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Abstract

In the multi-core era, the Networks-on-Chip (NoCs) emerged as the de-facto

interconnect due to their scalability and flexibility. Moreover, they strongly

influence the power consumption and performance of the entire platform,

thus representing a key component to be optimized. In this scenario, sev-

eral proposals in the literature presented Dynamic Voltage and Frequency

(DVFS) capable NoCs to trade the power and performance metrics. However,

the NoC traffic is highly variable due to the different phases an application

crosses during its own execution. Last, the coherence protocol greatly con-

tributes to the traffic shape. In a nutshell, the NoC traffic shape is mainly due

to the coherence protocol, while the specific application only influences the

traffic volume. Few seminal works discussed coherence-aware DVFS schemes

for NoCs. This thesis presented a novel DVFS-capable heterogeneous NoCs.

A fine grain analysis of the traffic composition enabled a further optimization

of the DVFS actuation. The proposed NoC is capable to optimally balance

the power and performance at low, medium and high traffic. Thus deliv-

ering an holistic solution that is roughly application independent. This is

achieved thanks to a load balancer module that can route the traffic to the

different implemented physical networks. The mechanism observes the traffic

load and adjusts the frequency of each physical NoC to optimally match the

objective function. The novel NoC has been integrated in the Gem5 full-

system simulator and compared with the baseline NoC and a state of the

art DVFS-capable methodology. Results are extracted considering a 64-core

architecture executing the Splash2 benchmarks. Results show that the pro-

posed NoC almost provides the same performance of the performance-aware

baseline NoC with an energy reduction of 30% and one third less resources.
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Chapter 1

Introduction

“Sometimes it is the people no one can imagine anything of who do the things

no one can imagine.”

Alan Turing

The multi-core architectures emerged to provide a better power perfor-

mance trade-off with respect to single core processors. However, the multi-

core revolution pushed to the limit the on-chip bus-based solutions, thus

highlighting the Networks-on-Chip (NoCs) as the de-facto on-chip intercon-

nect. The NoC provides better scalability and flexibility properties than bus

architectures, while its great impact on the power, performance and area

metrics imposes a cunning design to deliver a successful architecture. The

adoption of the on-chip networks makes the multi-cores widespread in differ-

ent market segments, ranging from the High Performance Computing (HPC)

to the embedded systems. The rest of this chapter introduces the objectives,

the research area and the background of the thesis. In particular, Section 1.2

discusses different multi-core classes to better focus on the architecture sub-

set that are considered in this work. The goals and contributions of the thesis

are detailed in Section 1.3, while Section 1.4 provides a background on the

main architectural blocks discusses in the thesis, i.e. the NoC, the cache co-

herence protocols and the Dynamic Voltage and Frequency Scaling (DVFS)

mechanism. Last, the structure on the thesis is devoted in Section 1.5.
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1.1. The Cache-Coherent Multi-Cores: Architecture and Applications

1.1 The Cache-Coherent Multi-Cores: Archi-

tecture and Applications

The computer architects always tried to increase the clock frequency and

the architectural complexity at each generation to match the performance

level foreseen by the Moore’s Law. The hit of the so called power wall at

the beginning of 2000s, started the transition from single-cores to multi-cores

with the final objective of increasing the performance per watt metric. This

is essential to keep the pace with the Moore’s Law, while constraining the

power consumption. The multi-cores provide a flexible architectures where

different applications can truly execute in parallel. Moreover, such architec-

tures allow different supply voltage values and clock rates to different parts

of the architecture to further increase the performance per watt ratio.

The multi-cores range from the embedded to the High Performance Com-

puting (HPC) segments. The HPC architectures execute computationally

demanding applications from a wide range of domains trying to match the

capacity computing paradigm. The capacity computing paradigm aims at

executing the maximum number of applications while ensuring the best per-

formance per watt ratio. Conversely, low power requirements dominate the

embedded multi-cores mainly due to their battery-powered nature. Embed-

ded multi-cores are still general purpose architectures while the low power

requirements impose a different design methodology compared to the HPC

platforms. Last, the accelerators are becoming a widespread multi-core so-

lution [40] to boost the computation of some specific tasks inside a bigger

application. Usually the multi-core accelerators implement simpler in-order,

GPU-like CPUs, that are coupled with a simplified non-coherent cache hierar-

chy. The non-coherent cache hierarchy represents the key different between

general purpose multi-cores and the accelerator, task specific multi-cores.

The absence of the coherence protocol greatly reduces the generated traffic,

while the programmer has to manually ensure the coherence. On the other

hand, cache coherent multi-cores provide as easier to program platform, that

is generic with respect to the executed applications.

The applications represent an additional design dimension for multi-cores,

since they drive the design of new computing platforms. Considering the

multi-core scenario, different applications are expected to run concurrently

on the same hardware, each of them with its specific set of requirements

and constraints. Moreover, each application should believe to be executed
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1.2. Problem Overview

in isolation with respect to all the other running tasks. The requirements

from different applications can be contrasting to each other and can require

the same hardware resources to be fulfilled, thus highlighting the well known

resource contention problem [8]. The scenario is further complicated by the

end users, that claim the same user-experience regardless if the application

is executed on a smartphone, a tablet or desktop platform. For example,

current smartphones are expected to smoothly run demanding graphic ap-

plications with the same user-experience of a laptop. Furthermore, single-

and multi-threaded applications can execute on the same multi-core and each

application traverses different phases during its execution, e.g. memory-

bound, CPU-bound, thus stressing the platform resources in an unbalanced

and time-dependent fashion.

This thesis targets the general-purpose, cache coherent multi-cores with

particular emphasis on the embedded domain, where the power requirements

can further narrow the design space. Different multi-threaded tasks are evalu-

ated with different execution phases, to strengthen the proposed architecture.

1.2 Problem Overview

Considering a general-purpose, cache-coherent multi-core, the design space is

huge. Thus, it is difficult to provide a system-wide optimized architecture ac-

counting for the computational subsystem side by side with the interconnect

and the memory hierarchy. Such optimized design is further complicated by

the different application classes that are executed on the platform. Each class

of applications has different requirements that can possibly contrast with the

requirements of other applications. Moreover, the possibility to have appli-

cations of different classes that concurrently run on the same architecture

represents a possible scenario that has to be accounted during the architec-

tural design stages. In a nutshell, the possibility to have a virtually infinite

variety of applications that can be executed on the multi-core makes the

application-based optimization unfeasible. The resulting architecture would

be a set of accelerators, each of them specifically designed for an application

or a class of applications. Thus, such a solution is not viable for general pur-

pose multi-cores. However, the optimization of the multi-core architecture

to fit a broad class of applications still represents a key objective for design

architects. In particular, the cache hierarchy and the interconnect greatly

impact the performance and power metric. Thus their optimization can not

3



1.2. Problem Overview

be neglected during all the design stages.

The Dynamic Voltage and Frequency Scaling (DVFS) mechanism has

been extensively exploited in the computer architecture field for decades to

optimize the power-performance metric. The DVFS allows to reduce the

operating voltage and frequency when less computational power is required

with a net power reduction. Conversely, both voltage and frequency can be

increased to offer more computational power when required by the running

applications. The adoption of the DVFS mechanism coupled with a suitable

policy to steer it has been explored in CPUs for decades. The multi-core

revolution moved the DVFS exploitation to the emerging NoC architectures.

Several proposals optimize the NoC power-performance trade-off by means of

the Dynamic Voltage and Frequency Scaling actuators and companion poli-

cies [55, 33, 47], while others focus on the design of a more efficient NoC

micro-architecture [48, 31, 32, 3].

Considering the Splash2 benchmarks [46], Figure 1.1 shows the applica-

tion performance impact due to the NoC frequency. Results are collected

from an 8x8 2D-mesh topology using 2GHz out-of-order CPUs. Each bench-

mark has been simulated with different fixed NoC frequencies - 500MHz and

2GHz - and a strong variations in its execution time has been observed. For

Example, the OCEAN application shows an execution time of 82.33ms and

27.94ms when the NoC frequency is set at 500MHz and 2GHz, respectively.

The frequency reduction directly reduces the performance of the architecture.

On the contrary, frequency increase improves the performance but with a non

negligible impacts on the power consumption.

On the other hand, the coherence protocol represents an orthogonal de-

sign dimension to improve the power-performance trade-off in the multi-core.

An optimized coherence protocol increases the data re-usability in the cache

hierarchy with benefit for both the performance and the power consump-

tion. Considering the interconnect, the coherence protocol is responsible of

the imposed traffic pattern and shape. Conversely, the applications can only

impact the absolute traffic volume, that is actually application dependent.

The cache coherence protocol greatly contributes to the generated traf-

fic, thus impacting the overall system performance as well as the absolute

traffic volume. Different coherence protocols have been proposed to trade

the system-wide performance and the imposed traffic to the interconnect.

Figure 1.2 shows the generated traffic by three different coherence protocols

4



1.2. Problem Overview

0,00

0,20

0,40

0,60

0,80

1,00

1,20

To
ta

l E
xe

cu
ti

o
n

 T
im

e
(N

or
m

al
ize

d 
to

: N
o

C
 5

0
0

M
H

z)

Applications (Splash2)

NoC 500 MHz NoC 1500 MHz NoC 2000 MHz

Figure 1.1: Frequency impact on performance.

0
100
200
300
400
500
600
700

Tr
af

fi
c 

V
o

lu
m

e 
[B

it
s]

x 
1

0
0

0
0

0
0

0
0

Application (Splash2)

MESI MOESI MOESI HAMMER

Figure 1.2: For each considered Splash2 benchmarks, the traffic volume is reported

for three different coherence protocols.

5



1.2. Problem Overview

considering the Splash2 [46] benchmarks. Conversely, Figure 1.3 presents the

performance information using the same coherence protocols and benchmark

set. The MESI represents the reference coherence protocol. The MOESI

enhances the MESI protocol by adding the Owned (O) state. Two different

MOESI-based coherence protocols have been compared. The MOESI ex-

ploits the so called directory to retrieve the coherence information, while the

MOESI-hammer implements a broadcast-based mechanism to get the same

information.

Results in Figure 1.2 and Figure 1.3 highlight the MESI as the less suitable

coherence protocol for multi-threaded applications, mainly due to the lack

of the Owned (O) state. The Owned state enhances the performance in case

of data ping-ponging effects between two L1 caches. Thus, each application

shows a huge imposed traffic with poor performance (with MESI) if com-

pared to the results obtained with the other coherence protocols. However,

the trade-off between the traffic volume and the performance clearly emerges

when MOESI and MOESI-hammer protocols are compared. The MOESI

represents the MESI enhancement using a directory to keep the coherence.

