good power efficiency but is somewhat
tailored for the 802.15.4 radio and the CC2420 radio transceiver. X-MAC
is an older mechanism that does not provide the same power-efficiency as
ContikiMAC but has less stringent timing requirements. CX-MAC (Com-
patibility X-MAC) is an implementation of X-MAC that has more relaxed
timing than the default X-MAC and therefore works on a broader set of
radios. LPP (Low-Power Probing) as a receiver-initiated RDC protocol.
NullRDC is a "null" RDC layer that never switches the radio off and that
therefore can be used for testing or for comparison with the other RDC
drivers.
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Framer

A MAC framer module is responsible for constructing and parsing the
header in MAC frames. It is called directly by the RDC, and it converts
link-layer headers to packet attributes when a packet arrives and vice-versa
during a packet output. Actually, the framer is not categorized as a driver:
in fact, it can be considered as a support module for the RDC, not as a
concrete Netstack layer which interacts with the other layers.

Global Buffers

The packetbuf buffer is the global buffer which is shared among all the
Netstack layers. When a packet arrives, it is placed from the Radio driver
in the packetbuf. Radio driver is also responsible to deposit some packet
meta data as RSSI (received signal strength indicator, is a measurement of
the power present in a received radio signal) in some packet attributes. The
second global buffer, which is called “uip_buf”, is handled by the protocols
which does not belong to the Netstack, except for the adaptation layer:
in fact, it fills up the uip_buf buffer during a packet input process by
processing the packetbuf information, and during a packet output process
it exploits the information contained in the uip_buf in order to fill up the
packetbuf buffer.

There is also another buffer which is important to be mentioned, but
it’s only implemented when using CSMA protocol: the packet queue buffer,
which is called “queuebuf”. The queuebuf is organized per neighbor: every
neighbor holds a packet queue, which is handled by the CSMA driver.

Layers Interaction

An interesting example that illustrates how the layers interact between
them could be the receive-and-reply-to-a-packet situation, illustrated in
picture 2.2 on the next page

When the Radio driver wants to call the RDC driver in order to leave
him the duty of handling the packet received in input (that he has already
put in the packetbuf), he must exploit the RDC API in the following way:

1 NETSTACK_RDC.input()
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Figure 2.2: Netstack layers interaction
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So, for each layer the semantic to be used is the following:

1 NETSTACK_LAYER.function( parameter )

RPL

The Contiki implementation of RPL supports two objective functions
[37]: “Objective Function 0”, which provides a baseline for interoperability
that only seeks to optimize the hop count routing metric, and the Minimum
Rank Objective Function with Hysteresis (MRHOF), which exploits either
the ETX metric or the energy metric. In particular, MRHOF uses hysteresis
while selecting the path with the smallest metric value. The use of MRHOF
with the Expected Transmission Count (ETX) metric allows RPL to find
the stable minimum-ETX paths from the nodes to a root in the DAG
instance. The MRHOF is designed to find the paths with the smallest
path cost while preventing excessive churn in the network. It does so by
using two mechanisms. First, it finds the minimum cost path, i.e., path
with the minimum Rank, then it switches to that minimum Rank path
only if it is shorter (in terms of path cost) than the current path by at least
a given threshold. This second mechanism is called "hysteresis". More
information on this algorithm can be found at [38].

2.2.2 Routing Tables

Contiki holds three main routing tables:

• Neighbor Cache: already presented in paragraph [ND6 Data Struc-
tures]. This structure holds the node’s neighbors

• Default Router List or Default Route List: already presented in
paragraph []. In RPL, the default router for a given node corresponds
to the neighbor which is closer to the border-router. In some cases,
there could be more than one default router. In Contiki, a Default
Router List entry is a default route

• Neighbor Routes: holds information about what routes go through
what neighbor. It memorizes every route which is not the node’s
default route, i.e. the packet forwarding rule to use when no specific
route can be determined of a given destination address
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Figure 2.3: Network composition of the routing tables example

Below, it’s illustrated an example of how these routing tables get filled
on Contiki-based nodes in a real scenario. Figure 2.3 illustrates the network
composition for the example.

The radio listening range for the nodes are represented by the dotted
lines. Thus:

• border-router can listen to 2 and 3

• 2 can listen to 1 and 4

• 3 can listen to 1 and 5

• 4 can listen only to 2

• 5 can listen only to 3

Border-router’s Neighbor Routes Table holds the following information:

• 2 is directly reachable, i.e. 2 is reachable via 2

• 3 is directly reachable, i.e. 3 is reachable via 3

• 4 is reachable via 2

• 5 is reachable via 3
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No default route is held in the border-router Default Router List.

Border-router’s Neighbor Cache holds the neighbors 2 and 3.

2’s Neighbor Routes Table holds only the following information:

• 4 is directly reachable, i.e. 4 is reachable via 4

The default route held in 2’s Default Router List is 1.

2’s Neighbor Cache holds the neighbors 1 and 4.

4’s Neighbor Routes Table is empty. 4’s default route is 2. 4’s Neighbor
Cache holds only 2.

3 and 5 are specular to 2 and 4.

2.3 Other OSs

In this paragraph is presented other OSs that are relevant in the IoT.

ARMmbed

mbed is a platform and operating system for internet-connected devices
based on 32-bit ARM Cortex-M microcontrollers, which devices are mainly
known for their utilization in the IoT field. mbed is the industry’s first
online platform for fast, low-risk prototyping of microcontroller-based
systems. mbed microcontroller was in 2010 the recipient of an EDN
Innovation Award, which honors electronics engineers and the ground-
breaking products they produce. The project is collaboratively developed
by ARM and its technology partners.

The applications for mbed OS can only be developed online using its
native online code editor cum compiler known as mbed online integrated
development environments (IDEs); while writing of code can only be done
through a web browser, its compilation is done by the ARMCC C/C++
compiler in the cloud.

mbed OS supports the following connectivity technologies: BLE, Wi-Fi,
Zigbee, Ethernet and 6LoWPAN.
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Figure 2.4: Contiki Netstack VS mbed network stack

The figure 2.4 puts side-by-side Contiki Netstack with ARMmbed
Netstack in order to make a comparison between them.

As can be seen from the figure, they are very similar. Note that mbed
IEEE 802.15.4 MAC could implement also LLSEC, if wanted.

The MLE module is present in mbed but not in Contiki. MLE stands
for Mesh link Establishment and it operates below the routing layer and
adds three capabilities to IEEE 802.15.4:

• Dynamically configuring and securing radio links. Assures anti-replay
protection

• Enabling network-wide changes to radio parameters

• Detecting neighboring devices

The purpose of the third, detecting neighboring devices, is to make link
management more efficient by detecting unreliable links before any effort
is spent configuring them.

One of the main functions of MLE is to initialize link-layer security;
this means that MLE itself cannot rely on link-layer security; to avoid the
cost and complexity of adding a second security suite, MLE reuses that of
802.15.4.
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All MLE messages are sent using UDP.

All the similarities between Contiki Netstack and mbed 6LoWPAN
stack indicate a technology convergence, thus Contiki OS is a good choice
for IoT projects.

TinyOS

Another alternative OS to Contiki is TinyOS: it’s a free and open
source software component-based operating system and platform targeting
wireless sensor networks (WSNs). TinyOS is an embedded operating
system written in the nesC programming language as a set of cooperating
tasks and processes.

Main differences between TinyOS and Contiki are reported below [39,
40].

• Limited resources: both operating systems can be run on microcon-
trollers with very limited resources, but due to the higher complexity
of the Contiki kernel TinyOS can generally get by with lower resource
requirements

• Concurrency: TinyOS offers only the event-driven kernel as a way of
fulfilling the concurrency requirements; while Contiki also uses an
event-driven kernel it also has different libraries that offer different
levels of multithreading on top of that

• Flexibility: whereas TinyOS is a monolithic system, Contiki is a
modular system; in monolithic systems, an application is compiled
with the OS as a monolithic program; on the other hand, in modular
systems, it is compiled into an individual program module that is
loadable by the OS kernel. Modular systems are more flexible when
the individual application needs to be frequently modified through
network reprogramming, for example when the node software has to
be updated often for a large amount of nodes

• Low Power: TinyOS has out-of-the-box better energy conservation
mechanisms but for Contiki similar power saving mechanisms can be
implemented
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Proposed Solution

This chapter presents the main software changes made in Contiki OS
and the main multi-interface network prototypes tested in this work. In the
following the words “multi-interface” and “multiradio” are used equivalently.
The “multiradio” denomination is due to the fact that Contiki calls the
first level of its Netstack, that implements the physical driver, “Radio”. In
this study the obtained working configurations exploit two communication
technologies: the radio and the power-line. Thus, it is preferred the
utilization of “multi-interface” instead of “multiradio”, even if both of them
can be considered correct, from a Contiki terminology point of view.

Overview

Goal of this thesis is to create a 6LoWPAN-based network prototype
that is formed by nodes with different communication interfaces.

By using Contiki development kit’s network applications examples,
several working configurations have been tested, all composed by one
dual-interface 6LoWPAN Border Router (6LBR), with a SPIRIT1 Radio
and a ST7580 Powerline modem, and several mono-interface nodes, with
alternatively a SPIRIT1 Radio or a ST7580 Powerline modem. The dual-
interface 6LBR interacts with two subnets composed respectively by radio
nodes and by powerline nodes. Hence, the 6LBR routes the information
from one subnet to the other. Subnet prefixes are assigned as parameters
via tunslip6 from the host to the 6LBR and then propagated through RPL
mechanisms.

99
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Figure 3.1: 6LBR dual-interface subnets

The main idea behind the new Contiki multi-interface feature is to
vectorize every Contiki Netstack layer in order to allow multi-interface nodes
to have a separated Netstack for every physical interface. In particular, all
the Netstack layers arrays have a size equal to the number of the node’s
interfaces. Tunslip6 has been modified to allow more than one subnet
prefix to be sent to the 6LBR in order to set interfaces’ addresses and
to create as many subnets as the number of the 6LBR’s interfaces. ND6
and RPL have been adapted as well in order to correctly implement the
multicast and unicast packet sending.

Next sections introduce the hardware implementation of the different
working configurations, the main ideas behind the software changes and
some concrete examples of source code modifications.

3.1 Hardware Implementation

This section presents the physical platforms chosen to achieve this work
objectives and gives an overview of the most interesting working configura-
tions useful to demonstrate the new Contiki multi-interface feature.
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Figure 3.2: STM32 Cube L1 software package block diagram

STM32 Nucleo Development Platform

The STM32L152RE Nucleo programmable board has been chosen
for this work. It is equipped with a STM32L152RE microcontroller by
ST Microelectronics and is part of the STM32 Nucleo-64 family. This
board provides Arduino connectivity support and some additional “Morpho”
headers, allowing to expand the functionality of the base Nucleo board with
a wide range of Arduino Expansion Board and STM32 Nucleo Expansion
Boards that can be plugged on top of the STM32L152RE Nucleo PCB
extending its capabilities.

The STM32L152RE microcontroller integrates an ARM Cortex M3
32bit RISC processor operating at a frequency of up to 32 MHz, a 512 KB
Flash memory and a ST-LINK debugger/programmer interface.

The Nucleo board comes with the STM32CubeL1 software package,
which includes all the software components required to develop an applica-
tion on STM32L1 microcontrollers. The block diagram of STM32Cube is
shown in figure 3.2:

The STM32Cube firmware solution is built around three independent
levels that can easily interact with each other as shown in figure 3.3 on
the next page.

Level 0 is divided in three sub-layers:
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Figure 3.3: STM32 Cube L1 layers interaction
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• Board Support Package (BSP): is based on modular architecture
allowing an easy porting on any hardware by just implementing the
low level routines. This layer offers a set of APIs relative to the
hardware components in the hardware boards (LCD drivers, microSD,
etc...), composed of two parts:

– Component: is the driver relative to the external device on the
board, not related to the STM32, the component driver provide
specific APIs to the BSP driver external components, could be
portable on any other board

– BSP driver: it allows to link the component driver to a specific
board, provides a set of friendly used APIs. The APIs naming
rule is BSP_FUNCT_Action(), so there could be, for instance,
BSP_LED_Init() and BSP_LED_On()

• Hardware Abstraction Layer (HAL): this layer provides the low level
drivers, the hardware interfacing methods to interact with the upper
layers (application, libraries, stacks). It provides generic, multi-
instance, functionalities oriented APIs which permit to offload the
user application implementation by providing ready to use process.
As example, for the communication peripherals (I2S, UART...) it
provides APIs allowing to initialize, configure the peripheral, manage
data transfer based on polling, interrupt or DMA process, manage
communication errors that may raise during communication. The
HAL Drivers APIs are split in two categories, generic APIs which
provides common, generic functions to all the STM32 series, extension
APIs which provides specific, customized functions for a specific
family or a specific part number

• Basic peripheral usage examples: this layer encloses the examples
build over the STM32 peripheral using only the HAL, BSP resources

Level 1 is divided in two sub-layers:

• Middleware components: set of Libraries covering USB Device li-
brary, STMTouch touch sensing library, graphical STemWin library,
FreeRTOS, FatFS. Horizontal interaction between the components
of this layer is done directly by calling the feature APIs while the
vertical interaction with the low level drivers is done through spe-
cific callbacks, static macros implemented in the library system call
interface. As example, the FatFS implements the disk I/O driver
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to access microSD drive or the USB Mass Storage Class. The main
features of each Middleware component are the following:

– USB Device Library

∗ Supports several USB classes (Mass-Storage, HID, CDC,
DFU, AUDIO, MTP)

∗ Supports multi packet transfer features: allows sending big
amounts of data without splitting them into max packet
size transfers

∗ Uses configuration files to change the core, the library con-
figuration without changing the library code (Read Only)

∗ RTOS, Standalone operation
∗ The link with low-level driver is done through an abstraction

layer using the configuration file to avoid any dependency
between the Library and the low-level drivers

– FreeRTOS

∗ Open source standard
∗ CMSIS compatibility layer
∗ Tickless operation during low-power mode
∗ Integration with all STM32Cube Middleware modules

– FAT File system

– STM32 Touch Sensing Library

– STemWin Library

∗ Graphical library supporting LCD provided as part as the
STM32CubeL1 firmware package

• Examples based on the Middleware components: each Middleware
component comes with one or more examples (called also Applica-
tions) showing how to use it. Integration examples that use several
Middleware components are provided as well

Level 2: is composed of a single layer which is a global real-time,
graphical demonstration based on the Middleware service layer, the low
level abstraction layer, the basic peripheral usage applications for board
based functionalities.

