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Abstract

This thesis addresses the field of multirobot patrolling, where a team of mobile
robots is deployed in an environment of interest with the aim of keeping under ob-
servation a set of predefined locations. In this field of research, a typical assump-
tion is that robots behave as autonomous entities capable of performing a “cleaning
action” once a problem in one of the locations to patrol is detected. However, there
are some realistic mission scenarios, in which the deployed robots cannot identify
a particular problem or cannot autonomously act in order to solve it (think about a
leak of contaminants or the presence of an intruder), and in which it is more realis-
tic to assume that the data must be reported to a base station to assess the situation
and decide what to do. In such applications, most of the time, human operators
supervising the evolution of the mission, working at the base station, are only able
to identify the problem through the data acquired by the robots. Moreover, in many
mission scenarios, only some regions of the environment are covered by a commu-
nication infrastructure able to allow message exchange with a sufficient bandwidth
between the robots and the base station. In this thesis we want to propose and
evaluate some patrolling strategies in such environments in which communication
is restricted to some regions only. We first extend the classical multirobot persis-
tent patrolling framework, and the related evaluation metrics, in order to account
for the presence of a limited number of such “communication zones”. Then, we
present some centralized and distributed patrolling strategies we devised to deal
with this new communication-restricted patrolling setting. We implement the pro-
posed strategies within the Robot Operating System (ROS) framework and evaluate
them in simulation in a number of different settings.
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Sommario

Questa tesi si colloca nell’ambito del pattugliamento multirobot, in cui una squadra
composta da più robot, mobili e autonomi, ha il compito di visitare continuamente
un ambiente, con il compito di tenere sotto osservazione alcuni luoghi di interesse.
In queste applicazioni, solitamente, i robot vengono considerati entità autonome
capaci di far fronte a un problema rilevato in una delle aree da pattugliare. Es-
istono però scenari in cui può accadere che i robot impiegati per la missione non
siano in grado di identificare un problema o non siano in grado di risolverlo (ad
esempio una perdita sostanze contaminanti o la presenza di un intruso). In tali
casi è perciò più realistico supporre che i robot debbano riportare i dati acquisiti
durante la loro esplorazione ad una base station, dove gli operatori umani che su-
pervisionano l’andamento della missione sono in grado di identificare un problema,
grazie ai dati raccolti dai robot. Inoltre, può anche accadere che la comunicazione
sia consentita solo da alcune regioni dell’ambiente, poichè è possibile che solo in
queste specifiche regioni l’infrastruttura di comunicazione sia in grado di garan-
tire una sufficiente larghezza di banda che permetta ai messaggi inviati dai robot
di raggiungere la base station (e viceversa). Con questa tesi vogliamo presentare
delle strategie di pattugliamento che permettano ai robot di completare la mis-
sione in ambienti in cui la comunicazione è possibile solo nelle aree appositamente
adibite per essa. Per prima cosa, abbiamo esteso il framework del tradizionale pat-
tugliamento multirobot e le relative metriche di valutazione in modo da prendere in
considerazione la presenza di un numero limitato di “zone di comunicazione”. Suc-
cessivamente, abbiamo implementato delle strategie distribuite che i robot possano
seguire per portare a termine la missione nel nuovo framework. Queste strategie
sono state implementate usando il framework Robot Operating System (ROS) e
sono state valutate tramite una serie di simulazioni che prendono in considerazione
diverse situazioni.
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Chapter 1

Introduction

In the last few years, a lot of effort has been devoted, in the robotics and AI com-
munities, to the study of effective patrolling strategies in different settings and
under different assumptions. More specifically, “to patrol” means to walk or travel
around an area, at regular intervals, in order to protect or supervise it. In this con-
text, the term “persistent” is added to underline that robots must continuosly patrol
the environment, for the entire duration of the mission, in order to periodically
cover the whole area. In the classical formulation of the multirobot persistent pa-
trolling problem, a team of robots is deployed in an environment represented as an
undirected, weighted graph, with the aim of minimizing the time between two sub-
sequent visits to the same location (vertex) to be patrolled. The main performance
metric measure used to quantify coverage received by a location is thus idleness,
defined as the time elapsed since that location has received the visit of a robot [1].
Evaluation metrics related to this notion, such as average and worst-case idleness,
have been introduced and investigated for different patrolling strategies and in a
number of different conditions [1–5].

The implicit underlying assumption of these approaches is that the deployed
robots have the possibility of identifying a particular problem in any vertex they
visit, and of autonomously act in order to solve it. However, there are mission
scenarios in which this assumption does not hold, think about a leak of contami-
nants or the presence of an intruder. For this reason, in these cases, it is realistic to
assume that the data collected by the robots must be reported to a base station to
assess the situation and decide what to do, as most of the time, in such applications,
the human operators supervising the evolution of the mission, who are working at
the base station, are only able to identify the problem through the data acquired
by the robots. If one thinks about possible existing communication infrastructures
that could be exploited by the robots to send reports back to the base station, such
as tactical networks [6] or even cellular networks [7], it could be the case that only



some regions of the environment are covered by a sufficiently strong signal. The
presence of such “communication zones” in the environment to patrol has been
recently investigated in [8]. In that work, the focus is on centrally building a sin-
gle inspection tour for the team of robots with the aim of minimizing the time lag
between the visit of a location and its report to the base station.

In this thesis, we propose new distributed strategies to fulfill the patrolling
task in such communication-restricted environments. Beyond a centralized strat-
egy (calculated at the base station) that does not scale to realistic-size settings, we
propose two distributed strategies. These strategies rely on the robots calculating
the plan they must follow by themselves, using the base station only as a collector
for informantions essential to the computation of the plan. Moreover, they are on-
line, and hence particularly suited for coping with unpredictable events like, e.g.,
robots interfering with each other while executing their planned paths, or tempo-
rary unavailability of a communication link with the base station. The objective
of the team of robots is to minimize the average graph communication idleness.
The classical definition given in [1] describes the idleness as the time elapsed be-
tween two consecutives visits of a vertex. This definition does not fully fit in our
communication-restricted framework beacause it does not take into account the
restrictions on the possibility of communicating. For this reason, we extend this
concept to communication idleness, defined as the time elapsed between two differ-
ent reports to the base station on the same vertex. In this way, both the time of visit
of a node and that of its actual communication to the base station are considered.

In order to model the communication-restricted environment in which we de-
velop our framework we adopt the representation used in [8]. In this work the
environment is discretized by an undirected graph in which vertices represent all
the locations robots can visit, while edges encode physical connections between
them. The vertices are divided in two categories: m-type vertices, representing the
locations the robots must monitor, and c-type vertices, representing the locations
from which it is possible to commununicate. Notice that this two sets are not nec-
essarily disjoint. Even though we use the same discretization, the objective of this
thesis differs from the one in [8] where the patrolling problem was solved in a cen-
tralized way, by the base station. Instead, the distributed strategies we develop are
based on the interaction between robots and base station, which is possible only in
the c-type vertices. Once a robot visits a c-type vertex, it queries the base station
on the current values of the vertex communication idlenesses and on the plans its
teammates are currently following. After having received the information it needs,
it compute its own plan, accordingly to the strategy it is using: a reactive one,
leading it to the node displaying the highest vertex communication idleness, or a
strategy enumerating all possible plans and choosing the one that guarantees the
lower average graph communication idleness at the end of its execution.
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Finally, the proposed patrolling strategies are implemented within a Robot Op-
erating System ROS architecture, and ROS/Stage simulations are run to shed light
on their effectiveness. In order to test our system and the implemented strategies
we carried out several experiments in three environments. The main objective of
these experiments is to compare the distributed strategies and their performances in
the different settings, not only among themselves, but also against the centralized
strategy. The results obtained proved that the distributed strategies we introduce
in this thesis perform as good as the centralized one, even if they are in general
sub-optimal, lowering down the computational load for the calculation of the joint
plan by dividing it among the robots in the team.

Since our communication-restricted framework has not been fully explored,
there is still work to do. Possible future work could investigate new distributed
strategies or focus on implementing a good recovery strategy, in case a message is
lost or a robot of the team breaks down.

The structure of this thesis is the following: In Chapter 2 we discuss a num-
ber of works that are related to ours and that were of inspiration for this study. In
Chapter 3 the model of our system is discussed, together with a more formal def-
inition of the problem we are dealing with. In Chapter 4 we introduce centralized
and distributed strategies we develop to solve the patrolling task, pointing out their
differences. In Chapter 5 the software architecture used to implement the strategies
is presented. In particular, we first give a short overview of the ROS framework
and the Stage simulator, in which we build and test our system, and then we give
the details of the implementation of the architecture. In Chapter 6 we show the
experiments we perform to test our framework and compare the patrolling strate-
gies, along with the obtained results. In Chapter 7, we conclude by summarizing
the purposes and the final evaluations of this thesis. Some suggestions for future
works are also proposed.

9



10



Chapter 2

State of the art

Persistent multirobot patrolling is a rather modern issue in the field of robotics and
multiagent systems. During the last years a variety of strategies and algorithms
have been developed to try to find proper solutions to this problem which, is far
for being trivial, given the fact that its solution isn’t univocal but it may depend on
the assumptions of a specific setting. There are in fact a lot of aspects that play an
important role in determining the outcome of the patrolling task.