Conversely, the MOESI-hammer still implements the protocol optimizations

over the MESI protocol, while it exploits a broadcast mechanism to retrieve

coherence information instead of a directory. To this extent, the MOESI is

traffic-aware due to its ability to get the information on the most up to date

copy of each required data from a specific point in the cache hierarchy. On

the other hand, the MOESI-hammer broadcasts to anyone in the multi-core

to get the same information with a net traffic increase. The MOESI-hammer

is faster in getting such information on average, thus offering better perfor-

mance, mainly due to the possibility to directly get the required information,

while the implementation of a directory represents and additional point of

indirection.

The coherence protocol strongly influences the traffic volumes in the in-

terconnect. Besides the traffic volumes can be seen as an indirect power con-

sumption metric for the interconnect. This thesis primarily focuses on the

embedded multi-cores, thus the MOESI directory-based protocol is used in

the rest of this work instead of the MOESI-hammer, mainly due to the power

consumption constraints that are imposed at the platform level. Finally, the

thesis aims to extract valuable information from the MOESI coherence pro-

tocol to steer the DVFS mechanism.
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Results are normalized to the MESI.

1.3 Goals and Contributions

This thesis presents a novel heterogeneous NoC architecture for cache-coherent

multi-cores. The traffic burstiness characteristics as well as the traffic infor-

mation are exploited to design the NoC as well as to control the DVFS

mechanism implemented at NoC level. In particular, the thesis encompasses

the three main contributions:

• Relationship between the interconnect load and the coherence protocol

generated traffic - The intricate relationship between the data required

by the applications, the implemented coherence protocol and the im-

pact that these two aspects have on the actual traffic on the intercon-

nect have been investigated. Moreover, the insights of such an analysis

are still valid to complement and extend the proposed interconnect.

• Heterogeneous NoC design - Two different, heterogeneous NoCs are

used to route different traffic types. Such NoC design emerges from

the traffic information analysis as well as the latency- and bandwidth-

sensitive phases that the application traverses during its execution.

• Application-aware DVFS mechanism and policy - Using the knowledge

about the application phases, its traffic distribution and the relation

7



1.4. Background

Figure 1.4: The baseline router architecture. It is presented a virtual-channel,

wormhole, credit-based router highlighting its main components and how core and

caches are connected to the relative router.

between the NoC frequency and the system-wide performance, the pro-

posed NoC architecture can decide the best physical channel where the

traffic has to be routed to get an optimal power performance trade-off.

1.4 Background

The Network-on-Chip is a scalable and reliable interconnect that allows

nodes to exchange data. A node can be both a CPU or a part of the mem-

ory subsystem. The Noc is made of routers, links and Network Interface

Controllers (NICs). Routers manage routing of data and coherence packets

into the network. The NIC is the component that allow the communication

between a node and a router. Two routers are connected using simple links

or eventually using a router and a NIC.

Figure 1.4 depicts a Chip Multi-Processor (CMP) which relies on a 4x4

2D-mesh NoC as interconnect. Routers take care of the communication be-

tween the various CPUs and memories. Each router is connected to some

other through a link. For example R15 is connected to router R11 and R14

through two different links. R15 is connected also to a L1 and a L2 cache

memories; L1 is also connected to the CPU. Communication between them

is supported by the NICs.

From the communication view point the various nodes exchange mes-

sages, which typically are requests and responses generated by the coherence

protocol. Traditionally, the NoC splits each message in multiple packets.

8



1.4. Background

Figure 1.5: Message structure in NoC. There are presented the message, its division

in packets and, furthermore, in flits highlighting the headers essential information.

Then each packet is eventually split in multiple flits to better utilize the

NoC resources. These different levels of granularity are shown in Figure 1.5.

Data and coherence packets have different dimension: Data packet are usu-

ally composed by 9 flits, instead coherence control packets are usually single

flit packets.

The NoC itself is characterized by some features: the layout topology, the

routing scheme, the switching mechanism, the flow control mechanism and

the router architecture. The NoC topology defines the way routers are inter-

connected to each others and how memory and CPU blocks are attached to

the NoC. The most common topologies used in NoC are mesh [14], concen-

trated mesh [3], hybrid bus based [15, 45] and high radix [22]. In Figure 1.4

it is shown a 2D-mesh network where the routers are connected in a matrix

form.

Given a specific topology the routing algorithm defines each source-destination

path inside the NoC. Routing algorithms can be deterministic [3] or adaptive

[20, 18, 19], based on their capacity to alter the path taken for each packet.

9



1.4. Background

The most used deterministic routing scheme in 2D-meshes is XY routing

where a packet first goes in the X direction and then in the Y one.

The switching mechanism is in charge of the transmission of the infor-

mation between the input and output ports inside a router. Some switching

mechanisms are Store-and-Forward (SaF) [29], Virtual cut-through (VCT) [27],

Wormhole switching (WH) [34] and Virtual-Channel Wormhole switching

(VCW) [13]. The most commonly used switching technique is VCW, which

associates several virtual channels with a single physical channel, overcoming

blocking problems of WH.

The flow control is a mechanism responsible of managing the advance of

the flits between the routers. All the switching techniques that use buffers

need a mechanism to communicate the availability of buffers at the down-

stream router. Three mechanism are used: Credit-based, Stop & Go and

Ack/Nack [14]. The most commonly used in NoCs is the Credit-based one

and with this mechanism every output port knows the exact number of free

buffers and the number of slots available for every buffer in the downstream

router.

A message provides the node-to-node communication, but when it tres-

pass the NIC it is divided into NoC’s basic data structure: the packet. A

packet is considered split in multiple atomic transmission units called flits.

The first flit of each packet is the head flit. A body flit represents an interme-

diate flit of the original packet while the tail flit is unique for each packet and

closes the packet. There is another particular case of packets called single

flit packets and they are composed by a single head/tail flit.

After this general explanation of the NoC it is now presented in Fig-

ure 1.4 presents the baseline architecture of a wormhole NoC’s router that is

considered in the thesis.

A wormhole router supporting VCs and VNETs is considered. It is a

standard 4-stage pipeline, i.e. Buffer Write/Route Computation (BW/RC),

Virtual Channel Allocation (VA), Switch Allocation (SA), and Switch Traver-

sal (ST). A single cycle for the Link Traversal (LT) is assumed as shown in

Figure 1.6.

The considered NoC implements the VNET mechanism to support the

coherence protocol, preventing the traffic from a VNET to be routed on a

different one. When a head flit arrives to the input port of the router it

has to pass through the 4 pipeline stages before traversing the link. First, it

is stored in the VC buffer (BW) which has been reserved by the upstream

10



1.4. Background

Figure 1.6: The baseline router pipeline. The figure shows the baseline NoC router

4-stages pipeline with the addition of the link traversal.

router, and the output port is computed (RC). Then, it competes in the VA

stage to reserve an idle virtual channel in the selected output port. Notice

that assigned VCs belong to the set of VCs associated to the VNET of the

packet. Once the VA succeeds, head, body and tail, competes in packet order

for a crossbar switch path (SA). Finally, each winning flit in the SA has to

pass the ST and LT before reaching the next router. Note that tail and body

flits pass through fewer stages since they reuse resources and information

reserved by the head flit (i.e., VC and RC). n The NIC is another NoC

component that provides communication between the nodes and the network.

The NIC wraps up the requests from the cores as messages suitable for the

NoC and rebuilds them at destination. When a message is taken from the

NIC queue it is split into packets and each one of them is divided into flits.

Then the whole packet divided in flits is allocated in a VC. Here all the flits

will compete for the link allocation and then they will be sent to the next

router.

The entity that creates the traffic in chip-multiprocessor (CMP) systems

is the cache coherence protocol, thus influences the NoC behavior. CMPs

typically implement a cache coherence protocol on top of the network (shared-

memory CMP system). The protocol guarantees coherency and consistency

when sharing memory blocks between multiple cores (processors). Indeed,

the protocol keeps the coherency among different copies of the same memory

block replicated through different L1 and/or L2 cache memories. The cache

coherence protocol (in a shared-memory CMP system) is the main driver for

the network. NoCs can be differentiate between systems with shared cache

structures and systems with private cache structures. While the L1 cache

is usually private for each processor, the L2 can be private or shared. In a

system with private L2 caches each processor has its own L2 cache block and

in case of a L2 miss, a request is sent to the memory controller. Later, the

11



1.4. Background

request will be forwarded to another L2 cache or to memory. In a system

with shared L2 caches the four L2 blocks are shared by all processors, and

each cache block is mapped on a particular L2 bank. In case of a L1 miss, a

request is sent to that bank, that can be located in the same tile or in one of

the other tiles. This way the four banks of the L2 cache are part of a single

L2 cache physically distributed among the tiles.

Two are the main different cache coherence protocols developed: Direc-

tory and Hammer, each one generating a different kind of network traffic.

In the Directory protocol directory information is associated with each

cache block, including information about which core, if any, has a valid copy

of the block, whats the current state of the block, and whether or not the

block is dirty. In case of a miss in the private cache a request is sent to the

home node, which forwards it to the owner core or sends the block to the

requester depending on the blocks state. If L2 caches are private, the home

node is located in the memory controller; if L2 caches are shared, each L2

bank is the home node to a given subset of cache blocks. Since the directory

has to be stored in the home node, space overhead is the main drawback of

this protocol. Cache misses generate low network traffic: in case of a read

miss, two or three messages are sent: the request message to the home node,

eventually a forwarded request to the owner core, and finally a message with

the block; in case of a write miss, more messages may be sent since the home

node has to invalidate the cores that share the block, if any.

In the Hammer protocol no additional information associated with the

cache block is needed. When a cache miss occurs, a request is sent to the

home node (which is located in the memory controller if L2 are private or in

an L2 bank if L2 are shared, as in the Directory protocol). The home node

broadcasts the request to all other cores and sends an additional off-chip

request to the main memory. The cores answer by sending the block or, in

case they do not have a valid copy, an acknowledgment message; so, if the

system has N cores, the requesting core has to wait for N messages: N-1 data

or acknowledgment messages from the other cores and one data message from

the memory. If at least one core sends a data message, the memorys data

is considered stale and ignored. The Hammer protocol generates even more

traffic than the Token protocol, since broadcast operations are performed at

every cache miss and all cores have to answer. All protocols use MOESI

states: extension of MESI protocol, restrict write-back of data from cache to

main memory.
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Figure 1.7: Comparison between baseline and speculative router pipeline.

Non atomic virtual channel allocation (NAVCA) - Usually VNET-

based NoCs with Virtual Channels offer only atomic buffer allocation schemes,

i.e. at most one packet can store flits in a buffer at the same time. However,

a scenario with a mix of long and short packets, imposes a minimum buffer

depth to face performance penalties due to the credit round trip time. In this

scenario, short packets are usually single flit packets, since the link width is

designed to transmit them quickly. As a consequence, short packets coupled

with the atomic VC allocation impose a waste of buffering space, i.e. all the

slots except the first are never used. The possibility to allocate a packet to a

non empty-buffer using the Non Atomic Virtual Channel Allocation design

improves both performance and buffer utilization.

