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Abstract

The world of Cyber-Physical Systems is rapidly evolving and the applica-
tions of these systems are increasing in everyday life. With the growing
size of these systems, built from the integration of computational algorithms
and interacting physical components, energy management becomes a cru-
cial issue for guaranteeing QoS applications of these technologies. Indeed,
trying to manage energy supply for Cyber-Physical Systems without an ac-
curate energy-saving policy is simply not sustainable, since their diffusion is
still growing and, as a consequence, previously-employed energy-management
approaches are quickly becoming obsolete.

Cyber-Physical Systems (CPS) interact with the surrounding environment
through sensing units, which are embedded systems acquiring data from the
physical world. Sensing units are subject to memory and computational
power limitations, as normally they are small devices spread over a large
geographical area. Nevertheless, they often need to perform complex oper-
ations and, therefore, guaranteeing a sufficient energy supply to these units
may not be simple and energy management techniques become necessaries.

The purpose of this thesis is to explore an innovative solution for en-
ergy management in CPS, belonging to the category of adaptive sampling
techniques. These techniques are aimed at scheduling the optimal sampling
frequency for each CPS sensing unit, thus avoiding the acquisition of use-
less data and the unnecessary use of valuable resources (e.g. energy). The
main idea of the proposed approach is to monitor changes in the maximum
frequency contained in the acquired signal without reconstructing its whole
spectrum.

The novelty of the proposed approach is based on the fact that, for the
first time, the aliasing phenomenon is exploited to detect possible changes
in the maximum frequency of a signal. Another important novel aspect is
that, in this technique, signals are studied in the time domain instead of the
frequency domain. This is a significant advantage in terms of energy savings,
since monitoring the signal without reconstructing its frequency spectrum
avoids the large computatioal load introduced by the spectrum analysis.

The proposed solution has been tested on several datasets and compared
to other existing approaches, showing its validity and efficacy in reducing
energy consumption for CPS sensing units. Finally, the designed technique
has been ported on a real embedded system, in order to have a demonstration
of its applicability in the real-world CPSs.





Sommario
Il mondo dei Sistemi Ciberfisici (o CPS, Cyber-Physical Systems) sta evol-
vendo rapidamente e le applicazioni di questi sistemi sono sempre più diffuse
nella vita di tutti i giorni. Con l’aumentare delle dimensioni di questi si-
temi, nati dall’integrazione di algoritmi ed elementi fisici dotati di capacità
computazionale, la gestione del consumo energetico diventa un problema cru-
ciale per garantire un’applicazione ottimale di queste tecnologie e il massimo
sfruttamento delle loro potenzialità. Infatti, gestire l’approvvigionamento
energetico di un sistema ciberfisico senza adottare una politica energetica
volta al risparmio delle risorse non è sostenibile, poiché la diffusione di que-
sti sistemi sta aumentando e, di conseguenza, gli approcci di conservazione
dell’energia utilizzati in precedenza diventano rapidamente obsoleti.

I Sistemi Ciberfisici interagiscono con l’ambiente circostante attraverso
unità di rilevazione, o sensing units, ossia sistemi integrati che acquisiscono
dati dal mondo fisico. Le sensing units devono sottostare a limiti di memoria
e di potenza di calcolo, dal momento che normalmente sono dispositivi di
dimensioni ridotte distribuiti su una vasta area geografica. Ciononostante,
molto spesso devono compiere operazioni complesse e, quindi, garantire un
apporto di energia sufficiente a queste unità potrebbe non essere semplice e
tecniche di risparmio energetico diventano necessarie.
L’obiettivo che si prefigge questa tesi è quello di esplorare una soluzione

innovativa al problema della gestione energetica nei Sistemi Ciberfisici, solu-
zione appartente alla categoria delle tecniche di campionamento adattativo.
Con il termine «campionamento adattativo» si intende la modifica della fre-
quenza di campionamento di un dato segnale (che potrebbe essere generato
da qualunque fenomeno fisico), seguendone i momenti di attività più debole
o più intensa. Lo scopo di fondo è quello di evitare l’acquisizione di campioni
inutili e, di conseguenza, l’utilizzo non necessario di risorse preziose come,
appunto, l’energia. L’idea di base dell’approccio proposto in questa tesi è
di monitorare i cambiamenti nella frequenza massima contenuta nel segnale
osservato senza ricostruirne l’intero spettro di frequenza.
La frequenza massima contenuta in un segnale è un parametro importante

per la corretta ricostruzione del segnale stesso, ma spesso questa frequenza
non è nota a priori e, soprattutto, può evolvere nel tempo. Un approccio
banale per garantire che il segnale venga perfettamente ricostruito è quello
di campionare a frequenza molto più alta di quella massima contenuta nel
segnale. Questo approccio però è assolutamente svantaggioso dal punto di
vista energetico e, per alcune applicazioni, il dispendio di risorse sarebbe tale
da renderlo insostenibile. Qui entrano in gioco le tecniche di campionamento



adattativo, che puntano a ridurre la frequenza di campionamento ogni qual-
volta le dinamiche del sistema lo consentano (ovvero quando la grandezza
fisica osservata non risente di variazioni sostanziali e il numero di campioni
acquisito nel tempo può essere ridotto), tra le quali si colloca la soluzione
proposta in questa tesi.
L’aspetto innovativo dell’approccio proposto si basa sul fatto che, per la

prima volta, il fenomeno dell’aliasing (o ribaltamento dello spettro) viene
sfruttato per identificare possibili cambiamenti nella frequenza massima con-
tenuta nel segnale. In particolare, grazie al fenomeno dell’aliasing, è possibile
riscontrare un cambiamento nella distribuzione delle frequenze e, di conse-
guenza, attivare ulteriori analisi per analizzare la natura del cambiamento
ed eventualmente modificare la frequenza di campionamento per far fronte
all’evoluzione del fenomeno fisico monitorato. Un altro importante aspetto
innovativo è che, nella tecnica proposta, i segnali sono analizzati nel dominio
del tempo invece che nel dominio delle frequenze. Ciò rappresenta un van-
taggio significativo in termini di risparmio energetico, dal momento che mo-
nitorare il segnale senza ricostruirne lo spettro di frequenza evita la necessità
di effettuare calcoli molto pesanti dal punto di vista computazionale.
La soluzione proposta consiste in una serie di fasi successive di trattamento

dei dati, che comprende il filtraggio in bande di frequenza e il calcolo dell’e-
nergia contenuta nel segnale. I dati così ottenuti sono sottoposti a un Change
Detection Test, un test statistico che rivela cambiamenti nella dinamica del
processo sotto esame: ogni volta che viene segnalata una variazione, viene
messo in atto un meccanismo di adattamento della frequenza di campiona-
mento, basato sull’energia contenuta nelle diverse bande di frequenza, volto
a gartantire che non vi sia perdita di informazione durante l’acquisizione del
segnale.
La soluzione proposta è stata testata mediante simulazioni su diversi da-

taset e confrontata con altri approcci esistenti, rivelandone la validità e
l’efficacia nella riduzione del consumo energetico nelle sensing units dei Si-
stemi Ciberfisici. Infine, la tecnica sviluppata è stata portata su un sistema
integrato reale, composto da una scheda programmabile e da alcuni sensori
in grado di misurare temperatura, umidità e pressione. Il sistema integrato
in esame è soggetto ai limiti di memoria, potenza di calcolo e durata della
batteria tipici di questi dispositivi, in modo da fornire una dimostrazione
dell’applicabilità della soluzione proposta nei veri Sistemi Ciberfisici.
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1 Introduction

1.1 Cyber-Physical Systems
The term Cyber-Physical Systems (CPS) refers to interacting networks of
physical and computational components, where physical entities are con-
trolled or monitored by computer-based algorithms. Embedded comput-
ers and networks monitor and control the physical processes, usually with
feedback loops, where physical processes affect computations and vice-versa.
Applications of CPS have reached by now a very wide diffusion, they in-
clude medical devices and systems, assisted living, traffic control and safety,
advanced automotive systems, process control, energy conservation, environ-
mental control, avionics, critical infrastructure control (electric power, water
resources, and communications systems for example), defense systems, man-
ufacturing, and smart structures [Lee08].
Some specific technological instances of CPS are Internet of Things (IoT)

and Wireless Sensor Networks (WSN). IoT is a Cyber-Physical System whose
diffusion arouse recently, and it indicates the network of physical objects (like
devices, vehicles or buildings) embedded with sensors and software that en-
able these objects to communicate, collect and exchange data. A Wireless
Sensor Network, in turn, consists of sensor nodes deployed over a geograph-
ical area for monitoring physical quantities like temperature, humidity, vi-
brations, seismic events, etc [DRAP15].
CPS interact with the surrounding environment through sensing units.

The most common model for a sensing unit includes three basic compo-
nents: a sensing subsystem for data acquisition, a processing subsystem for
local data processing and storage, and a wireless communication subsystem
for data transmission. Sensing units might also have actuation subsystems.
In addition, a power source supplies the device with the energy needed to
perform all these tasks. This power source usually consists of a battery with
limited duration, which could be unpractical or even impossible to recharge
or substitute, because units may be deployed in a hostile environment (e.g.,
networks monitoring environmental parameters in difficult access areas, like
underwater sensors or avalanche monitoring applications [AAG+07]). At the
same time, the CPS should have a lifetime long enough to fulfill the appli-
cation requirements.
Even if sensing units are supplied by an external power source (e.g., a solar

panel) it is still necessary to manage power consumption carefully, since the
external power source could not assure continuous availability and, in general,
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Chapter 1 Introduction

the aim is reducing power consumption as much as possible to guarantee a
longer lifetime for the system.
From a general point of view, there are two ways to reduce the energy

consumption in CPS: network-level optimization (carried out through algo-
rithms and protocols that enable more efficient communication) and single
unit level optimization (managing the single sensor activity to reduce the
amount of acquired data and consumed energy). This work will concentrate
on the single unit level, but, if properly combined, these two approaches can
be conjunctively managed to further improve CPS efficiency.
The most extensively adopted CPS model in literature, which is reported

in Figure 1.1 for clarity, consists of one sink node, or base station, and a
possibly very large number of sensing nodes, which could be deployed over
a geographic area, called sensing field, or consist in mobile units like cars,
people’s smartphones, etc. Data are transferred from sensor nodes to the
sink through a multi-hop communication paradigm [ZZSF11], but there may
be other protocols as well.

Figure 1.1: Cyber-Physical System scheme from [DRAP15]

A detailed taxonomy of energy conservation schemes currently available
is presented in [DRAP15]. The most relevant subset of these approaches,
closely related to this work, will be illustrated in Section 1.2, in order to put
the current work in the proper perspective when compared to the general
framework.

1.2 Energy conservation at CPS unit
There are different aspects of energy consumption at the single unit level on
which it is possible to operate, and, of course, all of them could be taken
into account simultaneously.
Duty cycling is a technique that consists in putting the electronic com-

ponents and the radio transceiver in the low-power sleep mode whenever
processing, acquisition or communication are not required. Ideally, the radio
should be switched off as soon as there is no more data to send or receive,
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and it should be resumed as soon as a new data becomes ready to be trans-
mitted/received. Similarly, sensing units should be awakened immediately
before acquiring a new sample and put back to sleep immediately after. This
technique strongly reduces the energy amount spent for communication and
data processing, as the unit operates less time than in case of full-time work-
ing. However, this approach is completely independent from data that are
sampled by sensor units.

Quite often a-priori information about data distribution can be exploited
to optimize data acquisition and further reduce the energy consumption.
Usually, acquisition gathered from a real environment present strong au-
tocorrelation and it might not be necessary to transmit every single sam-
ple to the base station. Therefore, data-driven approaches come into play.
Actually, the sensing subsystem has two main energy consumption factors:
one is given by the amount of data acquired and, consequently, processed
and/or transmitted. In this sense, it is important to avoid the acquisition
of unneeded samples which have strong spatial and/or temporal correlation
([VA04]). The second factor is the power supply needed by the sensing sub-
system itself: when the sensor unit is power hungry, because it needs a lot
of energy to accomplish a single acquisition (e.g., it might need to perform
several operations to acquire a single sample), reducing processing and com-
munication by exploiting data correlation may not be enough to preserve
residual energy from expiring too early. Data-driven techniques are designed
to reduce the amount of sampled data without reducing the accuracy in the
observation of the phenomenon of interest, and among these techniques lays
adaptive sensing.
Adaptive sensing is a widely employed mechanism aimed at decreasing the

number of acquired samples according to the real dynamics of the physical
phenomenon under monitoring and it can be implemented with three differ-
ent approaches ([AADFR09]): hierarchical sensing, model-based sensing and
adaptive sampling. The overall organization of these approaches is shown in
Figure 1.2.

