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Abstract 

 

The era of ―Big Data‖ is here. Rapid growth in big data and application of analytical 

algorithms has created massive opportunities for data scientists. From Facebook to small 

business organizations, everyone is relying on big data for their business forecast. With data 

firmly in hand and with the ability given by Big Data Technologies to effectively store and 

analyze this data, we can predict and work to optimize every aspect of our behavior. Amazon 

can know every book we have ever bought or viewed by analyzing big data gathered over the 

years. With the advent of many digital modalities all this data has grown to BIG data and is 

still on the rise. Ultimately Big Data technologies can exist to improve decision making and 

to provide greater insights faster when needed but with the downside of loss of data privacy.   

 

This project has two phases. In initial phase, the main goal is to understand how RHADOOP 

works for data analysis. Hadoop was working fine with its own java based environment, but 

we needed more flexibility and data analysis capability. Arising from this constraint, the 

requirement of something new has emerged. Data analysts are using R for data analysis, and 

the use of R is increasing rapidly. Our intention here is clear, to utilize the power of Hadoop 

and R for Data analysis and combining the power of both technologies, the solution is 

RHadoop. It uses special packages like rmr2, rhdfs, plyrmr and rhbase for accessing HDFS 

files and mapreducing jobs. The second phase is the investigation of mapreduce job over 

RHADOOP. Mapreduce job contains mapper and reducer functions. In some case studies, we 

have used both functions to understand how they are compatible with each other. At the 

beginning, system assigns an id for overall mapreduce job, and then handles mapper and 

reducer respectively. Mapreduce job processing approach is using in most of the big data 

analysis, so it is highly important to deal with it.  

          

Hadoop and R is a natural match and are quite complementary in terms of visualization and 

analysis of big data. This work mainly focuses on RHADOOP and its operational features for 

data analysis. 
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Chapter 1: Introduction 

The data explosion is upon us, with increasing amounts produced each day. The trend shows 

no sign of stopping, or even slowing down. In 2009, research firm IDC noted a 62 

percent increase in worldwide data over the previous year, and predicted that digital 

information, which in 2009 had reached 0.8 zettabytes , could reach as much as 44 zettabytes 

by 2020. And, as if that wasn‘t enough, the Berkeley School of Management forecasts that 

more data will be created in the next three years than in the previous 40,000. In the last few 

years, digital technology, social networks, and forums have been found propagating much 

more than in the past decades. Moreover, their growth is expected to be much quicker paced 

in the coming days. As regards the most of private companies, their data volume is much 

smaller, but which is also experiencing incredible growth nowadays. These are just a few 

examples of the data deluge affecting almost everything. 

The hot IT buzzword of 2012, big data has become viable as cost-effective approaches have 

emerged to tame the volume, velocity and variability of massive data. The Harvard Business 

Review (HBR) in ―Customer Intelligence Tames the Big Data Challenge‖ explains, 

“Big Data examines what people say about what they have done or will do. That’s in 

addition to tracking what people are actually doing about everything from crime to weather 

to shopping to brands. It is only Big Data’s capacity for dealing with vast quantities of real-

time unstructured data that makes this possible.” 

In all areas of enterprise, teams and departments are looking for actionable data. There are 

endless benefits to managing Big Data instead of either ignoring it or allowing it to outpace 

any organization. A Big Data and analytics strategy benefits the organization in several ways: 

Creating Smarter, Leaner Organizations: 

A well thought out and executed Big Data and analytics strategy ultimately makes 

organizations smarter and more efficient. Today, Big Data is being leveraged in many 

industries from criminal justice to health care to real estate with powerful outcomes. The 

same common sense approach to Big Data should be employed by organizations desiring 

similar results. 

For example, HBR reports that the New York City Police Department uses Big Data 

technology ―to geolocate and analyze ‗historical arrest patterns‘ while cross-tabbing them 

with sporting events, paydays, rainfall, traffic flows, and federal holidays.‖ Essentially, the 

NYPD is utilizing data patterns, scientific analysis, and technological tools to do their job and 

to do it to the best of their ability. Using a Big Data and analytics strategy, the NYPD was 

able to identify crime ―hot spots.‖ From there, they deployed officers to locations where 

crimes were likely to occur before the crimes were actually committed.  

Gone are the days of ―guessing,‖ even in the police force, arguably one of the most instinct- 

and experience-driven vocations. This does not mean that instinct, human emotion, and 

reason are gone. It does mean that data is creating leads and context in which the NYPD can 

http://www.sas.com/resources/whitepaper/wp_52781.pdf
http://www.sas.com/resources/whitepaper/wp_52781.pdf
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hopefully operate at an optimal level. Big Data and analytics are helping the NYPD and other 

large police departments to anticipate and identify criminal activity before it occurs. 

There are plenty of examples like these, in every industry, as leading organizations continue 

to practice what GE‘s CMO Beth Comstock recently called ―machine whispering‖: 

―The same logic is being applied to economic forecasting. For example, the number of 

Google queries about housing and real estate from one quarter to the next turns out to predict 

more accurately what‘s going to happen in the housing market than any team of expert real 

estate forecasters.‖ 

The question before us today is, how can Big Data and analytics be similarly leveraged by an 

organization to provide powerful results? 

Equipping the Organization to Have Cross-Channel Conversations: 

As most organizations will agree, it‘s simply not possible to carry out the conversations with 

the customers like earlier times. There‘s too much feedback and dialogue coming in from 

various sources, which require help to accomplish the desired means. It‘s simply not possible 

to manage the delivery of dynamic, targeted, consistent content, offers, and products, across 

digitally enabled customer touch points when marketing tasks are semi automated with a 

series of unintegrated software tools. 

Best industry practices today suggest staying close to the customer ―by investing in customer 

insight.‖ Today‘s digital ecosystem demands strong market intelligence: Innovative teams 

will integrate emerging digital, social and mobile tools into more traditional ‗voice of the 

customer‘ processes, and effectively build feedback loops into key business functions such as 

product development and sales. 

Preparing Your Organization for the Inevitable Future 

The inevitable future is the digitization of all customer-facing organizational systems from 

customer service to sales to marketing. 

What is interesting and noteworthy is that, structural changes within organizations (related to 

Big Data) are necessary now as reversals are likely to come. Two interesting reversals can be 

taken into consideration here. The first reversal was in the newspaper industry that moved 

from booming to near obsolete with the advent of online publishing. This happened within a 

decade. The second reversal was in the recording/music industry that moved from booming 

CD sales to obsolete (CD sales) with the advent of digital music. This also happened within a 

decade. Both reversals were gradual until they were sudden. 

These are both great examples of the gradual takeover that Big Data management tools are 

having within the marketing teams and departments of every organization today. From the 

smallest mom and pop shop to the largest, international organizations, organizations that 

resist the scientific and systematic approach to data analysis, online advertising, and more 

will become obsolete. Fortunately, we are still in the era of gradual shift.  

http://blogs.adobe.com/digitalmarketing/wem-2/move-from-mass-marketing-to-me-marketing-with-data-management/
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The Big Data Reversal Is Coming: Are the Organizations Ready yet? 

It‘s just a matter of time before the sudden reversal comes. All the signs point to its arrival. 

The question is, will the organizations have the proper Big Data and analytics strategy in 

place to survive the reversal? 

Through the techniques of data analysis, it is possible to extract useful information from the 

customers. The target is the solution of a wide set of problems, such as interaction with 

customers, strategic decisions, and processes optimization. For instance, many chain shops 

track their customers' purchases using data extracted from their cards. In addition, the 

integration between data coming from companies and from the web can produce further 

information. In this way, some companies try to understand the opinions about their products 

by analyzing forum discussions. These examples are only a small part of the multitude of 

results that can be extracted from the huge mine of data. 

Regarding current approaches, such as the use of databases, the starting point is often the 

selection of small datasets from the whole, including only information that is highly relevant 

to the problem, on the base of analysts' opinions. Since most of the tools do not allow a cheap 

treatment of wider sets of data, this is the most common way to proceed. However, this 

approach has some disadvantages since it is not always possible to determine with enough 

precision which information is useful and which can be excluded. Maybe it was not a 

considerable problem when the overall data were small, but the data spread has worsened the 

situation. Moreover, the introduction of less relevant data in analysis can lead to more precise 

results and to a bird's eye understanding of the problem, so the ideal tool exploits all the 

available information. 

There are some tools that can be integrated in the current devices, in order to handle wider 

datasets, but these solutions are often afterthoughts and they imply some efficiency problems. 

In fact, the cost often becomes much higher. Furthermore, the maximum amount of data 

analyzable is not growing as fast as data. 

The target is to extend the analysis to all available information, so it is necessary to use new 

techniques.  

Big Data, Big Challenges: 

When we think of Big Data, the three Vs come to mind – volume, velocity and variety. 

According to some companies, such as IBM, the new challenges are the Three V that stands 

for Volume, Velocity, and Variety. Big Data phrase refers to all data analysis that present any 

of these new necessities. 

Just as the amount of data is increasing, the speed at which it transits enterprises and entire 

industries is faster than ever. The type of data we‘re talking about includes hundreds of 

millions of pages, emails and unstructured data, such as Word documents and PDFs, as well 

as a nearly infinite number of events and information from every type of enterprise data 

center— such as financial institutions, utility companies, telecom organizations, 

manufacturing facilities and more. Content can be generated by everything from common 
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customer transactions, such as phone calls and credit card usage, to manufacturing facility 

transactions, like machine maintenance and operational status updates. All of this 

information needs to be analyzed, acted upon (even if that action is deletion), and possibly 

stored. 

1.1 Volume  

According to some IBM estimations, the amount of data produced every day is about 2.5 

quintillion of bytes and the most of it (about 90%) belongs to the last two years. Furthermore, 

according to the current trend, the growth is speeding up, so it is just the beginning. This fact 

is just an index of how recent the volume problem is. In regards to the total size of data, in 

2009 it was about 0.8 zetta bytes, and in 2020 it will be 44 times more. The main data source 

is the Internet since the web diusion aects billions of people and each one of them produces a 

lot of data. Indeed, almost every forum, social network, and chat gathers the thoughts of 

thousands or even millions of people. Just to give some numbers, Facebook generates every 

day about 10 tera bytes of data and Twitter about 7 tera bytes. These data can be used to 

extract information about many situations. For instance, it is possible to evaluate the opinions 

about some products, assuming that they will have a significant impact on the sales. 

Of course not all data will be used, but, combining stored data with web information and 

devices tracks, a single problem can be related with terabytes of even peta bytes of useful 

data. Clearly, even if the analysis does not consider the web, the volume can be very big. 

Unfortunately, current technologies imply an elevated cost for the treatment of big volumes. 

For this reason, there is a need for a new kind of data storage and processing. 

1.2 Velocity  

Nowadays, the world is a lot quick change, so it is often necessary to take fast decisions. The 

amount of data that are generated every day is very big and it is necessary to gather, store, 

and analyze them in a fast way. Sometimes it is even necessary to have a real time track of 

facts that comes from the collection and analysis of streams of data coming from different 

sources. Some examples of problems that need this kind of information are nancial 

investments planning, weather forecast, and track management. 

In order to speed up an analysis, the easiest way is to store data in a fast and efficient 

memory, i.e. the RAM of the computer. This approach, called in-memory processing, is now 

used a lot. For example, the statistical software R is mostly based on that. Unfortunately, fast 

and efficient memory devices are a very expensive, so their size is limited. For that reason, 

the RAM of computers can contain only a few gigabytes. Thats why we use the software 

alternatives to improve this problems. 

1.3 Variety  

A few years ago, analysis used to deal only with well-structured sets of data. However, most 

of data growth is due to websites as they contain texts, images, videos, and log files. Each of 
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these kinds of data is structured in its own way, so it requires a proper handle. Furthermore, 

also data generated by sensors are usually unstructured. Of course it is not ways effective to 

ignore all these useful information, so new tools must be able to treat all kinds of data, or at 

least the most of them. 

A possibility is to use an approach that is partly equal to the current one. It consists in the 

structuring data with new tools, before conducting an analysis through classical tools. For 

example, data scraping is a technique that translates human-readable information, such as 

texts, in computer language, i.e. in structured data. 

A better way is to develop new techniques that directly analyze all data. Since there are 

different kinds of unstructured data, each one of them needs a proper tool. Therefore, this 

approach leads to some complications and to the use of a wider number of new techniques. 