Speculative Pipeline Optimization - We have used an optimized

pipeline with only three stages as shown in Figure 1.7. This optimized

pipeline has been also used in literature [37]. A speculative virtual-channel

router arbitrates between output VC and switch bandwidth in parallel, this

speculating that a VC will be allocated for the packet. If the speculation

turns out to be incorrect, the SA speculation is wasted. As the switch allo-

cator prioritizes non-speculative requests over speculative ones, there is no

adverse impact on throughput.

1.4.1 DVFS: Dynamic Voltage and Frequency Scaling

Power consumption is one of the major design issue in multi-core processor

development. Moreover, the CPU can no longer be considered the unique
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freq=1GHz

freq=500MHz

Figure 1.8: The impact of the frequency to the delay.

contributor due to the core, since the interconnect contribution to the over-

all energy budget is relevant. The DVFS has been exploited for power-

performance optimization in cores [43] memories [10] and interconnect [24].

It provides a flexible and scalable way to jointly optimize power and per-

formance, by addressing both static and dynamic power and dynamically

adjusting the voltage and frequency values.

Dynamic Voltage and Frequency Scaling is an effective mean to reduce

power consumption in CMOS chips. The power dissipation in digital Com-

plementary Metal Oxide Semi-conductor (CMOS) circuits occurs due two

main sources. Static power arising from bias and leakage current, it’s de-

pendent to the process and design technologies. Dynamic power is the other

form and it get down from charging and discharging of voltage saved in node

capacitances in the circuit. The dynamic power P depends on voltage V and

frequency f . Formula (1.1) shows how dynamic power P depends on voltage

V and frequency f .

P ∝ fV 2 (1.1)

The voltage value reduction implies the increase of the gate delay, thus

reducing the operating frequency. Consequence of this relation cause a delay

in transmission as shown in Figure 1.8.

The dynamic frequency change of different communication blocks requires

a resynchronization support to avoid metastability issue and guarantee sig-

nal integrity. The globally asynchronous locally synchronous (GALS) design

scheme allows to partition the design into different so-called voltage and fre-

quency island (VFIs) considering signal resynchronization at VFI boundaries.

Each VFI can work at its own speed, while the communication across dif-

ferent voltage islands is guaranteed through the use of FIFO resynchronizer.
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This provides the flexibility to scale the frequency and voltage of various

VFIs in order to minimize energy consumption. Design NoCs with multi-

ple VFIs involves a number of critical steps: granularity, i.e. the number

of different VFIs, and chip partitioning into VFIs needs to be determined

since design time; also VFI partitioning need to be performed together with

assigning of the supply and threshold voltages and the corresponding clock

speeds for each island. Moreover, create islands of nodes running at differ-

ent frequencies has some disadvantages: locally replicated DVFS controller

and DC-DC converters cause area and power overhead, moreover resynchro-

nization at the crossing between multiple frequency domains involves major

performance losses. To allow reliable data transfers between components op-

erating at different frequencies, a new component called FIFO resynchronizer

must be insert between each Network Interface and router to avoid metasta-

bility issues. It is composed of a FIFO buffer with two clocks, i.e. write

and read clocks, and two other signals, i.e. isFull and isEmpty, to monitor

its current status of producer and consumer. This implementation allows

to safely read and write it avoiding metastable states [36]. Figure 1.11 de-

picts the implemented FIFO resynchronizer between a router and a Network

Interface Controller (NIC) that connect the CPU to the NOC.

In particular, considering a 8x8 2D-Mesh with 64 cores running at 2 GHz

and the Splash2 applications, the introduction of the FIFO resynchroniza-

tion model between NIC and the router introduces a performance penalty

within 12%. It means that each physical Network can be his own frequency.

Moreover, inside each Network each router must be at the same frequency

(FIFO NIC DUMMY NOC architecture). If the architecture design imposes

total flexibility, each router can work at different frequency. In this case,

a resynchronizer must be placed between each router and each NIC with a

performance degradation within 22% with an average value of 14%. We call

this architecture FIFO4ALL. Figure 1.9 shows FIFO4ALL structure with a

detailed view of resynchronizer position inside each node and between each

router. Figure 1.10 reports the performance overhead considering the Splash2

benchmarks on an 8x8 NoC. Two resynchronization scheme have been tested.

Results are normalized against the NO RESYNCH NoC implementation.

Based on the results, our methodology supplies FIFO Resynchronizer for

DVFS implementation only at NoCs border, allowing each Physical Network

to run at its own frequency but inside each network each router must be at

the same frequency. The goal is minimize the resynchronizer impact on both
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Figure 1.9: Logic view of FIFO4ALL architecture. The FIFO NIC DUMMY

NOC only implements resynchronizers at the NoC border. No resynchronizers are

implemented between routers.

power and performance.

In order to be able to change interconnect frequency at runtime, an ac-

tuator module must be introduced. The actuator is a PLL that allows to

accurately select the router frequency. The PLL introduces timing and per-

formance overheads. In particular, when a frequency increase is required, the

voltage regulator is activated in advance to properly set the voltage in order

to support the new frequency that the PLL is imposing. On the contrary,

when the frequency is moved down the PLL immediately starts decreasing

the frequency, while the voltage will follow it, without imposing any addi-

tional delay except the PLL response time.

It is worth noticing the resynchronization delay cannot be recovered in any

way and its totally independent from the implemented DVFS policy. Due to

this fact our methodology exploits a per-PNET DVFS. Independently from

global or per-router implementation, metrics used to choose when change

Voltage and Frequency during run time execution are essential to achieve

the best power-performance trade-off.
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Results are normalized to NO RESYNCH.
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Figure 1.11: FIFO Resynchronizer between a Network Interface Controller (NIC)

and a router. Four different FIFOs per each NIC-router pair are required, since

unidirectional links are used for both data packets and flow control information.
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1.5. Thesis Structure

1.5 Thesis Structure

The rest of the thesis is organized in five chapters. Chapter 2 describes the

state of the art in DVFS, Heterogeneous Network applied to NoCs and cache

coherence impacts on traffics. Chapter 3 provides a detailed description of

methodology and its novel contributions. Chapter 4 details the methodology

validation providing the results considering a realistic environment. Chap-

ter 5 points out some future works on the NoC architecture.
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Chapter 2

State of the Art

“You can’t connect the dots looking forward; you can only connect them look-

ing backwards. So you have to trust that the dots will somehow connect in

your future. You have to trust in something - your gut, destiny, life, karma,

whatever. This approach has never let me down, and it has made all the

difference in my life.”

Steve Jobs

This chapter summarizes the state of the art that is of interest in this

thesis to improve the NoC power-performance trade-off. The literature is

huge and different techniques and guidelines emerged to optimize the DVFS

and the NoC architecture. The DVFS-aware NoC designs are discusses in

Section 2.1. A review on the available, DVFS-aware simulation frameworks

for NoCs is provided in Section 2.2. Section 2.3 discusses the architectural

NoC optimizations to improve both power and performance. Last, Section 2.4

discusses the state of the art on the impact the coherence protocol has on

the NoC due to the generated traffic.

2.1 The DVFS-aware NoC Design

Starting from single-core architectures, the DVFS emerged as a practical

solution to deliver on-demand computational power to the running appli-

cations. With the multi-core revolution, the DVFS mechanism has been

extensively exploited in the NoCs to dynamically adapt the platform com-

putational power to the application needs to deliver an high-bandwidth, low
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2.1. The DVFS-aware NoC Design

latency and power efficient interconnect. The rest of this section discusses

both the mechanism and the companion policies proposed in the literature.

[33] explores different router-level policies to dynamically tune the NoC

router frequency and optimize the power-performance trade-off. The per-

input-port buffer utilization is the metric to decide the frequency to be ap-

plied to the whole router. More different policies have been evaluated. All

routers operate at a boosted frequency. This helps in enhancing the perfor-

mance at low load, with latency traffic, while slightly increasing the power

consumption. When the state of the network become congested, the power

consumption becomes the key challenge. Hence, the policy throttles the fre-

quency/voltage of selected routers using the DVFS mechanism. The novel

frequency tuning algorithm reduces the latency and the power consumption

in the Noc by a distributed throttling and boosting of the router frequency

based on the actual network load. Moreover, a distributed congestion man-

agement scheme has been implemented to provide each router with the pos-

sibility to signal its load to its neighbors. Thus, [33] provides a complete,

distributed per-routed DVFS solution for NoCs.

A router-level, control-based methodology for DVFS-aware NoCs has

been presented in [55]. The input buffer utilization is still exploited as the

contention metric to decide the frequency to be applied to routers. An ana-

lytical model of the network traffic has been developed to better characterize

the DVFS controller. The final solution exploits two different observations.

First, the flow balance assumption equation expresses the connection between

contention at current and next time instant. The router contention is defined

as the sum of the number of flits in the input buffers and is also the quantity

that has to be measured at runtime to close the control loop. A proportional

controller has been implemented to tune the router frequency at run-time.

It is worth noticing, the methodology eventually allows the user and/or the

OS to change the high level power-performance modes, i.e. to trigger perfor-

mance oriented or power saving system behaviors. Moreover, [55] presented

a complete analysis on the impact the resynchronization scheme has on the

overall methodology in terms of performance and power overheads. The im-

pact of the resynchronization mechanism in DVFS capable NoCs has been

further investigated in [53]. To this extent, the solution in [55] has been

proved to overcome all the threshold-based DVFS policies like the one pro-

posed in [33]. However, the used of a router-level DVFS scheme is overkilling

in terms of performance and power due to the required resynchronization
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scheme.

The thread voting approach proposed in [47] represents an on-chip DVFS

technique for NoCs. It is able to adjust the NoC voltage and frequency (V/F)

on a per region basis. Each region is composed of a subset of adjacent routers

sharing the same V/F level. Considering a per thread voting-based approach,

the threads can influence the DVFS mechanism by voting for the V/F level

that best suits their QoSs. [47] used the thread performance level, instead

of the classic network level parameters to steer the DVFS. The ingoing and

outgoing traffic allows to capture the thread communication requirements.

Moreover, it allows to monitor the thread data dependencies. The model

uses two, thread-level parameters. One is the message generation rate that

monitors the average number of outstanding L1/L2 misses. The other is the

average number of data sharers for a specific data request. The first points

out the per thread average network accesses, while the second reflects the

contention on the specific required data. However, this work has a strong

impact on the interconnect schema due to the necessity to add a novel in-

frastructure that allows the communication between the application threads

and the policy controller.

2.2 State-of-the-Art on multi-core Simulator

The software simulation is the de-facto standard to evaluate complex multi-

cores. Unlike hardware prototyping, it allows a relatively fast design space

exploration. Besides, the obtained results greatly depend on the accuracy of

the modeled components. In this scenario, the accuracy in modeling DVFS

actuators and resynchronization circuits has a great impact on result relia-

bility. The state-of-the-art provides several simulation frameworks but most

of these are not accurate enough, providing DVFS and GALS implementa-

tions with power and performance behaviors that are far from reality. In

particular, the resynchronizer is the hardware component that allows the

communication between different VFIs. However, several reviewed simula-

tion frameworks do not properly account its performance, power and area

overheads, thus providing overoptimistic results that can partially shadow

the benefit of the implemented DVFS scheme.