First of all, there are different kinds of possible discretizations of the environ-
ment that robots have to patrol. The representation of the environment can influ-
ence the choice of the algorithm used for the motion of the robots and also the kind
of monitoring we want to perform. The constraints imposed to the robots are an-
other important element that can differentiate the strategies. They can include both
physical limitations for the robots, such as the maximum physical velocity reach-
able or battery level restrictions, and constraints on the plan they have to follow,
that can be subjected to communication constraints or time-budget constraints. The
performance metric used to evaluate the final results is another key factor to point
out the differences between patrolling strategies. Also the presence or absence of
adversarial entities can be significant for the final result.

The purpose of this chapter is to present the main features differentiating from
one work to another, mainly dividing the relevant literature in two big categories of
algorithms: centralized and distributed. The reason of this choice is to better un-
derline the original contribution of this thesis: working to find a distributed strat-
egy and compare it against existing centralized ones in a novel communication-
restricted patrolling framework. A more comprehensive summary of all features
found in the literature of multiagent patrolling can be found in Figure 2.1 at the
end of the chapter.



2.1 Centralized patrolling strategies

Centralized patrolling strategies are those that rely on a central entity to compute
the plan that robots have to follow to fulfill the patrolling task. The ability of
producing the best plan possible is entirely in this coordinator and what robots
have to do is simply to follow its instructions and complete the assigned plan.
What they have to take care by themselves is, most of the time, path planning with
obstacle avoidance. Most of the works encountered during our literature review
follow this strategy. As communication is an important feature for us, we decided
to organize the presentation of the following works presenting the ones in which
communication is not modeled, or not needed, in the first place, and leaving the
only centralized work we examined that models it as the last one.

In [2] Chevaleyre provides two examples of centralized planning strategies for
the patrolling problem, aiming at continuously visiting all the graph vertices fol-
lowing a predefined path, minimising the idleness of visits to the locations. The
idleness is defined as the amount of time elapsed since two consecutive visits to a
vertex, as introduced in [1]. The proposed startegies are: cyclic strategies, aug-
mented with an heuristic so that they compute a Travelling Salesman Problem
(TSP) cycle (which is proven to be optimal for one robot performing the task), and
partitioning strategies. Cyclic strategies starts and ends in the same vertex while
partitioning strategies divide the environment and assign each patrolling region to
a different robot, with the path robots have to follow in their region being cyclic
too. Althought the main goal of the paper was to find a proper bound for these
two different techniques, in terms of worst-case idleness, rather than to compare
them, it is still possible to do so. First of all, the discretization of the environment
done in this case is through an unidirected graph whose vertices are locations in the
environment and edges represent the physical topology of the environment. Since
the graph is metric, the cost associated to each edge represent the distance between
vertices, which corresponds to the time taken by a robot to move, assuming uni-
form robot speed. No particular constraint is imposed on the robots except the one
that guarantees a fixed distance gap between them while following the same cyclic
path. Communication issues are not addressed in this work. To compare the per-
formances of the strategies, in particular of the cyclic ones, in different settings, the
choice of which vertex visiting next is performed through two different approches:
the conscious reactive one, in which next vertex in the plan is the one with max-
imum idleness among each robot local neighbours, and the cognitive coordinated
one, in which next vertex is the one having highest idleness in all the graph.

In [9] the objective is guaranteeing that each target is visited at the same opti-
mal frequency. This is once again obtained following minimal costs cyclic paths.
Spanning trees are used to generate the cyclic paths in uniform grid-based terrains.
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Also in this case robots need to move along the path in equidistant relative posi-
tions. The limitations they are subjected to are mainly velocity limitations while
the important constraint on the whole strategy is that each point must be visited at
the same frequency. There is no need to communicate for the robots in this work as
well. A cost is associated with each point and direction of the terrain, making the
grid directionally non-uniform. The solution is then based on minimal Hamiltonian
cycles that guarantee maximal uniform frequency in the cycle. The main feature of
this strategy is that it is robust to the number of robots following it: as long as there
is at least one robot working properly, uniform frequency of the patrolling task is
will still be achieved.

Another interesting work is [10]. Here the objective is to periodically visit a
discrete set of predefined sites, with varying priority or visit frequency guarantees.
These periodic visits are planned in a flexible and robust way in order to face losses
of robots or battery problems. The framework for this problem is the one of the
Routing Problem with Time Windows, a variant of the Vehicle Routing Problem in
which multiple robots need to visit all vertices in a graph with the constraint that
each vertex must be visited within a certain time window. Like in [2], the edges of
the graph specify the traversal time from one vertex to another and define the basis
of potential routes, but in this case the graph is directed. In this case too, as in [9],
communication is not needed. Introducing the time windows in the graph is done
in steps: each site priority level, possibly being high, low, or medium, induces a re-
quired period between site visits. This is implemented as a time window constraint
on the visit of each node. The deadlines for reaching a site are modified based on
the time since the site was last visited. Finally, in order to incorporate longer patrol
horizons, copies of the nodes with offset time window constraints corresponding
to their required visit periods are introduced in the graph. As multiple visits to the
same vertex are allowed and inevitable over long periods of time, the problem may
grow very quickly and global optimality is given up in favour of the local opti-
mization of a series of more tractable problems by introducing a receding-horizon
framework. Once this variation of the routing problem is considered, the result is a
set of routes at minimal and equal costs covering all vertices: this means that what
is actually achieved is a set of Pareto-optimal solutions with increasing costs and
decreasing times.

A non linear extension of the orienteering problem is developed in [11], which
is then used to plan informative paths for persistent monitoring of the environment.
The paths used are, once again, cyclic as robots must leave and return to a fixed
base station. Communication is not considered: the constraints on the strategy are a
limited time budget to complete the task and the need to have tours of a predefined
length. The objective is to make each robot follow the planned path whose total
cost must not exceed the given travel budget. Robots must visit as many vertices
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as they can to maximize the amount of collected information, measured through a
reward function. Like in [2] and [10], a graph is used to model the environment.
Robots can move between any two vertices with a cost proportional to the distance
between them.

Another graph-based work that is important for this thesis is [8], here a fleet of
unmanned aerial vehicles (UAVs) must accomplish the task of cyclically patrolling
an environment represented as a unidirect graph in which vertices are locations of
the environment and edges represents their physical connections. In this model,
robots move on the graph by covering the edges. The interesting difference of
this work, with respect to previous ones, is that communication plays an importat
role. A communication infrastructure does exist, providing only some regions of
the environment with a communication link to a mission control center. The ver-
tices of the graph are divided into two groups: m-type vertices, that robots need to
monitor and report, and c-type vertices, from which robots can communicate with
the mission control center. The main goal is to compute a joint patrolling strategy
that minimizes the communication latencies, defined as the delays between the in-
spection of a location of interest and its report to the mission control center, taking
the average latency of an m-type vertex as the performance metric for a tour. The
constraint each joint plan must satisfy is a time constraint, like in [11]: a walk on a
graph assigned to a robot must be completed not exceeding the given time budget.
Two different strategies have been used to solve this problem: a mixed integer lin-
ear programming approach, and an heuristic algorithm. The latter tries to satisfy
coverage by building an initial budget-compliant walk on the graph for each robot.
Then, if an initial feasible solution is found, local moves are applied to lower down
the value of the objective function. The results obtained through this work show
that, in the case of the mixed integer linear programming, an optimal fomulation
is possible but doesn’t scale properly. Ont the other hand, the heuristic approach
is more scalable and it can be seen that robots do not visit many m-type vertices
withouth first passing in a c-type vertex and not all c-type vertices are visited, being
too far away from the targets. Moreover, it can be noticed that increasing the time
budget leads to an improvement of the communication latency.

All the papers discussed so far aim at finding the best strategy in non-adversarial
settings, since the patrolling task is carried out to monitor target vertices without
adversarial entities to be detected and neutralized. Although this thesis does not
consider it, there are important works on adversarial settings that need to be cited.

In [12], a reactive motion plannig strategy is proposed to maximize the area
covered by sensors mounted on each UAV, to provide persistent surveillance, to
maintain high sensor data quality, and to reduce detection risk. This risk can be
modeled as a costmap over a grid representation of the ground level. UAVs need
to fly at higher altitudes to reduce the probability of being detected over areas with
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high ground-level risk. Persistency of surveillance is achieved by giving priority
to the regions displaying the largest wait time, defined as the elapsed time since
the region was last surveyed. Scalability is obtained by avoiding explicit coordina-
tion among the UAVs. Communication is not modeled and is needed only between
UAVs and the central planner. The cost function used used to build the costmap is
based on an uncertainty measure that the planner keeps updated. This uncertainty
embeds the regions that have been surveyed and the time in which they were sur-
veyed; the longer a region is not visited, the most this uncertainty increases. It has
been observed that the planner adjusts the altitude of the UAVs only in a second
stage, after the persistent area coverage has been carried out, to minimize the risk
while maximizing the sensor data quality.