Protecting and preserving information: 

Another important aspect of Big Data involves protecting information and keeping it moving, 

even during disruptive events. Things like inclement weather, a sudden load on an energy 

grid (such as people plugging in their electric vehicles every evening) or mechanical failure 

can cause brown outs and black outs that will have utility companies scrambling to get their 

service trucks out the door before the flood of service calls begins. For example, last summer 

in Dublin, Ireland, a transistor failure caused a power outage at major cloud computing data 

hubs for Amazon and Microsoft – what followed was a series of failures that resulted in 

partial corruption of the data base and the deletion of important data. 
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Chapter 2: Present Trends in Data Analysis 

Along with social, mobile and cloud, analytics and associated data technologies have earned 

a place as one of the core disruptors of the digital age. In last few years we saw big data 

initiatives moving from test to production and a strong push to leverage new data 

technologies to power business intelligence. Based on previous analysis we can perfectly 

assume that the next years will be for analysis of Data and business organizations will try to 

convert more data to meaningful information. 

2.1 Trends for Big Data:  

Fortunately, the following trends promise to provide tools and technologies that can help 

industries and enterprises involved with handling, storing and transmitting data: 

 Faster data capture and analysis. New tools allow this to happen as quickly as the data 

is generated. One example: real-world models of events. 

 More intelligent, automated decision-making. Developers are creating software and 

languages designed to handle intricate ―if/then‖ scenarios, empowering administrators 

to customize responses to fit any possible scenario. 

 Distributed storage techniques and cloud computing. These include the conversion 

from tape to disk, de-duplication, flash storage and the rapid adoption of 100 Gigabit 

Ethernet, replacing the fibre channel. All of this allows for more storage capacity and 

new challenges of retrieval of data and on the fly computing, without necessarily 

storing everything. 

There is a market need to simplify big data technologies, and opportunities for this exist at all 

levels: technical, consumption and so on. In the next years, there will be significant progress 

toward simplification of Data analysis, especially Big Data analysis.  It doesn't matter who 

the person is: cluster operator, security administrator or data analyst, everyone wants Hadoop 

and related big data technologies to be straightforward.  Things like a single integrated 

developer experience or a reduced number of settings or profiles will start to appear across 

the board. We can predict that Hadoop will be used to deliver more mission critical 

workloads, beyond the "web scale" companies. While companies like Yahoo, Spotify and 

TrueCar all have built businesses which significantly leverage Hadoop, we will see Hadoop 

used by more traditional enterprises to extract valuable insights from the vast quantity of data 

under management and deliver net new mission critical analytic applications which simply 

weren't possible without Hadoop.  

Big data is growing up: Hadoop adds to enterprise standards. The enterprise capabilities 

of Hadoop will mature in next year‘s. A lot of research is going on to standardize the Hadoop 

Environment.  As further evidence to the growing trend of Hadoop becoming a core part of 

the enterprise IT landscape, we'll see investment grow in the components surrounding 

enterprise systems such as security and extendibility. Apache Sentry project provides a 

system for enforcing fine-grained, role-based authorization to data and metadata stored on a 

Hadoop cluster. These are the types of capabilities that customers expect from their 
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enterprise-grade RDBMS platforms and are now coming to the forefront of the emerging big 

data technologies, thus eliminating one more barrier to enterprise adoption.  

 

Big data gets fast: Options expand to add speed to Hadoop. Hadoop will gain the sort of 

performance that has traditionally been associated with data warehouses. With Hadoop 

gaining more traction in the enterprise, we see a growing demand from end users for the same 

fast data exploration capabilities they've come to expect from traditional data warehouses. 

Generally to meet that end user demand, we see growing adoption of technologies such as 

Cloudera Impala, AtScale, Actian Vector and Jethro Data that enable the business user's old 

friend, the OLAP cube, for Hadoop further blurring the lines behind the "traditional" BI 

concepts and the world of 'big data'. 

 

The number of options for "preparing" end users to discover all forms of data grows.  

Self-service data preparation tools are exploding in popularity. This is in part due to the shift 

toward business-user-generated data discovery tools such as Tableau that reduce time to 

analyze data. Business users now want to also be able to reduce the time and complexity of 

preparing data for analysis, something that is especially important in the world of big data 

when dealing with a variety of data types and formats. We've seen a host of innovation in this 

space from companies focused on end user data preparation for big data such as Alteryx, 

Trifacta, Paxata and Lavastorm while even seeing long established ETL leaders such as 

Informatica with their Rev product make heavy investments here.  

 

MPP Data Warehouse growth is heating up…in the cloud! The "death" of the data 

warehouse has been overhyped for some time now, but it's no secret that growth in this 

segment of the market has been slowing. But we now see a major shift in the application of 

this technology to the cloud where Amazon led the way with an on-demand cloud data 

warehouse in Redshift. "Redshift was AWS's fastest-growing service, but it now has 

competition from Google with BigQuery, offerings from long-time data warehouse power 

players such as Microsoft (with Azure SQL Data Warehouse) and Teradata, along with new 

start-ups such as Snowflake, winner of Strata + Hadoop World 2015 Startup Showcase, also 

gaining adoption in this space. Analysts cite 90 percent of companies who have adopted 

Hadoop will also keep their data warehouses, and with these new cloud offerings, those 

customers can dynamically scale up or down the amount of storage and compute resources in 

the data warehouse relative to the larger amounts of information stored in their Hadoop data 

lake. 

2.2 R and Big Data Analysis:  

R is becoming the most popular language for data science. That‘s not to say that it‘s the only 

language, or that it‘s the best tool for every job. It is, however, the most widely used and it is 

rising in popularity. In recent survey, we found that R is the most popular programming 

language. R is not only a programming language but also a stable software environment for 

statistical computing, Data modeling, Machine learning and graphics. The power of R relies 

on some basic properties. 
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 R is data analysis software: Data scientists, statisticians, and analysts, anyone who 

needs to make sense of data, really can use R for statistical analysis, data 

visualization, and predictive modeling. 

 R is a programming language: An object-oriented language created by statisticians, 

R provides objects, operators, and functions that allow users to explore, model, and 

visualize data. 

 R is an environment for statistical analysis: Standard statistical methods are easy to 

implement in R, and since much of the cutting-edge research in statistics and 

predictive modeling is done in R, newly developed techniques are often available in R 

first. 

 R is an open-source software project: R is free and, thanks to years of scrutiny and 

tinkering by users and developers, has a high standard of quality and numerical 

accuracy. R‘s open interfaces allow it to integrate with other applications and systems. 

 R is a community: The R project leadership has grown to include more than 20 

leading statisticians and computer scientists from around the world, and thousands of 

contributors have created add-on packages. With two million users, R boasts a vibrant 

online community. 

 

Table: Programming Languages for Data Analysis 

Companies using R for Data Analysis: R is in heavy use at several of the best companies 

who are using data for their business. As Revolution Analytics, R is also the tool of choice 

for data scientists at big technological organizations, who apply machine learning to data 

from Bing, Azure, Office, and the Sales, Marketing and Finance departments. In below 

section I am giving the detail of the companies who are using R:  
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 Bank of America: While banking analysts have traditionally pored over Excel files, 

R is increasingly being used for financial modeling, Bank of America Vice President 

Niall O‘Connor told Fast Company, particularly as a visualization tool. 

 Chicago: Thanks to an automated system that uses real time textual analysis 

implemented with R, the Windy City has a powerful tool for identifying the sources 

of food poisoning from tweets. 

 Facebook: Data scientists at Facebook use open-source R packages from Hadley 

Wickham (e.g., ggplot2, dplyr, plyr, and reshape) to explore new data through custom 

visualizations. 

 New York Times: The Gray Lady uses R for interactive features like Election 

Forecast, data journalism, whether from Mariano Rivera‘s baseball career or the 

Facebook IPO. 

 Twitter: Twitter created the Breakout Detection package for R to monitor user 

experience on its network.  
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Chapter 3: Hadoop Eco System 

Big data is a huge pool of various kinds of data in various formats, which contains hidden 

potentials for better business decisions. Hadoop, on the other hand, is an open source 

program designed to handle those big data cheaply and efficiently. It is not only capable of 

storing and processing many large files at once but also enables moving them over networks 

quickly, which normally exceeds the capacity of a single server.  Hadoop has been well 

known for its high computing power, strong fault tolerance and scalability. 

Operating under Apache license, Hadoop provides a full ecosystem. Hadoop alone cannot do 

amazing work but with its ‗friends‘, it becomes a perfect match with Big Data. Hadoop Eco 

system contains 4 different layers but in my project I am focusing in first two layers. 

 Data Storage Layer: This is where the data is stored in a distributed file system; 

consist of HDFS and HBase ColumnDB Storage.  

 Data Processing Layer: In where the scheduling, resource management and cluster 

management to be calculated here. YARN job scheduling and cluster resource 

management with Map Reduce are located in this layer. 

 Data Access Layer: This is the layer where the request from Management layer was 

sent to Data Processing Layer. Some projects have been setup for this layer, Some of 

them are: Hive, A data warehouse infrastructure that provides data summarization and 

ad hoc querying; Pig, A high-level data-flow language and execution framework for 

parallel computation; Mahout, A Scalable machine learning and data mining library; 

Avro, data serialization system. 

 Management Layer: This is the layer that meets the user. User access the system 

through this layer which has the components like: Chukwa, A data collection system 

for managing large distributed system and ZooKeeper, high-performance coordination 

service for distributed applications. 

 

Fig: Hadoop Eco System 
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3.1: Hadoop Configuration 

It is very important to understand how to configure Hadoop Common, HDFS, Map Reduce, 

and YARN using the standard procedure suggested by Apache Software Foundation. After 

installing the Java and Hadoop we have to set the environment variables for both. Each 

component in Hadoop is configured using an XML file. Common properties go in core-

site.xml, and properties pertaining to HDFS, Map Reduce, and YARN go into the 

appropriately named file: hdfs-site.xml, mapred-site.xml, and yarn-site.xml. In my case these 

files are all located in the usr/hadoop subdirectory. As I am working with single cluster 

(Standalone) Hadoop, there are no daemons running and everything runs in a single JVM. 

Standalone mode is suitable for running Map Reduce programs during development, since it 

is easy to test and debug them. After properly configuring Hadoop, we will follow the 

standard process to start our system  

hduser@PROJECT:~$ ssh localhost 

hduser@PROJECT:~$ hadoop namenode -format 

hduser@PROJECT:~$ start-all.sh 

hduser@PROJECT:~$ jps 

Table: Commands to start Hadoop 

5315 ResourceManager  

4917 DataNode  

5146 SecondaryNameNode  

13595 Jps  

5452 NodeManager  

4782 NameNode 

Table: Response after starting dfs and YARN 

We can also check all the basic properties from the web interface for the Name Node; by 

default which is available at: http://localhost:50070/ 

 

Fig: Summary of Hadoop Name node 
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3.2: HDFS File System 

HDFS is the primary distributed storage used by Hadoop applications. A HDFS cluster 

primarily consists of a Name Node that manages the file system metadata and Data Nodes 

that store the actual data. The HDFS Architecture Guide describes HDFS in detail. This user 

guide primarily deals with the interaction of users and administrators with HDFS clusters. 

The HDFS architecture diagram depicts basic interactions among Name Node, the Data 

Nodes, and the clients. Clients contact Name Node for file metadata or file modifications and 

perform actual file I/O directly with the Data Nodes. 

HDFS is a file system designed for storing very large files with streaming data access 

patterns, running on clusters of commodity hardware. In the below section I will explain 

about the features of HDFS File System: 

Very large files: 

―Very large‖ in this context means files that are hundreds of megabytes, gigabytes, or 

terabytes in size. There are Hadoop clusters running today that store petabytes of data. 

Streaming data access: 

HDFS is built around the idea that the most efficient data processing pattern is a write-once, 

read-many-times pattern. A dataset is typically generated or copied from source, and then 

various analyses are performed on that dataset over time. Each analysis will involve a large 

proportion, if not all, of the dataset, so the time to read the whole dataset is more important 

than the latency in reading the first record. 

Commodity hardware: 

Hadoop doesn‘t require expensive, highly reliable hardware. It‘s designed to run on clusters 

of commodity hardware (commonly available hardware that can be obtained from multiple 

vendors) for which the chance of node failure across the cluster is high, at least for large 

clusters. HDFS is designed to carry on working without a noticeable interruption to the user 

in the face of such failure. 