STM32L152RE Nucleo Board is shown in picture 3.4 on the facing
page.
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Figure 3.4: STM32 Nucleo L152-RE

The ultra-low-power STM32L152RE microcontroller operates from 1.8
to 3.6 V. The power supply to the entire board is provided either by the
host PC through the USB cable, or by an external source.

The STM32L152RE microcontroller normally boot from system flash
memory, executing a bootloader code and then the application firmware
stored. The MCU user Flash memory can be flashed via one of its interfaces,
which are: two I2Cs, three SPIs, three USARTs, two UARTs and an USB.

More technical details about the STM32Nucleo L1 family are reported
in figure 3.6 on the next page. Among them there are:

• a LCD driver

• two timers

• two watchdogs

• AES encryption

• several interfaces such as SPI, USB, USART and I2C

• ADC / DAC devices
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Figure 3.5: STM32L152RE main connectors

Figure 3.6: STM32L152RE technical details
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SPIRIT1 Radio Expansion Board

The radio Expansion Board chosen to implement one of the two 6LBR
physical interfaces is the IDS01A5 Nucleo Expansion Board, also named
X-NUCLEO-IDS01A5, which is an evaluation board based on SPIRIT1
RF module SPSGRF-915. The SPSGRF-915 module operates in the 915
MHz ISM band. It is compatible with the ST Morpho and Arduino UNO
R3 connector layout.

The SPIRIT1 is a very low-power RF transceiver, intended for RF
wireless applications in the sub-1 GHz band. It is designed to operate in
the license-free ISM frequency bands at 169, 315, 433, 868, and 915 MHz.
Transmitted/received data bytes are buffered in two different three-level
FIFOs (TX FIFO and RX FIFO), accessible via the SPI interface for host
processing.

Communication with the MCU goes through a standard 4-wire SPI
interface and 4 GPIOs. The device is able to provide a system clock signal
to the MCU. MCU performs the following operations:

• Program the SPIRIT1 in different operating modes by sending com-
mands

• Read and write buffered data, and status information from the SPI

• Get interrupt requests from the GPIO pins

• Apply external signals to the GPIO pins

The SPIRIT1 is configured by a 4-wire SPI-compatible interface (CSn,
SCLK, MOSI, and MISO). More specifically:

• CSn: chip select, active low

• SCLK: bit clockMOSI: data from MCU to SPIRIT1 (SPIRIT1 is the
slave)

• MISO: data from SPIRIT1 to MCU (MCU is the master)

As the MCU is the master, it always drives the CSn and SCLK. Ac-
cording to the active SCLK polarity and phase, the SPIRIT1 SPI can be
classified as mode 1 (CPOL=0, CPHA=0), which means that the base
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value of SCLK is zero, data are read on the clock’s rising edge and data
are changed on the clock’s falling edge. The MISO is in tri-state mode
when CSn is high. All transfers are done most significant bit first.

The SPI can be used to perform the following operations:

• Write data (to registers or FIFO queue)

• Read data (from registers or FIFO queue)

• Write commands

The SPI communication is supported in all the active states, and also
during the low power state: STANDBY and SLEEP. In order to notify the
MCU of a certain number of events an interrupt signal is generated on a
selectable GPIO.

ST7580 Power-line Expansion Board

The power-line Expansion Board chosen to implement the second
6LBR physical interface is the ST7580 Nucleo Expansion Board, also
named X_Nucleo_ST7580. The ST7580 Expansion Board is not produced
for the mass-market: it is an experimental prototype for testing purpose.
The ST7580 device provides to the external host a complete physical layer
(PHY) and some data link layer (DL) services for power line communication.
It is mainly developed for smart metering applications in CENELEC A
band, but suitable also for other control applications and remote load
management in CENELEC B band.

A UART host interface is available for communication with an external
host, exporting all the functions and services required to configure and
control the device and its protocol stack.

Below is a list of the protocol layers and functions embedded in the
ST7580:

• Physical (PHY) layer: hosted in the PHY processor, implements
two different modulation schemes for communication through power
line: a B-FSK modulation up to 9.6 kbps and a multi-mode PSK
modulation with channel quality estimation, dual channel receiving
mode and convolutional coding, delivering a throughput up to 28.8
kbps
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Figure 3.7: ST7580 powerline main protocols

• Data link (DL) layer: the embedded DL layer hosted in the protocol
controller offers framing and error correction services. A further
security service (SS) based on 128-bit AES algorithm is also available
for crypting / decrypting frames

• Management information base (MIB): an information database with
the data required for proper configuration of the system

• Host interface: all of the services of the PHY, DL and MIB are
exported to an external host through the local UART port

IKS01A1 Sensors Expansion Board

This sensors Expansion Board is used only to implement one demo in
order to have an interesting scenario for the obtained multi-interface 6LoW-
PAN prototype. The X-NUCLEO-IKS01A1 Expansion Board is a motion
MEMS and environmental sensor evaluation board system. It is compatible
with the Arduino UNO R3 connector layout, and is equipped with a 3-axis
accelerometer, with a 3-axis gyroscope, with a 3-axis magnetometer and
with a humidity, a temperature and a pressure sensor.
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Figure 3.8: STM32NucleoL152RE with SPIRIT1

The X-NUCLEO-IKS01A1 interfaces with the STM32 microcontroller
through an I2C interface.

Hardware Working Configurations

As explained before, two different kind of nodes has been used to test
the solution implemented:

• A dual-interface 6LoWPAN Border Router (6LBR), with a SPIRIT1
Radio and a ST7580 Powerline modem

• Mono-interface nodes, with alternatively a SPIRIT1 Radio or a
ST7580 Powerline modem

The above nodes are physically composed by the following hardware
combination:

• A STM32L152RE Nucleo with a SPIRIT1 Radio Expansion Board.
The devices plugged together look like in the figure 3.8.

• A STM32L152RE Nucleo with a IDS01A5 SPIRIT1 Radio Expansion
Board and with a IKS01A1 sensors Expansion Board. The three
devices plugged together look like in figure 3.9 on the next page
and 3.10 on the facing page



3.1. Hardware Implementation 111

Figure 3.9: STM32NucleoL152RE with SPIRIT1 and sensors from front

Figure 3.10: STM32NucleoL152RE with SPIRIT1 and sensors from side
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Figure 3.11: STM32NucleoL152RE with ST7580 powerline modem

• A STM32L152RE Nucleo with a ST7580 Powerline Expansion Board.
The devices plugged together look like in figure 3.11.

• A STM32L152RE Nucleo with a IDS01A5 SPIRIT1 Expansion Board
and with a ST7580 Powerline Expansion Board. The devices plugged
and wired together look like in figure 3.12 on the facing page

In order to connect both the X-NUCLEO-IDS01A5 and the ST7580 for
the 6LBR on the STM32L152RE Nucleo, some external wires that export
the needed peripherals on the Arduino compatible connectors are needed.
This is due to the lack of a sufficient number of GPIOs.

3.2 Software Modifications

This section describes the main software modifications applied to the
Contiki vanilla code, to implement the "multiradio" solution.

3.2.1 Platform Porting

As stated in paragraph Tree Structure of chapter three, Contiki holds
in the “platform” folder all the platforms that are supported by the OS,
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Figure 3.12: STM32NucleoL152RE with ST7580 powerline and SPIRIT1

including two ST platforms: the stm32nucleo-spirit1 and the stm32nucleo-
st7580.

A new platform with the corresponding folder named “stm32nucleo-
spirit1-st7580” has been added containing the porting code for a STM32L152
Nucleo provided with both the SPIRIT1 radio module and the ST7580
Powerline module, i.e. a multi-interface platform.

Makefile

The porting of Contiki on the new platform must follow this con-
sideration: every time a driver of one of the two implemented module
(SPIRIT1 and ST7580) updates, also the corresponding driver contained
in the multi-interface platform folder must update. This is achievable by
correctly setting up the Makefile to compile using directly the original
code contained in the mono-interface platforms. The main sections of
Makefile.stm32nucleo-spirit1-st7580 are reported in code listing 3.1.

Source Code 3.1: Makefile changes
1 #Retrieve the Spirit , x_nucleo_ids01ax , st7580 and

x_nucleo_st7580 drivers in the relative platform folders
;

2 #This way we want to exploit the already -existing and
updated files and folders.
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3 CONTIKI_TARGET_DIRS += ../ stm32nucleo -spirit1/stm32cube -
lib/drivers/spirit1/src \

4 ../ stm32nucleo -spirit1/stm32cube -lib/drivers/spirit1/
inc

5 CONTIKI_TARGET_DIRS += ../ stm32nucleo -spirit1/stm32cube -
lib/drivers/x_nucleo_ids01ax

6 CONTIKI_TARGET_DIRS += ../ stm32nucleo -st7580/stm32cube -lib
/drivers/st7580/src \

7 ../ stm32nucleo -st7580/stm32cube -lib/drivers/st7580/
inc

8 CONTIKI_TARGET_DIRS += ../ stm32nucleo -st7580/stm32cube -lib
/drivers/x_nucleo_st7580

9

10 [...]
11

12 # Duplicate headers issue: gcc will use the first headers
it finds in the include paths , so the problem is solved
by including the

13 # multi -interface platform before the monoradio one.
14 CFLAGS += -I. \
15 -I$(CONTIKI)/cpu/arm/stm32l152 \
16 -I$(CONTIKI)/core \
17 -I$(CONTIKI)/platform/$(TARGET)/dev \
18 -I$(CONTIKI)/platform/$(TARGET) \
19 -I$(CONTIKI)/platform/$(TARGET)/stm32cube -lib/stm32cube

-prj/Inc \
20 -I$(CONTIKI)/platform/$(TARGET)/stm32cube -lib/drivers/

Common \
21 -I$(CONTIKI)/platform/$(TARGET)/stm32cube -lib/drivers/

CMSIS \
22 -I$(CONTIKI)/platform/$(TARGET)/stm32cube -lib/drivers/

STM32L1xx_HAL_Driver/Inc \
23 -I$(CONTIKI)/platform/stm32nucleo -spirit1/stm32cube -lib

/drivers/spirit1/inc \
24 -I$(CONTIKI)/platform/stm32nucleo -spirit1/stm32cube -lib

/drivers/x_nucleo_ids01ax \
25 -I$(CONTIKI)/platform/stm32nucleo -st7580/stm32cube -lib/

drivers/st7580/inc \
26 -I$(CONTIKI)/platform/stm32nucleo -st7580/stm32cube -lib/

drivers/x_nucleo_st7580 \

Makefile changes allow the compiler to include during compilation
the correct headers. In particular, the headers of the drivers must be
retrieved in the mono-interface platform folders. Note that even the order
of inclusion is important: the multi-interface headers must be included
before the mono-interface ones, otherwise a “duplicate headers error” is
thrown as gcc uses the first headers it finds in the include paths.
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Main C Files

The new multi-interface platform folder contains the following C files:

• contiki-spirit1-st7580-main.c : this source file contains the main()
function that is in charge of low-level drivers initialization (i.e. HAL
drivers for the STM32Nucleo L152RE), clock initialization, main
Contiki processes start and Netstack initialization

• contiki-conf.h : this file is the configuration file for Contiki. This
file contains macros that enable or disable the different Contiki
functionalities, that declare statically the drivers and protocols to
be included by the Netstack, that configure some routing and radio
parameters and many others

• hw-config.h : this file contains macros that mainly declare the GPIO
utilization. The file has been approximately organized as follows:

– USB GPIOs configuration

– USART-UART GPIOs configuration

∗ SLIP USART GPIOs configuration
∗ ST7580 UART GPIOs configuration

– SPIRIT1 SPI GPIOs configuration

– I2C GPIOs configuration: even if not used by the multi-interface
6LBR, I2C GPIOs must be declared to avoid error signals by
the STM32Cube-L1 library in compilation phase

– Generic GPIOs configuration: SPIRIT1’s and ST7580’s digital
input/output GPIOs (shutdown, reset, T_REQ, transmission and
reception in progress)

• spirit1.c : in this file is defined the radio driver for SPIRIT1 used by
the Netstack

• st7580.c : in this file is defined the “radio” driver for ST7580 used by
the Netstack

Next paragraphs illustrate how these files are manipulated in order to
obtain a functional multi-interface platform implementation.
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3.2.2 RPL Subnetting

The main idea regarding the organization of a multi-interface 6LoWPAN
is to have as many subnets as the number of the 6LBR’s interfaces. The
subnets prefixes are passed via tunslip6 through the SLIP connection from
the host to the 6LBR. The 6LBR then distributes the prefixes by sending
DIOs on the adiacent links. The nodes that are not directly connected to
the 6LBR receive one of the prefixes distributed from the 6LBR via the DIO
propagation made by the parent node. Note that it’s not appropriate to
use the terms association “link prefixes” to refer to the prefixes distributed
by the 6LBR in the RPL net: in fact, the RPL links are 6LoWPAN links,
i.e. links with single-hop reachability of neighboring nodes. All the nodes
which exploit the same communication technology, for instance radio or
powerline, are organized in the same subnet, i.e. are organized with the
same prefix.