3
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Figure 1.2: Energy-efficient data acquisition scheme from [AADFR09]

Hierarchical sensing is, in turn, divided into triggered sensing and multi-
scale sensing. In both cases, these techniques assume that several sensors
are installed on the sensing unit and observe the same event at a different
resolution: simple sensors, which are energy-efficient, provide low resolution
about the monitored event, while advanced sensors provide more accurate
measurements but are more energy demanding. Normally, simple sensors are
active all-of-the-time, while advanced sensors can be activated when needed,
thus introducing duty cycling adaptation. In triggered sensing, advanced
sensors are turned on once the low-resolution sensors detect some activities
within the sensed area. For example, in security surveillance systems camera
modules configured to provide low-resolution images work continuously but,
if a target is detected, cameras are reconfigured into a fine-grained, high-
quality image and provide images with high resolution.

Multi-scale sensing instead refers to spatial correlation and identifies ar-
eas within the monitoring field that require a more accurate observation and
high-resolution data. An example is fire emergency management [TWCH07].
The sensor field is equipped with static sensors which monitor the environ-
ment. When a specific area presents an anomaly (e.g. the sampled temper-
ature is above a predefined threshold), static units ask the base station for
more specific data. As a consequence, the base station sends a mobile sensor
unit to visit the potentially critical location.
In model-based sensing a forecasting model of the monitored phenomenon

is built through an initial set of sampled data and used to forecast the next
samples. Predictions are verified over time with actual readings and a mea-
sure of accuracy is calculated. Whenever the requested accuracy is not sat-
isfied, the model is updated to better fit the physical phenomenon under
observation. The effectiveness of this approach is bounded by the accuracy
of the model and the nature of the process to be monitored.
Finally, adaptive sampling techniques consist in changing the sampling rate
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according to correlations between the sensed data and information related
to the available energy. If the signal under control evolves slowly with time,
so that subsequent samples do not differ significantly, the sampling rate can
be reduced thanks to this temporal correlation. It is also very likely that
measurements taken by sensor nodes that are spatially close to each other
do not differ significantly, therefore this spatial correlation can be used to
reduce the energy-sensing consumption. Adaptive sampling approaches are
divided in activity based and harvesting aware.

Activity-based adaptive sampling exploits temporal or spatial correlation
among signal’s values to further reduce the number of samples to be ac-
quired, while it increases the sampling frequency as soon as a higher vari-
ability in data is detected (an example is the snow monitoring application of
[AAG+07]).

The sampling rate can also be dynamically adjusted with harvesting-aware
adaptive sampling that depends on the available energy, optimizing power
consumption at the unit level by using the known residual energy and the
forecasted energy coming from a harvester module ([AADFR09]). This ap-
proach is, however, more delicate, because generally some calculation is
needed to compute the maximum frequency of a signal and adapt the sam-
pling frequency consequently. Without this key step, the risk of missing some
important event increases.

Each specific algorithm or technique among those presented above can
concentrate more on one aspect or another, but generally they could be all
considered when designing a mechanism to reduce energy consumption in a
Cyber-Physical System.

This work is based on the activity-based adaptive sampling approach as
well as duty cycling. Actually, the two approaches are complementary and
often used in combination: the operating system powers the sensors on and
off accordingly to the desired sampling frequency, which is, in turn, con-
tinuously adapted through an adaptive sampling algorithm. The algorithm
presented here is, again, activity-based and, more specifically, it exploits the
temporal correlation among signal’s energy values. As a matter of fact, most
changes in the system dynamics result in a variation of the signal’s energy.
Hence, this quantity can be used to determine whether an adaptation of the
sampling frequency is needed. A major point of the proposed solution is
that this can be done independently from the system’s model or the network
hierarchy.

In every system aimed at monitoring an evolving phenomenon, the sam-
pling frequency plays a cardinal role, since the working principle of every
sensor is to monitor a continuous signal and convert it into a discrete dig-
ital one. Cyber-Physical Systems units can monitor any kind of physical
quantity: light brightness, electrical tension, acceleration or temperature are
just a few examples. However, to ensure an accurate reconstruction of the
observed signal, the sampling frequency has to be properly selected.
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A milestone theorem about generic signals sampling is the Nyquist-Shannon
theorem ([Pra10]). It states that, in order to reconstruct completely a sig-
nal whose frequencies don’t exceed a given frequency fmax, the sampling
frequency must be at least twice that frequency. The minimum sampling
frequency fN = 2 fmax is called the Nyquist frequency. Often, in real life
applications, this frequency is a-priori unknown or may vary over time. A
conservative approach to guarantee that, despite a possible variation of the
Nyquist frequency, the signal is accurately reconstructed, is to sample at
much higher frequency (in most application, it is normal to sample at 4 or
5 times fN ). This solution is clearly disadvantageous in terms of energy
consumption and overall costs, and in most cases it turns out to be un-
sustainable when ported on the nowadays available technology, because the
power consumption needed would be too large.
Several adaptive sampling algorithms bypass the Nyquist limit by forecast-

ing the next signal’s value through a wide variety of statistical models. This
is an interesting approach that sacrifices complete reconstruction in favor of
a significant reduction in the number of acquired samples. The forecasted
sample is compared to the actual one over time and, if the discrepancy is too
large, the sampling frequency is increased and the model is updated.
On the other hand, there is a family of adaptive sampling algorithms (to

which belongs the one presented in this work) whose purpose is to guarantee
that the Nyquist theorem is not violated and no information is lost. The
solution proposed in this thesis falls into this category. The foremost advan-
tage of this approach is that it doesn’t rely on the chosen model’s accuracy
(this concept will be expanded in Chapter 2). By now, it is important to
underline that the Nyquist theorem will be the basement above which the
whole proposed solution is developed.
A final remark on energy saving techniques at single unit level in CPS is

that these approaches impact substantially on network-level consumption as
well. By lowering the amount of acquired data, actually, also transmission
and processing will be reduced, and the risk of network congestion would be
significantly decreased.

1.3 Original contribution and structure of the thesis
In a nutshell, the activity-based adaptive sampling mechanism proposed in
this thesis includes the following steps: acquiring the signal at a properly-
defined frequency, filtering the signal on different frequency bands, calculat-
ing energy values of the filtered signals over sliding windows, analyzing the
obtained values through a change detection test to spot changes and, in case
of aliasing observation, adapting the sampling frequency to guarantee that
the Nyquist limit is respected.
The filtering phase is necessary because, as anticipated before, the signal is

evaluated through its energy values. We emphasize that the overall amount of
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energy in a given signal could remain constant, but its internal distribution
over the spectrum might change. This is the reason why a filtering step
is introduced: it allows the observer to identify frequency shifts inside the
frequency ranges of the signal, which would result in a different distribution
of the bands energies. The determination of the number of employed filters
and correspondent frequency ranges will take place during the training phase,
where the spectrum is analyzed to obtain the proper band configuration. A
detailed description of this analysis will be given in Section 4.2.

Filtered signals are then processed to compute their energy values, which
are calculated over sliding windows (i.e., non overlapping). The idea of moni-
toring the observed signal in the time domain instead of the frequency domain
is justified by the Parseval Theorem ([Pra10]), which states the equivalence
between the integral of the squared signal over time and the one of the ab-
solute value of the Fourier Transform in the frequency domain:

+∞ˆ

−∞

|x(t) |2 dt =

+∞ˆ

−∞

|X (2π f ) |2 df .

In fact, computing the FFT to reconstruct the signal’s spectrum is quite
expensive from the computational (and, hence, energy) point of view; this
approach avoids this heavy computation by analyzing only the energy carried
by the signal in the time domain. However, by integrating energy over time,
the case of a simple shift in a frequency value lying within the frequency
range could not be detected; this is the reason why a preliminary filtering
step is introduced.
Next, computed energy values are submitted to a change detection test.

Change Detection Tests are algorithms based on statistical hypothesis tests
aimed at detecting a change in the statistical behavior of data (here, the
estimated energy on each band). They can be parametric, which means
that they need prior information about the probability density function of
the process generating the data, or nonparamentric, which are more flexible
and require weaker assumptions on the input signal ([Ali14]). In order to
be independent from a specific configuration, only nonparametric tests have
been used in this thesis.
In the change detection phase, the occurrence of a higher frequency value,

due to the evolving dynamics of the signal, could be spotted through the
aliasing phenomenon. This is a major contribution of this work since, for
the first time, the aliasing phenomenon (which will be illustrated in detail
in Section 3.2) is exploited to monitor possible variations of the Nyquist fre-
quency fN that exceed the current Nyquist limit at a given time instant.
Whenever a change in the maximum frequency is detected, the sampling

frequency is adapted in order to capture the new signal’s dynamics. During
the adaptive phase, the frequency band division of the spectrum is exploited
to identify the new maximum frequency fmax. All bands are split into two

7



Chapter 1 Introduction

parts, to obtain a finer granularity. Then, the band in which the change
occurred is identified and the sampling frequency is increased of a factor c
that is defined by the user. Since the sampling frequency is increased, the
spectrum is wider and new bands with higher frequencies are added. The
band interested by the change is recalculated and the result is compared with
the previous one: if no variation is detected, the new frequency value is the
result of a real frequency peak and, hence, the maximum frequency has not
increased and the sampling frequency can be brought back to the original
value. On the other hand, if the new band is different from the one of the
previous step, we are observing an aliased peak and the sampling frequency
is increased again, until no more increasing is needed and the Nyquist limit
is respected.
The band-based mechanism has been designed in to avoid the calculation

of the Fast Fourier Transform, which is a widely employed tool in signal’s
analysis when a complete reconstruction of the signal spectrum is needed.
The Fast Fourier Transform (FFT) calculation would immediately give the
maximum frequency component of the spectrum, but it’s extremely expen-
sive in terms of computational power. We emphasize that it would be totally
unrealistic to calculate it on each new samples window, but also a calculation
of the FFT for each detected change turns out to be strongly penalizing. A
complete description of this process will be given in Section 4.6.
To support the theoretical intuitions, experiments and simulations have

been carried on three different datasets:

1. A synthetic dataset: the analyzed signal consists in the sum of fif-
teen sinusoidal waves to which random noise is subsequently added. A
frequency shift is inserted artificially in the middle of the dataset;

2. Blue Whale Call: a real dataset with a synthetic change. These data
are the result of the Bioacoustics Research Program of the Cornwell
University [Pro08];

3. Electrocardiogram of a subject affected by ventricular flutter episodes:
a real dataset with real changes. Ventricular flutter is a type of tachy-
cardia affecting the ventricles. It is characterized by a sinusoidal form
of the ECG instead of the typical ECG shape. Data can be found on
the Physionet data bank (more specifically the records come from the
MIT-BIH Malignant Ventricular Arrhythmia Database).

Moreover, a simplified version of the whole algorithm has been carried on
a real embedded system, being part of a CPS: a programmable board pro-
duced by STMicroelectronics, along with its sensor expansion. This device is
provided with three sensors measuring temperature, humidity and pressure,
and also an accelerometer. For this experiment only temperature values have
been taken into account. Despite the fact that some simplifications of the
original code have been done, the basic principle of the algorithm running
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on the embedded system is exactly the same presented above. The purpose
of this experiment was, in fact, to have a confirmation of the possibility to
transport the proposed approach on a real system and, in this sense, this has
definitely proved its feasibility.

Results of these experiments have been collected and compared with an
existing algorithm, showing that the proposed approach can represent an
efficient mechanism for reducing energy consumption while guaranteeing a
high acquisition accuracy. To evaluate its performance, several figures of
merit have been taken into account: mean detection delay, which represents
the ability of the application to promptly detect a change in the environment;
the sampling fraction, which is the rate between the number of acquired
samples in the proposed approach over the one of a fixed-rate approach;
execution time; false positive and false negative rates. Clearly, requirements
on false negative rate are stricter than those on false positive rate, as a
missed detected change could represent a serious issue in many applications.
False negative rate should ideally be equal to zero. Considering all these
parameters, the results are satisfying as they show a significant improvement
in energy saving and leave several points open to future development.

The thesis is organized as follows: Chapter 2 presents the related work
available in the literature, Chapter 3 provides some theoretical background
on signal filtering and aliasing; Chapter 4 details the contribution, presents
the ideas of this work and the conceptual considerations behind it; Chapter 5
illustrates the experiments with their results and a comparison with other
existing approaches; Chapter 6 details the porting of the proposed solution
on the embedded system by STMicroelectronics; while Chapter 7 presents
the conclusions and possible ideas for future development.
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This chapter reviews the most popular adaptive sampling techniques avail-
able in the literature, emphasizing characteristics, strengths and witnesses.