Low-latency data access: 

Applications that require low-latency access to data, in the tens of milliseconds range, will 

not work well with HDFS. Remember, HDFS is optimized for delivering a high throughput 

of data, and this may be at the expense of latency. HBase is currently a better choice for low 

latency access. 

Lots of small files: 

Because the name node holds file system metadata in memory, the limit to the number of 

files in a file system is governed by the amount of memory on the name node. As a rule of 

thumb, each file, directory, and block takes about 150 bytes. So, for example, if you had one 
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million files, each taking one block, you would need at least 300 MB of memory. Although 

storing millions of files is feasible, billions is beyond the capability of current hardware. 

3.2.1: HDFS Concepts 

Blocks: 

A disk has a block size, which is the minimum amount of data that it can read or write. File 

systems for a single disk build on this by dealing with data in blocks, which are an integral 

multiple of the disk block size. File system blocks are typically a few kilobytes in size, 

whereas disk blocks are normally 512 bytes. This is generally transparent to the file system 

user who is simply reading or writing a file of whatever length. However, there are tools to 

perform file system maintenance, such as df and fsck, that operate on the file system block 

level. 

HDFS, too, has the concept of a block, but it is a much larger unit 128 MB by default. Like in 

a file system for a single disk, files in HDFS are broken into block-sized chunks, which are 

stored as independent units. Unlike a file system for a single disk, a file in HDFS that is 

smaller than a single block does not occupy a full block‘s worth of under‐lying storage. (For 

example, a 1 MB file stored with a block size of 128 MB uses 1 MB of disk space, not 128 

MB.) When unqualified, the term ―block‖ in this book refers to a block in HDFS. 

HDFS blocks are large compared to disk blocks, and the reason is to minimize the cost of 

seeks. By making a block large enough, the time to transfer the data from the disk can be 

significantly longer than the time to seek to the start of the block. Thus the time to transfer a 

large file made of multiple blocks operates at the disk transfer rate. 

A quick calculation shows that if the seek time is around 10 ms and the transfer rate is 100 

MB/s, to make the seek time 1% of the transfer time, we need to make the block size around 

100 MB. The default is actually 128 MB, although many HDFS installations use larger block 

sizes. This figure will continue to be revised upward as transfer speeds grow with new 

generations of disk drives. 

This argument shouldn‘t be taken too far, however. Map tasks in Map Reduce normally 

operate on one block at a time, so if you have too few tasks, your jobs will run slower than 

they could otherwise. 

Name nodes and Data nodes: 

An HDFS cluster has two types of nodes operating in a master-worker pattern: a name node 

and a number of data nodes. The name node manages the file system namespace. It maintains 

the file system tree and the metadata for all the files and directories in the tree. This 

information is stored persistently on the local disk in the form of two files: the namespace 

image and the edit log. The name node also knows the data nodes on which all the blocks for 

a given file are located; however, it does not store block locations persistently, because this 

information is reconstructed from data nodes when the system starts. 
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Data nodes are the workhorses of the file system. They store and retrieve blocks when they 

are told to (by clients or the name node), and they report back to the name node periodically 

with lists of blocks that they are storing. Without the name node, the file system cannot be 

used. In fact, if the machine running the name node was obliterated, all the files on the files 

system would be lost since there would be no way of knowing how to reconstruct the files 

from the blocks on the data nodes. For this reason, it is important to make the name node 

resilient to failure, and Hadoop provides two mechanisms for this. The first way is to back up 

the files that make up the persistent state of the file system metadata. Hadoop can be 

configured so that the name node writes its persistent state to multiple file systems. These 

writes are synchronous and atomic. The usual configuration choice is to write to local disk as 

well as a remote NFS mount. 

Block Caching:  

Normally a data node reads blocks from disk, but for frequently-accessed files the blocks 

may be explicitly cached in the data node‘s memory, in an off-heap block cache. By default a 

block is cached in only one data node‘s memory, although the number is configurable on a 

per-file basis. Job schedulers (for MapReduce, Spark and other frameworks) can take 

advantage of cached blocks by running tasks on the data node where a block is cached, for 

increased read performance. A small lookup table used in a join is a good candidate for 

caching, for example. 

HDFS Federation: 

The name node keeps a reference to every file and block in the file system in memory, which 

means that on very large clusters with many files, memory becomes the limiting factor for 

scaling. HDFS Federation, introduced in the 2.x release series, allows a cluster to scale by 

adding name nodes, each of which manages a portion of the file system namespace. For 

example, one name node might manage all the files rooted under /user, say, and a second 

name‐node might handle files under /share. 

Under federation, each name node manages a namespace volume, which is made up of the 

metadata for the namespace, and a block pool containing all the blocks for the files in the 

namespace. Namespace volumes are independent of each other, which mean name nodes do 

not communicate with one another, and furthermore the failure of one name node does not 

affect the availability of the namespaces managed by other name nodes. Block pool storage is 

not partitioned, however, so data nodes register with each name node in the cluster and store 

blocks from multiple block pools. To access a federated HDFS cluster, clients use client-side 

mount tables to map file paths to name nodes. This is managed in configuration using View 

File System and the view fs:// URIs. 

HDFS High-Availability: 

The combination of replicating name node metadata on multiple file systems and using the 

secondary name node to create checkpoints protects against data loss, but it does not provide 

high-availability of the file system. The name node is still a single point of failure (SPOF). If 



 
 

 

20 

it did fail, all clients including Map Reduce jobs would be unable to read, write, or list files, 

because the name node is the sole repository of the metadata and the file-to-block mapping. 

In such an event the whole Hadoop system would effectively be out of service until a new 

name node could be brought online. 

To recover from a failed name node in this situation, an administrator starts a new primary 

name node with one of the file system metadata replicas and configures data nodes and 

clients to use this new name node. The new name node is not able to serve requests until it 

has 

i) Loaded its namespace image into memory,   

ii) Replayed its edit log, and  

iii) Received enough block reports from the data nodes to leave safe mode. 

3.2.2: HDFS Operations 

After properly installation and configuration of Hadoop, it is important to create working 

environment for HDFS File system. We have to keep some place where we can work with 

Big HDFS files. We can use HDFS commands to do different kinds of file operations. In our 

project first we will create HDFS directory and then we will transfer some big files to that 

directory and will do some operations. 

1. Creating the HDFS Directory: 

hduser@PROJECT:~$ hadoop fs -mkdir /usr/ 
hduser@PROJECT:~$ hadoop fs -mkdir /usr/hduser 

 

2. Transfer (put) Big files to the directory:  

hduser@PROJECT:~$ hadoop fs -put /home/hduser/Downloads/flight15M.csv /usr/hduser 
hduser@PROJECT:~$ hadoop fs -put /home/hduser/Downloads/TGDP.csv /usr/hduser 

 

3. Basic Commands on files: 

hduser@PROJECT:~$ hadoop fs -ls /usr/hduser 
hduser@PROJECT:~$ hadoop fs –cat /usr/hduser/TGDP.csv 
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We can also check all the HDFS files from the web interface; by default which is available at: 

http://localhost:50070/ 

 
 

Fig: Browsing Files using Local host 

3.3: YARN 

Apache YARN is Hadoop‘s cluster resource management system. YARN was introduced in 

Hadoop 2 to improve the Map Reduce implementation, but it is general enough to support 

other distributed computing paradigms as well. 

YARN provides APIs for requesting and working with cluster resources, but these APIs are 

not typically used directly by user code. Instead, users write to higher-level APIs provided by 

distributed computing frameworks, which themselves are built on YARN and hide the 

resource management details from the user. The distributed computing frameworks like Map 

Reduce, Spark, and so on running as YARN applications on the cluster compute layer 

(YARN) and the cluster storage layer (HDFS and HBase). 

How YARN works: 

YARN provides its core services via two types of long-running daemon: a resource manager 

(one per cluster) to manage the use of resources across the cluster, and node managers 

running on all the nodes in the cluster to launch and monitor containers. A container executes 

an application-specific process with a constrained set of resources (memory, CPU, and so 

on). Depending on how YARN is configured, a container may be a Unix process, or a Linux 

cgroup. 

To run an application on YARN, a client contacts the resource manager and asks it to run an 

application master process (step 1 in Figure 3.1). The resource manager then finds a node 

manager that can launch the application master in a container (step 2a and 12b). Precisely 

what the application master does once it is running depends on the application. It could 
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simply run a computation in the container it is running in and return the result to the client. 

Or it could request more containers from the resource managers (step 3), and use them to run 

a distributed computation (step 4a and 4b).  

 

Fig 3.2: How YARN works over Hadoop 

We can also check the Resource Manager from the web interface; by default which is 

available at: http: http://localhost:8088/ 

 

 
 

Fig: Hadoop Resource Manager 

http://localhost:8088/
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 3.4: Map Reduce Jobs 

Map Reduce is a processing technique and a program model for distributed computing based 

on java. The Map Reduce algorithm contains two important tasks, namely Map and Reduce. 

Map takes a set of data and converts it into another set of data, where individual elements are 

broken down into tuples (key/value pairs). Secondly, reduce task, which takes the output 

from a map as an input and combines those data tuples into a smaller set of tuples. As the 

sequence of the name Map Reduce implies, the reduce task is always performed after the map 

job. 

Map Reduce is mainly used for parallel processing of large sets of data stored in Hadoop 

cluster. Initially, it is a hypothesis specially designed by Google to provide parallelism, data 

distribution and fault tolerance. MR processes data in the form of key value pairs. A key 

value (KV) pair is a mapping element between two linked data items key and its value. The 

key (K) acts as an identifier to the value. An example of a key-value (KV) pair is a pair where 

the key is the node Id and the value is its properties including neighbor nodes, predecessor 

node, etc. MR API provides the following features like batch processing, parallel processing 

of huge amounts of data and high availability. 

For processing large sets of data MR comes into the picture. The programmers will write MR 

applications that could be suitable for their business scenarios. Programmers have to 

understand the MR working flow and according to the flow, applications will be developed 

and deployed across Hadoop clusters. Hadoop built on Java APIs and it provides some MR 

APIs that is going to deal with parallel computing across nodes. The MR work flow 

undergoes different phases and the end result will be stored in hdfs with replications. Job 

tracker is going to take care of all MR jobs that are running on various nodes present in the 

Hadoop cluster. Job tracker plays vital role in scheduling jobs and it will keep track of the 

entire map and reduce jobs. Actual map and reduce tasks are performed by Task tracker. 
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Fig: Map Reduce Phase of Hadoop 

Map reduce architecture consists of mainly two processing stages. First one is the map stage 

and the second one is reduce stage. The actual MR process happens in task tracker. In 

between map and reduce stages, Intermediate process will take place. Intermediate process 

will do operations like shuffle and sorting of the mapper output data. The Intermediate data is 

going to get stored in local file system. 

3.4.1 Mapper Phase 

In Mapper Phase the input data is going to split into 2 components, Key and Value. The key 

is writable and comparable in the processing stage. Value is writable only during the 

processing stage. Suppose, client submits input data to Hadoop system, the Job tracker 

assigns tasks to task tracker. The input data that is going to get split into several input splits. 

Input splits are the logical splits in nature. Record reader converts these input splits in Key-

Value (KV) pair. This is the actual input data format for the mapped input for further 

processing of data inside Task tracker. The input format type varies from one type of 

application to another. So the programmer has to observe input data and to code according. 

Suppose we take Text input format, the key is going to be byte offset and value will be the 

entire line. Partition and combiner logics come in to map coding logic only to perform special 

data operations. Data localization occurs only in mapper nodes. 

Combiner is also called as mini reducer. The reducer code is placed in the mapper as a 

combiner. When mapper output is a huge amount of data, it will require high network 
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bandwidth. To solve this bandwidth issue, we will place the reduced code in mapper as 

combiner for better performance. Default partition used in this process is Hash partition. 

A partition module in Hadoop plays a very important role to partition the data received from 

either different mappers or combiners. Petitioner reduces the pressure that builds on reducer 

and gives more performance. There is a customized partition which can be performed on any 

relevant data on different basis or conditions. 

Also, it has static and dynamic partitions which play a very important role in hadoop as well 

as hive. The partitioner would split the data into numbers of folders using reducers at the end 

of map reduce phase. According to the business requirement developer will design this 

partition code. This partitioner runs in between Mapper and Reducer. It is very efficient for 

query purpose. 