Table 2.1 reports different cycle accurate software simulators with par-

ticular emphasis on thier support for DVFS, GALS and NoC. SESC [39]

develops a cycle-accurate to simulate of bus-based multicore, but without
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Framework

Cycle-

accurate

CPU

NoC Power GALS DVFS PLL

Renau et al.

(SESC) [39]
X

Soteriou et al.

(Polaris) [42]
X X

Hsieh et al.

(SST) [25]
X X

Lis et al.

(HORNET) [30]
X X

X
(simple)

Bartolini et al. [4] X X X
Zoni et al. [49]

(HANDS)
X X X

Carlson et al.

(Sniper) [7]
X X X X

Prabhu

(Ocin tsim) [38]
X X

Zoni et al. [53] X X X
X

(accurate)
X X

Table 2.1: State-of-the-Art simulation frameworks.
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support the DVFS and the GALS design. Polaris [42] extends the concept

of the NoC simulator providing tools for power and area design space explo-

ration. Unfortunately Polaris does not support heterogeneous systems, and

the addition of system-level reliability and variability models. SST [25] im-

plemented a framework for integrated power, area and thermal simulations,

but without providing support for DVFS or PLL models. HORNET [30] is

meant to simulate large-scale architecture. The HORNET parallelized sim-

ulation engine can scale nearly linearly with the number of physical cores in

the processor but does not provide support for any kind of power or area

estimation. Bartolini [4] proposes a novel virtual platform for efficiently

designing, evaluating and testing power, thermal and reliability closed-loop

resource management solutions. [4] also supports the DVFS even if the PLL

model is the inaccurate during frequency changes. Sniper [7], creates one of

the most accurate distributed parallel simulator for multicores with DVFS

projection and power support for CPU. Also in this work GALS support and

PLL model are not takes in account into the models. Ocin tsim [38] offers

a DVFS aware NoC simulator with support for per node power-frequency

modeling to allow the fine-tuning of such optimization techniques early in

the design cycle. Power management and different NoC policy are not al-

lowed due to the limits of framework that restrict the use only for DVFS

exploration purpose. HANDS [49, 53, 44] creates a complete and reliable

cycle-accurate simulation framework with support for DVFS and GALS pol-

icy integrating accurate PLL models. The simulation flow allows to validate

novel DVFS policies and NoC architectures with accurate results in terms

of power and performance. Our novel heterogeneous NoC architecture has

been tested with the last framework developed by Zoni [53] adding support

for Physical Networks with independent DVFS interface for each channels.

2.3 Heterogeneous Network-on-Chip Design

The NoC architectural optimization represents an orthogonal design dimen-

sion to DVFS to improve the interconnect power-performance trade-off. Sev-

eral proposals addressed the buffer sizing problem to optimize the NoC, since

it strongly affects both power and performance [50, 35, 41]. Moreover, the

NoC traffic is burst-oriented, thus it is of paramount importance to optimize

the implemented NoC resources to minimize the idle time.

ViChaR [35] presents the design of a complete buffer size regulator to
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dynamically resize the router buffers depending on the actual length of the

stored packets. Buffer slots are assigned on a per flit basis following a daisy-

chained list approach. Moreover, [11] proposed a ViChaR-based scheme

where the dynamic buffer allocation is done on a per router basis. ViChaR

represents the most flexible buffer management solution due to the exploita-

tion of a per input port dynamic buffer slot allocation. However, its design

complexity motivates the exploration of more lightweight techniques, since

both area and power overheads greatly impact the benefit of the methodol-

ogy. Besides, [35] highlights that having many VCs with shorter queues is

more beneficial than having fewer VCs with a deeper queue when the traffic

is low, while the opposite is true on heavy traffic conditions.

Elastistore [41] introduces a lightweight architecture that minimizes the

buffering requirements without sacrificing the performance. It makes use of

the buffer space in the pipelined channels to reduce the buffer cost. Elastis-

tore uses just one buffer slot per VC and a large buffer that is shared between

all the VCs in the same input port. Thus, different VCs can dynamically in-

crease their buffer size where the only constraints are imposed by the total

available, per-input port, shared buffer slots.

[50] exploits the coherence protocol information to dynamically assign

different VCs to serve different traffic classes in the NoC. The coherence

protocol imposes the minimum number of required VCs that is equal to

the implemented message classes. Additional VCs can be implemented to

improve the NoC performance. [50] dynamically assigns the VCs to the mes-

sage classes depending on the actual NoC traffic, with the only constraint to

have al least one VC per message class. The dynamic VC allocation allows to

dedicate more channels to the message class with the heavier traffic volume.

Moreover, the adaptivity of the mechanism can reconfigure the VC allocation

depending on the traffic changes.

[32] proposes an heterogeneous NoC by implementing two different routers.

Routers with deeper buffers are implemented in the central part of the 2D-

mesh topology, while short buffer routers are used in the topology borders.

The methodology also accounts for different combinations of small and big

routers while keeping the same bisection bandwidth and the same amount

of link resources compared to the baseline homogeneous NoC. HeteroNoc

shows that placing big routers along the diagonal provides maximum bene-

fits compared to an equivalent homogeneous network in terms of power and

performance. However, [32] proposed a design that greatly exploits the XY

24



2.3. Heterogeneous Network-on-Chip Design

routing algorithm. The XY is a deterministic routing algorithm that is com-

mon in 2D-mesh NoC due to its simplicity. Besides, it imposes a severe traffic

imbalance between the central and the peripheral parts of the NoC, thus its

perfectly fits with the proposed methodology.

On a different but related point, [48] investigated the performance, area

and power metrics comparing two different interconnect designs. One im-

plements a single NoC that can route all the coherence traffic. The other is

composed of multiple physical NoCs, where each of them can route a specific

coherence traffic class. The possibility to have multiple physical NoCs can

greatly reduce the contention on the shared interconnect resources, since each

coherence class of traffic is routed on a physically different NoC. Moreover,

it positively affect the overall system performance. Conversely, a single NoC

allows a better resource utilization, since the design is globally optimized

with respect to all the traffic types at once. However, the higher resource

contention can negatively affect the performance.

[3] proposes a dual physical NoC to explore two different traffic distri-

bution policies. The first policy uses a specific network to separately route

read and write transactions. Moreover, it allows to equally split long packets

to the two networks. A second policy splits the traffic between data (long

packets) and control (short packets). However, it is not able to correctly

balance the traffic between the two physical networks, thus some resources

goes underutilized while others are over-utilized.

The heterogeneous NoC design in [31] exploits different traffic distribu-

tion information that have been captured during the application execution.

An application traverses at least two phases during its own execution. The

low traffic phase shows few outstanding cache/memory requests/responses.

The high traffic phase shows high network load and contention in the NoC.

Such phases are unevenly distributed during the application execution and

the possibility to foreseen them can greatly improve the performance. To

this extent, [31] presents an heterogeneous NoC design and policy to exploit

such a feature. The interconnect is composed of two physical heterogeneous

NoCs. Each injected packet is classified as bandwidth or latency sensitive at

run-time, then routed to one specific physical NoC. One NoC provides low

bandwidth and high frequency, while the other has a wider bandwidth but

operates at lower frequency. The application-aware nature of this architec-

ture implies a dependency between interconnect and applications.

darkNoC [6] presents a novel multi-layered NoC. Each layer is physi-
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cally separated from the others and optimized to operate within a particular

voltage-frequency range. The optimization of each layer to work within a spe-

cific frequency range provides a more efficient solution than DVFS in terms

of performance and power consumption, since specific cell libraries can be

exploited. However, the use of multiple parallel NoCs is costly in terms of

area and power compared to the use of a single or dual NoC. [6] developed

also an efficient network-layer switch-over mechanism to better support the

application execution. All the layer in a region are managed by a hardware

based darkNoC Layer Manager (dLM). The collaboration between router

components is essential to support the correct exchange between different

frequency-level of execution. For this reasons router stack is managed by

another hardware component called darkRouter Manager (dRM). dLM and

dRM autonomously coordinate each other to realize an efficient mechanism

in terms of energy and time overhead, transparent to software and with afore-

mentioned requirements. DarkNoC overcomes traditional DVFS solutions in

terms of saved energy. However, it shows an area and performance overhead

up to 30% and 40% respectively.

2.4 Cache coherence impact on traffic

The coherence traffic exploitation represents a unique source of information

to further optimize the DVFS policies at NoC level. However, the concurrent

execution of different applications and the traffic mix at NoC level make hard

to collect valuable information to be used to optimize the NoC-based DVFS

policies. A review of the literature in this direction is investigated in the rest

of this section.

[2] presents SynFull, a synthetic traffic generator framework to explore

the coherence traffic to later improve the NoC design. SynFull analyzes the

cache coherence traffic and the applications behaviors in several directions.

Cache coherence messages are a combination of requests and responses. Small

control packets and large data packets coexist in the interconnect. The pos-

sibility to tight different packets to the same information flow allows to arise

further information on the required interconnect resources. Furthermore,

some messages are more critical than others. Thus, their fast delivery to des-

tination greatly affects the overall system performance. Applications exhibit

different phases during their execution, thus imposing a time-dependent NoC

load. Exploiting the coherence information that links request and response
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messages, it is possible to partially foreseen such phases in advance.

[23] presents an NoC traffic prediction scheme based on the cache-

coherence communication properties. Starting from the insights in [17], the

methodology investigates the correlation between the application synchro-

nization points and coherence communication. The methodology is com-

posed of two modules. The Coherence Prediction Engine (CPE) extracts the

relevant data from the coherence protocol and sends them to the Accumula-

tion and Decision Module (ADM). The prediction mechanism is sync-point

based, thus it splits the program into different sync-epochs. The characteris-

tics of each sync-epoch are stored in the Prediction Table that is part of the

ADM. Such information are used to find the correlations between different

current sync-epochs and the historical information. The ADM keeps track

of all the aggregate bandwidth requirements.

Aergia [16] develops a novel router priorization mechanisms based on the

packet slack definition. The Packet Slack is the number of cycles the packet

can be delayed in the network without affecting the application execution

time. It is used to prioritize the critical packets - with low slack values -

against the ones having a larger slack value. However, the packet’s slack

estimation is challenging, since several timing information of the packet are

required at run-time. Aergia exploits a combination of three statistics to

overcome such an issue: the L2 cache hit and miss and slack in terms of

number of hops.

