POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Wy,
\\\\\\\\\ 1y, ",
8 %,

A
gp(

//, \\\
it

POLITECNICO
MILANO 1863

An approach to measure Community Smells

in software development communities

Relatore: Prof.ssa Elisabetta Di Nitto

Correlatore: Dr. Damian Andrew Tamburri

Tesi di laurea di:
Simone Magnoni Matr. 816316

Anno Accademico 20152016

To my Family,
my Friends

and A.

Acknowledgments

Above all, I would like to express my deepest gratitude to professor Elisabetta
Di Nitto and Damian Andrew Tamburri, who supported me in the elaboration of
this master thesis with their precious guidance and advice.

I would like to thank all Open Source Software developers for their remarkable
work, whoever participated to the survey and every single person who contacted me
with a positive or negative comment about the questionnaire.

In conclusion, I would like to thank everybody who supported me, in any possible
way, during these last years.

Simone

Abstract

Software development and software engineering are now more than ever a com-
munity effort because their success often depends on people and their socio-technical
characteristics. Therefore, it becomes fundamental balancing delicate forces, such as
global distance or organisational barriers, with ad-hoc global software engineering
practices. In this complex community scenario, it is likely that the arise of unfore-
seen socio-technical circumstances requires extra attention from community leaders
in order to reduce any additional socio-technical cost, known as Social Debt.

To offer support in these situations and study the causality around Social Debt
within Open Source projects, we conducted an empirical research in order to de-
fine, operationalise and evaluate a Socio-technical Quality Framework for software
development communities. Community Smells are synonyms of negative organisa-
tional and social patterns that represent a potential risk related to the presence of
Social Debt. The proposed framework provides the identification and quantification
of Community Smells and it is also constituted by a set of fundamental factors ca-
pable of tracking and quantifying organisational and socio-technical key qualities,
constituting a tool that can be used for continuous Social Debt management and
improvement, much like code analysis and verification are used to improve software
products.

We evaluated our framework on 60 Open Source development communities and
made several key findings concerning organisational and socio-technical quality fac-
tors correlated to the occurrence of Community Smells, thus capable of influencing
the wellbeing of software projects. Moreover, we determined several socio-technical
quality thresholds and identified some developer perceptions capable of acting as

qualitative indicators of the presence of Community Smells.

Sommario

L’ingegneria e lo sviluppo del software sono ora piu che mai uno sforzo comuni-
tario, dal momento che il loro successo dipende dalle persone e dalle loro caratter-
istiche socio-tecniche. E’ dunque diventato fondamentale equilibrare forze delicate,
come la distanza globale e le barriere organizzative, con pratiche ad-hoc di ingegneria
del software. In questo complesso scenario & possibile che I'insorgere di circostanze
socio-tecniche impreviste richieda una maggiore attenzione da parte dei leader di
una comunita al fine di ridurre ogni costo socio-tecnico aggiuntivo, noto come Social
Debt.

Per offrire un supporto in queste situazioni e studiare le caratteristiche del So-
cial Debt in progetti Open Source, ¢ stata condotta una ricerca empirica al fine
di definire, operazionalizzare e valutare un Socio-technical Quality Framework per
comunita di sviluppo software. I Community Smells sono modelli sociali e orga-
nizzativi negativi che rappresentano un potenziale rischio relativo alla presenza di
Social Debt. Il framework proposto fornisce 'identificazione e la quantificazione di
Community Smells ed e inoltre costituito da un insieme di fattori capaci di trac-
ciare e quantificare importanti qualita socio-tecniche e organizzative, costituendo
uno strumento che puo essere utilizzato per migliorare e gestire in modo continuo
il Social Debt, cosi come ’analisi e la verifica del codice sono usate per migliorare i
prodotti software.

Il framework & stato valutato in 60 comunita di sviluppo Open Source e sono
stati individuati molti fattori socio-tecnici ed organizzativi correlati alla presenza
di Community Smells, quindi in grado di influenzare il benessere dei progetti soft-
ware. Inoltre, sono state determinate diverse soglie di qualita ed identificate alcune
percezioni degli sviluppatori in grado di fungere da indicatori qualitativi della pre-

senza di Community Smells.

Contents

1 Introduction

2 State of the art

21
2.2
2.3
2.4
2.5
2.6

Conway’s law and beyond
Global Software Development
Free/Libre and Open Source Software
Developer Social Networks
Technical and Social Debt

Motivational research

3 Problem analysis

3.1
3.2
3.3
3.4

Definitions
Research questions
Contributions

Dataset selection

4 Identification patterns of Community Smells

4.1
4.2
4.3
4.4

Organisational Silo Effect and Missing Links
Black-cloud Effect
Prima-donnas Effect

Radio Silence

5 Socio-technical Quality Framework

5.1 Developer Social Network metrics
5.2 Socio-technical metrics
5.3 Core community members metrics
5.4 Turnover.,
5.5 Social Network Analysis metrics
6 Survey
6.1 The questionnaire
6.2 Background of respondents

35
35
37
37
39

43
45
50
52
54

57
o8
61
63
66
67

Contents

6.3 Confirmatory role.
6.4 Validity of Community Smells00
6.5 Quality factors identification oL

7 Operationalising our Quality Framework: Codeface4Smells
7.1 Codeface. o
7.2 Architecture of CodefacedSmells
7.3 Operationalisation of Community Smells

7.4 Socio-technical Quality Framework implementation

8 Evaluation
8.1 Occurrences of Community Smells
8.2 Quality factors correlated to Community Smells
8.3 Qualitative indicators of Community Smells
8.4 Summary of Research Questions
8.5 Threats to validity oo

9 Conclusions and future work
List of Figures

List of Tables

List of Algorithms
Bibliography

A Survey
A.1 The questionnaire
A.2 Characteristics of initially considered projects
A.3 Likert scaleresults

B Codeface4Smells
B.1 Set-up and analysis execution L.
B.2 Project configuration Lo o

B.3 Analyse high-volume communities
B.4 Utility tools

C Reports of reference projects
C.1 Firefox e
C.2 LibreOffice o
C.3 FFmpeg o o

ii

109
110
112
119
122
123

125

128

129

131

139

141
141
144
144

149
149
150
151
152

Chapter 1

Introduction

In the last decade, software became predominantly engineered by large and
globally-distributed communities and consequently, now more than ever, it is of
vital importance knowing more on the quality of these communities to ensure the
success of a software project [1]. Socio-technical decisions, like changing the organi-
sational structure of a software development community or its internal development
processes (e.g., adopting agile methods), modify how people work and interact with
each other and, as a side effect, they influence the well-being and success of the
software project [2].

Previous researches revealed that software development communities can develop
ills that collectively contribute to a form of additional project cost that was defined
Social Debt [3], which is similar but parallel to Technical Debt [4], because it rep-
resents additional project costs not necessarily related to the source code itself but
rather to its “social” nature and thus it is correlated to sub-optimal organisational
structure and socio-technical characteristics of a software community.

This master thesis elaborates, validates and discusses a Socio-technical Quality
Framework for software development communities, constituted by quality factors,
which reflect projects’ organisational and socio-technical characteristics (e.g., socio-
technical congruence [5]), and Community Smells, which identify sub-optimal or-
ganisational and socio-technical characteristics that lead to issues in communities’
organisational and social structures [6]. To the best of our knowledge, our Socio-
technical Quality Framework is the first of its kind and may well inspire further
research in the intriguing social software engineering field of managing Social Debt,
through the identification and quantification of Community Smells.

In order to incorporate within our Socio-technical Quality Framework the most
relevant software development community quality factors, we designed it considering
the organisational and socio-technical literature, metrics elicited from Social Debt
researches [7] and by means of a survey to FLOSS developers featuring almost 60

respondents, executed with the goal of isolating critical success and failure factors

1. Introduction

within software development communities in three large and widely known Open
Source communities: Firefox, LibreOffice and FFmpeg. The resulting framework
is constituted by a total of 40 quality factors, classified in five different categories
of metrics: Developer Social Network, socio-technical, core community members,
Turnover and Social Network Analysis. Furthermore, we defined identification pat-
terns of several Community Smells and operationalised them within the tool we
developed.

We proceeded by formulating several hypotheses on potential correlations be-
tween specific quality factors belonging to the Socio-technical Quality Framework
and the occurrence of Community Smells defined within the model and then we eval-
uated our hypotheses against our corpus of data, consisting of community quality
factors and occurrences of Community Smells for 60 analysed Open Source Software
development communities.

As a result of our evaluation, we found several valuable insights to assess the
quality of software development communities. For example, considering the litera-
ture [8] we conjectured that a higher number of developers sponsored by commercial
companies would lead to higher community attractiveness and health, which in turn
would lead to a lower number of Community Smells. Conversely we found that
Community Smells increase quadratically with the linear growth of the number
of developers sponsored by commercial companies, while for software communities
below 50 trimestral participants the number of sponsored developers becomes irrele-
vant. Furthermore, we conjectured and later verified that socio-technical congruence
leads to a lesser number of Community Smells and thus to a higher quality of or-
ganisational and social structures. Within the various proposed hypotheses, we
conjectured that the number of time-zones, representing the geographic and tem-
poral dispersion of a software development community, would weigh heavily on the
creation of Community Smells, but we observed that the number of time-zones in-
volved in the development activity do not mediate in any way the emergence of any
Community Smell currently detected by our model.

Moreover, we executed a questionnaire in three large and widely known FLOSS
development communities (Firefox, LibreOffice and FFmpeg), aimed at investigat-
ing if perceptions of FLOSS developers can be used as indicators of the presence of
Community Smells within a development community and we achieved many inter-
esting findings. For example, we discovered that software development communities
with higher perceived documentation quality are characterised by less Community
Smells.

Chapter 2 discusses the state of the art of important aspects that were funda-
mental in the definition and elaboration of this master thesis. Chapter 3 provides an
overview of the problem analysis and research questions that are at the foundation

of this work. Identification patterns of several Community Smells are defined in

Chapter 4, while the complete list of identified key quality factors composing our
Socio-technical Quality Framework are presented in Chapter 5. Chapter 6 discusses
the survey proposed to Firefox, LibreOffice and FFmpeg development communities
and provides several findings related to Community Smells and Social Debt. Our
implementation of Community Smells’ identification patterns and quality factors
belonging to our Socio-technical Quality Framework is proposed and explained in
Chapter 7. Further on, Chapter 8 provides the evaluation of our work with the
relative findings related to the occurrence of Community Smells within FLOSS de-

velopment communities and Chapter 9 concludes this master thesis.

1. Introduction

Chapter 2

State of the art

This chapter introduces background information and related work which were
fundamental in the formulation and execution of this master thesis. The state
of the art of Conway’s law research field, presented in Section 2.1, provided the
theoretical concepts and hypothesis at the foundation of our research; moreover,
concepts summarised in this section were important in the identification and defi-
nition of quality factors constituting our Socio-technical Quality Framework (e.g.,
socio-technical congruence). Sections related to Global Software Development and
to its most particular case constituted by Free/Libre and Open Source Software,
discussed respectively in Section 2.2 and Section 2.3, are introduced to provide the
necessary background information to understand the context of our empirical re-
search; furthermore, the provided concepts were fundamental to identify potential
socio-technical issues that are intrinsic within the two typologies of development
environments studied within the literature, in order to further comprise and define
quality factors capable of capturing every aspect of a software development commu-
nity and their associated side effects within our framework. Section 2.4 presents a
set of researches, in order to demonstrate the validity, effectiveness and efficacy of
using Developer Social Networks in empirical software engineering researches, build
considering either mailing lists or Version Control Systems. Social Debt and its tech-
nical counterpart are introduced in Section 2.5, to ensure a deeper understanding
of the main topics covered within this master thesis and to identify potential qual-
ity factors capable of impacting the health of a software development community
(e.g., communicability). Finally, Section 2.6 summarises two important software
engineering researches that provided the theoretical foundations and verified the
effectiveness and validity of the applied empirical research approach of this master

thesis.

2. State of the art

2.1 Conway’s law and beyond

In 1968 with his article titled “How do committees invent?” [9], Dr. Melvin
Conway introduced for the first time the idea, now commonly called “Conway’s
law”, that systems designed by an organisation are constrained to produce designs
which are copies of the communication structure of the same organisation. Conway,
through the use of linear-graph notation, demonstrated that there is a very close
relationship between the structure of a system and the structure of the organisation
which designed it. The consequence of this homomorphism is that if subsystems do
have their own separate design group then the structure of each design group and the
system’s organisation will be identical, otherwise if the same group designed multiple
subsystems, every subsystem’s structure will have the same design group collapsed
into one node representing that group. The phenomenon described by Conway’s law

is more evident as the organisation size increases, because its flexibility diminishes.

Software development is characterized by a technical and a social component.
The technical component is composed by the processes, tasks and technologies used
during the software development, while the social component is constituted by or-
ganisations and people involved in the development and their characteristics. Due
to this dichotomy, software development can be considered a social-technical activity,

in which the technical and the social components need to be aligned to succeed [5].

To design a computer program or any other type of artefact, the initial steps
are more related to design activity rather then to the system itself since the design
activity cannot proceed until its boundaries and the boundaries of the system to be
defined are understood and until a preliminary notion of the system’s organisation
is achieved. As a consequence of this Conway concluded that “the very act of
organizing a design team means that certain design decisions have already been
made, explicitly or otherwise”. The steps after the choice of such preliminary system
concepts are [9]: organisation of the design activity and delegation of tasks according
to that concept, coordination among delegated tasks and consolidation of sub-designs
into a single design . A system is then structured from the interconnection of smaller
subsystems, and so on, until a stage in which the subsystems are easy enough to be
understood without further subdivisions is reached. Large systems naturally tend to
disintegrate themselves more than small systems during the development activities
and so a system management activity should be used to mitigate this dangerous
characteristic. To achieve an effective coordination among teams, architecture is
not the only dimension that should be considered but even plans, processes and

coordination mechanisms are fundamental elements [10].
Fred Brooks in his book titled “The Mythical Man-Month” [11], in agreement
with Melvin Conway’s theory, verified that the product quality is strongly related

to the organisational structure. In real world projects estimates can be inaccurate,

2.1. Conway’s law and beyond

processes may be executed imperfectly, requirements and technology changes and
people leave. Even if mature companies should anticipate those events, empirical
studies suggest that developers rely on informal communications to correct errors
and problems raising from that kind of events [10].

Due to the homomorphic relation between components and the organisational
structure, Conway [9] proposed the theory that a team can work on many compo-
nents but that a single module must be assigned to a single team. This concept was
introduced for the first time in the software engineering field in 1972 by Parnas [12],
who argued that software modules should not only be considered a collection of
sub-programs but instead as work items. Different modules can be developed in
parallel and independently from each other and the development time should be
shortened since separate teams work on different modules and, as a consequence,
the communication need is reduced.

In single location organisations, informal communications and informal meetings
are surprisingly important to keep the project coordinated and to resolve conflicts as
soon as possible. Conway’s law do not consider this type of communications because
they are implicit and invisible in single site companies.

In 1999 Herbsleb and Grinter [10] analysed Conway’s law validity and scalability
in Global Software Development (GSD). In geographically distributed development
environments different time zones, languages and cultures may complicate informal
communications. This distributed development’s side effect, in conjunction with the
impossibility of frequent informal physical meetings, influences the project’s coordi-
nation structure since participants may not be aware of a coordination need toward
other members, without having informal communications with them. In their work,
Herbsleb and Grinter, identified the following coordination activities that were in-
fluenced by the geographically distributed nature of Global Software Development:
knowing whom to contact, difficulty of initial contact, ability to communicate effec-
tively and lack of trust.

Since coordination mechanisms and informal communications are both very im-
portant in geographically distributed environments, methods to overcome and mit-
igate the effect of temporal, cultural and geographic diversity are vital. The fol-
lowing quality approaches can be implemented to reduce the cross-communication
needs between different geographically distributed sites of a same company, and

thus reducing one of the GSD’s critical factor [10]:

e consider Conway’s law and keep a good modular design and assign separated

tasks to different sites;

e do not split the development across different sites, whenever it is possible, to

avoid the creation of instabilities;

e maintain the documentation available and up to date;

2. State of the art

¢ overcome informal communication barriers whenever it is possible, encouraging

the establishment of informal cross-site relationships (e.g. front-load travels).

In 2002 Mockus [13] considered mailing lists, code repositories and issue tracking
systems of two important FLOSS projects and analysed developers participation
and community metrics. He concluded that a higher organisational structure mod-
ularity may indicate a lower coordination need and that a “communication-only”
approach in a distributed software development environment, as FLOSS ecosystem,
does not scale because communication channels will be overwhelmed as the size and
the complexity of the project and community will grow.

Since the beginning of software development, metrics were defined to estimate
the quality of developed software (e.g. LOC, code churn, code complexity, code
dependencies) but they measured only the technical aspect of software and ignored
the “social” factor of software development which is related to people and to the
organisational structure. Using Brooks’ theory as a starting point, Nagappan et
al. [1] analysed the relation between organisational structure and software quality.
They proposed eight measures to quantify organisational complexity from the code
viewpoint and empirically evaluated their efficacy to identify failure-prone binaries
in a commercial project. The failure-proneness prediction model based on the or-
ganisational metrics outperformed traditional technical metrics (e.g. code churn,
code complexity, LOC).

Conway’s law and Brooks’ theory imply that changes within the organisation can
influence the software quality because the organisational structure will be modified.
Those theories were addressed and verified by Mockus [14], who stated that one of
the main goal of an organisation is to increase its efficiency. To achieve this goal an
organisation should define roles, processes, formal reporting relationship roles and
reporting relationships to improve its internal functioning; therefore, any change in
the organisational structure will affect the software product quality.

In his research Mockus [14] investigated the relationship between developer-
centric measures of organisational change and the probability of customer-reported
defects in the context of a large software project and found that factors negatively
influencing the software quality are: proximity to an organisational change, dis-
tributed development and recent developers departure. Mockus was not able to
identify at what extent the organisational volatility causes or is a cause of defects
but from his results it was evident that larger size organisations were associated
with higher chances of defects. This correlation can be caused by the increased
coordination need and by the reduced decision making speed.

The concept of socio-technical congruence was introduced by Cataldo et al. as
the “match between the coordination requirements established by the dependencies
among tasks and the actual coordination activities carried out by the engineers”

[5,15]. Cataldo et al. discovered that socio-technical congruence is highly correlated

2.1. Conway’s law and beyond

to the software development productivity: a higher socio-technical congruence is
proven to speed-up software development, reducing the amount of time needed to
perform a task and they demonstrated that over time developers learn to use the
available communication channels in such a way to reach a higher congruence, thus
if the development base is stable then the socio-technical congruence should increase
over time [15].

The concept of socio-technical congruence was later redefined in 2008 by Sarma
et al. as “the state in which a software development organisation harbors sufficient
coordination capabilities to meet the coordination demands of the technical products
under development” [16] and the following socio-technical congruence characteristics

were identified:

1. it represents a state because it captures a particular moment in time of the

company’s social and technical context;

2. it is descriptive of a certain state in which an organisation finds itself in a
defined time because individuals that perform the work may take non-optimal

decisions;

3. it is dynamic because the technical and social structures change and evolve

over time;

4. it is multi-dimensional because it depends on every possible way to coordinate

work;

5. it can be considered at multiple levels: individuals, sub-teams, teams or entire

organisation;

6. it involves trade-offs because congruence may differ in every considered level
and achieving congruence in a level may create an incongruence in another

one.

In 2010 Colfer and Baldwin [17] complemented Conway’s law verifying the valid-
ity of their mirroring hypothesis, which assumed that the organisational patters of
a development community (e.g. team co-membership and geographic distribution,
communication links) mirror the technical dependency patterns of the software un-
der development. Their contribution added the opposite causality relationship to
Conway’s law: the technical structure mirrors the organisational structure, essen-
tially turning Conway’s original argument into an isomorphism. In other words,
a change to the communication structure will eventually trigger a change to the
design structure to return the socio-technical system into a state of socio-technical
congruence.

The relation between software development organisational changes (e.g. forks,

company acquisition, open-sourcing) and software quality was addressed even by

2. State of the art

Sato et al. [18], who demonstrated that when multiple organisations (concurrently
or in temporal succession) modify the same file, the increased modification frequency
and complexity will lead the file to be more faulty.

Summing up, socio-technical congruence states that if two people work on depen-
dent tasks then they need to communicate with each other. Communication needs
can be computed analysing code modules and their inter-dependences. For example,
if two developers work on inter-dependent modules then they have to communicate
to coordinate their work and if they do not communicate and this gap is detected,
then it can suggests a coordination problem. Socio-technical congruence manage-
ment consists in reducing the number of this kind of gaps. To minimize those gaps it
is possible to promote coordination mechanisms or reducing the coordination needs

(e.g. reducing modules inter-dependences [12]).

2.2 Global Software Development

One of the main innovations that is characterizing the 21th century is global-
isation: “the process of international integration arising from the interchange of
world views, products, ideas and mutual sharing, and other aspects of culture” [19].
Globalisation is influencing every aspect of our life, from politic to economy, from so-
ciety to technological systems, through the connection and integration of companies,
people and nations on a global scale.

Friedman in his book “The World Is Flat: A brief history of the twenty-first
century” defined ten “flattener” events that allowed all commercial competitors to
have the same opportunities by playing with the same set of rules, enabling the

globalisation process. Those historical events are [20]:

1. 11 September 1989 — “Fuall of Berlin wall”: represents the end of the Cold War
and the revolutionary possibility of creating personal software programs, con-
tents and interconnections with other people around the world using Personal

Computers;
2. 8 September 1995 — “Netscape”: Internet is accessible to everyone;

3. “Work-flow software”: virtual applications are now able to cooperate without
human assistance. This is considered by Friedman the “genesis” because it
is the moment in time where the global platform enabling multiple forms of

collaboration was born;

4. “Open-sourcing”: communities collaborate and upload their work on on-line

projects;

5. “Outsourcing”: companies can split and externalise their activities in efficient

and effective ways;

10

2.2. Global Software Development

6. “Off-shoring”: international relocation of company’s processes in countries

where production costs are lower;

7. “Supply-chaining”: supply and demand management is integrated across com-

panies;

8. “In-sourcing”. Commercial companies employees perform services for con-

nected third party companies;

9. “Informing”: social and search engines and information-rich websites allow

access to a massive amount of information;

10. “The steroids”: any analogical content can be digitised and telematically trans-

mitted at high speed, in mobility, any time and by anyone.

As a consequence of outsourcing and off-shoring flatteners, commercial software
started to be developed by different geographically distributed and cooperative com-
mercial software companies. There two flatteners are the fundamental prerequisites
to enable Global Software Development (GSD), that is defined as “the nature of
globalisation which reduces temporal, geographic, social, and cultural distance across
countries” [21].

Global Software Development differs from traditional software development be-
cause in addition to the customer that buys the software and the commercial com-
pany that sells it, there are suppliers whom develop software through the mechanism
of outsourcing and off-shoring. Global Software Development can be attractive for
commercial companies because it reduces production costs due to its off-shoring na-
ture, it allows companies to hire the best developers from any country of the world,
it creates the chance of constitute virtual corporations in very fast ways, it allows
to benefit from proximity to the market and it enables a “round the clock” software
development approach, through the exploitation of different time zones, improving
the time-to-market.

In a Global Software Development environment, as previously seen, the lack of
communications between developers and the assignment of the same task to two
different geographical sites can compromise the development success. Considering
the off-shoring characteristic of GSD, social and cultural differences between devel-
opers can impact on the overall trust and software quality. To achieve the best
performance from a GSD approach, commercial companies should take some pre-
cautions to avoid potential side effects, that can be categorized largely as temporal,
geographical, social and cultural barriers [21]. Some useful strategies to limit Global
Software Development side effects are: communication and coordination executed
through common processes, strategic sub-division of tasks [12], offer cultural educa-

tion to employees, understand diversity and taking advantage from it [22].

11

2. State of the art

Diversity arises from attributes that differentiate people as their demographic
information (e.g., gender, nationality, age), their functional information (e.g., role,
knowledge, expertise) or their subjective information (e.g., personality, ethic). Molle-
man et al. [23] considered team diversity by addressing demographic characteristics,
personality traits, technical skills and knowledge characteristics and analysed their
impact on team functioning and performance in industrial manufacturing and ser-
vice environments. The characteristics of a team can be considered at three different
levels: global, shared and compositional. Global characteristics can be measured
at team level (e.g., time size), shared characteristics are related to individual team
members perceptions that tend to be shared by all the other team members (e.g.
mutual trust) and compositional characteristics are related to individual team mem-
bers attributes (e.g., age, skills). Within global team characteristics Molleman et
al. considered team size and verified the intuitive idea that the optimal team size
depends on the team tasks and discovered that “if workers are independent or only
have to share resources such as tools, a larger team will achieve a better performance”
because team tasks will be simpler and require less coordination effort. This result is
similar to the one obtained by Parnas [12] and other researches reported in Section
2.1. Molleman et al. concluded that demographical similarity (e.g., gender, age)
facilitates team functioning and effectiveness, enhancing mutual linking and trust.
On the opposite side demographic diversity can cause cliquishness, stereotyping and
subgroups conflicts [23]. Earley et al. [24] discovered that even if team diversity
negatively impacts team functioning and effectiveness in the short-medium term, its
side-effect tends to be less relevant as time passes because a common identity will
be created with the institution of ways to interact and communicate.

In conclusion, the increasing interest in Global Software Development created
new generations of “software development processes, practices and trends such as
ubiquitous computing, agile methodologies, project outsourcing, distributed soft-
ware development, process improvement and standardization, mobile applications
development, social networking, and process tailoring practices” [22]. These new
typologies of software applications generated new software development trends and
styles that should be implemented by commercial companies to improve their effi-

ciency and effectiveness in software development (e.g., agile methods).

2.3 Free/Libre and Open Source Software

In February 1986 Richard Stallman, founder of the Free Software Foundation
(FSF), defined ”Free Software” as any software that respects user and community
freedom, allowing users to be free to run, copy, study, change, improve and distribute
the software. Free software is an ethical matter of liberty and freedom, it is not

related to price. Free Software does not mean non-commercial and a free software

12

2.3. Free/Libre and Open Source Software

program must be available for commercial use, development and distribution. To
highlight the fundamental idea that it does not mean gratis, sometimes Free Software
is called Free/Libre Software, adding the French or Spanish word that means free
in the sense of freedom. Four fundamental freedoms were specified to define Free
Software with the purpose of allowing users to control the program and what it can

do for them. The four freedoms to classify a software as Free Software are [25]:
1. The freedom to run the program as you wish, for any purpose (Freedom 0);

2. The freedom to study how the program works and possibility to change it
so it will compute as you wish (Freedom 1). Access to the source code is a

precondition for this freedom;

3. The freedom to re-distribute copies, so you can help your neighbors (Freedom
2);

4. The freedom to distribute copies of your modified versions to others (Freedom
3). By doing this you can give to the whole community a chance to benefit

from your changes. Access to the source code is a precondition for this freedom.

Free Software Foundation’s social activism and the misunderstanding of the word
“Free” were considered not appealing to commercial software companies by some
developers and to promote the potential business deriving from the collaboration
and the sharing of source code, the term *“ Open Source” was created and in February
1998 the Open Source Initiative was founded. A computer software is classified as
Open Source Software (OSS) if its source code is available and it is licensed to
provide the rights to study, change and distribute the software for any purpose. The
Open Source Initiative states that Open Source does not just mean granting access

to the source code but the software must obey to the following ten criteria [26]:

1. Free re-distribution: the license shall not restrict any party from selling or
giving away the software as a component of an aggregate software distribu-
tion containing programs from several different sources. The license shall not

require a royalty or other fee for such sale;

2. Source code: the program must include source code and must allow distribution
in source code as well as compiled form. Where some form of a product is not
distributed with its source code, there must be a well-publicized means of
obtaining the source code for no more than a reasonable reproduction cost,
preferably downloading via the Internet without charge. The source code
must be the preferred form in which a programmer would modify the program.
Deliberately obfuscated source code is not allowed. Intermediate forms such

as the output of a preprocessor or translator are not allowed;

13

2. State of the art

10.

Derived works: the license must allow modifications and derived works and
must allow them to be distributed under the same terms as the license of the

original software;

Integrity of the author’s source code: the license may restrict source-code from
being distributed in modified form only if the license allows the distribution of
"patch files” with the source code for the purpose of modifying the program
at build time. The license must explicitly permit distribution of software built
from modified source code. The license may require derived works to carry a

different name or version number from the original software;

. No discrimination against people or groups: the license must not discriminate

against any person or group of persons;

. No discrimination against fields of endeavor: the license must not restrict

anyone from making use of the program in a specific field of endeavor. For
example, it may not restrict the program from being used in a business, or

from being used for genetic research;

Distribution of license: the rights attached to the program must apply to all
to whom the program is redistributed, without the need for execution of an

additional license by those parties;

. License must not be specific to a product: the rights attached to the pro-

gram must not depend on the program’s being part of a particular software
distribution. If the program is extracted from that distribution and used or
distributed within the terms of the program’s license, all parties to whom the
program is redistributed should have the same rights as those that are granted

in conjunction with the original software distribution;

. License must not restrict other software: the license must not place restrictions

on other software that is distributed along with the licensed software. For
example, the license must not insist that all other software distributed on the

same medium must be open-source software;

License must be technology-neutral: no provision of the license may be predi-

cated on any individual technology or style of interface.

Even if legally Free Software is qualified as Open Source Software, the Free Soft-

ware Foundation consider the term Open Source Software close but not identical

to Free Software as the word “Open” never refers to freedom, which is one fun-

damental component of the Free Software definition [25]. Stallman said that the

two terms describe almost the same category of software, but they stand for views

based on fundamentally different values: Free Software is a social movement and

14

2.3. Free/Libre and Open Source Software

Open Source Software is a development methodology. He classifies the Free Software
as an ethical imperative to respect the user freedom while Open Source concern is
how improve software and increasing its popularity and success [27]. As the main
difference between these definitions can be defined as political, in situations where
the developer political views are not considered important it is possible to be neutral
using the term Free/Libre and Open Source Software (FLOSS). The term Free and
Open Source Software (FOSS) can also be used but the Free Software Foundation
considers it misleading because it fails to explain that “free” refers to freedom [28].
In this master thesis we will use all the above definitions as synonyms.

An Open Source Community can be defined as a network platform in which
the source code of the software is opened under an Open Source Software license
agreement. Open Source Communities are fundamental for Open Source Software’s
promotion and development. In the last decade the interest in FLOSS grew widely
and now many commercial companies develop, maintain and distribute their prod-
ucts through an Open Source Community (e.g. MySQL, Firefox). The pervasive
diffusion and growing interest in FLOSS projects from both voluntary developers
and commercial software companies constitute a precious asset since developers can
extend, modify or reuse code from already existing projects. This possibility can
increase developers productivity and reduce development costs.

FLOSS development can be driven by voluntary developers encouraging knowl-
edge sharing rather than the protection of intellectual property, commercial com-
panies and institutions from every part of the world. FLOSS software development
is a perfect example of Global Software Development and it has all the GSD pros
and cons. Group dynamics in FLOSS communities are substantially different from

commercial off-line teams, for example [29]:

o Geographic dispersion and cultural differences are the norm, as community

members rarely meet in person;

¢ Collaborators assemble in on-line communities and coordinate their activities

through distributed communication channels (e.g., mail lists);

o Teams are fluid: they tend to form and dissolve organically around a specific
task;

e High turnover since FLOSS contributors are often volunteers;

e FLOSS communities are generally constituted by a set of core developers and
a more loosely coupled group of contributors that support the development
by reporting issues, submitting patches or contributing with documentation

(core-periphery structure).

Open Source communities have an implicit diverse nature as they are usually com-

posed by a variety of contributors ranging from volunteers to developers sponsored

15

2. State of the art

by companies and all of them have different demographic characteristics, knowl-
edge, personalities, skills, cultures and educations. Open Source Software projects
can benefit from their intrinsic diversity since it stimulates creativity, diversity of
ideas and problem solving skills coming from different background and knowledge,
therefore increasing global projects productivity [29]. On the other hand if diver-
sity increases but it is not managed, it may create conflicts within the development
team negatively effecting the team’s cohesiveness and its performance, due to greater
perceived differences in values, ideas, norms and communication style. [23].
Software licenses define under which conditions software can be used, copied,
modified or redistributed without incurring in legal problems. As proprietary li-
censing tend to restrict the possible ways in which a software will be used, Open
Source licenses tend to limit the restrictions that can be associated to a software,
to ensure development freedom and source code re-distribution. Usually the license

under which a project is released can be explicated in three different ways:

1. Adding a licensing comment on top of each file of the project. This approach

allows a fine-grained license definition;
2. A specific file specifies the license under which the software is released;

3. The software license is expressed within the project’s official website.

Several FLOSS licenses exist, from highly restrictive (e.g., GPL) to more flexible
(e.g., MIT), but their main goal is to promote and enable the right to fork, copy,
modify and redistribute the program source code. As it evolves a project can change
its license to better meet the requirements and needs of the development community
or of external actors interested in the project. Vendome et al. [30] highlighted that
the initial software license is influenced by the communities to which core developers
are already contributing and that external actors do not have impact in this choice.
As projects grow their current licenses are heavily affected by their need to be
commercially reused and, to accomplish this purpose, Open Source projects tend
to migrate toward less restrictive and more permissive licenses. Licenses do not
only define how software code source can be reused but they might also affect other
components of the projects where the FLOSS code will be used. For example GPL
license requires that all the source code, in which a GPL licensed component is
used, has to be released under the GPL license. More flexible licenses (e.g., MIT
license) do not require this condition and allow the use of FLOSS code under any
other license, including commercial use. This license dependency was found even
by Vendome et al. [30] who stated that a license change of a sub-component might
start a chain reaction that will influence the final project’s license or will cause the
drop of the sub-component usage due to incompatibilities between licenses.

The number of commercial driven Open Source Projects is increasing year after

year, FLOSS development has long become an important commercial activity and

16

2.4. Developer Social Networks

the Open Source Software ecosystem is full of successful projects which are com-
pletely driven by commercial companies (e.g., Android) or which have developers
sponsored by commercial companies (e.g., Linux). When a voluntary-based Open
Source Software project become promising, commercial companies may be inter-
ested in participating in its development, to adequate the software to their needs.
It is possible to consider the ratio of volunteer to paid work as an indicator for the
health of FLOSS projects and it can aid project leaders in managing their commu-
nity [8]. Riehle et al. [8] in 2014 discovered that even if Open Source Software has
been growing near-exponentially, its global ratio of voluntary and paid development
is almost constant. A possible explanation is that for every project which increases
its economic significance receiving sponsored development, a new totally voluntary
driven project is started. Voluntary FLOSS developers, in contrast to commercial
software developers, usually experiment a high degree of development and organi-
sational freedom with respect to the possible ways through which contribute to the

project and how to organize themselves and their tasks.

2.4 Developer Social Networks

In a software development community every interaction and relationship between
developers can be modelled through a self-organised network, which can be consid-
ered as a latent developer Social Network [31]. In such developer Social Network,
considering the case of FLOSS projects, developers and their relationships are sub-
jects to continuous variations and changes as the set of active developers and their
activities change over time.

A Developer Social Networks (DSN) can be modelled through the use of nodes,
that represent actors, and edges, that represent relationships between different ac-
tors (or groups). A Social Network and its actors have two fundamental properties:
connection and distance [32]. Connectivity can be measured using density, size, cen-
trality and reachability of the Social Network. As a member of the Social Network
is more connected then he or she is exposed to more information, can be considered
more influential in the community and may be easily influenced by others. Distance
in a Social Network represents the closeness of two actors within the network and
may be a useful indicator to identify macro-properties differences, like diffusion and
homogeneity. Distance influences the information diffusion time across the commu-
nity and it can be measured using walks and paths. Connections and distances are
fundamental characteristics to enable the identification of sub-communities within
a Social Network, which are defined as “subsets of actors among whom there are
relatively strong, direct, intense, frequent, or positive ties” [32].

Since Free/Libre Open Source Software communities number increase daily, the

amount of open and accessible information about FLOSS development grow expo-

17

2. State of the art

nentially. Issue tracking systems [33], mailing lists [34] and code repository histo-
ries [35] of FLOSS projects can be easily and freely mined by researchers to analyse
defects, communication and distributed collaboration habits of Open Source Soft-
ware developers. The existence of FLOSS project is enabled by Internet that allows
communication and coordination (C&C) activities between developers. Such activi-
ties are typically public and accessible to anyone and this allows researchers to track
and mine coordination and communication activities and study them through the
usage of Developer Social Networks, in contrast to industrial closed-source projects
where C&C activities are predominantly direct and informal [34].

FLOSS projects are extremely interesting for empirical software engineering
studies because they imply a distributed development occurring at a global scale and
all the information related to a project (communications, code modifications, bugs,
etc.) are available on-line (mailing lists, code repositories, bug tracking systems,
etc.), granting the possibility of mining them. To take advantage of this enormous
quantity of available data and to be able to mine and make sense of the organisa-
tional, social, technical and communicational aspects of a FLOSS project, researchers
should re-factor the retrieved information into a structured and analysable form.
During last decade the main technique used to model technical and social aspects
of software developers to enable the possibility of studying how people collaborate
and organize their work in a global software development environment is the Social
Network approach.

Public mailing lists are the classic channel used in FLOSS projects to perform
communication and coordination activities and their archives (usually available on-
line) in conjunction with VCS and other on-line development artefacts (e.g., bug
tracking systems) allow researchers to create a developer Social Networks able to
model and understand communication, coordination and collaboration practices and
patterns in FLOSS projects.

During the last decade researchers have generated Developer Networks from ev-
ery possible development source of information to enable the usage of Social Network
Analysis methodologies and metrics. A Social Network can be created from code
source history and mostly from any other kind of open and accessible data source
used to support the software development (e.g., bug reporting [31], VCS [36] and
mailing lists [34]). As an example, to conduct a knowledge-centric software engi-
neering empirical study, the mailing list of a project should be considered: every
member whom sent a message on the mailing list is considered a node and if a person
A received a reply to one of his messages from another member B, then it exists an
edge connecting A and B.

Conway law states that the project structure is strongly correlated to the or-
ganisational structure of the project, thus understanding the Developer Network is

fundamental to estimate the quality and efficiency of software development activ-

18

2.4. Developer Social Networks

ities. Social Network Analysis is based on individuals and how these individuals
are related between them through relationships. In software engineering these rela-
tionships can be extracted mining software development artefacts, allowing to study
all the possible ways in which people interact through all the available channels
used to develop software. Empirical software engineering studies often apply SNA
methodologies because they offer a solid systematic and quantitative framework.