In the obtained working configurations, the 6LBR has two inter-
faces that correspond respectively to the SPIRIT1 radio link and the
ST7580 power-line link. Thus, the 6LBR must distribute two prefixes: the
aaaa:aaaa::1/64 prefix for the SPIRIT1 nodes and the bbbb:bbbb::1/64
prefix for the ST7580 Powerline nodes.

Tunslip6 Adaptations

A secondary idea regarding the organization of a multi-interface 6LoW-
PAN is to let the server hold a hard-coded IP address which is subnet-
independent in order to let the client nodes communicate with him inde-
pendently from its relative position (i.e. independently from the subnet
he belongs to). This is not new in Contiki: the rpl-udp-client example
implements a RPL client node which is aware of the server address because
it is hard-coded, i.e. it’s the aaaa::ff:fe00:1 address. The same address
is hard-coded in the rpl-udp-server example. The main difference is that
in the working configurations, the server holds two addresses: one auto-
configurable address (via SLAAC) and one manually configured address
which never changes its prefix. This implementation is named “IP aliasing”
and is discussed in detail later.

Original tunslip6 usage is the following:

1 ./ tunslip [options] ipaddress
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where an example is the following:
1 ./ tunslip6 -L -v2 -s ttyUSB1 aaaa ::1/64

The prefix that tunslip6 takes as a parameter is the prefix that is
assigned to all nodes of the RPL net. Obviously, the prefix is only one in the
original Contiki implementation. The adapted tunslip6 main modifications
takes two new options:

• 6LBR interfaces number option: [-i numinterfaces] . This in-
formation allows in the command line the insertion of a number of
prefixes equal to “numinterfaces” value. For instance, -i 2 allows a
command line as the following:

1 ./ tunslip6 -i 2 -s ttyUSB1 aaaa:aaaa ::1/64 aaaa:bbbb
::1/64

where aaaa:aaaa::1/64 and aaaa:bbbb::1/64 are the two prefixes
announced via -i 2

• RPL server IP address: [-r rplserveraddress] , where “rplserver-
address” is the server IP address to which clients send data. This
option allows the host to ping the server IP address, i.e. add the
server IP address to its routing table.

In Linux, the system kernel IPv6 routing table can be accessed via the
following command line instruction:

1 route -6

which output the bash lines reported in table 3.1 on the following page
when a RPL net is not running (i.e. the host current routing table).

The obtained working configurations has been tested with the following
command line:

1 ./ tunslip6 -i 2 -s ttyUSB1 -r aaaa:abcd::ff:fe00:1 aaaa:
aaaa ::1/64 aaaa:bbbb ::1/64

and the resulting host kernel routing table is reported in table 3.2 on
the next page (RPL net up and running):

In this configuration, all the RPL nodes, i.e. even the server IP address
can be pinged.
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Table 3.1: Linux kernel IPv6 routing table without Contiki 6LoWPAN

Destination Next-
hop

Flag Met Ref Use If

fe80::/64 :: U 256 0 0 eth1
::/0 :: !n -1 1 1 lo
::1/128 :: Un 0 3 65 lo
fe80::217:4ff:fe44:c01f/128 :: Un 0 1 0 lo
ff00::/8 :: U 256 0 0 eth1
::/0 :: !n -1 1 1 lo

Table 3.2: Linux kernel IPv6 routing table with Contiki 6LoWPAN

Destination Next-
hop

Flag Met Ref Use If

aaaa::/64 :: U 256 0 0 tun0
aaaa:abcd::ff:fe00:1/128 :: U 256 0 0 tun0
bbbb::/64 :: U 256 0 0 tun0
fe80::/64 :: U 256 0 0 eth1
fe80::/64 :: U 256 0 0 tun0
::/0 :: !n -1 1 1 lo
::1/128 :: Un 0 3 65 lo
aaaa::1/128 :: Un 0 1 0 lo
aaaa:abcd::ff:fe00:1/128 :: Un 0 1 0 lo
bbbb::1/128 :: Un 0 1 0 lo
fe80::/128 :: Un 0 1 0 lo
fe80::217:4ff:fe44:c01f/128 :: Un 0 1 0 lo
ff00::/8 :: U 256 0 0 eth1
ff00::/8 :: U 256 0 0 tun0
::/0 :: !n -1 1 1 lo
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DODAG Subnetting

Two main assumptions are behind the RPL net subnetting:

• A RPL instance is a net in which nodes can communicate among
them. Thus, RPL subnets in which nodes can communicate among
them must be part of the same RPL instance

• A RPL DAG root is a node which is the root for a DODAG. In
ContikiRPL, a node can be the root only for one DODAG, i.e. a
RPL instance must have different DAG root nodes. This assumption
is implied by the “node’s current DAG” implementation, that binds
one node to a specific DAG in one temporal instant. When a new
DODAG instance is detected, the node’s current DAG changes. Thus,
a node’s current DAG is a DAG which belongs to a RPL instance.
The RPL instance struct can be found in rpl.h header file.

Since one node belongs to just one DODAG in a temporal instant, RPL
subnetting must happen inside a DODAG, i.e. within a node’s current
DAG, as the 6LBR must handle several subnets in the same temporal
instant.

In order to better comprehend these considerations, Carel’s virtual
DODAG root implementation is illustrated below.

A virtual DODAG root [23] is the result of two or more RPL routers,
for instance, 6LoWPAN Border Routers (6LBRs), coordinating to syn-
chronize DODAG state and act in concert as if they are a single DODAG
root (with multiple interfaces), with respect to the LLN. The coordination
most likely occurs between powered devices over a reliable transit link.
Carels’s implementation [41] defines a new RPL “multi-sink” instance, i.e.
many border routers that connect infrastructures over different location-
s/interfaces in one network. Every border router is logically binded to the
other border routers via a parent virtual border router, and is physically
connected to others border routers via wired connections to keep high
performances. The resulting network is illustrated in figure 3.13 on the
following page.

One main advantage of Carel’s implementation is to have all the nodes
organized in a single DODAG, which is easier to maintain with respect
to different DODAGs since it requires no extra processing and no extra
communication. Another main advantage is the memory usage: when
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Figure 3.13: an example of a network with a virtual DODAG root

using a multiple DODAGs, each sink has to store the routes to each node
in the network. When using a virtual sink, the memory usage to store the
routes to children in the subtrees is spread over the different possible sinks.

From a certain point of view, the working configurations obtained from
this work are a sort of real implementation of the virtual DODAG root on
a single physical border router. The main differences are the following:

• there is not a virtual parent

• there is only one physical border router

• the border router has several interfaces, not just one

• the RPL net is organized in subnets, i.e. different prefixes are assigned
to nodes which exploit different communication technologies

DODAG Prefix Field Vectorization

In order to handle the RPL subnetting, the main source code change
was to vectorize the DAG prefix field. The new DAG structure with the
multi-interface adaptation is illustrated in code listing 3.2.

NETSTACK_CONF_NUMINTERFACES represents the number of interfaces
available on the node.

Source Code 3.2: RPL DAG
1 /* Directed Acyclic Graph */
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2 struct rpl_dag {
3 uip_ipaddr_t dag_id;
4 rpl_rank_t min_rank; /* should be reset per DAG iteration

! */
5 uint8_t version;
6 uint8_t grounded;
7 uint8_t preference;
8 uint8_t used;
9 /* live data for the DAG */

10 uint8_t joined;
11 rpl_parent_t *preferred_parent;
12 rpl_rank_t rank;
13 struct rpl_instance *instance;
14 #if NETSTACK_CONF_MULTIINTERFACES
15 rpl_prefix_t prefix_info[NETSTACK_CONF_NUMINTERFACES ];
16 #else
17 rpl_prefix_t prefix_info;
18 #endif
19 uint32_t lifetime;
20 };

In ContikiRPL one node belongs to one current DAG in every temporal
instance. As can be seen from the rpl_dag struct, the DAG ID consists
of one IP address: the IP address of the DAG root. In the tested working
configurations the DAG root is always a multi-interface 6LBR, i.e. a node
which has several IP addresses, one for each interface. The dilemma of
which IP address to assign to the DAG ID is not a concrete problem: in
fact, the DAG ID address is never used as a routing address, that’s to say
that any address could be used, with the only constraint that it must be
unique inside a RPL instance. For this reason, the IP address relative to
the 0-indexed interface can be used by default.

An RPL DAG holds a field named “prefix information” which specifies
the prefix assigned to nodes that belong to the DAG. This field is filled
via the DIOs exchange process, i.e. by copying the information held in the
Prefix Information Option (PIO) of a DIO. Each time a DIO is received, if
the prefix in the PIO is different from the prefix held in the DAG prefix
info, the DAG prefix info takes the PIO value.

In order to implement the multi-interface feature on the 6LBR, the
6LBR’s DAG must memorize all the prefixes that are active in the RPL
net, organized by interface. Thus, the DAG prefix info field has been
vectorized.

After the driver initialization, the border router sends to the host a
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prefix request via tunslip6. The host replies when the tunslip6 command
line is executed. In the tunslip6 command line, the prefixes of the RPL
subnets are passed as parameters, as discussed in Tunslip6 Adaptations
section. These prefixes are then organized in an array, which is processed by
the 6LBR as soon as the host reply arrives. These prefixes are memorized
by the 6LBR in the DAG prefix info array field and are organized by
interface: the prefix held in the 0-indexed cell of the array sent by the
host is assigned to the 0-indexed DAG prefix info array cell, and so on.
Then, the 6LBR sends as many DIOs as the number of its interfaces.
Every DIO holds a PIO which corresponds to the relative interface: nodes
reachable via the 0-indexed communication technology will receive a DIO
with a PIO filled with the 0-indexed DAG prefix info array cell, and so
on. Finally, the nodes utilize the PIO held by the DIOs to perform the
SLAAC. Figures 3.14 on the facing page illustrate prefixes dissemination
in a network composed by two subnets, composed in turn from only one
mote.

Even if the RPL doesn’t utilize the “default” uip_ds6_prefix_list,
which was originally conceived for the ND6 protocol, this prefix list is
still used by a Contiki RPL-based application: in fact, this prefix list is
filled during the data structure initialization (uip_ds6_init()) with the
well-known link-local prefix, and it’s consulted during packet integrity
processing and during the next-hop determination phase. For this reason,
it’s logically coherent to vectorize the uip_ds6_prefix_list structure as
illustrated in code listing 3.3.

Source Code 3.3: prefix list vectorization
1 #if NETSTACK_CONF_MULTIINTERFACE
2 uip_ds6_prefix_t uip_ds6_prefix_list[

NETSTACK_CONF_NUMINTERFACES ][ UIP_DS6_PREFIX_NB ];
3 #else
4 uip_ds6_prefix_t uip_ds6_prefix_list[UIP_DS6_PREFIX_NB ];
5 #endif

ND6 over 6LoWPAN Subnetting

ND6 over 6LoWPAN handles prefixes using the prefix list defined in
uip_ds6.h. This prefix list has been already described in ND6 Data
Structures section. As already said, the prefix list is filled from the RA
prefix information. Thus, the principle is the same: the prefix list must be
organized by interface, in order to retrieve the correct prefix information.



3.2. Software Modifications 123

(a) first phase.

(b) second phase.

Figure 3.14: RPL prefixes dissemination in a network with two subnets
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Figure 3.15: Netstack vectorized

The ND6 subnetting is not used in our testing configuration since
all of them are RPL-based, i.e. the prefixes that are caught from the
tunslip6 are processed by the RPL border router which sends the prefix
array information to the DAG handler. Hence, in order to test the new
multi-interface feature with ND6 a different network prototype should be
conceived.

3.2.3 Netstack Vectorization

Contiki Netstack is a collection of drivers organized in a layered fashion.
It’s easy then to conceive a multi-interface Contiki version with a vectorized
Netstack in which all the layers are arrays of drivers with a size equal to
the number of the node’s interfaces. Figure 3.15 illustrates this concept.

The choice of vectorize the network layer is justified by the fact that the
Netstack is not exclusively used by uIPv6 stack. Even if 6LoWPAN could
be a long-lived standard for IPv6 packet header compression, and even if
can be assumed that no other adaptation layer protocols will be developed
in the next years, the Netstack is used by other packet transmission
mechanism. For instance, Rime network driver was developed in order
to avoid utilizing IP protocol when resources are even more constrained.
Thus, there could be other interesting network drivers to be implemented
by Contiki in the near future. Same goes for the MAC layer: the IEEE
802.15.4 states that the standard MAC driver for LR-WPAN should be
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Figure 3.16: new layers interaction during a "receive-and-reply to a packet"
event

the CSMA/CA protocol, but again, in some cases is useful to adopt some
ad-hoc protocols in combination (Null MAC driver + ContikiMAC RDC
driver) in order to fulfill the constraints or to achieve the objectives.

The new layer interaction scheme in the most frequent system event,
i.e. the “receive-and-reply to a packet” event, is illustrated in figure 3.16.