2.1 Adaptive sampling techniques
Adaptive sampling techniques aim at modifying the sampling frequency dur-
ing signal acquisition, following the signal’s dynamics, in order to reduce the
sampling frequency whenever possible and, consequently, reduce the energy
amount consumed by the sensing unit.

Unlike Section 1.2, whose purpose was to provide the reader with a com-
plete frame of energy management techniques available nowadays for Cyber-
Physical Systems, this section will concentrate on the subset of approaches
which is most related with the one presented in this work. Therefore,
activity-based adaptive sampling techniques present in the literature will
be illustrated.

Some of these techniques exploit measured samples correlation to reduce
the amount of data acquired from the transducer. More specifically, data
may change slowly with time, thus temporal correlations (i.e. the fact that
subsequent samples do not differ a lot between each other) may be exploited
to reduce the number of acquisitions. A similar approach can be applied when
the investigated phenomenon does not change sharply between areas covered
by neighboring nodes and, clearly, both temporal and spatial correlations
may be jointly exploited.

Other techniques do not consider data correlation, but their purpose is
to guarantee that the Nyquist-Shannon theorem is respected. Hence, they
introduce other mechanisms, like change detection tests, to monitor possible
changes in the maximum frequency of the signal and adapt the sampling rate
accordingly.

Among algorithms that exploit data correlation, some rely on the estima-
tion of the next sample’s values ([AHY15]), the actual reading of a sample
after a given number of skipped ones, and a comparison between the actual
value and the forecasted one. If the error exceeds a predefined threshold,
the sampling frequency is increased. Thus, these are error-based methods
and they differ in the statistical method chosen for the estimate or in the
metrics chosen to evaluate algorithm performance. Section 2.2 reviews the
most popular ones. Though they might prove to be effective in reducing
energy consumption, they have two serious limitations: firstly, they do not
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assure to monitor fmax properly, as a sudden change in its value wouldn’t be
spotted if the change duration is short enough or if the actual sample doesn’t
drift distinctly from the forecast one. Moreover, an inaccurate estimate of
the model employed to forecast samples would compromise the efficacy of
the whole approach, and this is a strong drawback for systems monitoring
a nonstationary physical environment, where physical phenomena may vary
over time.
Some other works ([ME10, TAGL15]) set up filter systems to sample at a

frequency that violates the Nyquist theorem, but they are more focused on
hardware aspects and they are, usually, application specific.
Frequency-based adaptive sampling approaches (Section 2.3) are, in turn,

focused at guaranteeing that the whole signal spectrum is covered and they
don’t rely on a statistical model to describe the observed phenomenon.
Therefore, they don’t exhibit the same limitations of the error-based meth-
ods and prove to be at least as efficient as those ones, or more. This thesis
belongs to this second category of mechanisms.

2.2 Error-based adaptive sampling
[JC04] proposes a Kalman-Filter (KF)-based estimation technique where
each sensor can use the KF estimation error to adaptively and autonomously
adjust its sampling rate within a given range. When the desired sampling
rate at the sensing unit level violates the range, a new sampling rate is re-
quested from the server, which allocates new sampling rates (provided that
enough resources are available), in order to minimize KF estimation error
over all the active streaming sensors. At each sensor, the Kalman Filter es-
timator is employed to predict the future values of a signal based on those
seen so far; the authors support the utilization of the Kalman Filter because
it gives satisfactory results even when the process cannot be modeled accu-
rately, it can be easily customized to provide good results on a wide range of
streaming sensor data and, finally, it produces unbiased estimates even when
the incoming data have high variance.
At the sensor unit level, their model considers SIi, the current sampling

interval (i.e. the number of time units between two consecutive measure-
ments) at source Si; SIRi, the range within which the sampling interval
can be adjusted by the source without any intervention from the server, and
SIlasti , the latest value of sampling interval received from the server. SIdesiredi

denotes the desired sampling interval based on the KF prediction error; sen-
sor Si doesn’t need to contact the server for additional bandwidth provided
that (SIlasti − SIRi/2) ≤ SIdesiredi ≤ (SIlasti + SIRi/2). If SIdesiredi satisfies
this equation, then SIi takes the value of SIdesiredi . This scheme helps the
source to capture unexpected data trends immediately without waiting for
the server intervention, which could be delayed due to network congestion or
unavailability of resources. The authors evaluated their performance through
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an effective resource utilization metric defined as ξ = η · m, where m is the
fraction of messages exchanged between the source and the server over the
total number of samples read by the source, and η is the mean fractional
error between the actual trajectory of the monitored time series and that
generated by interpolation. Experiment simulations shown that, when the
input parameters of this model are properly tuned, ξ can be reduced consid-
erably with respect to uniform sampling.

Another adaptive sampling strategy is proposed in [ZR07], where a sensor
network is employed to read water level for a flood warning system. The
adaptive sampling behavior of their system is specific to this application and
it is the result of a co-design exercise with environmental experts; neverthe-
less, it is an interesting example of application. It also uses a Kalman Filter
coupled with a stochastic numerical hydraulic model to predict new values
of water level and, when the model-based probability of the water level ex-
ceeding a predefined threshold is less than a given value, the requirement for
data transmission from the sensor node at the sink is lowered. Otherwise,
the requirement for transmission will arise.

In [LCJ+09], an online adaptive sampling algorithm is proposed. Here, the
authors develop a previous work from Chatterjea and al. ([CH08]) and pro-
vide a theoretical framework for it employing the Box-Jenkins approach in
time series analysis, which is again an online method to adapt the sampling
frequency based on the values forecast through this statistical model, and
again shares the limitations of this category of algorithms. Its working prin-
ciple is reported in 2.1.
The underlying idea is that if a given number x of readings have already

been skipped and the next reading is close to the next forecast, then the
next x + 1 readings can be skipped (provided that the number of skipped
readings doesn’t overcome a predefined upper limit); otherwise, it is neces-
sary to resume acquiring every reading until the reading and the forecast are
again close enough to each other. The key contribution is to use confidence
intervals to evaluate the accuracy of the forecast values: if the confidence
interval on the Box-Jenkins forecast is less than the desired value, the fore-
cast is considered accurate enough. This can be obtained provided that the
underlying statistical model describing the process is well identified which,
as stated before, may not be easy to guarantee in many real life applications.
Anyways, experiments simulation have shown that the number of acquired
samples can be reduced remarkably.

[GSBH11] describes the so called Exponential Double Smoothing-based
Adaptive Sampling (EDSAS) and stresses the fact that the proposed tech-
nique has a scarce computational load and does not need an offline training
phase. Its principle is quite similar to that of [LCJ+09], because it still relies
on a forecast value which is compared to the real one and, based on the
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Algorithm 2.1 Algorithm 0 of [LCJ+09]. CSSL = CurrentSkipSampleLimit,
SS = SkipSamples, MSSL = MaximumSkipSamplesLimit and ε is a user-
specified error tolerance threshold.

1: Collect b samples
2: CSSL = SS = 0
3: while (1) do
4: Acquire 1 reading
5: Use this new reading and the previous one to interpolate samples

skipped in the previous round, if any
6: Make 1 forecast
7: if (|reading-forecast|<ε) then
8: SS = CSSL = min(CSSL + 1, MSSL)
9: else

10: SS = CSSL = 0
11: while (SS > 0) do
12: Skip 1 reading
13: SS = SS − 1

result of this comparison, the step size between two consecutive samples is
updated until it reaches a maximum value Smax representing the maximum
delay tolerated by the specific application. The statistical method employed
to forecast samples is, this time, the Wright’s extension to Holt’s method.
In addition to this process, once Smax has been reached, a change detec-
tion mechanism based on exponentially weighted moving averages (EWMA)
[WaJR+05] is introduced to minimize the false negative rate. The method has
been tested on real urban traffic CO2 pollution level dataset and compared
with previous approaches ([LCS06]), showing that better sampling fraction
against false negative ratio can be achieved through this process.

Another interesting work which presents the adaptive sampling problem in
an original approach is [ZRDH15], where an analogy between a WSN and
the human endocrine regulation system is built. Exactly like a human body
receives hormone information to react to environmental changes, EASA, the
proposed adaptive sampling algorithm, produces different kind of hormone
information to regulate dynamically sensor nodes working status and sam-
pling frequency. When the observed phenomenon changes quickly, the nodes
make trophic hormone and increase sampling frequency. On the other hand,
when high sampling rate is useless due to scarce activity, inhibitory hor-
mone is produced and the sampling frequency is lowered. The method to
determine whether there is a rapid change in the environment conditions
still relies on next sampling forecasts but this time linear regression is em-
ployed and, if the relative incremental ratio between the forecast value and
an average of n previous samples exceeds a given threshold, sensor activity
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must be increased. Afterwards, a redundant-nodes dormancy mechanism is
set into place, completing the energy management framework. Simulations
show that EASA performs very well in terms of network lifetime and data
accuracy when compared to fixed-rate approaches.

2.3 Frequency-based adaptive sampling
In [AAG+07], a frequency-based adaptive sampling approach is proposed. It
is based on the online adaptation of the sampling frequency provided that
a change in the maximum frequency of the monitored phenomenon occurs.
Change detections methods have been widely discussed in the literature and
here a modification of the CUmulative SUM (CUSUM) change detection test
[BN93] is employed. As we have seen in Chapter 1, the maximum frequency
contained in a signal determines the minimum sampling frequency necessary
to reconstruct it properly. Frequency fmax isn’t always available and changes
over time in nonstationary environments. Hence, the Nyquist frequency
fN changes as well and it has to be adjusted to avoid oversampling. The
proposed algorithm initially estimates fmax through a Fast Fourier transform
by using the first W acquired data, which are assumed to be generated by
a stationary process. The initial sampling frequency is fc = c f max with
c larger than 2, according to Nyquist theorem. Then, maximum increment
and decrement of f max which can be tolerated before changing the sampling
frequency are defined as follows:

fup = min
{

(1 + δ) · f max,
fc
2

}
; fdown = (1 − δ) · f max

δ ∈ R+ is a confidence parameter representing the minimum detectable
frequency change desired by the user. A change is detected if the current
maximum frequency fcurr overcomes one of these thresholds for h consecutive
samples:

thup = f max (1 + δ/2); thdown = f max (1 − δ/2)

An example of the mechanism working principle is shown in Figure 2.1,
while 2.2 illustrates the complete mechanism. When a change is detected the
sampling frequency is modified as follows: “if (��� fcurr − fup

��� <
��� fcurr − f max

���)
for h consecutive samples or if ( | fcurr − fdown | <

��� fcurr − f max
���) for h consec-

utive samples, then the new sampling frequency is fc = c fcurr ”. Basically,
the two defined frequencies fup and fdown allow to detect drifts within their
range and enlarge the spectrum observed by the application. A frequency
peak appearing above fup or below fdown could not be detected by this
method.
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Figure 2.1: [AADFR09] Detection of a change in the maximum frequency

Algorithm 2.2 Adaptive Sampling Algorithm of [AAG+07] (c, δ, h)
1: Store the W initial samples coming from the process in Dataset
2: Estimate f max on Dataset and set fc = c f max

3: Define fup = min
{
(1 + δ) · f max,

fc
2

}
; fdown = (1 − δ) f max

4: h1 = 0 and h2 = 0; i = W + 1
5: while (1) do
6: Acquire the i-th sample and add it to Dataset
7: Estimate the current maximum frequency fcurr on the sequence

Dataset(i-W+1,i)
8: if (| fcurr − fup|<| fcurr − f max|) then
9: h1 = h1 + 1; h2 = 0

10: else if (| fcurr − fdown|<| fcurr − f max|) then
11: h2 = h2 + 1; h1 = 0
12: else
13: h1 = 0; h2 = 0
14: if (h1 > h) ‖ (h2 > h) then
15: fc = c fcurr
16: fup = min

{
(1 + δ) · f max,

fc
2

}

17: fdown = (1 − δ) f max

18: f max = fcurr

A snow monitoring application for avalanches forecast is employed as a
case study. This is a very good example of power-hungry sensors deployed
in a hostile environment, where battery replacement is quite difficult and ex-
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pensive. The sensor is a “multi-frequency capacitive measuring unit designed
to be embedded in a remote wireless measuring system. It is composed of a
probe, a main multi-frequency injection board capable of measuring capacity
at different frequencies and a wireless unit to be left on the mountain (...).
At each sampling cycle the snow sensor provides measurements of snow ca-
pacitance at two different frequencies that have been proved to differentiate
water from air, snow and ice. At the same time a second sensor measures the
ambient temperature. All acquired information is packed in a single message
and sent over the wireless channel. For each measurement the electronic
injection board of the snow sensor makes several procedures (calibration,
electrode pre-charging, charge sharing) in a cyclic way to obtain a reason-
ably stable and reliable measure. This activity makes the sensor very energy
consuming. When the duty cycle mechanism substitutes the fixed sampling
approach an immediate energy saving arises.”.