FLOSS projects, due their intrinsic nature of being developed mainly by vol-
untary developers without a monetary retribution, can be affected by a sentiment
of mistrust from companies that use them in their commercial activity. To avoid
this phenomenon, in 2002, Madey et al. used a Social Networks approach to model
FLOSS communities because “a better understanding of how the OSS community
functions may help IT planners make more informed decisions and develop more
effective strategies for using OSS software” [35].

One of the first attempt to use Social Network Analysis to analyse on-line com-
munities was conducted in 2004 by Lin and Chen [32]. In their research study social
ties, information flows, information and resource acquisition and coalitions creation
were considered with the scope of accessing team collaborations, evaluate the per-
formance of the system and enable the identification of relationships and interaction
patterns within the community.

A socio-technical Developer Network can be created from socio-technical connec-
tions found exploiting the collaboration and communication channels and it can be
analysed using SNA metrics. Social Network Analysis metrics calculated on socio-
technical Developer Networks, created from connections observed in development
artefacts, were proved to be representative of actual and real socio-technical rela-
tionships present within the software development communities [37]. Nia et al. [38]
demonstrated that the effect of paths with broken information flow (consecutive
edges which are out of temporal order) on the centrality measure of nodes within
the network and the effect of missing links on such measures do not invalidate the
Social Network Analysis metrics validity, but such metrics are stable with respect
to such phenomenons. Betweenness centrality and clustering coefficient are stable
in presence of a large number of missing links and this this essentially means that
most of the activity in Developer Social Networks arise from few participants, thus
it is sufficient to look at the 10% of developers [38].

In software engineering with the term Version Control (VC), it is considered any
practice devoted to track and control changes to any possible project element: source
code, documentation or configuration files. Since FLOSS development is intrinsi-
cally distributed and anybody can contribute modifying the source code, Version
Control Systems (VCS) are extremely useful as they can track ownership of changes
to the project source code. There are two main VCS typologies: centralized and

distributed. Centralized VCS have a single central authoritative repository on which

19

2. State of the art

developers can synchronize their code-base; file locking and version merging are used
to enable different developers to operate on the same file at the same time. Some
famous Centralized VCS are: Concurrent Versions System (CVS) and Subversion
(SVN). Opposed to the client-server approach of Centralized VCS, Distributed VCS
implement a peer-to-peer approach as they don’t have any central authoritative
repository but the source code can be checkout and committed into any existing
repository with a merge operation. Some famous Distributed VCS are: Git, Mercu-
rial and Bazaar. Brindescu et al. [39] conducted an empirical software engineering
study to compare the impact of Centralized VCS and Distributed VCS on software
changes. They discovered that Distributed VCS have a smaller commit size in terms
of lines of code and that hybrid repositories (repositories that migrated from a cen-
tralized to a distributed VCS) do not show any difference between the size of commits
performed before and after the switch of paradigm due to commit policies formed in
the team while using the centralized approach. In the past decade Distributed VCS
saw an increase in popularity with respect to Centralized VCS and many popular
FLOSS projects migrated from a centralized to a Distributed VCS. Distributed VCS

have the following main differences respect to the centralized approach:

1. Only working copies exist because a reference copy of the code does not exist
by default;

2. Every working copy is a remote backup of the change-history of the entire

project;
3. It is possible to work without the need of being connected to a network;
4. Version Control operations are fast because no communication is needed;
5. Communications are necessary only when sharing a change between peers;

6. A web-of-trust approach can be used to merge changes coming from different
repositories; this enables new work-flows that are impossible in Centralized
VCS (e.g., intermediate roles can be responsible for integrating new changes

proposed by developers);

7. Allow non-core developers (the ones who do not have write permissions on the

repository) to contribute to the source code;
8. Authorship of changes of non-core developers is kept in historical records;

9. Individual changed lines of a file can be committed instead sending the whole

file again;

10. Initial repository cloning is slower than Centralized check-out since all branches

and change history are copied.

20

2.4. Developer Social Networks

Version Control Systems (VCS) have been used to construct developer collaboration
networks since the introduction of Social Networks and Social Network Analysis in
empirical software engineering studies, due to their intrinsic capability of capturing
inter-relationships among large software project components. Different VCS and
VCS typologies will provide different grain level information to construct the collab-
oration network. For example Centralized VCS will provide only information about
the committer, instead Distributed VCS will usually provide even information about
the author of the commit. Since the information volume within a VCS can reach
an incredible dimension, this can be considered a Big Data research area. Data
retrieved from VCS is unusable without techniques to extract coherent information
from this amount of data and highlight relevant trends and interesting aspects of a

software project.

The first empirical software engineering research that considered VCS to gener-
ate a collaboration network was conducted by Lopez-Fernandez et al. in 2004 [36]
and it proposed a set of Social Network Analysis methodologies to characterise the
evolution and internal structure of FLOSS projects. They proposed to consider VCS
committers or VCS directories (considered software modules) as nodes and the com-
mon commits as weighted edges between two nodes. In 2011 Jermakovics et al. [40]
improved the methodology proposed by Lopez-Fernandez and allowed the generation
of a more detailed and cleaner collaboration network, considering a file level grain
instead of directories level to detect common commits (software modules). Devel-
oper networks generated using the methodologies proposed by Lopez-Fernandez or
Jermakovics can be too dense and inefficient to obtain useful results during devel-
oper collaboration analysis. In 2015 Joblin et al. [41] addressed this problem and
introduced a collaboration network generation methodology that consider the code
structure and detect when developers collaborated on the same function of a file,

enabling a function level grain collaboration analysis.

After 2004 every other possible development artefact was considered as a data
source and used by researchers to create Developer Networks. Bird et al. [34] in
2006 were the first to exploit mailing list archives to construct a Developer Social
Network of community members participating in a project. Always in 2006 Howison
et al. [33] created for the first time in software engineering history a Developer Social
Network from a bug reporting system. Both mailing lists and bug-tracking systems
of FLOSS projects enable to explore communication and coordination activities of
all the participants of a community and do not limiting the analysis just to software
developers, as in the case of software code source (VCS) analysis, because mailing
lists and bug-tracking systems contain many social interactions and bug reporting
activities performed by users and people not necessarily directly involved in the

software development (e.g., report bugs but do not provide patches).

Hong at al. [31] considered how and to what extreme Developer Social Networks

21

2. State of the art

can be analysed using General Social Networks (GSN) techniques, studied the evolu-
tion of Developer Social Networks in time and how the DSN topological structures
can be influenced by project events (e.g., release, turnover). General Social Net-
works (e.g., Facebook, Twitter) as Developer Social Networks are founded on the
freedom of participation but GSN offer more freedom of topics, while Developer So-
cial Networks are mainly focused only on project development activities. Developer
Social Networks are latent and not instantly usable, so they have to be extracted and
constructed from information rich artefacts that support software development (e.g.
VCS, mailing lists). Some other interesting aspects which characterise Developer
Social Networks are [31]:

e DSN are usually characterised by a small portion of developers with high degree
(core developers) and many developers with low degree, thus Developer Social

Networks can be considered as scale-free networks;

e In DSN most pairs of developers can communicate or are connected between

each other through an exiguous number of hops in the network (“small world”);

e DSN are highly modular, thus they do have a significant community structure,

and modularity tend to increase over time.

Social Network Analysis methodologies and metrics were used in many empirical
software engineering studies to implement models capable of predicting faults [1],
failures [42], and vulnerabilities [43]. Nan and Kumar [44] took advantage of Social
Networks Analysis to examine the joint effect of developer team structure and soft-
ware architecture in Open Source Software and discovered that they moderate each
other’s effect on software development performance. Valetto et al. [45] applied Social
Networks theories to Developer Social Networks and defined a useful methodology to
compute socio-technical congruence, which is based on the direct comparison of the
structure of an organization with the project code source. In 2014 Jorge Colazo used
Social Networks Analysis to analyse how collaboration DSNs change when collabo-
rating teams become temporally dispersed and he discovered that “the collaboration
structure networks of more temporally dispersed teams are sparser and more cen-
tralized, and these associations are stronger in those teams exhibiting higher relative

performance” [46].

2.5 Technical and Social Debt

Since socio-technical decisions influence both the technical and social aspect of
the software development environment, non-optimal or uninformed socio-technical
decisions may generate additional costs to the technical or social area, or even both.

Due to the nature of these additional costs, they can be considered as a debit because

22

2.5. Technical and Social Debt

their resolution can be postponed in time since usually these non-optimal decisions
are not easily detectable and visible.

Technical debt (TD) is a software engineering metaphor defined in 1992 by Cun-
ningham [47] to describe the internal tasks that some decisions imply but that are
not performed. If these tasks are not completed, the debt is not repaid and it will
continue to accumulate interests, creating future problems and making it harder to
implement changes in the future. A classical example of technical debt generated by
a development team is when a decision that simplify a short term goal is taken but
it has a great potential to negatively impact the development activity on the long
term.

When a change in the source-code of a project is performed, it is often necessary
to execute some other coordinated changes to other software components (e.g., other
code modules, documentation) due to their inter-dependencies or due to development
policies. Whenever this situation happen but the change associated to the software
modification is delayed, technical debt arises and it must be paid off sooner or later
in the future to avoid the failure of the software development.

Kruchten et al. redefined Technical Debt as “the invisible result of past deci-
sions about software that negatively affect its future” [4], not limiting the concept
to situations that imply a cost. Technical Debt is generated by invisible aspects of
software aging and its evolution or it can be caused by external events. Some techni-
cal debt causes are: technological obsolescence, development environment changes,
rapid commercial success and advent of new and better technologies.

During the past decade, technical debt was deeply studied and analysed along
every software development life cycle process. In 2014 Alves et al. fathomed all
the available literature related to Technical Debt and classified all its forms in the

following ontology [48]:

o Architecture debt: issues in the project’s architecture (e.g., violation of modu-
larity) that affect some architectural requirements (e.g., performance, robust-
ness). It usually cannot be repaid only through source code interventions but

it implies more extensive corrective development activities;

o Build debt: issues that make task building more time and processing consuming

and harder than the necessary (e.g., unnecessary code to the customer);

e Code debt: bad coding practices in the source code that impact on its main-

tainability (e.g., reducing its legibility);

e Defect debt: known software defects whose fix are deferred to the future due

to different priorities or limited resources;

e Design debt: bad design practices that violate the principles of good object-

oriented design;

23

2. State of the art

e Documentation debt: missing, inadequate or incomplete project documenta-

tion;

o Infrastructure debt: software organization issues that can delay or hinter some

development activities (e.g., infrastructure fix);

e People debt: people issues that can delay or hinder some development activities

(e.g., new knowledge brokers);
e Processes debt: issues caused by inefficient processes;

o Requirement debt: trade-off between the requirements that a development team
has to implement and how they implement them (e.g., requirements implement

for a limited number of cases);
o Service debt: issues introduced by an inefficient web service substitution;

o Test automation debt: unnecessary work done by automated tests of previously
developed functionality to support continuous integration and faster develop-

ment cycles;

o Test debt: issues in testing activities that influence testing qualities (e.g. low

code coverage).

Brown et al. defined the concept of “anti-pattern” as a “commonly occurring solution
that will always generate negative consequences when it is applied to a recurring
problem” [49], thus an anti-pattern is a pattern which implies negative connotations.

Within the Technical Debt research area, Fowler [50] defined the term “Code
Smell” to refer to code patterns that can be symptoms of poor design and imple-
mentation choices. Code smells are usually considered as symptoms of the presence
of anti-patterns and thus are mined to detect them. Since Code Smells can be char-
acterised by suboptimal development choices or they can be associated to some poor
recurring design and implementation decisions, they can diminish code comprehen-
sion and increase change and fault proneness of a project. Code Smells can be used
as indicators of the presence of accumulated Technical Debt [51].

Tamburri et al. analysed another type of debt in which a software development
may incur, generated by non-optimal socio-technical decisions. This “Social Debt”
is correlated to the social components of an organisation and it was defined as the
“unforeseen project cost connected to a suboptimal development community” [3].
Social Debt was later redefined in 2015 by the same authors as the “cumulative and
increasing cost in the current state of things, connected to invisible and negative
effects within a development community” [6].

While decisions in Technical Debt are about technologies and their applications,

decisions that cause Social Debt are about social interactions and people themselves.

24

2.5. Technical and Social Debt

Social Debt shares many aspects with Technical Debt since they have many simi-
larities and common points. Social Debt, as well as Technical Debt, can be used
as an indicator of the development process quality, considered as the result of past
accumulated decisions [6]. Tamburri et al. highlighted this relation between the
two diametrically opposite typologies of debt paraphrasing the Cunningham’s defi-
nition of technical debt and describing Social Debt as “not quite right development
community - which we postpone making right” [6].

Global Software development is characterised by many socio-technical decisions
(e.g., outsourcing, organisational structure, communications organization) that do
not only influence the technical area but even the social one, influencing how people
interact, communicate and organize themselves. Since socio-technical decisions can
influence and modify people’s social behaviours, in addition to Technical Debt, they
may produce Social Debt due to non-optimal socio-technical decisions. Social and
Technical Debt can generate delays and addictions costs within the development
process or within the development community, that may increase over time and be
invisible or intentionally delayed due to the intrinsic nature of social and technical
debt.

De Farias Junior et al. [52] conducted a study on communication related risks
in distributed software development that can be considered a Social Debt study
because it analyses some organisational issues created by a non-optimal usage of
communications within a software company. They considered as communication
related risks: issues related to physical and temporal distance, trust, difference of
cultural and linguistic orientations between different teams. To avoid or mitigate
the listed communication related risks within a distributed software development,

Farias Junior et al. proposed these recommendations:

o encourage frequent communication: it reduces misunderstandings created by
cultural and linguistic differences and it increases distributed teams cohesion
and trust, which can generate an increment informal communications between

developers;

o establish an appropriate communication infrastructure: it addresses uncer-
tainty and unpredictability of the communications and it reduces the negative

effect of the absence of “face-to-face” meeting;

e promote socialisation: it increases cohesion, inter-personal relationships be-
tween different team members, communication effectiveness and informal com-

munication;
e encourage effective communication;

e promote visits among distributed sites: it increases trust and it constitutes new

interpersonal relationships with the creation of new informal communications;

25

2. State of the art

e promote informal communication: it diminishes misunderstandings, it creates

trust and facilitates knowledge sharing;
e promote cultural awareness and adopt group-ware applications.

In Social Debt studies, mirroring the Code Smell concept, it is possible to define
“Community Smells” as social related anti-patterns useful to understand negative
community characteristics and trends. Community Smells are formally defined as
“socto-technical anti-patterns that may appear normal but in fact reflect unlikeable
community characteristics” [6], thus Community Smells identify anti-social organi-
sational behaviours within a community. An example of Social Debt is when devel-
opers refuse or delay information sharing for any reason. Community Smells are a
set of social and organisational circumstances with implicit causal relations which do
not constitute a problem if considered alone but that if repeated over time, they may
cause Social Debt in the form of delays, mistrust, uninformed and miscommunicated
architectural decision-making.

Social Debt, as its technical counterpart, can be paid back adopting specific
socio-technical decisions with the purpose of mitigating a precise Social Debt as-
pect, possibly detected by a Community Smell. Tamburri et al. [6] found some
“mitigations” that were proven to have a beneficial effect on Social Debt reduction
and discovered that some socio-technical decisions made to extinguish contracted
Social Debt eventually worsen the situation or did not yield positive outcomes (40%
of socio-technical mitigations considered). Mitigations addressed to resolve Com-
munity Smells and to pay back the related Social Debt are called “deodorants”.

Architectural decisions were considered in both Technical Debt [53] and Social
Debt [7] studies and in both cases they are highlighted as one of the most im-
portant cause of debt generation in professional software environments. Ernst et
al. [53] studied the relation between Technical Debt and architectural decisions and
they concluded that architectural issues are the most relevant cause of technical
debt generation and that to pay back such generated Technical Debt is hard be-
cause usually the incriminated architectural decisions were taken many years in the
past. Tamburri et al. [7] further investigated architectural decisions with a Social
Debt perspective, identifying architectural smells and proposing a possible metric to
measure potential Social Debt contracted in software architecture processes. Their
identification methodology, based of Social Network Analysis theories, computes the
communicability of an architectural design decision to identify architectural smells
with the purpose of avoiding or diminish the related side effects (e.g., architecture
erosion, lack of vision, mistrust).

Referring to Conway’s law and its related studies, it is possible to re-conduct
Technical Debt to not-optimal development processes decisions and Social Debt can

be re-conducted to not-optimal organisational processes. Since socio-technical deci-

26

2.5. Technical and Social Debt

sions are indirectly correlated to Social Debt [6] and that socio-technical congruence
can be considered an agreement indicator to Conway’s law, socio-technical congru-
ence can be considered as a metric to identify possible Social Debt present within
a community because it quantifies the similarity of social and technical processes
whenever a communication need is present.

Both Social or Technical Debt can depend from the context evolution because it
is possible that the original decision which created it, was correct but as time passed
the context changed and such decision was not positive in retrospect.

In analogy to the monetary debt, Technical or Social Debt in software engineering
is not necessary a bad thing if it is known, accepted and controlled. For example
sometimes Technical Debt is necessary to move forward the project development.
Debt, similarly to congruence [16], may imply trade-offs because resolving the debt
in a particular level may create another debt in another level. Potdat et al. [54]
discovered that self-admitted Technical Debt in Open Software development is a
common phenomenon (from 2.4% to 31% of project files is affected), that developers
with higher experience usually tend to introduce most of the self-admitted Technical
Debt and that in the optimal case only slightly more than half of the introduced
debt is paid off.

In their Technical Debt ontology published in 2014, Alves et al. [48] identified a
Technical Debt category called “people debt” that can be associated to the concept
of Social Debt. They define people debt as the debt associated to people issues,
in the context of software organization, which may delay or hinder development
activities and they provide as an example the case of a concentration of expertise
limited to few people as a consequence of delayed training and/or hiring.

Another study that can be considered belonging to the Social Debt research area
is the one conducted in 2014 by Zhou et al. [55], concerning the quantification of
global team performance and profitability, because it investigated the effects of some
social and organisational structure properties (e.g., temporal dispersion, language
difference, skilled workers turnover). Zhou et al. state that “the right organisational
structure is required to achieve benefits of lower labour costs”, acknowledging the
fact that “combined effects of the [social and organisational] factors could lead to
reduced profitability” and concluded, in complete accord to Social Debt definition,
that “in some extreme cases the cumulative effects of external factors could outweigh
the advantage of lower labour rates for globally outsourced work”.

In “Why good developers write bad code”, published in 2015, Lavallée et al [56]
analysed the relationships between some organisational factors and their impact
on developers’ working conditions and performances. Lavallée et al. identified the
following socio-technical organisational issues that may compromise the software

quality and its success [56]:

e Documenting complexity: presence of large, old and poor documentation that

27

2. State of the art

causes the unwanted situation in which unimplemented requirements are dis-
covered at the end of software development. This issue is related to knowledge

management and support maintenance activity transmissions;

e Internal dependencies: presence of many inter-dependent modules that create

conflicts between projects on the deployment schedule;
o FEaxternal dependencies: changes to third-party modules result in costly delays;
e Cloud storage: third-parties do not support vulnerability testing;

e Organically grown processes: software defects are documented but developers
are not aware of them because information exchange is hindered by frontiers
between processes. This issue is caused by the creation of “islands of for-
mality”, which are zones where different processes have limited interactions

between them:;

o DBudget protection: due to the external dependencies issue an “home-made
patch” approach, through the creation of wrappers, is preferred to avoid ad-

ditional third-party costs;

e Scope protection: teams try to deny every other team’s change requests to

protect their project’s scope;

e Organisational polities: issues that arise when the wrong or uninformed person

is contacted;

o Human resource planning (truck number [57]): development is performed in
silos and there is a high possibility of project knowledge loss due to developer

turnover or delays due to developer’s unavailability;

e Undue pressure: developers are threatened to deliver in time by managers and

senior developers.

Comparing this research results to Tamburri et al. researches about Social Debt, it
evident that there are many common findings and shared results, especially consider-
ing the more “human-related” socio-technical issues: “organically grown processes”,

” “organisational polities” and “human resource planning”. Laval-

“scope protection
lée et al. study, conducted within a large commercial company, can be considered in
every aspect a Social Debt related research because the authors conclude their work
stating that software quality can be negatively affected by decisions taken under cer-
tain organisational conditions and assert that “the design flaws introduced because
of the organisational issues presented here will no doubt come back to haunt” [56],

which it is a paraphrase of the Social Debt definition proposed by Tamburri et al. [6].

28

2.6. Motivational research

2.6 Motivational research

The first fundamental empirical software engineering research paper that can
be considered as a motivational research for this master thesis was conducted by
Palomba et al. and it was named “Mining Version Histories for Detecting Code
Smells” [51]. During the definition and execution of our research we were inspired
by Palomba et al. work and the two empirical researches can be considered similar
with respect to their empirical study structure, research question approach and
research context. But they had diametrically opposed targets, because Palomba
et al. research addressed Technical Debt while ours is founded on Social Debt.
Within their research, Palomba and his collaborators, proposed an approach called
Historical Information for Smell deTection (HIST) that is capable of exploiting a
project’s change historical information, mined from versioning systems, to detect
the presence of Code Smells through heuristics computations. The main innovation
of this empirical software engineering research was the introduction of the temporal
factor within Code Smell identification processes, basing such process on revision
history analysis rather then the exclusively consideration of structural information
of a project’s source code. Paloma et al. did not limit their research to Code Smells
detection but further investigated if Code Smells, considered within their study,
were actually perceived by Open Source Software developers as poor design and
implementation choices. Some of the research decisions and methodologies that we
adopted within this master thesis can find their motivation and empirical validity
through their assimilations and parallelisms with their study. The following list of

characteristics constitutes the minimum common denominator of the two researches:
1. Usage of historical information to detect debt related patterns;

2. Capture developer perceptions with respect to the importance and validity of

identified patterns, through the execution of a survey;
3. Operationalization of identified hazard situations;

4. Patterns identification is executed at a fine-grained source code level (method

level);

5. Patterns identification is considered in different temporal instances of a project’s

life cycle and it not limited to the last version of the source code;
6. Research’s context is focused on Open Source Software projects.

An empirical software engineering research paper that constituted a fundamental
contribution to the Social Debt research area and that can be considered as another

motivational study for this master thesis was conducted by Tamburri et al. and it

29

2. State of the art

was named “Social Debt in software engineering: insights from industry” [6]. Tam-
burri and his collaborators laid the theoretical foundations on which this master
thesis was built, since they improved the Social Debt definition, added background
to its insurgence’s conditions, highlighted possible mitigations to Social Debt and
provided the precious contribution of defining several Community Smells that were
proven to be capable of detecting the presence of Social Debt. The operationalisation
and characterisation of Community Smells within a FLOSS software development
community, that constitute a fundamental basic building block of our study, were
based on Community Smells identified by their software engineering research. Tam-
burri et al. analysed correlations between a set of socio-organisational circumstances
and the raise of additional costs in software processes within a large industrial soft-
ware case study. They summarized the identified Social Debt circumstances in a
framework, relating them with their causes, consequences, conditions, contexts, co-
variances, contingents, anti-patterns (“Community Smells”) and they suggest some
possible techniques useful to avoid the insurgency of such negative circumstances.
In their research Tamburri et al. were able to capture some Social Debt character-
istics [6]:

e Socio-technical decisions and Social Debt are indirectly connected;

e Social Debt is an emergent property of the development community itself and,
despite Technical Debt, it cannot be ascribed to any particular software arte-
fact or operation in the development process but, at the same time, Social

Debt has a strong effect on many different software artefacts;

o Social anti-patterns (i.e., Community Smells) can be considered as indicators

of the emergence of Social Debt within a community;

e Social Network Analysis methodologies can be used to identify Community

Smells and quantify Social Debt costs;
e Social Debt can generate Technical Debt;

o Specific socio-technical decisions (“mitigations”) can be implemented to pay
back totally or partially the detected Social Debt.

It is possible to classify Community Smells within three different classes: smells
related to the community structure and its related properties (e.g, community for-
mality), smells related to the community context (e.g., political boundaries) and
smells related to the community members’ interactions (e.g., socio-technical rela-
tionships). In their industrial case study, Tamburri et al., identified and classified

nine different Community Smells [6]:

30

2.6. Motivational research

1. Organisational Silo Effect: this Community Smell occurs when it is present
a too high decoupling between developers and their related development tasks.
This occurrence causes low mutual awareness, low socio-technical congruence
and lack of communications and cooperation in checking task dependencies
within the community. An organisational silo is present in the development
community whenever an isolated subgroup of loosely dependent development
partners waste resources (e.g., time) or duplicate resources over the develop-
ment life-cycle. Another possible side effect of this Community Smell can be
the establishment of a “tunnel vision” due to the lack of cooperation and col-
laboration, which may imply a lack of creativity within the development team
and eventually developers will make architectural decisions without the neces-
sary authority and knowledge. A mitigation to the Organisational Silo Effect
Community Smell is the institution of a “social wiki” within the development
community, combining developers profiles with the artefacts they are working

on and the related documentation.

2. Black-cloud Effect: this Community Smell occurs when two concurrent cir-
cumstances take place together: lack of people able to cover the experience or
knowledge gap between two software products and the lack of official and peri-
odic knowledge sharing opportunities (e.g., daily stand-ups). Whenever those
two circumstances are verified, every knowledge exchange initiative can cre-
ate a confusing communication overload (“black-cloud”) with back-and-forth
emails which obfuscate reality. This Community Smells is caused by the ab-
sence of officially defined sharing protocols, lack of boundary spanners (indi-
viduals whom link internal team network to other teams) and presence of not
efficient information filtering protocols. The main side effects of this Commu-
nity Smell are the creation of mistrust between developers, the possibility of
information obfuscation and the rise of egoistic behaviours (e.g., developers
take decisions even if they do not have decisional authority). As for the Or-
ganisational Silo Effect Community Smell, the adoption of a “social wiki” can

mitigate the negative effects of the Black-cloud Effect Community Smell.

3. Prima-donnas Effect: this Community Smell occurs whenever a team of
developers is unreceptive to change its internal processes and/or characteris-
tics, or it is unwilling to be influenced by external team members through the
forms of collaborations and/or communications. This selfish and condescend-
ing team behaviour can create serious isolation problems and tensions between
the community and the “prima-donnas” team, which is unable to welcome sup-
port from other development partners. Prima-donnas Effect Community Smell
can raise due to stagnant collaboration within the community, due to ineffi-

cient structural innovation or due to organisational inertia. The consequences

31

2. State of the art

32

of the lack of collaboration and communication can be worsened by organi-
sational changes because they create fear in the prima-donnas teams and in-
crease their egoistical behaviours. A possible mitigation for the Prima-donnas
Effect Community Smell is the institution of “culture conveyors”, which al-
low an harmonization process of different organisational cultures through the
promotion of developers coming from different communities to the role of ar-
chitects. Another mitigation technique is the adoption of a “community-based
contingency planning” in which managers decide to make technical and socio-
technical decisions together and use the learning community as a device to
generate contingency plans, if some decisions lead to undesirable outcomes. As
for the Organisational Silo Effect and Black-cloud Effect Community Smells,
the adoption of a “social wiki” can mitigate the negative effects of the Prima-

donnas Effect Community Smell.

. Leftover-techie Effect: this Community Smell is caused by an increasing

isolation of the maintenance and the help-desk operations from the opera-
tive people, with a related feeling of abandonment by the technicians. The
main side effect of this Community Smell are mistrust and the emergence of a
sharing villainy behaviour, related to knowledge and status awareness. A mit-
igation capable of reducing Social Debt connected to this Community Smell is
the “full-circle” and it consists in the creation of a dedicated communication
line (e.g., instant-messaging) between key developers, managers and operation

technicians.

. Sharing Villainy: this Community Smell is caused by the absence of expe-

rience sharing initiative and high-quality knowledge exchange activities (e.g.,
face-to-face meetings), in addition to a shared mindset that considers knowl-
edge interactions between developers as wasting time activities rather than
positive opportunities. The main side effect of the Sharing Villainy Com-
munity Smell is the limitation to developers’ propensity to share knowledge
and meaningful experiences, to the extreme of sharing outdated, wrong or un-
confirmed information. A possible mitigation technique for this Community
Smell, as for the Prima-donnas Effect Community Smell, is the creation of
“culture conveyors”. As for the Organisational Silo Effect, Black-cloud Effect
and Prima-donnas Effect Community Smells, the adoption of a “social wiki”

can mitigate the negative effects of the Sharing Villainy Community Smell.

. Organisational Skirmish: this Community Smells occurs whenever opera-

tions and development units are misaligned in their organisational culture (e.g.,
organisational layout and properties), in their communication habits and in
their expertise levels. These misalignments cause severe managerial issues and

delays.

2.6. Motivational research

7. Architecture Hood Effect: this Community Smell occurs whenever decision-
makers are not well integrated and geographically distant from other devel-
opers and operators of the community and their decisions are taken using a
software architects board that makes decisions’ responsibility and logic not
easily discernible. The side effects of this Community Smell are the inability
to identify decision-maker responsibilities and the unwillingness of developers
to accept decisions with a related uncooperative behaviour within the develop-
ment community. Architecture-hood Community Smell can be mitigated by
the socio-technical decision of adopting “stand-up voting” in an anonymous

form to accept decisions at the end of fixed daily stand-ups.

8. Solution Defiance: this Community Smell occurs when the development
community divides itself into overly similar subgroups with different levels
of cultural and experience backgrounds; those homophile subgroups divide
themselves into smaller factions with opposite and conflicting opinions toward
some socio-technical decisions that should be taken. The side effects of this
Community Smell are delays, uncooperative behaviours, decisions ignoring
and “organisational rebellion” due to the unwillingness of developers to take a
shared decision within different factions until the very last possible moment.
A socio-technical decision to mitigate the effect of solution defiance, as for
the Prima-donnas Effect Community Smell, is the adoption of a “community-
based contingency planning”. As for the Organisational Silo Effect, Black-
cloud Effect, Prima-donnas Effect and Sharing Villainy Community Smells,
the adoption of a “social wiki” can mitigate the negative effects of the Solution

Defiance Community Smell.

9. Radio Silence: this Community Smell occurs when the organisational struc-
ture is highly formal, complex and constituted by regular procedures which
cause changes to be delayed and people time to be wasted due to required
formal actions and filters hiding necessary information. The main side effect
of this Community Smell is the massive delay in decision making processes
due to people unavailability or due to further information needs. A mitiga-
tion able to reduce almost completely the negative effects of the Radio Silence
Community Smell is the creation of a “learning community” that involves all
the developers and operators. This socio-technical decision can reduce delays
in a direct way with the creation of strong organisational and social relation-
ships between developers and in an indirect way, enabling a passive knowledge

sharing channel.

33

2. State of the art

34

Chapter 3
Problem analysis

This chapter summarises the fundamental aspects of this master thesis and it
provides an overview of how our empirical software engineering research was defined,
characterised and executed.

Section 3.1 presents the definitions of a set of key terminologies that should be
kept in mind while reading this work. The motivations at the root of this mas-
ter thesis and the research questions that were addressed within the execution of
this empirical software engineering study are described in Section 3.2. The orig-
inal contributions constituting the basic building blocks of this master thesis are
presented in Section 3.3, together with their characteristics, usefulness and pur-
poses. Finally, Section 3.4 explores the context of the dataset considered within
this research, motivating and providing informations about the set of Open Source

Software development communities considered in the analysis.

3.1 Definitions

This section provides definitions of several important and fundamental termi-

nologies used within this master thesis.

e Factor: element, circumstance or influence which contribute to produce a

result;

e Socio-technical factors: elements, circumstances or influences which con-

tribute to produce a result that has both social and technological aspects;

e Quality factors: elements, circumstances or influences which contribute to
increase or decrease the well-being and quality of a software development com-

munity;

e Social Debt: Unforeseen project costs connected to a “suboptimal” develop-

ment community [3];

35

3. Problem analysis

36

Community Smells: organisational and social patterns that produce nega-
tive effects on the long run and lead eventually to Social Debt [6]. Therefore,
Community Smells represent a risk correlated to the potential presence of So-
cial Debt;

Identification pattern: model capable of identifying the occurrence of a

specific phenomenon using Social Network methodologies;

Developer Social Network (DSN): social network model of a software
development community, where developers are represented by the means of

nodes and links between nodes represent developer relationships;

Communication DSN: particular case of Developer Social Network, in which
nodes represent community members who communicate on the project’s devel-
opment mailing list and two nodes are connected through a link if and only if,
one of the two members replied to a previously sent e-mail of the other. The
weight of each link is the total number of exchanged e-mails between the two
considered community members, within a defined time window. Communi-
cation DSN represents the organisational structure of a software development

community and its coordination activities;

Collaboration DSN: particular case of Developer Social Network, in which
nodes represent developers who contributed to the project’s source code de-
velopment (extracted from the project’s VCS) and two nodes are connected
through a link if and only if, the two developers collaborated at least once dur-
ing software development. Two developers are considered collaborating if they
modify similar portions of the project’s source code. The weight of each link
is the total number of collaborations between the two considered developers,
within a defined time window. Collaboration DSN represents the technical

structure of the project, its task dependencies and its communication needs;

Global DSN: particular case of Developer Social Network, which is the fusion
of communication and collaboration DSNs. Therefore, a node is the represen-
tation of a community member who participates to the mailing list and/or to
the development activity and two community members are connected through
a link if and only if, they exchanged at least one e-mail and/or collaborated
at least once. The weight of each link is the sum of total number of collabora-
tions and the total number of e-mails exchanged between the two considered

community members, within a defined time window;

Core community member: community member who exhibit a high global
centrality within the considered DSN.

3.2. Research questions

3.2 Research questions

The main goals of this master thesis are the understanding of which quality
factors of a software development community can influence to the emergence of
Community Smells and the identification of meaningful quality thresholds of such
factors, useful to keep Community Smells under control. To pursue these goals it
was of fundamental importance the identification and quantification of Community
Smells with respect to their influence from the point of view of the Social Debit in
the context of Open Source Software development communities.

In order to achieve our prefixed goals we performed an empirical software engi-
neering research, aimed to discover and quantify Community Smells within devel-
opment community, and a survey, necessary to understand if developer perceptions
can act as indicators of the presence of Community Smells. Furthermore, executed
survey had the purpose of accessing developer perceptions inherent to Social Debt
related issues.

This master thesis aims at addressing the following three research questions:

e RQ1. Are there quality factors that can influence the emergence of Community
Smells?

Considering the literature, the following sub-questions were formulated:

— RQ1la. Do sponsored developers decrease Community Smells?

— RQ1b. Do temporal and geographic dispersion increase Community
Smells?

— RQ1c. Do high socio-technical congruence decrease Community Smells?
— RQ1d. Do high communicability decrease Community Smells?
— RQ1le. Do high modularity decrease Community Smells?

— RQ1f. Do low turnover decrease Community Smells?
o RQ2. If such quality factors exist, is it possible to identify quality thresholds?

« RQ3. Do developer perceptions indicate the presence of Community Smells?

3.3 Contributions

This section briefly introduces the four main basic building blocks on which
this master thesis is founded. Each of them can be considered a precious original
contribution to the Social Debt and socio-technical research fields as they provide
additional information, methodologies and tools.

Figure 3.1 provides a graphical representation of the four main contributions and
specifies their relationships through a work-flow in order to describe how proposed

components interacted during the execution of this study.

37

3. Problem analysis

Socio-technical Quality
Framework

Survey

Community Smells

Figure 3.1: Work-flow of contributions

The four fundamental contributions of this master thesis are:

e Survey. The survey was aimed to identify important quality factors that

developers perceive as important within a development community, confirm
some assumptions made within this study, collect developer perceptions to
achieve a deeper understanding of Social Debt and Community Smells and,
moreover, verify if developer perceptions can act as indicators of the presence

of Community Smells;

Socio-technical Quality Framework. This framework is constituted by
40 quality factors, identified from the literature and from the results of the
executed survey, with the purpose of capturing every possible socio-technical
characteristic of a software development community to understand if the insur-

gence of Community Smells can be correlated to some specific quality factors;

Identification patterns of Community Smells. Starting from the liter-
ature related to Community Smells, we defined identification patterns of five
Community Smells that, if operationalised, are able to identify and quantify

Community Smells within a software development community;

Codeface4Smells. This is the actual tool that implements our Socio-technical
Quality Framework and operationalise the proposed identification patterns of
Community Smells. Furthermore, for every analysed software development
community, it executes a correlation analysis between all quality factors and
Community Smells and detects if and to what extend the quality factors in-

fluence the number of identified Community Smells within a community.

As suggested from the numbers reported in Figure 3.1, it is possible to identify the

following work-flow between the four basic building blocks:

38

1. The survey results had a fundamental role in the definition and individuation

of quality factors considered important by developers and, thus, that needed
to be included in our Socio-technical Quality Framework. Moreover, obtained
responses allowed us to discover further notions and characteristics of Social

Debt and Community Smells within FLOSS development communities;

3.4. Dataset selection

2. The proposed Socio-technical Quality Framework and the identification pat-
terns of Community Smells were implemented together within the tool named
Codeface4Smells;

3. The results of Codeface4dSmells analysis allowed us to identify which quality
factors were able to influence the occurrence of Community Smells and, in
some particular cases, identify quality thresholds. Furthermore, the results of
Codeface4Smells analysis of the three reference projects, in conjunction with
the survey results, allowed us to identify which developer perceptions can be

potentially used as indicators of the presence of Community Smells.

3.4 Dataset selection

The dataset considered in this master thesis consisted of 60 Open Source Software
projects. The complete list of analysed projects can be consulted in Table 3.1, where
for every considered project it is showed its name, its code repository address and
the development mailing list considered as its primary development communication
channel. As it is possible to deduce from the list of analysed projects, we considered
FLOSS development communities of different dimensions, popularity, development
habits, openness and application contexts.

Our choice of FLOSS development communities was not random but it was
guided by specific and rigid requirements, dictated by the infrastructure of Code-
face4Smells or by analysis requirements. More specifically, it was mandatory that

every analysed project was characterised by the following list of requirements:
1. Source code was available on-line through git or SVN repositories;

2. It was possible to identify an «active» development mailing list and its archive

was present on www.gmane . com,

3. Within every analysed window it was sent at least one e-mail to the considered

development mailing list;

4. Within every analysed window it was committed at least one source code

contribution;

5. Codeface’s collaboration and communication analysis terminated without er-

rors.