Another interesting result can be found in [13], where UAVs are used to local-
ize mission-related enemies. The innovation of this work lies in the representation
of the environment: probabilistic quadtrees extended by adding stochastic arrivals
of intruders are used instead of uniform grids. The results obtained confirm the
usefulness of this approach. When an enemy enters the environment, the patroller
gets a penalty that linearly grows over time and is proportional to the importance
of the area the intruder broke into. In order to stop paying the penalty, the patroller
needs to find out where the intruder is and eliminate it. Arrivals of intruders are
not immediately detected but need to be searched by the patroller, based on the
prior knowledge on the probability that intruders are located inside each cell. The
objective is to minimize the penalty occurred over time by minimizing the wait-
ing time, defined as the interval of time between the moment in which an intruder
breaks in and the moment in which it is detected and removed. In order to do so,
each robot must focus on areas in which an attack is more likely to happen. The
strategy used by the patroller equally splits the available time among sweeping, a
quick gross-grain reconnaissance of the environment to identify regions that are
likely to have been attacked, and searching, the actual elimination of intruders, us-
ing weighted density. The result is that the sweeping part is done relatively quickly
and no intruders are left in the area.

A more game theoretic approach can be found in [14]. This approach allows
for the development of patrolling strategies in which the possible actions of the
intruder are taken into consideration when deciding where the robot should move.
Usually, the intruder can hide and observe the action of the robot before breaking
into a location. This model leads to to the adoption of a leader-follower solution
concept, where the leader decides to follow a strategy, and the follower acts as a
best responder, given the chosen strategy. In the context of this work, the leader
is the patroller and the follower is the intruder. Even though this work is mainly
theoretical and refers to a single robot performing the patrolling task, it is inter-
esting as it presents an approach to compute optimal leader-follower strategies in
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environments with arbitrary topologies. The problem of findind a leader-follower
equilibrium is reduced to a mathematical programming problem, and the final re-
sult this work shows is that the patroller strategy, found at such equilibrium, is the
optimal strategy for the mobile robot.

2.2 Distributed patrolling strategies

This second family of stratefies eliminates the need of the central coordinator in
deciding the plans the robots have to follow: each robot computes its own plan to
fulfill the task.

In [4], the main duty of each robot is to observe some features of the envi-
ronment by means of on-board sensors. The environment is represented through
a patrol graph, with vertices being the different poses (considering both position
and orientation) of targets in the environment, and a cost function denoting the ex-
pected travel time for each edge, according to the capabilities of the robots. The
cost of a path is given by the sum of the costs of each edge like in [2] and [10].
It is interesting to notice the difference between this type of graph and the com-
monly used topological graph: in a topological graph vertices are just locations,
while in the patrol graph they are poses. Moreover, vertices in the patrol graph
are a subset of the map topological vertices, which means that each patrol ver-
tex must be reached through the map topological graph; and edges in the patrol
graph are mapped to paths in the map topological graph. Since cyclic paths are
used, as the patrol graph is fully-connected, the main constraint on the plan is that,
like in [2] and [9], two subsequent robots must keep a constant distance between
them. The performance of the system is measured using the concept of vertex
idleness as described in [2], measuring both the average idleness and its standard
deviation since the actin execution is non-deterministic. Contrarily to [2], interac-
tion between robots is now considered as it may have a significant impact on the
navigation performances and on the mission objective. The plans synchronization
mechanism is based on communication between two consecutive robots in order to
maintain the minimum distance: each robot sends to the following robot the time
it has reached each patrol vertex, and the latter robot decides to stay on its current
position if the time it expects to spend for reaching the next patrol vertex causes
the idleness of that vertex to go below the desired average idleness. In this way,
the bandwidth requirements of the communication remain very low. To prove the
validity of the system, both linear environments (not having loops in the topolog-
ical map but allowing the patrol graph to be cyclic), and cyclic environments are
taken into consideration. Moreover, as already done in [2], a comparison with the
partition strategy is made. In both cases, the cyclic strategy is proven to be more

16



effective and robust to robot failures; furthermore, it guarantees no conflicts among
robots in cyclic environments. In general the whole system is proven to be robust
to small navigation problems and to robots with different navigation abilities.

In [5] an experimental comparison between different distributed patrolling strate-
gies is presented. An evaluation of five representative patrol approaches is done in
terms of their performance, the behavior resulting from interactions between team-
mates, and team scalability in different environments. The metric used to compare
the performance is the average idleness of the graph representing the area to patrol.
The results in this work help to identify which strategies enable enhanced team
scalability and which are the most suitable approaches given any environment.

A completely different approach is used in [3], where the patrolling task is
modeled as a reinforcement learning problem. This model is adopted with the aim
of allowing automatic adaptation of the robots to the environment. The environ-
ment is represented through a graph where vertices are locations, and edges en-
code possible paths between vertices. The patrolling problem is modeled through
a Semi-Markov Decision Process, a general version of the classical Markov Deci-
sion Problem, where actions can take a variable amount of time. Each robot has a
certain probability of choosing one action, with which it can traverse one edge on
the terrain abstraction. The only feedback that a robot receives is the idleness of the
vertex currently being visited. The final goal is to minimize the average idleness of
the graph by maximizing the idleness values of the visited vertices. In fact, if the
robot’s reward is the idleness of the vertices, and it acquires it only when actually
visiting them, it will try to visit the vertices with the highest idleness in order to
decrease the global one by aximizing its own reward. As far as communication is
concerned, more than one possibilities were implemented and compared, not only
between themselves, but also with a centralized architecture with no communica-
tion. The three explored schemes are: a black box system, in which robots do
not know about the actions of other robots, but use a simple flag communication
scheme, they leave a flag in every node they visit that contains the number of cycles
they have been in that node; a white box system, in which each robot knows about
the actions undertaken by all other robots; and a grey box system, in which robots
can communicate their future actions or their intents only to robots that are near
the current vertex. In the context of the paper teams of robot exploiting the white
box system are proven to be superior than any other compared to them.

In [15] a team of mobile robots must cover an environment in which communi-
cation is restricted to a set of locations with the constraint of gaining connectivity
at fixed intervals. The objective is to prove that in robotic information gathering
domains, breaking connectivity can lead to paths with higher information quality.
The environment is known and is discretized into a graph with vertices representing
convex regions and edges representing the possibility of communicating between
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such regions. In this model there is a time budget costraint, since the paths robots
have to plan cannot be longer than a given time horizon. The algorithm proposed
to fulfill the task is “ Implicit Coordination”. Robots plan their paths in turns and
each robot only considers changing its own path while planning, keeping shared
plans and/or state information for the team. Each robot maximizes its reward over
the given time horizon, equal to the disconnection interval, and chooses a path that
is connected to the planned configuration of its teammates at the end of the interval.
The algorithm is re-run every fixed periodic time interval, as in a receeding-horizon
framework, and successfully terminates as long as the robots have up-to-date in-
formation from the rest of the team. The system is tested for a team of robots that
have to search for stationary targets and also in a non-adversarial search domain
in which robots have to find a mobile target. In particular, in this last domain it
is proven that the algorithm leads to better capture times with respect to continu-
ous connectivity. The negative aspect of periodic connectivity is that, since robots
are not always able to communicate, they must plan synchronously when they are
connected to guarantee that each of them has the newest information available. In
addition, the algorithm assumes that the time in which all robots are connected can
be predicted. This leads to the need for robots to either wait for their teammates or
set a specific time-out to continue planning without the entire team in case one or
more robots take additional time to reach the connected configuration.

All the studies described so far provide a solid background to work on and
have been of inspiration for this thesis. As in most of the works, we adopt a graph-
based representation of the environment. In particular, we add the differentiation
of vertices found in [8] in order to implement the same kind of communication
architecture to our model. The performance metric we are using is the vertex idle-
ness defined in [2] and used in most of the above mentioned strategies. Of course
we had to adapt it to our communication-restricted patrolling framework. Also the
algorithms we implement to fulfill the patrolling task, that are mostly influenced
by [15] and [5], had to be rearrenged to fit in our framework.

18



Works Centr./
Distri.

Comm. Discr. Obj. Strategies Advers.