The coherence protocol information strongly correlate with the imposed

network traffic as well as with the required network bandwidth. The ability

to correctly predict the traffic shape enables a new interconnect optimization

level. However, such prediction is hard due to the intricate nature between

different coherence messages that are highly parallel by nature and their

cardinality.
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Chapter 3

Novel Heterogeneous NoC

Design

“The number one benefit of information technology is that it empowers people

to do what they want to do. It lets people be creative. It lets people be

productive. It lets people learn things they didn’t think they could learn before,

and so in a sense it is all about potential.”

Steve Ballmer

This chapter presents a novel, DVFS-capable, heterogeneous NoC ar-

chitecture. The design is complemented with a policy, that exploits the

DVFS mechanism and the traffic information to optimize the NoC power-

performance trade-off. The proposed solution can thus adapt the NoC chan-

nel utilization depending on the run-time traffic conditions. In a nutshell,

the proposed design methodology sits on three different pillars:

• exploiting the cache coherence information to optimally route the traffic

within the heterogeneous NoC;

• a DVFS mechanism to dynamically adapt the offered interconnect band-

width depending on the traffic imposed by the application;

• an interconnect made of multiple, heterogeneous physical NoCs to flex-

ibly adapt to different traffic conditions.

The rest of the chapter is organized in five parts. The architecture pillars are

provided in Section 3.1. Section 3.2 presents the methodology key concepts.
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Figure 3.1: Overview of the proposed NoC architecture.

Section 3.3 discusses the exploitation of such key concepts in the novel in-

terconnect. Section 3.4 presents the policy and the DVFS mechanism. Last,

Section 3.5 overviews several use case scenario.

3.1 Architecture pillars

Figure 3.1 shows the architectural implementation of the novel NoC archi-

tecture. Our architecture focuses on data intensive contention management

providing an heterogeneous network with two different Multiple Physical Net-

works (PNET). Each Physical Network is designed to work with specific traf-

fic scenarios. The main network is specialized for single flit packet and light

data traffic. In this network there are three different virtual networks to

avoid deadlock as imposed by the coherence protocol. Each Virtual Network

manages a different coherence message subset, as detailed in Table 3.1. The

auxiliary network implements one single Virtual Networks and manage the

long data packets flow during high contention phases. The DVFS controller

provides an efficient frequency and voltage scaling on the auxiliary network.

The GTCM collects traffic statistics from all the interconnect both main and

auxiliary NoCs. The GTCM elaborates the received data and manages the

behavior of the DVFS controller and the Load Balancer. When the traffic

is low and the resources are underutilized, the GTCM reduces the frequency

of the auxiliary network at 500MHz. At the same time, the Load Balance

does not use the auxiliary network and routes all the traffic to the main
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network. On the contrary, when the traffic is high the GTCM allows the

Load Balancer to route the long packets to both the main and the auxiliary

networks in a round-robin fashion. The GTCM senses the NoC contention

level to decide the number of active NoCs. The contention is defined as the

pressure on the shared NoC resources due to the injected traffic. The Load

Balancer balances the traffic between the main and the auxiliary network

at runtime. This helps our scheme to capture within-application variation

in latency and bandwidth phases. The DVFS controller imposes the same

frequency for all the routers in the NoC in the same network. For this reason,

the resynchronizer are places between the Network Interface and the Phys-

ical Network but not between each router. The main network also needs a

resynchronizer to operate at a different frequency with respect to the CPU.

The continuous cooperation between the GTCM, the Load Balancer and the

DVFS controller is the key of the proposed architecture.

Controller Message Type Direction VNET

DMA ResponseFromDir From 2

DMA reqTodir To 1

DMA respToDir To 2

L2CACHE L1RequestFromL2Cache To 0

L2CACHE GlobalRequestFromL2Cache To 1

L2CACHE ResponseFromL2Cache To 2

L2CACHE L1RequestToL2Cache From 0

L2CACHE GlobalRequestToL2Cache From 1

L2CACHE responseToL2cache From 2

L1CACHE requestFromL1Cache To 0

L1CACHE responseFromL1Cache To 2

L1CACHE requestToL1Cache From 0

L1CACHE responseToL1Cache From 2

Directory requestToDir From 1

Directory responseToDir From 2

Directory forwardFromDir To 1

Directory ResponseFromDir To 2

Table 3.1: The allocation of the cache coherence messages to the Virtual Network

classes
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3.2 Design key points

This section describes the main contributions of the methodology, from an

abstract viewpoint.

Unbalanced traffics - The cache coherence protocol regulates the packet

distribution in the interconnect. In particular, the cache coherence protocol

is made of a set of coherence controllers that generate coherence messages

to ensure the coherence invariants. Simply put coherence messages falls into

two categories: control and data messages. Such messages directly translates

into packets that are injected in the interconnect. Furthermore, the Network

Interface splits each packet into small pieces called flits. Data packets are

composed by 9 flits, instead control packets are single flit. The networks

carries both data and control packets. Each protocol imposes a specific type

of data packets distribution. The reaction of the protocol to cache miss or

a coherence request is based on the adopted mechanism. In this perspec-

tive, the number of long and short packets is distributed in different way

between every network. Directory based protocols try to reduce the number

of cache coherence messages. Conversely broadcast-based protocols produce

an higher number of messages due to the lack of the directory. Obviously

different behaviors have impact on the NoC traffic shape. Considering a Vir-

tual Channel-based NoC, it is extremely difficult to extract per message type

information, since all the traffic is mixed into the same physical interconnect.

The total number of flits injected in each specific channel class is different

for each cache coherence protocol with the same application as shown in Fig-

ure 3.2. The MOESI protocol improves the MESI, since it generates lower

traffic while ensuring better performance. However, the MOESI is not able

to reach the performance of the MOESI HAMMER. The MOESI HAMMER

is a broadcast-based cache coherence protocol. Broadcast-based protocols

generate a high amount of traffic to improve performance with a not neg-

ligible impact on the power consumption. Considering MOESI, MESI, and

MOESI HAMMER cache coherence protocols, Figure 3.3 shows that short

packets are distributed between all the available channels. On the other

hand, long packets always flow throw a single Physical Network. This net-

work greatly impacts the total power consumption, since all of its packets

are made of multiple flits. By changing the cache coherence protocol a deep

impact on traffic shapes is observed. See the difference between standard

directory-based MOESI and broadcast-based MOESI HAMMER protocol in
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3.2. Design key points

Figure 3.3;

The exploitation of the cache coherence information is essential to allocate

the right number of buffers and virtual/physical channels to improve the

power-performance trade-off. The proposed architecture sits on the MOESI

directory-based protocol. It implements a smart interconnect architecture

taking advance of the traffics shape information.

Applications phases - The application behavior is another key factor in

the design of DVFS capable interconnect. Each application traverses several

phases during its execution. This directly impacts the NoC traffic. Each

application shows more alternative different phases as highlighted in Fig-

ure 3.4. The memory bound phases are bandwidth-sensitive and require a

high NoC bandwidth to process the load/store memory requests from the

CPUs. During these phases, the CPU is likely stalled waiting for L2 and

memory requests to be served. The application needs a significant band-

width from the network to make progress during the memory-bound phases

because of a large number of requests that are sent out into the NoC. Thus,

the progress is less sensitive to the network latency. On the contrary, the

high computational phases are latency-sensitive and need less bandwidth

but are more sensible to the network latency. During these phases, the ap-

plication only has a small number of outstanding memory requests. The

CPU has all the data necessary to progress its execution and the computa-

tional throughput is high. During intensive CPU bound periods, resources

are underutilized because the coherence traffic is low. Instead, the network

load increases during the application memory-bound phases. Each appli-

cation has a different combination of CPU-intensive and memory-intensive

phases. Latency and bandwidth sensitive phases require different operating

frequencies. Latency sensitive phases benefit from a high frequency, despite

their lower NoC resource requirements, because a low frequency critically af-

fects the performance of the few ongoing coherence messages. On the other

hand, the performance penalty is directly proportional to the network con-

tention during the bandwidth phases. In this phase, the frequency changes

based on the bandwidth requirements thus allows for power reduction, still

ensuring a reasonable performance drop. These information can provide an

implicit application clustering. The application phases are crucial for an effi-

cient DVFS-based NoC design. However, a specific architectural support, to

better manage the application phases is essential to boost the performance,

while reducing the power consumption.
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Figure 3.2: A comparison of the total injected flit for each cache coherence protocol.

The different number of injected flits is reported for each Physical Network.

34



3.2. Design key points

SHORT LONG

(a) The ratio between long

and short packets express in

flits with MESI

PNET0 PNET1

PNET2

(b) Detailed distribution of

single flit packet with MESI

PNET0 PNET1

PNET2

(c) Detailed distribution of

long packets with MESI

SHORT LONG

(d) The ratio between long

and short packets express in

flits with MOESI

PNET0 PNET1

PNET2

(e) Detailed distribution

of single flit packet with

MOESI

PNET0 PNET1

PNET2

(f) Detailed distribution of

long packets with MESI

SHORT LONG

(g) The ratio between

long and short pack-

ets express in flits with

MOESI-HAMMER

PNET0 PNET1

PNET2 PNET3

(h) Detailed distribution

of single flit packet with

MOESI-HAMMER

PNET0 PNET1

PNET2 PNET3

(i) Detailed distribution of

long packets with MOESI-

HAMMER

Figure 3.3: Flits distribution considering long and short packets as well as the

three different protocols.

35



3.2. Design key points

0 1 2 3 4 5 6 7

Time ×10
6

0

50

100

150

200

250

300

350

400

450

N
°
 o

f 
F

li
ts

traffic contention

LATENCY BANDWIDTH

(a) FFT

0 0.5 1 1.5 2 2.5 3 3.5 4

Time ×10
6

0

100

200

300

400

500

600

700

800

900

1000

N
°
 o

f 
F

li
ts

traffic contention

LATENCY BANDWIDTH

(b) OCEAN

0 1 2 3 4 5 6 7 8

Time ×10
6

0

50

100

150

200

250

N
°
 o

f 
F

li
ts

traffic contention

BANDWIDTHLATENCY

(c) LU
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applications.
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3.3 The Heterogeneous NoC Architecture

This section describes the novel policy and NoC architecture developed as

part of this work. The virtual network implementation improves the resource

utilization. However, different traffic types are mixed together, thus compet-

ing for the same resources. The use of Physical Networks design reduces

the resource contention, while providing an unbalanced resource utilization.

From long data packets point of view with bandwidth-intensive demand, few

but long buffers are better. On the other hand, single flit packets have op-

posite requirements, they need more buffers with small queues. However,

the dynamic behavior of the applications impose a strong variability in the

memory access patterns thus making generic homogeneous network design

almost useless. Reducing the buffer size to claim both power and area is

not a viable solution due to the intricate relation between buffer size and

performance.