3.4.2 Intermediate Process 

The mapper output data undergoes shuffle and sorting in intermediate process. The 

intermediate data is going to get stored in local file system without having replications in 

Hadoop nodes. This intermediate data is the data that is generated after some computations 

based on certain logics. Hadoop uses a Round-Robin algorithm to write the intermediate data 

to local disk. There are many other sorting factors to reach the conditions to write the data to 

local disks. 

3.4.3 Reducer Phase 

Shuffled and sorted data is going to pass as input to the reducer. In this phase, all incoming 

data is going to combine and same actual key value pairs are going to write into hdfs system. 

Record writer writes data from reducer to hdfs. The reducer is not so mandatory for searching 

and mapping purpose. 

Reducer logic is mainly used to start the operations on mapper data which is sorted and 

finally it gives the reducer outputs like part-r-0001etc,. Options are provided to set the 

number of reducers for each job that the user wanted to run. In the configuration file mapred-

site.xml, we have to set some properties which will enable to set the number of reducers for 

the particular task. 

Speculative Execution plays an important role during job processing. If two or more mappers 

are working on the same data and if one mapper is running slow then Job tracker assigns 

tasks to the next mapper to run the program fast. The execution will be on FIFO (First In First 

Out). 
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Chapter 4: R and Its Environment 

R is an extremely versatile open source programming language for statistics and data science. 

It is widely used in every field where there is data; business, industry, government, medicine, 

academia, and so on. R provides a wide variety of statistical (linear and nonlinear modeling, 

classical statistical tests, time-series analysis, classification, clustering,) and graphical 

techniques, and is highly extensible. The S language is often the vehicle of choice for 

research in statistical methodology, and R provides an Open Source route to participation in 

that activity. One of R‘s strengths is the ease with which well-designed publication quality 

plots can be produced, including mathematical symbols and formulae where needed. Great 

care has been taken over the defaults for the minor design choices in graphics, but the user 

retains full control. 

Object Oriented Programming: 

R has the properties of object oriented programming g. The advantages of object orientation 

can be explained by example. Consider statistical regression. When you perform a regression 

analysis with other statistical packages, such as SAS or SPSS, you get a mountain of output 

on the screen. By contrast, if you call the lm() regression function in R, the function returns 

an object containing all the results the estimated co-efficient, their standard errors, residuals, 

and so on. You then pick and choose, programmatically, which parts of that object to extract. 

You will see that R‘s approach makes programming much easier, partly because it offers a 

certain uniformity of access to data. This uniformity stems from the fact that R is 

polymorphic, which means that a single function can be applied to different types of inputs, 

which the function processes in the appropriate way. Such a function is called a generic 

function. (If you are a C++ programmer, you have seen a similar concept in virtual 

functions.) For instance, consider the plot() function. If you apply it to a list of numbers, you 

get a simple plot. But if you apply it to the output of a regression analysis, you get a set of 

plots representing various aspects of the analysis. Indeed, you can use the plot() function on 

just about any object produced by R. This is nice, since it means that you, as a user, have 

fewer commands to remember. 

Functional Programming: 

As is typical in functional programming languages, a common theme in R programming is 

avoidance of explicit iteration. Instead of coding loops, you exploit R‘s functional features, 

which let you express iterative behavior implicitly. This can lead to code that executes much 

more efficiently, and it can make a huge timing difference when running R on large data sets. 

As you will see, the functional programming nature of the R language offers many 

advantages: 

•   Clearer, more compact code 

•   Potentially much faster execution speed 

•   Less debugging, because the code is simpler 

•   Easier transition to parallel programming 
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4.1 Performance of R: 

R was purposely designed to make data analysis and statistics easier for you to do. It was not 

designed to make life easier for your computer. While R is slow compared to other 

programming languages, for most purposes, it‘s fast enough. To understand R‘s performance, 

it helps to think about R as both a language and as an implementation of that language. The 

R-language is abstract: it defines what R code means and how it should work. The 

implementation is concrete: it reads R code and computes a result. The R-language is mostly 

defined in terms of how GNU-R works. This is in contrast to other languages, like C++ and 

javascript that make a clear distinction between language and implementation by laying out 

formal specifications that describe in minute detail how every aspect of the language should 

work. Beyond performance limitations due to design and implementation, it has to be said 

that a lot of R code is slow simply because it‘s poorly written. Few R users have any formal 

training in programming or software development. Fewer still write R code for a living. Most 

people use R to understand data: it‘s more important to get an answer quickly than to develop 

a system that will work in a wide variety of situations.  

Code optimization is an effective approach to improve the performance of the R code. 

Optimizing code to make it run faster is an iterative process and it follows the 3 step 

approach.  

1. Find the biggest bottleneck (the slowest part of your code). 

2. Try to eliminate it (you may not succeed but that‘s ok). 

3. Repeat until your code is ―fast enough.‖ 

This sounds easy, but it‘s not. 

Even experienced programmers have a hard time identifying bottlenecks in their code. 

Instead of relying on your intuition, you should profile your code: use realistic inputs and 

measure the run time of each individual operation. Only once you‘ve identified the most 

important bottlenecks can you attempt to eliminate them. It‘s difficult to provide general 

advice on improving performance, but if we initiate the steps carefully we can at least 

understand which the potential spots are. It‘s easy to get caught up in trying to remove all 

bottlenecks. Don‘t! Your time is valuable and is better spent analyzing your data, not 

eliminating possible inefficiencies in your code. Be pragmatic: don‘t spend hours of your 

time to save seconds of computer time. To enforce this advice, you should set a goal time for 

your code and optimize only up to that goal. This means you will not eliminate all 

bottlenecks. Some you will not get to because you‘ve met your goal. Others you may need to 

pass over and accept either because there is no quick and easy solution or because the code is 

already well optimized and no significant improvement is possible. Accept these possibilities 

and move on to the next candidate.  

Another important feature related to performance is micro benchmarking. A micro 

benchmark is a measurement of the performance of a very small piece of code, something 
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that might take microseconds (µs) or nanoseconds (ns) to run. This intuition, by-and-large, is 

not useful for increasing the speed of real code. The observed differences in micro 

benchmarks will typically be dominated by higher order effects in real code; a deep 

understanding of subatomic physics is not very helpful when baking. Don‘t change the way 

you code because of these micro benchmarks. Instead wait until you‘ve read the practical 

advice in the following chapters. The best tool for micro benchmarking in R is the 

microbenchmark package. It provides very precise timings, making it possible to compare 

operations that only take a tiny amount of time.  

4.2 The R environment 

R is an integrated suite of software facilities for data manipulation, calculation and graphical 

display. It includes 

 an effective data handling and storage facility, 

 a suite of operators for calculations on arrays, in particular matrices, 

 a large, coherent, integrated collection of intermediate tools for data analysis, 

 graphical facilities for data analysis and display either on-screen or on hardcopy, and 

 a well-developed, simple and effective programming language which includes 

conditionals, loops, user-defined recursive functions and input and output facilities. 

The term ―environment‖ is intended to characterize it as a fully planned and coherent system, 

rather than an incremental accretion of very specific and inflexible tools, as is frequently the 

case with other data analysis software. 

R, like S, is designed around a true computer language, and it allows users to add additional 

functionality by defining new functions. Much of the system is itself written in the R dialect 

of S, which makes it easy for users to follow the algorithmic choices made. For 

computationally-intensive tasks, C, C++ and Fortran code can be linked and called at run 

time. Advanced users can write C code to manipulate R objects directly. 

Many users think of R as a statistics system. We prefer to think of it of an environment within 

which statistical techniques are implemented. R can be extended (easily) via packages. There 

are about eight packages supplied with the R distribution and many more are available 

through the CRAN family of Internet sites covering a very wide range of modern statistics. 

R has its own LaTeX-like documentation format, which is used to supply comprehensive 

documentation, both on-line in a number of formats and in hardcopy. 

4.3 R Packages: 

The capabilities of R are extended through user created packages, which allow specialized 

statistical techniques, graphical devices, import/export capabilities, reporting tools, etc. These 

packages are developed primarily in R, and sometimes in Java, C, C++, and Fortran. A core 

set of packages is included with the installation of R, with more than 7,801 additional 

packages (as of January 2016) available at the Comprehensive R Archive Network (CRAN), 

http://cran.r-project.org/web/packages/microbenchmark/


 
 

 

29 

Bioconductor, Omegahat, GitHub, and other repositories. The "Task Views" page on the 

CRAN website lists a wide range of tasks (in fields such as Finance, Genetics, High 

Performance Computing, Machine Learning, Medical Imaging, Social Sciences and Spatial 

Statistics) to which R has been applied and for which packages are available. R has also been 

identified by the FDA as suitable for interpreting data from clinical research. 

Other R package resources include Crantastic, a community site for rating and reviewing all 

CRAN packages, and R-Forge, a central platform for the collaborative development of R 

packages, R-related software, and projects. R-Forge also hosts many unpublished beta 

packages, and development versions of CRAN packages. The Bioconductor project provides 

R packages for the analysis of genomic data, such as Affymetrix and cDNA microarray 

object-oriented data-handling and analysis tools, and has started to provide tools for analysis 

of data from next generation high throughput sequencing methods. 

 

  

https://en.wikipedia.org/wiki/Bioconductor
https://en.wikipedia.org/w/index.php?title=Omegahat&action=edit&redlink=1
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Bioconductor
https://en.wikipedia.org/wiki/Affymetrix
https://en.wikipedia.org/wiki/Complementary_DNA
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Chapter 5: R + Hadoop , An Integration 

In the beginning, big data and R were not natural friends. R programming requires that all 

objects be loaded into the main memory of a single machine. The limitations of this 

architecture are quickly realized when big data becomes a part of the equation. In contrast, 

distributed file systems such as Hadoop are missing strong statistical techniques but are ideal 

for scaling complex operations and tasks. Vertical scaling solutions requiring investment in 

costly supercomputing hardware often cannot compete with the cost-value return offered by 

distributed, commodity hardware clusters. To conform to the in memory, single machine 

limitations of the R language, data scientists often had to restrict analysis to only a subset of 

the available sample data. Prior to deeper integration with Hadoop, R language programmers 

offered a scale out strategy for overcoming the in memory challenges posed by large data sets 

on single machines. 

 

Fig: RHADOOP Integration 

This was achieved using message-passing systems and paging. This technique is able to 

facilitate work over data sets too large to store in main memory simultaneously; however, its 

low-level programming approach presents a steep learning curve for those unfamiliar with 

parallel programming paradigms. Alternative approaches seek to integrate R‘s statistical 

capabilities with Hadoop‘s distributed clusters using integration with Hadoop Streaming. For 

programmers wishing to program MapReduce jobs in languages (including R) other than 

Java, this option is to make use of Hadoop‘s Streaming API. User-submitted MapReduce jobs 

undergo data transformations with the assistance of UNIX standard streams and serialization, 

guaranteeing Java-compliant input to Hadoop regardless of the language originally inputted 

by the programmer. Developers continue to explore various strategies to leverage the 

distributed computation capability of MapReduce and the almost limitless storage capacity of 

HDFS in ways that can be exploited by R. Integration of Hadoop with R is ongoing, with 

Bridging solutions that integrate high-level programming and querying languages with 

Hadoop, which is RHadoop. I also use this technique to use all the analysis power of R over 

Big Hadoop files.  

5.1 RHADOOP Packages: 

RHadoop is a collection of five R packages that allow users to manage and analyze data with 

Hadoop. The packages have been tested (and always before a release) on recent releases of 

the Cloudera and Hortonworks Hadoop distributions and should have broad compatibility 

with open source Hadoop and mapR's distribution. We normally test on recent Revolution 

R/Microsoft R and CentOS releases, but we expect all the RHadoop packages to work on a 

recent release of open source R and Linux. 
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RHadoop consists of the following packages: 

5.1.1 rJava: Low-Level R to Java Interface: 

Modern programming languages that are mainly used to develop enterprise software systems 

include: Java. These platforms have rich functionality to write business logic, however they 

are not much efficient when it comes to statistical or mathematical modeling. In the field of 

modeling, the major contributors are: R, Weka, Octave etc. Out of these most work as 

simulation environments, however R could be used both, for simulation as well as for 

production level systems. From the above discussion it is clear that intelligence based 

software could not be developed just by using a single technology. To overcome this obstacle 

a combination of technologies should be used. The figure below shows a high level view of 

such an intelligent software system and where each technology fits. 

Fig. R with Java 

From the figure it is clear that a hybrid system has to be created. In the current scenario the 

hybrid system consists of JAVA for business logic programming and R for statistical 

programming. This shows that we have a need to integrate R with Java, which is the main 

theme of this project. 