[2] Centralized Not modeled Topological,
unidirected

graph

Minimizing
worst-case

idleness

Cyclic
strategy/

partitioning
strategy

No

[9] Centralized Not needed Uniform grid Maximizing
uniform visit

frequency

Spanning
trees to

compute
cyclic paths

No

[10] Centralized Not needed Topological,
directed
graph

Periodically
visit a discrete

set of
predefined sites

Three
different

algorithms
compared

No

[11] Centralized Not modeled Topological,
directed
graph

Maximizing a
reward

Cyclic
strategy

No

[8] Centralized Possible only
in some

regions of the
environment

Topological,
unidirected

graph

Minimizing
communication

latencies

Integer linear
programming

/heuristic
algorithm

No

[12] Centralized Not modeled Grid Minimizing the
uncertainty on

sites

Reactive
strategy

Yes

[13] Centralized Not needed Probabilistic
quadtrees

Minimizing the
penalty over

time

Equally
splitting

sweeping and
searching

Yes

[14] Centralized Not needed Arbitrary Eliminate the
intruder

Leader-
follower
strategy

Yes

[4] Distributed Only between
two

consecutive
robots

Patrol graph Minimizing
average idleness

Cyclic
strategy

No

[5] Distributed Not modeled Topological
graph

Minimizing
average idleness

Different
algorithms
compared

No

[3] Distributed Black box,
white box,

and gray box
approaches
compared

Topological
graph 

Maximizing a
reward

Semi-Markov
Decision
Process

No

[15] Distributed Restricted to
a set of

locations

Topological,
directed
graph

Maximizing a
reward

Implicit
Coordination

No

Figure 2.1: Summary of the different features.
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Chapter 3

Problem setting

The objecive of this thesis is to propose a model for an innovative communication-
restricted patrolling framework, where cooperation between robots is essential, and
to compare different strategies used to fulfill the patrolling task. In order to do
so, we need to specify a model for the mission in which robots operate, taking
inspiration from the works described in Chapter 2, and rearrange the performance
metric (the idleness) used to investigate the strategies that solve the patrolling task.

This chapter deals with the modelling of the framework and the redefinition of
the idleness, with a particular focus on the features proper of this new setting.

3.1 Environment definition

A team R = {1, . . . ,m} of robots must persistently patrol some given locations of
an environment while making reports to, and exploiting information provided by,
a base station BS. Robots can communicate with the BS by exchanging messages
through a pre-existing communication infrastructure, which is only accessible from
some regions of the environment. To formalize this setting, we represent the en-
vironment (as customarily done in the literature) by means of an undirected graph
G= (V,E) in which vertices represent all the locations robots can visit, while edges
encode physical connections between them (without considering self-loops). Each
edge (i, j) ∈ E is associated with a positive number d(i, j) representing the physi-
cal distance required for moving between i and j in the environment: as typically
done in robotics applications, we assume that distances satisfy the triangle inequal-
ity. Vertices V are used to represent both locations to patrol and places providing
the possibility of exchanging messages with the BS. Accordingly, following the
notation introduced in [8], each vertex in V is preassigned to up to two types: m, if
the vertex needs to be persistently monitored (patrolled), and c, if the vertex allows
to exchange messages with the BS. We denote with Vm,Vc ⊆ V the two subsets



Figure 3.1: A possible communication-restricted environment in which robots have
to solve the patrolling task.

of m-type and c-type vertices, respectively. (Notice that Vm and Vc may share a
non-empty intersection). Robots move on the graph G by traversing the physical
edges E and detect the vertex their in: once they reach a m-type vertex, they ac-
complish a patrolling visit on it; once they reach a c-type vertex, they are allowed
to communicate with the BS. The only limit robots have to face while patrolling
the environment is that they cannot move at a higher speed than the one given.

A realistic scenario in which robots have to face with such a communication-
restricted environment is the one shown in Figure 3.1, in which robots must patrol
the perimeter of a factory that extends in a large area in which Wi-Fi coverage is
not always granted. In the example, the area of the factory are colored in green
if administrative offices are present in the building, and we assume that only in
those offices strong Wi-Fi coverage is granted. Therefore, also for a team of robots
patrolling such environment, communication is possible only near green buildings.

3.2 Performance metric definition

In order to assess the quality of the different patrolling strategies, we now general-
ize classical evaluation metrics related to the notion of idleness [2] in the light of
our extended communication-restricted framework. We recall that the idleness is
defined as the time elapsed between two consecutive visits of a vertex. The persis-
tent patrolling task unfolds across an arbitrary long time horizon T in which time
evolves in discrete steps {1, . . . ,T}. The patrolling tour undertaken by a robot r
is represented by a walk on the graph G of the form wr = (v0,v1, . . . ,vk), where
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v0 denotes the robot’s starting vertex, vk denotes the last vertex visited before T ,
and a generic vi denotes the i-th vertex visited by the robot. (Notice that, being
wr a walk on G, the same vertex can appear multiple times in wr). For each walk
wr, we define a function tr : {1, . . . ,k} → {1, . . . ,T} mapping the i-th visited ver-
tex by robot r to the time step in which the visit takes place. In particular, each
tr(i) is determined by the total distance traveled until the i-th vertex visited in wr

(∑i−1
j=0 d( j, j + 1)) and by robot r’s (possibly varying) speed along that portion of

the walk. Now, for any i∈ {1, . . . ,k} such that vi ∈Vm, let vc̄, c̄≥ i be the first vertex
after the i-th vertex visited s.t. vc̄ ∈Vc, and let c(i) = c̄. Following this notation, we
define robot r’s reporting time of visit i to the BS (only for vertices vi s.t. vi ∈Vm)
as tr(c(i)), assuming that this quantity will be infinite if the visit is never reported
before the patrolling task ends at T . (Notice that tr(c(i)) = tr(i) iff vi ∈Vc∩Vm).

It may be possible, in our framework, that the BS receives reports containing
outdated information. This happens when there exist two robots r,r′ ∈ R (not nec-
essarily different), two walks wr = (v0,v1, . . . ,vk),wr′ = (v0,v1, . . . ,vk′), and two
visits i∈ {1, . . . ,k}, j ∈ {1, . . . ,k′} s.t. vi = v j, tr(i)< tr′( j), and tr(c(i))≥ tr′(c( j)).
In such a case, we say that the i-th visit of robot r is outdated, in the sense that the
corresponding report to the BS will contain outdated information. It must be noted
that vertices belonging to both Vm and Vc can never generate an outdated visit. We
are now ready for introducing metrics related to communication idleness.

We define the instantaneous communication idleness of vertex v ∈ Vm at time
t̄ ∈ {1, . . . ,T} as:

ICv(t̄) = t̄− t̄ ′,

where t̄ ′ ≤ t̄ denotes the timestep of the last not outdated report of vertex v to the
BS not after timestep t̄. We assume that the initial situation of all the vertices to
be monitored is known, and hence that ICv(t̄) = t̄ if there exists no visit to v that
has been communicated (by any robot) at time t̄. The instantaneous graph commu-
nication idleness at time t̄ is defined as the average instantaneous communication
idleness among the vertices to be patrolled:

ICG(t̄) =
∑v∈Vm ICv(t̄)
|Vm|

.

In this thesis, we are mainly interested in studying patrolling strategies allowing
to minimize the average graph communication idleness, formally defined as:

ICG =
∑t̄∈{1,...,T} ICG(t̄)

T
.

Another interesting performance indicator we will investigate is the worst-case
graph communication idless, WICG, which can be informally defined as the largest
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instantaneous vertex communication idleness encountered through the patrolling
task. Average and worst-case idleness for the single vertices can be defined in a
similar way: given a vertex vi its average vertex communication idleness is

IC(vi) =
∑t̄∈{1,...,T} IC(vi)(t̄)

T

while its worst-case idleness is the largest instantaneous vertex communication
idleness, related only to vi, encountered through the patrolling task

The instantaneous communication idlenesses of the vertices are not computed
by robots, but the BS is in charge of this calculation. This calculation is done
only when a robot communicates with the BS, giving it updated information on
each vertex it has visited from last communication. The main objective of the
communication infrastructure, common to all strategies investigated, is to keep the
values of these idlenesses always updated: every time a robot communicates the
BS computes the new values of the instantaneous communication idleness for each
vertex of the graph and send them back to the robot. In this way both the robots and
the BS have updated information: robots will use it to carry on their strategy, the
BS will use it to compute the instantaneous graph idleness and the average graph
idleness.

With this redefinition of the notion of idleness and of the objective of the robots,
another major difference between the works discusse din Chapter 2 and ours arises:
while, most of the time, in those works robots head to those vertices not recently
visited to solve the patrolling task, in our new framework robots move in order to
reach those vertices on which we do not have recent information. It is interesting
to notice that not always this two kinds of vertices coincide.

Lastly, we point out that, according to our problem definition in which robots
move along walks on G, we are not considering the possibility that a robot remains
in its current vertex for more than a single time step, since walks are computed on
a graph in which the edge set represents physical connections between locations.
This is done in order to avoid that, during the planning phase, some patrolling
strategies might consider potentially attractive walks with low average graph idle-
ness, but where robots prefer to remain still across the whole patrolling task. More-
over, remaining stuck at a given vertex would be pointless when the minimization
of worst-case communication idleness as a secondary objective is also taken into
account.

24



Chapter 4

Patrolling strategies

In this chapter we present the three different multirobot patrolling strategies that we
designed for the communication-restricted setting introduced in Chapter 3 (plus a
random baseline one), with the objective to minimize the average graph commu-
nication idleness ICG. Our main goal is to implement and study distributed strate-
gies, but we also present an optimal centralized strategy in order to compare it with
them.