The list of analysed projects were partially retrieved from datasets used in previ-
ous empirical software engineering researches [58,59], in which diversity was verified
with respect to several factors. We further verified the diversity of our dataset

defining three dimensional categories characterised by an equal number of software

39

www.gmane.com

3. Problem analysis

Project Source code repository Development mailing list (Gmane)
1 LibreOffice http://anongit.freedesktop.org/git /libreoffice/core.git gmane.comp.documentfoundation.libreoffice.devel
2 Firefox https://github.com/mozilla/gecko-dev.git gmane.comp.mozilla.firefox.devel
3 FFmpeg git:/ /source.fimpeg.org/ffimpeg.git gmane.comp.video.ffmpeg.devel
4 Cassandra http://git-wip-us.apache.org/repos/asf/cassandra.git gmane.comp.db.cassandra.devel
5 Git https://github.com/git/git.git gmane.comp.version-control.git
6 OpenSSL git://git.openssl.org/openssl.git gmane.comp.encryption.openssl.devel
7 GRUB git://git.savannah.gnu.org/grub.git gmane.comp.boot-loaders.grub.devel
8 nginx https://github.com/nginx/nginx.git gmane.comp.web.nginx.devel
9 Audacity https://github.com/audacity /audacity.git gmane.comp.audio.audacity.devel

10 VLC git://git.videolan.org/vlc.git gmane.comp.video.videolan.vlc.devel
11 Tomcat git://git.apache.org/tomcat.git gmane.comp.jakarta.tomcat.devel

12 GIMP git://git.gnome.org/gimp gmane.comp.video.gimp.devel

13 Guix git://git.savannah.gnu.org/guix/dhcp.git gmane.comp.gnu.guix.devel

14 Mahout git://git.apache.org/mahout.git gmane.comp.apache.mahout.devel
15 CXF git://git.apache.org/cxf.git gmane.comp.apache.cxf.devel
16 Rails https://github.com/rails/rails.git gmane.comp.lang.ruby.rails.core

17 AngularJS https://github.com/angular/angular.js.git gmane.comp.lang.javascript.angularjs
18 libuv https://github.com/libuv/libuv. gmane.comp.lang.javascript.nodejs.libuv
19 Bitcoin https://github.com/bitcoin/bitcoin gmane.comp.bitcoin.devel

20 Scala https://github.com/scala/scala gmane.comp.lang.scala

21 matplotlib https://github.com/matplotlib/matplotlib gmane.comp.python.matplotlib.devel

22 Qt git://code.qt.io/qt/qtbase.git gmane.comp.lib.qt.devel

23 NodelJS https://github.com/nodejs/node.git gmane.comp.lang.javascript.nodejs

24 GitLab https://github.com/gitlabhq/gitlabhq.git gmane.comp.version-control.gitlab

25 Tornado https://github.com/tornadoweb/tornado.git gmane.comp.python.tornado

26 Arduino https://github.com/arduino/Arduino.git gmane.comp.hardware.arduino.devel

27 ipython https://github.com/ipython/ipython gmane.comp.python.ipython.devel

28 Lucene git://git.apache.org/lucene-solr.git gmane.comp.jakarta.lucene.devel

29 Capistrano https://github.com/capistrano/capistrano gmane.comp.lang.ruby.capistrano.general

30 Django https://github.com/django/django.git gmane.comp.python.django.devel

31 Salt https://github.com/saltstack/salt.git gmane.comp.sysutils.salt.user

32 mongoose https://github.com/Automattic/mongoose.git gmane.comp.lang.javascript.mongoose

33 APR git://git.apache.org/apr.git gmane.comp.apache.apr.devel

34 Jackrabbit git://git.apache.org/jackrabbit.git gmane.comp.apache.jackrabbit.devel

35 Gnome-shell git://git.gnome.org/gnome-shell gmane.comp.gnome.shell

36 Krita git://anongit.kde.org/krita.git gmane.comp.kde.devel.krita

37 Blender https://git.blender.org/blender.git gmane.comp.video.blender.devel

38 Vagrant https://github.com/mitchellh/vagrant.git gmane.comp.tools.vagrant

39 | NetworkManager | git://anongit.freedesktop.org/NetworkManager/NetworkManager.git gmane.linux.network.networkmanager.devel

40 Eclipse CDT https://git.eclipse.org/r/cdt/org.eclipse.cdt gmane.comp.ide.eclipse.cdt.devel

41 Enlightenment https://git.enlightenment.org/core/enlightenment.git gmane.comp.window-managers.enlightenment.devel

42 libva, git://anongit.freedesktop.org/git /libva gmane.comp.freedesktop.libva

43 JDO http://svn.apache.org/repos/asf/db/jdo gmane.comp.apache.db.jdo.devel

44 Jena it://git.apache.org/jena.git gmane.comp.apache.jena.devel

45 OpenNLP git://git.apache.org/opennlp.git gmane.comp.apache.opennlp.devel

46 Cayenne git://git.apache.org/cayenne.git gmane.comp.java.cayenne.devel

47 Pig git://git.apache.org/pig.git gmane.comp.java.hadoop.pig.devel

48 Calligra git:/ /anongit.kde.org/calligra.git gmane.comp.kde.devel.calligra

49 Wine git://source.winehq.org/git/wine.git gmane.comp.emulators.wine.devel

50 Mallet https://github.com/mimno/Mallet.git gmane.comp.ai.mallet.devel

51 Gstreamer git://anongit.freedesktop.org/gstreamer/gstreamer gmane.comp.video.gstreamer.devel

52 U-boot http://git.denx.de/u-boot.git gmane.comp.boot-loaders.u-boot

53 LIVM http://llvm.org/git/llvim gmane.comp.compilers.llvim.devel

54 gPhoto svn://svn.code.sf.net/p/gphoto/code/trunk gmane.comp.multimedia.gphoto.devel

55 Emacs git://git.savannah.gnu.org/emacs.git gmane.emacs.devel

56 QEMU git://git.qemu.org/qemu.git gmane.comp.emulators.qemu

57 Python https://github.com/python/cpython.git gmane.comp.python.devel

58 Mesa git:/ /anongit.freedesktop.org/mesa/mesa gmane.comp.video.mesa3d.devel

59 Sympy git://github.com/sympy/sympy.git gmane.comp.python.sympy

60 Okular git://anongit.kde.org/okular gmane.comp.kde.devel.okular

40

Table 3.1: List of analysed projects

3.4. Dataset selection

development communities with respect to the mean number of trimestral commu-
nity members present in the global DSN. In conclusion, the 60 considered software

development communities were proven to be diversified with respect to:

code-base size: medium, large (500-850) and very large (850>KLOC);
e main programming language: Java, C#, C, Python, YAML and more;

o community size: 20 medium projects (<50 members), 20 large projects (50>150
members) and 20 very-large projects (150>);

e age: young (<24 months), established (24>32 months) and popular (32>

months).
Metric Mean Min Max St.deviation

Global DSN members 143.78 4 949 152.45
Time-zones 6.61 1 36 10.26

Core global DSN members 45.53 1 311 44.1
Core communication DSN members 39.27 1 285 37.42
Core collaboration DSN members 14.73 0 213 24.3
Sponsored developers 13.35 0 104 17.82
Sponsored core developers 1.36 0 21 2.43

Table 3.2: Trimestral variability of analysed projects

Table 3.2 reports an overview of the most important metrics which charac-
terised the analyzed Open Source Software development communities within Code-
face4Smells analysis and represents their respective trimestral mean, minimum, max-
imum and standard deviation values.

Every FLOSS project was analysed executing Codeface4Smells analysis using
three-month analysis windows for the last three years, therefore every project’s anal-
ysis was constituted by a total of 12 ranges. We used this temporal analysis window
because it was previously used in another empirical software engineering research
based on the usage of Codeface [60] and because it was demonstrated that a soft-
ware development community does not change significantly after a consideration
window of three months [37]. The total time lapse of three years was setted in order
to achieve a relevant number of analysed ranges capable of capturing trends and
correlations. Another motivation to the decision of limiting the analysis to three
years is that before that temporal limit, the standard within FLOSS development
was Centralized VCS, as explained in Section 2.4, and thus information about the

author of the software contributions were not accessible.

41

3. Problem analysis

42

Chapter 4

Identification patterns of

Community Smells

This chapter presents one fundamental contribution of this master thesis, which
is the specification of identification patterns of five Community Smells considered
in the scope of this study, namely: Organisational Silo Effect, Missing Links, Black-
cloud Effect, Prima-donnas Effect and Radio Silence.

We considered the set of Community Smells identified within an industrial case
study, conducted by Tamburri et al. [6], as a starting point and then we proposed
identification patterns, capable of capturing possible social related problematic sit-
uations, for five different Community Smells. Proposed identification patterns can
be operationalised in order to provide an automated identification, quantification
and recovery of Community Smells, within a software development community, by
means of tool-supported processes or software-repository mining techniques.

Every identification pattern of a Community Smell proposed within this chap-
ter is founded on the concept of Developer Social Networks, in order to retrieve
information about communication and collaboration relationships within a software
development community. Therefore, the identification process of every Commu-
nity Smells is enabled by the availability of the communication and collaboration
Developer Social Networks of a development community.

While the identification patterns of four Community Smells base their discov-
ery logic solely on the state of a development community in a particular point in
time, one identification pattern founds its detection capabilities on the additional
consideration of historical information, i.e., it considers more than one temporal
window.

In this master thesis, as further explained in Chapter 7, the communication
DSN of a project was build mining communication information from its mailing list
archives, while the collaboration DSN of a project is was build mining its Version

Control System. Thus, in order to operationalise the detection and quantification of

43

4. Identification patterns of Community Smells

Community Smells, based on the exploitation of identification patterns presented in
this chapter, it is necessary to have access to the VCS and mailing list archives of a
software development community, or to any other typology of development artefact
capable of providing information related to organisational structure and technical

dependencies of a software project.

. Communication
. Collaboration

</> </>

(a) High-level community representation

(b) Collaboration DSN (¢) Communication DSN

Figure 4.1: Example of software development community

An explicative example of a software development community is represented in
Figure 4.1a, where it is possible to notice the presence of eight community members,
identified by different letters, who are connected through green links if they commu-
nicated within the mailing list and community members are connected through blue
links to software components on which they worked (represented by a file icon).
Given such high-level representation of a software development community, it is
possible to generate the communication DSN, representing the social and organ-
isational structure of a project, and the collaboration DSN,representing technical
relationships between developers working on similar portions of a project’s source
code. While the communication DSN of the proposed example, represented in Fig-
ure 4.1c, can be easily generated considering exclusively communication links of the
high-level representation of the development community, the generation of the col-

laboration DSN, represented in Figure 4.1b, requires additional reasonings because

44

4.1. Organisational Silo Effect and Missing Links

two developers are linked if and only if they worked on a similar portion of source
code. Thus, since the file icon in the high-level representation of the development
community identifies a similar portion of source code, all developers linked to the
same source code portion have to be connected in the collaboration DSN.

Within the proposed example it is possible to consider the communication DSN
constituted by two different sub-communities: developers identified by the letters
B, C and D and developers identified by the letters E, F and G. It is important to
highlight that a Developer Social Network is constituted only by active community
members, with respect to the considered development aspect. Therefore, it is pos-
sible to notice that, within the previously exposed example, the collaboration DSN
do not contain community members identified by the letters C and F because they
are not working on any source code portion and the communication DSN do not
contain the community member identified by the letter A because he or she is not
communicating with anyone within the development community.

The following sections address all the Community Smells considered in the scope
of this master thesis. For each Community Smell it is provided an identification
pattern and a synthetic example explaining the behaviour of the identification pat-
tern. Furthermore, each section presents a detailed explanation of the execution of
the considered identification pattern within the development community presented
in Figure 4.1a and a visual representation of identified occurrences of Community

Smells within such example.

4.1 Organisational Silo Effect and Missing Links

Tamburri et al. [6] defined Organisational Silo Effect Community Smell as the
occurrence of a too high level of decoupling between the organisational structure
and development activities. Considering its definition and the literature based on
Conway’s law, it was possible to assimilate this Community Smell to an imperfection
in the mirroring relationship between the organisational structure and the technical
structure, constituted by collaborations of software developers.

An Organisational Silo is characterised by an independentist sub-community that
is loosely dependent to other development partners and that duplicates or wastes
resources over the development life cycle, due to its isolation from the rest of the
software development sub-communities.

This Community Smell is associated to the main side effect of decreasing commu-
nication activities between community members belonging to different sub-communities;
thus, it negatively impacts on mutual awareness and it implies a degradation of the
socio-technical congruence.Another side effect that can characterise this Community
Smell is the rise of a “tunnel vision” within the software development community,

since members belonging to the Organisational Silo tend to limit their coopera-

45

4. Identification patterns of Community Smells

tion and communication activities with members who do not belong to their sub-
community. Moreover, community members belonging to an Organisational Silo can
exhibit egoistic and superior behaviours, giving rise to autonomous architectural de-
cisions taken without the necessary authority or knowledge. A possible mitigation to
this Community Smell can be the implementation of a “social wiki”, that combines
documentation, developer profiles and artefacts [6].

While we were pursuing our goal of identifying a possible automatic identification
pattern of this Community Smell, mining commonly available software development
artefacts, we focused of the most important Organisational Silo Effect side effects:
decrease of communications within the community and generation of a “tunnel vi-
sion”. Therefore, we proposed two different identification patterns in order to provide

the ability of identifying both typologies of side effects:

1. Organisational Silo Effect

The identification pattern of Organisational Silo Effect Community Smell is
based on the detection of community members who collaborate with other mem-
bers but who do not communicate within the analysed communication channel,
i.e., mailing list. An explanatory example is represented in Figure 4.2, where
the occurrence of this Community Smell is due to the developer identified by
the number 1 because he or she does not have outgoing communication edges

even if there is a collaboration with the developer identified by the number 2.

. Communication
. Collaboration

Figure 4.2: Identification pattern of Organisational Silo Effect

This identification pattern is capable of identifying the presence of actual sub-
communities present within the software development community that gen-
erate a “tunnel vision” because they do not communicate with community

members external to their sub-community. Pushing to its extreme the concept

46

4.1. Organisational Silo Effect and Missing Links

of sub-community, thus considering two developers at a time, an occurrence
of Organisational Silo Effect is detected whenever one of them shows unco-
operative behaviours, not participating in the mailing list of the development

community.

In order to operationalise the proposed identification pattern, the collaboration
and communication Developer Social Networks, generated respectively mining
the VCS and mailing list archives of a development community, should be con-
sidered at the same time and each collaboration present between two different
community members contributing to adjacent parts of the source code should
be considered as an atomic cooperation unit to identify possible Organisa-
tional Silo. Since we considered the absence of one developer belonging to an
atomic cooperation unit as the trigger of the occurrence of Organisational Silo
Effect Community Smell, it is necessary to consider every software develop-
ment cooperation present within the collaboration Developer Social Network
and check if the two community members are present or not in the commu-
nication Developer Social Network. We quantified the number of occurrences
of Organisational Silo Effect as the number of single collaborations between
different developers in which at least one of them do not participate in the
communication channel. Therefore, we focused on collaborations and not on
developers, in order to capture the repercussions of the absence of developers
in communication activities. This choice was made because the absence of a
highly active and highly connected contributor is surely more relevant than

the absence of an occasional contributor.

Figure 4.3: Example of occurrences of Organisational Silo Effect

Considering the example of development community proposed in Figure 4.1a,
in order to execute the proposed identification pattern of this Community
Smell it is possible to compare directly the collaboration DSN (Figure 4.1b)
with its communication counterpart (Figure 4.1c¢) and verify that the devel-
oper identified by the letter A is present in the collaboration DSN but he or
she is not present in the communication Developer Social Network. Since we
focused on collaboration level and not on software developer level, we have to
consider every collaboration link between two different community members of
the collaboration DSN. The absence of the developer identified by the letter A

47

4. Identification patterns of Community Smells

is counted only one time since he or she is characterised by a unique outgoing
link in the collaboration DSN. Therefore, within the proposed example there
is just one occurrence of Organisational Silo Effect Community Smell and a
graphical representation is presented in Figure 4.3, where the only occurrence
of this Community Smell is highlighted in red and all the developers belong-
ing to the collaboration DSN who are not involved in the insurgence of this

Community Smell are faded out.

The operationalisation of this identification pattern should provide a correct
quantification of Organisational Silo Effect in cases where both the collaborat-
ing developers do not participate within a project’s communication channel.
Moreover, since we focused on collaborations if in the proposed example, the
collaboration Developer Social Network was characterised by an additional
developer who was isolated from other developers without having any identi-
fied collaboration and he or she was not present in the communication DSN,
this additional community member would not have any repercussion on the

Organisational Silo Effect detection.

2. Missing Links

The identification pattern of Missing Links Community Smell is based on the
detection of development collaborations between two community members that
do not have communication counterparts. An explanatory example is repre-
sented in Figure 4.4, where the occurrence of Missing Links Community Smell
is due to the fact that developers identified by the number 1 and 2 are collabo-
rating on a similar portion of source code, but they are not directly connected

through a communication link.

</>
. Communication

. Collaboration

Figure 4.4: Identification pattern of Missing Links

48

4.1. Organisational Silo Effect and Missing Links

This identification pattern has the purpose of detecting side effects as the de-
creasing of communication activities, which implies a negative influence on
mutual awareness, and the inherent socio-technical congruence degradation
caused by the presence of uncooperative Organisational Silo. Thus, while the
Organisational Silo Effect identification pattern is focused on the detection of
the “tunnel vision” side effect, this identification pattern is supposed to cap-
ture all the other typologies of associated side effects. Pushing to its extreme
the concept of sub-community, thus considering two developers at a time, an
insurgence of Missing Links is detected whenever a couple of co-committing
(collaborating) developers exhibit uncooperative behaviours, not communicat-

ing in the mailing list of the development community.

Considering the given definition of this identification pattern, it is obvious
that Missing Links is a more general case and actually incorporates in itself the
identification pattern of Organisational Silo Effect but we considered necessary
to define and consider both typologies of identification patterns because they
provide different detail levels of information and they characterise and analyse

different aspects associated to Community Smells.

In order to operationalise the proposed identification pattern, the collaboration
and communication Developer Social Networks, generated respectively mining
the VCS and mailing list archives of a development community, should be
considered at the same time and each collaboration present between two dif-
ferent community members contributing to adjacent parts of the source code
should be considered as an atomic cooperation unit. Since we considered the
absence of a communication counterpart of a collaboration as the trigger of the
occurrence of Missing Link Community Smell, it is necessary to consider every
software development cooperation present within the collaboration Developer
Social Network and check if the two community members are connected in the

communication Developer Social Network.

Figure 4.5: Example of occurrences of Missing Links
Considering the example of development community proposed in Figure 4.1a,

in order to execute the proposed identification pattern of this Community

Smell it is possible to compare directly the collaboration DSN (Figure 4.1b)

49

4. Identification patterns of Community Smells

with its communication counterpart (Figure 4.1c) and verify that four links
within the collaboration DSN do not have corresponding links between the
same community members in the collaboration DSN. Detected occurrences of
Missing Links are identified in Figure 4.5 with red links and are constituted by
the collaborations between developers identified by the following couple of let-
ters: A-B, B-E, B-G and G-D. Using this example it is possible to verify that
Organisational Silo Effect is a subset of Missing Links, since the missing com-
munication link associated to the collaboration between developers identified

by the letters A and B is actually an Organisational Silo Effect.

In conclusion, since the main purpose of Missing Links identification pattern
is to identify and count the number of unsatisfied communication needs due
technical collaborations, thus liaising it to socio-technical literature related to
Conway’s law, it is possible to consider Missing Links as the opposite mea-
surement of socio-technical congruence. While socio-technical congruence is
supposed to quantify the accordance of technical and organisational struc-
tures, Missing Links quantifies the discordance of such structures and counts
the number of the technical relationship that are not mirrored within the or-

ganisational structure.

4.2 Black-cloud Effect

The identification pattern of Black-cloud Effect Community Smell is based on the
detection of isolated sub-communities that, in different and subsequent time periods,
do not communicate with the exception of one communication link. An explanatory
example is represented in Figure 4.6, where the occurrence of this Community Smell
is due to the fact that developers identified by the number 3 and 4 are the only
two community members who communicate between the two sub-communities, over
time.

Black-cloud Effect Community Smell was initially defined by Tamburri et al. [6]
as a social pattern, within a software development community, characterised by the

occurrence of two concurrent circumstances:

1. inability of community members to cover knowledge and experience gaps be-
tween two different software products developed within the same software

community;

2. lack of periodic and official opportunities to share and exchange knowledge

between all the community members.

Whenever these two different circumstances occur together, they can generate a

“black cloud” within the development community, constituted by confusing and

50

4.2. Black-cloud Effect

. Communication

Figure 4.6: Identification pattern of Black-cloud Effect

unnecessary communications that generate a communication overload, which obfus-
cate the project’s reality and its global and shared vision. The occurrence of this
Community Smell can be generated or worsened by the following socio-technical

triggers:
« absence of official protocols dedicated to knowledge sharing;

o lack of people with the objective of linking the work of their team with the

one of other teams (boundary spanners);
e presence of inefficient communication filtering protocols.

We speculated that the lack of official knowledge sharing opportunities, which con-
stitute one of the two characterising factor of this Community Smell, implies the
analysis of formal communication activities, and thus the development mailing list
archives of a software development community. On the other side, the inability to
cover knowledge and experience gaps between two different software products de-
veloped within the same software community suggested a temporal analysis rather
then exclusively consideration a snapshot of a development community in time. We
used these considerations as a starting point and we defined a methodology to iden-
tify possible Black-cloud Effect present within a software development community
mining communication relationships between community members, extracted from
the communication Developer Social Network, and considering them along different
time windows in order to achieve a temporal analysis.

We defined as a “potential” Black-cloud Effect implies that one of the two
sub-community is isolated from the rest of the communication DSN external to

its boundaries with the exception of a unique communication link from one of its

o1

4. Identification patterns of Community Smells

constituting members toward another community member belonging to a different
sub-community. The members who constituted the unique communication link acts
as a unique knowledge broker (boundary spanner) toward the other sub-community.
A “potential” Black-cloud Effect can be considered as an actual Black-cloud Effect
Community Smell if and only if the same exact "potential” Black-cloud Effect is

perpetrated in the following time window of analysis.

Figure 4.7: Example of occurrences of Black-cloud Effect

After the generation of the project’s communication Developer Social Network
it is necessary to classify all community members into clusters, with respect to their
communication habits, in order to be able to identify different sub-communities
present within the software development communication community. Considering
the example of development community proposed in Figure 4.1a, the two sub-
communities present within the development community can be easily visualised
considering the density of communication links. Analysing the communication DSN
(Figure 4.1c), it is evident that the communication link between community mem-
bers identified by the letters D and E constitutes a unique connection between the
two sub-communities and thus community members identified by the letters D and
E act as unique knowledge brokers toward the other sub-community. The detected
occurrence is represented in Figure 4.7 with a red link, that represents a “potential”
Black-cloud Effect and it can be considered as an effective Black-cloud Effect if and
only if the same “potential” Black-cloud Effect will be iterated again in the next

analysed time window.

4.3 Prima-donnas Effect

The identification pattern of Prima-donnas Effect Community Smell is based
on the detection of isolated sub-communities that cooperate on similar parts of the
source code but do not communicate with the exception of one communication link.
An explanatory example is represented in Figure 4.8, where the occurrence of this
Community Smell is due to the fact that developers identified by the number 2, 3,
4 and 6 are collaborating on the same portion of source code but the community

members identified by the numbers 3 and 4 are the only two community members

592

4.3. Prima-donnas Effect

. Communication
. Collaboration

</>

Figure 4.8: Identification pattern of Prima-donnas Effect

who communicate between the two sub-communities.

Prima-donnas Effect Community Smell was initially defined by Tamburri et al. [6]
and it is characterised by the presence of a sub-community of developers which is
unreceptive with respect to different influences coming from outside it boundaries,
unwilling to communicate with external community members, unwilling to welcome
support from other members and resistant to imposed organisational or processes
changes.

In order to operationalise the proposed identification pattern, the collaboration
and communication Developer Social Networks, generated respectively mining the
VCS and mailing list archives of a development community, should be considered
at the same time and it is also necessary to classify all community members into
clusters, with respect to their communication habits, in order to be able to identify
different sub-communities present within the software development communication
community. The proposed of Prima-donnas Effect Community Smell can be subdi-

vided into two identification steps:

1. Step one: identification of sub-communities that communicate with each-
other exclusively through a unique communication link, thus it is the same

concept the concept of “potential” Black-cloud Effect Community Smell;

2. Step two: Once potential problematic sub-communities with isolationist be-
haviours are identified (“potential” Black-clouds) in the previous step, it is
necessary to consider the collaboration Developer Social Network and compute
the collaboration level of developers belonging to every couple of identified sub-
communities. If computed collaboration level is over a given threshold, then

a Prima-donnas Effect Community Smell is detected. The threshold used

93

4. Identification patterns of Community Smells

to decide if two isolationist sub-communities are collaborating, thus if they
should be considered as Prima-donnas, is not universally definable because it
may depend on the software development context, characteristics and research

preferences.

Figure 4.9: Example of occurrences of Prima-donnas Effect

Considering the example of development community proposed in Figure 4.1a,
in order to execute the proposed identification pattern of this Community Smell it
is necessary consider every sub-community present within the communication DSN
(Figure 4.1c¢) and it is evident that the communication link between community
members identified by the letters D and E constitutes a unique connection between
the two sub-communities and thus community members identified by the letters D
and E act as unique knowledge brokers toward the other sub-community. Then, it
is necessary to consider the collaboration relationships between members of every
couple of identified isolationist sub-communities within the collaboration Developer
Social Network (Figure 4.1b) and it is evident that community members belonging
to the two sub-communities are highly connected (full mesh network), so a Prima-
donnas Effect Community Smell is detected. The detected occurrence is represented
in Figure 4.9 with a red link, that represents the unique link connecting the two

Prima-donnas.

4.4 Radio Silence

The identification pattern of Radio Silence Community Smell is based on the de-
tection of unique knowledge and information brokers toward different sub-communities.
An explanatory example is represented in Figure 4.10, where the occurrence of this
Community Smell is due to the fact that the community member identified by the
number 3 is the only member of its sub-community who communicates with the
other sub-community.

Radio Silence Community Smell was initially defined by Tamburri et al. [6] and
it was identified by the occurrence of the following negative characteristics within a

software development community: proposed changes require an extraordinary quan-

o4

4.4. Radio Silence

. Communication

Figure 4.10: Identification pattern of Radio Silence

tity of time to be implemented, time wasting, hidden information, highly formal or-
ganisational structure, complex organisational structure, and highly regular proce-
dures. The fundamental side effect generated by this Community Smell is a massive
delay that characterises decision making processes within a software development
community, due to people unavailability or to the communication overload created
to cope with further generated information needs.

The presence of a unique boundary spanner toward another sub-community,
i.e., a unique knowledge and information broker, implies that every information
and knowledge exchange between the two sub-communities needs to be processed
by that unique community member. This demanding task requires an additional
amount of time from that single community member, generating delays. Moreover,
the absence of a unique boundary spanner can stall every formal interaction between

two sub-communities.

9 9
(D] (E)

Figure 4.11: Example of occurrences of Radio Silence

Considering the example of development community proposed in Figure 4.1a,
since the detection of Radio Silence Community Smell is defined through the concept

of unique boundary spanner, it is necessary to identify all community members who

95

4. Identification patterns of Community Smells

are the only members of their sub-community that communicate with another sub-
community. Therefore, we have to consider every inter-communication between
different sub-communities.

The decisional process to detect Radio Silence Community Smell using the pro-
posed identification pattern within the proposed example, considering one sub-

community at a time, is the following:

¢ Sub-community B-C-D: It communicates with sub-community E-F-G ex-
clusively through community member identified by the letter D, then this is
identified as a Radio Silence occurrence and the community member identi-
fied by letter D is the knowledge and information broker toward the other

sub-community;

¢ Sub-community E-F-G: It communicates with sub-community A-B-C ex-
clusively through community member identified by the letter E, then this is
identified as a Radio Silence occurrence and the community member identi-
fied by letter E is the knowledge and information broker toward the other

sub-community.

The two detected occurrences are represented in Figure 4.11, where knowledge and
information brokers are highlighted while all the other community members are faded
out. The quantification of the Radio Silence Community Smell that we proposed is
focused on the number of different developers who act as boundary spanner toward

other sub-communities and not on the number of unique communication links.

56

Chapter 5

Socio-technical Quality

Framework

After the definition of identification patterns capable of identifying Community
Smells occurrences and thus enabling the ability of detecting the presence of potential
Social Debt within a software development community, proposed in Chapter 4, we
focused on the arduous task of identifying which socio-technical development aspects
are related or responsible of the insurgence of Community Smells. Social Debt is
considered an ubiquitous phenomenon within the entire software development life
cycle and in all its related literature (Section 2.5) it was not possible to clearly
identify specific socio-technical aspects responsible of increases or decreases of Social
Debt.

Our contribution to cover this further step in the identification of socio-technical
aspects which can be considered responsible of the contraction or extinction of So-
cial Debt was the definition of a Socio-technical Quality Framework. Such Socio-
technical Quality Framework is a fundamental basic building block of this master
thesis, since it was used to correlate its composing quality factors with the occur-
rence of Community Smells within FLOSS development communities in order to
understand how and to what extend Community Smells are related or caused by
specific socio-technical quality factors.

The Socio-technical Quality Framework proposed in this chapter is composed
by a total of 40 socio-technical quality factors, which were mainly extracted from
empirical software engineering literature but the introduction of some of them were
even suggested and supported by the results of the executed survey (Chapter 6). The
identified quality factors composing the defined Socio-technical Quality Framework
analyze many different software development aspects: from dimensional characteris-
tics of Developer Social Networks to core community members quantification, from
turnover rates to socio-technical metrics and from truck numbers to Social Network

Analysis metrics.

o7

5. Socio-technical Quality Framework

Category Metric ID Socio-technical Quality Metric Description
devs Number of developers present in the global Developers Social Network
ml.only.devs Number of developers present only in the communication Developers Social Network
code.only.devs Number of developers present only in the collaboration Developers Social Network
ml.code.devs Number of developers present both in the collaboration and in the communication DSNs
Developer Social Network metrics perc.ml.only.devs Percentage of developers present only in the communication Developers Social Network
perc.code.only.devs Percentage of developers present only in the collaboration Developers Social Network
perc.ml.code.devs Percentage of developers present both in the collaboration and in the communication DSNs
sponsored.devs Number of sponsored developers (95% of their commits are done in working hours)
ratio.sponsored Ratio of sponsored developers with respect to developers present in the collaboration DSN
st.congruence Estimation of socio-technical congruence
. . . communicability Estimation of information communicability (decisions diffusion)
Socio-technical metrics - - -
num.tz Number of timezones involved in the software development
ratio.smelly.devs Ratio of developers involved in at least one Community Smell
core.global.devs Number of core developers of the global Developers Social Network
core.mail.devs Number of core developers of the communication Developers Social Network
core.code.devs Number of core developers of the collaboration Developers Social Network
sponsored.core.devs Number of core sponsored developers
ratio.sponsored.core | Ratio of core sponsored developers with respect to core developers of the collaboration DSN
global.truck Ratio of non-core developers of the global Developers Social Network
. . mail.truck Ratio of non-core developers of the communication Developers Social Network
Core community members metrics - - -
- code.truck Ratio of non-core developers of the collaboration Developers Social Network

mail.only.core.devs Number of core developers present only in the communication DSN
. Number of core developers present only in the collaboration DSN
Number of core developers present both in the communication and in the collaboration DSNs

ratio.mail.only.core Ratio of core developers present only in the communication DSN
ratio.code.only.core Ratio of core developers present only in the collaboration DSN
ratio.ml.code.core Ratio of core developers present both in the communication and in the collaboration DSNs
global.turnover Global developers turnover with respect to the previous temporal window
code.turnover Collaboration developers turnover with respect to the previous temporal window
Turnover core.global.turnover Core global developers turnover with respect to the previous temporal window
core.mail.turnover Core communication developers turnover with respect to the previous temporal window
core.code.turnover Core collaboration developers turnover with respect to the previous temporal window
ratio.smelly.quitters Ratio of developers previously involved in any Community Smell that left the community
closeness.centr SNA degree metric of the global DSN computed using closeness
betweenness.centr SNA degree metric of the global DSN computed using betweenness
degree.centr SNA degree metric of the global DSN computed using degree
Social Network Analysis metrics global.mod SNA modularity metric of the global DSN
mail.mod SNA modularity metric of the communication Developers Social Network
code.mod SNA modularity metric of the collaboration Developers Social Network
density SNA density metric of the global Developers Social Network

Table 5.1: Summary of the Socio-technical Quality Framework

The complete list of the 40 quality factors defined within our Socio-technical
Quality Framework is summarized in Table 5.1, that reports for each metric its ap-
propriate category, identification string used in Codeface4Smells (Chapter 7) and
a brief description of such quality factor. In the following sections every expressed
quality factor is explained and its presence into the Socio-technical Quality Frame-

work is motivated.

5.1 Developer Social Network metrics

Community dimensions. Since our approach is based on Developer Social
Networks to identify and detect Community Smells by exploiting such generated
networks to capture communication and collaboration characteristics and habits of
Open Source Software community members, some of the most basic yet important
metrics that characterize a development environment are the dimensional number
of developers and community members who constitute the community itself. One
fundamental dimension that characterizes a software development community, in-
dependently from its Open Source or Closed Source nature, is the number of people
involved in it and how they interact with each other while communicating or col-

laborating during any software development phase. It is important to understand

58

5.1. Developer Social Network metrics

that, especially when analyzing and dealing with Open Source Software projects,
it is necessary to consider and capture different roles and behaviors of community
members, since many parallel and different contribution and participation levels are
usually present within a FLOSS project development environment. The number of
developers contributing to a project can be composed by formal developers, regular
and constant contributors to the source code, developers who participate in the soft-
ware development with a discontinued attitude and other code contributors that are
more difficultly characterizable, such as: developers who contribute to the project
just to fix issues that interfere with their software usage, thus potentially once in
a lifetime contribution to the project, and official maintainers who are responsible
of the entire project development cycle, who may or may not be directly involved
in the source code development activity. A formal definition of every participation
level is indeed difficult because every project and every developer can potentially im-
ply a different contribution typology and can be associated to a different behavior.
Moreover, Open Source Software communities are not only constituted by devel-
opers who contribute directly to the project’s source code but they are composed
even from a whole different universe of community members with different func-
tionalities and roles not directly involved within the software development activity,
performing useful services such as: provide support to software users, seek for help
and thus possibly provide easy-to-find solutions for users that will have the same
problematic in the future, create project documentation, translate the software and
its documentation or its informational pages in different idioms, report bugs or soft-
ware malfunctions and suggest possible solutions, test new software functionalities
or versions and promote the software and/or its community. In order to achieve a
finer grain level analysis and capture every possible community member typology
involved within the development life cycle, we considered the communication Devel-
oper Social Network extracted from the development mailing list, the collaboration
Developer Social Network extracted from the Version Control System history and
the global Developer Social Network obtained merging the two previously described
Developer Social Network. A community member is defined as a person who sup-
ports a project in at least one of the two following ways: if he or she participates
within the communication channel by sending and/or receiving a message within
the range in analysis or if he or she is the author of at least one software contri-
bution (commit) to the source code within the range in analysis. These different
development dimensions, extracted from the relative Developer Social Networks, are

captured through the following measurements:

1. The number of community members present only in the communication channel
(ml.only.devs). Thus, community members who do not directly contribute to
a project’s source code but that provide help, seek for help and/or participate

into community’s activities in different ways;

99

5. Socio-technical Quality Framework

2. The number of developers contributing to the source code but who do not com-
municate (code.only.devs). Thus, developers who contribute to a project’s
source code but that are distant or not interested in participating into the com-
munity itself, rather they have specific interests only in the developed software.
This dimension can capture once in a lifetime contributors or developers whom
contribute to the project by fixing or implementing features that are needed

by their specific usage of the software;

3. The number of community members who contribute to the source code and
communicate (ml.code.devs). Thus, this dimensional metric provides infor-

mation about members completely involved in different community’s activities;

4. The number of global distinct community members involved in the community
(devs). Thus, this dimensional metric captures every possible person involved

in any possible way into a FLOSS community.

Previously listed dimensional metrics are considered even in their percentages form,
in order to achieve a deeper understanding of how community members are in-
volved within every different analyzed scenario. Therefore, the following percent-
ages are computed by the proposed Socio-technical Quality Framework: commu-
nity members involved in the software development of a project who communicate
(perc.ml.code.devs), community members involved exclusively in the communica-
tion channels (perc.mail.only.devs) and developers who contribute to a project only
by committing code but that do not communicate (perc.code.only.devs). These ty-
pologies of dimensional metrics, related to the size of a community’s organization, are
supported as significant and valid measures to be inserted into our Socio-technical
Quality Framework by Conway’s law [9], which is the foundation of every socio-
technical empirical software engineering research, because one of its characteristics
was that this his becomes more reliable as the organizational size increases.
Sponsored developers. FLOSS development is growing year after year as an
important commercial activity and, as soon as an Open Source Software project
becomes promising, commercial companies may be interested in actively participat-
ing into its development in order to adequate the software to their needs. Due to
their status, developers sponsored by commercial companies devolve most of their
time to software development and to community activities, working on most of the
tasks, organizing and coordinating the community. The proposed Socio-technical
Quality Framework considers the presence of software developers who contribute to
a FLOSS development that are sponsored by commercial companies or who can be
considered as self-sponsored developers and quantifies such phenomenon computing
the total number of sponsored developers present in the collaboration Developer
Social Network (sponsored.devs) and its relative ratio (ratio.sponsored). The

background theory that supports the inclusion of these metrics, related to developers

60

5.2. Socio-technical metrics

sponsored by commercial companies and to self-employed developers, was provided
in 2014 by Riehle et al. [8], who stated that the ratio of volunteer and paid work can
be considered as an indicator of the health of an Open Source Software project, as

well as they may indicate the commercial attractiveness of a FLOSS project itself.