5.1.2 rhdfs: Integrate R with HDFS 

This R package provides basic connectivity to the Hadoop Distributed File System. R 

programmers can browse, read, write, and modify files stored in HDFS. The following 

functions are part of this package: 

 File Manipulations  

hdfs.copy, hdfs.move, hdfs.rename, hdfs.delete, hdfs.rm, hdfs.del, hdfs.chown, 

hdfs.put, hdfs.get 

 File Read/Write  

hdfs.file, hdfs.write, hdfs.close, hdfs.flush, hdfs.read, hdfs.seek, hdfs.tell, 

hdfs.line.reader, hdfs.read.text.file 

 Directory  

hdfs.dircreate, hdfs.mkdir 

 Utility  

hdfs.ls, hdfs.list.files, hdfs.file.info, hdfs.exists 

 Initialization  

hdfs.init, hdfs.defaults 

http://i2.wp.com/www.codophile.com/wp-content/uploads/2015/04/1.png
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5.1.3 rmr2: Mapreduce job in R: 

Package that allows R developer to perform statistical analysis in R via Hadoop MapReduce 

functionality on a Hadoop cluster. One of the important prerequisites of installing this 

package is rJava. We can install rmr2 if rJava is already in the R. rmr2 package is a good way 

to perform a data analysis in the Hadoop ecosystem. Its advantages are the flexibility and the 

integration within an R environment. Its disadvantages are the necessity of having a deep 

understanding of the MapReduce paradigm and the high amount of required time for writing 

code. I think that it‘s very useful to customize the algorithms only after having used some 

current ones first. For instance, the first stage of the analysis may consist in aggregating data 

through Hive and perform Machine Learning through Mahout. Afterwards, rmr2 allows 

modifying the algorithms in order to improve the performances and fit better the problems. 

The goals of rmr2 package are:         

 To provide map-reduce programmers the easiest, most productive, most elegant way 

to write map reduce jobs. Programs written using the rmr package may need one-two 

orders of magnitude less code than Java, while being written in a readable, reusable 

and extensible language. 

 To give R programmers a way to access the map-reduce programming paradigm 

and way to work on big data sets in a way that is natural for data analysts working in 

R. 

5.1.4 plyrmr: Data Manipulation with mapreduce job 

This R package enables the R user to perform common data manipulation operations, as 

found in popular packages such as plyr and reshape2, on very large data sets stored on 

Hadoop. Like rmr, it relies on Hadoop mapreduce to perform its tasks, but it provides a 

familiar plyr like interface while hiding many of the mapreduce details. plyrmr provides: 

 Hadoop-capable equivalents of well known data.frame functions: transmute and 

bind.cols generalize over transform and summarize; select from dplyr; melt and dcast 

from reshape2; sampling, quantiles, counting and more. 

 Simple but powerful ways of applying many functions operating on data frames to 

Hadoop data sets: gapply and magic.wand. 

 Simple but powerful ways to group data: group, group.f, gather and ungroup. 

 All of the above can be combined by normal functional composition: delayed 

evaluation helps mitigating any performance penalty of doing so by minimizing the 

number of Hadoop jobs launched to evaluate an expression. 

5.1.5 rhbase: Integrate HBase with R 

This R package provides basic connectivity to HBASE, using the Thrift server. R 

programmers can browse, read, write, and modify tables stored in HBASE. Installing the 

package requires that you first install and build Thrift. Once we have the libraries built, be 

https://github.com/RevolutionAnalytics/RHadoop/wiki/user%3Ermr%3EHome
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sure they are in a path where the R client can find them (i.e. /usr/lib). The following functions 

are part of this package: 

 Table Maninpulation  

hb.new.table, hb.delete.table, hb.describe.table, hb.set.table.mode, hb.regions.table 

 Read/Write  

hb.insert, hb.get, hb.delete, hb.insert.data.frame, hb.get.data.frame, hb.scan, 

hb.scan.ex 

 Utility : hb.list.tables 

 Initialization : hb.defaults, hb.init 

 

Fig: R packages for RHADOOP 

5.2 Environment setup for RHADOOP: 

Environment setting is an important task before executing any code. We use different 

libraries in our R code, so we have to set our environment based on those libraries. Generally 

in our RHADOOP operations we use library (rmr2) and library (rhdfs). In rmr2 library we 

use Java , Hadoop streaming and in rhdfs we use Hadoop HDFS, so we have to set the 

environmental variable for Java and Hadoop. 

 1. Java Setup: 

Sys.setenv("JAVA_HOME"="/usr/lib/java/1.8.0_77") 

Sys.setenv("JAVAC"="/usr/lib/java/1.8.0_77/bin/javac") 

Sys.setenv("JAR"="/usr/lib/java/1.8.0_77/bin/jar") 

Sys.setenv("JAVAH"="/usr/lib/java/1.8.0_77/bin/javah") 
2. Hadoop setup: 

Sys.setenv(HADOOP_HOME="/usr/lib/hadoop") 

Sys.setenv(HADOOP_CMD="/usr/lib/hadoop/bin/hadoop") 

Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop/share/hadoop/tools/lib/hadoop-

streaming-2.7.2.jar") 
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5.3 Getting Started with RHADOOP: 

After successfully install all the required RHADOOP packages we will set the environmental 

variables and then our system will be ready for first Code execution. To test our RHADOOP 

we will execute the code that will generate the square of a list of value range (1 to 10). In the 

first section I will explain how I have organized the code and in the second part I will explain 

how the code will execute and generate result. 

 5.3.1 First Code Analysis: 

In this section, I will explain the first RHADOOP code (code 1) that will help us to test our 

integration. We are using the hdfs and mapreduce functionality in our example. We are also 

using time functions to calculate the execution time, which will help us to understand the 

performance of the code.    

start.time <- Sys.time() 

library(rmr2) 

library(rhdfs) 

hdfs.init() 

sample<-1:10 

sints<-to.dfs(sample) 

out<-mapreduce(input = sints, map = function(k,v) keyval(v,v^2)) 

from.dfs(out) 

df<-as.data.frame(from.dfs(out)) 

print(df) 

end.time <- Sys.time() 

time.taken <- end.time - start.time 

time.taken 

Code 1: Code for Square operation 

I have started my coding with assigning the rmr2 and rfdfs libraries and initialized rhdfs 

using hdfs.init() function. Then I have assigned a sequence of values (1 to 10) in sample 

variable. The next lines are for mapreduce jobs. 

sints<-to.dfs(sample) 

out<-mapreduce(input = sints, map = function(k,v) keyval(v,v^2)) 

from.dfs(out) 

This will be the requirement to write our first mapreduce job in rmr. The first line puts the 

data into HDFS, where the bulk of the data has to reside for mapreduce to operate on. It is not 

possible to write out big data with to.dfs, not in a scalable way. to.dfs is nonetheless very 

useful for a variety of uses like writing test cases, learning and debugging. to.dfs can put the 

data in a file of our own choosing, but if we don't specify one, it will create temp files and 

clean them up when done. The return value is something we call a big data object. We can 

assign it to variables, pass it to other rmr functions, mapreduce jobs or read it back in. It is a 

stub, that is, the data is not in memory, only some information that helps finding and 

managing the data. This way we can refer to very large data sets, whose size exceeds memory 

limits.  
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Now onto the second line, it has mapreduce with map function. We prefer named arguments 

with mapreduce, because there are quite a few possible arguments, but it's not mandatory. 

The input is the variable sints which contains the output of to.dfs, that is a stub for our small 

number data set in its HDFS version, but it could be a file path or a list containing a mix of 

both. The function to apply, which is called a map function as opposed to the reduce function, 

which we are not using here, is a regular R function with a few constraints: 

1. It's a function of two arguments, a collection of keys and one of values. 

2. It returns key value pairs using the function keyval, which can have vectors, lists, 

matrices or data.frames as arguments; we can also return NULL. We can avoid calling 

keyval explicitly but the return value x will be converted with a call to 

keyval(NULL,x). This is not allowed in the map function when the reduce function is 

specified and under no circumstance in the combine function, since specifying the key 

is necessary for the shuffle phase. 

In my example, the return value is big data object, and we can pass it as input to other jobs or 

read it into memory with from.dfs. from.dfs is complementary to to.dfs and returns a key-

value pair collection. We use as.data.frame to return the output as frame from.dfs which is 

useful in defining map reduce algorithms whenever a mapreduce job produces something of 

reasonable size, like a summary, that can fit in memory and needs to be inspected to decide 

on the next steps, or to visualize it. It is much more important than to.dfs in production work. 

I have also used time functions (Sys.time()) in my R code. At the beginning, I have used time 

function to initialize the time as start.time and after the execution of all code section, I kept 

track of the time and kept it in end.time. From these two variables, I could easily calculate the 

code execution time.      

start.time <- Sys.time() 

. 

. 

end.time <- Sys.time() 

time.taken <- end.time - start.time 

time.taken 

5.3.2 Code Execution and Log Analysis: 

In this section, I will explain RHADOOP code execution steps with hdfs, mapreduce and 

Hadoop streaming functionality. The execution starts with loading the required packages. As 

we are using libraries, the associated packages need to activate at the beginning. In my case, 

the required packages are methods, rmr2, rJava and rhdfs.   It also loads related objects in the 

execution environment. 

Loading required package: methods 
Loading required package: rmr2 
Loading required package: rJava 
Loading required package: rhdfs 
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When the hadoop command is invoked with a classname as the first argument, it launches a 

Java Virtual Machine (JVM) to run the class. The hadoop command adds the Hadoop 

libraries (and their dependencies) to the classpath and picks up the Hadoop configuration, 

too. To add the application classes to the classpath, we‘ve defined an environment variable 

called HADOOP_CMD=/usr/lib/hadoop/bin/hadoop, which the hadoop script picks up. 

At the beginning, the mapreduce job assigns a job name (local1534009156_0001) for an 

entire session and initiate the task. There is one map task 

(local1534009156_0001_m_000000_0) assigned for this mapreduce operation. After the 

initiation of the job, the map and reduce procedure runs separately.  In my first code, I have 

not used any reduce function, so there will be no reducer (numReduceTasks: 0) operations. 

Hadoop streaming will be executed through pipe MapRed operations and it will complete the 

map and finish the job. An output file will be generated to default location 

(hdfs://localhost:9000/tmp/..). 

 

16/07/09 21:18:46 INFO mapreduce.Job: Running job: job_local1534009156_0001 

16/07/09 21:18:46 INFO mapred.LocalJobRunner: Waiting for map tasks 

16/07/09 21:18:46 INFO mapred.LocalJobRunner: Starting task: 

attempt_local1534009156_0001_m_000000_0 
16/07/09 21:18:47 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ] 

16/07/09 21:18:47 INFO mapred.MapTask: Processing split: 

hdfs://localhost:9000/tmp/file132a2d72e8fa:0+417 

16/07/09 21:18:47 INFO mapreduce.Job: Job job_local1534009156_0001 running in uber 

mode : false 

16/07/09 21:18:47 INFO mapreduce.Job:  map 0% reduce 0% 

16/07/09 21:18:47 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib 

library 

16/07/09 21:18:47 INFO compress.CodecPool: Got brand-new decompressor [.deflate] 

16/07/09 21:18:47 INFO mapred.MapTask: numReduceTasks: 0 

16/07/09 21:18:47 INFO streaming.PipeMapRed: PipeMapRed exec [/usr/bin/Rscript, --

vanilla, ./rmr-streaming-map132a75f36d3b] 

16/07/09 21:18:47 INFO Configuration.deprecation: map.input.length is deprecated. Instead, 

use mapreduce.map.input.length 

16/07/09 21:18:47 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use 

mapreduce.job.id 

16/07/09 21:18:47 INFO Configuration.deprecation: user.name is deprecated. Instead, use 

mapreduce.job.user.name 

16/07/09 21:18:47 INFO Configuration.deprecation: mapred.task.partition is deprecated. 