In Section 4.1, we present a strategy in which the BS performs the planning
phase by computing centralized optimal plans for all the robots. Then, to overcome
its unavoidable scalability issues, we present two distributed strategies in which
robots can query the BS about the current situation of the environment in terms
of vertices idlenesses and teammates future intentions. Such distributed strategies
can be thought as exploiting the available communication infrastructure to access a
blackboard [16], residing at the BS, where agents share and update their knowledge
about the unfolding of the mission. The usage of such an approach, firstly investi-
gated in the context of classical multirobot patrolling [1], is particularly attractive
in our framework, since it allows the robots to coordinate without any assumption
about local transmission capabilities between two robots and about the structure
of the environment to monitor (except for the presence of communication zones).
However, as we show in Chapter 6, robots still need to rely on local message ex-
change in order to efficiently avoid each other while pursuing their own plans. The
strategy described in Section 4.2 is the most similar to the centralized one. In Sec-
tion 4.3, instead, we propose an alternative strategy, requiring lower computational
effort and, yet, solid good performances.



4.1 Globally optimal strategy

The globally optimal strategy (G-OPT) is an optimal, centralized, and offline1 strat-
egy working as follows. At the beginning of the task, the BS computes the best set
of joint robot walks w∗ = (w∗1,w

∗
2, . . . ,w

∗
m) spanning the whole task horizon T and

minimizing ICG; then, it communicates the plans to the robots, which can then
start to execute them. Robots may start either in a vertex v0 ∈ Vc or in a vertex
v0 ∈ Vm with the difference that, when starting in a m-type vertex, the first action
robots must perform is moving to a c-type vertex to receive the plan the BS has
previously computed for them. Each robot receives only its own plan. In this
strategy a robot knows nothing about the future vertices his temmates are going to
visit and nothing about the instantaneous communication idlenesses of the vertices
composing the graph.

As far as the computational complexity of such a planning scheme is con-
cerned, we can notice that the evaluation of ICG for a candidate set of joint robots’
walks requires quasi-polynomial time (O(mT )), while the number of joint walks
of length not exceeding T on G grows exponentially with the size of the input:
therefore, this strategy may be suitable only for a limited number of small problem
settings. Moreover, it is evident that the walks obtained by adopting this planning
approach will be actually optimal with respect to the minimization of ICG if the
errors in the predictions of their execution can be safely assumed to be negligible.
The pseudo-code of the planning algorithm of G-OPT is shown in Algorithm 1.

Algorithm 1 G-OPT planning algorithm

W← {enumerate all joint walks of m robots on G with maximum length T}
for all w ∈W do

simulate the concurrent execution of w and compute the corresponding ICG

end for
w∗← {the best w obtained that minimizes ICG}
return w∗

In Figure4.1, we present through a UML sequence diagram the messages that
the robots and the BS need to exchange at the beginning of the mission to imple-
ment this strategy.

1In an offline strategy the whole problem data is known from the beginning, and the output
computed when the mission starts is the solution to the entire problem.
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Figure 4.1: The sequence of messages exchanged at the beginning of the mission.

4.2 Individually optimal strategy

As the name of this strategy suggests, the individually optimal strategy (I-OPT)
can be thought as the distributed and online version of G-OPT. When adopting
this strategy, robots iteratively compute new portions of their own walk, w =

(w1,w2, . . . ,wm), as soon as they reach a new c-type vertex. As in the G-OPT strat-
egy, robots may start the mission in either a c-type vertex or in a m-type. When
starting in a m-type vertex, the first action robots must perform is moving to a
c-type vertex to receive the information they need to compute their plan. Every
time a robot reaches a c-type vertex, it queries the BS about (a) the current in-
stantaneous vertex communication idlenesses, and (b) their teammates intentions,
expressed in terms of portions of the walks they are currently following. Know-
ing the current instantaneous communication idlenesses of m-type vertices allows
the robot to understand on which vertices the BS has not received updated infor-
mation, while knowing the future intentions of its teammeates means to be aware
of which vertices will be visited and reported to the BS in the near future. More
specifically, let t̄ be a generic timestep in which robot r reaches a c-type vertex,
and let ŵ1, . . . , ŵr−1, ŵr+1, . . . , ŵm the portions of walks its teammates are going
to followed from step t̄. Robot r computes a new portion of walk ŵr on G of es-
timated travel time H (the planning horizon) as the walk minimizing the average
graph communication idleness between t̄ and t̄ +H, while taking into account the
walks followed by its teammates. Notice that the portions of walks followed by
the teammates may have different estimated travel times, as they depend on the
previous arrivals of the robots to c-type vertices. This means that, in order to be
able to simulate in a truthful way the concurrent execution of its possible plans
and of the walks of each teammate between t̄ and t̄ +H, robot r should understand
where each teammate is (in terms of which vertex the teammate is visiting while it
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is computing its own best plan). If a teammate has not communicated a plan valid
until t̄+H, it is assumed to remain still at the last vertex of the communicated plan.
A similar assumption is made in the following situation: if a teammate is supposed
to reach a c-type vertex before time t̄ +H, it is assumed to be still in that vertex
for the remaining travel time. If H is sufficiently small, a complete evaluation of
all the possible walks of length H can for robot r be completed in reasonable time.
Otherwise, a sampling strategy needs to be adopted. This planning scheme, whose
pseudo-code is reported in Algorithm 2, is very similar to the Implicit Coordina-
tion algorithm of Hollinger and Singh [15]. The main difference is that, following
I-OPT strategy and thanks to the blackboard mechanism, robots do not need to
wait for the whole team to be simultaneously in a c-type vertex.

Algorithm 2 I-OPT planning algorithm for robot r at time t̄

ŵ1, . . . , ŵr−1, ŵr+1, . . . , ŵm←{query the BS about the walks followed by others}
query the BS about instantaneous communication idlenesses of vertices Vm

Wr← {enumerate/sample walks from r’s current position along [t̄, t̄ +H]}
for all wr ∈Wr do

ŵ← (ŵ1, . . . , ŵr−1,wr, ŵr+1, . . . , ŵm)
simulate the execution of ŵ and compute the corresponding ICG in [t̄, t̄ +H]

end for
ŵr← {the best wr obtained that minimizes ICG in [t̄, t̄ +H]}
return ŵr

In Figure4.2, we present, through a UML sequence diagram, the messages that
the robots and the BS need to exchange every time a robot arrives to a c-type vertex
in order to implement this strategy.

Figure 4.2: The sequence of messages exchanged in every c-type vertex.
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4.3 Reactive strategy

The reactive strategy (RE) we present is still distributed, but does not involve long-
term planning as the I-OPT one. instead, it is inspired by a classical reactive strat-
egy empirically showing good performances when considering the classical notion
of idleness (the Cognitive Coordinated strategy studied in [1, 2]). By adopting the
RE strategy, robots iteratively choose a new m-type vertex to reach according to a
heuristic in which vertices with the highest instantaneous communication latency
have higher priority, and, in case the chosen vertex does not belong also to Vc, sub-
sequently move to the closest c-type vertex in order to obtain from the BS the data
needed for computing a new plan. As before, when the mission begins robots can
be in either a c-type vertex or a m-type vertex. If a robot starts the patrolling task in
a m-type vertex it moves towards the closest c-type vertex to receive the informa-
tion it needs to compute the plan (as it happens in G-OPT and I-OPT strategies).
When a robot r arrives at a c-type vertex at a generic time step t̄, it queries the BS
about (a) the instantaneous communication idleness of all the m-type vertices at
that time instant and (b) its teammates intentions, once again expressed in terms
of portions of the walks they are currently following. It then selects to reach the
m-type vertex v̂ with the highest instantaneous communication idleness not in the
portion of walk followed by the other robots (in case there are multiple vertices
with the same idleness, the robot chooses one at random). The path to v̂ is the
shortest path connecting the current position of the robot and v̂, computed on the
entire graph G. As a side-effect of this choice, additional m-type vertices can be
visited. In case v̂ 6∈ Vc, the path is augmented with the shortest path connecting v̂
to the closest c-type vertex. Notice that, if a robot reaches a c-type vertex before
reaching v̂ it communicates to the BS the list of vertices, and their relative times-
tamps, visited until that moment but it does not receive any information from the
BS and does not compute a new plan. This is done in order to avoid that robots
continue to move in cycles, and it is also the reason why, if v̂ is not a c-type vertex,
they need the additional path so they can reach a c-type vertex, receive updated
information, and compute the new plan.The pseudo-code each robot runs for im-
plementing this strategy is shown in Algorithm 3.

In Chapter 6, we will investigate the behavior of these strategies, in represen-
tative environments, by also comparing them against a baseline random strategy in
which each robot chooses randomly a new vertex of G to reach, regardless of its
current idleness and membership to Vm and/or Vc.
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Algorithm 3 RE planning algorithm for robot r at time t̄

ŵ1, . . . , ŵr−1, ŵr+1, . . . , ŵm←{query the BS about the walks followed by others}
query the BS about instantaneous communication idlenesses of vertices Vm

v̂← argmaxv∈Vm,v 6∈ŵi,i∈R\{r} ICv(t̄)
compute ŵr as the path on G from r’s current position to v̂
if v̂ 6∈Vc then

let v̂c be the c-type vertex closest to v̂
augment ŵr with the shortest path on G from v̂ to v̂c

end if
return ŵr
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Chapter 5

System architecture

This chapter presents the software architecture designed to test our communication-
aware framework and the patrolling strategies described in Chapter 4.