The experiments conducted have proved that, following this approach, the
number of measured samples can be reduced to a great rate with respect to
the traditional fixed-rate algorithm.

In [BWCW13] the “event-sensitive adaptive sampling and low-cost moni-
toring (e-Sampling)” is presented, which focuses on decentralized computing
in WSNs by avoiding transmission to the sink as much as possible. The field
of application is structural health monitoring, in which high frequency events
are not rare. Their idea is to approach energy consumption reduction at the
sensor level in two different “stages”, which are to some extent comparable
with the four steps of this work, as it will be explained in Chapter 4. Firstly,
each sensing unit has “short and recurrent “bursts” of high-rate sampling,
and samples at a much lower rate at any other time.”, as explained below.

Basically, four parameters are defined: Dh, the duration of each burst of
high-rate sampling, Rh, high sampling frequency, Dl and Rl (duration and
sampling of low-frequency or adjusted sampling, respectively). Dh + Dl give
the duration of the so called “Rate and Interval Adaptation” cycle. If, during
Dh, the high frequency content Fh reveals to be important (which means that
it overcomes a predefined threshold ω), then the minimum required rate is
increased. If, in some successive adaptation cycle, the percentage of high
frequency has decreased, the sampling rate is set back to the lower value.
At each Adaptation cycle, Wavelet Packet Decomposition is employed to

estimate Fh([Mit01]). This methods recursively applies low-pass filters and
high-pass filters, building a tree of sub-signals that sum up to the original one.
At each tree level r, s1

r (t), . . . , sbr (t) signals are obtained, with b = 2r , and
used to estimate bh, the maximum frequency contained in the signal. Here,
band division is employed to estimate fmax only, there is no mechanism of
change detection over the bands. 2.3 illustrates how this is managed (Rc is
the current sampling rate resulting from the selection).
In e-Sampling the indication of the presence of an event is studied at the
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sensor level and data are transmitted to the sink only if a change actually
occurs. Experimental evaluation outlines that, when both stages (adaptive
sampling and decentralized event indication) are used, e-Sampling outper-
forms other algorithms in term of energy consumption, included [ZR07].

Algorithm 2.3 Sampling Rate Selection of [BWCW13]
1: U = 0 . There is an update of sampling rate;
2: s0

0(t) = S(t)
3: while (r < R&&U = 0) do
4: Compute s2b

r+1(t); s2b+1
r+1 (t)

5: if (thereisFhins2b+1
r+1 (t)) > ω for any t then

6: sbr (t) = s2b+1
r+1 (t) . there is possibly a situation of the presence of a

physical event
7: else if (s2b

r+1(t)) > ω for any t then
8: sbr (t) = s2b

r+1(t) . there is possibly a situation of the presence of a
physical event

9: else
10: U = 1
11: b = bh
12: Compute Rm = c(Rh/2r )(bh + 1)
13: Set Rc = Rm

2.4 Summary of the available approaches
A summary of the reviewed methods is reported in Table 2.1.
This thesis proposes a frequency-based adaptive sampling mechanism which

addresses power-hungry sensors without being application-specific. This
mechanism has several points in common with previous approaches, nev-
ertheless, up to our knowledge, there is no other approach in the literature
which considers all the elements presented in this work at once; that is, ex-
ploiting aliasing to spot changes in the maximum frequency, dividing the
spectrum in different bands, estimating energy values on each band and
monitoring this measure through a change detection test.
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Table 2.1: Adaptive Sampling algorithms summary, EB: Error-Based, FB:
Frequency-Based

Name Family Assumptions CDT Ref
Kalman filter EB input parameters must be properly

tuned
No [JC04]

FloodNet EB co-designed for hydraulic application No [ZR07]
Box-Jenkins EB underlying statistical model must be

accurately identified
No [LCJ+09]

EDSAS EB underlying statistical model must be
accurately identified

Yes [GSBH11]

EASA EB sensors seen as endocrine system No [ZRDH15]
AliRove FB frequency doesn’t exceed range

( fdown, fup)
Yes [AAG+07]

eSampling FB frequency doesn’t vary too quickly
during low-frequency sampling

No [BWCW13]
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A brief theoretical explanation of the aliasing phenomenon is reported here to
provide the reader with all the necessary information about the topic. This
phenomenon is of particular importance to fully understand the solution pro-
posed in this thesis, as it constitute one of the main aspects of differentiation
from the other approaches existing in the literature. In fact, we concentrate
on the aliasing phenomenon because it allows to spot a change in the max-
imum frequency of a signal without necessarily calculating the Fast Fourier
Transform. The remarkable impact on the overall performance entailed by
avoiding the Fast Fourier Transform calculation will be detailed in Chapter 5.

3.1 Aliasing and peak reflection
A universally known theorem on sampling theory is the Nyquist-Shannon
theorem:

Theorem: In order to sample correctly a generic band-limited signal, it
is sufficient to sample it at a frequency fs at least larger than twice as the
maximum frequency preset in the signal. This frequency is also called the
Nyquist frequency and indicated as fN .

A generic signal spectrum is symmetric, and usually it is represented up
to half of the Nyquist frequency: fmax =

fN
2 .

What happens if the sampling frequency is lower than the indicated one?
The well-known phenomenon of aliasing occurs: when the Fourier Transform
is calculated and the spectrum figure analyzed, peaks representing frequen-
cies higher than the Nyquist one are “reflected” in the spectrum as if a lower
frequency was found in the signal.

The position of the aliased peak at the reflected frequency fr can be found
through this formula, given the original frequency f i larger than fN/2:

fr = |NearestIntMult( f i, fs) − f i | (3.1)

where NearestIntMult( f i, fs) stands for the integer multiple of f i which is
nearest to fs. For example, if fs = 30 Hz and fr = 97 Hz, NearestIntMult( f i, fs)
= 90 Hz and fr = 7 Hz.
If we want to know whether the frequency of a peak is real or aliased,

we need to increase the sampling frequency: if we are observing a reflected
peak, once the sampling frequency is increased, this peak at fr will move
rightward. Otherwise, if the peak is a real one, it will keep its position.
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This phenomenon is strictly related to sampling frequency reduction: we
can imagine a situation where a dynamic system operates most of the time
under a given frequency, but sometimes a higher frequency comes into play
and the corresponding peak appears (as, for example, during tachycardia
episodes, as it will be illustrated in Section 5.1). To reconstruct properly the
whole spectrum with a fixed-sampling frequency approach, fs should be at
least as large as twice the Nyquist one. On the other hand, high sampling
frequency would be useful only the for a short amount of the time: it would be
much better in terms of energy consumption to sample at the lower frequency,
and observe the appearance of higher frequency peaks through aliasing. If
needed, the sampling frequency could then be increased to find the actual
value of the peak.
When the sampling frequency is increased, if a peak maintain its position,

we have measured a frequency component in the signal below fN/2 (which
could appear due to environment non-stationarity), otherwise, in case of
aliasing, the peak will move rightward.

3.2 Aliasing: an example
As introduced in the previous section, aliasing is the phenomenon also known
as spectrum reflection. When a signal is analyzed in order to reconstruct its
spectrum, it has to be sampled at least at the Nyquist frequency fN , which
is twice the maximum frequency present in the signal.
Since the spectrum is symmetric with respect to half of the Nyquist fre-

quency, only the first half is represented. An example of the spectrum of
a generic sine wave combination signal is shown in Figure 3.1. The original
signal is

x(t) = sin(2π f1t) + sin(2π f2t)

with f1 = 10 Hz and f2 = 18 Hz and sampling frequency fs = 50 Hz (the
Nyquist frequency is, hence, fN = 25 Hz).
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Figure 3.1: The Fourier Transform of a very simple signal composed of two
sine waves

If a new sine wave is added with frequency included in the interval (0, fN ),
the corresponding peak will appear, as shown in Figure 3.2a (here the peak
was set to 6 Hz). But what happens if the frequency of the new sine wave
belongs to the interval ( fN, fs) or ( fs, +∞)?
Recalling the formula 3.1, the position of the reflected peak can be easily

found.
In this example, two aliased peak are shown:

1. f i = 44 Hz, which belongs to the interval ( fN, fs). Its position is,
thus, again 6 Hz. The corresponding Fourier transform is shown in
Figure 3.2b.

2. f i = 106 Hz, which belongs to the interval ( fs, +∞). Its position is
exactly the same as the former one: 6 Hz. Figure 3.2c reports this
peak, which is indistinguishable from the previous cases.
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(a) FFT with peak at 6Hz

(b) FFT with peak at 44Hz

(c) FFT with peak at 56Hz, visible at 6 Hz
due to aliasing

Figure 3.2: FFT of three signals with different added peaks, only the firs one
is a real peak

A reflected peak originated by aliasing cannot be distinguished from a real
one unless other operations are carried out on the signal. More specifically,
sampling frequency has to be increased until the aliased peak stops moving
rightward, as shown in figure Figure 3.3, where sampling frequency has been
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brought to 100 Hz.
These preliminary analysis are in total agreement with real datasets illus-

trated in Chapter 5.

(a) FFT with peak at 6 Hz

(b) FFT with peak at 44 Hz

(c) FFT with peak at 56 Hz

Figure 3.3: FFT of the three signals sampled at 100 Hz. Peak from
Figure 3.3a is still at 6 Hz, peak of Figure 3.3b has moved to its actual
position, while peak of Figure 3.3c is still aliased.
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4 Proposed approach

4.1 The general idea
This thesis presents an activity-based adaptive sampling mechanism whose
purpose is to reduce the energy consumption in sensing units of Cyber-
Physical Systems. It differentiates from other approaches present in the
literature because, instead of forecasting sample’s values and then compar-
ing the prediction to the actual values, it samples at a rate that satisfies the
Nyquist theorem and monitors possible changes through a change detection
test, eventually exploiting aliasing to identify the maximum frequency of the
signal.

The whole mechanism proposed by this work can be summarized into the
following steps: there is a preliminary training phase, in which the spectrum
is analyzed in order to obtain a complete representation of the acquired signal
(maximum frequency and energy distribution over the spectrum range) and
to train the change detection test. This first step is fundamental to set
some of the most important parameters for the experiment, in particular, the
number of bands in which the spectrum will be divided and their bandwidth.
More details will be given in Section 4.2.

Then, accordingly to the results of the previous step, the spectrum is
divided into the defined number of frequency bands, in order to gain visibility
on small changes and to monitor intra-spectrum peak shifts. The signal
coming from each band results into an independent signal, whose energy is
calculated over sliding windows according to the following formula, where W
indicates the window’s width, j is the window index, b = 1, ..., B is an index
indicating the band number and x̂ f il,b (t)2 is the signal filtered on the b-th
band:

Ej,b =

ˆ
W

x̂ f il,b (t)2dt (4.1)

This is the second step, in which a matrix Ej of B energy values Ej,b is ob-
tained. The purpose of this phase is to evaluate sequence Ej = [Ej,1, ..., Ej,B]
over time and monitor any possible change. This is achieved through a
change detection test, which can be univariate (i.e., it considers each band
independently from the others) or multivariate (it jointly considers all bands).
Whenever a change is detected, the signal has to be analyzed in order to find
out whether a change in the maximum frequency fmax has occurred or not.
Therefore, the band division is exploited to identify which frequency range
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is responsible for the detection and the possible presence of the aliasing phe-
nomenon. If the maximum frequency has actually increased or decreased,
the sampling frequency is adapted, otherwise, its value is not changed.
The final and complete framework that we obtain is summarized in Figure 4.1.

Figure 4.1: The general idea of the adaptive sampling mechanism
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4.2 Training phase

4.2 Training phase
A preliminary training phase is necessary to characterize of the signal’s spec-
trum distribution. In fact, its purpose is to find the value of fmax and to
choose the band number B along with the band configuration. This phase
must take place in stationary conditions, which means that no change is oc-
curring in the signal and the observed phenomenon is not evolving, because
the energy values obtained through the filters will be used to train the con-
sidered CDT. Thanks to this, the CDT will be able to spot any variation
from stationary conditions, as the picture of the signal’s behavior obtained
here will be held as a reference throughout the whole process.