5.2 Socio-technical metrics

Software development is a complex activity which is influenced by both social
and technical components of an organization, or of a community in the case of
Open Source Software. As exhaustively explained in Section 2.1 and in Section 2.5,
unhealthy social and technical characteristics of a software project may imply the
insurgence of additional malfunctions within the produced output and affect software
developers relational dynamics between themselves and with the organization itself.
The interdependence of such components, affecting every development phase, was
considered so prominent that the term “socio-technical” was coined, to highlight the
specific effects that social and technical aspects of software development are capable
to exercise in conjunction on the outcome of a software community. Since unhealthy
socio-technical patterns may generate Technical Debt and its social counterpart, we
included into our Socio-technical Quality Framework some specific metrics which
were defined or suggested by socio-technical software engineering literature.

Socio-technical congruence. The attention on socio-technical aspects of soft-
ware development phases grew in the last decade such that Cataldo et al. [5] in 2008
introduced the key idea of “socio-technical congruence”. As previously explained
(Section 2.1), socio-technical congruence is meant to measure the level of agreement
between communication needs of software artefacts and the actual communications
that occur within a software development environment. The socio-technical congru-
ence measurement methodology introduced by Cataldo et al. was based on the rela-
tion between product dependencies, work dependencies and their comparison to co-
ordination activities. Instead, the socio-technical congruence (st.congruence) mea-
surement implementation that we proposed in our Socio-technical Quality Frame-
work is based on the direct comparison of the collaboration Developer Social Net-
work, that represents all the development relationships and work dependencies
within a software development and highlights the communication needs, to the
communication Developer Social Network, that represents all the actual coordina-
tion activities and relationships within a software development community. Thus,
our implementation of socio-technical congruence metric, rather than considering
module dependencies as proposed by Cataldo et. al, is based on Valetto et al. [45]
idea that to investigate and quantify socio-technical congruence within a software
development environment, it is necessary to investigate if there is a similarity (con-

gruence) between the coordination structure (represented by the collaboration DSN)

61

5. Socio-technical Quality Framework

and the social organization (represented by the communication DSN) of the project
itself. Socio-technical congruence can be considered as one of the most important
socio-technical quality metrics of the proposed framework because it is correlated
to the Social Debt concept, since in Conway’s law terms it can be considered as an
indicator of the presence of possible social related issues, as it compares the social
and technical processes requirements and measures their accordance. Furthermore,
Cataldo et al. suggested that a higher socio-technical congruence is correlated to a

higher software development performance.

Temporal and geographic dispersion. Since FLOSS development can be in-
herently considered a Global Software Development environment, it will be affected
by all the considerations and problematics previously elicited in Section 2.2. Tem-
poral and geographic dispersion, not to mention cultural and linguistic differences,
can negatively affect software development performance, software quality and the
software development community itself, in case such distances and differences are
not kept under control and exploited to extract the best profit from their existence.
It is known that if temporal and geographic distribution and dispersion of a project
occur to be unaddressed, they can generate important side effects in the software
development community or to its product outcome [21]. The temporal and geo-
graphic dispersion of contributors whom participate to software development and
the related impact of such dispersions onto the software community is captured by
the our Socio-technical Quality Framework through an indicator that represents the

number of different time-zones involved in the source code development (num.tz).

Communicability. Another important socio-technical quality metric that in-
fluenced our proposed quality framework, was defined in a Social Debt related study
conducted by Tamburri et al. focused on software architecture processes [7]; they
proposed a metric called “Debt-Aimed arcHitecture-Level Incommunicability Anal-
ysis” (DAHLIA) that had the purpose of evaluating the in-communicability of ar-
chitectural decisions across a software development community. Tamburri et al.
defined in-communicability as the “likelihood that who should know about archi-
tecture decisions actually does not know anything about them” We introduced
into our Socio-technical Quality Framework a new metric called communicability
(communicability), which can be considered as the inverse of in-communicability
measurement proposed by DAHLIA. Communicability was preferred for practical
reasons, because given the implementation methodology briefly explained in the fol-
lowing, in-communicability in FLOSS development communities tends to be char-
acterized by very small values. DAHLIA was defined considering the social-network
weak-ties hypothesis and was supposed to be calculated for every project’s architec-
tural decision. In order to adapt and implement an estimation of communicability,
we treated every technical collaboration between two developers represented in the

project’s collaboration Developer Social Network, as a possible source of design or

62

5.3. Core community members metrics

architectural decisions. To mimic the social-network weak-tie hypothesis adopted in
DAHLIA and to pander socio-technical development aspects captured by the collab-
oration and the communication DSNs of a software community, we concluded that
developers whom should be made aware of a decision (a collaboration) are those that
directly collaborate with at least one of the two developers involved in the decision
making. The motivation of such decision reside in the concept that since they are
related, probably they are interested and are working on the same or on a correlated
part of the software code source. A developer is considered aware of a technical de-
cision if he or she is connected with at least one of the developers implicated in the
decision (collaboration) in the communication Developer Social Network. Since com-
municability metric is related to every existent collaboration between two different
project’s developers, we considered the global communicability metric estimation as
the mean of the communicability metric of all the collaborations present within the
collaboration Developer Social Network.

In the proposed Socio-technical Quality Framework it was introduced a metric
that resides between socio-technical and Developer Social Network metrics cate-
gories, as it is directly dependent on actual identified Community Smells, explained
in Chapter 4, and thus it can be considered as an indicator of the presence of Commu-
nity Smells and their negative effects. Such metric is constituted by the percentage
of total community members present in the global Developer Social Network who are
involved into at least one identified Community Smell (ratio.smelly.devs) and its
purpose is to quantify the predominance and quantity of members whom incurred

in Community Smells during their activities.

5.3 Core community members metrics

Core community members. A group of dimensional metrics related to De-
veloper Social Network metrics, which were recognized such important and specific
to deserve a dedicated section, are constituted by indicators capable of measuring
the number of core members involved into software development and its associ-
ated community activities. Core developers are community members who actively
participate into development activities, are associated with important managerial
roles, have higher decisional power and pursue the goal of supporting and soliciting
software contributions and community participations. Metrics related to core com-
munity members were inserted in our Socio-technical Quality Framework because,
over the years, many empirical software engineering studies used such indicators
to characterize the quality of software development activities and many researchers
proposed different methodologies to identify such typology of developers from De-
veloper Social Networks. The count of core and peripheral developers of a software

development community can be considered as very useful indicators of the devel-

63

5. Socio-technical Quality Framework

opment state and of the community general health with respect to the following
hypothesis formulated by Mockus et al. [13]:

o FLOSS projects have a group of core developers (usually 10-15 people) whom
control the code base and which are responsible of at least 80% of new imple-

mented functionalities;

e Large FLOSS projects are subdivided into different groups, creating several

related sub-projects;

o A successful FLOSS project has a larger group of members (one order of mag-
nitude bigger than core developers group) committed to bug-fixing and another

larger group of members (another other of magnitude) that reports problems;

e A FLOSS project that has a strong group of core developers but at the same
time has a small number of developers committed to bug-fixing, will be able
to implement new functionalities but it will fail as defects will not be found

and corrected.

Crowston et al. [61] stated that core contributors involved in the development of
a FLOSS project are very important because “many of the processes necessary for
successful projects likely involve core members differently than peripheral members”
and concluded that both the typologies of members (peripheral and core) should be
considered separately during an empirical software engineering study to obtain valid
results. In their study Crowston et al. showed that, while peripheral developers
are usually involved in bug fixing or small code enhancements and contribute to
the project in an irregular and short-term manner, core developers have a long-
term involvement with the software project, are fundamental to perform system
architecture decisions and create the general leadership structure of the project
community. Terceiro et al. [62] correlated core developer behaviours to the structural
complexity of a project development environment and discovered that usually core
developers generate less structural complexity than peripheral developers, thus a
stable and healthy team of core developers is a must for the success and sustainability
of FLOSS projects. We tried to define precisely the properties that characterise core
developers using different literature resources but its definition in real world Open
Source communities is quite blurry because the figure of core developers and the
privileges associated to this figure can change within every development community.
As an example, in some communities maintainers and core developers terminologies
coincide, while in others they refer to completely different concepts. In this master
thesis we considered as a core community member whoever is characterised by a high
degree of centrality within the specifically considered Developer Social Network.
Therefore, the proposed Socio-technical Quality Framework contained the following

metrics related to the identification of core community members:

64

5.3. Core community members metrics

1. Number of core developers within the global Developer Social Network

(core.global.devs);

2. Number of core developers within the communication Developer Social Network

(core.mail.devs);

3. Number of core developers within the collaboration Developer Social Network

(core.code.devs);

4. Number of core developers within the collaboration Developer Social Network
who are sponsored by commercial commercial companies or who can be con-
sidered as self-employed in the FLOSS project and its corresponding ratio

percentage (sponsored.core.devs, ratio.sponsored.core);

5. Number of core developers whom are present only in the communication De-
veloper Social Network but not in its collaboration counterpart and its corre-

sponding ratio percentage (mail.only.core.devs, ratio.mail.only.core);

6. Number of core developers whom are present only in the collaboration Developer
Social Network but not in its communication counterpart and its corresponding

ratio percentage (code.only.core.devs, ratio.code.only.core);

7. Number of core developers whom are present both in the communication and
collaboration Developer Social Networks and its corresponding ratio percentage

(ml.code.core.devs, ratio.ml.code.core).

Truck number. As soon as peripheral and core community members of the three
typologies of Developer Social Networks are identified, it is possible to compute
the truck number (also known as bus factor) of the global DSN (global.truck), of
the communication DSN (mail.truck) and of the collaboration DSN (code.truck).
Such metric typology is important because it measures the concentration of infor-
mation within every individual developer and it is considered as a good indicator to
evaluate risks associated to knowledge loss due to turnover of developers [57]. The
truck number is commonly defined as the quantity of members who can be unex-
pectedly lost (“hit by a truck”) without dooming the project to failure, due to lack of
knowledge or competent members. While a low truck number can highlight a possi-
ble project risk because most of the knowledge is concentrated in few people, a high
truck number can represent a low risk due to developers turnover because the knowl-
edge is spread across all the community and, if a developer will leave the project,
other developers do have enough knowledge to carry on the software development
activity [57]. The decision of including truck number metric into our Socio-technical
Quality Framework was supported by Lavallée et al. [56] research, which consid-
ered “human resource planning” issues as one of the possible organizational factors

impacting on software development quality.

65

5. Socio-technical Quality Framework

5.4 Turnover

The organizational structure of a software project can be influenced from mem-
bers joining and leaving the software development community and, while departing
community members will lead the project to knowledge loss and relative knowledge
gaps that need to be filled in order to avoid the raise of problematic situations,
new members might bring innovations and new ideas into the community [14]. New
developers may introduce defects and lower developed software quality due to their
lack of knowledge about the system and it will require time from core community
members to answer to their questions and mentoring them. Since the quality of a
development community is tightly related to the knowledge and the experience of
members, the longer a community member has been involved in a project the fewer
defects will be present in his or her code [63]; consequently the quality of developed
source code is higher when long time and more experienced developers are present

within the development community.

While studying the relationship between developer-centric measures of organi-
zational changes and the probability of customer-reported defects in the context of
a large software project, Mockus [14] discovered that organizational volatility was
correlated to an increased probability of customer-reported defects in the software.
Therefore, experienced developers leaving an organization create gaps in tacit knowl-
edge and, as consequence, the product quality decreases. Furthermore, he discovered
that new developers bring innovation into the software community but they actually
have no impact on software quality, usually the motivation of this phenomenon is

that they are assigned to less critical changes [14].

As the quality of software contributions is usually related to the system knowl-
edge of community members, the highest risk for a project is when a core developer
leaves the community. This event can generate a big knowledge gap within the
project that should be mitigated as soon as such phenomenon is detected, for exam-
ple promoting strong developers to become core developers. Since FLOSS projects
are constituted by the fundamental contributions of voluntary developers, delays in
the process of meritocratic promoting a strong developer to a core developer role
(e.g. granting him or her the write permission on the Distributed VCS) can cause
departures of unsatisfied developers from the software community. Thus, a mecha-
nism to early identify and monitor promising future core developers is indeed needed
to ensure the successful evolution of FLOSS projects [64].

Turnover should be taken into account as it may results in a loss of productivity,
personnel re-training and additional recruitment costs. In an industrial scenario
replacing one worker may costs from three months to one year of salary, depend-
ing of the worker needed skills [55]. Core members turnover should be considered

and handled by community maintainers as well, because a stable and healthy core

66

5.5. Social Network Analysis metrics

team is fundamental to ensure the stability of a FLOSS project [62]. Moreover,
within the software engineering literature, turnover is considered as one fundamen-
tal socio-technical quality measure which is necessary to understand a dynamics
and health of a development community. The inclusion of turnover metrics in our
socio-technical quality framework was further motivated by the fact that Cataldo et
al. [15] empirically demonstrated that if a software development base is stable, then
the socio-technical congruence of an organization will increase over time.

In our framework we considered the turnover of every community member present
in the global DSN and in the collaboration DSN (global.turnover, code.turnover)
and the turnover of core community members of the global DSN | communica-
tion DSN and collaboration DSN (core.global.turnover, core.mail.turnover,
core.code.turnover).

A further metric present within our Socio-technical Quality Framework related
to turnover of members, is the ratio of community members who left the community
and that were involved in at least one Community Smells in the previously consid-
ered temporal range (ratio.smelly.devs). This metric can indicate to what extent
Community Smells can imply negative effects within a development environment to
the extreme of causing the abandonment of the community by previously involved

members.

5.5 Social Network Analysis metrics

As exhaustively described in Section 2.2, during the last decade, empirical soft-
ware engineering studies tended to consider and evaluate software development com-
munities through the use of Social Networks, applying to them Social Network Anal-
yses methodologies [31,32,36]. Meneely et al. [37] proved that socio-technical Devel-
oper Social Networks created observing development artifacts are representative of
actual socio-technical relationships present in a software development community.
Given the extensive presence of SNA studies in the empirical software engineering
research field, it was considered reasonable to include within the proposed Socio-
technical Quality Framework some fundamental Social Network Analysis metrics
which are capable of offering an insight about a the structure of Developer Social
Networks of a community and their characteristics.

Centralization. Centralization [65] is a Social Network Analysis metric that
calculates the graph-level centrality score, based on node-level centrality measure
of the entire considered graph. Centralization Social Network Analysis metric is
founded on the concept of nodes centrality, which is associated to the identification
of nodes which are most popular and that stand in the center of attention in a
possible sociometric start concept within the network in analysis. Centralization

can be considered as the extension of the node centrality concept to the whole

67

5. Socio-technical Quality Framework

network global level, as it refers to a network level indicator of the overall cohesion
or integration of all the nodes of the network. Within our Socio-technical Quality
Framework the following typologies of Social Network Analysis centrality metrics

were considered for the global Developer Social Network [65]:

1. Degree centrality (degree.centr): this centrality metric was the first typology
of Social Network Analysis centrality metric defined in the SNA literature and
it is founded on the counting of incident edges upon a social network node, thus
it represents how many connections a single network node has. Degree SNA
metric represents the immediate possibility that a network node has of cap-
turing an information freely flowing through the entire social network. Within
directed graphs it is possible to consider two different typologies of degree cen-
trality, considering the incoming or the outgoing edges from a specific network
node, but as explained in Chapter 7 we considered every generated Developer
Social Network as an undirected graph so we are not interested by this further

distinction;

2. Closeness centrality (closeness.centr): this centrality Social Network Anal-
ysis metric is defined upon the concept of shortest paths present within the
considered social network, computed using a natural distance metric between
every pair of its network nodes. Closeness centrality SNA metric represents
the mean number of steps that an information has to take in order to reach

every other node belonging to the social network;

3. Betweenness centrality (betweenness.centr): this centrality Social Network
Analysis metric is based on the quantification of the number of times in which
a single network node acts like an informational bridge, thus the number of
times in which it is present within the shortest path between two different
network’s nodes. This Social Network Analysis metric is capable of detecting
the importance that each node has with respect to the relationships present

in the other network entire social network between different nodes.

Modularity. Modularity [66] is a Social Network Analysis metric that measures
the strength of the structure of a community: high modularity indicates that a
clear definition and distinction of different sub-communities within the considered
network exists, while when the network modularity tend to zero it indicates that
there are no distinct sub-communities within the considered network. In the Social
Network literature it was identified a threshold of 0.3 for the modularity metric [66],
over which a community is considered highly modular and thus in posses of a clear
distinction between sub-communities present in its development network. The in-
clusion of modularity in the proposed framework was further motivated by Mockus’s
study [13], who discovered that a higher modularity corresponds to a lower coordi-

nation need. In our Socio-technical Quality Framework modularity was computed

68

5.5. Social Network Analysis metrics

not only for the global Developer Social Network (global.mod) but even for the
communication DSN (mail.mod) and for the collaboration DSN (core.mod).
Density. Density [67] is a Social Network Analysis metric that indicates the
ratio of the number of edges connecting different network nodes with respect to
the total number of possible edges between every network’s nodes. This metric
is fundamental to classify a social network as a dense or sparse graph. Density
(density) is computed only for the global Developer Social Network within the

proposed Socio-technical Quality Framework.

69

5. Socio-technical Quality Framework

70

Chapter 6
Survey

A survey was conducted among three well-known Open Source Software develop-
ment communities. The main motivations and purposes that brought us to consider,
design and execute a questionnaire are summarised in Table 6.1.

Although Social Debt and Community Smells were never mentioned during the
survey execution, it was possible to gather vital information about them considering
developer perceptions. Since the survey copes the existence and characteristics of
Social Debt and Community Smells within FLOSS development communities, it
constitutes an important and fundamental contribution to the Social Debt research
field by extending it with further notions and developer perceptions. This is the
first questionnaire ever done to assess Social Debt characteristics and perceptions
from verified FLOSS community members, since we ensured that respondents of a
development community contributed to the project’s source code with at least one
contribution.

Generally speaking, considering the results obtained within the three reference
projects, FFmpeg developers seem to be the most disillusioned with respect to their
project’s characteristics and inner mechanisms. Respondents related to the FFmpeg
community exhibited slightly intolerant behaviours toward core community members
and developers sponsored by commercial companies, perceived an important lack of

equality in developer opinion’s importance with respect to decisions and are very

Survey motivations and goals

Validate motivations, constituent theories and assumptions of this master thesis;
Verify the existence of Social Debt and Community Smells in FLOSS communities;
Support Social Debt and Community Smells discoveries and characterisation;
Extract verified FLOSS developer perceptions about possible social related issues;
Identify further quality metrics considered important by developers;

Qualitatively detect the presence of Community Smells using developer perceptions;
Validate empirical results obtained with Codeface4Smells analysis.

Table 6.1: Goals and motivations of the survey

71

6. Survey

upset about the documentation and the clarity of rules and structures of the project.

In Section 6.1 we illustrate the structure of the questionnaire and its main sec-
tions, in which all proposed questions were subdivided. Section 6.2 summarises
some characteristics and background information of interviewees who participated
at the questionnaire. The existence of Social Debt within Open Source Software
development communities and the validity of using mailing list in order to identify
Community Smells are verified in Section 6.3. Section 6.4 constitutes a fundamen-
tal contribution of this master thesis as it verifies the existence and effectiveness of
Community Smells, proposed in Chapter 4, using respondents perceptions. Finally,
Section 6.5 highlights the fundamental role that the survey results had on the iden-
tification and definition of quality factors belonging to our Socio-technical Quality
Framework.

The structure of the survey with the entire list of questions, the detailed charac-
teristics of analysed projects and the complete representations of obtained responses

are presented in Appendix A.

6.1 The questionnaire

The questionnaire, designed specifically for our study, was composed by a list of
questions aimed to address the aspects and goals reported in Table 6.1. Social Debt
and Community Smells were never mentioned during the execution of the question-
naire, in order to avoid biases in responses. The subset of proposed questions, which
contains only the ones considered during our study, can be subdivided into three

different sections:

1. The first part of the questionnaire was composed by three general questions,
with the purpose of addressing the background of questionnaire respondents,
and four questions dedicated to the the relationships of respondents with his or
her project community. The background information that respondents had to
specify during the questionnaire were: year of birth, country and occupation.
Within this section, after specifying the community in which the respondent
was involved, it was asked to specify the role within the project community.
The community and e-mail address specified within this section were used to
verify that the respondent actually committed at least one software contribu-

tion to the project’s source code.

2. The second part of the questionnaire was composed by four questions. In this
section we asked if the respondent’s participation within the FLOSS commu-
nity was remunerated. Then, we tried to understand, between all possible
communicational channels, which channel was mainly used inside the respon-

dent’s community. Thus, we were interested in the identification of the channel

72

6.2. Background of respondents

through which important project decisions were taken. Finally we tried to as-
sess information and perceptions about possible Social Debt existence and its
related issues, questioning what respondents consider as the main cause of time
waste within their community during the development phases and the reason
of their longest wait occurred before a proposed commit was considered by

project maintainers.

. The third part of the questionnaire, like the final part of its second section,
was related to possible Social Debt and Community Smells aspects and per-
ceptions, but it was composed by fourteen sentences and every respondent had
to specify his or her agreement with every proposed sentence. Agreement was
collected using the Likert scale, composed by the following options: strongly
disagree, partially disagree, neither agree nor disagree, partially agree and
strongly agree. In this part of the questionnaire we tried to capture devel-
oper perceptions about the importance of developers sponsored by commercial
companies and how much a project can be influenced by the absence of a
developer or the absence of a core developer. We then proceeded to under-
stand the perceived degree of formality and if the decisional power, within
FLOSS communities, was shared between every community member or it was
concentrated within a limited group of members. In this part of the ques-
tionnaire we tried to assess to information and opinions related to the qual-
ity of development artefacts produced by communities, like the general and
software architecture documentations, and if eventual issues in such artefacts
resulted in unofficial assumptions made by single developers. We analysed the
perceived importance of communications before and after software develop-
ment commit activities and then we moved forward considering the clarity of
community rules and structures. Finally, we tried to capture the existence
of sub-communities within the three reference projects and understand some
characteristics of such sub-communities, like communication behaviours, ho-

mophily and antagonisms.

The list of questions considered and used in the elaboration of this master thesis

are provided in the Appendix A, together with a detailed summary of received

responses relative to the third section of the questionnaire, grouped with respect to

the analysed communities.

6.2 Background of respondents

The list of FLOSS development communities initially considered was composed

by 10 software projects, specifically selected to cover different combinations of the

following project characteristics:

73

6. Survey

1. Project size: a community is considered “big” if the total number of its commits
is above the average of the total number of commits of all considered projects,

otherwise it is considered “small”;

2. Development activity: a community is considered “active” if the total number
of its commits during the last 12 months is above its average yearly commits
number (total number of commits / years of activity), otherwise it is considered

in “stall”;

3. Project relevance: a community has a “high” relevance if the total number of
member involved in its development is above the average of the total number
of developers who contributed to the source code of all the considered projects,

otherwise it has a “low” relevance.

The complete list of Open Source communities initially considered and the different
combinations of factors characterising every project are reported in Table 6.2, while

a more detailed table explaining classification motivations can be found in Appendix
A.

Project Size Activity Relevance
Firefox BIG ACTIVE HIGH
Android BIG ACTIVE HIGH
WebKit BIG ACTIVE LOW

LibreOffice =~ BIG STALL HIGH
FFmpeg SMALL ACTIVE HIGH
OpenSSL SMALL ACTIVE LOW
LibreSSL SMALL ACTIVE LOW
AngularJS SMALL STALL HIGH
Khtml SMALL STALL LOW
libva SMALL STALL LOW

Table 6.2: Projects initially considered for the survey

Considering the characteristics of all initially considered projects, we decided
to explicitly target our survey toward three well-known FLOSS development com-
munities, which covered almost every sampling combination reported in Table 6.2.
The three reference projects which were the subjects of our survey are: Firefox,
LibreOffice and FFmpeg.

To achieve a higher diversity of developer typologies who contributed in any pos-
sible way and in different temporal instants to every considered project, from project
maintainers to once in a life time contributors, we extracted from the VCS of every
considered project the entire list of authors of software contributions committed in
the entire life time of a project. Such list was extracted using a git command con-
sidering every unique e-mail address present and every e-mail in an invalid format

was removed with a regular expression (see Appendix A for further information).

74

6.2. Background of respondents

The questionnaire was created using Google Forms and it was available from
the 15th of February 2016 to the 5th of March 2016, for a total of 20 days. The
link to the questionnaire and a short introduction were sent to every extracted
unique e-mail. To avoid any possible bias, Social Debt and Community Smells were
never mentioned during the questionnaire or in its introduction and the survey was
introduced as a general FLOSS questionnaire. To mitigate the side effects of this
generalisation, Open Source developers participation was stimulated offering as a
prise two Amazon gift cards of the value of 25 dollars each (total jackpot 50$). The
two prizes were assigned to two randomly extracted participants few weeks after

that the survey time window ended.

FFmpeg
14 responses 18-25

23.73% (20.34%)
26-35
(50.85%)
Firefox
33 responses >50
55.93% (5.08%)

LibreOffice
12 responses
20.34%

36-50
(23.73%)

(a) Community (b) Age

Full-time employee
(69.49%)

Developer
(71.19%)

— zngsr;}a;oyed - Translator
.69%, (3.39%)

Software engineer
Student (11.86%)
(20.34%)
Part-time employeel Maintainer! Other
(8.47%) (1.69%) (11.86%)
(¢) Occupation (d) Role

Figure 6.1: Survey results (part one)

A total of 5169 unique valid e-mail addresses were extracted and contacted from
the Version Control Systems of the three reference projects, subdivided as follows:
1057 valid e-mails of LibreOffice developers, 1162 valid e-mails of FFmpeg developers
and 2950 valid e-mails of Firefox developers. At the end of the survey we collected a
total of 59 valid responses. A response was considered valid if and only if the e-mail
address specified by the respondent was present in list of committer e-mails of the

community specified within the same response.

75

6. Survey

As showed in Figure 6.1a, the 59 valid responses obtained from our interviewees
were divided between reference projects as follows: 33 replies from Firefox com-
munity which constitute the 55.93% of total valid replies, 14 replies from FFmpeg
community which constitutes the 23.73% of total valid replies and 12 replies from
LibreOffice community which constitute the 20.34% of total valid replies.

In the following are presented the results related to the first section of the ques-
tionnaire, in order to achieve a better understanding of the background of the inter-
viewees and validate the representativeness of survey responses. All the replies were
considered as a whole and not subdivided into a finer grain level, considering every
single community.

Moving to generational characteristics of survey respondents, summarised in Fig-
ure 6.1b, we concluded that almost half of interviewees were in the range of age
between 26 and 35 years old (50.85%). Developers younger then 25 years old and
developers with an age between 36 and 50 years old were both almost equivalently
represented by one quarter of the total respondents, while developers over the age
of 50 years old represented only the 5% of the total respondents. We considered
this subdivision as a reasonable representation of developers’ ages in the FLOSS

ecosystem.

Figure 6.1c helps to understand the working status of the survey interviewees.
The majority of respondents had a full-time job (69.49%), while a small part of them
had a part-time job (8.47%). One out of four developers identified himself or herself
as a student (20.34%) and a small part of the interviewees did not have a job nor
were students (1.69%).

Moreover, we asked respondents to specify if their contribution to the project
was on a voluntary base or if their involvement within the project community was
sponsored, in any form, by a commercial company. Globally we retrieved that al-
most three developers out of four participated in FLOSS development without any
monetary interest (71.19%); considering the three reference communities, this pa-
rameter was a bit fluctuating from a minimum of 57.14% of FFmpeg community to
a maximum of 78.77% of Firefox community. Moving to waged development con-
tributions, the percentage of developers whose involvement within a FLOSS com-
munity was completely supported by a commercial company is 23.73% of the total
respondents and it was stable within all the reference projects (Firefox: 21.21%;
LibreOffice: 25%; FFmpeg: 28.57%). Developers who were paid only partially by
a commercial company to contribute to one of the considered projects constituted
the 5.08% of the total interviewees and its distribution between the three reference
projects was very different: none of Firefox community respondents was partially
paid by a company, while considering the other projects: 8.33% of LibreOffice de-
velopers and almost the double (14.29%) of FFmpeg developers stated that their

contributions were partially paid by a commercial company.

76

6.2. Background of respondents

An interesting aspect inspected by our questionnaire, in order to verify the rep-
resentativeness of received replies with respect to different possible development
behaviours and tasks, was the role of respondents within their FLOSS development
community. As expected, given the modalities through which we retrieved the de-
velopers information, the majority of respondents classified themselves as developers
(71.19%). An important fraction of interviewees specified their status of software
engineer (11.86%), while just a small part of the respondents stated that they were
the maintainers of the project (1.69%). Moving toward less technical tasks, we re-
ceived replies from translators (3.39%) and a considerable amount of responses from
interviewees that were not able to identify themselves in any of the previously listed
categories (11.86%). Figure 6.1d presents a graphical representation of respondent

roles distribution with their related percentages.

Country # respondents Percentage Country # respondents Percentage
United States 9 15.25% Canada 1 1.69%
Germany 7 11.86% China 1 1.69%
France 7 11.86% Estonia 1 1.69%
U.K. 5 8.37% Spain 1 1.69%
Brazil 4 6.78% Finland 1 1.69%
India 4 6.78% Italy 1 1.69%
Austria 3 5.08% Kazakhstan 1 1.69%
Belgium 2 3.39% Romania 1 1.69%
Poland 2 3.39% Russia 1 1.69%
Sweden 2 3.39% Tunisia 1 1.69%
Taiwan 2 3.39% Venezuela 1 1.69%

Argentina 1 1.69%

Table 6.3: Nationalities of survey respondents

The questionnaire had a predominant participation of developers based in the
United States of America (15.25%) and in Europe, in which the most represented
countries were Germany (11.86%), France (11.86%) and United Kingdom (8.37%).
The geographically distribution of the survey respondents can be considered quite
high since we collected replies coming from 23 different countries of the world, which
are represented with their related number of replies and the associate percentage of

the total responses in Table 6.3.

Considering the background information of respondents, it was possible to state
that our survey involved developers of every age, geographic location, occupation
and characterised with different roles within FLOSS development communities. In
conclusion, these results provide the confirmation that retrieved survey responses
can be considered enough heterogeneous and diversified to be representative of the

entire FLOSS ecosystem.

7

6. Survey

6.3 Confirmatory role

The obtained replies allowed us to verify some assumptions made during the ex-
ecution of this master thesis, avert possible threats to validity of this study and sup-
port the existence of Social Debt from the view point of developer perceptions due
to socio-technical related issues within FLOSS development communities. There-
fore, this section has the fundamental goal of motivate and justify this master thesis
research questions, as it verifies the existence of Social Debt within FLOSS commu-

nities through developer perceptions.

As extensively explained in Chapter 4 and Chapter 7, during the execution of
this master thesis, we relied on Developer Social Networks extracted from FLOSS
projects’ mailing list archives, in order to capture communication habits and social
aspects of a community’s organisational structure. Even if in the literature there are
many empirical software engineering studies that use mailing list archives to achieve
such goal (listed in Section 2.4), in order to verify the effectiveness and demonstrate
the validity of our decision of using mailing lists to compute communication DSNs
and avoid possible threats to validity, we investigated which communication channel
was the most used in FLOSS communities to settle important project decisions.
Thus, we were interested in the identification of the communication channel in which
the decisional component was most prominent within Open Source development

communities.

A detailed representation of retrieved responses related to this analysed aspect
can be seen in Figure 6.2c. Our detections revealed that mailing lists are yet the
main communicational channels used when it comes to decision making in FLOSS
communities, as it was specified by 40.68% of the total questionnaire respondents,
while on the basis of individual reference projects the minimum percentage was
achieved by Firefox community with 27.27% of its total interviewees, followed by
the 41.67% of LibreOffice community and FFmpeg community registered an out-
standing agreement of 71.43%. Given such results we verified that it is reasonable
to consider mailing lists as the main communication channel through which extract
FLOSS developers formal relationships and development communications. Mailing
lists are then the best candidates to be mined with the scope of generating commu-
nication Developer Social Networks and we provided a real world confirmation for
our assumption, which is proved to be valid.

We further investigated if FLOSS developers perceived specific socio-technical
issues that can potentially generate Social Debt within an Open Source Software
development community and to what extent social related issues were perceived as
impediments with respect to every software development cycle phase.

We asked to respondents to specify the reason of their longest wait before one of

their software contribution to the project’s source code was considered by maintain-

78

6.3. Confirmatory role

%
30

60

50

40

20

10

Agreement delays

Bad software design
Communication delays
Other

Project disorganization
Unreasonable deadlines

"

(a) Time waste motivation

|

Firefox

%

I don't know

I don't remember
Incomplete commit
Long decisional process
Other

Unavailable maintainers

MR

LibreOffice FFmpeg All Firefox LibreOffice FFmpeg

40
|

20

10
|

(b) Contribution approval delay motivation

o _
3

B Closed group of developers

@ Forum

@ | don't know

| IRC

@ Mailing list
8 4 m Other
o 4
<
) d u m
I
o

All Firefox LibreOffice FFmpeg

(¢) Important decisions channel

Figure 6.2: Survey results (part two)

79

6. Survey

ers; responses are represented in Figure 6.2b. With respect to this specific software
development phase, as expected technical related issues were predominant and iden-
tified by the 28.81% of the total responses. We also detected the importance of so-
cial related issues, represented in the questionnaire through the unavailable projects
maintainers option, that globally constituted the 27.12% of the total responses. This
important result supported our research goal and provides the evidence that social
related issues captured by Community Smells can cause actual delays and thus they
do generate Social Debt. Considering in detail all the reference projects: LibreOffice
constituted the perfect representation of this equivalent relevance of technical and
social issues since both of them were selected by the 16.67% of the project respon-
dents, FFmpeg issues related to the maintainer unavailability were not considered
predominant (14.29%), while social related issues were considered the causes of most
of the delays in software contribution evaluation activity within the Firefox com-
munity (36.36%), for which they were even more relevant than the technical ones
(33.33%). If we consider long decisional processes as a social related issue, then the
percentage of global developers who identified social aspects of FLOSS development
as the cause of delays in the software contribution phase reaches the important value
of 35.59%, constituting one third of the entire survey sample. It is necessary specify
that, at global level, almost one respondent out of four (23.73%) stated that he or
she did not remember or did not know the reason of his or her longest wait until a
proposed contribution was considered by the project’s maintainers. This uncertainty
can be the symptom of unhealthy FLOSS development characteristics, which can
eventually generate mistrust and project abandonment, thus generating indirectly
Social Debt. This consideration can be an hint for future Social Debt studies within

FLOSS environments.

One of the most relevant questions of the entire second section of the question-
naire was addressed to capture the major causes of time waste within any phase
of a project development. Figure 6.2a shows such results at global level and at a
finer grain level, subdividing the responses for every single reference project. Above
all the possible answers, project disorganization appeared to be the main disadvan-
tage that caused time waste within all the considered projects, reaching the 27.12%
of global responses with a minimum value of 16.67% inside LibreOffice community
and an impressive maximum value of 50% inside FFmpeg community. The follow-
ing important motivations, identified as possible delay generators within a FLOSS
development environment, received the same amount of responses from all the inter-
viewees: bad software design and communication delays. In contrast to the general
concept of communication delays, agreement delay was considered the most impor-
tant reason of time wasting from 15.25% of total respondents and this percentage
was stable in every reference project. Unreasonable software release deadlines and

other non specified motivations registered a total of 10.17% each. If we consider

80

6.4. Validity of Community Smells

together the delays due to agreement or generally related to communication needs,
the considerable value of 33.89% of total responses is reached: these typologies of
disadvantages imply inefficient communication and organisational structures or un-
healthy habits, which are the basic assumptions at the foundation of Social Debt
theory. Since the project organisation is the representation of the developer so-
cial structure, we can consider even project disorganisation motivation to FLOSS
development communities delays as a social related issue, thus, a total of 61.01%
of the global responses suggested that social related issues are the main causes of
time waste within any phase of Open Source Software development process. This
result supports our research questions, guarantees and verifies the effective existence
and presence of Social Debt in Open Source Software communities and its intrinsic

nature of being ubiquitous and not limited to a specific development activity.

6.4 Validity of Community Smells

The conducted survey was conceived with a set of questions with the purpose of
collecting Open Source developer perceptions related to potential socio-technical is-
sues, in order to verify the effectiveness and validity of Community Smells definitions
and proposed identification patterns, proposed in Chapter 4.

Delays were considered the main reason of time waste within any project activity
by the 33.89% of total respondents: while the 18.64% blamed communication related
delays as the most impacting source of delay, the remaining 15.25% believed that
the most debilitating typology of delay was caused by agreement activities.

Agreement delays were specified within all the three reference projects by an
almost constant percentage of respondents and it was classified as the fourth most
important time waste motivation, therefore this finding verifies the existence of Ra-
dio Silence Community Smells within FLOSS development ecosystem, since it is
one of the explicitly defined side effects of such Community Smell. Communica-
tion delays, instead, verify the existence of Black-cloud Effect, Prima-donnas Effect
and, in a more relevant manner, Radio Silence Community Smells because all their
definitions are associated to the presence of unique communication and knowledge
conveyors between different sub-communities; thus, communications directed out-
side a sub-community will be negatively impacted by all the three listed typologies of
Community Smells, generating communication delays. Conversely to agreement de-
lays, the percentage of respondents belonging to different communities who selected
communication delays as the main cause of time waste in any community activ-
ity, was very fluctuating in reference projects: from the minimum value of 7.14%
achieved by FFmpeg community to the maximum of 27.27% of Firefox community.

It was recognised by three out of four global respondents (75%) that the absence

of a developer can stall some community activities. Therefore, this finding surely

81

6. Survey

verifies the wvalidity of Black-cloud Effect, Prima-donnas Effect and Radio Silence
Community Smells Community Smells, as they are characterised by the presence of
unique communication and knowledge conveyors between different sub-communities
within Open Source Software communities. Radio Silence is probably the Commu-
nity Smell that is most verified by this result, as its definition is completely based
on the concept of unique boundary spanners and problems related to their absence
or due to overload of their capacities. The level of agreement with respect to this
analysed aspect was slightly variable within reference projects: from the minimum
value of 58% of LibreOffice community to the maximum value of 86% of FFmpeg

community.