Contiki Netstack protocols illustrated in figure 3.16 are the protocols
implemented by the nodes in the working configurations obtained in this
work. Hence, the protocols are the same for each node with the exception
of the radio driver which is different depending on the physical interface of
the node. Thus, the SPIRIT1 nodes exploit the SPIRIT1 radio driver, the
ST7580 nodes exploit the ST7580 radio driver and the 6LBR node exploits
both the drivers. Even if in the obtained working configurations the 6LBR
Netstack protocols are the same with the exception for the interface driver,
Netstack drivers could be different for each 6LBR interface. The idea is
exactly to have different interfaces which implement different Netstack
protocols. Finally, Netstack arrays are implemented as illustrated in code
listing 3.4 on the next page.
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Source Code 3.4: new Netstack arrays
1 struct llsec_driver NETSTACK_LLSEC[

NETSTACK_CONF_NUMINTERFACES ];
2 struct mac_driver NETSTACK_MAC[NETSTACK_CONF_NUMINTERFACES

];
3 struct rdc_driver NETSTACK_RDC[

NETSTACK_CONF_NUMINTERFACES ];
4 struct framer NETSTACK_FRAMER[NETSTACK_CONF_NUMINTERFACES

];
5 struct radio_driver NETSTACK_RADIO[

NETSTACK_CONF_NUMINTERFACES ];

where NETSTACK_CONF_NUMINTERFACES is a macro that contains the
number of the links above which the 6LBR interfaces himself, i.e. the
number of the node’s interfaces. This declaration goes in the netstack.c
file, which contains the details of the Netstack. The array initialization for
a dual-interface node is illustrated in code listing 3.5.

Source Code 3.5: dual-interface node Netstack arrays initialization
1 /* SPIRIT1 Netstack arrays initialization. */
2 NETSTACK_LLSEC[SPIRIT1_INTERFACEID] = nullsec_driver;
3 NETSTACK_MAC[SPIRIT1_INTERFACEID] = csma_driver;
4 NETSTACK_RDC[SPIRIT1_INTERFACEID] = nullrdc_driver;
5 NETSTACK_FRAMER[SPIRIT1_INTERFACEID] = framer_802154;
6 NETSTACK_RADIO[SPIRIT1_INTERFACEID] =

spirit_radio_driver;
7

8 /* ST7580 Netstack arrays initialization. */
9 NETSTACK_LLSEC[ST7580_INTERFACEID] = nullsec_driver;

10 NETSTACK_MAC[ST7580_INTERFACEID] = csma_driver;
11 NETSTACK_RDC[ST7580_INTERFACEID] = nullrdc_driver;
12 NETSTACK_FRAMER[ST7580_INTERFACEID] = framer_802154;
13 NETSTACK_RADIO[ST7580_INTERFACEID] = st7580_radio_driver

;

where SPIRIT1_INTERFACEID and ST7580_INTERFACEID are macros
which contains respectively the values of 0 and 1. This initialization can
be found in the main file relative to the new multi-interface platform.

As already explained, Contiki offers a high level of system customization.
In fact, the source code is built with customizable macros and code blocks
inserted into "if" conditional directives. At compile-time, the code blocks
which are inside a false condition of a "if" directive are not compiled,
i.e. not ported on the binary of the application. Hence, the idea was
to follow this programming model to implement the new Contiki multi-
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interface feature: this software improvement can either be implemented
or not simply by setting a macro value to 1. This macro has been named
NETSTACK_CONF_MULTIINTERFACE. All the new code blocks are inserted
inside the "if" directive as illustrated in 3.6.

Source Code 3.6: new Contiki source code organization
1 #if NETSTACK_CONF_MULTIINTERFACE
2

3 //New multi -interface feature code
4

5 #else
6

7 // Original Contiki code
8

9 #endif

The NETSTACK_CONF_MULTIINTERFACE and NETSTACK_CONF_NUMINTERFACES
macros are defined in the contiki-conf.h header file. In particular, in the
multi-interface 6LBR the macros are defined as illustrated in code list-
ing 3.7.

Source Code 3.7: new multi-interface feature’s main macros
1 #define NETSTACK_CONF_MULTIINTERFACE 1
2 #define NETSTACK_CONF_NUMINTERFACES 2 // SPIRIT1 and ST7580

Powerline

Neighbor-Interface Association

In order to implement the multi-interface feature, new information
must be added to the Contiki data structures. This new information is
basically: “who is reachable via a certain link” and “who can reach me
via a certain link”. These information, from a logic point of view, can
be synthesized in one single information: “which links (technology) are
exploited by my neighbors”. In fact, a node is only interested to know how
to reach the next-hop during a packet transmission. It has no interest in
knowing which communication technology a node far from him utilizes,
it is enough for him to know that a certain far node exists and that is
reachable via one of its neighbors.

Actually, this “which links are exploited by my neighbors” information is
so important for a node that it is not limited only to the packet transmission
phase: this information affects all the packet input and output phase, i.e.



128 Chapter 3. Proposed Solution

the Netstack upward and downward crossing phases. As figure 3.16 on
page 125 shows, when a packet arrives from a link, the physical layer must
process and forward the packet to a certain RDC driver, i.e. the RDC
driver which is relative to that physical interface. It could be for instance
the Null RDC driver for a generic radio A or could be the ContikiMAC
RDC driver for a generic radio B.

Hence, the information “which link is exploited by a neighbor”, i.e. the
interface information, must be related to the data structure that holds the
neighbor main attributes. This data structure can be found in the kernel
inside the network “net” folder, which contains all the network protocols and
data structures. From there, every source file, protocol or data structure
that is mentioned it’s assumed to be handled in some file inside the “net”
folder of the kernel. The specific files which contain the data structures
related to the neighbors are the uip-ds6-nbr.h and uip-ds6-nbr.c files. The
main data structure in these files is the “neighbor cache”, which was already
presented in the ND6 Data Structure section. The uip_ds6_nbr_t is the
structure which describes a neighbor characteristics. Here is added the
interface information in order to fulfill the neighbor-interface association.

The Neighbor Cache, the Default Router List and the Neighbor Routes
Table are not vectorized, i.e. there is not the need to organize them by
interface in order to implement the multi-interface feature. The reason is
that during the routing, a node must be aware of all its neighbors and of
all the routes that go through its neighbors. Thus, the logic behind the
choice of the next-hop during a packet output stays the same.

Interface ID

The interface information has been simply translated in an integer value
that uniquely identifies some interface and that can be named “interface
ID”. This interface information is used mainly during the packet output
and input phases, when some functions of some Netstack protocol are
invoked, as illustrated in code listing 3.8.

Source Code 3.8: new Netstack layers’ functions invocation
1 NETSTACK_LAYER[interface_id ]. some_function ()

The interface ID integer can take values from 0 (as the first array
cell has index 0) to NETSTACK_CONF_NUMINTERFACES. Assuming that the
number of interfaces can never be realistically more than a dozen, interface
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ID can be declared as a uint8_t variable, i.e. the ARM small integer
optimized version (unsigned and with 8 bit of representation, i.e. up to
255).

In order to uniquely identify an interface on a node, this information
must be statically defined in the contiki-conf.h file. The macros in code
listing 3.9 do the job.

Source Code 3.9: interfaces identifiers declaration
1 #define SPIRIT1_INTERFACEID 0
2 #define ST7580_INTERFACEID 1

These macros are used in the respective “radio” driver files (spirit1.c
and st7580.c) in order to call the RDC driver:

1 NETSTACK_RDC[SPIRIT1_INTERFACEID ].input();

in the spirit1.c source file, and

1 NETSTACK_RDC[ST7580_INTERFACEID ].input();

in the st7580.c source file.

Interface ID as a Packetbuf Attribute

As illustrated in Neighbor-Interface Association section, the interface
information, i.e. the interface ID, is saved in the neighbor cache. In order
to do this, the interface ID, which is extrapolated from the physical layer
during packet input, must be preserved until a new neighbor is added
into it. This happens exactly after a packet input event: in fact, a new
neighbor is detected when a packet is sent to the node and, after processing
the packet, it comes out that the sender is not in the neighbor cache. In
particular, the uip_ds6_nbr_add(...) function is called at the network
layer, above the adaptation layer, i.e. out of the Netstack. This means
that the interface information must cross the Netstack from the physical
layer (i.e. from the radio driver) upward to the network layer (adaptation
layer), then must reach the RPL and ND6 routing protocols, where the
uip_ds6_nbr_add(...) is invoked.

The packetbuf global buffer saves a new incoming packet. This buffer
is conceived to preserve the packet information while crossing the Netstack
in order to let all the layers process the new packet. Furthermore, the
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Figure 3.17: Contiki uIP’s main global buffers

packet’s information is organized in packet attributes called “packetbuf
attributes”. These attributes are distinguished in:

• scope 0 attributes, which are used only on the local node

• scope 1 attributes, which are used between two neighbors only

• scope 2 attributes, which are used between end-to-end nodes

In the figure 3.17 it’s illustrated the scope of the two main Contiki
global buffers.

Thus, a new packetbuf attribute, named PACKETBUF_ATTR_INTERFACEID,
has been added to the scope 0 attributes. This attribute is set in the radio
driver during packet input processing, with the function illustrated in code
listing 3.10.

Source Code 3.10: interfaceID packetbuf attribute assignment to incoming
packet

1 packetbuf_set_attr(PACKETBUF_ATTR_INTERFACEID ,
SPIRIT1_INTERFACEID);

During a packet output, the interface ID packetbuf attribute is set
in the network driver, in order to allow the downward crossing of the
Netstack.
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This way, across the Netstack drivers the upward-downward layer
invocation looks like the code listing 3.11:

Source Code 3.11: interfaceID packetbuf attribute usage
1 NETSTACK_LAYER[packetbuf_attr(PACKETBUF_ATTR_INTERFACEID)].

function ();

where packetbuf_attr(interface_id) is the “get attribute” function.

In order to let the interface ID reach the routing protocols, a new global
variable is declared as follows:

1 uint8_t uip_ds6_interfaceid

This variable is used during packet input by the network driver in
order to let the interface ID reach the routing protocols, and during packet
output by the routing protocols in order to let the interface ID reach the
network adaptation layer.

3.2.4 interface Structure Vectorization

Next phase was to vectorize the structure which holds an interface
attributes. Such structure can be found in the uip-ds6.c source file, which
holds all the main IPv6 related data structures. The vectorization it’s
illustrated in code listing 3.12.

Source Code 3.12: Interface structure vectorization
1 uip_ds6_netif_t uip_ds6_if[NETSTACK_CONF_NUMINTERFACES ];

For every instance of uip_ds6_if, code must be organized with the
"if" directive as shown previously. The interface structure is used in a lot
of circumstances, thus only the main conceptual changes are reported. In
order to exploit the desired interface, a lot of functions need to receive the
interface ID as a parameter, so in general the main adaptation that has
been applied to functions is illustrated in code listing 3.13.

Source Code 3.13: general functions adaptation
1 return_value_type
2 #if NETSTACK_CONF_MULTIINTERFACE
3 function (.., uint8_t interface_id)
4 #else
5 function (..)
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6 #endif
7 { function_body }

Interfaces Address Lists

Every interface holds an address list, as explained in IPv6 Node’s
Required Addresses section. Thus, every time that the system adds an
address, it must add it to the correct interface. As a link-local address
is formed by combining a well-known prefix (fe80::) with an interface
identifier, the interfaces’ address lists hold the same link-local address.
This is allowed by the fact that an interface identifier may be used on
multiple interfaces on a single node, as long as they are attached to different
subnets.

Together with the link-local address, every interface’s address list
holds a global address, which is at first saved during the RPL examples
initialization (i.e. the rpl-udp examples -server and client- and the rpl-
border-router example) with the aaaa:: default prefix, and then eventually
replaced during the Stateless Address Autoconfiguration process (SLAAC),
i.e. when the 6LBR multicast to the nodes the prefix addresses received
from the SLIP interface via tunslip6 (the 6LBR must eventually change
its global addresses as well).

The function:

1 uip_ds6_addr_t *uip_ds6_addr_lookup(uip_ipaddr_t *ipaddr)

retrieves an address structure from the address list by seeking the IP
address. This function is invoked in some cases for detect if a packet’s
target address is one of the node’s addresses. That’s the case for instance
during a NS input processing: if the target address is one of the node’s
addresses, the node must respond to the NS with a NA packet. There could
be cases in which the packet’s target address is in a list that corresponds
to an interface different from the one from which the packet entered. For
example, if a packet sent on the ST7580 Powerline has ADDRESS_X as target
address, it’s not correct to look for ADDRESS_X in the ST7580 Powerline
interface’s address list, instead it’s correct to seek in every interfaces’
address lists. Hence, the search cycles on all the node’s interfaces’ lists
and not only on one interface’s list. For this reason, this function does
not accept a interface ID parameter, but instead cycles on all the lists and
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then returns the address structure in which could be found the interface
ID information contained in a new field, as illustrated in figure 3.14.

Source Code 3.14: new unicast address structure with interface ID field
1 typedef struct uip_ds6_addr {
2 uint8_t isused;
3 uip_ipaddr_t ipaddr;
4 uint8_t state;
5 uint8_t type;
6 uint8_t isinfinite;
7 struct stimer vlifetime;
8 #if UIP_ND6_DEF_MAXDADNS > 0
9 struct timer dadtimer;

10 uint8_t dadnscount;
11 #endif /* UIP_ND6_DEF_MAXDADNS > 0 */
12 #if NETSTACK_CONF_MULTIINTERFACE
13 uint8_t interface_id;
14 #endif
15 } uip_ds6_addr_t;

The multicast and anycast addresses are held in separated lists, which
are named respectively multicast address list and anycast address list.

Multicast address list holds:

• one well-known all-nodes multicast address (ff02::1); every interface
holds the same well-known all-nodes multicast address

• one well-known all-routers multicast address (ff02::2), if the node
is a router; every interface holds the same well-known all-routers
multicast address

• as many solicited-node multicast addresses as the number of its
unicast addresses, which are obtained as described in Pre-defined
Multicast Addresses section

• one well-known all RPL nodes multicast address (ff02::1a)

Anycast list in Contiki 3.0 is not used, i.e. there’s no occurrence of the
uip_ds6_aaddr_add(..) function anywhere in the source code.