Hence, the first Z samples are acquired at a very high frequency (if the
physical phenomenon under observation has already been studied before, a
frequency value of four or five times larger than the theoretical Nyquist one
can be considered), and the Fast Fourier Transform is calculated. This is the
only FFT calculation that will be carried out in the whole process. Once the
spectrum is reconstructed, the initial value of the sampling frequency is set
to fs = c fmax, with c ≥ 2, in order to respect the constraint given by the
Nyquist theorem.
At this point, the best possible band division for each specific application-

scenario has to be determined. Again, the spectrum division into frequency
bands has been introduced to avoid the continuous calculation of the FFT
for the detection of any possible signal change. In fact, as explained in
Chapter 3, signal transmitted by a sensor in a non-stationary environment
can present changes of different types. For instance, a new frequency could
appear, and its value could be observed as a new peak (real or reflected),
but also a simple frequency shift could occur. The latter is the most critical
case: due to the fact that an integral over a window of fixed size is calcu-
lated, if a frequency peak simply shifts without changing its amplitude nor
moving outside the spectrum boundaries, this change is invisible to the ob-
server. Nevertheless, dividing the spectrum into frequency bands leverages
this phenomenon because, if the bands are properly distributed, a moving
peak is likely to leave a band and enter another one.
Of course there will be a trade-off effect in the choice of the number of

bands: by increasing the number bands, we obtain a finer granularity and a
pure shift of a peak is more easily detectable. On the other hand, a large
number of bands entails a possible increase of costs and false positives, as it
will be illustrated by the experiments of Chapter 5. In the current version
of the proposed mechanism, the number of bands (from now on, parameter
B) isn’t computed automatically, but its choice is left to the user and will
depend on the signal’s spectrum amplitude and distribution observed in this
training phase.
Another important parameter that has to be chosen carefully is the band-

width: a first raw band division would simply split the spectrum range into
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B equally wide bands. This choice would be reasonable for a signal whose
frequencies are uniformly distributed on the spectrum range, like those of
Figure 4.2, but it wouldn’t be accurate for a signal whose frequencies are,
for example, concentrated in the first half of the spectrum. Therefore, band-
width has to be chosen such as the energy is uniformly distributed among
bands. In fact, it wouldn’t be advantageous to have one band which contains
most of the signal, because this would invalidate the possibility of detecting
frequency shifts. Hence, bands do not necessarily need to have the same
dimension, as those of Figure 4.3. Here, a division into equally wide bands
like the one of the previous example would lead to a band containing only
noise (30 - 40 Hz), thus, a non-uniform division could be considered.
Otherwise, if the spectral energy is concentrated into the first part of the

spectrum, another intelligent division would split the energy-denser part into
equally wide bands and leave a large, almost empty band for higher frequen-
cies. Actually, for every practical case of real world physical phenomena, a
new frequency possibly appearing at a given time instant would likely be of
the same order of magnitude of the other frequencies contained in the sig-
nal. Therefore, having a single, large empty band for high frequencies rather
than several high-frequency empty bands should guarantee the detection of
variations and avoid the unnecessary introduction of more bands.
Furthermore, the bandwidth might change along the process, following

signal’s evolution and possible redistribution of the signal energy: thus, an
adaptive mechanism intervenes in this phase as well once a variation in fmax

has been detected.
Once the initial sampling frequency fs is identified and the band division

has been designed, the online acquisition will begin, obtaining the sampled
acquisition x̂(t), t = 1, 2, ....
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Figure 4.2: Band division and filtering process.
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Figure 4.3: Non-uniform band division.

4.3 Filtering the spectrum
Once online acquisition begins, the signal undergoes the filtering phase,
where B filtered signals are obtained, according to the filters bank designed
during the training phase.

Given the sampled sequence x̂(t) and B bands, the signal has to be fil-
tered and, subsequently, integrated over sliding windows of width W. Hence,
each W samples the signal will be filtered obtaining a matrix x̂ f il (t) =
{ x̂ f il,1(t), ... , x̂ f il,B (t)} of B sequences x̂ f il,b (t) = { x̂ f il,b (1), ... , x̂ f il,b (W )},
whose dimension is B ×W , which will be used to compute the energy values
of the signal.

As introduced above, this step is introduced to avoid the FFT calculation
and monitor the signal in the time domain instead of the frequency domain.
This approach is justified by the Parseval Theorem, which states the equiva-
lence between the sum (or integral) of the square of a function and the sum
(or integral) of the square of its transform:

+∞ˆ

−∞

|x(t) |2 dt =

+∞ˆ

−∞

|X (2π f ) |2 df
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where X (ω) = Fω {x(t)} is the continuous Fourier Transform of the signal
x(t) and ω = 2π f indicates the frequency in radians per second.

4.4 Energy computation
Recalling Equation 4.1, in order to calculate energy values of the signal,
its squared power has to be integrated over fixed-width sliding windows of
amplitude W. The length of the window is expressed in number of samples
that are involved in each integral. Hence, each element x̂ f il,i (t) of vector
x̂ f il (t) obtained in Section 4.3 is integrated on its W values (i = 1, ..., B
indicates the band number).

The result is the vector Ej = {e j ( x̂ f il,1(t)), ... , e j ( x̂ f il,B (t))} of B elements,
where j is the window index (meaning that we have already acquired ( j+1)W
samples), and

e j ( x̂ f il,i (t)) =

( j+1)Wˆ

jW

���x̂ f il,i (t)
���
2

dt.

Vector Ej will be submitted to the change detection test. The change
detection test will receive a new element Ej every time a new window of W
samples of the original sequence is available, and it will test it against the
previous values Ek , with k = 1 ... j−1. Hence, the CDT operates on a matrix
of size j × B, where each energy vector Ej is stored: E = {E1, ... , Ej, ...}.

Figure 4.4 clarifies these steps for signal of band 5 of Figure 4.2.

Figure 4.4: Integration process

4.5 Change Detection Test
Once the energy is calculated, a change detection test is applied to the se-
quence E = {E1, ... , Ej } obtained through the previous steps. Each W sam-
ples, a new element Ej of the sequence will be taken into account.

Change detection tests (CDTs) are powerful tools for concept drift de-
tection, i.e., the detection of a change in the stationary conditions of the
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environment. Actually, during the training phase described in Section 4.2,
the signal is analyzed in stationary conditions and the computed energy val-
ues represent the stationary state. Those values are used to train the CDTs
and, subsequently, to detect any possible variation from that situation.
There exist several different implementations of change detection tests

([Ali14]). In this work, two specific change detection tests have been con-
sidered. The first one is the univariate Intersection of Confidence Intervals
Change Detection Test described in ([ABR11c, ABR11a, ABR11b]) for the
experiments with synthetic data and real data with synthetic change point
(for details, see Section 5.1). This test assumes that submitted data stream
is composed of i.i.d and Gaussian distributed features, hypothesis that is
satisfied provided that integration intervals, or windows, are large enough to
flatten the dynamics of the signal, which often present oscillating dynamics
in these kind of application.
In addition, for the experiment conducted with a real dataset, a multivari-

ate CDT has been used ([Tac15]). The main difference between the previous
test and this one, is that the former is a univariate test whereas the latter
is multivariate. Multivariate tests consider all the features at once, instead
of running a single test for each feature independently from the others. Fea-
tures here are the energy values calculated on each band and the use of a
multivariate test should allow us to reduce false positive rate. Moreover, this
test is trained to work even on small input sequences and this test was par-
ticularly appropriate for the real dataset where some sequences are actually
very short.
Therefore, for each window j, the new value Ej is tested against vector

E = {E1, ... , Ej−1} looking for changes. There are two possible outputs:{
CDT (Ej ) = 1 → change detected
CDT (Ej ) = 0 → no change detected

If the output is equal to one, a change has been detected in the j-th window
and further inspection is necessary to understand the nature of the change.
Otherwise, the sampling mechanism continues with the acquisition of the
next samples window.

4.6 Adapting sampling frequency
After the completion of the training phase, the current value of the sampling
frequency is fs. In this configuration, the appearance of a new peak at
frequency fnew (possibly higher than fs/2) would imply a change in the energy
value and, hence, it would be detected by the change detection test. The new
peak could be the result of aliasing and, thus, the sampling frequency should
be increased, or it could be the actual value of a new frequency component,
which has no impact on the sampling frequency fs. Therefore, a mechanism
to distinguish these two scenarios is here introduced.
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First of all, it is necessary to identify which band has raised the alarm of
an event. In case of multiple univariate CDTs, this is pretty straightforward,
because only the corresponding CDT detected a change. On the other hand,
the multivariate test considers all bands at once and it is not possible to
identify which feature provoked the detection. Therefore, the energy values
of the last window are compared with the mean values of energy before the
detection, and the band showing the maximum difference is identified as the
changing one. Given that the change at time tchange occurred in the j-th
window, we have:

bchange = arg max
b

���avg(E0,b, ..., Ej−1,b) − Ej,b
���

In order to inspect more accurately the nature of the change, a heuristic
approach is employed. Actually, an exact solution would again need the FFT
calculation, but it can be avoided through the use of a heuristic which, here,
is justified by the fact that an aliased peak will necessarily move from its
position (see Chapter 3 for more details).
Algorithm 4.2 details this heuristic: after a detection, each band is split

in two half, hence doubling the bands number. The energy vector E, hence,
doubles its size as it will have twice the rows it had before. Then, the
sampling frequency fs is increased of a fraction h of its value, obtaining
fcurr = fs + h fs. This increase has the effect of enlarging the spectrum and,
hence, new bands are added for the higher frequencies (line 6 of Algorithm
4.2). The number and width of these new bands depend from the previous
average bandwidth, in order to keep a homogeneous division. At this point,
the changing band is again calculated (line 7 of Algorithm 4.2):

bandIndexnew = arg max
b

���avg(Eb (1, ..., tchange)) − avg(Eb (tchange, ..., tcurr ))���

If its index doesn’t vary (bandIndexnew = bandIndexold) for three itera-
tions, it means that the new peak is a real peak and we can put fs back to
its original value, which will be the one set three iterations before (thus, in
line 12, fs is put back to fcurr = fs + (k − 3)h fs). On the other hand, if the
new band index is greater than the previous one, we are observing aliasing
phenomenon and the process has to be repeated until this shift in the fre-
quency stops and a new value of the sampling frequency fcurr is obtained.
The choice of stopping the frequency increase after three iterations instead
of one has been made in order to avoid that a slowly moving aliased peak
(which remains in the same band for more than one iteration even if it is
actually moving) is mistaken for a real one.
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4.7 The algorithm
To sum up, incoming signals are sampled at the lowest possible frequency
allowed by the Nyquist limit, to save energy and reduce power consumption.
Each signal is filtered through a configurable number of band-pass filters,
covering the whole spectrum, and for each filtered signal the energy is com-
puted on fixed-width windows. Once energy sequences are obtained, these
are monitored by a change detection test which reveals changes in the energy
values over time.
The process is illustrated in Algorithm 4.1, where line 1 to 3 refer to the

training phase. Here, the initial sampling frequency is set and, thanks to the
spectrum analysis, the number B of filtering bands along with the bandwidth
are chosen.
Online acquisition starts with line 4. When W consequent samples are

acquired (line 6), for each band (from band 1 to band B) the signal is filtered
as indicated in Section 4.3 and energy values Ej are calculated according to
Section 4.4 (lines 8 and 9).
In line 10, the CDT is activated and, in case of detection, the estimate

tchange of the time instant the change started is found. If the output of
the CDT is equal to one, the procedure for the adaptation of the sampling
frequency is activated and its returned value is stored into fs.

The procedure for the sampling frequency adaptation (Algorithm 4.2)
works as explained in Section 4.6. Variable f lag serves as a condition for the
while loop and indicates whether we have to keep increasing the sampling
frequency or we have to stop; parameter k is used to increase the sampling
frequency of the same quantity at each iteration.