In Section 5.1 we give an overwiev of the main characteristics of the Robot
Operating System (ROS), on which we build and test our framework. In Section
5.2 we present how we decided to implement the two entities participating in the
patrolling task the robots and the BS and and their coordination. Since the ex-
periments are carried out through simulations, not having the possibility of testing
the system on real robots, a Communication Server (CS) is implemented in order
to take care of the simulation of the communication channel by guaranteeing that
messages are delivered at the right time to the rightful receiver.

5.1 ROS: Robot Operating System

ROS is a distributed, flexible framework for writing robot software that offers a
message exchanging interface providing inter-process communication, behaving
like a middleware. As described in [17], the main components of the ROS middle-
ware are nodes, messages, topics, and services. Nodes are processes that perform
computation. As ROS is designed to be modular, a system is typically composed
by several nodes. Nodes communicate with each other by passing messages in two
different ways: through topics or through services. In both cases, the communica-
tion pattern used by ROS is a publish-subscribe one. The difference between the
two ways of handling the message exchange is the following: when dealing with
topics, a node sends a message by publishing it to the topic of interest, while a node
that is interested in receiving the same kind of data subscribes to the same topic.
There may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics. On the contrary,
services are defined by a pair of strictly typed messagges, one for the request and



one for the answer, and only one node can advertise a service. The introduction
of the service mechanism overcomes the problem of synchronous transactions, not
taken care by the publish-subscribe paradigm. The consequence of this architecture
is that, once a node subscribes to a topic, it sees all the messages arriving on that
topic, also those not directly meant for it. For instance, while simulating multirobot
systems on a single computer without an ad hoc communication infrastructure, a
robot can potentially “cheat”, by subscribing to topics used by other robots too to
send or receive messages. This allows the robot to always have a complete picture
of what is going on during the mission, making the coordination problem meaning-
less and the simulation far from facing the issues specific of multirobot systems.
In order for ROS nodes to be able to communicate, a ROS network must have its
roscore running. The roscore is a collection of nodes and programs that are pre-
requisites of a ROS-based system, it includes a ROS master, that provides naming
and registration services to the rest of the nodes and allows them to locate each
other, a ROS parameter server, initialized by the master and that nodes used to
retrieve and store parameter values, and a rosout logging node.

Although ROS is widely used in robotics, its involvement in multirobot sys-
tems is relatively recent. The publish-subscribe paradigm is not well suited for this
kind of systems and there are features that are proper of multirobot systems that
still need to be better implemented in ROS. There are a lot of examples of works
done in order to be able to implement a solid multirobot system using ROS, one of
them being [18], where concepts, problems, and possible solutions for ROS multi
master systems are presented. These systems are built from two or more ROS net-
works, each with its own roscore. The idea of [18] is to implement multirobot
systems by assigning to each robot its own ROS sub-system. In this configuration,
two types of messages are present, one for the infra-robot communications, and one
for inter-robot communications. In both cases, the way communication and mes-
sage exchange is handled is exactly like the one described above, according to the
publish-subscribe paradigm. The implementation of this system is done through
multimaster fkie framework. Here, two different types of ROS master exist:(a) the
master discovery, that detects other ROS masters, makes them aware of its pres-
ence, and keeps track of any changes occurring in the different sub-systems, (b)
the master sync, which updates topics and services with the information provided
by the master discovery. This configuration is valid when there is the possibility of
having multiple physical robots with independent processors. Unfortunately, there
are still problems when dealing with one computer running simulations of a multi-
robot system, since robots are not completely isolated and each one of them is still
able to see everything that is happening during the mission.

An alternative way to deal with the problem is to use the namespaces. Names-
paces an important mechanism in ROS for providing encapsulation. Each ROS

32



node is defined within a namespace, which it may share with many other nodes. In
general, nodes can create resources (e.g messages or services) within their names-
pace and they can access resources within or above their own namespace. Con-
nections can be made between resources and nodes in different namespaces. This
encapsulation isolates different portions of the system from accidentally grabbing
the wrong named resource.

5.2 Nodes implementation

As previously stated in Section 5.1, the ROS nodes composing our system are
organized in robots and BS. Each of them performs different computations and has
a different goal. We decided to implement a node for the BS and a node for each
robot so as to have a controller for each of them composing the team, as we are
dealing with multirobot systems. In this way each robot is completely independent
from the others.

The novelty of our framework is the communication infrastructure that allows
robots and BS to communicate in a smooth way. The publish-subscribe communi-
cation paradigm is not suited for multirobot systems since it does not discriminate
senders and receivers but lets everyone see every message that is being exchanged.
As we are mostly interested in simulation, we propose the introduction of a Com-
munication Server CS, a node in charge of sorting the messages to the rightful
receivers. The introduction of such a node can be avoided when dealing with mul-
tiple, physical robots, as all its functions are performed by the physical commu-
nication network. The CS, as a module in the robot nodes, will be in charge of
transparently manage the communication between the communication module of
the robots and the available network model (e.g., wifi, infrared, radio signals, etc).
In Figure 5.1 the two different architectures are portrayed. The structure of the CS
that we are using in our simulations, as the name suggests, is that of a server. More
precisely, the CS is the only one advertises 4 different services:

• the “permission” service, whose clients are the robots of the team that call it
in order to request the permission to communicate, once they are in a c-type
vertex. If the permission is granted, the whole communication procedure
starts;

• the “talking” service, whose clients are the robots. It is called by them after
having received the permission to start the communication procedure, and
through it they communicate the visited vertices and their relative times-
tamps to the BS;

• the “BS talking” service, whose client is the BS, is called to inform the robots
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on the idlenesses of the nodes, and the plans of the robots that the BS knows
at the time it calls the service. The “BS talking” service is the answer to the
previously called, by the robots, “talking” service;

• the “new plan” service, whose clients are the robots, is called to communi-
cate the newly computed plan to the BS. It is the last service invoqued during
the communication procedure.

Consistently using the CS as the third party in the communication procedure guar-
antees that messages are never intercepted by robots that are not directly involved
in the ongoing communication, as communication do not rely on topics in which
robots and BS are all publishers and subscribers. Instead, it uses services advertised
only by the CS. Notice that the CS always knows where robots are in the environ-
ment and where the c-type vertice are thanks to the simulator in which we run our
framework. We use the stage Simulator [19] but the same considerations can be
made for other existing simulators (e.g, Gazebo). The CS continuosly reads the po-
sitions of the robots by subscribing to the topic published by Stage, but it does not
know about the robots intentions or about the values of the node idlenesses at any
time. This is because its only objective is to carry out the communication proce-
dure when requested by a robot and it doesn’t need to save useless information for
itself. The natural consequence is that, every time a robot needs updated informa-
tion, the CS has to implement the whole procedure involving the BS too. Another
important feature of the simulator is that it provides a global clock, in which time
is expressed in seconds, which robots read to assign to the visited nodes the useful
timestamps.

Robots are the nodes actully fulfilling the patrolling task. The different mod-
ules composing the robot nodes are (see Figure 5.1:

• the module handling the actual motion of the robots in the environment,
better discussed in Chapter 6;

• the planner module, in charge of computing the optimal plans each time the
robot receives updated information from the BS;

• the module supervising the communication with the CS.

The final objective of the planner is minimizing the average graph communica-
tion idleness ICG. Once again, the plans can be computed only in c-type vertices.
Whenever a robot reaches a c-type vertex it immediately calls the the “permission”
service, to be sure to be in a node that allows communication. As soon as the per-
mission arrives from the CS it calls the “talking” service, with which it informs,
through the CS, the BS on the vertices it has visited and the time it has visited
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(a) Simulated robot

(b) Real robot

Figure 5.1: The two robot architectures. Here we show the different uses of the CS:
in the simulated robot it is an external node, used as a means to communicate with
the BS, in the real robot it becomes an internal module taking care of connecting
the robot to the communication network.
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(a) Base station

Figure 5.2: The base station architecture.

them. It then waits for the updated instantaneous node idlenesses and the plans of
its teammates. Once the BS sends them to it, the robot computes its plan, follow-
ing one of the strategies described in Chapter 4, and sends it to the BS through the
“new plan” service. At this point the robot can start and execute the plan while the
BS updates its knowledge on the current plan that the robot is following.

The last node composing our system is the BS. It is in charge of keeping track
of the plans of the robots in the team, and of the idlenesses of the vertices, during
the mission. Every time a robot reaches a c-type vertex and starts the communi-
cation procedure, the BS receives (from the CS) the list of vertices visited by the
robot with their relative timestamps (one referring to the time the robot has visited
the vertex, and the other one referring to the time at which it started the commu-
nication procedure). The BS checks if the information on the vertices contained
in the message are outdated, as described in Section 3.1, and updates the instan-
taneous node idlenesses ICv(t̄), where t̄ is the time in which the communication
is happening, for all the m-type vertices of the graph. It has also to handle the
calculation of the istantaneous graph communication idleness ICG(t̄), and of the
average graph communication idleness ICG. Once it has finished to compute all
the values of the idlenesses it calls the “BS talking” service, communicating to the
robot that communicated to be in a c-type vertex the updated ICv(t̄), for all m-type
vertices, and the plans of the other robots known at time t̄. Finally, it waits for the
last step of the procedure: receiving the future plan of the robot that has started
the communication procedure. Each time the BS computes the idleness values, it
writes the values in log files, recording how the situation is evolving. Overall, the
modules that form the BS, shown in Figure 5.2, are the one in charge of managing
the communication with the CS and performing the updates of the idlenesses.