Instead, use mapreduce.task.partition 

16/07/09 21:18:47 INFO streaming.PipeMapRed: R/W/S=1/0/0 in:NA [rec/s] out:NA [rec/s] 

16/07/09 21:18:49 INFO streaming.PipeMapRed: Records R/W=3/1 

16/07/09 21:18:49 INFO streaming.PipeMapRed: MRErrorThread done 

16/07/09 21:18:49 INFO streaming.PipeMapRed: mapRedFinished 

16/07/09 21:18:49 INFO mapred.LocalJobRunner:  

16/07/09 21:18:50 INFO mapred.Task: Task: attempt_local1534009156_0001_m_000000_0 

is done. And is in the process of committing 

16/07/09 21:18:50 INFO mapred.LocalJobRunner:  

16/07/09 21:18:50 INFO mapred.Task: Task attempt_local1534009156_0001_m_000000_0 
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is allowed to commit now 

16/07/09 21:18:50 INFO output.FileOutputCommitter: Saved output of task 

'attempt_local1534009156_0001_m_000000_0' to 

hdfs://localhost:9000/tmp/file132a15fcee89/_temporary/0/task_local1534009156_0001_m

_000000 

16/07/09 21:18:50 INFO mapred.LocalJobRunner: Records R/W=3/1 

16/07/09 21:18:50 INFO mapred.Task: Task 'attempt_local1534009156_0001_m_000000_0' 

done. 

16/07/09 21:18:50 INFO mapred.LocalJobRunner: Finishing task: 

attempt_local1534009156_0001_m_000000_0 

16/07/09 21:18:50 INFO mapred.LocalJobRunner: map task executor complete. 

16/07/09 21:18:50 INFO mapreduce.Job:  map 100% reduce 0% 

16/07/09 21:18:51 INFO mapreduce.Job: Job job_local1534009156_0001 completed 

successfully 
 

The next section of the output, which deals with Counters, shows the statistics that Hadoop 

generates for each job it runs. These are very useful for the purpose of checking whether the 

amount of data processed matches with our expectation. The system will assign 20 counters 

for the mapreduce job. It will start with file system counters. There will be a counter for each 

file system (Local, HDFS, etc). We can receive general idea about the reading, writing, and 

their operations from this counter.  

16/07/09 21:18:51 INFO mapreduce.Job: Counters: 20 
 
File System Counters 
                FILE: Number of bytes read=119969 
                FILE: Number of bytes written=412415 
                FILE: Number of read operations=0 
                FILE: Number of large read operations=0 
                FILE: Number of write operations=0 
                HDFS: Number of bytes read=420 
                HDFS: Number of bytes written=1886 
                HDFS: Number of read operations=9 
                HDFS: Number of large read operations=0 
                HDFS: Number of write operations=3 

       

 

The final section of counter deals with Map Reduce Framework. The number of input records 

consumed by all the maps in the job is denoted by Map input record and in this case it is 3. 

The number of Map output records is 21. As there is no reduce operation in our code, Reduce 

input/ output events are absent. Hadoop mapreduce job only works with mapper and generate 

result based on it.  

Map-Reduce Framework 
                

                Map input records=3 
                Map output records=21 
                Input split bytes=94 
                Spilled Records=0 
                Failed Shuffles=0 
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                Merged Map outputs=0 
                GC time elapsed (ms)=0 
                Total committed heap usage (bytes)=158334976 

                 

 

Result: 

The final section is designated for the result. System will generate the square of the series of 

value (1 to 10). In the result system, the time of code execution will also be shown. Total 

execution time is 1.089565. 

   key val 

1    1   1 

2    2   4 

3    3   9 

4    4  16 

5    5  25 

6    6  36 

7    7  49 

8    8  64 

9    9  81 

10  10 100 

> end.time <- Sys.time() 

> time.taken <- end.time - start.time 

> time.taken 

Time difference of 1.089565 mins 
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Chapter 6: Case Study 1: GDP of a Country: 

In the first case study, I am going to demonstrate Gross domestic product (GDP) data analysis 

using RHadoop. This Data set is available in World Bank data catalog 

(http://datacatalog.worldbank.org) site, which represents the present (2015) GDP of 195 

countries. We will compare all the GDP data with a fixed value and finally attempt to know 

how many countries are in Poor and Rich (using set a random GDP) category. In this case 

study, I am going to use functionality of HDFS and MapReduce. 

6.1 GDP Data set 

This data set contains four columns with different variables. First column is the Country code 

of the individual countries and the assigned data type is Character. 2
nd

 one is the Ranking of 

the country (1 to 195) and they are Numeric Integers. 3nd one is the full name of the country, 

whose data type is Character, and final one is the GDP value given is million USD and used 

data type is Numeric Integer.  

Ccode: Character type  

Rank: Numeric Integer (1 to 195) 

Country:  Character type (Full Name of the country) 

GDP:  Numeric Integer (GDP Value) 

 

The data, as it is, is not worthy of processing. The data needs to be adjusted first, to make it 

suitable for MapReduce algorithm. The final format that we have used for data analysis is as 

follows (where the last column is the GDP of the given country in millions USD). As we 

using CSV format, all the data is separated by comma (,).  

 

6.2 Code Analysis for GDP 

I have started my code with assigning the rmr2 and rfdfs libraries and initialized rhdfs using 

hdfs.init() function. Theses libraries are associated with HDFS file system operation and 

mapreduce jobs. 

library(rmr2) 

library(rhdfs) 

hdfs.init() 

 

Ccode Rank Country GDP

USA 1 United States 17419000

CHN 2 China 10354832

JPN 3 Japan 4601461

DEU 4 Germany 3868291

GBR 5 United Kingdom 2988893

FRA 6 France 2829192

BRA 7 Brazil 2416636

ITA 8 Italy 2141161

IND 9 India 2048517

RUS 10 Russian Federation 1860598

CAN 11 Canada 1785387

http://datacatalog.worldbank.org/
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Next section is for data insertion and pre processing.  hdfs.file command is used to specifying 

the hadoop HDFS file in read mode. This function can be used to read and write files both on 

the local file system and the HDFS. If the object is a raw vector, it is written directly to 

the HDFS connection object, otherwise it is serialized and the bytes written to the connection. 

An environment will be assigned to ashd after hdfs.file operation. Using the hdfs.read 

command,we can read the ashd environment. rawToChar converts raw bytes(already in m) 

either to a single character string or a character vector of single bytes. Finally we will read 

this character as table format, so our data will now be available in gdp variable as tabular 

format.   

ashd <- hdfs.file("/usr/hduser/TGDP.csv",mode="r") 

m = hdfs.read(ashd) 

c = rawToChar(m) 

gdp = read.table(textConnection(c),header = TRUE, sep = ",") 

In this GDP case study, hdfs data is stored to gdp.values using to.dfs, which can put the data 

in a file but if we don't specify one, it will create temp files and clean them up when done. 

The return value is something we call a big data object. We can assign it to variables, pass it 

to other rmr functions, mapreduce jobs or read it back in. It is a stub, that is the data is not in 

memory, only some information that helps finding and managing the data. This way we can 

refer to very large data sets, whose size exceeds memory limits.  

The next part is dedicated for logical operation. I have assigned a random value to the 

variable and compared gdp (v[4]) value of the data set with it. If the GDP is less than the 

variable, the GDP will be either in the Poor group, otherwise in the Rich group.  

The final section is for the mapreduce job. In the mapreduce function, we have used 

gdp.values as input. Both map and reduce options are using keyval pairs to assign the specific 

job. from.dfs is complementary to to.dfs and returns a key-value pair collection which will 

generate the final result for this program. 

gdp.values <- to.dfs(gdp) 

Minavg = 50000 

gdp.map.fn <- function(k,v) { 

key <- ifelse(v[4] < Minavg, "Poor", "Rich") 

                keyval(key, 1) 

                } 

                

count.reduce.fn <- function(k,v) {  keyval(k, length(v)) } 

count <- mapreduce(input=gdp.values, map = gdp.map.fn, reduce = count.reduce.fn) 

from.dfs(count) 

 

I have also used time function (Sys.time()) in my R code. At the beginning, I have used time 

function to initialize the time as start.time and after the execution of all code section, I have 
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kept track of the time and keep it in end.time. From these two variables, I can easily calculate 

the code execution time.      

start.time <- Sys.time() 

. 

. 

end.time <- Sys.time() 

time.taken <- end.time - start.time 

time.taken 

 

6.3 Code Execution and Log Analysis 

In this section, I am going to explain the code execution steps with hdfs, mapreduce and 

Hadoop streaming functionality. The execution will start with loading the required packages. 

As we are using libraries, the associated packages need to be activated first. In my case the 

required packages are methods, rmr2, rJava and rhdfs. It also loads related objects in the 

execution environment. 

Loading required package: methods 
Loading required package: rmr2 
Loading required package: rJava 
Loading required package: rhdfs 

 

When the hadoop command is invoked with a classname as the first argument, it launches a 

Java Virtual Machine (JVM) to run the class. The hadoop command adds the Hadoop 

libraries (and their dependencies) to the classpath and picks up the Hadoop configuration, 

too. To add the application classes to the classpath, we‘ve defined an environment variable 

called HADOOP_CMD=/usr/lib/hadoop/bin/hadoop, which the hadoop script picks up. 

Initially, the mapreduce job assigns a job id (local20849418_0001) for an entire session and 

start the task. There is one map task (local20849418_0001_m_000000_0) and one reduce task 

(local20849418_0001_r_000000_0) is assigned for this mapreduce operation. After starting 

the job, the map and reduce procedure runs separately.  Hadoop streaming will start execution 

through pipe MapRed operations, first complete the map, and then finish reduce and finally 

complete the entire job. Mapreduce operation can be explained as: 

 Assign id for map (local20849418_0001_m_000000_0) and reduce 

(local20849418_0001_r_000000_0) task. 

 Initialize mapreduce.Job:  map 0% reduce 0% 

 Complete the map task and start the reduce task. map 100% reduce 0% 

 Complete the reduce task. map 100% reduce 100% 

An output file will be generated to a default location (hdfs://localhost:9000/tmp/..). 
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16/07/09 21:39:12 INFO mapreduce.Job: The url to track the job: http://localhost:8080/ 

16/07/09 21:39:12 INFO mapreduce.Job: Running job: job_local20849418_0001 

16/07/09 21:39:12 INFO mapred.LocalJobRunner: Waiting for map tasks 

16/07/09 21:39:12 INFO mapred.LocalJobRunner: Starting task: 

attempt_local20849418_0001_m_000000_0 

16/07/09 21:39:12 INFO mapred.MapTask: numReduceTasks: 1 

16/07/09 21:39:13 INFO mapreduce.Job:  map 0% reduce 0% 

16/07/09 21:39:14 INFO streaming.PipeMapRed: Records R/W=3/1 

16/07/09 21:39:14 INFO mapred.Task: Task:attempt_local20849418_0001_m_000000_0 is 

done. And is in the process of committing 

16/07/09 21:39:14 INFO mapred.LocalJobRunner: Records R/W=3/1 

16/07/09 21:39:14 INFO mapred.Task: attempt_local20849418_0001_m_000000_0' done. 

16/07/09 21:39:14 INFO mapred.LocalJobRunner: Finishing task: 

attempt_local20849418_0001_m_000000_0 

16/07/09 21:39:14 INFO mapred.LocalJobRunner: map task executor complete. 

16/07/09 21:39:14 INFO mapred.LocalJobRunner: Waiting for reduce tasks 

16/07/09 21:39:14 INFO mapred.LocalJobRunner: Starting task: 

attempt_local20849418_0001_r_000000_0 
16/07/09 21:39:14 INFO reduce.EventFetcher: attempt_local20849418_0001_r_000000_0 

Thread started: EventFetcher for fetching Map Completion Events 

16/07/09 21:39:15 INFO mapreduce.Job:  map 100% reduce 0% 

16/07/09 21:39:16 INFO streaming.PipeMapRed: Records R/W=5/1 

16/07/09 21:39:16 INFO streaming.PipeMapRed: MRErrorThread done 

16/07/09 21:39:16 INFO streaming.PipeMapRed: mapRedFinished 

16/07/09 21:39:16 INFO mapred.Task: Task:attempt_local20849418_0001_r_000000_0 is 

done. And is in the process of committing 

16/07/09 21:39:16 INFO mapred.Task: Task attempt_local20849418_0001_r_000000_0 is 

allowed to commit now 

16/07/09 21:39:16 INFO output.FileOutputCommitter: Saved output of task 

'attempt_local20849418_0001_r_000000_0' to 

hdfs://localhost:9000/tmp/file132a1a7fec10/_temporary/0/task_local20849418_0001_r_0000

00 

16/07/09 21:39:16 INFO mapred.LocalJobRunner: Records R/W=5/1 > reduce 

16/07/09 21:39:16 INFO mapred.Task: Task 'attempt_local20849418_0001_r_000000_0' 

done. 