Algorithm 4.1 Adaptive Sampling Algorithm (W, d)
1: Take the Z initial samples of the process and store them into dataset;
2: Estimate fmax on dataset and set fs = c fmax;
3: Define band numbert B and band-pass ranges bandwidth;
4: while (1) do
5: Acquire the n-th sample and add it to dataset;
6: every W samples:
7: for (i = 1 : B) do
8: Filter the last W samples of dataset on i-th band-pass range

x̂ f il,i (t);
9: Calculate the j-th energy value Ej (b) =

´ ( j+1)W
jW

���x̂ f il,b (t)���
2

dt;

10: tchange = call procedure for Change Detection Test on Ej ;
11: if (CDT (Ej ) = 1) then
12: fs = Adapt Sampling Frequency(E, tchange);
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Algorithm 4.2 fnew = Adapt Sampling Frequency (E, tchange)
1: Split each band in two half;
2: bandIndexold = arg maxb

���avg(Eb (1, ..., tchange)) − avg(Eb (tchange, ..., tcurr ))���;
3: count = 0, f lag = 1, k = 1;
4: while (flag) do
5: fcurr = fs + kh fs;
6: B = B + n;
7: bandIndexnew = arg maxb

���avg(Eb (1, ..., tchange)) − avg(Eb (tchange, ..., tcurr ))���;
8: if (bandIndexnew = bandIndexold) then
9: count = count + 1;

10: if (count = 3) then . peak has not moved for three iterations
11: f lag = 0;
12: fcurr = fs + (k − 3)h fs;
13: else . peak has moved from bandIndexold to

bandIndexnew, aliasing!!!
14: bandIndexold = bandIndexnew;
15: count = 0;
16: k = k + 1;

4.8 An illustrated example
Figure 4.2 refers to the filtering process of the signal of Section 4.6 before the
change point n= 500. Here, where B has been set to 5 and a uniform division
has been adopted.
Figure 4.5 shows the signal spectrum before and after the appearance of a

new frequency peak fnew at t = 500. Here, fs is equal to 100 Hz and fnew
seems to be around 7 Hz. If the new peak is an aliased one, its actual value
can be f = |k fs − fnew |, with k ∈ N. We will see later on that we are
actually observing an aliased peak.
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(a)

(b)

Figure 4.5: Fourier transforms of a generic signal with new peak appearance:
Figure 4.5a is calculated before n=500 while Figure 4.5b reports the new
peak at fnew

After each detection, the mechanism to distinguish real peaks from aliased
ones is put into place. In the proposed example, the actual value of fnew is
93 Hz. Therefore, five iterations are necessary to reach the fixed point and
terminate the adaptation phase. Here h has been set to 0.6 and n has been
set to 3 (hence, three frequency bands are added every time the sampling
frequency is increased). The values of fcurr for each iteration are reported
in Table 4.1.
The peak at fnew stops moving after 5 iterations. Figure 4.6 shows the
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Table 4.1: Values of fcurr for each iteration

k fcurr
1 160
2 220
3 280
4 340
5 400

FFT for k = 1 and k = 2. It is important to notice that the FFT is not
calculated in the algorithm: it has been reported here for clarity reasons.
For larger values of k, the FFT is identical to Figure 4.6b.

Therefore, the current sampling frequency fs is set to fcurr = 220 Hz,
which is the first frequency of the adapting sequence to cover the Nyquist
limit.
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(a) Peak moves at 57 Hz

(b) Peak moves at his true position, 93 Hz

Figure 4.6: Two iterations of sampling frequency rescheduling
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5 Experimental results

This chapter presents the experiments carried on the datasets presented in
Chapter 1, along with their results. A description of each dataset will be pro-
vided (Section 5.1), as well as an indication of the figures of merit employed
to evaluate the performance of the proposed mechanism (Section 5.2). In
order to give a more complete evaluation of our approach, another adaptive
sampling algorithm ([BWCW13]) has been taken into account; its working
principle will be detailed in Section 5.3. Section 5.4 describes and explains the
results obtain for each considered dataset, while Section 5.5 will be dedicated
to general comments summarizing the work done.

5.1 Dataset description
Three datasets have been employed to evaluate the effectiveness of the pro-
posed approach: the first is a totally synthetic dataset, with an artificial
change introduced at a predefined time instant. The second dataset is a real
one, but an artificial change is introduced. Finally, the third dataset is a real
one, with actual changes at known time instants.

5.1.1 Synthetic dataset
The generated signal consists in the sum of fifteen sine waves with different
amplitude, whose frequencies range from 5 Hz to 998 Hz. The initial sampling
frequency fs is equal to 2000 Hz and some gaussian random noise is added
to the sine waves sum.

Frequency values and corresponding amplitude values are reported in Table 5.1.

Frequency 5 80 160 165 229 301 357 398
Amplitude 0.7 1 1.3 0.9 0.6 1.8 1.5 0.65

Frequency 480 561 678 680 858 980 999
Amplitude 0.4 1.18 0.98 0.5 0.28 1 1.25

Table 5.1: Frequencies and amplitudes of the synthetic dataset

The spectrum in stationary conditions is shown in Figure 5.1.
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Figure 5.1: The Fourier Transform of the synthetic signal composed of fifteen
sine waves

Signal consists of 105 points. At t = 5 · 104, a change is inserted: peak
at frequency 168 Hz moves to 364 Hz. This dataset models a frequency
shift within the signal’s frequency range, which doesn’t entail a change in
the sampling frequency but could not be detected without the spectrum
division.
A second version of the synthetic sinusoidal dataset has been designed and

employed to analyze a change in fmax. This time it contains only four si-
nusoidal components (frequencies equal to 5 Hz, 12 Hz, 21 Hz and 47 Hz),
the Nyquist frequency fN is equal to 50 Hz and the introduced change is
the appearance of an aliased peak at 67 Hz. It has been used to compare
the performance of the proposed approach with other existing approaches
presented in Section 5.3. The length of the generated signals varies from 102

to 106, these signals have been employed to test the efficacy of the frequency
adaptation phase and to measure the execution time of the considered algo-
rithms.

5.1.2 The Blue Whale Call
This second dataset is the moan of a Blue Whale call ([Pro08]). These
huge cetaceans make sounds and vocalizations for several different purposes:
among possible reasons there are sexual selection and individuation of to-
pographic features or prey location. A complete call is composed of a trill
followed by some moans. Only moan sounds are analyzed in the following.
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Figure 5.2: Pacific blue whale vocalization recorded by underwater micro-
phones off the coast of California

Figure 5.3: Moan from a blue whale call

Figure 5.2 shows a complete call from a Blue Whale, where the initial
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sampling frequency fs is 400 Hz. The real frequencies emitted by the whales
are actually too low to be audible from human ears and hence, in the original
dataset available online, they have been speeded up so that the sampling
frequency passes from 4 kHz to 400 Hz.
After isolatingmoan episodes (second, third and fourth peak in Figure 5.2),

the Fourier transform is computed and the spectrum is reconstructed in
Figure 5.3 : the moan call is composed of a fundamental frequency around
17 Hz and a sequence of harmonics, with the second harmonic emphasized.

A new frequency of 425 Hz is then added to the moan call. This frequency
is higher than 200 Hz (i.e., fN/2), so we expect to observe the aliasing phe-
nomenon and see the new peak within the spectrum. The amplitude of the
new frequency has been set to be of the same order of magnitude of the other
frequencies to simulate a plausible scenario.

5.1.3 ECG during tachycardia episode
The last dataset studied in this work concerns medical applications. Two
electrocardiograms of subjects affected by ventricular flutter, a form of tachy-
cardia which affects the ventricles and could be the prelude to a sudden
cardiac death, have been analyzed.
Normally, a resting adult human heart rate ranges from 60 to 120 BPM

(Beats Per Minute), which is equivalent to 1-2 Hz. Values of heart rate
greater than 120 indicate tachycardia, while in case of ventricular flutter it
can range from 160 to 300 BPM (2.6 to 5 Hz).
Some people who experience a high risk of heart failure need constant

monitoring of heart rate and other vital parameters. A lot of devices have
been developed in these last few years to measure heart rate ranging, from
the most accurate and sophisticated for people who are effectively at stake,
to the less accurate but still working heart rate sensors on smartphones or
watches. In both cases and, especially, when constant monitoring is needed,
power consumption becomes an important issue. The possibility of monitor-
ing the heart beat by sampling at a low frequency and observing abnormal
phenomena through aliasing, thus, could be of great importance and could
bring an effective improvement in applications which are aimed at monitoring
a patient’s heart up to 24h a day.
The original dataset is available at the Physiobank database ([GAG+00,

Gre86]). Only records #418 and #419 have been analyzed, because the
other records present also other types of arrhythmia. Figure 5.4 shows what
happens in real life to the ECG when ventricular flutter arises: the usual
shape of ECG (with clear definition of the QRS and T waves) is replaced by
a sinusoidal waveform with smaller period.
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5.1 Dataset description

Figure 5.4: Transition between regular heart rhythm and ventricular flutter

These records last about 35 minutes each and they are sampled at 250 Hz,
so that they contain about 500000 samples. In the first ECG, 60 episodes of
ventricular flutter have been detected, while in the second one the episodes
are 34. Table 5.2 shows the annotations available in the database, with labels
indicating whether the heart rate is normal or a ventricular flutter episode
is occurring.

The main signal has been divided to isolate each ventricular flutter episode
plus the period of regular heart rate immediately preceding it, therefore
obtaining more signals to work on. Moreover, it is better to work with one
single change episode at a time and to assume that, after the first detection,
the system is reset.

This dataset has been used to test the whole mechanism, including the
adaptation phase. Clearly, the sampling frequency cannot be increased
as data have already been recorded. Thus, all episodes have been under-
sampled, which means that only one sample each n samples of the original
signal has been kept to obtain a shorter signal simulating a lower sampling
rate. The value of n depends on the ratio between the original sampling
frequency and the desired one. Each time the sampling frequency has to be
increased, more samples will be taken into account. Figure 5.5 clarifies how
the sample selection is performed.
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Table 5.2: Partial annotations of ECG record 418, "(N" stays for normal heart
rate while "(VFL" indicates ventricular flutter

Time Sample # Aux
0:00.072 18 N
6:38.496 99624 VFL
6:45.996 101499 N
8:52.368 133092 VFL
8:56.152 134038 N
9:03.100 135775 VFL
9:06.512 136628 N
10:12.228 153057 VFL
10:16.460 154115 N
10:19.768 154942 VFL
10:25.164 156291 N
10:37.768 159442 VFL
10:42.064 160516 N
11:16.768 169192 VFL
11:19.228 169807 N
11:32.216 173054 VFL
11:34.692 173673 N
11:39.152 174788 VFL
11:41.612 175403 N
11:45.036 176259 VFL
11:51.472 177868 N
12:40.320 190080 VFL
12:44.996 191249 N
12:47.228 191807 VFL
12:50.780 192695 N
13:02.524 195631 VFL
13:07.176 196794 N
13:20.844 200211 VFL
13:22.536 200634 N
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Figure 5.5: Under-sampled signal: only the orange filled samples are taken
into account, while the blue ones are excluded.

5.2 Figures of merit
Giving a complete and accurate evaluation of the algorithm’s performance
is not an easy issue and, in particular, it is quite hard to give a precise
estimation of the energy consumed by a CPS without being biased by the
observed event’s dynamics.

Nevertheless, it is possible to find some figures of merit that provide a good
picture of the mechanism’s efficacy and, most important, can be compared
with other approaches.

The figures of merit employed in this work are the following:

I False positive rate (FP): a false positive is a false alarm, i.e., an er-
roneous detection: the algorithm notifies a change that has never oc-
curred. It is calculated as the number of false detections over the
number of experiments. False positive detection represent a problem
because they slow down the whole mechanism and might lead to inap-
propriate decisions.

I False negative rate (FN): a false negative is, quite intuitively, the miss
of an actual change. It is calculated as the number of missed detections
again over the number of experiments. There is a trade-off effect be-
tween the values of FP and FN: an application trained to react even to
small changes will result in a low FN rate, but this will automatically
result in a higher FP rate, and vice versa. Usually, FN rate tends to be
more dangerous than FP: in fact, a false positive usually affects per-
formance and entails costs, but a false negative may have more serious
consequences (as an example, imagine fire prevention system missing
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the surge of a fire). Therefore, depending on the application critical-
ity, it should be kept to zero. In general, it is preferred to lower the
expectations on FP, rather than risking a high FN;

I Detection delay (DD): all detection systems introduce a delay in the
identification of a change, which is the time that elapses between the
physical change in the real world and the detection notified by the
system. Of course, this delay should be the lowest possible, in order
to have a prompt reaction, but there is again a trade-off effect with
the FP rate, because a reactive application is more likely to raise false
alarms;

I Execution time (ET): expressed in seconds, it’s the time needed to run
the code and analyze data. The execution time should be as small as
possible;

I Sampling fraction (SF): this is a figure of merit typical of adaptive
sampling algorithms. It is defined as the rate between the number of
samples acquired by an adaptive sampling mechanism over the number
of samples acquired by another sampling approach over the same signal.
Usually, the term of comparison is the fixed-rate sampling. Naturally,
the smaller the rate, the more efficient the adaptive sampling algorithm
is. It is an excellent indicator of the algorithm validity because, when
considering a wide Cyber-Physical System, it is easy to recognize how
heavy is the impact of a reduction in the number of samples acquired by
each sensing unit. Of course, this reduction doesn’t have to reduce the
accuracy of the phenomenon representation, but it has an enormous
influence in the energy management of the whole system.