In Figure 5.3, an example of a successful communication procedure is pre-
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sented as a UML sequence diagram. Here the whole sequence of exchanged mes-
sages is described:

1. the robot that has arrived in a c-type vertex asks the CS for the permission to
communicate;

2. the CS checks wether the robot is actually in a c-type vertex, and grants the
permission to the robot;

3. the robot sends the list of the visited vertices and their relative timestamps to
the CS;

4. the CS forwards it to the BS and informs the robot that the communication
has been successful;

5. the BS updates the values of the instantaneous node communication idle-
nesses, of the instantaneous graph communication idleness, and of the aver-
age graph communication idleness. Once the udpating phase is completed,
the BS sends the new instantaneous node communication idlenesses, and the
plans of the other robots of the team that it knows, back to the CS;

6. the CS forwards the received information to the robot and informs the BS
that the communication has been successful;

7. the robot computes its new plan, based on the information just received, and
sends it to the CS;

8. the CS forwards the new plan to the BS and informs the robot that the com-
munication has been successful;

9. the BS updates its knowledge on the plan that is being followed by the robot,
while the robot starts to execute it.

Last picture, Figure 5.4, presents a case of unsuccessful communication proce-
dure. Note that what is described can also happen at any of the steps in which the
CS sends the message of “successful communication” to the robot (or to the BS).
The sequence of exchanged messages in this cases is the following:

1. the robot that has arrived in a c-type vertex asks the CS for the permission to
communicate;

2. the CS checks wether the robot is actually in a c-type vertex, it realizes that
the c-type vertex the robot is in does not provide the communication link
anymore, possibly because of some breakdowns of the network;

3. the robot receives the denial and looks for the closest c-type vertex where it
can start the procedure again and moves towards it.
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Figure 5.3: Successful communication procedure.

Figure 5.4: Failed communication procedure.
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Chapter 6

Experimental evaluation

After having formulated the model, presented the strategies we implemented to
fulfill the patrolling task, and developed the software architecture able to carry
them out, we tested our framework in different scenarios. This chapter presents the
experiments used to test the validity of our communication-restricted framework,
firstly discussing how they are organized, and then discussing in details of the
obtained results.

6.1 Experiments setup

As already said in Chapter 5, we implement our multirobot system within the ROS
framework. To simulate the patrolling mission we use Stage [19], a 2D simulator
that provides a virtual world, represented by a bitmap that it takes as input, popu-
lated by mobile robots, identified by a numerical id and equipped with sensors and
actuators, together with various objects, if needed. The bitmap of the environment
that Stage uses is a simple matrix of 0s and 1s, with the 0s representing areas of the
environment that are free from obstacles, and 1s representing the areas in which
one or more obstacles are present. The robots we simulate in the experiments are
erratic-like robots. The Erratic is a full-featured, compact, and powerful mobile
robot platform built by Videre [20]. It is provided with a ROS software, along with
driver, navigation, and simulation support, and it is equipped with sonar sensors,
with a detection range of 3 meters, translated by Stage in 30 pixels. Robots move in
the environment at a maximum speed of 10px/second, slowing down during turns
or in proximity of other robots. In Figure 6.1 we show the Erratic robot platform
and the way it is represented in Stage’s simulations.

We test our system in three different environments:

• The Leonardo campus of the Politecnico di Milano (Poli – approx. size
200× 150m, robots’ maximum speed 2.5m/s). It is characterized by the



(a) The real Erratic robot
(b) Stage simulated robot

Figure 6.1: The Erratic robot platform and its Stage representation

presence of large obstacles, buildings, that the robots need to avoid while
moving in the free environment. The map reproduced by Stage is 800x600
pixels;

• the “Acapulco convention center” from the Radish repository [21] (Open –
approx. size 80× 60m, robots’ maximum speed 1m/s). It is characterized
by a large open area and few obstacles. In this case too the map is 800x600
pixels;

• the Manhattan grid environment, an imaginary, regular grid-block environ-
ment, already used in [2, 5] in the context of classical multirobot patrolling.
Also for this last environment the map is 800x600 pixels.

The discretization of the environments is done through topological graphs, shown
in Figure 6.2. The graphs are obtained by choosing randomly some points, suffi-
ciently far from the obstacles, and manually pruning some of them in order to ob-
tain a complete topological representation of each environment. Once these points
have been generated, edges are build between two vertices on the same line of
sight, and c-type vertices are chosen manually. In particular, the Poli environment
is discretized into a graph with 40 m-type vertices, 9 of which also belong to Vc;
the Open environment is discretized into a graph with 32 vertices, 11 of which
only belong to Vc and the remaining 21 only belong to Vm; and the Manhattan grid
environment is discretized into a graph with 20 vertices, 4 of which only belong to
Vc, 12 only to Vm, and the remaining 4 to both Vm and Vc.

In our experiments, we assume that the robots have a complete knowledge of
the environment, and that they are ablo to perfectly localize themselves in it. More-
over, they get to know the positions of the other robots of the team as soon as they
enter their scan range. in fact, while patrolling the environenment, we assume that
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(a) Poli

(b) Open

(c) Manhattan grid

Figure 6.2: The three environments. Green, blue, and light-blue vertices define
the sets Vm \Vc, Vm∩Vc, and Vc \Vm, respectively.
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the sonar sensors of the robots are always active so that they are able to perceive
moving obstacles when they are dangerously near. In our case, such moving obsta-
cles are the other members of the team. In order to compute an obstacle-free path to
move towards the targets in the environment, each robot implements the algorithm
A* on an Occupancy Grid Map, in which each cell corresponds to a square 5x5 pix-
els of the input bitmap. In the Occupancy Grid Map the obstacles are inflated, each
of them covering more cells than the ones covered in the original bitmap. More
specifically, we add a square of 3x3 pixels around each obstacle. This is done to be
sure that robots do not move too close to the obstacles, with the risk of accidentally
crashing against them. When executing the A* algorithm, also the teammates are
treated as obstacles. This means that, in the cell corresponding to their positions in
the Occupancy Grid Map, at the moment of the A* path calculation, an additional
set of obstacle cells is added to be sure that A* does not choose a path that will lead
to robot-robot collisions. As robots are continuosly moving in the environment, it
may happen that a robot computes the A* path before realizing that another robot
is along it. In order to avoid collisions in this case, we implement the following
algorithm: when two (or more) robots enter each other’s scan range, the robot with
the lower id stops and waits for the one with the highest id to compute a new path
and to move away from the possible collision area before starting to move again
towards its target.

In each experiment, runs are repeated 5 times, in order to take into considera-
tion the fact that the outcome of the mission is influenced by the order of arrivals
of messages in ROS, which is not deterministic. In each run, we simulate T 3̄0
minutes of patrolling mission, , except where indicated otherwise, as we noticed,
in some preliminary experiments, that the average idleness values tend to stabilize
after such an amount of time. Since the Stage simulator is asynchronous and its
ability to coordinate the messages needed to make the robots move in the world
tends to worsen as the number of messages increases (notice that the messages re-
lated to the motion of the robot never stop to be sent between the simulator and the
robots), we had to interrupt and discard the outcome of 5% of the runs, as some
messages were lost and robots crushed against each other. All the simulations are
performed on a laptop equipped with an Intel P7450 processor and 2 GB of RAM.

In the following section we present all the valid experiments we carried out and
the obtained results, in terms of performance metric. We display the results within
a confidence interval of 95%, plotting it in the graphs used to comment them.
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Figure 6.3: Comparison of G-OPT, I-OPT, RE, and RANDOM through a short
mission horizon with 2 robots

6.2 Experiments and results

6.2.1 Comparison between G-OPT and distributed strategies

The first set of results that we present derive from the comparison between the
centralized strategy, G-OPT, and the distributed strategies, I-OPT and RE, with the
addition of the random baseline (RANDOM). Since G-OPT strategy is run offline
at the beginning of the mission and computes the plan for all the robots of the team,
and for the whole duration of the mission, the computational load is substancial.
In order to make the BS able to obtain the plans in a reasonable amount of time,
we decided to limit the team size to 2 robots and the duration of the mission to the
H (planning horizon used in the I-OPT strategy) plus the time needed to compute
the plans. Notice that, due to the different topology of the environments, H must
be setted differently for each of them, to make it coherent with the time robots
may use in reality: for the Poli environment it is equal to 200 seconds, for the
Open environment it is equal to 100 seconds, for the Manhattan grid environment
it is equel to 150 seconds. The reason why we have to lower it for the both the
Open and Manhattan grid environments is that the graph representing them is more
connected, providing a larger number of plans to be compared.
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From the results shown in Figure 6.3, we notice that the behaviours of the
strategies depend on the topology of the environments but, I-OPT and RE are able
to perform as well as G-OPT on short mission horizons, and justify their employ-
ment on longer horizons and environments in which G-OPT is not a viable choice.
Notice that in the Open environment I-OPT behaves slightly better than G-OPT.
This is due to several factors that come into play when performing realistic simu-
lations, such as robot interfering with each other while executing their path, and a
non-perfect simulation of the concurrent walks execution. It must be noted that the
results shown in this subsection are not particularly meaningful, as they only deal
with the initial seconds of the mission in which the random baseline too performs
as well as the other strategies.