One of the agreement statements proposed in the questionnaire had the target
of capturing developer perceptions about a potentially high degree formality within
their software development community. The global responses suggested that, gen-
erally speaking, every developer had a personal perception about the formality level
of his or her community, as the number of agreement, disagreement and neutrality

responses were equally distributed.

The perception of community’s rules and its constituent structure can be con-
sidered as another aspect that can represent a triggering factor of Radio Silence
Community Smell due to a high level of formality and complexity, as it can be re-
lated to how developers perceive and understand their community’s organisational
structure. Globally, FLOSS development community rules and structures were per-
ceived as sound and clear by almost 60% of the total respondents. While LibreOffice
and Firefox respondents exhibited a similar agreement distribution, FFmpeg project
recorded the most negative record between all reference projects. The global per-
centage of disagreement was constituted by the 15% of total responses, but it was
characterised by a high fluctuation level within the three reference projects: Libre-
Office community did not record any disagreement responses, Firefox community
reached a value of 12% and FFmpeg community was characterised by the negative
record of 38% of disagreement responses. Therefore, the potential presence of Radio

Silence Community Smell within FLOSS communities is further demonstrated.

One out of four of total respondents declared that he or she did assumptions
during development activities due to unclear requirements or documentation; this
developer tendency was stable in Firefox and FFmpeg communities, characterising
the behaviour of the 21% of respondents of each project, while LibreOffice was the
reference community with the highest rate of developers who did assumptions within
their developers activities, reaching a total of 42% of its respondents. Potentially,
assumptions performed by single developers can degenerate into autonomous de-
sign and architectural decisions which are not expected, documented and performed
without the necessary authority or knowledge. Therefore, Organisational Silo Effect,

Missing Links and Black-cloud Effect Community Smells existence is verified by this

82

6.5. Quality factors identification

result, as it is one of the possible triggering factors of such Community Smells.

Within the proposed questionnaire, four different agreement sentences were present
in order to capture developer perceptions about Community Smells related to the
presence of sub-communities within a community and their behaviours: Black-cloud
Effect, Prima-donnas Effect and Radio Silence. In order to verify the existence
of previously listed Community Smells and support their identification patterns
through the mean of sub-communities detection, as proposed in Chapter 4, it was
necessary to verify that sub-communities actually exists and within FLOSS devel-
opment and that community members perceive the existence of such Community
Smells; this condition was verified by the questionnaire results since the 47% of
total respondents indicated that their reference development community was con-
stituted by different subgroups. From the results of the executed survey it was
evident that, within Open Source Software communities, sub-communities tend to
communicate with each other, as only the 12% of total respondents believed that
different subgroups rarely communicate within a software development community.
Therefore, this result may indicate an exiguous number of occurrences of Black-cloud
Effect and Prima-donnas Effect Community Smells.

Moreover, 36% of total respondents was convinced that every sub-community
is composed by members with a similar mindset and that they behave as a little
stand-alone community inside the actual community, thus the existence of Black-
cloud Effect and Prima-donnas Effect Community Smells within FLOSS development
communities is further verified.

An additional hint that may indicate an exiguous number of occurrences of
Black-cloud Effect and Prima-donnas Effect Community Smells within Open Source
Software development communities derives from the 14% of total respondents that
believed that different sub-communities can be antagonists, while the 51% of them
denied the existence of such phenomenon. This result suggests that sub-communities
tend to collaborate and not isolate themselves, thus it is possible to assume that
Black-cloud Effect and Prima-donnas Effect are quite rare in FLOSS development

communities.

6.5 Quality factors identification

The survey had a fundamental role even in the identification of some socio-
technical quality factors considered important by Open Source Software developers
and, thus, that had to be included within our Socio-technical Quality Framework
proposed in Chapter 5.

A couple of results obtained within the third part of the questionnaire were very
important to suggest the introduction of quality factors founded on the identification

of core and peripheral community members. Therefore, every socio-technical quality

83

6. Survey

metric that distinguish between peripheral community members and core community

members (e.g. turnover) is motivated by the two following findings:

1. While 75% of total respondents believed that the absence of a developer can
stall some community activities, if the absent developer is a core developer
such result increased and reached the 80% of agreement level. It important
to highlight that such result was due to a decrease of its disagreement level,
that passed from the 8% to the 3%. In is interesting to notice that FFmpeg
was the only reference project that exhibited a counter-current behaviour with
respect to the others reference projects, as its community members believed
that the absence of general community members was more problematic that

the absence of core developers, with an impressing margin of 7%;

2. Even if FLOSS communities are usually characterised by open, collabora-
tive and welcoming development environment, the idea that they represent
a democracy in which every community member has the same importance, is
still an utopia and it cannot be considered a world-wide reality. Only 34% of
total respondents believed that every opinion is equal in important project de-
cisions, while almost one out of two respondents (49%) denied the existence of

this equality and democratic value within Open Source Software community.

An additional contribution, obtained from the results of the questionnaire, to the
definition of our Socio-technical Quality Framework suggested the importance of the
identification of community members supported by commercial companies or who
can be considered self-employed with respect to a software project. The inclusion of
quality factors related to the identification of sponsored developers was motivated
by the 63% of total respondents who specified their belief that developers sponsored
by commercial companies increased the health of a project and because only the 8%
of the global sample was in disagreement with such opinion.

The quality factors introduced in the out Socio-technical Quality Framework
related to the identification of core developers are explained in details in Section
5.3, while the ones introduced due to the importance of developers sponsored by
commercial companies within FLOSS development communities are described in
Section 5.1. In this master thesis these two typologies of socio-technical quality
factors were associated to the identification of a total of 19 different socio-technical
quality metrics. Therefore, the conducted questionnaire, in conjunction to the study
of software engineering literature, had a fundamental role in the definition of the

proposed Socio-technical Quality Framework.

84

Chapter 7

Operationalising our Quality

Framework: Codeface4Smells

This chapter presents CodefacedSmells, our software contribution to perform
socio-technical analysis, compute quality factors defined in Chapter 5, identify and
quantify Community Smells exploiting identification patterns defined in Chapter 4
and empirically detect relevant correlations between socio-technical quality factors
and Community.

Codeface4Smells offers a lens to observe software development communities from
a quality perspective and diagnose organisational issues in an automated tool-supported
fashion. Therefore, it can be used for continuous Community Smells management
and improvement.

Section 7.1 presents Codeface, the software project used as a development base
to implement our tool. The architecture and inner workings of Codeface4Smells
are explained in Section 7.2. Finally, details related to the operationalization of
identification patterns of Community Smells and of socio-technical quality factors

are presented respectively in Section 7.3 and Section 7.4.

7.1 Codeface

Codeface is an Open Source “framework and interactive web front-end for the so-
cial and technical analysis of software development projects” [68], which is capable
to retrieve and analyse collaboration and communication relationships of a soft-
ware development community using different software development artefacts (Ver-
sion Control Systems and mailing lists). Codeface was created in 2010 by Wolfgang
Mauerer and most of its developed is internally executed and sponsored by Siemens.
It is written mainly using python and R and it is released under the GNU General
Public License v2.0.

Codeface analysis results can be useful to learn more about an embedded soft-

85

7. Operationalising our Quality Framework: Codeface4Smells

ware ecosystem and all the retrieved information about a software project may help
to understand and exploit collaboration and communication patterns and charac-
teristics, highlight development issues and assist maintainers in project control and
management activities.

Codeface is composed by a variety of modules and components which cooperate

and collaborate with each other, the most important are:

e An interactive web front-end to easily monitor and visualise analysed projects.
It enables the possibility to assess retrieved information at different levels
of details, from management summaries (communication, collaboration, con-
struction, complexity) down to raw data, supporting direct comparisons of

projects;

e An analysis framework with minimal configuration needs that can scale even

to large software projects;

e An holistic database that allows complex insightful queries by coherently inte-

grating all available data sources;

e« A framework to execute quantitative analysis and objective classification of

social aspects of software development.

Codeface implements an interactive web front-end which allows any user to dy-
namically modify its views to adapt them to every evaluation needs and personal
preferences. Codeface web front-end provides three main levels of details: overviews,
summaries and raw data. The web front-end of Codeface provides an overview with
general information related to a considered project and a concise representation of
the project’s status with respect to its complexity, construction, communications
and collaborations.

While the concise overview summarises the results of different categories evalu-
ations, which are useful to formulate an idea about a project’s strengths and weak-
nesses, the detailed summary enables to examine the status of one specific project
area and see its related analysis. At a lower level, raw data allow to exam a project
area in depth.

Some characterising features of Codeface are:

e Central contributors are detected using their social influence and not only

static measures;

e Many available approaches to compute collaboration relationships from Ver-

sion Control Systems;

o Text mining usage in communication analysis to detect most active discussion

topics and discussion culture;

86

7.1. Codeface

Classification of active and passive contributors in the mailing lists;

Different clustering algorithms used to detect closely interacting communities

and their evolution over time;
Range of traditional software engineering code metrics;

Time series analysis (e.g. growth data, complexity behavior, communication

volume) to estimate trends, determine regularity and self-consistency;

Page-rank analysis to evaluate developers influence, thus not relying just to

total commit count;
Community detection;

Time zone analysis.

Collaboration Timin

Mailing lists analysis analysis
analysis

VCS analysis

Codeface common layer

Figure 7.1: Architecture of Codeface

The software architecture of Codeface, as showed in Figure 7.1, is constituted by

the following layers:

1.

Common layer: constituted by common routines, SQL abstraction, projects

configuration and logging functionalities;
Mailing lists analysis: performs communication analysis;

Version Control Systems analysis:

o Timing analysis: computes evolutionary project metrics (e.g. number of
files);

e Collaboration analysis: creates the developer network and execute cluster

analysis.

Codeface can generate a collaboration Developer Social Network using the following

collaboration detection techniques:

o Proximily analysis: developers are linked when their commits are in close

proximity (e.g. same file and nearby line numbers);

87

7. Operationalising our Quality Framework: Codeface4Smells

o Committer2Author analysis: developers are linked with directional relation-
ships extracted from the committer and the author meta-data of every com-

mit;

e Tag analysis: developers are linked with directional relationships extracted

from tags placed in every commit (e.g Signed-Off, Acked-by, Reviewed-by);

e Function analysis: developers are linked considering proximity of their com-

mits within the same function of a file;

e Feature analysis: developers are linked consider proximity of their commits
within the same feature (unlike functions, features are split across different
files).

In our work we used Codeface exclusively to exploit its capabilities of extraction and
generation of Developer Social Networks from communication and collaboration soft-
ware development artefacts of FLOSS development communities. We extended its
functionalities introducing a brand new socio-technical network analysis layer, con-
stituted by a Socio-technical Quality Framework and a Community Smells detection

and quantification mechanism.

7.2 Architecture of Codeface4Smells

Codeface4Smells is build on top of Codeface’s software source code, thus it can
be considered as an extension of Codeface, and it has the purpose of introducing
software enmhancements and mew socio-technical analysis and Community Smells
detection capabilities. Considering the architecture of Codeface with the addition
of Codeface4Smells extension, represented in Figure 7.2, it is possible to conclude
that Codeface4Smells constitute a bran new software layer, which resides on top
of all the already present Codeface architecture layers, and that its socio-technical
analysis capabilities are enabled by Codeface’s communication and collaboration
analysis outputs.

Codeface4Smells main contributions are:

1. Creation of a global Developer Social Network, generated from the
combination of communication and collaboration Developer Social Networks.
This innovation implies the possibility of a finer-grained socio-technical anal-
ysis of a software project development ecosystem, by considering at the same
time both the technical and social relationships between community members
and not as two isolated and independent parts of the development process, as

previously conceived in Codeface;

2. Introduction of automatic ranges detection to analyse at most the last

three years of a project considering three months windows;

88

7.2. Architecture of Codeface4Smells

Codeface4Smells analysis

Collaboration Timing
analysis analysis

VCS analysis
Codeface common layer

Figure 7.2: Architecture of Codeface with Codeface4Smells extension

Mailing lists

analysis

. Identification of sub-communities within the global, communication and
collaboration Developer Social Networks. Codeface provided the identification
of sub-communities within its collaboration analysis but it was necessary to re-
implement this functionality with a different approach in order to support this
feature outside the collaboration analysis, extend it to other DSN typologies

and consider the undirected nature of generated networks;

. Identification of core developers within the global, communication and
collaboration Developer Social Networks. This feature was already present
in Codeface but it was limited to collaboration analysis and thus it was nec-
essary to modify its implementation to support our socio-technical analysis
implementation and extend it to to the other DSN typologies and to the undi-

rected nature of generated networks;

. Identification of developers supported by commercial companies or

self-employed within a project development community;

. Introduction of our Socio-technical Quality Framework to gather more
information about socio-technical characteristics of a software project devel-
opment environment and its community. It is presented in details in Section

7.4;

. Detection and quantification of Community Smells which may indicate
the presence of Social Debt within the project development. It is presented in

details in Section 7.3;

. Correlation analysis (Pearson and Spearman) execution between socio-technical

quality factors and the occurrence of Community Smells;

. Reports and graphs generation to simplify access to socio-technical and

Community Smells analysis results.

89

7. Operationalising our Quality Framework: Codeface4Smells

The Developer Social Networks produced by Codeface’s communication and col-
laboration analysis are the basic building blocks on which Codeface4Smells is im-
plemented, thus in order to be able to execute CodefacedSmells it is necessary to

execute these two typologies of analysis in advance.

In Appendix B it is explained how to install, set up and execute a complete

Codeface4Smells analysis from scratch.

Codeface4Smells is build on top of Codeface common layers (Section 7.1) and
it is constituted by some functionalities that consider a software project in anal-
ysis at a global level and some other functionalities which are executed for every
project’s range specified within the configuration file. Ranges are intervals between
different source code snapshots that are expressed in a project configuration file:
manually, by specifying release versions or commit hashes, or automatically com-
puted by Codeface4Smells, specifying “3months” analysis within the configuration
file before executing Codeface4Smells analysis (consult Appendix B for further infor-
mation). While range analysis is executed for each considered snapshot of a project,
global analysis resides at a higher level of generality as it considers every information

extracted from every executed range analysis as a whole.

While Figure 7.2 represents the general architecture layout constituted by Code-
face and Codeface4Smells extension layer, which enables a deeper socio-technical
analysis and resides on top of every analysis layer previously implemented in Code-
face, a zoom in and detailed view of Codeface4dSmells architecture is represented in
Figure 7.3 and this and the following sections will provide a description of all its

constituents components.

Global report and graphs creation

Code Smells correlation analysis

~

Range report and graphs creation
Community Smells detection
Quality metrics computation

Global Developer Social Network creation

Communication Developer Collaboration Developer
Social Network creation Social Network creation

Range analysis

Codeface common layer

Figure 7.3: Architecture of Codeface4Smells

90

7.2. Architecture of Codeface4Smells

CodefacedSmells analysis is enabled, in addition to Codeface’s collaboration and
communication analysis as previously explained, by the general Codeface utility
layer. This fundamental layer of Codeface is composed by low level functions capable
of providing basic but useful functionalities as database connections, communication
and collaboration specific database query executions and information retrieving of a
project’s configuration. We modified this low level layer of Codeface, that is shared
within every typology of analysis, in order to allow the selection of socio-technical
analysis performed by Codeface4Smells, compile produced IATEX output to obtain
PDF report files and enhance query and computational tasks capable of performing

different range analysis functionalities.

Whenever Codeface4Smells analysis is started, it uses Codeface’s common layer
in order to extract the configuration of the project in analysis, its list of snapshots
(ranges) to consider and the directory that contains Codeface’s communication and
collaboration analysis outputs. As soon as the list of ranges that have to be analysed
is known, each range is analysed separately but in succession, because in order to
compute some socio-technical quality factors (e.g. turnover) or some Community
Smells (e.g. Black-cloud Effect) it is necessary to consider historical information
extracted from previously analysed ranges. The sequence of steps that compose a
single range analysis is summarised within the magenta coloured box of Figure 7.3

and its phases will be explained in the following.

A specific range analysis starts with the generation of the communication Devel-
oper Social Network. The date of the start and the end of the range to be considered
are used to query Codeface’s database in order to retrieve the edge list of every com-
munication that occurred within the considered time lapse. Every element of such
edge list is composed by a triplet of values that summarises the identifiers of two
community members and the number of communications that were initiated by the
first community member toward the second community member within the analysed
range. If the communication channel was never used within the considered range we
terminate Codeface4Smells analysis since it is impossible to achieve a meaningful
socio-technical analysis without such fundamental data. The communication Devel-
oper Social Network is defined as an undirected graph, in order to achieve a higher
generalisation level of a project’s organisational structure and thus the number of
e-mail messages exchanged between two community members is maintained as the
weight of the link that connects the two community members within the commu-
nication DSN. The generated communication Developer Social Network undergoes
a further processing phase that has the target of simplifying the previously gener-
ated network, by removing multiple edges and loops and substituting such identified
multiple edges with one unique edge characterised by the weight resulting from the

sum of all weights of deleted edges.

The data of a specific range necessary to create the communication Developer

91

7. Operationalising our Quality Framework: Codeface4Smells

Social Network are extracted from the adjacency matrix file generated by Codeface’s
collaboration analysis. Such text file is a representation of a square matrix in which
each row/column represents a community member who contributed to the source
code of the project in analysis within the considered software snapshot and the
intersection element between a row and a column of the matrix represents the number
of collaborations between the two developers identified by the relative row/column
identifiers. Codeface4Smells exploits the retrieved adjacency matrix to generate the
collaboration Developer Social Network of the analysed range, using the number
of collaborations as edge weights, nullifying the diagonal of the matrix because
the number of developer self-collaborations are not considered interesting within
our socio-technical analysis and considering an undirected network approach, in
order to achieve a higher generalisation level of a project’s collaboration habits
and behaviours. Similarly to the communication Developer Social Network creation
process, the generated collaboration DSN undergoes to a simplifying functionality
that removes multiple edges and loops and substitutes such identified multiple edges
with one unique edge characterised by the weight resulting from the sum of all the

weights of deleted edges.

The availability of communication and collaboration Developer Social Networks
enable the further generation of the global Developer Social Network, that is consti-
tuted by merging together the two previously computed networks. Such functionality
had to be implemented from scratch in Codeface4Smells and the fusion process is
performed using the communication DSN as a base, since usually it is constituted
by the greater number of community members, to which are added the project’s
developers who were not present in the communication channel and, once every
community member present in any considered development phase is present within
the global DSN, an edge fusion functionality is executed in order to characterise the
weight of every edge between two community members of the global DSN as the
sum of communication and collaboration edges between the same two considered
community members within the communication and collaboration Developer Social
Networks. Once again, the generated global Developer Social Network undergoes
to a simplification functionality in order to remove multiple edges and loops and it
substitutes such identified multiple edges with one unique edge characterised by the
weight resulting from the sum of all the weights of deleted edges. Therefore, the
weights of edges belonging to the global DSN correspond to the sum of total num-
ber of collaborations and total number of communications between two community
members.

Since some quality factors and Community Smells require the identification
of sub-communities within the three generated Developer Social Networks, Code-
face4Smells identifies the cluster (sub-community) of membership of every commu-

nity member within all the three typologies of considered DSNs. Every commu-

92

7.2. Architecture of Codeface4Smells

nity detection algorithm is characterised by a different approach and performance,
therefore in 2014 Sousa et al. [69] conducted a study in which different commu-
nity detection algorithms, implemented and available within the igraph suite (used
by Codeface4Smells), were deeply analysed and ranked according to their perfor-
mances in different possible scenarios. The results obtained by de Sousa et al.
demonstrated that Walk-trap algorithm outperforms every other considered com-
munity detection algorithm, followed by multi-level algorithm and highlighted how
Spin-glass approach is highly influenced by the number of nodes that constitute a
network and its fragmentation degree, thus if network’s modularity is low or the
number of nodes increases, its performance degrades. Codeface’s collaboration anal-
ysis provided a community detection functionality based on Spin-glass but in order to
harmonise sub-community identification functionality to all the typologies of DSNs
considered by Codeface4Smells, support undirected Developer Social Networks with
edges weights and given the results obtained by de Sousa et al. [69], Codeface4Smells
comes with a new feature that exploits Walk-trap detection algorithm implemented
within the igraph package of R language to detect sub-communities within every
generated Developer Social Networks.

The analysis of a project’s range proceeds with the computation of quality factors
belonging to the Socio-technical Quality Framework defined in Chapter 5, explained
in details in Section 7.4, and with the identification and quantification of Community
Smells presented in Chapter 4, explained in details in Section 7.3.

The range analysis terminates with the creation of a report file that summarises,
through the mean of graphs, the generated Developer Social Networks and Commu-
nity Smells detected by Codeface4Smells. Figure 7.4 represents a real life example of
a project’s range analysis report file. Considering the report analysis of the proposed
example, it is possible to see how communication and collaboration Developer Social
Networks (Figures 7.4a and 7.4b) are merged together into a global DSN (Figure
7.4c) and, within the same images, it is possible to recognise community members
belonging to different sub-communities, with respect to every DSN typology, con-
sidering the colour of every node. The other graphs present within the report file
are related to Community Smells identified within the range in analysis. If Code-
face4Smells did not discover any occurrence of a considered Community Smell then a
message will be displayed, otherwise a visual representation of detected Community
Smell occurrences will be displayed with the following characteristics, related to the

Community Smell typology:

1. Organisational Silo Effect (Figure 7.4d): This graph represents a version of
the collaboration Developer Social Network in which every couple of commu-
nity members that constitute an identified Organisation Silo is highlighted and
limited by colourful ellipses. Every developer involved in at least one Organi-

sation Silo is coloured in red, while all the other developers are transparent;

93

7. Operationalising our Quality Framework: Codeface4Smells

o o e
o o
o ©
e\ See
°
° °
° e °
°
09@0
T — =4
°
°) e
°
° W °
°
°
o
o
° °
oo

(e) Missing Links

° o
o °
o
°
o . .
°
. o
° °
oo
o o
°
o e °
o °
o ° . ° b . o
o o e
o .
° P]
o . ¥ oo
° o o ° o ole 4 e
. oo
oy . v
y B o s e
s B
° D' °
° . ° o
.
. ° °
° ° °

(b) Collaboration DSN (c) Global DSN

a ° o
°© [}
=]
o
o ©
o
o ° o
o ©
o o oOo
=]
o oo
® o
o
® . o
o
o
o
o
o
o
=]
o

(f) Black-cloud Effect (g) Prima-donnas Effect

Figure 7.4: Example of range analysis report

o o
Y, °
9 ° °
o
o
ST
ANESY
°
I < °
o
s
N2\
g
I °
°
o
° 9
° e °

(h) Radio Silence

94

7.2. Architecture of Codeface4Smells

2. Missing Links (Figure 7.4e): Same convention as Organisation Silo Effect;

3. Black-cloud Effect (Figure 7.4f): This graph represents all the communica-
tion links that were identified as occurrences of a Black-cloud Effect, therefore
it shows the community members involved in at least one Black-cloud Effect
as nodes coloured in yellow and they are connected through red edges repre-

senting the indicted Black-cloud links;

4. Prima-donnas Effect (Figure 7.4g): This graph represents a version of the
communication Developer Social Network in which every sub-community in-
volved in at least one Prima-donnas Effect is highlighted and limited by colour-
ful ellipses. Every community member involved in at least one Prima-donnas
Effect is coloured in red, while all the other community members are trans-

parent;

5. Radio Silence (Figure 7.4h): This graph represents a version of the communi-
cation Developer Social Network in which every community member classified
at least once as a unique knowledge broker toward another sub-community is

coloured in green, while all the other community members are transparent.

Please notice that it is possible to enable the display of identifiers, names and e-
mails of community members within every generated Developer Social Networks,
but such functionality was disabled to preserve community member privacy, since
in this master thesis we are not interested in evaluating single developers.

Range analysis and all its previously described constituent phases are executed
for every range listed in the relative configuration file and, once all the specified
ranges are analysed, Codeface4Smells execute additional global analysis phases, us-
ing the retrieved results of all analysed ranges: correlation analysis and global report.

In correlation analysis layer every identified Community Smell is considered with
respect to every socio-technical quality factor and their correlations are computed,
in order to empirically identify if and how socio-technical quality frameworks are
related to a specific Community Smell. Correlation analysis takes in input two sets
of data (measurements related to a specific Community Smell and to a specific socio-
technical quality factor), elaborates them and returns a correlation coefficient that
quantifies the extent to which the two variables tend to change together, describing
both the strength, the direction and the p-value of the relationship. Within this

analysis Codeface4Smells performs two two correlation analysis techniques [70]:

e Pearson product moment correlation evaluates linear relationships within
two continuous variables, thus it explores the condition in which a change in
one of the two analysed variables is associated with a proportional change in

the other variable;

95

7. Operationalising our Quality Framework: Codeface4Smells

o Spearman rank-order correlation is a nonparametric (distribution-free)
rank statistic proposed by Charles Spearman that evaluates monotonic rela-
tionships within two continuous or ordinal variables, thus it explores situations
in which two variables tend to change in conjunction but not necessarily at
a constant rate, without making any assumptions about the frequency dis-
tribution of the variables. Usually Spearman’s rank correlation coefficient is
considered whenever the data distribution makes Pearson’s correlation coeffi-

cient undesirable or misleading.

Codeface4Smells analysis terminates with the creation of report files that recap all
generated data from the execution of every Codeface4Smells socio-technical analysis
phase. Real world global report examples of the three reference projects can be
consulted in Appendix C. Moreover, Codeface4Smells generates comma-separated
values (CSV) files of every analysed aspect of a software development community,
in order to provide easy access to data and facilitate further data analysis. For each

analysed project such report files contain the following information:

e Measurements of socio-technical quality factors and Community Smells of ev-

ery analysed range;

e Pearson’s correlation coeflicient and related p-value between every socio-technical

quality metric and Community Smells;

e Spearman’s correlation coefficient and related p-value between every socio-

technical quality metric and Community Smells;

e Graphs representing trends of the main socio-technical quality metrics.

7.3 Operationalisation of Community Smells

This section explains how identification patterns of Community Smells, proposed
in Chapter 4, are operationalised in CodeFace4Smells. The general functionality of
all the operationalised identification patterns of Community Smells is represented
in Figure Figure 7.5 on page 97, where the operationalised identification pattern
is represented by the blue box and, in order to identify and quantify the number
of occurrences of its specific considered Community Smell, it needs as input the
collaboration DSN, the communication DSN and the list of sub-communities present
within the communication DSN. Actually, not all the operationalised identification
patterns require all the information reported in the figure, as some of them do not
need information related to sub-communities (e.g., Missing Links) and others do not
need the collaboration DSN (e.g., Radio Silence).

The following set of Community Smells is computed for every range specified in

the configuration file of a project and obtained measurements are summarised in the

96

7.3. Operationalisation of Community Smells

Sub-communities of the
Communication DSN

: Quantification
Communication DSN Comrg:g:tysgmells of detected
Y Community Smells

[Collaboration DSN

Figure 7.5: General functioning of the identification of Community Smells

socio-technical analysis report generated at the end of the global analysis performed
by Codeface4Smells.

Organisational Silo Effect Community Smell measures the number of col-
laboration links characterised by the absence of at least one of the two developers,
constituting the link, within the communication channel; therefore, the identification
of such Community Smell requires as input the collaboration and communication
Developer Social Networks. The list of non-communicative developers is obtained
performing the complement of the collaboration DSN with respect to the commu-
nication DSN and appropriate handling functions are implemented to consider a
collaboration between two non-communicative developers only once. When every
collaboration belonging to non-communicative developers are counted, the number
of total collaboration links in which one or both of the considered developers are ab-
sent in the communication DSN is returned as the measurement that characterises
the Organisational Silo Effect Community Smell. The R implementation of this
Community Smell in Codeface4Smells is proposed in Algorithm 7.1.

Algorithm 7.1 Operationalisation of Organisational Silo Effect identification pat-
tern

community . smell. organisational.silo <— function (mail.graph, code.graph) {
discover develpers not present in the communication DSN
non.communicative.ids <— setdiff(V(code.graph)$id, V(mail.graph)$id)
silos <— list ()
for each nmon communicative developer, save his collaborations
for (vert in non.communicative.ids) {
for (collab in neighbors(code.graph, V(code.graph) [V(code.graph)$id =— vert])$
id) {
if both are non—communicative count the collaboration only once
due to the undirected nature of the graph
if ((collab %in% non.communicative.ids) & (collab < vert)) {
next ()

organisational silo smell detected

silos [[length(silos) + 1]] <— c(vert, collab)
}

return(silos)

}

97

7. Operationalising our Quality Framework: Codeface4Smells

Missing Links Community Smell measures the number of collaboration links
that do not have a communication counterpart, therefore the identification of such
Community Smell requires as input the collaboration and communication Developer
Social Networks. The identification process considers every developer within the col-
laboration DSN and detects every collaboration link in which the two collaborating
developers are present within the communication DSN but they are not connected
through an edge in the communication Developer Social Network. The presence or
absence of a communication link between two collaborating developers is obtained
checking the presence of the other developer in the list of neighbors of the devel-
oper considered within the collaboration DSN. This initial identification phase does
not consider collaborations in which one or both of implicated developers are not
present in the communication channel due to optimisation reasons later explained
and it applies appropriate handling functions within the collaboration links analysis
in order to consider a Missing Links detection only once, due to the undirected na-
ture of the collaboration Developer Social Network. The information about Missing
Links related to non-communicative developers can be extracted from precomputed
Organisational Silo Effect Community Smell, that can be passed to this Commu-
nity Smell identification function as a parameter or otherwise it will be computed
directly. This optimisation is possible due to the fact that, as explained in Section
4.1, Organisational Silo Effect is contained in Missing Links Community Smell. This
Community Smell operationalisation returns the list of edges that were classified as
Missing Links and not the number of them, therefore to obtain the measurement
of Missing Links Community Smell it is necessary to count the number of elements
returned by this identification process. The R implementation of this Community

Smell in Codeface4Smells is proposed in Algorithm 7.2.

Black-cloud Effect Community Smell measures the number of communica-
tion links that identify unique communication points toward other sub-communities,
therefore the identification of such Community Smell requires as input the commu-
nication Developer Social Network and the subdivision of its community members in
different sub-communities. It is important to notice that Black-cloud Effect is a tem-
poral related Community Smell, since it needs to consider historical information in
order to identify actual Black-cloud Effect occurrences. Within every range analysis
every sub-community of the communication DSN is considered once at the time and
the number of outgoing edges from every sub-community are counted. If the num-
ber of outgoing communication edges is exactly one, then a “potential” Black-cloud
Effect Community Smell is detected. This Community Smell identification func-
tion returns the list of communication edges classified as “potential” Black-cloud
Effect Community Smell and, in order to be classified as actual Black-cloud Effect
Community Smell within a range analysis, a “potential” Black-cloud Effect has to

be present in the list of “potential” Black-cloud Effect of the previously analysed

98

Tk W N —

N o

7.3. Operationalisation of Community Smells

Algorithm 7.2 Operationalisation of Missing Links identification pattern

community . smell . missing. links <— function (mail.graph, code.graph, precomputed.

silo=NA) {
missing <— list ()
for (vert in V(code.graph)$id) {
if (!(vert %in% V(mail.graph)8$id)) {
next () # the case of one dev not present in the mailing list is handled
later
}

for (coll in neighbors(code.graph, V(code.graph) [V(code.graph)$id = vert])$id

if (coll > vert) {
next () # avoid to check twice a graph due to its undirected nature

}
if (!(coll %in% V(mail.graph)$id)) {
next () # the case of one dev not present in the mailing list is handled
later
}

if a missing communication link is found, it is saved
if (!(coll %in% neighbors(mail.graph, V(mail.graph) [V(mail.graph)$id = vert

1)8id)) {
missing [[length (missing) + 1]] <— c(vert, coll)
}
}
}
if no precoumputed organisational silo, we are done
if (length(precomputed.silo) =— 0){
return (missing)
}

If organisational silo is mot pre—computed, calculate it
if (is.na(precomputed.silo)){
precomputed. silo <— community.smell.organisational.silo (mail.graph, code.graph

)

Add the missing links due to developers absence in the mailing lists
for (edge in precomputed.silo) {
missing [[length (missing) + 1]] <— edge

return (missing)

99

O © 00U WN

7. Operationalising our Quality Framework: Codeface4Smells

Algorithm 7.3 Operationalisation of Black-cloud Effect identification pattern

community . smell. potential . black.cloud <— function (mail.graph, clusters) {
black.links <— list ()
memships <— membership(clusters)
For every sub—community check how many edges conmect it to another
sub—community. If there is just one extra—cluster edge, we have
a potential black cloud
for (clust in 1:length(clusters)) {
extra.clust.links <— list ()
for (vert in V(mail.graph)|[memships = clust|8$id) {
for (neigh in neighbors(mail.graph, V(mail.graph)[V(mail.graph)$id =— vert])
$id) {
if (memships[V(mail.graph)[V(mail.graph)$id = neigh]] != clust) {
extra.clust.links [[length(extra.clust.links) + 1]] <— c(vert, neigh)
}
}
if (length(extra.clust.links) = 1) {
Potential black cloud smell detected
black.links [[length(black.links) + 1]] <— extra.clust.links [[1]]
}
}
return(black.links)
}

range. Therefore, the measurement of Black-cloud Effect Community Smell is the
number of communication links resulting from the intersection of the list of “poten-
tial” Black-cloud Effect of the actual range in analysis with the list of “potential”
Black-cloud Effect of the previously analysed range, thus the Black-cloud Effect as-
sociated to the first analysed range will always be zero. The R implementation of
“potential” Black-cloud Effect Community Smell in Codeface4Smells is proposed in
Algorithm 7.3.

Prima-donnas Effect Community Smell measures the number of communica-
tion links that identify unique communication points toward other sub-communities
in a situation in which two analysed sub-communities can be considered collaborat-
ing within the software source code development, therefore the identification of such
Community Smell requires as input the collaboration and communication Developer
Social Networks, the subdivision of community members belonging to the commu-
nication DSN into different sub-communities and the threshold needed to consider
two distinct sub-communities as collaborating. The default value of the collaboration
threshold is setted to the 20% of total possible collaborations. As explained in Section
4.3, the identification process of communication links that are possibly involved in
a Prima-donnas Effect is the same as the “potential” Black-cloud Effect, thus in
order to enable a computational optimisation it is possible to specify a precomputed
list of “potential” Black-cloud Effect Community Smell, otherwise the related Com-
munity Smell identification function will be invoked. Every communication link
present in the “potential” Black-cloud Effect list is considered and the number of

collaborations between the two different sub-communities identified by a “potential”

100

7.4. Socio-technical Quality Framework implementation

Black-cloud Effect is computed. Then, the number of total possible collaborations
is computed multiplying the numbers of community members constituting the two
sub-communities and if the percentage of actual inter-collaborations, thus the result
of the number of collaborations between the two sub-communities over the total
number of possible collaborations, is greater than the given threshold then the two
sub-communities are considered collaborating within the software development ac-
tivity and a Prima-donnas Effect is effectively detected. Therefore, Prima-donnas
Effect identification function returns the list of communication links of the commu-
nication DSN that identify the occurrence of such Community Smell and in order
to obtain the related measurement it is necessary to count the number of elements
that constitute the returned list. The R implementation of this Community Smell
in Codeface4Smells is proposed in Algorithm 7.4.

Radio Silence Community Smell measures the number of unique knowledge
brokers toward different sub-communities, therefore the identification of such Com-
munity Smell requires as input the communication Developer Social Network and
the subdivision of its community members into different sub-communities. The iden-
tification process considers one by one every sub-community of the communication
Developer Social Network and considers every outgoing communication link toward
other sub-communities. If a sub-community is composed by only one community
member, he or she is considered a unique boundary spanner without further com-
putations, otherwise the analysis continues considering two sub-communities at the
time and, if one sub-community communicates with the other one through only one
community member, him or her is identified as a knowledge broker and a Radio Si-
lence Community Smell is detected. Therefore, Radio Silence identification function
returns the list of unique knowledge brokers within the sub-communities belonging to
the communication Developer Social Network and in order to compute its associate
measurement it is necessary to count the number of elements that constitute the
returned list. The R implementation of this Community Smell in Codeface4Smells

is proposed in Algorithm 7.5.

7.4 Socio-technical Quality Framework implementation

This section explains how the 40 socio-technical quality factors that constitute
our Socio-technical Quality Framework proposed in Chapter 5 are implemented in
CodeFace4Smells. The complete set of socio-technical quality factors is summarised
in Table 5.1 and it is computed for every analysed range and obtained measurements
are summarised in a socio-technical analysis report generated at the end of the global
analysis performed by Codeface4Smells.