Source Address Selection

The original sas function is defined in uip-ds6.c source file and is the
following:
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1 void uip_ds6_select_src(uip_ipaddr_t *src , uip_ipaddr_t *
dst)

The original sas function takes two parameters: the source IP address
field reference and the destination IP address field reference of the uIP
global buffer. The source IP address field is the one which is filled by the
sas algorithm (that’s the reason why this parameter is passed by reference,
as it is directly manipulated by the function), the destination IP address
field is already defined and is used by the sas algorithm to choice the
correct source address.

As specified in Source Address Selection section, routing (more precisely,
selecting an outgoing interface on a node with multiple interfaces) is done
before source address selection (sas). Since Contiki was conceived as a
mono-interface system, this assumption was not followed at all. In fact, the
sas in the original Contiki is done before the next-hop determination, i.e.
before that an outgoing interface is selected. The next-hop determination
is found in the tcpip_ipv6_output() function in the tcpip.c file, in the
“ip” folder.

This issue must be solved differentiating two main cases:

• multicast output: a packet must be sent via all the interfaces that the
6LBR has. This is logically identifiable with the code implementation
illustrated in code listing 3.15.

Source Code 3.15: new multicast output implementation
1 for(interface_id =0; interface_id <

NETSTACK_CONF_NUMINTERFACES; interface_id ++)
2 packet_output(interface_id);

i.e. the packet output function (for instance, the RS output and
the DIO output) must be called as many times as the number of
interfaces. In particular, the interface ID, which corresponds to the
for cycle incrementing variable, must be passed to the function in
order to let the uIP stack protocols correctly work. Multicast output
concrete cases are discussed later

• unicast output: a packet must be sent to a specific address. This
requires a way to retrieve the next-hop’s interface ID in order to let
the packet reach its final destination. The interface ID information
in particular must be given in input to the sas in order to apply the
algorithm on the right interface
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In order to solve the unicast output issue, it has been implemented a
new function that does the next-hop determination as the
tcpip_ipv6_output() function does and then extrapolates and returns
the next-hop’s interface ID, i.e. the chosen destination neighbor’s interface
ID. This ID is then passed as a parameter to the
uip_ds6_select_src(..) function, which computes the sas on the appro-
priate interface (i.e. on the uip_ds6_if[interface_id] interface). This
function is illustrated in code listing 3.16.

Source Code 3.16: new function: get next-hop interface ID
1 uint8_t uip_ds6_nbr_get_nexthop_interfaceid(const

uip_ipaddr_t *dest)

It takes as parameter the destination IP address and applies the next-
hop determination on it, as the tcpip_ipv6_output() does. This function
is defined in the uip-ds6-nbr.c source file and has been inserted in corre-
spondence of four sas invocation:

• in uip6.c, in the main function that do the packet processing at
network level (IP processing) which is called uip_process(..). This
function mainly analyzes the packet header and determines if it’s a
UDP, TCP or ICMP packet (other header options that are treated
by the uip_process(..) function are not discussed in this study)
and the actions that must be taken; in the three following cases, only
unicast addresses are allowed as destination address. TCP and UDP
multicast is not implemented, as these protocols are implemented
only to establish connections with non-multicast IP addresses

– during UDP packet sending, in “udp_send” case

– during TCP reset processing, in “reset” case

– during TCP packet sending, “tcp_send” case; code listing 3.17
represents all the three software changes.

Source Code 3.17: source address selection for a unicast destina-
tion in uip6.c

1 #if NETSTACK_CONF_MULTIINTERFACE
2 /* Source address selection */
3 if (! uip_is_addr_mcast (&UIP_IP_BUF ->destipaddr)){
4 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &

UIP_IP_BUF ->destipaddr ,
5 uip_ds6_nbr_get_nexthop_interfaceid (& UIP_IP_BUF ->

destipaddr));
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6 } else {
7 goto drop;
8 }
9 #else

10 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &
UIP_IP_BUF ->destipaddr);

11 #endif

The new piece of code first check if the destination address that is
considered is a multicast address. If it’s not the case, then the sas is
invoked with the next-hop interface ID parameter extrapolated by
the new function, else it throws an error.

• uip-icmp6.c, the source file which handles the ICMP packet process-
ing, in the uip_icmp6_send(..) function that sends out a ICMPv6
packet. Here, a multicast destination address is allowed, as this func-
tion is exploited by RPL to send out control messages as DIOs. The
interface ID in the multicast case can be retrieved from the global
uip_ds6_interfaceid variable, as illustrated in code listing 3.18.

Source Code 3.18: source address selection for a unicast destination in
uip-icmp6.c

1 #if NETSTACK_CONF_MULTIINTERFACE
2 /* Source address selection */
3 if (! uip_is_addr_mcast (&UIP_IP_BUF ->destipaddr)){
4 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &

UIP_IP_BUF ->destipaddr ,
5 uip_ds6_nbr_get_nexthop_interfaceid (& UIP_IP_BUF ->

destipaddr));
6 } else {
7 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &UIP_IP_BUF

->destipaddr ,
8 uip_ds6_interface_id);
9 }

10 #else
11 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &UIP_IP_BUF

->destipaddr);
12 #endif

Other instances that do the sas but where the interface ID is easily
retrievable, i.e. where the new function has not been exploited, are the
following:

• uip-nd6.c, that is the ND6 routing protocol source file:



3.2. Software Modifications 137

– NS input, in the ns_input() function. In this occurrence, if the
target address corresponds to one of the node’s addresses, the rel-
ative interface ID can be found in the relative field of the address
structure retrieved by exploiting the uip_ds6_addr_lookup()
function, as illustrated in code listing 3.19.

Source Code 3.19: source address selection for a unicast destina-
tion in uip-nd6.c during NS input

1 addr = uip_ds6_addr_lookup (& UIP_ND6_NS_BUF ->
tgtipaddr);

2

3 [...]
4

5 #if NETSTACK_CONF_MULTIINTERFACE
6 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &

UIP_IP_BUF ->destipaddr ,
7 uip_ds6_interface_id);
8 #else
9 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &

UIP_IP_BUF ->destipaddr);
10 #endif

– RS output, in the uip_nd6_rs_output() function. Here, the
interface_id is passed as a parameter, as illustrated in code
listing 3.20.

Source Code 3.20: source address selection for a unicast destina-
tion in uip-nd6.c during RS output

1 void
2 #if NETSTACK_CONF_MULTIINTERFACE
3 uip_nd6_rs_output(uint8_t interface_id);
4 #else
5 uip_nd6_rs_output(void);
6 #endif

– RA output, in the uip_nd6_ra_output() function, as illus-
trated in code listing 3.21.

Source Code 3.21: Source address selection for a unicast destina-
tion in uip-nd6.c during RA output

1 void
2 #if NETSTACK_CONF_MULTIINTERFACE
3 uip_nd6_ra_output(uip_ipaddr_t* dest , uint8_t

interface_id);
4 #else
5 uip_nd6_ra_output(uip_ipaddr_t* dest);
6 #endif
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Note that the solicited RA in Contiki 3.0 is not implemented, i.e.
after a RS input a timer is set and, after it expires, a multicast
RA is sent.

• uip-icmp6.c:

– in the uip_icmp6_error_output() function. Here, there are
two different cases in which sas is invoked:

∗ multicast destination address: if the interface ID is not
NULL (actually, is not set to 255 that acts like NULL), the
interface ID information is retrievable from the
uip_ds6_interfaceid variable, i.e. it’s ok to use a source
address that corresponds to one of the addresses of the inter-
face from which the packet entered. If the uip_ds6_interfaceid
is NULL, then the packet entered via SLIP with tunslip6.
In this case, the sas can be applied on any node’s interface,
as it makes no difference. Thus, the 0-interface is fine, as
illustrated in code listing 3.22.

Source Code 3.22: easy source address selection for multicast
destination in uip-icmp6.c

1 #if NETSTACK_CONF_MULTIINTERFACE
2 /* Source address selection */
3 if(uip_ds6_interfaceid != 255) {
4 /* ICMP packet from a neighbor */
5 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &

UIP_IP_BUF ->destipaddr ,
6 uip_ds6_interfaceid);
7 } else {
8 /* ICMP packet from an external network , maybe

through tunslip. This case , even the
source address of the first interface is
good. */

9 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &
UIP_IP_BUF ->destipaddr , 0);

10 }
11 #else
12 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &

UIP_IP_BUF ->destipaddr);
13 #endif

∗ unicast destination address: this branch handles different
cases, but the worst one for sas complexity is the case in
which the source address is a link-layer address and the
destination address is off-link, i.e. either belongs to a node
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that is not directly reachable from the node who received the
ICMP packet or doesn’t belong to a node at all. In this case,
a valid source address for the ICMP error packet must be
chosen. A good strategy is to respond to the source address
with one address taken from the list of the interface from
which the packed entered. Thus, the code block to insert is
the same as the previous one: if the uip_ds6_interfaceid
variable is not NULL (actually, is not set to 255 that acts
like NULL), the interface ID information is retrievable from
there, i.e. it’s ok to use a source address that corresponds to
one of the addresses of the interface from which the packet
entered. If the uip_ds6_interfaceid is NULL, then the
packet entered via SLIP with tunslip6. In this case, the
sas can be applied on any node’s interface, as it makes no
difference. Thus, the 0-interface is fine.

– In the echo_request_input() function, that handles the
ICMPv6 echo requests (i.e. ping6). Here is prepared an echo
reply, and there are two different cases to be handled:

∗ multicast destination address: if the uip_ds6_interfaceid
variable is not NULL (actually, is not set to 255 that acts
like NULL), the interface ID information is retrievable from
there, i.e. it’s ok to use a source address that corresponds to
one of the addresses of the interface from which the packet
entered. If the uip_ds6_interfaceid is NULL, then the
ping6 entered via SLIP with tunslip6. In this case, the
sas can be applied on any node’s interface, as it makes no
difference. Thus, the 0-interface is fine.

∗ unicast destination address: in this case, the sas is not
necessary since the source address to utilize in the echo
reply is the old destination address of the ping6 packet, as
illustrated in code listing 3.23:

Source Code 3.23: easy source address selection for a unicast
destination in uip-icmp6.c

1 if(uip_is_addr_mcast (& UIP_IP_BUF ->destipaddr)){
2 uip_ipaddr_copy (&UIP_IP_BUF ->destipaddr , &

UIP_IP_BUF ->srcipaddr);
3 #if NETSTACK_CONF_MULTIINTERFACE
4 /* Source address selection */
5 if(uip_ds6_interfaceid != 255) {
6 /* multicast ping comes from a neighbor */
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7 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr ,
&UIP_IP_BUF ->destipaddr ,

8 uip_ds6_interfaceid);
9 } else {

10 /* multicast ping comes from an external
network (maybe through tunslip), so the
first interface source address is good.
*/

11 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &
UIP_IP_BUF ->destipaddr , 0);

12 }
13 #else
14 uip_ds6_select_src (&UIP_IP_BUF ->srcipaddr , &

UIP_IP_BUF ->destipaddr);
15 #endif
16 } else {
17 uip_ipaddr_copy (&tmp_ipaddr , &UIP_IP_BUF ->

srcipaddr);
18 uip_ipaddr_copy (&UIP_IP_BUF ->srcipaddr , &

UIP_IP_BUF ->destipaddr);
19 uip_ipaddr_copy (&UIP_IP_BUF ->destipaddr , &

tmp_ipaddr);
20 }

RPL UDP Server IP Aliasing

In Contiki, rpl-udp-clients are aware of the rpl-udp-server because the
server address is hard-coded in the clients code. This is necessary to let
the clients correctly communicate with the server. In a RPL net where
the subnets prefixes can change over time, it’s important that the server
address is prefix independent, as it must be reachable from the clients
wherever he is, i.e. in any subnet he is. For this reason, the server address
lists must hold at least three unicast addresses:

• one link-local address, obtained from the MAC address

• one global address obtained from the MAC address and from the
prefix assigned from the 6LBR. Note that the prefix could change
over time

• one prefix independent global address, i.e. not obtained via SLAAC
(so it’s manually configured)
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This implementation is named IP aliasing: it’s the association of
more than one IP address to a network interface. Note that the prefix
independent global address must be hold from every server’s interfaces’
address lists.

In this work, the chosen hard-coded RPL server IP address is
aaaa:abcd::ff:fe00:1. Since this address must not change over time, it must
be handled with care by the RPL. The server’s addresses lists initialization
phase is represented by the code listing 3.24:

Source Code 3.24: RPL UDP server’s addresses lists initialization
1 #if NETSTACK_CONF_MULTIINTERFACE
2 int aaaa = 0xaaaa;
3 uint8_t i;
4 for(i=0; i < NETSTACK_CONF_NUMINTERFACES; i++) {
5 /* Server ’s subnet -independent IP has infinite lifetime

*/
6 uip_ip6addr (&ipaddr , 0xaaaa , 0xabcd , 0, 0, 0, 0x00ff , 0

xfe00 , 1);
7 uip_ds6_addr_add (&ipaddr , 0, ADDR_MANUAL , i);
8

9 uip_ip6addr (&ipaddr , aaaa +4369*i, 0, 0, 0, 0, 0, 0, 0);
10 uip_ds6_set_addr_iid (&ipaddr , &uip_lladdr);
11 uip_ds6_addr_add (&ipaddr , 0, ADDR_AUTOCONF , i);
12 }
13 #else
14 uip_ds6_addr_add (&ipaddr , 0, ADDR_MANUAL);
15 #endif

When the RPL detects a new prefix in a received DIO and prepares to
delete the old global address in order to substitute it with a new one (that
differs from the previous only for the prefix), it must check that the global
address is not ADDR_MANUAL, since an address configured manually must
not be deleted.