16/07/09 21:39:16 INFO mapred.LocalJobRunner: Finishing task: 

attempt_local20849418_0001_r_000000_0 

16/07/09 21:39:16 INFO mapred.LocalJobRunner: reduce task executor complete. 

16/07/09 21:39:17 INFO mapreduce.Job:  map 100% reduce 100% 

16/07/09 21:39:17 INFO mapreduce.Job: Job job_local20849418_0001 completed 

 

 

The next section of the log deals with Counters, which projects the statistics that Hadoop 

generates for every job it runs. These are very useful for ascertaining whether the amount of 

data processed is what we expected beforehand. System assigns 36 counters for mapreduce 

task. It starts with the file system counters. There is a designated counter for each file system 

(Local, HDFS, etc). We can have general ideas about the read, write, and their operations 

from this counter.  

http://localhost:8080/
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16/07/09 21:39:17 INFO mapreduce.Job: Counters: 36 
        File System Counters 
                FILE: Number of bytes read=265302 
                FILE: Number of bytes written=849258 
                FILE: Number of read operations=0 
                FILE: Number of large read operations=0 
                FILE: Number of write operations=0 
                HDFS: Number of bytes read=8670 
                HDFS: Number of bytes written=1623 
                HDFS: Number of read operations=17 
                HDFS: Number of large read operations=0 
                HDFS: Number of write operations=4 

       

 

The final section of counter deals with Map Reduce Framework. The number of input records 

consumed by all the maps in the job is denoted by Map input record and for this case it is 3. 

The number of Map output records is 5. As there is no combiner, the input records of Reduce 

will be the same as the output records of Map. In this case, Hadoop mapreduce job handles 

both the mapper and reducer to generate result.  

Map-Reduce Framework 
                Map input records=3 
                Map output records=5 
                Map output bytes=2705 
                Map output materialized bytes=2728 
                Input split bytes=94 
                Combine input records=0 
                Combine output records=0 
                Reduce input groups=2 
                Reduce shuffle bytes=2728 
                Reduce input records=5 
                Reduce output records=6 
                Spilled Records=10 
                Shuffled Maps =1 
                Failed Shuffles=0 
                Merged Map outputs=1 
                GC time elapsed (ms)=17 
                Total committed heap usage (bytes)=528482304 

 

Result: 

The result is separated into two groups: Rich and Poor. In our simplified analysis, 81 

countries are Rich and the remaining 114 are Poor. The total program execution time is 

33.60417. 

> from.dfs(count) 

$key   GDP    

 "Rich" 

 "Poor" 

$val 

[1]  81 114 

Time difference of 33.60417 secs 
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Chapter 7: Case Study 2: Operation on Flight Data set 

In my second case study, I am going to analyze Flight data set using RHadoop. This Data set 

is available in Statistical computing (http://stat-computing.org/dataexpo/2009/the-data.html ) 

web site, which contains flight data of different years. In this case study, I am using the data 

of 2005 to find out the number of flight were cancelled in that year. 

7.1 Flight Data set 

This data set contains 29 variables and our focus is on 22
nd

 variable which is labeled as 

cancelled. This data set contains millions of rows, and for our experiment we have created 2 

different data sets containing 1 million and 1.5 million rows. For both data sets , we will find 

out number of flights were cancelled in the year 2005.     

 
 

 

 

http://stat-computing.org/dataexpo/2009/the-data.html
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7.2 Code Analysis for Flight Operations   

I have started my code with assigning the rmr2 and rfdfs libraries and initialized rhdfs using 

hdfs.init() function. Theses libraries are associated with HDFS file system operation and 

mapreduce jobs. 

library(rmr2) 

library(rhdfs) 

hdfs.init() 

 

Next section is for data insertion and pre processing.  hdfs.file command is used to specifying 

the hadoop HDFS file in read mode. This function can be used to read and write files both on 

the local file system and the HDFS. If the object is a raw vector, it is written directly to 

the HDFS connection object, otherwise it is serialized and the bytes written to the connection. 

An environment will be assigned to ashd after hdfs.file operation. Using the hdfs.read 

command, we can read the ashd environment. rawToChar converts raw bytes(already in m) 

either to a single character string or a character vector of single bytes. Finally we will read 

this character as table format, so our data will now be available in data variable as tabular 

format. As this hdfs file contains millions of rows, it‘s really time consuming to insert the 

data into the variable.    

ashd <- hdfs.file("/usr/hduser/flight1M.csv",mode="r") 

m = hdfs.read(ashd) 

c = rawToChar(m) 

data = read.table(textConnection(c),header = TRUE, sep = ",") 

In this case study, hdfs data is stored to data.values using to.dfs, which can put the data in a 

file but if we don't specify one, it will create temp files and clean them up when done. The 

return value is something we call a big data object. We can assign it to variables, pass it to 

other rmr functions, mapreduce jobs or read it back in. It is a stub, that is the data is not in 

memory, only some information that helps finding and managing the data. This way we can 

refer to very large data sets, whose size exceeds memory limits.  

The next part is dedicated for logical operation. We are dealing with the variable ―Cancelled‖ 

(v[23]) which contains Boolean value(0/1). If it is 1, the flight was delayed and otherwise its 

ok. I used this logic in my code.  

The final section is for the mapreduce job. In the mapreduce function, we have used 

data.values as input. Both map and reduce options are using keyval pairs to assign the 

specific job. from.dfs is complementary to to.dfs and returns a key-value pair collection 

which will generate the final result for this program. 
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data.values <- to.dfs(data) 

data.map.fn <- function(k,v) { 

key <- ifelse(v[23] ==1, "Delay", "Ok") 

                keyval(key, 1) 

                } 

                

count.reduce.fn <- function(k,v) {  keyval(k, length(v)) } 

count <- mapreduce(input=data.values, map = data.map.fn, reduce = count.reduce.fn) 

from.dfs(count) 

I have also used time function (Sys.time()) in my R code. At the beginning, I have used time 

function to initialize the time as start.time and after the execution of all code section, I have 

kept track of the time and keep it in end.time. From these two variables, I can easily calculate 

the code execution time.      

start.time <- Sys.time() 

. 

. 

end.time <- Sys.time() 

time.taken <- end.time - start.time 

time.taken 

 

7.3 Code Execution and Log Analysis 

In this section, I am going to explain the code execution steps with hdfs, mapreduce and 

Hadoop streaming functionality. The execution will start with loading the required packages. 

As we are using libraries, the associated packages need to be activated first. In my case the 

required packages are methods, rmr2, rJava and rhdfs. It also loads related objects in the 

execution environment. 

Loading required package: methods 
Loading required package: rmr2 
Loading required package: rJava 
Loading required package: rhdfs 

 

When the hadoop command is invoked with a classname as the first argument, it launches a 

Java Virtual Machine (JVM) to run the class. The hadoop command adds the Hadoop 

libraries (and their dependencies) to the classpath and picks up the Hadoop configuration, 

too. To add the application classes to the classpath, we‘ve defined an environment variable 

called HADOOP_CMD=/usr/lib/hadoop/bin/hadoop, which the hadoop script picks up. 

Initially, the mapreduce job assigns a job id (local789849698_0001) for an entire session and 

start the task. There is one map task (local789849698_0001_m_000000_0) and one reduce 

task (local789849698_0001_r_000000_0) is assigned for this mapreduce operation. After 

starting the job, the map and reduce procedure runs separately.  Hadoop streaming will start 
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execution through pipe MapRed operations, first complete the map, and then finish reduce 

and finally complete the entire job. Mapreduce operation can be explained as: 

 Assign id for map (local789849698_0001_m_000000_0) and reduce 

(local789849698_0001_r_000000_0) task. 

 Initialize mapreduce.Job:  map 0% reduce 0% 

 Complete the map task and start the reduce task. map 100% reduce 0% 

 Complete the reduce task. map 100% reduce 100% 

An output file will be generated to a default location (hdfs://localhost:9000/tmp/..). 

 
16/07/09 22:47:00 INFO mapreduce.JobSubmitter: Submitting tokens for job: 
job_local789849698_0001 
16/07/09 22:47:03 INFO mapred.LocalJobRunner: Waiting for map tasks 
16/07/09 22:47:03 INFO mapred.LocalJobRunner: Starting task: 
attempt_local789849698_0001_m_000000_0 
16/07/09 22:47:03 INFO mapreduce.Job:  map 0% reduce 0% 
16/07/09 22:47:05 INFO mapred.MapTask: numReduceTasks: 1 
16/07/09 22:47:09 INFO mapreduce.Job:  map 1% reduce 0% 
16/07/09 22:47:18 INFO mapreduce.Job:  map 5% reduce 0% 
16/07/09 22:47:19 INFO streaming.PipeMapRed: Records R/W=10/1 
16/07/09 22:47:24 INFO mapred.LocalJobRunner: Records R/W=10/1 > map 
16/07/09 22:47:24 INFO mapreduce.Job:  map 21% reduce 0% 
16/07/09 22:47:27 INFO mapred.LocalJobRunner: Records R/W=10/1 > map 
16/07/09 22:47:28 INFO mapreduce.Job:  map 23% reduce 0% 
16/07/09 22:47:30 INFO streaming.PipeMapRed: Records R/W=50/24 
16/07/09 22:47:30 INFO mapred.LocalJobRunner: Records R/W=50/24 > map 
16/07/09 22:47:31 INFO mapreduce.Job:  map 32% reduce 0% 
16/07/09 22:47:33 INFO mapred.LocalJobRunner: Records R/W=50/24 > map 
16/07/09 22:47:34 INFO mapreduce.Job:  map 36% reduce 0% 
16/07/09 22:47:36 INFO mapred.LocalJobRunner: Records R/W=50/24 > map 
16/07/09 22:47:37 INFO mapreduce.Job:  map 49% reduce 0% 
16/07/09 22:47:38 INFO streaming.PipeMapRed: R/W/S=100/58/0 in:3=100/31 [rec/s] 
out:1=58/31 [rec/s] 
16/07/09 22:47:39 INFO mapred.LocalJobRunner: Records R/W=50/24 > map 
16/07/09 22:47:40 INFO mapreduce.Job:  map 63% reduce 0% 
16/07/09 22:47:42 INFO streaming.PipeMapRed: Records R/W=123/69 
16/07/09 22:47:42 INFO mapred.LocalJobRunner: Records R/W=123/69 > map 
16/07/09 22:47:43 INFO mapreduce.Job:  map 67% reduce 0% 
16/07/09 22:47:45 INFO streaming.PipeMapRed: MRErrorThread done 
16/07/09 22:47:45 INFO streaming.PipeMapRed: mapRedFinished 
16/07/09 22:47:45 INFO mapred.LocalJobRunner: Records R/W=123/69 > map 
16/07/09 22:47:45 INFO mapred.MapTask: Starting flush of map output 
16/07/09 22:47:45 INFO mapred.MapTask: Spilling map output 
16/07/09 22:47:47 INFO mapred.Task: Task 'attempt_local789849698_0001_m_000000_0' 
done. 
16/07/09 22:47:47 INFO mapred.LocalJobRunner: Finishing task: 
attempt_local789849698_0001_m_000000_0 
16/07/09 22:47:47 INFO mapred.LocalJobRunner: map task executor complete. 
16/07/09 22:47:47 INFO mapreduce.Job:  map 100% reduce 0% 
16/07/09 22:47:47 INFO mapred.LocalJobRunner: Waiting for reduce tasks 
16/07/09 22:47:47 INFO mapred.LocalJobRunner: Starting task: 
attempt_local789849698_0001_r_000000_0 
16/07/09 22:47:54 INFO mapreduce.Job:  map 100% reduce 69% 
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16/07/09 22:48:12 INFO mapred.LocalJobRunner: reduce > reduce 
16/07/09 22:48:12 INFO mapreduce.Job:  map 100% reduce 100% 
16/07/09 22:48:16 INFO streaming.PipeMapRed: Records R/W=75/1 
16/07/09 22:48:16 INFO streaming.PipeMapRed: MRErrorThread done 
16/07/09 22:48:16 INFO streaming.PipeMapRed: mapRedFinished 
16/07/09 22:48:20 INFO mapred.Task: Task:attempt_local789849698_0001_r_000000_0 is 
done. And is in the process of committing 
16/07/09 22:48:20 INFO mapred.LocalJobRunner: reduce > reduce 
16/07/09 22:48:20 INFO mapred.Task: Task attempt_local789849698_0001_r_000000_0 is 
allowed to commit now 
16/07/09 22:48:20 INFO output.FileOutputCommitter: Saved output of task 
'attempt_local789849698_0001_r_000000_0' to 
hdfs://localhost:9000/tmp/file132a4e48f65/_temporary/0/task_local789849698_0001_r_000000 
16/07/09 22:48:20 INFO mapred.LocalJobRunner: Records R/W=75/1 > reduce 
16/07/09 22:48:20 INFO mapred.Task: Task 'attempt_local789849698_0001_r_000000_0' done. 
16/07/09 22:48:20 INFO mapred.LocalJobRunner: Finishing task: 
attempt_local789849698_0001_r_000000_0 
16/07/09 22:48:20 INFO mapred.LocalJobRunner: reduce task executor complete. 
16/07/09 22:48:21 INFO mapreduce.Job: Job job_local789849698_0001 completed successfully 

 

 

The next section of the log deals with Counters, which projects the statistics that Hadoop 

generates for every job it runs. These are very useful for ascertaining whether the amount of 

data processed is what we expected beforehand. System assigns 36 counters for mapreduce 

task. It starts with the file system counters. There is a designated counter for each file system 

(Local, HDFS, etc). We can have general ideas about the read, write, and their operations 

from this counter.  