Community dimensions. Some community dimensions that consider the

number of developers and members who are involved within the software project

101

Tk W N —

[0l e

11
12
13
14
15

39

41
42
43
44
45
46
47

7. Operationalising our Quality Framework: Codeface4Smells

Algorithm 7.4 Operationalisation of Prima-donnas Effect identification pattern

community . smell . primadonnas <— function (mail.graph, clusters, code.graph,

}

collaboration=0.2, precomputed.black=NA) {
primadonnas <— list ()
memships <— membership(clusters)
comms <— communities(clusters)
For every potential black—cloud, check collaborations of involved sub—
communities ;
if it is greater than the threshold, we have two prima—donnas

if no potential black—cloud, we are done

if (length(precomputed.black) 0){
return (primadonnas)

}

if (is.na(precomputed.black)) {
If potential black—cloud is not pre—computed, calculate it
precomputed . black <— community.smell.potential.black.cloud (mail.graph,
clusters)

for (black.link in precomputed.black) {
sub.comm. connections <— 0
retrieve cluster identifier of the two sub—communities
id. clustl <— memships[V(mail.graph) [V(mail.graph)$id = black.link [1]]]
id. clust2 <— memships[V(mail.graph) [V(mail.graph)8id = black.link [2]]]
count inter—collaborations of the two sub—communities
for (dev.clustl in V(mail.graph)|[memships = id.clustl]8$id) {
if (!(dev.clustl %in% V(code.graph)$id)) {
next () # ignore devs present only in the communication graph

for (dev.clust2 in V(mail.graph)|[memships = id.clust2]8id) {
if (!(dev.clust2 %in% V(code.graph)8$id)) {
next () # ignore devs present only in the communication graph

if (dev.clustl %in% neighbors(mail.graph, V(mail.graph) [V(mail.graph)$id
=— dev.clust2])8id) {
sub.comm. connections <— sub.comm.connections + 1

}

If the fraction of present collaborations over the total possible
collaborations
(Number of devs of clustl * Number of devs of clust2) is greater than
the given threshold then we have two prima—donnas
tot.possible.collaborations <— length(comms[[id.clustl]]) * length(comms]|[id
.clust2]])
if ((sub.comm.connections / tot.possible.collaborations) > collaboration) {
prima—donnas effect detected
primadonnas [[length (primadonnas) + 1]] <— c(id.clustl, id.clust2)

}
}
}

return (primadonnas)

102

19
20

21
22
23
24
25

27
28
29
30
31
32

34
35
36
37
38

7.4. Socio-technical Quality Framework implementation

Algorithm 7.5 Operationalisation of Radio Silence identification pattern

community . smell.radio.silence <— function (mail.graph, clusters) {

}

brockers <— c()
memships <— membership(clusters)
consider every communication outside each cluster and if there is just one
communication edge from a sub—community toward another one, we have a
radio silence smell (unique boundary spanner)
for (clust in 1l:length(clusters)) {
If a cluster has only one dev, he is an unique boundary spanner
if (length(V(mail.graph) [memships = clust]|$id) = 1) {
brockers [length(brockers) + 1] <— V(mail.graph) [memships = clust]8$id
next ()

extra.clust.links <— list ()
for (vert in V(mail.graph)[memships = clust][$id) {
for (neigh in neighbors(mail.graph, V(mail.graph) [V(mail.graph)$id = vert])
) 1
Note: neigh is the local graph vertex id, not the developer id
if (clust != memships|[neigh]) {
for each outgoing edge, save the cluster developer id and the
destination
sub—community id
extra.clust.links [[length(extra.clust.links) + 1]] <— c(vert, memships|
neighl)

}
}

for each outgoing edge, substitute destination wvertex with its community
if (length(extra.clust.links) > 0) {
change format to enable comparisons
extra.clust.links <— matrix(unlist (extra.clust.links), ncol=2, byrow=TRUE)
for (outClust in unique(extra.clust.links[, 2])) {
from.dev <— which(extra.clust.links[, 2] = outClust)
if (length(from.dev) =— 1) {
radio silence community smell detected
brockers [length(brockers) + 1] <— extra.clust.links [from.dev, 1]
}
}
}
}

return (unique(brockers))

103

7. Operationalising our Quality Framework: Codeface4Smells

are retrieved considering the number of nodes that constitute the global, commu-
nication and collaboration Developer Social Networks. The total number of people
involved in any possible and analysable way within the considered community in
a specific range (dev) is obtained counting the number of nodes that constitute
the Global DSN, while the number of members who are present in every aspect
of a FLOSS project development (ml.code.devs) is obtained counting the number
of nodes that constitute the intersection of the collaboration and communication
Developer Social Networks. Finally, the number of developers who contribute to a
project’s source code development but do not participate in the communication chan-
nel (code.only.devs) and the number of members who participate to every activi-
ties of a community with the exception of the development phase (ml.only.devs) are
retrieved respectively, subtracting the number of members present in every commu-
nity phase (ml.code.devs) to the number of nodes that constitute the collaboration
DSN and subtracting the number of members present in every community phase
(ml.code.devs) to the number of nodes that constitute the communication DSN.
Therefore, given the measured dimensional characteristics of a FLOSS community,
it is possible to retrieve the dimensions of the communication or collaboration De-
veloper Social Networks summing two different available metrics (ml.code.devs and
ml.only.devs; ml.code.devs and code.only.devs); these aggregate dimensions were not
considered within this master thesis study because we considered previously listed
dimensions in their disaggregate and finer grain details level. Other insights that
could help a researcher to understand how a community is structured and subdi-
vided between communication and collaboration activities, can be the identification
of how community members are spread into previously classified participation ty-
pologies. In order to capture such community’s characteristics, it is calculated the
percentage of people involved in code source development who communicate on the
project’s mailing list (perc.ml.code.devs), people present in the mailing list but
that do not commit code contributions (perc.ml.only.devs) and developers that
contribute to the community only by committing contributions to a project’s source

code (perc.code.only.devs).

Sponsored developers. The list of developers whom are supposed to be spon-
sored by commercial companies or whom can be considered self-sponsored developers
with respect to the project in analysis, is retrieved applying an approach proposed
by Riehle et al. [8], that considers information related to every commit pushed into
a project’s source code within the range in analysis. A developer is associated with
a sponsored status if at least the 95% of his or her commits are executed in working
time, from 9am to 5pm (local time) and from Mondays to Fridays. In their research
Riehle et al. tried different threshold combinations in order to model different
working habits present world-wide and concluded that the considered definition of

working time provided an accurate approximation of the concept on a global work-

104

7.4. Socio-technical Quality Framework implementation

ing scale. The computed list of sponsored developers is used to compute the total
number of sponsored developers within the window of analysis (sponsored.devs)
and its related ratio with respect to the total number of developers whom contribute

to a project’s source code (ratio.sponsored.devs).

Core community members. The identification of core community members of
the global, communication and collaboration Developer Social Networks is founded
on a methodological approach proposed in 2016 by Joblin et al. [60]. Such iden-
tification methodology considers the degree centrality measure of every developer
since, in their research, it was demonstrated that core developers exhibit a higher
global centrality in the developer network and that they are likely to coordinate with
other core developers, while peripheral developers are likely to coordinate with core
developers. The method proposed by Joblin et al. uses social network analysis
methodologies and it was proven to provide a better reflection of developer percep-
tion rather than count-based approaches (e.g. commit count, LOC count and mail
count) [60]. Codeface was already able to classify as core or peripheral a developer
belonging to the collaboration Developer Social Network, but this functionality was
applied only within the collaboration analysis to developers whom contributed to a
project’s source code and it supported only directed graphs. Since the methodologies
we proposed are based on undirected graph topologies, the preexistent solution to
identify core and peripheral community members involved in a project was extended
to support undirected graphs and the ability to apply such classification functionality
to communication, collaboration and global Developer Social Networks. Once that
core community members of the collaboration, communication and global Developer
Social Networks are identified, it is possible to count the number of core members
present in a community for each typology of analysed network (core.global.devs,
mail.global.devs, core.code.devs). Since the list of developers sponsored by com-
mercial companies or self-employed is retrieved from the collaboration DSN, it is
possible to compute the number of sponsored developers whom are classified as core
developers within the collaboration DSN (sponsored.core.devs), intersecting the
two relative information and computing its related ratio (ratio.sponsored.core)
with respect to the total number of core developers present in the collaboration
Developer Social Network. A deeper understanding of how core members behave
within different community activities can be achieved counting how many commu-
nity members are characterised by core status both in the collaboration and in the
communication Developer Social Networks (ml.code.core.devs), how many core
members of the communication DSN are not core developers in the collaboration
DSN (mail.only.core.devs) and how many core developers of the collaboration
DSN are not core members in the communication DSN (core.only.core.devs).
These three dimensional metrics related to core members distributions within con-

sidered Developer Social Networks are then used to compute the related ratio with

105

7. Operationalising our Quality Framework: Codeface4Smells

respect to the total number of unique core members presents in the communication
and in the collaboration Developer Social Networks and in the two different gener-
ated Developer Social Networks alone (ratio.ml.code.core, ratio.mail.only.core,
ratio.core.only.core).

Truck number. The truck number represents the ratio of people that an
activity can lose without entering into a stagnation phase. It does not exist a
formal definition to calculate truck number (truck factor) [57] but within a FLOSS
development community we can define as vital members associated with a core status
with respect to each generated network typology. The number of core members
present in the communication, collaboration and global developer Developer Social
Networks previously obtained are then used to calculate the truck number relative
to each network typology (mail.truck, code.truck and global.truck), using the

following formula:

#peripheral members __ (#members — #core members)
#members - #members

Truck number =

Turnover. Different typologies of turnover are calculated using the number of
community members of the current and of the previously analysed ranges. Therefore,
the turnover of the first range of an analysis will always be zero. The following

formula is applied to compute turnover:

NEEDLY
BY + NEEY)/2 * 100%

Turnover = NE
Where:

e NELDY is the number of members who left the project in the analysed range.
It is obtained counting the number of members resulting from the intersection
of members of previously analysed range and members of the actual range in

analysis;

e NEBY is the total number of members who constituted the community in the

previously considered range;

e NEFEY is the total number of members who constitute the actual range in

analysis.

Turnover metrics are characterised by a temporal nature because in order to be com-
puted they need to have access to historical development analysis information. The

following typologies of turnover are calculated using previously explained formula:
1. turnover of global members (global.turnover);

2. turnover of collaboration members (code.turnover);

106

7.4. Socio-technical Quality Framework implementation

3. turnover of global core members (core.global.turnover);
4. turnover of communication core members (core.mail.turnover);

5. turnover of collaboration core members (core.code.turnover).

Temporal and geographic dispersion. The temporal and geographic dispersion
of a software project is calculated as the number of different and unique time-zones
involved in every source code contribution to the source code within the range in
analysis (num.tz). Codeface’s collaboration analysis populates a database table
with all retrievable details of commits and their relative author, hour, date and time-
zone. CodefacedSmells comes with a functionality capable to query such database
table in order to retrieve all the commits information related to the range in analysis,
extract their associated time-zones and return the number of unique different time-
zones that were involved within the project development in the considered range.
Socio-technical congruence. Socio-technical congruence (st.congruence)
is measured as the number of development collaborations that do have a commu-
nication counterpart over the total number of collaboration links present in the
collaboration Developer Social Network. Development collaborations that do have
a communication counterpart are identified analysing one by one the collaboration
links that connect different developers present in the collaboration Developer So-
cial Network and check within the communication Developer Social Network if such
developers are present and connected through a communication link. Therefore,
socio-technical congruence can be computed using Missing Links Community Smell

metric as follows:

F#collaborations — #missingLinks

Socio-technical congruence = Fcollaborations

Communicability. Each collaboration between two developers (A and B) in the
software development network is considered as a possible source of architectural and
design decision, therefore a developer is considered aware of a decision if he or she is
strongly connected to at least one of the two developers whom generated the decision.
In-communicability is related to every collaboration within the collaboration DSN

and it is based on Tamburri et al’s formulation [DEBT-2]:

MAI = DEM — DAM

__ #collaborators of the two developers
DEM = #developers

DAM = #collaborators of the two developers whom communicate with them
- Fdevelopers

Therefore, global in-communicability can be defined as the mean MAI over the

entire collaboration network. Communicability is a global indicator which consists

107

7. Operationalising our Quality Framework: Codeface4Smells

in the mean of all local communicability measures, calculated for every collaboration
between two developers within the collaboration Developer Social Network in the
range in analysis. Communicability was preferred to in-communicability in order
to simplify measurement comprehension, because in-communicability tend to be

characterised by measurements that tend to zero. Communicability is computed as:

Communicability = 1 — incommunicability = 1 — %Z MAI

Social Network Analysis metrics. We used some Social Network Analysis

methodologies available in R language to calculate the following factors:

« centrality of the global Developer Social Network computed considering close-

ness (closeness.centr), betweenness (betweenness.centr) and degree (degree.centr);
o density of the global Developer Social Network (density);

o modularity of the global Developer Social Network (global.mod), commu-
nication Developer Social Network (mail.mod) and collaboration Developer

Social Network (code.mod).

Smelly developers and smelly quitters. Two socio-technical quality metrics
related to the outcome of Community Smells identification analysis, specifically
computed using the list of unique community members involved within at least one
Community Smell, are the ratio of smelly developers and the ratio of smelly quitters.
The ratio of smelly developers (ratio.smelly.devs) is the ratio of community mem-
bers who are involved in at least one Community Smell with respect to the total
number of unique members who constitute the global Developer Social Network.
The ratio of smelly quitters (ratio.smelly.quitters) represents the ratio of devel-
opers who were involved in at least one Community Smell in the previously analysed
range that left the software development community within the range in analysis.
The ratio of smelly quitters is characterised by a temporal characteristic because
in order to be computed it needs to have access to historical development analysis
information, therefore a list of every community member and of smelly developers

of the previously analysed range is kept and passed to the next range analysis.

108

Chapter 8

Evaluation

This chapter presents the evaluation of obtained results inherent to the presence,
identification and characteristics of Social Debt and Community Smells within Open

Source Software development communities, achieved through the discussed work.

Considering Pearson and Spearman correlation analysis results of the entire set
of 60 analysed projects, it was possible to empirically identify quality factors that
can be considered correlated to the occurrence of Community Smells. Within our
analysis we considered a correlation as relevant if and only if its associated p-value
was less than 0.05 and we imposed a minimum threshold of 20% to the number
of relevant correlations found within all the projects or within the different dimen-
sional categories, in order to determine which quality factors had to be considered

associated to a variation of Community Smells.

We evaluated the results of Codeface4Smells analysis of all the 60 considered
projects and empirically identified relevant correlations between some specific quality
factors and the occurrence of Community Smells. Section 8.1 presents the evaluation
related to the existence, occurrence and characteristics of considered Community
Smells within Open Source Software projects. Moreover, we highlighted thresholds
of such quality factors correlated to the insurgence of Community Smells, in order
to provide precious hints to keep Community Smells under control. This evaluation
is presented in Section 8.2 and it addresses the first Research Question (RQ1), its
sub-questions and the second Research Question (RQ2). A further evaluation was
performed considering together the results related to developer perceptions, obtained
with the executed survey, and the results of the three reference projects obtained
executing Codeface4Smells analysis, in order to verify if particular perceptions of de-
velopers can be used as indicators of a higher or lower number of Community Smells.
This part of the evaluation process is presented in Section 8.3 and it addresses the
third Research Question (RQ3). Section 8.4 summarises the answers to the research
questions formulated in Chapter 3. Finally, Section 8.5 specifies potential threats

that could affect the validity of results, evaluations and conclusions of in this study.

109

8. Evaluation

8.1 Occurrences of Community Smells

Considering the number of analysed projects affected by all the typologies of
considered Community Smells, summarised in Table 8.1, it was possible to conclude
that Radio Silence Community Smell was implicit in every FLOSS development com-
munity and even Organisational Silo Effect and Missing Links Community Smells
can be considered omnipresent in Open Source projects, as they were detected in
the 98% of analysed projects. Black-cloud Effect Community Smell occurred only
in one out of two FLOSS projects and Prima-donnas Effect Community Smell was
the rarest form of Community Smell within FLOSS communities as it was detected

only in the 42% of analysed projects.

Dimensional category Organisational Silo Missing Links Radio Silence Black-cloud Prima-donnas
<50 19 19 20 8 3
50-150 20 20 20 11 8
>150 20 20 20 12 14
ALL 59 59 60 31 25

Table 8.1: Number of analysed projects with Community Smells

Even if it was not possible to empirically correlate additional occurrences of
Black-cloud Effect and Prima-donnas Effect Community Smells to the number of
trimestral community members, as demonstrated in Section 8.2 for the other three
typologies of Community Smells, it was possible to conclude that such Community

Smells are more frequent in high dimensional communities:

e Black-cloud Effect Community Smell was detected in the 40% of analysed
projects with less than 50 trimestral community members and in the 55-60%

of analysed projects with more than 50 trimestral community members.

e Prima-donnas Effect Community Smell was detected in the 15% of analysed
projects with less than 50 trimestral community members, in the 40% of anal-
ysed projects with more than 50 but less than 150 trimestral community mem-
bers and in the 70% of analysed projects with less than 150 trimestral commu-
nity members. Therefore, a project with more than 150 trimestral community
members had more than the 467% of chances of incurring into Prima-donnas
Effect Community Smell compared to a project with less than 50 trimestral

community members.

Except for the correlation between Missing Links and Organisation Silo Effect Com-
munity Smells, that was expected since one includes the definition of the other,
globally it was not found any correlation between different Community Smells. This
finding is very important as it highlights that Community Smells considered and
implemented in this master thesis are independent and analyse different aspects and

risks, within a software development community.

110

8.1. Occurrences of Community Smells

Metric Mean Min Max St.deviation
Organisational Silo 164.46 0 10224 916.55
Missing Links 190.59 0 10327 940.65
Radio Silence 31.38 0 309 41.23
Black-cloud 0.18 0 7 0.65
Prima-donnas 0.24 0 8 0.85

(a) Trimestral variability of Community Smells (with outliers)

Metric Mean Min Max St.deviation
Organisational Silo 13.65 0 91 19
Missing Links 25.62 0 151 36.17
Radio Silence 21.52 0 96 23.59
Black-cloud 0 0 0 0
Prima-donnas 0 0 0 0

(b) Trimestral variability of Community Smells (without outliers)

Table 8.2: Trimestral variability of Community Smells

A general overview of the occurrences of Community Smells within FLOSS de-
velopment communities, summarised by the results of analysed projects, can be
obtained consulting the Table 8.2a, that for each Community Smell presents its
mean, minimum, maximum and standard deviation trimestral values. Since the
standard deviation of almost all Community Smells was very relevant, it was nec-
essary to apply a data cleaning process capable of removing outliers, in order to
achieve a higher data quality and a more realistic overview of occurrences of Com-
munity Smells within FLOSS development communities. Moreover, the elimination
of outliers enabled a higher quality and more realistic prediction of growth trends
within scatter plots, as used in Section 8.2. The data cleaning process was based
on a R language standard function (boxplot.stats) that classifies as an outlier any
data point that is located outside 1.5 times the interquartile range above the upper
quartile and bellow the lower quartile. Table 8.2b represents retrieved information

about analysed Community Smells without considering results classified as outliers.

Considering the survey results highlighted in Chapter 6, the fact that Black-cloud
Effect and Prima-donnas Effect Community Smells were not correlated at global level
to any metric belonging to the proposed Socio-technical Quality Framework, the
fact that their trimestral average values were less then 1 considering every obtained
result and that data cleaning process removed every occurrence of both typologies
of Community Smells, it is possible to conclude that Black-cloud Effect and Prima-
donnas Effect Community Smells are not frequent nor particularly predominant in

Open Source Software development communities.

111

8. Evaluation

8.2 Quality factors correlated to Community Smells

This section addresses the first Research Question (RQ1), all its sub-questions
and the second Research Question (RQ2). In the following we highlight important
findings extracted from relevant correlations obtained considering all the 60 projects
together and subdividing them into equal groups of similar dimension. For some
findings it was possible to identify quality thresholds from scatter plots, built on top
of trimestral results of all analysed projects. Such scatter plots were generated by
eliminating outliers of occurrences of Community Smells, as previously explained in
Section 8.1.

P-value = 1.121e-25 P-value = 2.8735e-79
150-

©

75-
2
w
S L100-
%) £
350’ -
c ()]
o £
= [)]
© o
@ S s0-
C J
S25
e .
) 1y 3

I
9%, ® .
0- lﬂlmiei- -
0 20 40 60 80 0 20 40 60
Sponsored developers Sponsored developers

Figure 8.1: Scatter plots of sponsored developers

Community Smells increase with number of developers sponsored by
commercial companies. We formulated the research sub-question RQ1a because
the literature suggested that a higher number of paid developers (sponsored by
commercial companies or self-employed) is correlated to a higher attractiveness and
health of an Open Source project [8]. therefore, it was expected that a higher
number of sponsored developers was associated to a lower number of Community
Smells. Our results denied completely such hypothesis and, moreover, proved that a
higher number of sponsored developers was actually associated to an increase of the
number of occurrences of Organisational Silo Effect and Missing Links Community
Smells in the 25% of analysed projects. Therefore, research sub-question RQ1la was
negatively answered and its anti-thesis was proven to be valid. Considering the scatter
plots represented in Figure 8.1 and their linear regressions, it was possible to identify
the quality threshold of 10 trimestral sponsored developers. Over this threshold the
amount of detected Community Smells were over the average values. Moreover,

the role of sponsored developers in the generation of additional Community Smells

112

8.2. Quality factors correlated to Community Smells

assumed different importance with respect to the dimension of software projects:

e In projects with less than 50 trimestral community members, socio-technical
quality factors related to the identification of sponsored developers were not

correlated at all to the generation of additional Community Smells;

e In projects with more than 50 but less than 150 trimestral community mem-
bers, the number of occurrences of Organisational Silo Effect and Missing
Links Community Smells was not only positively correlated to the number of
sponsored developers of a community, but even to the number of sponsored
developers who were associated to the role of core developer. Furthermore, a
higher ratio of sponsored core developers was associated to an increase of the
number of occurrences of Organisational Silo Effect; this finding highlighted
that in software communities with 50-150 trimestral members, core sponsored
developers tend to isolate themselves and not participate in a project’s com-

munication channel.

Community Smells are not influenced by temporal and geographic disper-
sion. We formulated the research sub-question RQ1b because the literature sug-
gested that temporal and geographic dispersion can generate socio-technical issues
within a software development community or to its product outcome [21]. Therefore,
it was expected that the number of time-zones involved in a software development
community, used as an indicator of geographic and temporal dispersion, was pos-
itively correlated to an increment of detected Community Smells. This expected
correlation was detected only in the 5% of analysed projects and thus research sub-
question RQ1b was negatively answered. A possible explanation to this finding is
that, nowadays, distributed development is the standard for software development
environments and it implies only delays in communication activities between devel-
opers. Moreover, FLOSS is founded on the concept of Global Software Development
and so there might exist implicit coordination or development mechanisms capable of
avoiding the raise of additional Community Smells due to temporal and geographic
dispersion.

The higher the socio-technical congruence, the lower the number of
Community Smells. We formulated the research sub-question RQ1c because
Cataldo et al. [5] stated that a higher socio-technical congruence was correlated to
a higher software development performance and thus, considering the concept of
socio-technical congruence as an indicator of the accordance between a organisa-
tional structure and its technical requirements, it was reasonable to suppose that
a higher level of socio-technical congruence was associated to a lower number of
occurrences of Community Smells within a software development community. Our
results verified this hypothesis since in the 50% of analysed projects, an increment of

socio-technical congruence was correlated to a decrease of the number of occurrences

113

8. Evaluation

P-value = 6.3409e-25 P-value = 1.8104e-17

: 150- =
— ! \ s.
®75 :
£ e 1
Lu -~
o £100- ;
[} : £)
650’ — -
c . (@)] L4
o £
— . (/)] -
©)
@ S 50- .
[J
525
=
(@]

R
0- 8 Bty T e
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Socio-technical congruence Socio—-technical congruence

Figure 8.2: Scatter plots of socio-technical congruence

of Organisational Silo Effect and Missing Links Community Smells. Therefore, re-
search sub-question RQ1c was positively answered. Considering the scatter plots
represented in Figure 8.2 and their linear regressions, it was possible to identify
the quality threshold of 0.5 for socio-technical congruence. Over this threshold the
amount of detected Community Smells were over the average values.

The higher the communicability, the lower the number of Community
Smells. We formulated the research sub-question RQ1d because the very same
conjecture was formulated within a research related to Social Debt in software ar-
chitectures [7]. Our results demonstrated that in the 62% of analysed projects an
increase of communicability was associated to a decrease of the number of occur-
rences of Organisational Silo Effect Community Smell and in the 70% of analysed
projects it was associated to a decrease of the number of occurrences of Missing
Links Community Smell. Therefore, research sub-question RQ1d was positively an-
swered. Even if it was empirically demonstrated that communicability influences
the presence of Community Smells, it was not possible to unequivocally identify a
quality threshold.

A high community modularity of communication DSN yields a lower
number of Community Smells. We formulated the research sub-question RQ1e
because the literature suggested that a higher modularity, within developer net-
works, implies higher interdependency of sub-communities and thus it was possible
to suppose that modularity was associated to a higher value of socio-technical con-
gruence and, consequently, to a lower number of occurrences of Community Smells.
This hypothesis was verified as in the 40% of analysed projects an increase of commu-
nication DSN’s modularity was correlated to a decrease of the number of occurrences

of Radio Silence Community Smell. This finding can be explained by the fact that

114

8.2. Quality factors correlated to Community Smells

a higher modularity corresponds to a lower coordination need and, thus, the role
of unique knowledge and information broker tends to lose its importance. There-
fore, research sub-question RQ1e was positively answered. Even if it was empirically
demonstrated that modularity in the communication DSN influences the presence of

Community Smells, it was not possible to unequivocally identify a quality threshold.

The higher the turnover of core developers, the lower the number of
Community Smells. We formulated the research sub-question RQ1f because
Cataldo et al. [15] empirically demonstrated that if a software development base
is stable, then the socio-technical congruence of an organization will increase over
time and thus, considering research sub-question RQlc, it was reasonable to suppose
that a lower turnover was associated to a lower number of occurrences of Commu-
nity Smells within a software development community. Our results revealed that a
higher turnover of core developers belonging to the collaboration DSN was correlated
to a decrease of the number of occurrences of Missing Links Community Smell. In
projects with less then 50 trimestral community members this correlation was not
considered as relevant and more precisely none of the turnover metrics were found
to have a relevant correlation with any of Community Smell. While, within projects
with more than 150 trimestral community members the turnover of core develop-
ers was also negatively correlated to the insurgence of additional Organisational
Silo Effect Community Smell and the turnover of global core community members
were found to be negatively correlated with the additional insurgence of both Or-
ganisational Silo Effect and Missing Links Community Smells. Therefore, research
sub-question RQ1f was negatively answered. Even if it was empirically demonstrated
that turnover of core developers influences the presence of Community Smells, it was

not possible to unequivocally identify a quality threshold.

While answering the first Research Question, it was possible to identify further
quality factors, not considered by any research sub-questions, that can influence
the number of Community Smells within a FLOSS development community. Such

findings are reported in the following part of this section.

100-
150-

N
o

75-

o
S

o
=}

» 50

anisational Silo Effect

N
o

Missing Links
3
3
Radio Silence

25-

Org

PR o

50 100 150 200 0 50 100 150 200 0 50 100 . 150 200
Global DSN community members Global DSN community members Global DSN community members

Figure 8.3: Scatter plots of global DSN community members

115

8. Evaluation

Community Smells increase with number of community members. An
increment of the number of community members participating to a project’s activ-
ities was associated to additional occurrences of Organisational Silo Effect (25% of
analysed projects), Missing Link (28% of analysed projects) and Radio Silence (45%
of analysed projects) Community Smells. Considering the scatter plots represented
in Figure 8.3 and their local regressions (loess), it is possible to understand that
Community Smells increase quadratically with the linear growth of the number of
community members until the threshold of 150 community members, after which it
tends to stabilise itself in the cases of Organisational Silo Effect and Missing Links
Community Smell. Moreover, we discovered that in the 32% of analysed projects the
number of occurrences of Radio Silence Community Smell was positively correlated
to the number of community members who were present both in the communica-
tion and in the collaboration Developer Social Networks. This finding allows us to
suppose that, within FLOSS environments, developers who are present in the com-
munication channel of a project tend to assume the privileged role of knowledge and

information broker within the communication channel of a development community.

Community Smells increase with number of Core community mem-
bers. An increment of the number of core community members of the global DSN
was correlated to additional occurrences of Organisational Silo Effect (27% of anal-
ysed projects), Missing Link (28% of analysed projects) and Radio Silence (30% of
analysed projects) Community Smells. More specifically, obtained results demon-
strated that an increment of the number of core developers belonging to the col-
laboration DSN was associated to a higher number of occurrences of Organisational
Silo Effect Community Smell in the 80% of analysed projects and of Missing Links
Community Smell in the 93% of analysed projects. It is important to highlight that
such positive correlation was found both with respect to the number of developers
who were considered core members only in collaboration DSN, that with respect
to the number of developers who were considered at the same time core members
within the collaboration and the communication DSNs. Therefore, an increment
of the number of every typology of core developer within the collaboration DSN
was correlated to an increment of the number of occurrences of Organisational Silo
Effect and Missing Links Community Smells. The incidence of core developers in
the generation of additional Community Smells was remarked even by the finding
that a higher truck number related to the collaboration DSN, thus a higher ratio of
peripheral developers, was correlated to a decrease of the number of occurrences of
Organisation Silo Effect and Missing Links Community Smells, respectively in the
42% and in the 52% of analysed projects. Additionally, obtained results highlighted
that, in the 27% of analysed projects, an increment of the number of core community
members belonging to the communication DSN was correlated to a higher number

of occurrences of Radio Silence Community Smell. In projects with more than 150

116

8.2. Quality factors correlated to Community Smells

P-value = 2.7101e-21 P-value = 3.0998e-57 100 P-value = 8.922e-42

5 0
75- 5
2 o 75-
w -
o £10o - 8
Zso : - 2
g =) » 50
o £)
= @ 5
© . 0 g
2 <. P l S s0- T
g5 v i 25
5 ae SR I D
o BT s 0. o
0 50 100 150 0 25 50 75 100 0 25 50 75 100
Global DSN core community members Global DSN core community members Global DSN core community members
P-value = 2.1533e-60 P-value = 3.4572e-172 P-value = 2.735e-64
100-
©
75
2 75/
u [0
2 2
. o
g » 50
k] o
= =}
s ©
2 T
®25 25
<
(]

0 . 20 40 0 10 20 30 40 o 50 75 100
Collaboration DSN core community members Collaboration DSN core community members ~ Communication DSN core community members

P-value = 9.8732e-08 P-value = 9.8732¢-08 100 P-value = 9.5305e-79

©
75-

2 75

]

o 2100- §

o [

C—D5or = 2

[o » 50

S £ o

© 8 5

g = 50- o

S25 25

j<

o

0 0 0

04 06 038 1.0 0.4 06 038 1.0 04 0.6 0.8
Collaboration DSN truck number Collaboration DSN truck number Communication DSN truck number

Figure 8.4: Scatter plots related to core community members

trimestral community members, the correlation between the number core commu-
nity members belonging to the global or communication DSNs and the number of
occurrences of Radio Silence Community Smell was not found to be relevant. A
possible explanation can be that within big communities, the relevance of Commu-
nity Smells generated by core community members tends to decrease with respect to
the one generated by normal community members. Thus, core community members
tend to lose their role of unique knowledge and information broker in highly dimen-
sional development communities. This explanation is further motivated by retrieved
results which revealed that in the 43% of total analysed projects, a higher truck num-
ber related to the communication DSN, thus a higher ratio of peripheral community
members, was correlated to an increment of the number of occurrences of Radio

Silence Community Smell. Therefore, Radio Silence Community Smell is generated

117

8. Evaluation

by both core and peripheral community members belonging to the communication
DSN but additional occurrences of Radio Silence Community Smell generated by
core members tend to be irrelevant in big communities. Considering the scatter
plots represented in Figure 8.4 and their linear regressions, it was possible to iden-
tify the following quality thresholds, for which the amount of detected Community

Smells were over the average values:

o 25 trimestral core community members in the global DSN. The quality thresh-
old with respect to Missing Links and Radio Silence Community Smells was
a bit higher (30 in both cases), but since the threshold with respect to Or-
ganisational Silo Effect Community Smell was 25, it was selected as the global

threshold for the number of core community members within the global DSN;
e 9 trimestral core developers in the collaboration DSN;

e 30 trimestral core community members in the communication DSN;

0.8 for the truck number of the collaboration DSN;
e 0.55 for the truck number of the communication DSN.

Within small communities, the abandonment of members previously in-
volved in Community Smells generates additional Community Smells. In
projects constituted by less than 50 trimestral community members it was found a
relevant positive correlation between the ratio of smelly quitters, thus the ratio of
members who left the community and were implied in at least one Community Smell
in previously analysed range, and the number of occurrences of Organisational Silo
Effect and Missing Links Community Smells.

Even if the centrality of global Developer Social Network was not associated to
an increase or decrease of the number of occurrences of Community Smells at a
global lever, some relevant correlations were found considering different dimensional

categories of FLOSS development communities:

e in projects with less then 50 trimestral community members, the increase of
closeness centrality was associated to additional occurrences of Organisational

Silo Effect Community Smell;

e in projects with more than 150 trimestral community members, the increase of
betweenness centrality was associated to additional occurrences of Black-cloud

Effect Community Smell.

All the relevant correlations found between quality factors and Community Smells,
that allowed us to respond to the first Research Question, are summarised in Table
8.3, where positive correlations are identified by the plus sign while the negative

ones with a minus sign.

118

8.3. Qualitative indicators of Community Smells

Quality factor (ID) | Organisational Silo Effect | Radio Silence | Missing Links
devs + + +
ml.only.devs +
code.only.devs + +
ml.code.devs +
perc.ml.only.devs - -
perc.code.only.devs
sponsored.devs
st.congruence - -
communicability - -
ratio.smelly.devs
core.global.devs
core.mail.devs
core.code.devs + +
mail.truck +
code.truck - -

+|+
+|+

++
+|+

|+

mail.only.core.devs +
code.only.core.devs + +
ml.code.core.devs + +
ratio.mail.only.core - -
ratio.code.only.core + +
core.code.turnover -
mail.mod -

Table 8.3: Summary of quality factors correlated to Community Smells

8.3 Qualitative indicators of Community Smells

This section addresses the third Research Question (RQ3). We wanted to verify
if developer perceptions about specific characteristics of their project could act as
good indicators of the presence of Community Smells within FLOSS development
communities. Fundamental prerequisites to the execution of this analysis were the
results obtained from the proposed survey and the results obtained performing Code-
facedSmells analysis of the development communities of the three reference projects
(i.e., Firefox, LibreOffice and FFmpeg).

Results related to the number of occurrences of Community Smells of every refer-
ence project were normalized: for each range of analysis it was computed the number
of occurrences of every typology of Community Smells per community member, thus
dividing the total number of occurrences of each Community Smell typology for the
total number of members constituting the community, and then it was calculated the
average number of such metric, considering all the analysed ranges of the reference
project.

In order to empirically verify if developer perceptions were actually associated
to a lower or higher number of Community Smells, estimated considering the mean
number of trimestral occurrences of Community Smells per community member, the

following list of steps was executed for every factor considered by every question of

119

8. Evaluation

the executed survey:

1. If the aspect in analysis was addressed within the third part of the question-

naire, decide if it is preferred to consider agreement or disagreement results;

2. Define if, for the analysed aspect, it is expected a growth or reduction trend of
the mean number of occurrences of Community Smells per community mem-

ber;

3. Arrange reference projects in ascendant order with respect to their results

related to the analysed aspect, considering the decision taken in Step 1;

4. If the trend speculated in Step 2 is verified in the order of the three reference
projects identified in Step 3, then developer perceptions is empirically proven
to be a significant indicator of the presence of additional Community Smells

within a FLOSS development community, with respect to the analysed aspect.

Table 8.4 represents the summary of the mean number of trimestral occurrences of
Community Smells per community member with respect to every reference project.
Detailed reports of the three reference projects, related to Codeface4Smells analysis

results and responses of the survey, can be found respectively in Appendix C and

Appendix A.
Project Organisational Silo Missing Links Radio Silence Black-cloud Prima-donnas
Firefox 10.44444 10.60712 0.02469979 0 0.000527224
FFmpeg 0.3967442 0.5849786 0.3842722 0.004148463 0.001766914
LibreOffice 2.261178 3.265845 0.2768581 0.001033613 0.006896172

Table 8.4: Average number of Community Smells per community member

By performing the previously defined list of steps, it was possible to empirically
verify the validity of the following developer perceptions as significant indicators of

the presence of Community Smells :

1. Better consideration of developers sponsored by commercial com-
panies is correlated to a lower number of Community Smells. A
higher agreement with the statement that asserted that sponsored developers
increased the health of the project, was correlated to a lower mean number
of trimestral occurrences of Radio Silence and Black-cloud Effect Community
Smells per community member. The same result was obtained considering the

disagreement levels and correlating them to an increase of Community Smells.

2. Higher perceived decision importance inequality is correlated to a
higher number of Community Smells. A higher disagreement with the
statement that asserted that every opinion was equal in project’s important

decisions, was correlated to a higher mean number of trimestral occurrences

120

8.3. Qualitative indicators of Community Smells

of Radio Silence and Black-cloud Effect Community Smells per community

member.

. Higher perceived importance of communications is partially corre-
lated to a lower number of Community Smells. A higher agreement
with the statement that asserted that frequent communication before and af-
ter commit activities was essential for the project, was correlated to a lower
mean number of trimestral occurrences of Radio Silence and Black-cloud Ef-
fect Community Smells per community member. It is interesting to highlight
that the perceived importance of communications within the reference projects
was directly proportional to the mean number of trimestral occurrences of Or-
ganisational Silo Effect and Missing Links Community Smells per community
member. Therefore, communities with well developed communication culture

are intended to generate less Community Smells.

. Higher perceived quality of documentation is correlated to a lower
number of Community Smells. A higher agreement with the statement
that asserted that project’s software architecture was well documented, easily
accessible and understandable and with the one that asserted that project’s
documentation was understandable and helpful, were correlated to a lower
mean number of trimestral occurrences of Radio Silence and Black-cloud Ef-
fect Community Smells per community member. This finding highlights the
important role of documentation within a development community in order to
perform informed decisions, understand architectural decisions and achieve a
shared and coherent project knowledge, because Black-cloud Effect and Radio
Silence Community Smells are characterised by low mutual awareness, lack
of knowledge exchanges, hidden information and tunnel vision associated to

autonomous architecture decision making activities.

. More personal assumptions are correlated to a higher number of
Community Smells. A higher disagreement with the statement that as-
serted that the respondent did assumptions during development due to un-
clear requirements or documentation, was correlated to a lower mean number
of trimestral occurrences of Prima-donnas Community Smell per community
member. It was necessary to consider the disagreement and the decreasing
trend of occurrences of Community Smells because Firefox and FFmpeg com-
munities achieved the same exact agreement level. This result further verifies

the consideration of previous finding.

. Higher perceived antagonism between sub-communities is correlated
to a higher number of Community Smells. A higher agreement with the

statement that asserted that sometimes different subgroups were antagonists,

121

8. Evaluation

was correlated to a higher mean number of trimestral occurrences of Organisa-
tional Silo Effect and Missing Links Community Smells per community mem-
ber.

7. Higher perceived communication delays are correlated to a higher
number of Community Smells. A higher number of responses indicating
communication delays as the main reason of time waste within any phase of the
project’s development, was correlated to a higher mean number of trimestral
occurrences of Organisational Silo Effect and Missing Links Community Smells

per community member.

Moreover, it was possible to empirically demonstrate the importance of the analysed
communication channel to be able to achieve a complete and consistent overview of
occurrences of Community Smells within a software development community. A
higher number of responses indicating the project’s mailing list as the communica-
tion channel through which important project’s decisions were made, was correlated
to a higher mean number of trimestral occurrences of Radio Silence and Black-
cloud Effect Community Smells per community member. Therefore, it was proven
that considering the most used and information-rich communication channel within
Community Smells analysis, is fundamental in order to capture more occurrences of

Community Smells.