Routing Control Packets - Multicast Output

As stated before, multicast packet output are handled in a “for” cycle
in order to let all the RPL nodes receive the routing control packet. Hence,
a node must send as many multicast packets as the number of the node’s
interfaces. In the tested working configurations, the 6LBR sends, at every
respective timer expiration, two multicast packets: one on the SPIRIT1
channel and the other on the power-line. Instead, the mono-interface nodes
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send only one multicast packet on the relative channel.

The main multicast packet output cases that occur on RPL nodes are
the following:

• DIO multicast output after DIO timer expiration: DIO timer expira-
tion is handled by the handle_dio_timer() function in rpl-timers.c

• DIS multicast output:

– after periodic timer expiration: periodic timer expiration is
handled by the handle_periodic_timer(..) function in rpl-
timers.c

– in rpl_dag_root_init_dag() function, which is invoked by
nobody (i.e. noy used)

• DAO multicast output:

– after DAO timer expiration: DAO timer expiration is handled by
the handle_dao_timer() function in rpl-timers.c. The DAOs
sent in correspondence of this timer expiration contain all the
multicast addresses held in the relative multicast address list

– in the dao_output(..) function. There, many DAOs are sent
in order to communicate the parent set the addresses that the
node holds. Thus, the server node, which holds two global
addresses in order to implement the IP aliasing, must send two
DAO packets to the neighbors

The main multicast packet output cases that occur on ND6 over 6LoW-
PAN nodes are the following:

• RS multicast output: invoked by the uip_ds6_send_rs() function
in uip-ds6.c source file, which is invoked after the RS timer expiration
in a non-router node

• RA multicast output: invoked by the uip_ds6_send_ra_periodic()
function in uip-ds6.c source file, which is invoked after RA timer
expiration in a router node
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3.3 Software Working Configurations

This section details the example applications that are used in the
different tested working configurations.

RPL UDP Border Router

Contiki application flashed on the dual-interface 6LoWPAN Border
Router (6LBR) node is the rpl-border-router example, which manages
the RPL instance and forwards packets from the nodes that are on the
SPIRIT1 radio link to the nodes that are on the ST7580 Powerline link
and vice-versa. The example folder path is the following:

1 /examples/ipv6/rpl -border -router/

RPL UDP Client

Contiki rpl-udp-client application is flashed on a mono-interface node
(without IKS01S01A1 Expansion board) and sends periodically a text
message like “Hello -number- via UDP from the client” to a rpl-udp-server
node, where -number- is a progressive number. The example can be found
in:

1 /examples/ipv6/rpl -udp/

RPL UDP Client with Sensors

rpl-udp-client application has been modified to integrate the IKS01A1
Sensors Expansion Board. This new example application captures temper-
ature, pressure, humidity, acceleration, magneto and gyroscope values by
reading the sensors in the Expansion Board and then sends the read value
to the rpl-udp-server node via SPIRIT1 or ST7580 Powerline Modem. The
new example can be found in:

1 /examples/stm32nucleo -spirit1/rpl -udp -client -sensors/
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RPL UDP Server

Contiki rpl-udp-server application is flashed on a mono-interface node
and receives periodically the values read from sensors and/or the hello
messages transmitted by the client nodes. The example can be found in:

1 /examples/ipv6/rpl -udp/

Alpha Working Configuration

The most interesting working configuration obtained in this work has
been called “Alpha” working configuration. The Alpha working config-
uration has been identified as the configuration that has the minimum
number of nodes that are needed in order to demonstrate the new Contiki
multi-interface feature, and is composed of:

• one SPIRIT1-ST7580 6LBR node

• one SPIRIT1 RPL-UDP client node with sensors

• one ST7580 RPL-UDP server node

Other Working Configurations

Other working configurations successfully tested in this study are
reported below.

One relevant working configuration is composed of the following nodes:

• one dual-interface RPL UDP border router

• some RPL UDP SPIRIT1 Clients

• some RPL UDP Powerline Clients

• some RPL UDP SPIRIT1 Clients with Sensors

• some RPL UDP Powerline Clients with Sensors

• one RPL UDP Powerline Server
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Another relevant working configuration is composed of the following
nodes:

• one dual-interface RPL UDP border router

• some RPL UDP Powerline Clients

• some RPL UDP SPIRIT1 Clients

• some RPL UDP SPIRIT1 Clients with Sensors

• some RPL UDP Powerline Clients with Sensors

• one RPL UDP SPIRIT1 Server

As can be observed, what remains always the same is the multi-interface
RPL border router.

3.4 Software Implementation

This section explains how the example application ELF and binary files
can be installed on the boards. In addition, this section explain how to
run tunslip6.

The ELF file of a generic Contiki application for a specific platform is
obtained by executing the shell command line illustrated in code listing 3.25
in the corresponding example folder.

Source Code 3.25: bash command line for obtaining an ELF file
1 make TARGET=platform_name

A platform that includes a SPIRIT1 Expansion Board must use an
additional parameter to the shell command line, as illustrated in code
listing 3.26

Source Code 3.26: bash command line for obtaining an ELF file for a platform
with SPIRIT1

1 make TARGET=platform_name BOARD=board_name

where board name can be for instance “ids01a5” or “ids01a4” depending
on the SPIRIT1 Expansion Board chosen for the project.
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A platform that includes a IKS01A1 Expansion Board must specify
also another parameter as illustrated in code listing 3.27.

Source Code 3.27: bash command line for obtaining an ELF file for a platform
with sensors

1 make TARGET=platform_name BOARD=board_name

In order to install an example application on the Nucleo, the relative
ELF file must be converted into a binary (.bin) file with the GNU arm-
none-eabi-objcopy utility as illustrated in code listing 3.28.

Source Code 3.28: bash command line for obtaining a binary from an ELF
1 arm -none -eabi -objcopy -O binary elf_file_name bin_file_name

.bin

where “bin_file_name.bin” is the name wanted for final binary to be
flashed in the Nucleo.

The binary installation can be easily done by copying the .bin file in the
device folder after that the board has been connected to the host via USB
and (automatically) recognized as a “Mass Storage Device”. For instance,
the .bin file can be copied as illustrated in code listing 3.29.

Source Code 3.29: copying the bin into the device folder
1 cp bin_file_name.bin /media/user_name/board_factory_name

Note that it is recommended to push the Nucleo “reset” button after
every flashing operation, as the board could not recognize immediately
that a new binary has been flashed.

Tunslip6 for the Border Router

In order to instantiate a RPL net via the tunslip6 utility, the border
router must be connected to the host PC. Then, tunslip6 can be invoked
as illustrated in code listing 3.30.

Source Code 3.30: instantiate a RPL net via tunslip6
1 sudo ./ tunslip6 -i 2 -s /dev/ttyACM0 -r aaaa:abcd::ff:fe00

:1 aaaa:aaaa ::1/64 aaaa:bbbb ::1/64

where:
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• -i 2 is the number of interfaces of the BR

• /dev/ttyACM0 is the serial port by which the BR interfaces with
the host

• aaaa:abcd::ff:fe00:1 is the server IP address

• aaaa:aaaa::1/64 is the SPIRIT1 subnet prefix

• aaaa:bbbb::1/64 is the ST7580 subnet prefix

If everything is successful, the BR receives the subnet prefixes and
starts to disseminate them via DIOs both on the SPIRIT1 link and on the
ST7580 Power Line link.

In order to verify that the BR recognizes its neighbors, i.e. the client
nodes and the server node, the BR web-page can be used. It can be
accessed by opening in a web browser one of the two BR IP addresses. For
instance:

1 [aaaa:aaaa ::500: f8ff:2ec6:d139]

or
1 [aaaa:bbbb ::500: f8ff:2ec6:d139]

The web page lists the neighbors’ link-local addresses under the “Neigh-
bors” title, and global addresses reachable via the neighbors under the
“Routes” title.





Chapter 4

Evaluation

This Chapter presents some memory size and performance analysis
made on testing configurations presented in Chapter 3.

Goal of these analysis is to evaluate the impact that the addition of the
multi-interface feature has on the already existing Contiki system from the
total memory occupation and from the runtime execution point of views.

4.1 Memory Footprint

In an ARM ELF file, there are three types of Segment:

• Text: contains the code for the executable. With respect to this
thesis work, text contains what ends up in flash memory. It contains
functions and constant data. It contains also the interrupt vector
table

• Data: contains initialized read-write data for the executable. Initial-
ized data are not constants, so they will end up in RAM. However,
data initialization values are constants, thus live in flash memory.
The initialization of the variable is done during the normal startup
code. Thus, when considering an object file size, data size must be
counted twice: data size occupied both in RAM and in flash/ROM

• BSS: contains uninitialized data, which should be zeroed either
when an image is created, or at program startup by the runtime
environment. BSS ends up in RAM

149
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The memory footprint of an executable program indicates its memory
requirements. This includes all kind of memory regions that the program
ever needs while executing and will be loaded at least once during the
entire run, i.e. text, data and BSS segments.

The measured memory footprint is represented in kilobytes, where 1
kilobyte = 1000 bytes as stated by the International System of Units (SI).

The memory footprint of an executable can be obtained with the “size”
GNU ARM toolchain utility on its relative ELF file. The version of the
ARM Toolchain (GNU Tools for ARM Embedded Processors) used in this
work is 2.24.0.20150921. Next sections illustrate the memory footprint for
the main Contiki applications tested on the working configurations.

The memory footprint of a Contiki application can be obtained with
the bash command line illustrated in code listing 4.1.

Source Code 4.1: command line to obtain memory footprint
1 arm -none -eabi -size application_name

where application_name is the name of the application (for instance,
border-router).

RPL Border Router ELF Footprint

Memory footprint of a multi-interface RPL border router grows linearly
with the number of the interfaces managed by the node. Moreover, a fixed
memory overhead that does not change with the number of interfaces is
caused by source-code changes. Thus, the text segment is independent
from the number of interfaces of the node, and it is fixed. Instead, data
and BSS segments change linearly with the number of interfaces.

Memory footprint has been measured on a dual-interface (ST7580
Powerline and SPIRIT1) BR. Sizes, expressed in bytes, are illustrated in
table 4.1 on the next page, where:

• "dec" represents the total memory occupation expressed in decimal
representation, thus it is the sum of the text, data and bss sections
sizes, i.e. 146088 bytes ∼146 kilobytes

• "hex" is the hexadecimal representation of the total memory occupa-
tion, thus 146088 bytes in decimal equals to 23aa8 in hexadecimal.
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Table 4.1: RPL dual-interface border router memory sections sizes

text data bss dec hex

133624 2904 9560 146088 23aa8

BSS and data sections of a 3-interface and 4-interface BR have been
measured as well in order to verify if a costant overhead due to the
addition of the n+1 interface can be found. Sections sizes are reported in
table 4.2 on the following page. The third and the fourth interfaces have
been obtained by duplicating the SPIRIT1 radio Netstack drivers and the
ST7580 powerline Netstack drivers, as illustrated in figures 4.1 and 4.2.

Figure 4.1: 3-interfaces device for memory sizes analysis

Figure 4.2: 4-interfaces device for memory sizes analysis

Memory footprint of the original Contiki RPL border router exam-
ple, i.e. without multi-interface code modifications, has been obtained
by considering the worst sections measurements taken on both the Nu-
cleo+SPIRIT1 and the Nucleo+ST7580 configurations in order to make a
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Table 4.2: n-interfaces device RAM sections sizes

data (bytes) bss (bytes) RAM (bytes)
3-interface BR 10120 2904 13024
4-interface BR 10680 2904 13584

Table 4.3: original RPL border router memory sections sizes (bytes)

text data bss dec hex

122680 2880 8536 132860 206fc

fair comparison with the dual-interface implementation, that incorporates
both configurations. Values are illustrated in table 4.3.

The following comparison tables allow to easily compare the two Contiki
BR implementations. The overhead value of a section is obtained by
subtracting the original Contiki BR implementation value to the multi-
interface implementation value. The FLASH value of an implementation is
obtained by adding the text value to the data value of the same row. FLASH
values are reported in table 4.4 The RAM value of an implementation
is obtained by adding the BSS value to the Data value of the same row.
RAM values are reported in table 4.5 on the next page and 4.6 on the
facing page.

As can be observed, the FLASH overhead is about 11 KB and the
RAM overhead is about 1 KB.

Overhead by adding one interface to a device which is already utilizing
a multi-interface application (i.e. not an original Contiki application)
is costant and is equal to 560byte. This value has been verified to be
approximately induced from the vectorized variables, i.e. originally not
arrays, illustrated in table 4.7 on the next page.

Percentages are obtained by comparing the dual-interface BR memory
overhead with the original Contiki BR memory footprint. FLASH overhead
is 8,74% while RAM overhead is 10,71%.

Table 4.4: border router FLASH sizes comparison (bytes)

text data FLASH
Original Contiki BR 122680 2880 125560
Dual-Interface BR 133624 2904 136528
Overhead (difference) 10944 24 10968
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Table 4.5: border router RAM sizes comparison (bytes)

BSS data RAM
Original Contiki BR 8536 2880 11416
Dual-Interface BR 9560 2904 12464
Overhead (difference) 1024 24 1048

Table 4.6: multi-interface BR RAM sizes comparison (bytes)

BSS data RAM
Dual-Interface BR 9560 2904 12464
3-interface BR 10120 2904 13024
4-interface BR 10680 2904 13584

Table 4.7: vectorized variables that greatly influence RAM overhead

Vectorized variable Size
(Byte)

uip_ds6_if[NETSTACK_NUM_INTERFACES] 260
NETSTACK_NETWORK[..] 12
NETSTACK_LLSEC[..] 16
NETSTACK_MAC 28
NETSTACK_RDC 32
NETSTACK_FRAMER 12
NETSTACK_RADIO 56
uip_ds6_prefix_list[..] 96
dag->prefix_info[..] 24

Total 536
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Table 4.8: RPL UDP mono-interface client memory sections sizes

text data bss dec hex

124268 2840 7828 134936 20f18

Table 4.9: original RPL UDP client memory sections sizes

text data bss dec hex

117496 2840 7636 127972 1f3e4

RPL UDP Client ELF Footprint

In order to verify that the RAM memory footprint does not change
for a mono-interface application with respect to an original application,
measurements have been done by compiling a rpl-udp client application
respectively by declaring one interface in the new multi-interface environ-
ment in the first case and by disabling the multi-interface environment in
the second case. In other words, new software changes contained in "if"
directive code blocks have been enabled in the first case together with the
declaration of a number of interfaces equal to one, while in the second
case new software changes have not been enabled by declaring that the
environment must not be multi-interface.