5.3 Alternatives for the comparison
To show the effectiveness of the proposed approach and have a term of com-
parison, it has been tested again a fixed rate approach and another adaptive
sampling approach called eSampling. The latter is an activity-based adaptive
sampling algorithms which guarantees that the Nyquist theorem is respected
and is described in [BWCW13].

Two datasets of Section 5.1 have been employed for the comparison: the
ECG database, which is interesting because it doesn’t have any artificially
added perturbation, and the second version of synthetic sinusoidal dataset
described in Section 5.1.1.
[BWCW13] has been chosen for a comparison because, like this work, it

is an adaptive sampling algorithm based on the Nyquist theorem. In fact,
it doesn’t rely on the forecasting of next samples as many other approaches
do, hence a comparison is more interesting. As explained in Section 2.3,
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this approach couples a frequency adaptation phase, based on the individ-
uation of the high frequency components of a signal through the Wavelet
Packet Decomposition, with a change detection phase monitoring sudden
variations. This second phase basically compares the difference between the
most recent acquired value and the reference value qRef , computed during
a training phase (performed when the observed phenomenon is stationary)
and representing the reference sequence. If the relative difference is larger
than a threshold, computed according to the desired confidence, a change
is detected. This approach is, hence, quite similar to the one proposed in
this work, although it doesn’t exploit the aliasing phenomenon and, most
importantly, it periodically calculates the wavelet decomposition, which is
analogous to a FFT in terms of computational load.

5.4 Results description
5.4.1 Effects of the number of bands
In order to have an idea of the accuracy and effectiveness of the proposed
approach, a preliminary analysis on the detection phase has been carried
out and, more specifically, the effect of the number of bands on the figures
of merit presented in Section 5.2 has been considered. These experiments
have been done on the first two datasets, where the change was introduced
artificially, hence the adaptation phase has not been considered in this first
analysis.

Choosing the correct number of bands is an issue of main importance for
the success of detection and plays a crucial role in determining precision and
cost of the proposed mechanism.

There is evident trade-off between the algorithm’s cost and its accuracy:
on one hand, many bands allow a better visibility as the granularity of the
experiment is finer, and shifts of smaller amplitude can be detected. On the
other hand, each new band implies the calculation of two vectors of size N
and S respectively, which clearly increases the complexity. Moreover, more
bands induce a higher probability of having a false positive.

Concerning the synthetic dataset, the signal spectrum has been divided
into 4, 5, 10 and 20 bands; W is set to 25 and tchange to 400 and submitted
to the univariate CDT described in [ABR11c, ABR11a, ABR11b]. This test
considers all bands independently and, as expected, the false positive number
increases with the number of bands, as shown in Figure 5.7b. At the same
time, Figure 5.7a shows that the mean detection delay decreases with the
number of bands, in agreement with theoretical premises.

Again, there is a trade-off also between the number of false positives tol-
erated and mean detection delay, as Figure 5.8 enlightens: in order to have a
small detection delay, the algorithm must be more reactive to small changes,
which entails a higher probability of false positive detections. Here, the
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smallest detection delay is equal to 269 samples, corresponding to 3.4 s in
the original signal x̂(t), while false positive rate is around 12% which is still
an acceptable level.

Secondly, the Blue Whale dataset has been analyzed to see how the detec-
tion phase works.
As expected, the inserted peak is reflected back as shown in Figure 5.6, in

total agreement with Section 3.2.
Clearly, in this case it is not possible to increase the sampling frequency

fs because data have been recorded already, but it is interesting to confirm
that aliased frequencies can be perfectly detected by the CDT, as well as real
ones.

Figure 5.6: Insertion of an extra peak at 425 Hz

As for the synthetic dataset, the 200 Hz spectrum is divided into 4, 5, 10
and 20 bands of equal width. W is 15 and t is 100, and the results are in line
with what expected. In this analysis there were only three available signals,
each of whom corresponding to a moan call in the original dataset, hence
mean values are calculated on three experiments.
Trends of detection delay and false positive rate are the same of the syn-

thetic dataset, as shown in Figure 5.7. For the DD, the values in case of
10 bands and 20 bands are the same. What is different is the false positive
rate (see Figure 5.7b): its value for the 20 bands case is twice the FP for 10
bands, while the DD is the same (7.3 samples, corresponding to 0.27 s). This
enlightens that 20 bands are clearly too much for these experiment: they are
useless in terms of detection delay and they considerably increase the PF
rate.
False negative rate is, again, equal to zero independently from the number

of bands.
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(a) Delay vs number of bands

(b) False positive rate vs number of bands

Figure 5.7: Performance of hierarchical ICI CDT varying the number of bands
on two different datasets.
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Figure 5.8: Mean detection delay over false positive rate

5.4.2 Detection and adaptation
The detection phase and the consequent adaptation phase have been deeply
tested on the ECG dataset presented in Section 5.1.
The two original ECG signals have been divided into “flutter episodes”:

after each occurrence of the ventricular fluttering the ECG has been split,
in order to have several sequences of normal rate samples followed by a
fluttering period, in which the new frequency peak appears.
Figure 5.9 shows the Fourier transform of one of the longest sequence,

with the most powerful peak at around 1.8 Hz and a second powerful peak
at around 3.75 Hz (225 BPM). Then, the signal has been divided into normal
heart rate and ventricular flutter, and the two corresponding spectrum figures
are shown in Figure 5.10a and Figure 5.10b respectively. The ventricular
flutter peak at around 3.75 Hz (225 BPM) is well visible and is the only one
present during the flutter occurrence.
For the filtering phase of this specific application scenario, the frequency

range in which there is any kind of activity is quite small, therefore, only
four bands have been considered. As stated before, bands should be chosen
adaptively in order to distribute energy density and to avoid the creation of
a single band in which the majority of the spectral energy is concentrated.
Thus, the values of the four bandwidths have been chosen as follows:

I Band 1: from 0 Hz to 0.5 Hz;

I Band 2: from 0.5 Hz to 1.5 Hz;

I Band 3: from 1.5 Hz to 2.1 Hz;

I Band 4: from 2.1 H to 3 Hz;
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This frequency division takes into account the actual distribution of signal’s
energy. Concerning this specific experiment, frequencies of regular heart
beating are well known in the medical community, as well as anomaly be-
haviors. Therefore, band distribution can be adapted to different situations
and monitored phenomena.

Figure 5.9: Fourier transform of the original ECG signal: two principal peaks
are well visible

(a) (b)

Figure 5.10: Fourier transforms of normal heart rate in Figure 5.10a and of
ventricular flutter in Figure 5.10b

These flutter episodes are sampled at 250 Hz but, in order to simulate the
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actual working principle of our adaptive sampling approach, they have been
under-sampled at 6 Hz. This results in a significant reduction of their length
and also, considering the integration phase described in Section 4.4 (which
here has been done on very small windows, W = 5), the episodes that remain
long enough for a useful analysis are only 23. This length problem would
clearly be eliminated with the collection of a dataset directly sampled at 6
Hz, in a real application.
On these remaining 23 sequences, the previously used hierarchical ICI

detection test does not perform optimally, because it is not designed to work
on very short sequences. Another problem is that, in most cases, flutter
duration is much shorter then normal heart rate signal’s one, so it is hard
for the test to recognize changes that occur just before the end of the signal.
Therefore, another CDT has been used in this section: the Multivariate

Change Detection Mechanism developed in [Tac15]. While working in of-
fline mode, this test considers all samples and all four bands at once, and
waits for the average value of energies to overcome a given threshold to raise
the alarm state. The threshold is defined from a statistical point of view.
Figure 5.11 shows an example for one of the 23 sequences, the threshold’s
value is depicted in red.
For the current dataset, online mode results almost always in a false pos-

itive detection: this is explained by the oscillatory dynamics of the data,
which would be leveraged by wider windows for energy integrals. Unfortu-
nately, in this case longer intervals leave only two sequences long enough to
run the test. It has to be noted that, on these two long sequences, the online
test performed very well and did not fail to promptly detect the change, as
(Figure 5.12) illustrates.
The overall performance of this test is definitely satisfying, given the data

stream intrinsic dynamics: false positive rate is around 30%, the average
delay is of 4.8 samples for the energy signal, which corresponds to a delay of
24 samples in the original signal (thus, 4 s). Like the previous experiments,
false negative rate is equal to zero.
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Figure 5.11: Statistic calculated by the multivariate change detection test,
offline mode

Figure 5.12: Statistic calculated by the multivariate change detection test,
online mode
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After a change is detected in the average value of the signal’s energy, the
sampling frequency has to be adapted in order to identify what kind of change
has taken place.
Therefore, sampling frequency is increased of a factor c = 0.17 and brought

to 7 Hz, as a consequence of the new peak appearance. As illustrated in
Figure 5.13a, fnew shifts rightward and reaches the value of around 3.25
Hz, in total agreement with the expectations. Another iteration of the
adapting process is carried out, and the sampling frequency is brought to
fs,2 = f s + 2c fs = 8 Hz, as Figure 5.13b shows. We know that the real peak
is at 3.75 Hz and, hence, we have reached the proper sampling frequency.
Anyways, another iteration is computed and, as the new frequency doesn’t
move, fs is set to 8 Hz.

(a) (b)

Figure 5.13: FFT of signal sampled at 7 Hz (Figure 5.13a) and at 8 Hz
(Figure 5.13b)

5.4.3 Comparison with alternative methods
As anticipated in Section 5.3, a comparison a with fixed-rate approach and
an alternative approach called eSampling of [BWCW13] has been done. The
comparison has been evaluated on the ECG dataset and on the second version
of the synthetic dataset of Section 5.1.1.

Sampling fraction
The first figure of merit that has been considered in this comparison is the

sampling fraction, which is the rate between the number of samples acquired
in the proposed method and the number of samples acquired by the other
mechanism employed for a comparison.
When comparing our spectrum based approach with a fixed-rate sampling

one, a first consideration is that the fixed sampling frequency has to be chosen
judiciously.
We have seen that the sampling frequency of heart rate in the ECG exper-

iment can be lowered from 250 Hz to 6 Hz for our case study, which leads to
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a reduction of acquired samples number of 97.6%. This result is astonishing,
but we have to point out that 250 Hz is a very high sampling frequency for
the original signal. Probably, it has been chosen in order to reconstruct the
waveform in the best possible way, as the MIT Malignant Ventricular Ar-
rhythmia Database has educational purposes and its ECGs serve as a term
of comparison for other studies.

Hence, we can assume that a standard application samples at four times
the Nyquist frequency, which is the case for most industrial applications.
This leads to a reduction of 81.3% in the number of samples, still a very
good result. We retain that a reasonable value to make a comparison for a
fixed-rate approach is 10 Hz, which about twice the Nyquist frequency and
tolerates the eventual arising of higher frequency peaks. This choice leads
to an average sampling fraction of 38% for the spectrum based adaptive
sampling.

eSampling alternates short periods of high frequency sampling, aimed at
detecting changes in the maximum frequency, with long periods of low fre-
quency sampling (see Section 2.3 for details). For this application, high fre-
quency has been set to 10 Hz, and low frequency to 6Hz, which doesn’t violate
the Nyquist limit during normal heart-beat. When ventricular flutter arises,
the low frequency is brought to 8 Hz. Clearly, the proposed spectrum based
adaptive sampling algorithm outperforms eSampling, as it avoids those pe-
riods of high frequency sampling and leaves to the change detection test the
responsibility to identify maximum frequency increase. Figure 5.14 reports
a comparison of the three approaches. The trend of the proposed approach
and that of eSampling is quite similar, this is due to the fact that for each ex-
periment a single episode is analyzed and the frequency range is very limited.
Anyways, they are not proportional to each other.
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Table 5.3: Performance comparison between SpectrumBased and eSampling

SpectrumBased eSampling
ECG Synth ECG Synth

mean detection delay (s) 4 1 12 29
false positive rate (%) 30 0 37 41

Figure 5.14: Number of samples acquired by the different approaches in each
ECG flutter episode

Change detection performance
The proposed approach and eSampling have been compared also on the

average detection delay and the false positive rate. Table 5.3 summarizes the
results for both the real ECG dataset and the synthetic dataset created on
purpose. Again, our approach proves to be more effective than eSampling.