6.2.2 Variable number of robots

This set of experiments aims at testing the I-OPT strategy, the RE strategy, and the
random baseline (RANDOM) for all the environments and for a variable number
of robots m. More precisely, we investigate the behaviour of the strategies making
m vary from 1 to 4. In this case, we fix the planning horizon H. Specifically, we set
H to 150 seconds for the Poli environment; we set H to 100 seconds for the Open
environment; and we set H to 150 seconds for the Manhattan grid environment.

In Figure 6.4 we show the average idleness values obtained on the three envi-
ronments. It is immediately noted that, in all the environments and for all the values
of m, RE outperforms RANDOM, and it is in turn outperformed by I-OPT: these
results reflect the increased planning complexity and the knowledge exploited by
the three strategies. Moreover, increasing the value of m leads to an advantage for
all the strategies, but the performance gain becomes always smaller: this means
that, in presence of resource constraints, one can obtain good performances with
relatively small team sizes. It is also particularly interesting to notice that, when
taking into consideration the the worst-case idleness values (Figure 6.5), I-OPT is
outperformed by RE in Poli and Open. This is not surprising, as RE is designed
to lead the robot always toward the vertex currently displaying the highest idleness
and so greedily minimizing the worst-case idleness, while I-OPT plans without
considering worst-case idleness values. The same result is not visible in the Man-
hattan grid environment. This is due to the position of c-type vertices in the map:
they are all relatively close to each other, and this leads to frequent robot-robot
interference, especially in the RE strategy where the objective of the robots is to
visit the vertex with highest idleness and report immediately to the BS. Using this
strategy it is more frequent for robots to move simultaneously to a c-type vertex.
Again, larger team sizes lead to lower worst-case idleness values in all the envi-
ronments and for all the strategies, with the only exception of RANDOM in Open,
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Figure 6.4: Average idleness for different team sizes m in all environments
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Figure 6.5: Worst-case idleness for different team sizes m in all environments
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Figure 6.6: Idleness evolution Poli for different team sizes m

where there is always at least one vertex whose situation is never reported to the
BS.

In the “Evolution” graphs (Figures 6.6, 6.7, and 6.8) we show the entire evo-
lution of the average graph communication idleness from the beginning of the
mission to its end. As expected, the more robots are participating in the mission
the sooner the average graph communication idleness stabilizes and the lower is
the stabilization value. An interesting fact to point out is that, even if strategy
I-OPT always guarantees the best results, the ones achieved by the RE strategy
are not very far from them. It must be reminded that the topology of the graph
representing the environments plays a fundamental role in determining the perfor-
mance of the strategies. In fact, the values of the average graph communication
idleness are significantly lower in the Open environment and in the Manhattan grid
environment because of two main reasons: the graphs representing both Open and
Manhattan grid are more connected, having always at least two edges starting and
ending in each vertex; and both graphs are characterized by the presence of c-type
vertices not contributing to the increase of the idleness, as they are not m-type.
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Figure 6.7: Idleness evolution Open for different team sizes m
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Figure 6.8: Idleness evolution Manhattan grid for different team sizes m
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Figure 6.9: Average idleness for different H

6.2.3 Variable planning horizon

With this set of experiments we investigate how varying H leads to different per-
formances. This is done only for the I-OPT strategy, being the only one influenced
by H. In this case, we fix the environment, running the experiments only for Poli.
The other fixed parameter is the number of robots, set to 3. The different values of
H that we use are: 75, 100, 150 and 200 seconds.

The results shown in Figure 6.9 demonstrate that, using a planning horizon
lower than 150 seconds leads to poor results, as the computable path are not long
enough to reach all vertices, but also augmenting it to 200 seconds does not im-
prove the overall performance. Instead, it leads to an increasing of the computa-
tional time, used to calculate each plan, which causes the worsening of the perfor-
mance since less time is available to patrol the environment.

6.2.4 Variable number of c-type vertices

This set of experiments involves changing the number of c-type vertices in the
graphs representing the environments. With this kind of experiments we want to
analyze how adding or removing c-type vertices, namely making the problem more
or less simple respectively, influences the overall performance of I-OPT and RE
strategies (also comparing them to the random baseline). The different percentage
of c-type vertices analyzed are: |Vc|/|V | = 0.05, |Vc|/|V | = 0.10, |Vc|/|V | = 0.20,
and |Vc|/|V |= 0.40. In this case too, we fix the environment in which running the
simulations to the Poli environment, where each c-type vertex is also an m-type
vertex. Also H and the number of robots are fixed and equal to 150 seconds and 3,
respectively.

The results (see Figure 6.10) show clearly that the more c-type vertices are
present in the graph, the better the performance of all strategies. It is particularly
interesting to notice that, when the number of c-type vertices approaches the 50%
of the overall number of vertices, following the I-OPT strategy leads to consider-
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Figure 6.10: Average idleness for different % of c-type vertices
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Figure 6.11: Idleness evolution varying number of c-type vertices
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Figure 6.12: Average idleness for different probability of communication failure

ably better performances than the RE strategy. This is even more visible in the
graphs describing the evolution of the average communication idleness during the
entire duration of the mission, in Figure 6.11. Here, for |Vc|/|V | = 0.40, the sta-
bilization value is reached much sooner from the I-OPT startegy than from the
others, and is significantly lower. The main reason why RE strategy does not im-
prove together with I-OPT is that, since more c-type vertices exist, it is more rare
that the obtained walk need to be augmented to reach one of them, implying that
less m-type vertices are visited as a side-effect. The last important thing that we
can notice is that for |Vc|/|V | = 0.05 I-OPT behaves as badly as RANDOM. The
reason is that, in this specific case, there are only two c-type vertices, placed at two
opposite corners of the map: therefore, a planning horizon of 150 seconds always
leaves out from the plans some m-type vertices that are too far from them.

6.2.5 Variable probability of communication failure

The last set of experiments deals with a realistic case in which we simulate the
temporary unavailability of a communication link with the BS. Faults are assumed
to happen independently from each other as follows: once a robot reaches a c-type
vertex, with probability p f the expected communication link will not be present
(due, e.g., to a temporary network congestion), while with probaibility 1− p f the
robot will be able to communicate with the BS as before. To overcome these unex-
pected events, we examine the behavior of a simple recovery procedure in which
the robots decide to move towards the closest c-type vertex. We focus on the best
strategy for IGG in the Poli environment, as the recovery procedure is independent
of the chosen patrolling strategy, and examine how the patrolling performance IGG

degrades for varying values of p f .
The results reported in Figure 6.12 show that such a simple backup strategy

is effectively able to mitigate the impact of communication failures up to 25%,
while for higher values of p f the performance worsens less gracefully, but not
dramatically.
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Chapter 7

Conclusions

This thesis has focused on investigating different multirobot patrolling strategies, in
which robots must persistently patrol an environment and transmit to a base station
(BS) the status of some locations of interest, given that communication is possible
only in some “communication zones”. In this thesis, we explored both a central-
ized and a distributed approach, in which each robot autonomously computes its
plans according to different amount of knowledge about the plans followed by oth-
ers, with the objective of minimizing the average graph communication idleness.
More specifically, after having formulated the multirobot patrolling problem in our
communication-restricted framework and having extended the classical idleness
evaluation metrics to fit in it, we designed two ad hoc distributed strategies that
allow the fulfillment of the patrolling task. In both strategies, the robots do not rely
on the BS for computing the joint plan to successfully carry out the mission, but
each of them computes its own plan, given some information received from the BS.
To evaluate the designed strategies, we implement a centralized patrolling strategy
in which the BS takes care of computing the best joint plan at the beginning of the
mission and then sends to each robot the plan it has to follow.

The experimental evaluation has been performed using ROS/Stage simulations.
These experiments were executed in three environments, with different topological
characteristics, and making important parameters change. We explored how the
performance, in terms of average graph communication idleness, is influenced by
the variation of the number of robots in the team, of the tatal percentage of c-type
vertices in the graph, of the planning horizon H, and of the probability p f of failing
a communication. The results obtained are consistent with what we expected: they
show that the distributed strategies performs as good as, and under certain condi-
tions even better than, the centralized one, as they lighten the computational load
for the calculation of the joint plan by dividing it among the robots in the team.
Moreover, we noticed that better results are achieved when increasing the number



of robots and/or the number of c-type vertices over the total number of vertices of
the graph.

Since several issues relative to our communication-restricted framework have
not been explored yet, possible future works may investigate new distributed strate-
gies in order to find which is the best one for this kind of setting. This future study
may also include a theoretical evaluation of cyclyc strategies, as they have been
investigated in most of the existing literature on multirobot patrolling. Finally, it
would be necessary to validate our approach also on real robots.
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