3.3.1 Exploit the heterogeneous network architecture

The preliminary results on a valuable set of multi-threaded applications,

highlights the variability in the message distribution during the benchmarks

execution. In some cases, data packets are dominant and unevenly dis-

tributed during the observed periods. The exploitation of such information is

a pillar on which our architecture is based. The baseline architecture imple-

ments homogeneous networks with homogeneous buffers. The introduction

of dedicated physical networks represents a solution to manage specific traffic

patterns. MPs heterogeneous design exploiting simple networks components

and operating independently with less contention. Long packets generate a

lot of contention and taking up many resources during bandwidth sensitive

phases. Furthermore, the combinations of high traffics and contention leads

more power consumption and worse performance. To achieve power saving

and ensuring performance, our novel architecture provides a dedicated aux-

iliary physical data network that is used during bandwidth-sensitive phases.

This improvements increase the available bandwidth for data packets flows

only during this phase. Furthermore, the auxiliary network is DVFS-capable

and the DVFS mechanism can be applied to each MP in isolation. Our NoC

architecture uses only the main network during low bandwidth requirement

phase and switch on the auxiliary network during contention phase. More-
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over, the superior adaptability exploits DVFS-capable auxiliary network to

provides more flexibility in order to cover all the possible requirements in

terms of bandwidth and frequency offers by the resources available. How-

ever, a negative impact on the power metric is expected during the low traffic

phases, i.e. latency sensitive, CPU-bound periods. For this reason, the main

network is fixed at 1.5GHz during low contention phases to support latency-

sensitive traffic.

3.3.2 The Load Balancer

The policy controller continuously analyzes the traffic for all the NoC physical

networks. As we have seen in section 1.2, application phases can be divided

in two classes:

• Latency sensitive - This phase is characterized by a low data packet

traffic and limited use of the NoC resources. In this phase the inter-

connect is not stressed and the auxiliary network is not in use.

• Bandwidth sensitive - Intensive Memory phases are characterized by

high traffic in the NoC. In this phase, the NoC is not negligible and

can reduce the overall system performance. Thus, the additional data

network is exploited to relieve the stress on the main NoC.

Our methodology provides a load balancer to better manage the use of

two physical networks where the data packets can flow. During the latency

phases, the load balancer does not use the auxiliary Physical Network and

redirects all the data flow to the main PNET. The Load Balancer exploits

the auxiliary network to reduce the data traffic on the main NoC. However,

more power and resources are requested during bandwidth-sensitive phases.

The controller provides a smart use of the available resources to balance the

traffic load between the two Physical Networks. The controller checks the

traffic load to trigger the use of the additional network. If the contention

parameter is under a specific threshold, the Load Balancer uses the main

network only to accommodate all the incoming packets. On the contrary,

if the contention is high, long and single flit packets are dispatched in a

different fashion. Single flit packets will be always sent to the main NoC.

The Load Balancer routes the long packets to the main network and the

auxiliary network following a round robin approach.
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The Load Balancer allocation policy chooses the correct Physical Network

where to route the incoming long packets. Algorithm 1 explains the controller

logic.

Algorithm 1 Load Balancer allocation policy

LBk,t := Load Balancer in Network Interface k at time t

GSt := Global contention State GS at time t

Sp := Size of packet p

if GSt == LOW then

return PNETMAIN

else

if Sp == 1 then

return PNETMAIN

else

if LBk,t == 0 then

LBk,t+1 ← 1

return PNETMAIN

else

LBk,t+1 ← 0

return PNETAUXILIARY

end if

end if

end if

The Network interface implements the round robin Load Balancer policy.

The policy checks at each activation the global contention state. The global

contention state shows if the system is in the bandwidth or latency sensitive

phase. Single flit packets always flows throw the main network. A LOW

contention state means a latency sensitive phase. In this phase, also the

data packets are routed in the main Physical Network. Otherwise, the Load

balanced manages long data flits packets balancing the destination routes

using the round robin mechanism during the HIGH contention state.
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3.4 The Adaptive Policy

The Global Traffic Contention Manager (GTCM) is the controller and com-

mand dispatcher of our architecture. It collects the on the fly flits in all the

network interfaces. Every single network interface senses the traffics using a

register to store the number of flits injected into the physical network and

received from the network during a period. It makes samples to estimate the

contention condition and decides if the application is in bandwidth-sensitive

phase or latency-sensitive phase.

All the values collected by Network interfaces are sum together in the

GTCM.

The variance is the metric used to discriminate between bandwidth-

sensitive and latency-sensitive phases.

The GTCM works by analyzing the total traffic contention in all the nodes

using last 10 sampled values. FINJn,p,t defines the number of flits injected

by the Network interface n on the PNET p at time t. FINJn,p,t defines the

number of flits received by the Network interface n on the PNET p at time

t. TCt+1 represents the contention of the network, defined as the sum of the

number of the on the fly flits. Algorithm 2 describes how GTCM collects all

data used to calculate the variance.

Algorithm 2 Calculate the total contention in all networks

FINJn,p,t := Number of the flits injected by the Network interface n on

the PNET p at time t

FRICn,p,t := Number of the flits received by the Network interface n on

the PNET p at time t

TCt := Total contention at time t

for all NIC in NoC do

for all PNET in NIC do

TCt+1 += (FINJNIC,PNET,t - FRICNIC,PNET,t)

end for

end for

return TCt+1

Algorithm 3 shows how the controller extract the variance from the sam-

ples.

The variance represents the runtime fluctuation of the traffic during the

application execution. The variance express the capacity of the networks
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Algorithm 3 Variance calculation

MEANt := Mean at time t

V ARIANCEt := Variance at time t

TCt := Total contention at time t

Wsize := Windows size, number or sample

for all TCt in Windows do

MEANt += TCt

end for

MEANt=MEANt / Wsize

for all TCt in Windows do

V ARIANCEt+1 += (TCt −MEANt)
2

end for

V ARIANCEt+1 += V ARIANCEt / Wsize

return V ARIANCEt+1

to dispose packets in time without allowing the queues to settle. An high

variance means that the traffic fluctuating at high rate, thus an ad-hoc track-

ing mechanism is required to optimally trade power and performance. The

global decision policy is the mechanism to check variance evolution. It even-

tually requests to switch the additional physical networks on. Algorithm 4

highlights this mechanism.

Algorithm 4 Global Congestion Setting

GSt := Global Contention State GS at time t

V ARIANCEt := Variance at time t

if V ARIANCEt >= QoSThreshold then

GSt+1 ← HIGH

else

GSt+1 ← LOW

end if

The variance triggers the change in Global contention state. When the

variance exceeds the threshold imposed by QoS management the contention

state is set to HIGH. Instead, when the variance is under the threshold,

application traverses latency sensitive phase and the contention state is set

to LOW .
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3.4.1 Quality of service related issues

The correlation between the performance, the available resources, the fre-

quency and the power makes difficult to choose the architecture parameters

at design time. As we have seen in Section 1.2, embedded multi-cores can

be used different scenarios where different requirements must be satisfied at

the same time. Despite the hardware implementation should remain trans-

parent providing a more efficient solution with respect to the software and

the operating system, some parameters can be customized in order to im-

prove the final user experience. Our NoC architecture provides a parameter

to select the desired power-performance trade-off level. It takes steps from

current Operating System where the user can decide the power-performance

trade-off. Section 3.4 presented the Variance metric that is used to choose

between high performance and bandwidth-sensitive operation modes. Our

policy based its decision using a particular threshold to switch on or off the

auxiliary data network. This parameter can be chosen by OS or the user, in

order to change completely the policy behavior. In particular, three different

variance thresholds have been evaluated:

• Variance Threshold at 0 (HIGH PERFORMANCE)- Using this pa-

rameter, GTCM set the contention state to high. Thus, the auxiliary

network is always enable. The Load balancer always provides a balance

of the data injection in the two PNET. Using this particular configura-

tion the DVFS is disabled and the auxiliary Physical Network always

works at the same fixed frequency of the main network.

• Variance Threshold at ∞ (HIGH POWER SAVING) - The orthogo-

nality between power and performance metrics, implies that to get the

optimal power saving, we impact performance. Using an high thresh-

old value the auxiliary network is always off regardless the application

phases. The results is a performance drop with a power saving.

• Variance Threshold at 16 (BALANCED) - A balanced setup tries to

reduce the power consumption when the resources are not required.

On the other hand, it consumes more power to reduce the contention,

thus providing a network performance speedup during memory bound

application phases. Preliminary results on the Splash2 benchmark sug-

gested 16 as a reasonable variance threshold value. It is worth noticing
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16 represent a fixed parameter given a specific 8x8 2D-Mesh architec-

ture. A new training phase is required if the architecture is changed.

When this threshold is under 16 the network is not congested.

3.4.2 The DVFS smart switching policy

Our methodology takes into account the resynchronization impact between

the NoC and the rest of the system, since they operate at different fre-

quency/voltage values. In particular, the auxiliary NoC is DVFS capable

while the rest of the system and the main NoC work at fixed but different

frequency/voltage values.

Equation (3.1) describes the proposed metric focused on contention re-

duction.

CV AR(t) =

∑n
i=0

∑m
p=0

∑k
v=0Cn,p,v(t)−

∑n
i=0

∑m
p=0

∑k
v=0Cn,p,v(t− 1)∑n

i=0

∑m
p=0

∑k
v=0Cn,p,v(t− 1)

(3.1)

The DVFS policy regulates the auxiliary NoC based on the whole net-

work traffic. The frequency is a controllable input, i.e. the controller knob.

Moreover, the ingoing (InF litsi,p(t)) and outgoing (OutF litsi,p(t)) flits from

the network interfaces’s control volume i on each PNET p are not control-

lable inputs, since they depend on the NoC activity. The contention Ci,p,v(t)

for network interface i on Physical Network p and Virtual Network v at time

t represents the state of a single NIC, defined as the sum of the number of

the on the fly flits. CV AR(t) is the core of our DVFS schema explain how

contention changes over time. n is the number of network interface, m is the

number of Physical Networks, and k is the number of Virtual Networks.

It is worth noticing that the needs to measure contention at runtime

requires communication between network interfaces to exchange the infor-

mations. Decentralized control scheme achieves this purpose. Furthermore,

the DVFS controller calculates the contention using all the Physical Net-

works and all the respective Virtual Networks. A global estimation of all the

traffic contention is the best way to manage the global traffic condition.

Algorithm 5 explains the operations managed by DVFS Controller.

The policy increases the frequency every time that CV AR is higher than a

particular thresholds in order to increase the available bandwidth. The DVFS

controller can change frequency of the auxiliary network from 500MHz up to
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Algorithm 5 DVFS Controller Policy

ThresoldHIGH := Threshold to increase frequency t

ThresoldLOW := Threshold to decrease frequency t

if CV AR(t) >= ThresoldHIGH then

if FREQp(t)! = FREQMAX then

FREQp(t + 1)← FREQp(t) + 250MHz

end if

else

if −CV AR(t) >= ThresoldLOW then

if FREQp(t)! = FREQMIN then

FREQp(t + 1)← FREQp(t)− 250MHz

end if

end if

end if

2GHz with steps of 250MHz. The controller can only increase the frequency

by one step of 250MHz at once regardless of the contention metric. The

minimum time period accepted by our technology model is near ∼50ns as re-

ported in [28]. Over this period the DVFS manager realigns the frequency to

the new value. The power gating represents an additional actuator to further

reduce the power consumption of the auxiliary NoC when it is not in use.