Execution time
The execution time of both the proposed approach and eSampling algo-

rithm has been calculated through simulations on Matlab, where the length
of the original signal (expressed in number of samples) has been increased
from 102 to 106. The results are summarized in Table 5.4 and show an inter-
esting effect: for “short” signals, eSampling is quicker than SpectrumBased,
but for longer signal the situation is reversed and eSampling takes way longer
to terminate.
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Table 5.4: Comparison between execution time of SpectrumBased and eSam-
pling

number of samples SpectrumBased eSampling
102 0.514 0.011
103 0.260 0.170
104 0.422 1.724
105 6.164 26.808
106 22.978 98.513

Table 5.5: Execution time distinguished between pre-processing and opera-
tive phase

SpectrumBased eSampling
number of samples pre-processing operative pre-processing operative

102 0.154 0.360 0.001 0.010
103 0.167 0.093 0.002 0.168
104 0.200 0.222 0.003 1.721
105 0.448 5.716 0.006 26.802
106 3.589 19.389 0.088 98.425

The unusual trend can be explained as follows: SpectrumBased requires an
important data preprocessing phase, which is absent in eSampling. There-
fore, for short signals, it is penalized by the energy calculation step and
the filtering process. Moreover, errors arise in the 102 samples signal be-
cause of the limited number of energy values obtained. On the other hand,
when the length of the signal increases, the proposed approach outperforms
eSampling. One of the main contributions for this remarkable result is that
SpectrumBased avoids the Fast Fourier Transform calculation to estimate
the maximum frequency. Actually, eSampling computes the Wavelet Pack-
age Decomposition after each “burst” of high frequency acquisition, and this
puts at disadvantage its performance on the long term.

The analysis of the partial execution times (Table 5.5), which distinguish
the pre-processing phase from the operative phase, confirms the previous
explanation. While the time needed to pre-process data in eSampling grows
very slowly and has an almost insignificant impact on the total ET, pre-
processing time fore SpectrumBased reaches the 46% of the total execution
time for signals of 103samples and its value is always much greater than for
eSampling. On the other hand, when the length of the signal increases, the
pay-back of the time invested in pre-processing data becomes evident, as the
total ET of SpectrumBased is almost the 25% of the one of eSampling.
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5.5 General comments
Previous analyses enlighten the many positive contributions of the proposed
approach, along with some other aspects that leave place to further develop-
ments.
The first analysis on the detection performance given the number of bands

confirms the existence of a trade-off effect between the accuracy of the de-
tection and the false positive rate. Actually, more bands reduce the mean
detection delay, but increase false positive rate. Therefore, the choice of this
parameter is still left to the user and is application-specific, because even
when observing the main phenomenon an application might concentrate on
having very accurate result and a potentially high false positive rate, or vice
versa.
The analysis of the adaptation phase, as well as the comparison with the

alternative approach, show the excellent performance of the proposed so-
lution under many aspects. The considered figures of merit for the ECG
experiment reveals to be satisfying, and they could be further improved with
a dedicated monitoring system and a specifically collected dataset. In fact,
the FP is quite high, but this is due to the shortness of some fluttering
episodes and the impossibility to integrate on wider windows, which would
leverage the signal’s oscillations.
The comparison with eSampling points out that the proposed approach

reveals to be more efficient in terms of acquired samples number, execution
time and of promptness of detection. This is due to several factors: con-
cerning the sampling rate SR, our approach outperforms the other one as
it avoids the cyclic phases of high frequency sampling. Here, the sampling
frequency is increased only when a change is detected, not in advance, as
eSampling does. Promptness of detection depends on the efficiency of the
CDT employed and, even if the development of the CDT itself is not the
issue of this thesis, a more accurate test has been considered.
The analysis on the execution time enlightens that the proposed mech-

anism introduces a small overhead for short signals, for which the ET is
slightly greater than eSampling. On the other hand, for longer signals, this
method proves to outperform the other one. This is due to one of the main
contributions of the proposed approach: actually, it avoids the heavy cal-
culation of a FFT at each cycle, relying on the computation of the energy
values instead.
We believe that an evaluation of the proposed spectrum based algorithm

portability on real embedded systems was necessary, because it has been de-
signed to work on CPS units with limited computational resources. Chapter 6
illustrates an example of application on a real CPS unit.
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mechanism on embedded systems

6.1 Implementation and porting on the dedicated
system

The mechanism proposed in this work has been ported on a real embedded
device, the sensing unit of a CPS. The employed device is a programmable
board and a sensor expansion, which can be programmed through an online
compiler provided by STMicroelectronics.

The idea behind this experiment was to test the applicability of the pro-
posed approach on a real system, subject to memory and calculation power
limitations. Despite the fact that some simplifying assumptions on the pro-
posed algorithm have been made, the results are positive and show how the
considered algorithm can actually be exploited by an embedded system being
part of a CPS.

6.1.1 The considered embedded system
The components employed for this experiment are the Nucleo board STM32F411
and the sensor expansion IKS01A1. The board communicates with the PC
through a USB port. The expansion is equipped with a temperature sen-
sor, a humidity sensor, a pressure sensor and three accelerometers. In this
case, only the temperature sensor has been taken into account, but any other
physical quantity would have worked the same.
The sensor started sampling at a predefined frequency, collecting the first

samples used for the training phase. Without any loss of generality, these
samples have been analyzed with Matlab to reconstruct the signal spectrum
and tune all parameters accordingly. Actually, the temperature values inside
a house at daytime don’t change very much and the spectrum figure outlines
only very low frequencies. This is the reason why a sinusoidal component
has been added artificially, in order to give some dynamics to the signal.
Moreover, two different types of changes have been introduced to evaluate
the system reactivity: an increase of the temperature through the emission
of warm air, and the introduction of another sinusoidal component at a given
instant. In both cases, the mechanism has promptly detected the change.
Figure 6.1 shows the Nucleo components, with the programmable board

(A) and the sensor expansion (B). The sensing device is connected to the PC
through a USB cable.
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Figure 6.1: Nucleo F411 board (A) and its expansion with sensing devices
(B).

6.1.2 Assumptions
Some simplifying assumptions on the proposed mechanism have been made
due to the necessity of avoiding computational overhead and, secondary, for
time constraints.

First of all, the signal has not been filtered and split into several bands, but
it has been considered as a single frequency band instead. Actually, as the
idea here was to have a proof of concept for the algorithm portability, a single
band interested by a change was considered. If necessary, filter banks could
be considered on the embedded device, depending on the specific application,
in order to manage the frequency bands and could be activated according to
the process needs.
Without any loss of generality the Fast Fourier Transform calculation of

the training phase has been calculated on Matlab.
Finally, the change detection test employed is slightly different from the

one used in the previous chapters, as it doesn’t have an implementation in
C++ and hasn’t been published yet at the time of this experiment.
All these assumptions clearly simplify the overall mechanism proposed in

Chapter 4, but they surely don’t invalidate the experiment, as the core of the
proposed mechanism is maintained: all samples are integrated over time, a
change detection test runs on the energy values, and the sampling frequency
is adapted with the same mechanism of the offline synthetic experiments,
although the number of bands is not increased.
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6.2 Results
As anticipated before, the results are encouraging for this experiment and
the developed application revealed to be able to detect changes in the envi-
ronment.

In the first experiments, the temperature values of the area around the
sensor have been increased, and the application has immediately spotted the
change. After a first increase of the sampling frequency, though, its original
value has been restored, as no aliasing phenomenon has been detected (the
anomaly wasn’t due to a change in the maximum frequency contained in the
spectrum). Figure 6.2, obtained with Matlab, shows the Fast Fourier Trans-
form before and after the change: no significant difference can be identified,
since the spectrum itself has not changed.
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(a) FFT before tchange

(b) FFT after tchange

Figure 6.2: Fourier transforms of temperature signal before change in
Figure 6.2a and after change in Figure 6.2b

In the second experiments, a sinusoidal component has been introduced
at t = 200 s. The original sampling frequency was 1 Hz, and the lower sine
wave was at f = 0.3 Hz. The high frequency peak was at 150.4 Hz, resulting
in aliasing peak visible at 0.4 Hz. Figure 6.3 shows the two well visible peaks.
The detection delay depends on the window length W, as all W samples

are aggregated to obtain the energy value. Hence, the minimum detection
delay is W/ fs. In this experiment, the delay doesn’t exceed this lower bound,
hence it is almost 10 seconds in the worst case scenario for each detection.
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(a) FFT before tchange

(b) FFT after tchange

Figure 6.3: Fourier transforms of temperature signal before change in
Figure 6.3a and after change in Figure 6.3b
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The reduction of the energy consumption in Cyber-Physical Systems is a
crucial issue for several applications that are becoming essential in today’s
industrial and social reality. As these systems are expected to grow even
more in the next future, it is fundamental to work on energy saving and
battery preservation both from an environmental and economical point of
view.

In this chapter the main characteristics of the proposed mechanism are
summarized. Section 7.1 describes the contribution of our methodology to-
gether with its limits, while Section 7.2 discusses some possible future works.

7.1 Contributions and limits
Many existing energy saving approaches consist in adaptive sampling tech-
niques at the sensing unit level of CPSs and some of them also employ a
change detection test to improve performance.

For the first time, the proposed approach exploits the aliasing phenomenon
to monitor possible changes in the maximum frequency contained in the
signal. In addition to this, the proposed approach integrates the idea of
monitoring the signal in the time domain instead of the frequency domain,
through the calculation on the energy values. This approach avoids the use
of statistical models aimed at forecasting the next samples, and, at the same
time, avoids the heavy computational load due to the FFT.

The problem of peak’s shift undetectability, introduced by the integration
of the energy over time, is overcome by the division of the spectrum into
frequency bands. Actually, if the proper number of bands is introduced, a
peak moving within the original frequency range is likely to leave one band
and entering another one, modifying the energy values of both.

Like in most of the real world applications, the maximum frequency of
the signal and, consequently, the Nyquist frequency, are supposed to be
unknown. If, at any time, this frequency should exceed the current sampling
frequency, this approach is able to detect a change through aliasing and
adapt the sampling frequency accordingly.

The whole process proposed in this work integrates all these aspects, thus
providing a complete solution for adaptive sampling and energy consump-
tion management. Experimental results have demonstrated its effectiveness
compared to fixed-rate approaches and to another algorithm existing in the
literature.
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Moreover, the mechanism has been carried on a real embedded device,
which proves that it represents a viable solution that could be employed in
real world applications.
One of the principal limits of this approach is, however, the choice of some

parameters which is still left to the user and is application-specific, as well
as the need to perform a preliminary spectrum analysis. As stated in the
previous chapters, bands need to be chosen adaptively to avoid an unbalanced
energy distribution among them; therefore, an initial training phase is needed
for band configuration, as well as for training the CDT. Nevertheless, this
happens in most of the existing approaches and it is totally reasonable to
suppose that most of the specific real world application provide a first phase
of inspection in stationary conditions.
Another limitation is the trade-off effect between the detection delay and

the false positive rate introduced by the number of bands in which the spec-
trum is divided. Actually, a high number of bands entails a high detection
accuracy, because even minor shifts can be detected. On the other hand,
each new band introduces higher probabilities of false alarm raising, which
is an unavoidable phenomenon of every change detection mechanism.
Finally, the fact that the signal is integrated over sliding windows intro-

duces a lower bound for detection delay: in the worst case scenario, which is
a change occurring at the very first sample of a new window, the detection
delay will be of W samples at least.

7.2 Perspectives for future work
The directions for future improvements are various, from both theoretical
and implementative perspectives. We would like to explore:

I a more articulated mechanism to reschedule sampling frequency after
change detection, possibly avoiding the activation of new frequency
bands, which might be unpractical in a real installation;

I the systematic utilization of multivariate change detection tests, which
should leverage the phenomenon of false alarm raising due to the in-
crease of the band number;

I a wider exploration of the type of filter employed, which could be
application-specific;

I the collection of a more appropriate dataset for ventricular flutter de-
tection, or for any other phenomenon showing the sudden appearance
of a higher frequency. We are convinced that this would confirm the
effectiveness of the proposed approach and improve the results on the
figures of merit.
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I the design and development of an ad-hoc system to test the proposed
approach on a real observed phenomenon: in this work, simulations and
experiments have been carried out on existing datasets and brought on
a real embedded device in a simplified version; it would be interesting to
actually build a CPS to test the improvement given by the application
of what has been analyzed so far in this thesis;

I the integration of the proposed approach with a network protocol to
better distribute resources over the interested area. In effect, this thesis
studies a method to reduce energy at the sensor level and does not con-
sider the possible intervention of the sink or of the remote server. An
exploration of this second aspect would lead to a mechanism including
every aspects of a Cyber-Physical System and proposing an all-round
approach.

Our work was inspired by the idea of improving the existing energy con-
sumption management methods. An integrated approach considering sev-
eral aspects of power reduction can be a valid alternative to the existing
ones and contributes to the further development and employment of these
arising technologies.
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