8.4 Summary of Research Questions

It was possible to positively answer to the first and second Research Questions,
since it was possible to empirically identify quality factors that were correlated to
Community Smells present within software development communities and, for same
of them, it was possible to elicit quality thresholds that can be used by maintainers
to improve the health of communities. Considering the second Research Question,
Table 8.5 summarises all the identified quality thresholds that can be used to keep

Community Smells under control.

It was possible to positively answer to the third Research Question, since it
was possible to identify specific developer perceptions that were actually correlated
to the amount of Community Smells present in the reference projects and thus,
such identified developer perceptions, can be used to obtain qualitative indications
about the presence of Community Smells and achieve a deeper understanding of
Community Smells within FLOSS environments.

In conclusion, Table 8.6 briefly summarises the answers to the research questions

formulated in Chapter 3.

122

8.5. Threats to validity

Quality factor Healthy value

trimestral sponsored developers <10
Socio-technical congruence > 0.5

trimestral core members in global DSN <25

trimestral core members in collaboration DSN <9
trimestral core members in communication DSN < 30
Truck number of collaboration DSN > 0.8
Truck number of communication DSN < 0.55

Table 8.5: Summary of socio-technical quality thresholds

ID Research Question Answer
RQ1 Are there quality factors that can influence the emergence of Community Smells? YES
RQla Do sponsored developers decrease Community Smells? NO
RQ1b Do temporal and geographic dispersion increase Community Smells? NO
RQ1c Do high socio-technical congruence decrease Community Smells? YES
RQ1d Do high communicability decrease Community Smells? YES
RQ1le Do high modularity decrease Community Smells? YES
RQ1f Do low turnover decrease Community Smells? NO
RQ2 If such quality factors exist, is it possible to identify quality thresholds? YES
RQ3 Do developer perceptions indicate the presence of Community Smells? YES

Table 8.6: Summary of Research Questions

8.5 Threats to validity

This section highlights potential threats that could affect the validity of the
results, evaluations and conclusions proposed in this master thesis.

Construct Validity. Threats to construct validity are related to the rela-
tionships between theory and observations and, generally, this typology of threat
is mainly constituted by imprecisions in performed measurements. In the part of
the study related to the identification and quantification of Community Smells and
quality factors, this typology of threat to validity is mainly concerned to how qual-
ity factors and identification patterns of Community Smells, were implemented in
CodefacedSmells. Also, part of this research is based on results obtained using a
survey, thus construct validity may be compromised by biased developer perceptions
and because it was used a questionnaires as a measure of comprehension. Therefore
the study can be affected by construct validity.

Internal Validity. Threats to internal validity are related to factors that could
have influenced our results. In the part of the study related to the identification
an quantification of Community Smells, a factor that can potentially impact on our
ability to correctly detect Community Smells is that the considered development
mailing list is indeed the main communicational channel used by community mem-
bers. We were not able to check whether this was so in all the projects composing
our sample, however, confirmatory survey results strongly highlight that mailing

lists are indeed the key communication channel used within FLOSS development

123

8. Evaluation

communities. Concerning the survey, it was impossible for us to ensure that respon-
dents had a good knowledge of all analysed aspects of the software development
community through which they were contacted. Moreover, a factor that could have
influenced our results was the questionnaire response rate, that was quite low (1.14%
with respect to the three reference projects) with respect to expected return rates
of this typology of studies (20% - 11% [51,71]). One motivation that may partially
explain the low response rate is that we extracted information related to developers,
considering the entire life time of analysed projects, therefore considering even very
old information (more than 12 years old).

External Validity. Threats to external validity are related to the generalization
of obtained results. Codeface4Smells currently identifies and quantifies five different
Community Smells and considers them as indicators of potential risk related to
Social Debt existence, but there exist other Community Smells not operationalised
yet [6], that may act as significant indicators of the risk of Social Debt. Moreover,
we conducted our analysis on a total of 60 FLOSS development projects, ensuring
a high generalisation level of our findings, but these results might be influenced by

the temporal window that we selected for the analysis (i.e., 3 months).

124

Chapter 9

Conclusions and future work

The study presented in this master thesis demonstrated that Open Source Soft-
ware development communities are not immune to Community Smells, i.e., nasty
socio-technical and organisational circumstances that may lead to project delays or
the insurgence of Social Debt [6].

By conducting a survey, we confirmed that developers perceive the presence
of Social Debt and socio-technical issues within FLOSS development communities
and we empirically identified specific developer perceptions that can be used as

qualitative indicators of the presence of additional occurrences of Community Smells.

This master thesis elaborates, operationalises, validates and discusses a Socio-
technical Quality Framework for software development communities, constituted by
the measurement of socio-technical quality factors and by the identification and
quantification of Community Smells. During our empirical software engineering re-
search, it was possible to identify several quality factors correlated to the presence of
Community Smells within software development communities. Above all, our results
suggested that the role of core community member is fundamental in the genera-
tion of additional occurrences of Community Smells and, therefore, core community
members should make a greater effort to limit their anti-social and non-optimal be-
haviors in order to increase the chances of success of their development community.
Moreover, while evaluating of our Socio-technical Quality Framework it was possible
to unequivocally identify quality thresholds of some specific socio-technical quality
factors. Therefore, we concluded that our framework, operationalised in a tool called
Codeface4Smells, does in fact offer a lens to observe software development commu-
nities from a quality perspective and diagnose organisational issues in an automated
tool-supported fashion.

The evaluation of our work, presented in Chapter 8, and the results of the exe-
cuted survey, allowed us to conclude that Community Smells and Social Debt can
actually interfere with the well-being of software development communities. There-

fore, while executing project performance analysis, it is important to consider even

125

9. Conclusions and future work

the social and organisational aspects besides the technical ones, in order to lower
the barriers that can influence the success of the development community.

With the goal of further increasing the identification capabilities of quality fac-
tors capable of influencing the presence of Community Smells within a software
development community, a possible extension of this work can be the elimination
from our framework of quality factors that were not correlated to the insurgence
of Community Smells and the introduction of new quality factors. Furthermore, a
possible future enhancement can be the definition and operationalisation of iden-
tification patterns of additional Community Smells. Moreover, a possible evolu-
tion of this software engineering research consists in the evaluation of the proposed
Socio-technical Quality Framework from a technical perspective, with the purpose
of identifying correlations between Community Smells and Code Smells.

Finally, we plan to merge the developed tool-support in the main Codeface dis-
tribution, potentially transforming Codeface into a full-fledged continuous software

development community improvement platform.

126

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

6.1
6.2

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4

Al
A2
A3
A4

Work-flow of contributions L.

Example of software development community
Identification pattern of Organisational Silo Effect
Example of occurrences of Organisational Silo Effect
Identification pattern of Missing Links
Example of occurrences of Missing Links
Identification pattern of Black-cloud Effect
Example of occurrences of Black-cloud Effect
Identification pattern of Prima-donnas Effect
Example of occurrences of Prima-donnas Effect
Identification pattern of Radio Silence

Example of occurrences of Radio Silence

Survey results (part one)

Survey results (part two) Lo

Architecture of Codeface
Architecture of Codeface with Codeface4Smells extension
Architecture of Codeface4Smells
Example of range analysis report

General functioning of the identification of Community Smells

Scatter plots of sponsored developers
Scatter plots of socio-technical congruence
Scatter plots of global DSN community members

Scatter plots related to core community members

Survey results (part three) - All respondents

Survey results (part three) - Firefox

Survey results (part three

~~ ~ ~~
N D

Survey results (part three) - FFmpeg

127

List of Figures

128

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8
C.9

CodefacedSmells analysis report - Firefox 156
Pearson’s correlation analysis - Firefox 157
Spearman’s correlation analysis - Firefox 158
Codeface4Smells analysis report - LibreOffice 159
Pearson’s correlation analysis - LibreOffice 160
Spearman’s correlation analysis - LibreOffice 161
CodefacedSmells analysis report - FFmpeg 162
Pearson’s correlation analysis - FFmpeg 163
Spearman’s correlation analysis - FFmpeg 164

List of Tables

3.1
3.2

5.1

6.1
6.2
6.3

8.1
8.2
8.3
8.4
8.5
8.6

Al

List of analysed projects 40
Trimestral variability of analysed projects 41
Summary of the Socio-technical Quality Framework 58
Goals and motivations of the survey 71
Projects initially considered for the survey 74
Nationalities of survey respondents 77
Number of analysed projects with Community Smells. 110
Trimestral variability of Community Smells 111
Summary of quality factors correlated to Community Smells 119
Average number of Community Smells per community member . . . 120
Summary of socio-technical quality thresholds 123
Summary of Research Questions 123
Characteristics of projects initially considered for the survey 144

129

List of Tables

130

List of Algorithms

7.1
7.2
7.3
7.4
7.5

Operationalisation of Organisational Silo Effect identification pattern 97

Operationalisation of Missing Links identification pattern 99
Operationalisation of Black-cloud Effect identification pattern 100
Operationalisation of Prima-donnas Effect identification pattern . . 102
Operationalisation of Radio Silence identification pattern 103

131

List of Algorithms

132

Bibliography

Nachiappan Nagappan, Brendan Murphy, and Victor Basili. The influence
of organizational structure on software quality: an empirical case study. In
Proceedings of the 30th international conference on Software engineering, pages
521-530. ACM, 2008.

Damian A Tamburri, Patricia Lago, and Hans van Vliet. Organizational social
structures for software engineering. ACM Computing Surveys (CSUR), 46(1):3,
2013.

Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet.
What is social debt in software engineering? In Cooperative and Human Aspects
of Software Engineering (CHASE), 2013 6th International Workshop on, pages
93-96. IEEE, 2013.

Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical debt: From
metaphor to theory and practice. Ieee software, 29(6), 2012.

Marcelo Cataldo, James D Herbsleb, and Kathleen M Carley. Socio-technical
congruence: a framework for assessing the impact of technical and work de-
pendencies on software development productivity. In Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering and
measurement, pages 2—-11. ACM, 2008.

Damian Andrew Tamburri, Philippe Kruchten, Patricia Lago, and Hans van
Vliet. Social debt in software engineering: insights from industry. J. Internet
Services and Applications, 6(1):10:1-10:17, 2015.

Damian A Tamburri and Elisabetta Di Nitto. When software architecture leads
to social debt. In Software Architecture (WICSA), 2015 12th Working IEEE/I-
FIP Conference on, pages 61-64. IEEE, 2015.

Dirk Riehle, Philipp Riemer, Carsten Kolassa, and Michael Schmidt. Paid vs.
volunteer work in open source. In 2014 47th Hawaii International Conference
on System Sciences, pages 3286-3295. IEEE, 2014.

133

Bibliography

[9]

[10]

[11]

[12]

[14]

[16]

[17]

134

Melvin E Conway. How do committees invent. Datamation, 14(4):28-31, 1968.

James D Herbsleb and Rebecca E Grinter. Architectures, coordination, and
distance: Conway’s law and beyond. IEEE software, 16(5):63, 1999.

Frederick P Brooks Jr. The mythical man-month (anniversary ed.). 1995.

David Lorge Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053-1058, 1972.

Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case studies of
open source software development: Apache and mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(3):309-346, 2002.

Audris Mockus. Organizational volatility and its effects on software defects.
In Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering, pages 117-126. ACM, 2010.

Marcelo Cataldo, Patrick A Wagstrom, James D Herbsleb, and Kathleen M
Carley. Identification of coordination requirements: implications for the design
of collaboration and awareness tools. In Proceedings of the 2006 20th anniver-

sary conference on Computer supported cooperative work, pages 353-362. ACM,
2006.

Anita Sarma, Jim Herbsleb, and André Van Der Hoek. Challenges in measuring,
understanding, and achieving social-technical congruence. In Proceedings of
Socio-Technical Congruence Workshop, In Conjuction With the International

Conference on Software Engineering, 2008.

Lyra J Colfer and Carliss Y Baldwin. The mirroring hypothesis: Theory, evi-
dence and exceptions. Harvard Business School Finance Working Paper, (16-
124), 2016.

Seiji Sato, Hironori Washizaki, Yoshiaki Fukazawa, Sakae Inoue, Hiroyuki Ono,
Yoshiiku Hanai, and Mikihiko Yamamoto. Effects of organizational changes on
product metrics and defects. In 2018 20th Asia-Pacific Software Engineering
Conference (APSEC), volume 1, pages 132-139. IEEE, 2013.

https://en.wikipedia.org/wiki/Globalization.

Kenneth R Gray and Thomas L Friedman. The world is flat: A brief history of
the twenty-first century, 2005.

Juyun Cho. Globalization and global software development. Issues in informa-
tion systems, 8(2):287-290, 2007.

https://en.wikipedia.org/wiki/Globalization

Bibliography

[22]

[24]

[25]
[26]
[27]
[28]

[29]

[31]

[32]

Bogdan Vasilescu, Alexander Serebrenik, and Vladimir Filkov. A data set for
social diversity studies of github teams. In 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, pages 514-517. IEEE, 2015.

Eric Molleman and Jannes Slomp. The impact of team and work characteristics
on team functioning. Human Factors and Ergonomics in Manufacturing &
Service Industries, 16(1):1-15, 2006.

Christopher P Earley and Elaine Mosakowski. Creating hybrid team cultures:
An empirical test of transnational team functioning. Academy of Management
Journal, 43(1):26-49, 2000.

http://www.gnu.org/philosophy/free-sw.html.
https://opensource.org/osd.html.
http://www.gnu.org/philosophy/open-source-misses-the-point.html.
http://www.gnu.org/philosophy/floss-and-foss.html.

Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark GJ van den Brand,
Alexander Serebrenik, Premkumar Devanbu, and Vladimir Filkov. Gender and
tenure diversity in github teams. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, pages 3789-3798. ACM,
2015.

Christopher Vendome, Mario Linares-Vasquez, Gabriele Bavota, Massimiliano
Di Penta, Daniel M German, and Denys Poshyvanyk. When and why developers
adopt and change software licenses. In Software Maintenance and Fvolution
(ICSME), 2015 IEEE International Conference on, pages 31-40. IEEE, 2015.

Qiaona Hong, Sunghun Kim, Shing Chi Cheung, and Christian Bird. Under-
standing a developer social network and its evolution. In Software Maintenance
(ICSM), 2011 27th IEEE International Conference on, pages 323-332. IEEE,
2011.

Fu-ren Lin and Chun-hung Chen. Developing and evaluating the social network
analysis system for virtual teams in cyber communities. In System Sciences,
2004. Proceedings of the 37th Annual Hawaii International Conference on, pages
8—pp. IEEE, 2004.

James Howison, Keisuke Inoue, and Kevin Crowston. Social dynamics of free
and open source team communications. In IFIP International Conference on

Open Source Systems, pages 319-330. Springer, 2006.

135

http://www.gnu.org/philosophy/free-sw.html
https://opensource.org/osd.html
http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://www.gnu.org/philosophy/floss-and-foss.html

Bibliography

[34]

[35]

[37]

[40]

[41]

[42]

[43]

136

Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand
Swaminathan. Mining email social networks. In Proceedings of the 2006 in-

ternational workshop on Mining software repositories, pages 137-143. ACM,
2006.

Gregory Madey, Vincent Freeh, and Renee Tynan. The open source software
development phenomenon: An analysis based on social network theory. AMCIS
2002 Proceedings, page 247, 2002.

Luis Lopez-Fernandez, Gregorio Robles, Jesus M Gonzalez-Barahona, et al.
Applying social network analysis to the information in cvs repositories. In

International workshop on mining software repositories, pages 101-105, 2004.

Andrew Meneely and Laurie Williams. Socio-technical developer networks:
should we trust our measurements? In Proceedings of the 33rd International
Conference on Software Engineering, pages 281-290. ACM, 2011.

Roozbeh Nia, Christian Bird, Premkumar Devanbu, and Vladimir Filkov. Va-
lidity of network analyses in open source projects. In 2010 7th IEEE Work-
ing Conference on Mining Software Repositories (MSR 2010), pages 201-209.
IEEE, 2010.

Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig. How do
centralized and distributed version control systems impact software changes?
In Proceedings of the 36th International Conference on Software Engineering,
pages 322-333. ACM, 2014.

Andrejs Jermakovics, Alberto Sillitti, and Giancarlo Succi. Mining and visu-
alizing developer networks from version control systems. In Proceedings of the
4th International Workshop on Cooperative and Human Aspects of Software
Engineering, pages 24-31. ACM, 2011.

Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk
Riehle. From developer networks to verified communities: a fine-grained ap-
proach. In Proceedings of the 37th International Conference on Software
Engineering- Volume 1, pages 563-573. IEEE Press, 2015.

Christian Bird, Nachiappan Nagappan, Harald Gall, Brendan Murphy, and
Premkumar Devanbu. Putting it all together: Using socio-technical networks to
predict failures. In 2009 20th International Symposium on Software Reliability
Engineering, pages 109-119. IEEE, 2009.

Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne.

Evaluating complexity, code churn, and developer activity metrics as indica-

Bibliography

[44]

[46]

[49]

[52]

tors of software vulnerabilities. IEFE Transactions on Software Engineering,
37(6):772-787, 2011.

Ning Nan and Sanjeev Kumar. Joint effect of team structure and software
architecture in open source software development. IEFEE Transactions on En-
gineering Management, 60(3):592-603, 2013.

Giuseppe Valetto, Mary Helander, Kate Ehrlich, Sunita Chulani, Mark Weg-
man, and Clay Williams. Using software repositories to investigate socio-
technical congruence in development projects. In Proceedings of the Fourth
International Workshop on Mining Software Repositories, page 25. IEEE Com-
puter Society, 2007.

Jorge Colazo. Structural changes associated with the temporal dispersion of
teams: Evidence from open source software projects. In 2014 47th Hawaii
International Conference on System Sciences, pages 300-309. IEEE, 2014.

Ward Cunningham. The wycash portfolio management system. SIGPLAN
OOPS Mess., 4(2):29-30, December 1992.

Nicolli SR Alves, Leilane F Ribeiro, Vivyane Caires, Thiago S Mendes, and
Rodrigo O Spinola. Towards an ontology of terms on technical debt. In Manag-
ing Technical Debt (MTD), 2014 Sixth International Workshop on, pages 1-7.
IEEE, 2014.

William H Brown, Raphael C Malveau, Hays W McCormick, and Thomas J
Mowbray. AntiPatterns: refactoring software, architectures, and projects in
crisis. John Wiley & Sons, Inc., 1998.

Martin Fowler. Refactoring: Improving the design of existing code. In 11th

European Conference. Jyvdiskyld, Finland, 1997.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys
Poshyvanyk, and Andrea De Lucia. Mining version histories for detecting code
smells. IEEE Transactions on Software Engineering, 41(5):462-489, 2015.

Ivaldir H de Farias Junior, Ryan R de Azevedo, Hermano P de Moura, and
Dennis S Martins da Silva. Elicitation of communication inherent risks in dis-
tributed software development. In 2012 IEEE Seventh International Conference
on Global Software Engineering Workshops, pages 37-42. IEEE, 2012.

Neil A Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L Nord, and Ian Gorton.
Measure it? manage it? ignore it? software practitioners and technical debt.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 50-60. ACM, 2015.

137

Bibliography

[54]

[55]

[56]

[57]

[58]

[61]

[63]

138

Aniket Potdar and Emad Shihab. An exploratory study on self-admitted tech-
nical debt. In ICSME, pages 91-100, 2014.

Nianjun Zhou, Wesley M Gifford, Krishna Ratakonda, Gregory H Westerwick,
and Carl Engel. On the quantification of global team performance and prof-
itability. In Services Computing (SCC), 2014 IEEE International Conference
on, pages 378-385. IEEE, 2014.

Mathieu Lavallée and Pierre N Robillard. Why good developers write bad code:
An observational case study of the impacts of organizational factors on soft-

ware quality. In Proceedings of the 37th International Conference on Software
Engineering- Volume 1, pages 677—687. IEEE Press, 2015.

Valerio Cosentino, Javier Luis Canovas Izquierdo, and Jordi Cabot. Assessing
the bus factor of git repositories. In 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pages 499-503.
IEEE, 2015.

Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng. Decoupling
level: a new metric for architectural maintenance complexity. In Proceedings
of the 38th International Conference on Software Engineering, pages 499-510.
ACM, 2016.

Damian A Tamburri, Elisabetta Di Nitto, and Patricia Lago. “let me measure

my self!” said open-source. (unpublished).

Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. Classifying
developers into core and peripheral: An empirical study on count and network
metrics. arXiv preprint arXiv:1604.00830, 2016.

Kevin Crowston, Kangning Wei, Qing Li, and James Howison. Core and periph-
ery in free/libre and open source software team communications. In Proceed-
ings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS’06), volume 6, pages 118a—118a. IEEE, 2006.

Antonio Terceiro, Luiz Romario Rios, and Christina Chavez. An empirical
study on the structural complexity introduced by core and peripheral develop-
ers in free software projects. In Software Engineering (SBES), 2010 Brazilian
Symposium on, pages 21-29. IEEE, 2010.

Audris Mockus and David M Weiss. Predicting risk of software changes. Bell
Labs Technical Journal, 5(2):169-180, 2000.

Bibliography

[64]

[67]

[68]

[69]

[70]

[71]

[72]
[73]
[74]

[75]

Akinori Thara, Yasutaka Kamei, Masao Ohira, Ahmed E Hassan, Naoyasu
Ubayashi, and Ken-ichi Matsumoto. Early identification of future commit-
ters in open source software projects. In 2014 14th International Conference
on Quality Software, pages 47-56. IEEE, 2014.

Linton C Freeman. Centrality in social networks conceptual clarification. Social
networks, 1(3):215-239, 1978.

Mark EJ Newman and Michelle Girvan. Finding and evaluating community
structure in networks. Physical review E, 69(2):026113, 2004.

Stanley Wasserman and Katherine Faust. Social network analysis: Methods

and applications, volume 8. Cambridge university press, 1994.
http://siemens.github.io/codeface.

Fabiano Berardo de Sousa and Liang Zhao. Evaluating and comparing the
igraph community detection algorithms. In Intelligent Systems (BRACIS), 2014
Brazilian Conference on, pages 408-413. IEEE, 2014.

Jan Hauke and Tomasz Kossowski. Comparison of values of pearson’s and
spearman’s correlation coefficients on the same sets of data. Quaestiones geo-
graphicae, 30(2):87-93, 2011.

Yehuda Baruch. Response rate in academic studies-a comparative analysis.
Human relations, 52(4):421-438, 1999.

https://github.com/smnmgn/codeface.
https://www.vagrantup.com.
https://wuw.virtualbox.org.

https://github.com/smnmgn/master_thesis.

139

http://siemens.github.io/codeface
https://github.com/smnmgn/codeface
https://www.vagrantup.com
https://www.virtualbox.org
https://github.com/smnmgn/master_thesis

Bibliography

140

Appendix A

Survey

This Appendix lists the subset of questions of the survey that were considered in
this master thesis in order to retrieve information about Social Debt and Community
Smells, validate research assumptions and capture developer perceptions. Moreover,
it presents the characteristics of all initially considered projects and explains how
such characteristics were computed. Finally, this appendix provides a graphical

representation of results related to the third part of the questionnaire.

A.1 The questionnaire

This section contains the list of questions that composed the survey, which was

specifically designed to conduct our study.

Part one:
1. Country
2. Year of birth

3. Occupation

a) Student

(

(b) Part time employee
(
(d
(e) Retired

)
)
c¢) Full time employee
) Unemployed
)

4. Community

141

A. Survey

5. Role

(a) Developer
(b) Maintainer
(c) Software engineer
(d) Translator
(e) Graphic
(f) Other

Part two:

1. Do you contribute to this project as an individual or because your company

is involved in it?
(a) Paid by a company

(b) Partially paid by company

(¢) Voluntary developer
2. Through which channel are important project decisions made?

(a) Mailing list

(b) Forum

(c) IRC

(d) Closed group of developers
)
)

(e) I don’t know

(f) Other

3. What is the major cause of time waste within any phase of the project’s

development?

a

b
(c

(d) Bad or poor software design decisions end up in reengineering and

(a) Delays in developer communications

(b) Long time to reach an agreement within the community
) Development and bug fixing can’t keep up with deadlines
)

fixup code

(e) Project disorganization

(f) I don’t know

142

A.1. The questionnaire

(g) Other
4. What was the reason of your longest wait for a commit approval?

(a) Unavailable maintainers stalled the process
(b) Long discussion between developers to decide if accept or deny

(¢) Proposed code didn’t follow community standards

(e) I don’t know

)
)
)
(d) Code had to be rewritten to be accepted
)
(f) I don’t remember

)

(g) Other

Part three:
1. Developers sponsored by commercial companies increase project health
2. Absence of a developer can stall some community activities
3. Absence of a core developer can stall some community activities
4. The project development has a high degree of formality
5. Every opinion is equal in project’s important decisions
6. Frequent communication before and after commit activities are essential
7. Community rules and structures are sound and clear

8. Software architecture is well documented, easily accessible and understand-
able

9. Idid assumptions during development due to unclear requirements or doc-

umentation
10. Documentation is understandable and helpful
11. There are different subgroups within the community
12. Different subgroups rarely communicate

13. Subgroups have similar mindset and act as little communities inside the

community

14. Different subgroups are sometimes antagonists

143

A. Survey

A.2 Characteristics of initially considered projects

Table A.1 explicits the numerical values used to classify FLLOSS projects factors,

extracted for every project the 8th of February 2016.

Project #Years #Commits #last year commits #Committers Size Activity Relevance
Firefox 18 460959 50320 4560 BIG ACTIVE HIGH
Android 7 213252 31331 1734 BIG ACTIVE HIGH
‘WebKit 14 172077 12931 622 BIG ACTIVE LOW
LibreOffice 6 387763 19290 1441 BIG STALL HIGH
FFmpeg 15 78350 8893 1460 SMALL ACTIVE HIGH
OpenSSL 17 15162 2312 262 SMALL ACTIVE Low
LibreSSL 2 494 285 27 SMALL ACTIVE LOW
AngularJS 6 7497 1051 1547 SMALL STALL HIGH
Khtml 2 264 56 32 SMALL STALL Low
libva 9 1136 73 101 SMALL STALL Low

Table A.1: Characteristics of projects initially considered for the survey

The commands used to quantify the value of analysed project characteristics
were the following:
e Years of activity

git log --pretty=format:%ar |
tail -1

e Total number of commits

git rev-list --count HEAD

e Numbers of commits during the last 12 months

git log --since='last 12 months' --pretty=format:'}h' |

wc -1

o Total number of project committers
git log --all --pretty=format:"%aE" |
sort -u -f |

wc -1

A.3 Likert scale results

This section contains the likert graphs of agreement questions gathered from
the third part of our survey. The first likert graph (Figure A.1) represents all the
retrieved responses as a whole, while the following three graphs present the likert
graphs decomposing responses with respect to the three reference projects. The
code that identifies a question result within a likert graph is related to the question
associated with the same number in the third part of the questionnaire, elicited in

the first section of this appendix.

144

A.3. Likert scale results

Ql

Q2

Q3

Q4

Q5

Qs

Q7

Qs

Q9

Q1o

an

Q12

Q13

Q14

. Strongly disagree . Partially disagree Neutral . Partially agree . Strongly agree

8

g |
T
o

29%

=]

75%

8
B

3

8

g

34%

£
I
g

—
o

i
3
B

2
B

28
®

n
=1
*

39%

I
o
@
*

25%

g

—
w

h]
i

&3
2

32%

3

I
&
2
2

36%

i
o3
2

36% 14%

w
iy

(=]

25 50 75 1
Percentage

(=]

0

Figure A.1: Survey results (part three) - All respondents

145

A. Survey

at

Q2

Q3

Q4

Q5

Qs

Q7

Qs

Q9

Q10

Qi

Q12

Qi3

Q14

146

. Strongly disagree Partially disagree Neutral . Partially agree . Strongly agree

@
*
@
2

30%

15% 42%

©
P
R

76%

R
b

=
hn]
A

15%

P
ES

18%

g
g

21%

I-
g

21%

N
i

0 25 50 75 100
Percentage

Figure A.2: Survey results (part three) - Firefox

A.3. Likert scale results

Strongly disagree . Partially disagree Neutral . Partially agree . Strongly agree

|
= e B
0 25 50 75 100

Percentage

Figure A.3: Survey results (part three) - LibreOffice

147

A. Survey

at

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Qi

Q12

Q13

Q14

148

. Strongly disagree . Partially disagree Neutral . Partially agree . Strongly agree

36%

3
®

g

)

:

;|

29%

3

21%

@
I
>
R

o
S

3

43%

50% 14%

21%

~
R
S
R

L]

43%

(]
[=2]

II

43%

it
ES

i
2
&
S

3

8
2

g

43%

o
I

o

25 50 75 1
Percentage

(=]

0

Figure A.4: Survey results (part three) - FFmpeg

Appendix B

Codeface4Smells

This Appendix describes how to install, set-up and execute Codeface4Smells,
the tool developed during this master thesis, through which we operationalised our
Socio-technical Quality Framework and the identification patterns of Community
Smells, explained respectively in Chapterb and Chapter 4. Moreover, we report a
brief set of lessons learned, in order to provide useful notions, about how to write
a proper configuration file and successfully complete the collaboration analysis of a
high-volume software project using Codeface. Finally, we present some utility scripts

specifically developed to cope with particular needs emerged within this study.

B.1 Set-up and analysis execution

Codeface4Smells is hosted on GitHub and then it is possible to download it
manually or cloning its associated git repository [72]. As explained in Chapter 7,
Codeface4Smells extends Codeface and thus, it shares its inner workings. Therefore,
since Codeface is supposed to be executed in a virtual machine, for practical reasons,
the presence of Vagrant [73] and VirtualBox [74] on the machine is a necessary
precondition in order to continue with the set-up of our tool.

Once the source code of Codeface4Smells is present on the machine, it is pos-
sible to initialise the virtual machine and then access it, using the following set of

commands:

vagrant up

vagrant ssh

The first command initialises the virtual machine. If it is the first time that the
considered instance of Codeface4Smells is executed, then Vagrant will download the
virtual machine image and some initialisation scripts will download and install all the
necessary software to correctly execute the tool. The second command establishes
an ssh connection with the previously initialised virtual machine, in order to have

access to its console.

149

B. Codeface4Smells

Whenever the virtual machine is not needed anymore, it is possible to shut it

down using the following command:
vagrant halt

Before being able to analyse a project with Codeface4Smells, it is necessary to
have access to the following project resources: source code, mailing list archive files
(mbox format) and a configuration file. Moreover, before performing the actual
Codeface4Smells analysis it is necessary to execute the collaboration and communi-
cation analysis, provided by Codeface, in advance. Therefore, the list of commands
necessary to correctly execute Codeface4dSmells analysis is:

cd /vagrant/id_service/;
nodejs id_service.js ../codeface.conf &
cd

codeface run -p conf_file dir_out dir_git

codeface ml -p conf_file dir_out dir_git

codeface st -p conf_file dir_out

Where the following parameters should be substituted:

e conf_file: path to the project’s configuration file;

e dir_git: path to the directory that contains the source code of the project;
e dir_ml: path to the directory that contains the mailing list archive files;

e dir_out: path to the directory that will contain the analysis output.

The first command starts the ID manager service, that is needed to handle the identi-
fication and management of developer identities. The second command executes the
collaboration analysis and the third one executes the communication analysis. The
last command starts Codeface4Smells analysis, which uses both the collaboration

and communication analysis output generated by previous commands.

B.2 Project configuration

To perform an analysis with Codeface and Codeface4Smells, it is necessary to
specify a configuration file that contains all the necessary information related to the
project in analysis. The configuration file has to be specified in every command that
perform an analysis, it must have a “.conf” extension and it should contain at least

the following parameters:
e project: name of the project to analyse;
e repo: name of the directory containing the source code;

o mailinglists: lists of mailing lists names and typologies;

150

B.3. Analyse high-volume communities

e description: description of the project to analyse;

o revisions: lists of versions to analyse. If this parameter is not present all the
project history will be analysed using three months windows. It is possible
to set this parameter to “3months” in order to analyse at most the last three

years of activity using three months windows;
e tagging: collaboration detection method.

An example of a valid configuration file, which allows to analyse Cassandra project,

is the following:

project: Cassandra
repo: cassandra
mailinglists:
- {name: gmane.comp.db.cassandra.devel,
type: dev, source: gmanelt
description: Cassandra project
revisions: 3months

tagging: proximity

B.3 Analyse high-volume communities

In order to positively conclude collaboration analysis, provided by Codeface, of
high-volume software development communities (e.g., Firefox and LibreOffice) it was

necessary to make the following changes:

o Increase the value of the variable «max_packet_size» in “codeface/dbman-

ager.py”
e Add the following parameters to MySQL configuration file:

[mysqld]

innodb__buffer_pool_ size = 3G
innodb__buffer_ pool_instances = 3
wait_ timeout = 3600

innodb__log_ buffer_size = 800M

net read timeout = 600

net write timeout = 600
innodb_lock wait_ timeout = 500
[mysqldump |

max_ allowed_packet = 1024M

151

B. Codeface4Smells

B.4 Utility tools

This section illustrates all utility scripts specifically developed to address some

problematics or necessities occurred during this master thesis execution. The first

script can be used before the collaboration analysis in order to purge unsupported

characters from a mailing list archive, to avoid undesired behaviors. The second

script generates an Excel file that sums up all the relevant correlations found between

Community Smells and quality factors of a set of Codeface4Smells analysis results.

Finally, the third and last script generates scatter plots of some specific quality

factors, considering a set of CodefacedSemlls analysis results. All the developed

utility scripts are available on-line [75].

1. Purge mailing list archive

152

Codeface comes with an R file which allows to download a specific project’s
mailing list archive from www.gmane.org, generating a valid «.mbox» file that
can be used to execute Codeface collaboration analysis. In some unlucky cases
it is possible that downloaded mailing list archives contain non-readable or
invalid characters, which cause Codeface to crash without successfully ter-
minating the collaboration analysis of a project. This situation is likely to
happen when many Asiatic or non-common characters are used in mailing list
messages or within user e-mail addresses.

A python script was created to purge a mailing list archive from all these invalid
characters and enhance the success probability of communication analysis. The
sequence of steps that should be followed to obtain a bullet proof mailing list

archive is the following;:

(a) Download a mailing list archive using the script provided by Codeface:
«codeface/R/ml/download.r»;

(b) Rename the mailing list archive as «mail.mbox» and move it in the di-

rectory with our script;
(c) Execute the script «clean_mail.py»;

(d) Rename «mail-clear.mboz» to the appropriate mailing list name specified

in the configuration file.

. Correlations summary

Codeface4Smells enables to measure at what extent Community Smells are
influenced by socio-technical quality factors. These relationships are explored
by calculating Pearson and Spearman correlation analysis and the results of
such analysis are included in the project report produced by Codeface4Smells.
Pearson and Spearman methodologies are both considered because the first

focuses on linear relationships while the last one focuses on not linear ones.

www.gmane.org

B.4. Utility tools

The «correlation_ results.r» R script was developed to automatically gener-
ate an Excel file that summarises all the relevant correlation found analysing
FLOSS projects. It considers all Codeface4dSmells analysis results present at
its same hierarchical level and extracts all the correlation information from
them, identifies all the important correlations (a correlation is interesting if
its p-value is less than 0.05) and groups relevant correlations with respect to
the software development community size. If both Pearson and Spearman
methodologies detect a relevant correlation between a Community Smell and
a socio-technical quality factor, the generated summary will show the one with

the minor p-value.

. Scatter plots

In order to understand to what extent Community Smells are influenced by
different socio-technical quality factors, we generated scatter plots of every
relevant correlation found between Community Smells and quality factors be-
longing to our Socio-technical Quality Framework. Scatter plots were fun-
damental to identify thresholds capable of suggesting healthy values of some
socio-technical quality factors. To provide useful models the script removes

outliers and provides two regression model approaches:

(a) loess model: «scatter_plots_loess.T»

(b) linear model: «scatter_plots_Im.r»

153

B. Codeface4Smells

154

Appendix C

Reports of reference projects

This appendix includes detailed results obtained from the execution of Code-
facedSmells analysis on the following three reference software projects: Firefox, Li-
breOffice and FFmpeg. For each reference project the following information are

presented:

1. Report of Codeface4Smells analysis: constituted by the quantification of qual-
ity factors, belonging to our Socio-technical Quality Framework, and Commu-
nity Smells for all the twelve ranges, of three months each, considered in the

analysis;

2. Pearson’s correlation analysis: constituted by the correlation coefficient and
its associated p-value of every different couple of quality factors, belonging to

the Socio-technical Quality Framework, and/or Community Smells;

3. Spearman’s correlation analysis: as Pearson’s correlation analysis, it is consti-
tuted by the correlation coefficient and its associated p-value of every different
couple of quality factors, belonging to the Socio-technical Quality Framework,

and/or Community Smells.

The complete datasets of results and graph reports, that summarise trends of im-
portant quality factors with respect to every range and to the entire analysis time
period, of the three reference projects are accessible on-line [75], where it is also pos-
sible to retrieve Codeface4Smells analysis results of all the 60 software development

communities analysed during the evaluation part of this master thesis.