Traditionally, different power gating schemes have been proposed to face the

aging mechanisms [51, 52], i.e. BTI, or to deliver aggressively power-aware

architectures [1]. However, the power gating introduces a non negligible per-

formance overhead due to the need to wake up the gated component before

using it. Moreover, an additional power overhead is introduced when the

gated component is active due to the more complex power delivery network

that has to steer the power gating mechanism. Thus, the Near Threashold

Computing (NTC) research area highlights the possibility to put the idle

component in a so-called retention state to save power [9]. The retention

state, also called Near Threashold State, allows to keep the correct data

value and eventually provide a modest computing power to the component

while the power consumption is dramatically reduced. The proposed archi-

tecture does not explicitly exploit these opportunities since the focus of the

work is on the architectural design issues during the non-idle time periods.
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3.5 Simulation Framework Overview

This section discusses some implementation and feasibility details of the

presented novel heterogeneous architecture. The new NoC architecture has

been integrated in an event-based cycle accurate simulator. The event-based-

simulators model the execution of a determined component using events that

can be directly scheduled on the component itself. This means that at each

clock cycle each component in the simulated architecture, eventually pro-

cesses its own events. It can generate a new event on a subsequent component

to be processed after one or several cycles in the future. Our policy exploits

this particular feature to check at each sample the status of the network in

order to set the proper behavior of the policy. Policy Controller provide a

reschedule of the policy every 10ns ∼100MHz. The presented methodology

does not impact the critical path of the router, since it is logically in parallel

to each pipeline stage. From the implementation viewpoint, GEM5 [5] is

the exploited event-driven simulator for multi-core architectures with NoC-

Based communication. Orion2.0 is used as the power model for the NoC,

while additional components has been added to support accurate GALS and

DVFS models. Figure 3.5 reports the information flow between the various

components to support the DVFS architecture. The execution is driven by

both the architectural events as well as the events generated by the policy

modules that directly interact with GEM5. The policy module represents

the controller of our methodology in the runtime box. It reads power and

performance data and returns the frequency and voltage values to be applied

to the auxiliary NoC.
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3.5. Simulation Framework Overview
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Figure 3.5: Simulation framework overview.
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Chapter 4

Results

“It’s fine to celebrate success but it is more important to heed the lessons of

failure.”

Bill Gates

This chapter discusses the assessment of the proposed heterogeneous NoC

design from the performance and power consumption view point. Moreover,

the energy delay product is reported as a power-performance aggregate met-

ric.

The rest of the chapter is organized as follows. Section 4.1 describes the

simulation environment setup, the target architecture and the used bench-

marks . Section 4.2 details the performance results exploiting the Splash2

applications [46]. Section 4.3 presents the energy consumption results. Sec-

tion 4.4 shows the Energy Delay Product (EDP) analysis. Last, the explo-

ration of different values for the tunable parameter of the proposed NoC is

discussed in Section 4.5.

4.1 Simulation Setup

The novel architecture has been integrated in the enhanced version [54, 53, 12]

of the GEM5 cycle accurate simulator [5]. Table 4.1 reports the architectural

parameters used for the simulations. A 64-core architecture at 45nm/Vdd =

1.1V technology is considered. The auxiliary physical network supports the

DVFS that runs between 500MHz and 2GHz with steps of 250MHz. 3

different levels are used with the following frequency/voltage relationship:
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4.1. Simulation Setup

• f >= 1500MHzVdd = 1.1V

• 100MHz <= f < 1500MHzVdd = 1.0V

• f < 1000MhzVdd = 0.9V

Different voltage levels are necessary to support the frequency changes at

runtime in accord with the PLL model [54]. The modeled DVFS takes into

account the timing overhead due to frequency changes. Moreover, the voltage

regulator imposes [28] a 5ns delay to increase the voltage. On the contrary,

if the policy imposes a frequency reduction the new applied Vdd value does

not cause a delay in the new frequency setup since the frequency/voltage

feasibility relationship is preserved. The policy is periodically executed every

10ns [28]. Orion 2.0 power model [26] has been used to extract power data

of the simulated NoC architecture. We assume a MOESI-based coherence

protocol that enforces 3 Virtual Network to avoid protocol-level deadlock.

The Splash2 suite provides multi-thread applications. 9 applications are

showed in Table 4.2 among the whole suite. The cache configuration is a

32KB L1 caches and a 64KB L2 cache per bank. The NoC topology is a 8x8

2D-mesh with 64 cores and NoC routers with a different number of VC based

on the used architecture. Our solution implements 1 VC per VNET, while

the baseline NoC and RAFT-like has 2 VCs per VNET. All architectures

provides a buffer depth of 4 flits with a NAVCA degree of 4 for the control

buffers and 7 flits for the data buffer.

4.1.1 Policy comparison

The proposed architecture has been tested against three different competi-

tors. A baseline energy-aware architecture with the NoC limited at 500MHz

and a single VC per VNET is used as the reference lower-bound for the

power. The same baseline architecture with 2 VCs per VNET and the NoC

fixed at 1.5GHz is used as the performance-aware reference. Last, the RAFT-

like [33] solution represents the state of the art DVFS-capable NoC proposal.

In the rest of the chapter we reference to the RAFT-like implementation as

RAFT. Table 4.3 summarizes the architecture configurations. The proposed

heterogeneous NoC implements 2 PNETs. The Main NoC has three Vir-

tual Networks, while the auxiliary NoC has a single data network. All the

Virtual Networks in our architecture implement single VC. RAFT exploits
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4.1. Simulation Setup

Processor Core 2GHz, Out-of-Order Alpha Core

L1I Cache 32kB 2-way Set Associative

L1D Cache 64kB 2-way Set Associative

L2 Cache 64Kb per bamk, 8-way Set-Associative

Coherence Prot. MOESI /at least 3 VNET protocol)

Router Speculative 3-stage Wormhole Virtual Channelled

32bit Link Width

Technology 45nm at 1.1V - 1.0V - 0.9V

Real Traffic Subset of the Splash2 Benchmarks.

Policy period 10ns

PLL transient 10ns

Voltage regulator

transient
50ns

Table 4.1: Experimental setup: processor and router micro-architectures and tech-

nology parameters

Splash2 Applications Domain Problem Size

Barnes High-Performance Computing 65,536 particles

Cholesky High-Performance Computing tk14.O

FFT Signal Processing 16,304 data points

LU High-Performance Computing 1024x1024 matrix,

64x64 blocks

Ocean High-Performance Computing 514x514 grid

Radix General 524.288 integers

Raytrace Graphics car

Water-Spatial High-Performance Computing 512 molecules

Water-Nsquared High-Performance Computing 512 molecules

Table 4.2: The Splash2 subset used to evaluate the methodology. The applications

domain and the inputs are also provided.
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4.2. Performance Analysis

Policy
PNET

available

VNET available

for each PNET

VC available

for each VNET

Total channels

available
Frequency Range

Power-aware Baseline 3 1 1 3 1,5 GHz no DVFS

Performace-aware Baseline 3 1 2 6 1,5GHz no DVFS

RAFT 1 3 2 6 From 1,2GHz to 2GHz

Our Policy (BALANCED) 2
3 for PNET1 and

1 for PNET2
1 4 From 500MHz to 2GHz

Table 4.3: The simulated architectures.

the DVFS to optimize the power consumption without compromise perfor-

mance. During high contention phases the congested routers warn the DVFS

controller that reacts changing router frequency based on 4 different levels.

When the total buffer utilization for all the ports into the router is under 40%

of the available buffer space, the frequency is reduced to 80% of the baseline

frequency. The increasing of the buffer occupation within 50% imposes a

frequency increase to the baseline level. Another increase is forced when the

contention takes the buffer occupation between 50% and 60% leading the

frequency to the 85% of boost frequency, i.e. at 1,7GHz. When the buffer

occupation is above 60%, the frequency is set at boost frequency, i.e. 2GHz.

Again, when the contention of the congested router drops under 40%, a low

contention signal resets the frequency to the normal operating level.

4.2 Performance Analysis

This section provides the performance results of our NoC heterogeneous ar-

chitecture compared to the power-aware baseline, RAFT and the performance-

aware baseline.

Results of the simulation are reported in Figure 4.1. 9 Splash2 bench-

marks are reported on the x axis. For each benchmark we have 4 different

columns each of these represents an architecture. The simulation time nor-

malized to the power-aware baseline architecture is reported in the y axis.

The metric used to compare the performance of the architecture is the total

execution time to complete the application. Our methodology outperforms

the Power-Aware baseline architecture by 44% on average with a peak of 77%

with the Ocean benchmark. It is due to the fact that Power-Aware baseline

architecture is not able to scale the frequency, that is fixed at 500 MHz. On

the other hand, our solution has the main NoC fixed at 1.5GHz and the aux-

iliary network provides an additional channel for data packets that can reach
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Figure 4.1: Performance results. Results are normalized to the Power-Aware base-

line architecture.

up to 2GHz. However the possibility to increase the frequency is not the

only advance that we have since, if we compare our solution with the RAFT

and Performance-Aware baseline, we can still outperform both of them. In

this case the main advantage of our architecture is the possibility of increase

frequency of each physical network based on the different load of the traffics.

The adaptivity of our solution combined with a reduced number of Voltage

Frequency Island (VFI) compared to RAFT make us to very closer to the

performance upper bound. Conversely we do have a performance boost of

13% an average with a peak of 16% in Radix compared with RAFT. Per-

formance results shows how our policy gets very close to the best results

obtained by the Performance-Aware baseline with an average performance

penalty of about 3% using only 4 Virtual Networks instead of 6. The Load

Balancer steers all the traffic to the main network during latency sensitive

phases because the frequency is high and fixed, and the performance are pro-

portional to the applied frequency. The performance improvement during

these phases is primarily due to the network delay reduction. Moreover, the

reduction of the bandwidth do not cause a reduction of the performance.

Thus, our architecture has the same performance of the Performance-Aware

baseline architecture during these phases using less resources, i.e. the auxil-

iary network is set at its lowest frequency and it is not used. On the contrary,

less available resources are the main cause of the performance loss during the

bandwidth sensitive phase. On the other hand, the DVFS controller boosts
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Figure 4.2: Energy results. Results are normalized to the Power-Aware baseline

architecture.