The resulting memory occupation for the SPIRIT1-interface Client
example is illustrated in table 4.8.

The memory footprint of the original Contiki RPL UDP Client example,
i.e. without multi-interface code modifications, is illustrated in table 4.9.

Comparison tables are reported below.

As can be observed, FLASH overhead is about 7 KB and it is caused
by the source-code changes. RAM overhead is in the order of bytes and it
is caused by the BSS segment. As expected, mono-interface client RAM

Table 4.10: RPL UDP client FLASH sizes comparison (bytes)

text data FLASH

Original Contiki client 117496 2840 120336
Mono-interface client 124268 2840 127108
Overhead 6772 0 6772
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Table 4.11: RPL UDP client RAM sizes comparison (bytes)

BSS data RAM
Original Contiki client 7636 2840 10476
Mono-interface client 7828 2840 10668
Overhead 192 0 192

Table 4.12: RPL UDP mono-interface client with sensors memory sections sizes

text data bss dec hex

152740 3312 7928 163980 2808c

overhead is approximatively null. FLASH overhead is 5,63% while RAM
overhead is 1,84%.

RPL UDP Client with Sensors ELF Footprint

This application example was introduced with this work, hence it was
not furnished with the Contiki application development kit. Anyway, it
can be referred to as “Original Contiki Client” when the
NETSTACK_CONF_MULTIINTERFACE macro is set to 0, that is the (multi-
interface) software changes introduced with this work are disabled.

The resulting occupation for the mono-interface Client with sensors
example is illustrated in table 4.12.

The memory footprint of the RPL UDP Client with sensors example
without multi-interface code modifications (i.e.
NETSTACK_CONF_MULTIINTERFACE macro set to 0) is illustrated in table
4.13.

Comparison tables are reported below.

As can be observed, FLASH overhead is about 4 KB and RAM overhead
is in the order of bytes. FLASH overhead is 2,46% while RAM overhead is

Table 4.13: RPL UDP client with sensors without multi-interface changes
memory sections sizes

text data bss dec hex

149012 3304 7736 160052 27134
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Table 4.14: RPL UDP client with sensors FLASH sizes comparison (bytes)

text data FLASH
Original Contiki client 149012 3304 152316
Mono-interface client 152740 3312 156052
Overhead 3728 8 3736

Table 4.15: RPL UDP client with sensors RAM sizes comparison (bytes)

BSS data RAM
Original Contiki client 7736 3304 11040
Mono-interface client 7928 3312 11240
Overhead 192 8 200

1,82%.

RPL UDP Server ELF Footprint

In order to verify that the RAM memory footprint does not change
for a mono-interface node, measurements have been done on a mono-
interface node by compiling a rpl-udp server application respectively with
the software changes (declaring only one interface) and without them.

Memory footprint measurement has been done on the mono-interface
Server exploited in the alpha working configuration, i.e. a ST7580-based
Server.

The resulting information is illustrated in table 4.16.

Comparison tables are reported below.

As can be observed, FLASH overhead is about 4 KB and RAM overhead
is in the order of bytes. As expected, mono-interface server RAM overhead
is approximatively null. FLASH overhead is 3,93% while RAM overhead
is 1,75%.

Table 4.16: RPL UDP mono-interface server memory sections sizes (bytes)

text data bss dec hex

92136 2632 9016 103784 19568
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Table 4.17: RPL UDP server FLASH sizes comparison (bytes)

text data FLASH
Original Contiki client 88564 2624 91188
Mono-interface client 92136 2632 94768
Overhead 3572 8 3580

Table 4.18: RPL UDP server RAM sizes comparison (bytes)

BSS data RAM
Original Contiki client 8824 2624 11448
Mono-interface client 9016 2632 11648
Overhead 192 8 200

4.2 Performance

In order to evaluate the system performance at runtime, system clock
cycles have been measured on a border router (both in the multi-interface
version and in the original mono-interface version) in the following cases:

• while a packet cross the Netstack from radio driver to RPL module
and viceversa (section "Packet Netstack Crossing Performance")

• during a DIO multicast output invocation, i.e. exit from a for cycle
where the dio_output(..) function is invoked as many times as the
number of interfaces the node has (section "Multicast DIO Output
Performance")

• during a RPL instance initialization (section "BR RPL Instance
Initialization Performance")

These test cases were chosen because they cover the software changes
apported by this thesis work.

Number of interfaces of a multi-interface implementation must be
declared in the contiki-conf.h file as follows:

1 #define NETSTACK_CONF_NUMINTERFACES num_interfaces

In order to compare the multi-interface implementation with the original
one, three configurations have been analyzed:

• the dual-interface border router: macro has been configured to 2
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• the mono-interface border router: macro has been configured to 1

• the original Contiki border router: the macro doesn’t exist in this
configuration, as it as been introduced with the multi-interface im-
plementation obtained during this work

In order to measure the system clock cycles, a ARM -M3 core debug
register named “cycle counter register”, which is part of the “data watchpoint
trigger” registers set, has been used. Counter definition can be found in:

1 cpu/arm/common/CMSIS/core_cm3.h

Functions for modifying such registers and to read the counter have
been implemented in dwt.c and dwt.h files, that can be found in appendix
section ARM Cortex Cycle Counter Handling.

Counter is set by default at 32 MHz. When the counter is enabled,
it starts counting the system clock cycles until it is disabled again. The
counter must be initialized in Contiki main (respectively in contiki-spirit1-
st7580-main.c, in contiki-spirit1-main.c and in contiki-st7580-main.c source
files).

4.2.1 Packet Netstack Crossing Performance

This test measures the clock cycles that a border router needs to allow
a packet to cross the Netstack from radio driver to RPL and viceversa.
This I/O path covers all the software changes made in the code, as it
includes the routing logic and routing tables management.

From the hardware point of view there are two test configurations:

• NucleoL152RE with X_Nucleo_IDS01A5

• NucleoL152RE with X_Nucleo_ST7580

Note that the time required to cross the Netstack during a packet I/Os
in a multi-interface BR implementation is not affected by the number of
interfaces of the node, as every Netstack array is accessed in a fixed time by
using the interface ID information as array index. Hence, a mono-interface
BR which implements the multi-interface feature can be used to make a
performance comparison with the original Contiki implementation.

There are two main operations to test:
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• Packet input: the counter is started at physical layer and stopped at
routing level. NETSTACK_RDC.input() call can be taken as the “start
reference” for cycle measure and DIO input or DIS input function call
can be taken as “stop reference”. In order to compare the results, only
not fragmented input packets are registered. Clock counter is handled
by the following functions. Note that only SPIRIT1 functions (and
not ST7580 Powerline ones) are reported as the mechanism is exacltly
the same for ST7580 functions.

– PROCESS_THREAD(spirit_radio_process, ev, data):
1 #endif /* NULLRDC_CONF_802154_AUTOACK */
2

3 dwt_enable ();
4

5 packetbuf_set_datalen(len);
6 NETSTACK_RDC.input();

in the original Contiki SPIRIT1 driver and:
1 dwt_enable ();
2

3 packetbuf_set_attr(PACKETBUF_ATTR_INTERFACEID ,
SPIRIT1_INTERFACEID);

4 packetbuf_set_datalen(len);
5 NETSTACK_RDC[SPIRIT1_INTERFACEID ].input();

in the multi-interface platform SPIRIT1 driver
– dio_input(..):
1 static void
2 dio_input(void)
3 {
4 cycles = dwt_get_cycles ();
5 printf("DIO Input. System cycles: %u\n", cycles)

;
6 dwt_disable ();

in both the original Contiki RPL code and in the new multi-
interface implementation.

– dis_input():
1 static void
2 dis_input(void)
3 {
4 cycles = dwt_get_cycles ();
5 printf("DIS Input. System cycles: %u\n", cycles)

;
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6 dwt_disable ();

in both the original Contiki RPL code, and in the new multi-
interface implementation.

• Packet output: the counter is started at routing level and stopped at
physical layer. DIO output function call can be taken as the “start
reference” for cycle measure and spirit_radio_send function call
can be taken as “stop reference”.

– spirit_radio_send(...):
1 static int
2 spirit_radio_send(const void *payload , unsigned

short payload_len)
3 {
4 if(dio_out) {
5 cycles = dwt_get_cycles ();
6 printf("DIO OUTPUT. System cycles: %u.\n",

cycles);
7 dwt_disable ();
8 dio_out =0;
9 }

in both the original and the multi-interface Contiki SPIRIT1
driver, when measuring the DIO output cycles;

– handle_dio_timer(..):
1 #endif /* RPL_CONF_STATS */
2

3 dio_out =1;
4 dwt_enable ();
5 dio_output(instance , NULL);

in the original Contiki RPL code, and:
1 #endif /* RPL_CONF_STATS */
2 #if NETSTACK_CONF_MULTIINTERFACE
3 uint8_t i;
4 for(i=0; i < NETSTACK_CONF_NUMINTERFACES; i++) {
5 dio_out =1;
6 dwt_enable ();
7 dio_output(instance , NULL , i);
8 }
9 #else

10 dio_output(instance , NULL);
11 #endif

in the new multi-interface Contiki implementation.
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Table 4.19: Nucleo with SPIRIT1 Performances Comparison

DIS input DIO input DIO output

cycles µs cycles µs cycles µs

Original OS 5478,55 171,21 7282,6 227,59 15887,35 496,48
Multi-interface 5855,75 183 7631,1 238,48 16268,75 508,4
Extra overhead 377,2 11,79 348,5 10,89 381,4 11,92

Table 4.20: Nucleo with ST7580 Performances Comparison

DIS input DIO input DIO output

cycles µs cycles µs cycles µs

Original OS 5489,65 171,56 7265 227,04 15956 498,63
Multi-interface 5790,15 180,95 7572,4 236,64 16296,35 509,26
Extra overhead 300,5 9,39 307,4 9,6 340,35 10,64

Measurements on Nucleo with SPIRIT1

Figure 4.3 on the following page contains graphs which compare respec-
tively DIS input, DIO input and DIO output performances (measured in
clock cycles) of an original and a dual-interface BR implementation.

The average number of cycles per packet type has been obtained after
collecting twenty measurements. The average processing time per packet
type in order to cross the Netstack in microseconds has been obtained by
dividing 32 million (which corresponds to Cortex M3’s clock speed) to the
average number of cycles. Averages are reported in table 4.19.

Measurements on Nucleo with ST7580

Figure 4.4 on page 163, contains graphs which compare respectively
DIS input, DIO input and DIO output performances (measured in clock
cycles) of an original and a dual-interface BR implementation.

Averages are reported in table 4.20.
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Figure 4.3: original and dual-interface BR performances with SPIRIT1
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Table 4.21: multi-interface feature performances comparison

DIS input DIO input DIO output

extra
cycles

µs extra
cycles

µs extra
cycles

µs

Nucleo+SPIRIT1 377,2 6,89 348,5 4,79 381,4 2,4
Nucleo+ST7580 300,5 5,48 307,4 4,24 340,35 2,14

Multi-interface Configurations Performances Compari-
son

Table 4.21 illustrates the overheads percentages calculated with respect
to the original Contiki implementation.

As can be observed, extra overhead required to cross the Netstack
during packet I/Os with the new multi-interface feature is very low, i.e.
approximatively:

• 6% for DIS input

• 5% for DIO input

• 3% for DIO output

4.2.2 Multicast DIO Output Performance

This test measures the clock cycles that a border router implementation
needs (both in the multi-interface version and in the original mono-interface
version) to complete a DIO multicast output invocation, i.e. exit from a
for cycle where the dio_output(..) function is invoked as many times as
the number of interfaces the node has. Every dio_output(..) invocation
ends in the CSMA driver, when the DIO packet is queued. Thus, the
measurements will output a value that represents the clock cycles that the
BR implementation needs in order to complete such invocation, not the
cycles that needs in order to effectively send a DIO.

The expected dual-interface BR results are values that approxima-
tively double the original Contiki mono-interface BR values, which in turn
approximatively match the new mono-interface BR (i.e. multi-interface
environment with number of interfaces equal to one) values.
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Table 4.22: multicast DIO output performances averages

Original Contiki BR Mono-interface BR Dual-interface BR

Average
cycles

9939,3 10162,6 19605,75

Since this test purpose is only to verify that the thrown values are
correlated (i.e. multiples), measurements have been taken only on a Nucleo
with a SPIRIT1 Expansion Board.

Measurements are reported in graph 4.5.
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Figure 4.5: multicast DIO output performances comparison

The averages of the previous measurements are reported in table 4.22.

Obtained results show the expected linearity.

4.2.3 BR RPL Instance Initialization Performance

This test analysis measures the clock cycles that a border router im-
plementation needs in order to initialize a RPL istance, i.e. execute the
set_prefix_64(..) function.
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The expected dual-interface BR results are values that approxima-
tively double the original Contiki mono-interface BR values, which in turn
approximatively match the new mono-interface BR (i.e. multi-interface
environment with number of interfaces equal to one) values.

Counter cycles for the dual-interface and mono-interface BR are ana-
lyzed as illustrated by code listing 4.2.