155

C. Reports of reference projects

C.1 Firefox

bility

COIMINUNICa

g links

a.donnas

prim
missin

ratio.sponsored.core|

perc.ml.only.devs
perc.code.only.devs

range.date
ml.only.devs
ml.code.devs
spounsored.devs
ratio.sponsored
core.mail.devs
radio.silence
st.congruence
global turnover
code. turnover

org.silo

| core.code.devs

%| core.global.devs

1 2013-06 - 2013-09
2 2013-09 - 2013-12
3 2013-12 - 2014-03
4 2014-03 - 2014-06

=
=]
[

7t 0.8504 0.0704
44 0.0658 0.8600 0.0742 0.1518 0.007:
30,0491 0.9003 0.0506 0.1595 0.0065

570 40 0.0498 0.8879 0.0623 80 0.1246 10 0.0164

|
=21

0.1162 0.0038

b

B0 num.tz

=
|
=
=
=
o)

5400
164 38 155 6698
187 30 182 6707
188 32 179 7732

]

0.0074
0.0029
0.0019
0.0028

0.0000
0.2470
0.2572
0.3496

o
=g
> &)

|
=3
=

—

=

=
o
—

i b Sponsored.core.devs

(S =il
o
—

o

= © o < black.clond

o
[~
[=

5 2014-06 - 2014-09 643 36 0.0609 0.8893 0.0498 88 0.1217 6 0.0088 220 40 213 10224 0 1 0 0.0039 08062 0.2930 0.2839
6 2014-09 — 2014-12 488 35 0.0525 : 0.0634 55 0.0996 3 0.0057 160 30 153 3797 0 0 0.0044 0.8749 0.4831 0.4576
7 2014-12 - 2015-03 621 41 0.0475 0.0590 71 0.1022 5 0.0076 180 31 175 7169 0 5 0 0.0044 0.8303 0.2566 0.2363
8 2015-03 — 2015-05 525 34 0.0525 0.0576 63 0.1068 6 0.0107 153 28 145 6414 2 16 0 0.0044 0.8109 0.4405 0.4292
9 2015-05 — 2015-08 578 35 0.0999 X 0.0514 71 0.1043 4 0.0065 188 50 168 9841 2 10 0 0.0027 0.7734 0.2785 0.2935
10 2015-08 - 2015-11 469 36 0.0683 0.8653 0.0664 47 0.0867 2 0.0040 144 33 132 4578 0 2 0 0.0051 0.8131 0.4481 0.4132
11 2015-11 - 2016-02 638 55 0.0685 0.8575 0.0739 78 0.1048 10 0.0144 191 47 179 9892 0 29 0 0.0093 0.7990 0.2146
12 2016-02 - 2016-05 349 45 0.1416 0.7603 0.0980 34 0.0741 6 0.0152 140 48 112 1745 0 27 0 0.0116 0.8807 0.6101

= 4] »

£ g g = £ = 4 9 3 S S g

=1 =1 =1 =i 2 E b} o @ = Z = ?

2 g g g - £ % = B 3 g E e

= 3 = 2 2 8 g g £ 2 g 2 & ° < s

E = = 3 T z 4 4 Z = 3 2 .- 2 N T = g it

° g : g g = 2 g ¢ g b i g E = £ E 8 g 2 El

B0 i = z z = =] = o 8 = A = = 2 S a = < a4

o @ @ 2 R 0 = 2z) E B a = 2 2] = 2z 3] 2 R =]

)]] 3 2 = B =] =] T) 2 S 2 3 S 2 = = = B

5] 5] Q ™ =) = 5] Q =] =) =] Q =] =] Q =] = = =

1 0.0000 0.0000 0.0000 0.0000 0.7870 0.5294 0.6788 0.0030 0.0686 0.4853 0.I881 0.4809 0.0381 33 161 7 01642 08010 0.0348

0.4800 04531 04809 0.0401 28 145 10 0.1530 0.7923 0.0546
0.5443 0.4648 05421 0.0328 20 172 10 0.0990 0.8515 0.0495
0.4826 02101 04831 00395 21 168 11 0.1050 0.8400 0.0550
0.5648 0.3846 0.5680 0.0408 26 199 14 0.1088 0.8326 0.0586

2 04318 0.7436 0.3963 0.6051 0.7437
3 03134 06471 0.3145 0.5376 0.7408 . 0.7065 0.0024 0.0997
4 0.3893 0.4839 0.4044 0.5254 0.7882 0.7072 0.7066 0.0027 01172
5 0.2892 0.4167 0.2857 0.5800 0.7870 0.6957 0.5000 0.6863 0.0024 0.0370
6 05000 0.6857 0.5137 0.6169 0.7355 0.7101 0.5312 0.7075 0.0029 0.0603 0.5946 0.4845 0.5948 0.0262 17 140 13 0.1000 0.8235 0.0765
7 03000 0.7213 03049 0.5125 0.6892 0.7410 0.5811 0.7356 0.0021 0.0775 0.5285 0.5928 0.5381 0.0314 18 162 13 0.0933 0.8394 0.0674
8 04745 0.7458 0.4938 04346 0.7305 0.7407 0.5692 0.7406 0.0026 0.0431 0.2562 0.5546 03806 0.554% 0.0392 18 135 10 0.1104 0.8282 0.0613
9 0.2170 0.3846 0.2620 0.5311 0.7313 0.7239 0.5146 0.7259 0.0025 00767 0.3494 0.5125 0.3648 05078 0.0462 37 155 13 0.1805 0.7561 0.0634
10 0.5000 09157 0.4867 0.5365 0.7472 0.7343 0.5479 0.7386 0.0031 0.1423 0.4062 04726 04125 04717 0.0337 22 121 11 0.1429 0.7857 0.0714
11 0.1552 0.3750 0.1543 0.5145 0.7661 0.7433 0.5566 0.7417 0.0022 0.0411 0.2801 04695 03499 04743 00393 25 157 22 0.1225 0.7696 0.1078
12 05801 0.5684 0.6598 0.6458 0.6667 0.6950 0.5636 0.7157 0.0034 01546 0.3044 0.5355 03805 0.5524 31 95 17T 0.2168 0.6643 0.1189

2 0.0028 0.0795

Figure C.1: CodefacedSmells analysis report - Firefox

156

£
z 2 5] 3
E E- & s 3
- S] 2 5 = o
2 = g k= £ g
3 E & g g2 E =
orgsilo 094 0.10 0.91 0.10 -0.63 i 0.39 0.09 -0.36 0.22 026 0.06 - 1.00 -0.86
prima.donn: 0.09 026 0.07 -0.37 -0.35 -0.14 -0.03 0.40 0.11 - -010 - 026 0.01
radio.silence -0.03 0.43 -0.15 0.71 0.60 -0.02 058 0.67 -0.06 0.54 -0.10 - - 0.06 0.03
black.cloud -
missing links 094 0.10 091 0.2 -036 048 -0.62 0.69 038 043 0.10 -0.36 023 0.82 1.00 0.26 -0.86
- 2
] 2 & g
2 2 o 2 S
g 3 < g g 3
E] 2 = El s
Z g z Z : s <
org.silo -0.82 -0.62 -0.91 -0.45 0.52 028 -0.36 0.05 -0.81 -0.19 -0.10 0.14 0.78 .3 0.38
prima.donnas 0.05 -0.12° -0.04 -0.55 -0.15 0.33 -0.05 036 -0.15 017 -0.07 0.20 -0.10 0.15 -0.06
radio.silence 0.11 -0.54 -0.02 0.10 018 -031 0.14 -0.16 0.17 -0.05 -0.40 -0.64 0.44 -0.09 042 -0.46
black.cloud - - - R - - - - - - - - - - - - R - -
missinglinks -0.82 -0.91 -0.62 -0.92 -046 0.51 029 -0.35 0.06 -0.81 -061 0.17 -0.19 -0.10 0.14 0.78 -0.35 0.38 -0.25
(a) Pearson’s correlation (coeflicient)
£
: 3 : g E 3
< i E =) 2 N < 3 2 o = =
g g 2 3 = g 8 = & & =
8 8 s 8 2 2 g] s & ~ g 2
= =5 15 g E=| b= g =1 4 o Ei 3§ .z g)
S 8 8 a, 2, £ 5 a 8 8 8 & 5 2 g =)
org.silo 0.00 0.76 075 024 011 0.03 0.21 0.77 0.25 049 0.00 - 041 08 - 000 018 0.00
prima.donnas 0.79 0.41 023 0.73 0.89 0.26 0.67 092 020 077 074 070 0.41 - 077 - 041 045 0.99
radio.silence 0.92 0.16 001 0.16 0.08 0.04 0.94 0.02 085 074 007 090 085 0.77 - 084 003 0.93
black.cloud - - - - - - - - - - - - - - - -
missing links 0.00 0.75 0.00 0.72 025 0.11 0.03 001 0.22 0.48 0.00 0.00 084 - - 020 0.00
=
4 -) B
= £ £ £ & g % %
23 2 I % f &3 o+ FR :of 2
5 = T g% E B £ E EZ E g : T £ £
8 s 2 E E § & B 5 5 0z 2 R
org.silo 0.00 004 000 0.16 009 038 026 0.8) 0.56 0.75 0.47 0.00 0.00 0.51 0.26
prima.donnas 0.87 0.73 091 0.08 065 030 0.89 024 0.60 0.83 0.72 0.11 0.75 0.69 0.64
radiosilence 0.75 0.09 095 0.77 057 033 0.67 0.62 0.60 0.79 019 0.02 027 062 0.77 0.27 0.17
black.cloud - - R - - - B - - - - B - 7 - - -
missing links 0.00 004 000 0.16 009 036 027 0.8 0.00 003 06l 055 076 046 0.00 067 0.00 049 0.26

(b) Pearson’s correlation (p-value)

Figure C.2: Pearson’s correlation analysis - Firefox

157

C. Reports of reference projects

le.only.devs

&| sponsored.core.devs

w 5]
5 ~ g g
Z o < = H =
= 2 2 g o 8 2 °
| a a & g g g £ 2 %)
orgsilo 0.95 0.24 0.24 -0.52 0.71 048 0.5 033 -0.46 0.15 -0.45 .69
prima.donna 0.06 0.06 -0.06 -0.39 -0.16 -0.06 0.07 0.03 0.30 -0.06 -0.26 .07
radi ce 0.10 0.49 -0.50 050 011 021 0.56 0.56 -0.06 - 0.37 .18
black.cloud - - - R - - - R R - - - - - - - - R B -
missing.links 0.95 025 0.90 008 -0.18 021 -049 071 048 0.52 034 -044 0.85 026 082 1.00 0.13 -0.44
z E = - g g
e B g EoZ g - = g
8 E 5 & E 2 £ & & B E EE
org.silo -0.70 -0.67 43 029 -0.22 003 -0.82 -048 0.16 -0.16 -0.19 -0.11 0.73 0.14 NE 0.28 -0.25
prima.donn: 0.22 . 0.00 . 032 0.00 0.39 . -0.26 -0.13 019 -0.19 0.19 039 0.10 -0.26 -0.13 0.26
radio.silence -0.14 -0.19 -0.51 -0.05 -0.24 017 -0.05 0.07 -0.10 -0.13 -0.3¢ -0.74 -0.22 021 0.50 0.01 0.14 048
black.cloud - - - - - - - - - - - - - - - - - - -
missing links -0.71 -0.94 -0.66 -0.91 -0.42 030 -021 005 -0.80 -048 0.15 -0.18 -0.19 -0.12 0.76 0.15 0.7 028 -0.23 024 -021
(a) Spearman’s correlation (coefficient)
n 4
= e o g 2 "
= £ g g g £ z z g H
E e E 2 2 2 9, 2 s T = E
A - - B E
g 32 g g E £ £ £ £ & g . £
£ E = 2 g ¥ & E & § &8 - % &)
org.silo 0.00 0.46 0.00 088 0.46 001 012 0.09 029 0.13 0.00 045 0.00 - 0.69 065 0.14 0.02
prima.donnas 0.84 0.84 0.84 0.11 0.84 061 084 084 092 0.35 084 1.00 048 0.69 0.84 0.41 0.83
radio.silence 0.75 0.10 099 0.03 0.10 075 051 0.06 006 0.85 036 010 079 0.65 0.84 - 0.23 0.60
bla ud -
missing.links 0.00 0.43 000 0.80 059 050 0.10 001 011 009 028 0.15 000 042 000 0.00 0.69 062 - 0.15 0.02
5 z T 2 2
: £ 2 ¢ § & i ¢ . 5 ER
2 2 = = = : = 3 g E 8 El
s ¥ § 3 £ £ F 2 Z % < £ £ 3
s 5 5§ 58 % § 23 g £] g i B
T 8 £ B E & = g g E EE &
org.silo 0.02 0.00 0.03 000 0.19 019 035 0.50 0.62 0.5 0.75 0.01 0.67 0.0L 037 043 040 0.50
prima.donnas 0.51 0.66 1.00 0.83 0.17 021 030 100 0.69 0.7 0.54 021 076 042 0.68 042 055 100
radiosilence 0.69 0.58 011 073 0.90 047 044 0.59 0.70 0. 0.48 051 010 097 0.66 0.12 032 092
black.cloud - - R - - - - - - - - - - - -
missing links 0.02 0.00 0.03 0.00 0.20 0.18 0.35 0.50 0.63 0.F 0.55 0.71 0.00 063 001l 0.37 048 045 0.50
) 3 1
(b) Spearman’s correlation (p-value)

158

Figure C.3: Spearman’s correlation analysis - Firefox

9O1J()RIQIT - J10daI SISATRUR S[[OWISF0RIOPO)) §7'() 9INSTI

00620 6G88¢°0 TT9€°0 8T 8¢ 92 9660°0 TFPSE'0 6LLT'0 TI9PZ°0 9¥CF0 9%ZE’0 6800°0 8890 6LTL0 G8TIL'0 TI689°0 6E£L5°0 9PIL0 ZPRVO TITE0 &I
€0LZ0 8OTE0 G8TP'O 0T €€ T&E ETPEO'0 TE6T'0 86ZT'0 G8TT'0 €LPE0 FLEZ'0 0800°0 06TL0 SETL0 08TL'0 0269°0 €8GF'0 T60P'0 G9TE0 8FPLTO 11
8G6E'0 OREL'0 TY9EL0 TT FE 9Z TOSO'0 98010 9TEEL'0 TTOT'0 TITES0 €6TZ°0 68000 98290 6T99°0 9%0L°0 TPRE'0 98CE°0 O0TPC'0 999£°0 LT6T'0 01
€260 €T6Z0 PUTIP'O 6T 6T LZ 8TI0'0 L9LT°0 EOTE0 FPOT0 VGGE0 TLE00 TTZTO'0 L0990 0TE9'0 €0L9°'0 66090 TPEO'0 O0OT9YS°0 EG6E0 BTIFD 6
L8670 08070 €EPE0 AT LT EE 9TFO0 QLZO0 E€LLZ0 TETZO'0 8GTFO TRET'O0 ZROO'0 64890 0L69°0 G9ZL'0 9ZL9°0 99850 000F'0 00090 91190 8
EPIT0 FTILEOD E€PTIPO ST 92 6& ETLPO'0 669T0 F99€°0 SPAT'O 09ST'0 SEPT'O0 9800°0 Z60L'0 S9L9°0 T969'0 0G€9°0 8IZF'0 RVEOE0D 9LTFO 99460 4L
C6TE0 OPST0 BIGE'D €T 9T ST T990°0 08TZ0 FIST'0 S9T1Z°0 068E0 6960°0 680000 T869'0 0LZ9°0 F069°0 TFPI0 00£9°0 64990 FEIF0 6GERFO 9
8200 90%€°0 9TPP'O 9T LT FE TESO'0 6IPE0 FEILO0 09FE0 6LLE0 PIET'O0 L600°0 8ERO'0 ZIZY0 8TOL'0 T6L9°0 00SF0 S6ET'O0 LL0E0 L60T0 §
8LZT0 GOTE0 L8990 BT 42 98 G990°0 TS0E0 FETFO0 L0620 FL6E0 STPT'O €600°0 90690 €FTO0 LATL'0 BE6S0 LELFO FTIFO 98FFO TLOF0 ¥
688T°0 TITPF'O 00070 AT L& 9& T990°0 OFTS0 889€°0 CTETS'0 TY9F'0 GEZT'0 6800°0 00790 E€TC9°0 E€ERY'0D T6EEY0 GRES'O 606C°0 6TI9E0 C91€°0 €
00020 P00 8SLLE'D BT 8E TPE £9G0°0 PERE0 L86T'0 98RE'0 TE9EL0 9FOT'0 6800°0 L9TY°0 £E£CO°0 E€REOD TPEY0 LERETO REOPO 68TYO CSTIFO T
ATLT0 0049270 €8LF'0 ST €€ PP O6TFO0 L9970 ECLOF'0 €LZF'0 FS0E0 €T0T'0 92000 €069°'0 LA6F9°0 FITL°0 LZEY'0 00000 00000 000070 00000 T
2 2 2 & g g 4 E E = ¢ g 2 g = g B £ g8 g =
E g £ e B E < g e £ a £ g g g g g g & E: &
2 bl o) - - =} = =. G =
@ = o "] =
P90 CILFO0 TR0L0 SL60°0 609 O 0 9¢F 9F TP L9 G& RETO0 € FILO0 LT LPOT0 SPPE0 S0680 €9 TR €6 8€E S0-910 — 209102 CI
9LEE0 SETF0 PSEL'0 GRET0 FOS T T 9 €8 €F 19 89 g& TL100 € 00910 OF 0F2e0 0880 088€'0 I8 €L L6 0S¢ &0-910¢ — 119102 1T
LGRE0 GEYE0 PISY0 STITO LIL 0 €8 0 G8F S LF €9 98¢ TL000 T S0ET0 KT 04S8€°0 T69E0 SGFE0 19 6L 1L P& T1°S10Z — R0-GT10Z OT
LIES'0 TL09°0 9890 LLST'O 68V 0 67 0 L8E 8¢ 9F 09 €& O6LI00 € 68600 K1 €200 TEIE0 980 ¢ LG 0L 8T RO-ST0Z — S0ST0Z 6
EITF0 E€PLFO 98L9°0 LE€T'0 199 0 oL 0 L09 TP OOF 19 €& EIE00 € 81020 SF @ree’0 18070 LL980 0S¢ 16 @R €66 G0-9T0Z — £0410C 8
TLEE0 G6RE°0 TITLO SEPT0 LEY 0 €9 0 468 TF FF 89 08 EFIO0 € L09T°0 9¢ 99€Z°0 6T6€0 G0Le0 €9 8] €R vee £0-9102 — €IFI0E L
TEET'0 06870 LETIL0 TL9T°0 €64 0 67 ¢ Gge 8E LF 19 9& 000000 0O 6G9ZT°0 ST T6LT0 TO9E0 FO9E0 99 1L 1L L6T ET-FI0OZ — 60-FI0C 9
60LE°0 L8SF0 80690 TT60'0 8LL 0 19 ¢ 699 €7 09 €9 8T 000000 0O FWLTTO AT TPITO0 TLLEOD 9REET0 99 08 9L ¢Ié 60710 — 90F10C &
L9SF°0 TIGFO0 98E9°0 LES0'0 LS6 0 €F 0 PYL €% FY 19 LT 000000 0O SISTO FE GYPTO 09LE°0 96L£°0 €9 PR OGR ¥ee 90710 — €0F10T ¥
00F€°0 EEEF0 R/6EY°0 SOLOO 90T O 09 0 €6 T¢ €Y 9L 9T L9200 T 8Y60°0 €T €8YTO L99€°0 09Le0 TO9 8% 06 0vc €0-F10C — CT€10C €
GTYr'0 LEFS0 96TL°0 GLITO TO6 0 99 ToE89 9% TY T8 8T €EY00 v BYFTO g€ 0090 09LE0 09Le0 09 06 06 0¥¢ ET-€102 — 60€10C €
0000°0 00000 FLEL'0 S0ST'O L08 0 €6 ¢ ©6E 8F 69 8L FZ 6TI00 T SPET0 LE 008TO0 9ERTO FOEF0 LL BL 0T SAT 6O-ET0T — 90€10C T
& & - cz &g @
z = %3 ® o & 2 & g8 E % § & gz s B g E & 2 = o

PWORIqI'T ¢°D

159

C. Reports of reference projects

% =
5 3
3] 3 4 2 3
S T B s < :
2 2 2 2 < =z] -
£ g £ 5 2 g b E E
3 & £ & £ El 5 3 =
orgsilo 0.14 0.60 006 010 031 031 -054 034 2033 030 -0.33
prima.donnas 0.19 -0.24 026 019 013 009 007 024 -0.33 - 044 0.09
i 0.73 0.03 032 006 024 021 -025 045 035 025 -0.30 0.4 -
0.45 -0.07 027 -042 -0.04 -0.05 036 006 -0.18 0.03 -0.33 0.09

missing links 0.33 0.52 -0.05 -0.16 0.31 0.27 -065 048 044 0.73 095 -0.22

% =}

& g £ g o

= & & ; &

£ E- B3 g
8 &) g 8 3 = 8 5]
orgsilo 0.00 -0.03 0.2 034 010 018 -0.21 034 -0.64 026 058 051 048 038 076 -0.39
prima.domnas 0.03 -0.08 -0.17 031 005 034 -0.08 006 0.20 -0.60 -0.01 006 -0.12 010 -0.16 0.38
radiosilence -0.19 -0.29 0.02 -0.02 -0.15 078 036 0.64 0.24 -0.65 0.08 021 -0.69 031 0.1 0.24
black.clond -0.27 -0.34 012 -008 002 059 041 072 025 015 -0.13 001 -0.63 -0.20 -0.00 0.09

missing.links -0.07 -0.09 0.02 -0.32 -0.08 -0.20 -0.16 -0.37 -0.60 012 071 0.54 0.67 043 058 069 -0.12 0.16 0.36

(a) Pearson’s correlation (coefficient)

m 7 8
" 5 3 % T £ T £ w 5
g = Z = < g R g = = g -]] g g
i) & o 2 < I3 3 51 g 2 g 2 2 3 = £ 3
z §E 8 % % % R R g & T % 9 ¥ 0B =
¢ 5 5 g ¢ g £ g E < sz : 2 £ i & Z
Z —_ 4 —_ g 2 = z El = =1 B Bl = I} L M ¢}
3 8 E & &, £ @ g] 8 g 8 8, g = E % =0
orgsilo 066 098 004 042 054 012 0.09 076 028 032 007 029 0.02 - 030 034 032 000 0.00 1.00
prima.dommas 056 0.61 046 0.10 081 021 011 042 056 070 0.78 083 0.46 0.99 0.30 - 015 079 048 0.35 0.86
radiosilence 0.01 0.00 092 0.0l 0.0l 004 038 031 085 045 051 044 014 026 044 034 015 - 002 063 081 002 097
black.cloud 016 0.06 084 0.08 005 014 040 043 020 092 0.89 028 085 0.60 093 032 079 0.02 - 037 069 029 0.79
missinglinks 029 046 008 0.97 0.94 044 024 088 062 033 040 002 011 0.16 0.0l 000 048 0.63 037 - 0.0l 005 087
5 . L £t R
TR T £ ER T g
E 58 § 3 & g S 0T 2 £
g £ E O FE % o g & R g E
2 =] g g = 2 54 g e g] g - g < s
= 0 3 a a = 2 = 8 g = El g 3) s 3
£ g s g g 2 2 g : 2 b 2 = £ I = £] £
orgsilo 099 093 072 030 0.77 058 051 027 0.02 097 041 041 005 011 0.09 012 022 0.00 0.20 0.06
prima.donnas 0.94 0.80 0.63 035 0.87 028 080 0.85 0.54 035 082 004 098 015 0.86 072 075 0.61 0.22 0.29
radiosilence 057 039 0.95 096 0.67 000 024 002 046 0.09 034 002 081 037 052 001 032 073 045 0.94
black.cloud 043 0.30 0.73 0.82 096 005 021 001 046 051 002 066 070 0.04 097 004 055 100 0.80 0.76

missing.links 084 0.80 0.95 0.33 0.82 052 0.61 024 0.04 0.64 036 070 001 007 0.02 0.16 0.05 0.01 0.71

(b) Pearson’s correlation (p-value)

Figure C.5: Pearson’s correlation analysis - LibreOffice

160

devs

S
g
&

re.code.devs

0.11
0.25
0.67
0.50
0.38

E

3

&
& &
59 -0.67
0.31 038
0.30 0.08

-0.58 042 -0.13 -020 0.08 5
023 -043 0.01 -007 0.14 0.03 -0.68 040

obo
% 3 5| sponsored.core.devs

-0.64
0.79
0.62
0.42

-0.40

g

core.code.turnover

mail.truck
code.truck

3
£
g
<

B

density

0.15
-0.01
-0.19
-0.35

0.06

o5
S&e
22k

o
3|

-0.50

0.31
0.58 0.16
0.67 0.26
-0.06 -0.34 -0.41

s
]

0.38
-0.81
-0.55
-0.35 -0.26

0.09 -0.14 0.08

S ¢
3

-0.54
0.42
0.01
0.20

-0.15

(a) Spearman’s

correlation

(b) Spearman’s correlation

Figure C.6: Spearman’s correlation analysis - LibreOffice

;¢ 2 E oz G = CH = 3 : :
=] = =1 = 8 g E=1 El = = g g °
] 8 ER- a Z & E E] 8 g A g % g =
0.73 0.81 0.01 0.34 004 0.02 0.78 094 0.57 058 0.10 .23 0.00 0.00 0.03
044 046 0.25 0.85 028 0.22 037 072 0.75 047 095 - 0.73 0.32 0.00
0.01 0.71 0.06 034 080 021 062 012 034 038 0.17 082 0.80 0.03
0.03 0.55 006 020 069 055 082 084 041 0.55 029 0.94 020
0.22 0.08 0.83 046 0.17 0.97 0.83 0.67 093 0.02 0.73 - 0.01 020
: ¢
g = E 4 _ g
: 3 E - oy . B
3 o @ g 2 2 = 3 E 2 = 2
g 8 8§ : % E § =2 Z s § E
org.silo 0.65 0.86 075 070 048 010 0.34 096 0.18 0.02
nnas ~ 0.98 0.56 018 096 0.88 032 0.39 0.50 0.74 0.31
e 58 0.00 0.29 0.05 062 0.03 0.53 0.76 0.72 0.54
003 012 002 045 029 003 045 0.55 091 0.69
missing.links 073 085 0.28 0.18 0.79 0.67 0.82 0.03 022 0.06

C. Reports of reference projects

C.3 FFmpeg

= — - =] = ” =
i 3 s g ¢ T ¢ E £ = " o eS| g H
= = & d S 5 SR e B 3 2 o g 2 &5 = g 3 5 =
b - B E 3 ERR: & g 2 8 2 F g 3 7T T & E = E
o 2 5 5 2 S S s g s Z S § ® g w5 2 % F g E E %
g s = B3 = g g g 2 £ 2 £ B 5 7 A= R b g e g
~ g =] (=] =] =8 = =1 @ [t 7 [=] o =] s} =1 =] =] 7] o ol o
1 2013-04 —2013-07 155 61 28 66 0.3935 0.1806 0.4258 19 0.1226 1 0.0106 24 50 44 86 0 700 127 03351 0.8662 0.0000 0.0000
2 2013-07 -2013-10 162 64 39 59 0.3951 0.2407 0.3642 18 01111 0 00000 29 48 38 147 0 78 1 164 02579 08185 05047 0.4479
3 2013-10 — 2014-01 174 67 41 66 0.3851 0.2356 0.3793 16 0.0920 1 0.0093 32 53 43 90 0 66 1 95 0.0104 0.8542 0.4821 0.4585
4 2014-01 — 2014-04 552 56 400 96 0.1014 0.7246 0.1739 24 0.0435 3 0.0060 31 60 47 145 0 92 2 189 0.2759 09676 0.1019 0.0232
5 2014-04 — 2014-07 190 68 44 78 03579 0.2316 0.4105 23 0.1211 3 0.0246 28 58 A7 120 0 94 0 145 0.2857 0.8657 1.2102 1.3948
6 2014-07 — 2014-10 228 173 30 25 0.7588 0.1316 0.1096 9 0.0395 1 0.0182 30 67 bH9 63 0 720 66 0.0294 0.7500 04785 1.0508
7 2014-10 - 201501 662 52 505 105 0.0785 0.7628 0.1586 27 0.0408 2 0.0033 31 59 52 56 2 63 0 85 04408 0.9832 0.1551 0.0301
& 2015-01 - 201504 208 87 33 88 0.4183 0.1587 0.4231 26 0.1250 3 0.0248 31 63 58 91 0 83 0 138 04052 09077 12828 1.4802
9 2015-04 — 2015-07 189 68 40 81 0.3598 0.2116 0.4286 28 0.1481 3 0.0248 31 57 52 55 0 74 2 107 03554 0.8998 0.6297 0.5537
10 2015-07 — 2015-10 215 87 32 96 04047 0.1488 0.4465 24 0.1116 4 0.0312 30 68 59 83 0 100 2 177 04197 0.8895 0.4564 0.4498
11 2015-10 - 2016-01 190 88 21 81 04632 01105 04263 27 0.1421 3 0.0294 31 58 52 5 0 86 1 117 04682 0.9050 0.5827 0.6087
12 201601 —2016-04 220 100 22 98 0.4545 01000 0.4455 23 0.1045 2 0.0167 30 62 58 35 4 114 2 99 05580 09398 04488 0.4324
£ g | - g SR - g
£ 5 e 53 T ~ E “ - - z g
E : A g R g ¢ E 03 - - 8 = g
2 - T = = 2 - : 3 . F % 3 E E
1 0.0000 00000 0.0000 0.0000 06516 06774 0.6535 0.7553 0.0182 04164 06626 01738 0.1614 0.2293 0.05617 28 7T 16 0.5490 0.13 0.3137
204082 05122 03673 0.6375 0.7284 0.7037 0.6911 0.7347 00198 0.4473 0.6277 0.4346 0.1263 0.4467 0.0493 25 13 13 04902 0.2549 0.2549
3 0.2970 0.2963 0.8095 0.7407 0.5402 0.6954 0.6767 0.8505 0.0142 0.4054 0.5823 04179 0.1678 0.3759 0.0478 40 13 3 07143 0.2321 0.0536
4 03894 03778 0.2800 0.6757 0.2500 0.8913 0.6908 0.9315 0.0012 0.0624 02506 0.2844 0.1679 0.4297 0.0053 30 17 17 04688 0.2656 0.2656
5 04915 04468 04706 0.1670 0.7526 0.6947 0.6781 0.7213 0.0139 0.5297 0.6935 0.2914 0.0841 0.4604 0.0366 29 16 18 04603 0.2540 0.2857
6 04480 03962 1.0612 0.7300 0.4430 0.7061 0.7020 0.7273 0.0175 0.5442 0.7183 0.2304 0.1610 0.4857 0.0439 55 11 4 0.7857 0571 0.0571
7 05238 0.5405 0.2791 0.4203 0.1586 0.9109 0.6688 0.9541 0.0008 0.0452 0.2103 0.3092 0.0909 0.5509 0.0030 32 8 20 05333 0.1333 0.3333
8 0.3934 03818 05517 0.0950 0.6058 0.6971 0.6686 0.7521 0.0127 0.4993 0.7003 0.3070 0.1752 0.5314 0.0388 38 10 20 0.5588 0.1471 0.2941
9 04833 05455 06909 0.5840 0.6032 0.6984 06510 07934 00112 04971 06894 0.2595 02306 03422 00341 38 11 14 06032 01746 02222
10 0.3200 03784 0.3279 0.5435 0.6977 0.6837 0.6776 0.7188 0.0161 0.3761 0.6334 0.3073 0.1625 0.4603 0.0442 37 14 22 0.5068 0.1918 0.3014
11 04762 04324 05714 0.7034 0.6158 0.6947 0.6923 0.7353 0.0141 0.3248 0.6040 0.1053 0.0740 0.3710 0.0521 36 11 16 0.5714 0.1746 0.2540
12 0.3167 02727 04727 0.6413 0.6455 0.7182 0.7071 0.7667 0.0151 0.4335 0.6524 0.1759 0.0874 0.4115 0.0417 34 4 24 0.5484 0.0645 0.3871

Figure C.7: Codeface4Smells analysis report - FFmpeg

162

. Z 2 - g
S i § E EI]
- S 8 g £ g 7 R
orgsilo 0.06 -0.39 0.15 32 0.31 -0.13 -0.16 -0.42 -0.18 0.30 - -0.03 0.74 -0.14 0.09
prima.donnas ~ 0.28 0.04 0. 3 0.10 0.00 018 -0.19 -0.06 -0.18 0.10 0.08 -0.51 0.17 -0.36 0.46 -0.28
radiosilence -0.15 0.11 . 0.07 -027 039 028 022 050 042 0.03 0.63 -0.01 049 043 053 027 0.4
black.cloud 3 -0.08 -0.18 -0.05 034 027 023 028 0.08 020 0.00 0.00 0.26 -0.03 - 039 029 032 -045
missing.links 0.07 035 -0.40 0.16 0.25 031 0.19 037 0.02 -0.16 -0.08 -0.28 0.75 0.74 | 0.39 - 020 0.22 007
g £ g
] & El E El
7 — & 8 ¢ El
3 3] g 8 g
£ 3 3 g ¥]
& £ = < el = < =
orgsilo 003 -0.10 010 035 -0.16 014 001 008 001 010 -018 061 013 012 045 083 006
prima.donnas -0.32 -0.16 -0.28 -024 0.06 028 036 023 -0.19 -021 -021 -0.25 -0.48 048 -0.10 -0.69 051
041 050 -0.38 -0.09 004 051 -033 011 010 018 -0.30 -0.32 0.63 047 -0.13 052
050 024 -027 052 002 006 007 -0.02 -016 -0.06 -0.13 031 025 023 001 022
missing links 0.09 -0.24_ 0.02 -0.67 _-0.20 006 -0.04 -0.07 -0.06 -0.19 -014 026 0.10 041 076 0.58 038

(a) Pearson’s correlation (coefficient)

° - - ? = ® &
8 < 3§ 8 8 = z 2
g O - s E] 3
- - T 2
© & 7 E & E g 8 5 A % £
orgsilo 0.85 0.60 069 0.62 0.18 57 0.23 - 0.09 0.24 0.80
prima.donnas 0.38 0.57 055 0.85 0.58 0.75 0.59 0.30 0.09 R
radio.silence 0.65 0.38 0.50 0.10 0.18 0.94 0.16 0.22 0.97 0.18 0.16 0.08
ac 0.83 042 0.50 0.40 0.82 .56 1.00 1.00 0.92 0.61 0.24 0.39
missing links 0.95 033 055 024 095 063 080 0.38 0.0 0.25
E = % % & I g g E . fF F o % % <
= 2l g S z = = 2 £ = B B S Q 3 = < =
g 8 8§ 8 % - 2 £ 3 s £ § ¢ B E & %
org.silo 094 0.76 0.77 028 0.64 0.66 0.98 0.75 0.58 0.04 0.78 0.66 0.1 0.01 0.72 014 000 0.84
prima.donn: 0.34 0.63 041 047 0.87 0.38 0.25 052 0.52 043 0.60 048 0.75 0.01 0.11 0.75 001 0.09
083 021 012 025 0.79 0.67 0.09 0.75 0.58 0.35 0.79 081 0.57 095 003 012 0.70 0.08
0.06 012 049 042 0.10 0.95 0.86 064 086 070 036 0.03 095 053 093 046 049 098 0.51
missing.links 0.79 048 096 0.02 0.56 085 091 083 086 055 0.67v 042 076 0.99 076 004 004 0.18 000 0.05 0.22

(b) Pearson’s correlation (p-value)

Figure C.8: Pearson’s correlation analysis - FFmpeg

163

C. Reports of reference projects

code.only.devs

devs

pere.

Lcode.devs

pere.code.only.devs

onsored

3| st.congruence

global.turnover

org silo

prima.donnas

radio.

ble

nce

cloud

missing links

0.50

-0.17

-0.36
0.64
0.36
0.32
0.11

-0.36 0.60
-0.08 -0.06

0.27 -0.46
-0.03 -0.17

-0.38 -0.13
0.17

0.14 0.22
0.19 0.20
0.13 0.31

-0.53

0.45

0.06
0.05

0.06

turnover

ail.turnover

-0.20 0.20

code.truck

mod

E]

-0.44

ratio.m:

org.silo

prima.donnas
radio.silence

bl

cloud

missing.links

-0.19
-0.12
-0.21

0.27
-0.32

-0.08

0.57
-0.12
-0.02
-0.30

-0.13
0.24
0.48
0.10

-0.05

&l

0.43
-0.45
0.13
-0.31

-0.40
-0.12
-0.17
-0.07
-0.53

-0.50
-0.12
-0.50
-0.10
-0.73

Spearman’s correlation

] < I z g E E
= < 2 5 2 3 3] S =
= < = bt 2 g 8 g S g]
El 8 El 7 g 7 B E) £ E 3 8w
org.silo 0.10 0.26 0.22 068 064 0.19 54 .07 0.03 0.02 031 0.71
prima.donnas 0.97 0.02 0.60 024 0.68 0.34 0.89 - 0.15 0.04 005 0.11
radio silence 0.35 0.25 0.67 048 0.04 0.14 0.86 0.06 0.20 053 0.95
black.cloud 0.62 0.33 . .58 0.55 0.37 0.88 022 055 0.55 0.26
missing.links 0.70 0.73 0. 0.70 033 0.15 0.15 - 0.82 0.86
5] 7)
ER- I - B 5 §
< 2 % 2 5 & & ke E ER-
org.silo .78 099 034 0.58 081 0.70 0.65 0.06 0.20 0.10 001
prima.donna 0.69 031 0.72 0.05 0.46 0.16 0.91 0.70 0.70 0.02
radio.silence 0.17 040 0.54 0.71 0.12 0.14 0.60 0.10 0.53
black.cloud 0.31 0.69 0.42 0.96 0.77 0.69 0.84 0.77 0.52
missing, links 0.80 0.09 0.34 0.35 0.89 0.32 0.08 0.38 0.01 0.03

164

Figure C.9:

(b) Spearman’s correlation (p-value)

Spearman’s correlation analysis - FFmpeg

	Introduction
	State of the art
	Conway's law and beyond
	Global Software Development
	Free/Libre and Open Source Software
	Developer Social Networks
	Technical and Social Debt
	Motivational research

	Problem analysis
	Definitions
	Research questions
	Contributions
	Dataset selection

	Identification patterns of Community Smells
	Organisational Silo Effect and Missing Links
	Black-cloud Effect
	Prima-donnas Effect
	Radio Silence

	Socio-technical Quality Framework
	Developer Social Network metrics
	Socio-technical metrics
	Core community members metrics
	Turnover
	Social Network Analysis metrics

	Survey
	The questionnaire
	Background of respondents
	Confirmatory role
	Validity of Community Smells
	Quality factors identification

	Operationalising our Quality Framework: Codeface4Smells
	Codeface
	Architecture of Codeface4Smells
	Operationalisation of Community Smells
	Socio-technical Quality Framework implementation

	Evaluation
	Occurrences of Community Smells
	Quality factors correlated to Community Smells
	Qualitative indicators of Community Smells
	Summary of Research Questions
	Threats to validity

	Conclusions and future work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Survey
	The questionnaire
	Characteristics of initially considered projects
	Likert scale results

	Codeface4Smells
	Set-up and analysis execution
	Project configuration
	Analyse high-volume communities
	Utility tools

	Reports of reference projects
	Firefox
	LibreOffice
	FFmpeg