Splash2

application
Ocean Radix Lu Water-Spatial Raytrace FFT Cholesky Barnes Water-Nsquared

Auxiliary

Network

ON (%)

63,30 35,89 5,19 13,60 1,10 31,67 5,12 59,71 11,69

Auxiliary

Network

OFF (%)

36,70 64,11 94,81 86,40 98,9 68,33 94,88 40,29 88,31

Mostly

(ON > 30%)
Bandwidth Bandwidth Latency Latency Latency Bandwidth Latency Bandwidth Latency

Table 4.4: Percentage of time that the auxiliary network is on for the applications

evaluated.

the frequency of the auxiliary network up to 2GHz when the contention is

high.

4.3 Energy Analysis

Energy consumption results are shown in Figure 4.2.

The four different columns for each benchmark on the X axis represent

the four considered architectures. The energy consumption is on the or-

dinate normalized using the power-aware baseline architecture. We adopted

the Energy Per Instruction(EPI) metric to compare alternative architectures.

The EPI is the energy per instruction dissipated by the system during the

execution of an application. The energy consumption is extracted using
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4.4. Energy Delay Product Analysis

Orion2 [26]. The total energy is obtained as the sum of routers dynamic

power, routers clock power and routers static power multiplied for the total

number of instructions executed. The results show that our architecture is al-

ways near the power-aware baseline as energy consumption on average. In the

energy metric the power consumption is considered equally of performance.

For this reason the energy results shows a difference of only 2% on average

between our architecture and the power-aware baseline. On the other hand,

the limited number of resynchronizer combines with an effective DVFS pol-

icy and load balancer module allow to stay closer to the performance-aware

architecture in terms of performance consuming much less energy. Respect

to the performance-aware solution we save 31% of energy on average with

a peak of 36% in Lu. RAFT is more power hungry due to the additional

resynchronizer and the additional implemented buffers that are not properly

exploited. For this reasons, RAFT is not able to overcome all the other

architecture from the performance viewpoint. Respect to RAFT we con-

sume 33% less energy on average with a peak of 37% in Radix. The most

important aspect of our architecture is the smart use of the resources. Our

architecture uses the auxiliary NoC to boost performance only when required.

Table 4.4 the auxiliary NoC active time in percentage with respect to the

whole benchmark execution. Bandwidth definition implies an intensive use of

the auxiliary network that can improve the performance but not necessarily.

In 5 benchmarks (Lu, Water spatial, Raytrace, Cholesky, Water-Nsqared)

the auxiliary NoC is ON for less than 15% of the time. In 2 Benchmarks

(Radix, FFT) the auxiliary network is ON between 30% and 40%. Consid-

ering Ocean and Barnes, the auxiliary network is ON for more than 50%.

Thus 5 out of 9 Splash2 benchmarks are prevalent latency sensitive, while 2

are mainly bandwidth-sensitive. In this benchmarks the action of our policy

is more strong due to the fact that adding a second NoC during bandwidth

sensitive phases can speed up the performance by reducing the contention.

The action of the Load Balancer is to deviate the traffic by splitting the

packets between the two available networks. At the same time, the DVFS

can save more power by switching the frequency of the auxiliary network

between 500MHz and 2GHz values to better match the actual traffic load.
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Figure 4.3: Energy Delay Product Results. Results are normalized to the Power-

Aware baseline architecture.

4.4 Energy Delay Product Analysis

In this section we discuss the Energy Delay Product (EDP) results provides

in Figure 4.3.

The X axis displays the Splash2 benchmarks used for the evaluation.

Four columns are reported for each benchmark, each column represents an

architecture exposed in Section 4.1.1. The Y axis shows the metric used

for comparison. We adopted the Energy Delay Product metric to compare

alternative system architectures. Here, both performance and power are

considered equally relevant and should be captured by a general and flexible

goal function. The EDP product for an architecture a and a benchmark k

is defined as:

EDP (a, k) = EPI(a, k)× CPI(a, k) (4.1)

Where the EPI(a, k) is the energy per instruction dissipated by the sys-

tem in the architecture a during the execution of application k and CPI(a, k)

is the average number of clock cycles necessary to the architecture a to exe-

cute an instruction of the benchmark k. The EDP is normalized respect to

the power-aware baseline. The results shows that the EDP of our methodol-

ogy is always better than others on average. Our EDP is 36% better respect

to the power-aware baseline on average with a peak of 65% on Radix. How-

ever, with respect to RAFT and Power-Aware baseline our EDP is better
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Figure 4.4: Performance results of the proposed architecture considering three

different variance values.

respectively than 38% and 9% on average. Both power-aware and RAFT do

have a high EDP . The power-aware baseline imposes a performance drop of

84% on average. Thus negatively impacts on EDP results. Instead, RAFT

is an over-dimensioned architecture that cannot efficiently exploit the avail-

able resources. RAFT is negatively affected by the resynchronizer and the

local frequency scaling scheme that assign the frequency/voltage values an a

per router basis thus losing global optimization opportunities. Furthermore,

RAFT is the worst result in many cases. This shows that the necessity of

adding resynchronizers have a direct and negative impact on both perfor-

mance and power. The possibility of increasing and decreasing frequency

based on the actual traffic is not able to cover the losses caused by the resyn-

chronizer.

4.5 Sensitivity Analysis

This section focuses on the benefits introduced by the auxiliary network on

both performance and power metrics. In particular performance generally in-

creases as the portion of the time the auxiliary NoC is kept active. Of course

the power consumption follows the same relationship, while the objective is

to keep it limited. Last, the increase in the auxiliary NoC active time does

not always guarantee a performance improvement. The performance im-
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Figure 4.5: Energy results of the proposed architecture considering three different

variance values.
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Figure 4.6: Energy Delay Product results of the proposed architecture considering

three different variance values.
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4.5. Sensitivity Analysis

provement is function of the offered NoC bandwidth and the actual injected

traffic. Thus keeping the auxiliary NoC always ON providing no performance

boost if the application does not inject several data packets. Table 4.4 shows

which are the benchmarks with higher ON time. On the other hand, ex-

cessive use of the auxiliary network have a negative impact on the power

consumption. Our architecture provide a tuning parameter to change the

ON/OFF ration for the auxiliary network. The implemented architecture

fixes the threshold parameters at 16. However, this parameter can be sets

to two extreme values to obtain a more performance aware or power aware

architecture. A variance threshold set at ∞ provides a single NoC architec-

ture where the energy saving is the main goal. On the contrary, a variance

threshold set at 0 always uses the auxiliary NoC to provide more bandwidth.

To avoid performance throttling during latency-sensitive phases the variance

threshold set to 0 disables DVFS and fixes the frequency of the auxiliary net-

work at 1.5GHz. Table 4.5 shows the architecture behavior with the three

different values. Results shows how our architecture can dynamically adapt

to exploit possible performance speed up using traffic load information. Ta-

ble 4.4 shows that OCEAN is the most bandwidth sensitive benchmarks

in Splash2 suite. The auxiliary network is ON for more than 60% during

this benchmark. Also RADIX, BARNES and FFT keep the auxiliary net-

work ON for more than 30% of the execution time but with different results.

Figure 4.4 shows the difference in terms of performance with the different

setups. While OCEAN, RADIX and FFT improve their performance using

more bandwidth, both with the balanced and performance setups, BARNES

cannot speed the execution up with more available bandwidth. The sensitiv-

ity analysis can accurately tracks the actual load to always provide the best

frequency/voltage values. Figure 4.5 reports a 10% energy saving on average

for the balanced setup compared to the other two architectures. Thus, when

the auxiliary network is on, the DVFS can reduce the energy consumption

with an impact on performance. Furthermore, Figure 4.6 highlights that the

use of the auxiliary network can provide a low performance increase respect

to the consumed energy.

57



4.5. Sensitivity Analysis

Name
Variance

Parameter
Details

POWER ∞

The policy never switch on

the second Physical Network.

This configuration is used to

save much power as possible but

with the maximum penalty in terms

of performance.

BALANCED 100

Balanced configuration is the best

power-performance tradeoff

parameters that we have found to

detect contention phases during

execution time.

PERFORMANCE 0

Variance threshold equal to 0 always

keep on the second network.

Disable the DVFS and fixed frequency

to 1.5GHz.

Table 4.5: Different variance values for the proposed architecture.
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Chapter 5

Conclusions and Future Works

In NoC based multi-cores the applications stress the interconnect in a vari-

able and time dependent fashion. In particular, each application traverses

different phases during its execution. The Bandwidth-sensitive phase is char-

acterized by high traffic flows and intensive memory activities. The inter-

connect has to offer enough bandwidth to timely serve the large number of

incoming requests. On the contrary, the Latency-sensitive phase can eventu-

ally show a modest traffic load. However, a small delay in the injected packet

delivery can severely impact the performance. The unbalanced resource uti-

lization represents an additional design issue. In particular, the data network

dominates the number of injected flits. Thus, the data packets are responsi-

ble of increasing the NoC contention during the Bandwidth-sensitive phases.

Starting from these considerations we presented an heterogeneous NoC to

optimally balance the power and performance metrics. The proposed archi-

tecture is made of two, physically split NoCs. The main network provides

three virtual networks to support the coherence protocol and its frequency

is fixed at 1.5GHz. The auxiliary network is a DVFS-capable network where

its frequency can be set within 500MHz and 2GHz. It has to support the

application execution during Bandwidth-sensitive phases. Our policy can

route the available network packet based on the actual network load. Re-

sults have been extracted considering an 8x8 architecture running the Splash2

applications. We compared the proposed solution against a state-of-the-art

reference methodology that exploits a per-Router DVFS scheme. Moreover,

the baseline architecture has been tuned to offer the power-aware and the

performance-aware solution to limit the design space and to have a reference

model from both the power and the performance view point. Compared to
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the performance-aware baseline, the proposed architecture shows a 3% per-

formance overhead on average. A 79% power overhead on average emerged

comparing our solution with the power-aware baseline. However the Energy

Delay Product shows a net improvement of the proposed architecture with

respect to the baseline solution as well as the state of the art reference design.

The key advantage of the proposed NoC arch is the possibility to finely

tune the performance between the main and the auxiliary NoC thanks to

the DVFS implementation and the coupled policy. The advantage to dy-

namically routes the traffic to each network and the DVFS-capable of the

auxiliary network are the keys of our architecture. These features allows

our architecture to work better than the others with all the traffic load:

bandwidth-sensitive, latency-sensitive and a mix of the phases. The possi-

bility to tune the auxiliary network frequency allow the architecture to cover

all the resource requirements: the very low traffic load of the high computa-

tional phase, the memory intensive phase with the high number of packets

flow through the network and, finally, a mixed scenario.

5.1 Future Works

The presented work is based on the traffic distribution between different

virtual networks. However, a stronger connection between the coherence

messages and the network load is under investigation to provide a novel

power-performance policy. In particular, the coherence traffic patterns will

be evaluated to design a policy that can proactively tune the voltage and

frequency of the NoC. Part of the work will be carried out within the MANGO

project, that is focused on the design of the next generation multi-cores for

HPC systems [21].
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