Source Code 4.2: multi-interface BR RPl instance initialization with cycle
counter

1 void
2 set_prefix_64(uip_ipaddr_t *prefix_64)
3 {
4 rpl_dag_t *dag;
5 uip_ipaddr_t ipaddr;
6 #if NETSTACK_CONF_MULTIINTERFACE
7 /* Set DAG_ID; in this implementation , it’s ok to use the

first
8 * prefix that the SLIP sent us.
9 */

10

11 dwt_enable ();
12

13 memcpy (&ipaddr , &prefix_64 [0], 16);
14 uip_ds6_set_addr_iid (&ipaddr , &uip_lladdr);
15 dag = rpl_set_root(RPL_DEFAULT_INSTANCE , &ipaddr);
16 if(dag != NULL) {
17 PRINTF("BR: Created a new RPL dag with DODAG ID: ");
18 PRINT6ADDR (& ipaddr);
19 PRINTF("\n");
20

21 /* Set IP addresses to interfaces */
22 uint8_t i;
23 for(i=0; i < NETSTACK_CONF_NUMINTERFACES; i++) {
24 memcpy (&prefix , &prefix_64[i], 16);
25 memcpy (&ipaddr , &prefix_64[i], 16);
26 uip_ds6_set_addr_iid (&ipaddr , &uip_lladdr);
27 rpl_set_prefix(dag , &prefix , 64, i);
28 PRINTF("BR: Interface identifier of link number %d :

", i);
29 PRINT6ADDR (& ipaddr);
30 PRINTF("\n");
31 uip_ds6_addr_add (&ipaddr , 0, ADDR_AUTOCONF , i);
32 prefix_set = 1;
33 }
34 }
35

36 cycles = dwt_get_cycles ();
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Table 4.23: BR RPL instance initialization performances averages

Original Contiki BR Mono-interface BR Dual-interface BR

Average
cycles

5168,2 5975,45 9657,75

37 printf("BR: RPL instance created. System cycles: %u\n",
cycles);

38 dwt_disable ();

Counter cycles for the original BR are analyzed as illustrated by code
listing 4.3.

Source Code 4.3: original BR RPl instance initialization with cycle counter
1 void
2 set_prefix_64(uip_ipaddr_t *prefix_64)
3 {
4 rpl_dag_t *dag;
5 uip_ipaddr_t ipaddr;
6 dwt_enable ();
7

8 memcpy (&prefix , prefix_64 , 16);
9 memcpy (&ipaddr , prefix_64 , 16);

10 prefix_set = 1;
11 uip_ds6_set_addr_iid (&ipaddr , &uip_lladdr);
12 uip_ds6_addr_add (&ipaddr , 0, ADDR_AUTOCONF);
13

14 dag = rpl_set_root(RPL_DEFAULT_INSTANCE , &ipaddr);
15 if(dag != NULL) {
16 rpl_set_prefix(dag , &prefix , 64);
17 PRINTF("BR: created a new RPL dag\n");
18 }
19

20 cycles = dwt_get_cycles ();
21 printf("BR: RPL instance created. System cycles: %u\n",

cycles);
22 dwt_disable ();
23 }

Measurements are reported in graph 4.6 on the following page.

The averages of the previous measurements are reported in table 4.23.

Expected results were obtained, where the mono-interface BR adds
a little overhead with respect to the original Contiki code and the dual-
interface BR doubles the original BR.
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Conclusions

After the evaluation tests carried out, some conclusions can be made.

First of all, the initial main goal of this thesis work has been reached,
obtaining a multi interface network prototype compliant with IETF 6LoW-
PAN, ContikiRPL and IEEE 802.15.4. The prototype has been tested in
a real environment with nodes configured according to different working
configurations all based on a real hardware platform (STM32L152) and on
two real communication interfaces (SPIRIT1 Sub 1Ghz transceiver and
ST7580 Power Line Modem).

The new multi-interface feature allows scalability with respect to the
number of a RPL border router’s interfaces without considerably increasing
its memory footprint, since it adds:

• ∼9% FLASH overhead (on a total amount of ∼126 Kilobytes) for
the dual-interface 6LBR implementation and ∼5% FLASH overhead
(out of ∼106 Kilobytes) for RPL UDP Client and RPL UDP Server
nodes. FLASH overhead is independent from the number of interfaces
utilized by a border router

• ∼11% RAM overhead (on a total amount of ∼11 Kilobytes) for the
dual-interface 6LBR implementation and ∼2% RAM overhead (out
of ∼11 Kilobytes) for RPL UDP Client and RPL UDP Server nodes.
In general, RAM overhead depends from the number of interfaces
utilized by a border router. This dependency comes out as a ∼560
byte RAM overhead for every new interface added to a border router
which already implements a multi-interface environment (i.e. which
is not utilizing an original Contiki application), i.e O(1)

The new feature does not affect considerably system performances,
as it adds (independently from the number of interfaces utilized by a
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border router) ∼4,7% overhead to data traffic handling performances (see
Evaluation chapter for further details).

As expected, some marginal cases such as multicast outputs and RPL
instance initialization reflect performance linearity with respect to the
number of interfaces, i.e. ϑ(n).

Future Work

Testing of a 6LoWPAN border router with more than two interfaces has
surely the highest priority in future work. Testing of the multi-interface
feature with other Contiki examples is also relevant. In this latter case,
source code changes should be done in order to adapt the examples to the
new feature.

It could be interesting to conceive a network composed by many multi-
interface nodes, i.e. a network where not only the border router is equipped
with more than one interface. One already identified problem with respect
to this conception is related to network subnetting: messages which carry
prefix information for stateless address autoconfiguration should be smartly
handled by nodes which don’t know what subnet they should belong to.
Thus, messages propagation will need to be analyzed carefully in order to
let all the nodes receive the correct information. A secondary identified
problem is when two nodes with both more than one interface want to
communicate: they have to choose which is the preferred channel to utilize
and, for this purpose, some specific RPL optimization metric could be
investigated in addition to those already existing in Contiki.
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Appendix

A.1 Border-Router GPIOs Configuration

ST7580 Powerline’s GPIO default configuration can be found in:
1 contiki/platform/stm32nucleo -st7580/stm32cube -lib/drivers/

x_nucleo_st7580/plm_gpio.h

and in:
1 contiki/platform/stm32nucleo -st7580/stm32cube -lib/drivers/

x_nucleo_st7580/plm_uart.h

SPIRIT1 Expansion Board’s GPIO default configuration can be found
in:

1 contiki/platform/stm32nucleo -spirit1/stm32cube -lib/drivers/
x_nucleo_ids01ax/radio_gpio.h

and in:
1 contiki/platform/stm32nucleo -spirit1/stm32cube -lib/drivers/

x_nucleo_ids01ax/radio_spi.h

On the 6LBR, which exploits both the ST7580 Powerline and the
SPIRIT1 Expansion Board but does not exploit the sensors Expansion
Board, original GPIOs configuration was as illustrated in table A.1 on the
following page.

As can be seen, GPIO conflicts were on:
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Table A.1: GPIO conflicts

PIN MACRO DEVICE

PA0 USB_DISCONNECT nucleo
PA1
PA2 USARTx_TX_PIN nucleo (SLIP)
PA3 USARTx_RX_PIN nucleo (SLIP)
PA5 LED2_PIN (green) nucleo
PA6 RADIO_SPI_MISO_PIN spirit1

PLM_GPIO_RESETN_PIN st7580
PA7 RADIO_SPI_MOSI_PIN spirit1

PLM_GPIO_T_REQ_PIN st7580
PA8 MCO1_PIN nucleo

(microcontroller clock output), used to output
SYSCLK, HSI, LSI, MSI, LSE, HSE or PLL clock.

PA9 USARTplm_TX_PIN st7580
PA10 USARTplm_RX_PIN st7580

RADIO_GPIO_SDN_PIN spirit1
PB3 RADIO_SPI_SCK_PIN spirit1

PLM_PL_TX_ON_PIN st7580
PB4 LED1_PIN (red) spirit1
PB5 PLM_PL_RX_ON_PIN st7580
PB6 RADIO_SPI_CS_PIN spirit1
PC13 USER_BUTTON_PIN nucleo
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• PA6: SPIRIT1’s SPI MISO signal (data from SPIRIT1 to MCU)
versus ST7580 Powerline system reset signal (digital input)

• PA7: SPIRIT1’s SPI MOSI signal (data from MCU to SPIRIT1)
versus ST7580 Powerline’s UART communication control line (digital
input)

• PA10: SPIRIT1’s shutdown input signal versus ST7580 Powerline’s
reception analog input

• PB3: SPIRIT1’s SPI bit clock versus ST7580 Powerline’s transmission
in progress output (digital output)

In this study, the ST7580 Powerline was chosen to be connected to the
Nucleo board via wires. Anyway, the choice of which expansion board to
plug onto the Nucleo board and which one keep unplugged, i.e. connected
via wires, is indifferent.

The final 6LBR GPIO configuration is illustrated in table A.2 on the
next page.

This GPIO configuration is set in the new Contiki hw-config.h header
file, which can be found in the new multi-interface platform folder.

A.2 ARM Cortex Cycle Counter Handling

This section illustrates the content of dwt.h header file and dwt.c source
file, which handle the ARM Cortex cycle counter used to evaluate system
performances.
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Table A.2: GPIO configuration

PIN MACRO DISPLACEMENT DEVICE

PA0 USB_DISCONNECT nucleo
PA1 PLM_GPIO_RESETN_PIN (from PA6) st7580
PA2 USARTx_TX_PIN nucleo (SLIP)
PA3 USARTx_RX_PIN nucleo (SLIP)
PA4 PLM_GPIO_T_REQ_PIN (from PA7) st7580
PA5 LED2_PIN (green) nucleo
PA6 RADIO_SPI_MISO_PIN spirit1
PA7 RADIO_SPI_MOSI_PIN spirit1
PA8 MCO1_PIN nucleo

(microcontroller clock out-
put), used to output
SYSCLK, HSI, LSI, MSI,
LSE, HSE or PLL clock.

PA10 RADIO_GPIO_SDN_PIN spirit1
PB0 PLM_PL_TX_ON_PIN (from PB3) st7580
PB3 RADIO_SPI_SCK_PIN spirit1
PB4 LED1_PIN (red) spirit1
PB5 PLM_PL_RX_ON_PIN st7580
PB6 RADIO_SPI_CS_PIN spirit1
PB10 USARTplm_TX_PIN (from PA9) st7580
PB11 USARTplm_RX_PIN (from PA10, on morpho) st7580
PC7 RADIO_GPIO3_PIN spirit1
PC13 USER_BUTTON_PIN nucleo
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Source Code A.1: dwt.h
1 void dwt_init(void);
2 void dwt_reset(void);
3 void dwt_disable(void);
4 void dwt_enable(void);
5 unsigned int dwt_get_cycles(void);

Source Code A.2: dwt.c
1 #include "spirit1.h"
2 #include "dwt.h"
3

4

5 void dwt_init(void)
6 {
7 CoreDebug ->DEMCR |= (1 << 24); // Enable

TRCENA bit for using DWT
8 }
9

10 void dwt_disable(void)
11 {
12 DWT ->CTRL |= (0 << 0);
13 }
14

15 void dwt_reset(void)
16 {
17 DWT ->CYCCNT = 0;
18 }
19

20 void dwt_enable(void)
21 {
22 dwt_reset ();
23 DWT ->CTRL |= (1 << 0);
24 }
25

26 unsigned int dwt_get_cycles(void)
27 {
28 return DWT ->CYCCNT;
29 }

A.3 Debugging the Alpha Configuration

This section illustrates how to retrieve the debug messages sent by the
client and the server via serial line.
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Contiki Source Files Debug

In order to see the “PRINTF(..)” messages, which are exploited during
debug, it’s enough to change the following code line retrievable in the
source files:

1 #define DEBUG DEBUG_NONE

with this line:
1 #define DEBUG DEBUG_PRINT

or, identically, to change the following line:
1 #define DEBUG 0

with this line:
1 #define DEBUG 1

Minicom for the Server

In order to retrieve the server debug messages, a serial line connection
must be established between the server node and the host. Minicom is a
terminal emulation program for the serial line that can be run by typing
the following shell command line:

1 sudo minicom --setup

The setup option opens a menu where can be found the “serial port
setup” option. This option allows to select the correct serial port via which
the server connects. If the server was the second device to be connected,
then the /dev/ttyACM1 must be selected.

In order to display correctly the debug messages, type: “Ctrl+A” and
then type “Z”.

Minicom for the Client

The same operation must be done for the Client, where the serial port
must be configured as /dev/ttyACM2.



Acronyms

6LBR 6LoWPAN Border-Router

6LoWPAN IPv6 over LoWPAN

BR Border-Router

BSS Block Started by Symbol

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

DAG Directed Acyclic Graph

DAO Destination Advertisement Object

DIO DODAG Information Object

DIS DODAG Information Solicitation

DODAG Destination Oriented Directed Acyclic Graph

ELF Executable and Linkable Format

IETF Internet Engineering Task Force

IoT Internet of Things

ISM Industrial, Scientifical and Medical radio band

LLN Low-Power and Lossy Network

LLSEC MAC Link Layer Security

LoWPAN Low-Power Wireless Personal Area Network

MAC Medium Access Control
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ND Neighbor Discovery Protocol

ND6 Neighbor Discovery Protocol for IPv6

OSI Open Systems Interconnection

PAN Personal Area Network

PLC Power-Line Communication

PHY Physical layer

RA Router Advertisement

RF Radio Frequency

RS Router Solicitation

RDC Radio Duty-Cycle

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks

SLAAC Stateless Address Autoconfiguration

SLIP Serial Line Internet Protocol

WSN Wireless Sensor Network
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