16/07/09 22:48:22 INFO mapreduce.Job: Counters: 36 
        File System Counters 
                FILE: Number of bytes read=51430106 
                FILE: Number of bytes written=60307376 
                FILE: Number of read operations=0 
                FILE: Number of large read operations=0 
                FILE: Number of write operations=0 
                HDFS: Number of bytes read=43343196 
                HDFS: Number of bytes written=1677 
                HDFS: Number of read operations=17 
                HDFS: Number of large read operations=0 
                HDFS: Number of write operations=4 

       

 

The final section of counter deals with Map Reduce Framework. The number of input records 

consumed by all the maps in the job is denoted by Map input record and for this case it is 

123. The number of Map output records is 75. As there is no combiner, the input records of 

Reduce will be the same as the output records of Map. Reduce input group is 30 which 

handles 75 reduce input records and finally generate 6 reduce output record. In this case, 

Hadoop mapreduce job handles both the mapper and reducer to generate result.  
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Map-Reduce Framework 
                Map input records=123 
                Map output records=75 
                Map output bytes=8018180 
                Map output materialized bytes=8018456 
                Input split bytes=94 
                Combine input records=0 
                Combine output records=0 
                Reduce input groups=30 
                Reduce shuffle bytes=8018456 
                Reduce input records=75 
                Reduce output records=6 
                Spilled Records=150 
                Shuffled Maps =1 
                Failed Shuffles=0 
                Merged Map outputs=1 
                GC time elapsed (ms)=373 
                Total committed heap usage (bytes)=404750336 
 

 

Result: 

The result is separated into two groups: Delay and Ok. In our simplified analysis, in 1 million 

flights only 32743 flights were delay. The total program execution time is 6.469971 mins. 

$key 
  Cancelled 
 "Ok"      
 "Delay"   

 
$val 
[1] 967257  32743 

 
>  
> end.time <- Sys.time() 
> time.taken <- end.time - start.time 
> time.taken 
Time difference of 6.469971 mins 
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Chapter 8: Observations of Case studies 

In the case studies, I used RHADOOP to analyze few set of data. The goal is to understand 

the RHADOOP and the working principle of Mapreduce over Hadoop files. I have 

successfully finished my first work and I learned a lot from my experience. In the below 

section I am explaining my observations for these case studies: 

8.1 Managing Big Data set:  

We used different size of data files in our case studies. In GDP case we used very small data 

set. Whatever the size of data set, we have to pre process to avoid the anomalies. In Flight 

analysis case, we in fact used 2 data sets with 1 million and 1.5 Million rows. In case of data 

analysis, maximum time spend for data initialization to variables. We used different 

approaches to understand the operations and performance.      

Approach 1: Direct from local directory: System can read and insert all the data to 

variable. RHADOOP can analysis data using mapreduce functionality. 

data <- read.csv("/home/hduser/Downloads/flight1M.csv") 

 
Approach 2: Using HDFS option and hdfs.file command: System uses character 

conversion option and can read / insert all the data to variable. In case of missing values and 

special characters in the file, interruption can happen. RHADOOP can analysis data using 

mapreduce functionality. 

ashd <- hdfs.file("/usr/hduser/flight1M.csv",mode="r") 

m = hdfs.read(ashd) 

c = rawToChar(m) 

data = read.table(textConnection(c),header = TRUE, sep = ",") 

 
Approach 3: Using HDFS option and hdfs.line.reader command: System uses this 

command to read / insert specific number of rows. Default numbers of rows are 1000. I used 

100000 numbers of rows and it worked perfectly but when I used 1M rows system failed and 

crashed. RHADOOP can analysis upto 100000 rows of data using mapreduce functionality. 

reader = hdfs.line.reader("/usr/hduser/flight1M.csv") 

xx = reader$read() 

data=read.table(textConnection(xx),header = TRUE,sep = ",") 

 
Approach 4: Using HDFS option and hdfs.read.text.file command: System uses this 

command to read / insert the whole data file but handle 100000 numbers of rows. RHADOOP 

can analysis upto 100000 rows of data using mapreduce functionality. 

red=hdfs.read.text.file("/usr/hduser/flight1M.csv") 

x = red$read() 

data2=read.table(textConnection(x),header = TRUE,sep = ",") 
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8.2 MapReduce Job Balance:   

In all my mapreduce operation, I found balance between Mapper and Reducer. The number 

of input records consumed by all the maps in the job is denoted by Map input record and for 

this case it is 123. The number of Map output records is 75. As there is no combiner, the 

input records of Reduce will be the same as the output records of Map. Reduce input group is 

30 which handles 75 reduce input records and finally generate 6 reduce output record. In this 

case, Hadoop mapreduce job handles both the mapper and reducer to generate result. If there 

is no reducer, there will be no Reduce input / output records.   

Map-Reduce Framework 
                Map input records=123 
                Map output records=75 
                Reduce input groups=30 
                Reduce input records=75 
                Reduce output records=6   

8.3 Define number of Mapper & Reducer: 

Number of mappers and reducers initially depends on the number of data blocks. If we define 

any map-reduce job, system generates mapper / reducer (or Both) id based on the primary 

mapreduce id. As of the definition of rmr2 package, we can define number of mappers and 

reducer using backend parameters. I did an experiment based on this idea. For the same data 

set I changed the number of mappers and reducers using rmr2 package parameters. The result 

was impressive, with the increase of mappers and reducers, execution time was decreasing. 

But I did not get any concrete information from the log files and also there has not enough 

documentation for this type of package parameters.  

Count <- mapreduce(input=data.values,map = data.map.fn,reduce = 

count.reduce.fn,backend.parameters = list((hadoop=list(D='mapred.reduce.tasks=1', 

D='mapred.map.tasks=2')))) 

 

Number of rows Mapper Reducer Time 

1M 2 1 6.434929 

1M 3 1 5.530457 

1M 3 2 5.120123 

1M 5 2 4.766741 

8.4 Environment and Libraries:  

Setting up environmental variables for associated libraries and packages is not easy. We have 

to set this for each and every session. Before execution of any code, we have to assign those 

variables properly. When the hadoop command is invoked with a classname in the code, it 

launches a Java Virtual Machine (JVM) to run the class. The hadoop command adds the 

Hadoop libraries (and their dependencies) to the classpath and picks up the Hadoop 

configuration, too. To add the application classes to the classpath, we‘ve defined an 

environment variable called HADOOP_CMD=/usr/lib/hadoop/bin/hadoop, which the hadoop 

script picks up. 
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Chapter 9: Conclusion: 

 

Hadoop is the most widely accepted and used open source framework to compute big data 

analysis in an easily scalable environment. It‘s a fault tolerant, reliable, highly scalable, cost-

effective solution, that can handle petabytes of data. Its two main components: HDFS and 

MapReduce contribute to the success of Hadoop. It can handle the task of storing and 

analyzing unstructured data. Hadoop is a tried and tested solution in the production 

environment and well adopted by industry leading organizations like Google, Yahoo, and 

Facebook. The power of Hadoop becomes even more enhanced, when we integrate R with it. 

After combining both, we can use Hadoop for data storage and mapreduce job and R for data 

analysis together.  

 

In this project, I have successfully used RHADOOP for my case studies. Hadoop had been 

used for HDFS & mapreduce job and for setting logic and data analysis, R worked perfectly 

here. These case studies helped me to learn about the operational steps of hdfs and mapreduce 

jobs. I have used different ways for setting and analyzing the data and observed each and 

every option. I strongly feel that the success of every work depends on the proper analysis of 

the operational features, thus, I have tried my best to know about RHADOOP and its 

operational features for data analysis. 

 

While working with this technology, the fascination and the interest on the subject matter 

bloomed into me. I aspire to work in detail with the performance issues of mapreduce job and 

I have already started working on it.      
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Appendix 

In this section I am going to explain the installation process of RHADOOP Packages. 

1. rJava : Low-Level R to Java Interface: 

1.1 Install Java 

To start, we need Java. We can download the Java Runtime Environment (JRE) and Java 

Development Kit (JDK). After properly installation of Java we can check executing the 

command: 

$ java –version 

java version "1.7.0_67" 

 

1.2 Configure Java Parameters for R 

R provides the javareconf utility to configure Java support in R.  To prepare the R 

environment for Java, we can execute this command: 

$ sudo R CMD javareconf 

or 

$ R CMD javareconf –e 

 

1.3 Install rJava Package 

rJava release versions can be obtained from CRAN.  Assuming an internet connection is 

available, the install.packages command in an R session will do the trick. 

install.packages("rJava") 

 

1.4 Configure the Environment Variable CLASSPATH 

The CLASSPATH environment variable must contain the directories with the jar and class 

files.  The class files in this example will be created in /usr/lib/Java/java_1.8.0_77. 

 

export CLASSPATH=$JAVA_HOME/jlib: /usr/lib/Java/java_1.8.0_77 

 

2 rhdfs: Integrate R with HDFS 

Setting Up Environment: 

Before installing the package, we have to set the environment for Hadoop. We can execute 

the following command to set Hadoop Environment.  

Sys.setenv(HADOOP_HOME="/usr/lib/hadoop") 
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Sys.setenv(HADOOP_CMD="/usr/lib/hadoop/bin/hadoop") 

Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop/share/hadoop/tools/lib/hadoop-

streaming-2.7.2.jar") 

 

Install rhdfs Package: 

rhdfs release versions can be obtained from github.com.  Assuming an internet connection is 

available, the install.packages command in an R session will do the trick. 

> install.packages("rhdfs") 

 

3 rmr2: Mapreduce job in R: 

Setting Up Environment: 

Before installing the package, we have to set the environment for Hadoop and Java. We can 

execute the following command to set Hadoop and Java Environment.  

Sys.setenv("JAVA_HOME"="/usr/lib/java/1.8.0_77") 

Sys.setenv(HADOOP_HOME="/usr/lib/hadoop") 

Sys.setenv(HADOOP_CMD="/usr/lib/hadoop/bin/hadoop") 

Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop/share/hadoop/tools/lib/hadoop-

streaming-2.7.2.jar") 

 

Install rmr2 Package: 

rmr2 release versions can be obtained from github.com.  Assuming an internet connection is 

available, the install.packages command in an R session will do the trick. 

 install.packages("rmr2 ") 

 

4 plyrmr: Data Manipulation with mapreduce job 

Setting Up Environment: 

Before installing the package, we have to set the environment for Hadoop. We can execute 

the following command to set Hadoop Environment.  

Sys.setenv(HADOOP_HOME="/usr/lib/hadoop") 

Sys.setenv(HADOOP_CMD="/usr/lib/hadoop/bin/hadoop") 

Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop/share/hadoop/tools/lib/hadoop-

streaming-2.7.2.jar") 

Install plyrmr Package: 

plyrmr release versions can be obtained from github.com.  Assuming an internet connection 

is available, the install.packages command in an R session will do the trick. 

> install.packages("plyrmr ") 
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5 rhbase: Integrate HBase with R 

Setting Up Environment: 

Before installing the package, we have to set the environment for Hadoop. We can execute 

the following command to set Hadoop Environment.  

Sys.setenv(HADOOP_HOME="/usr/lib/hadoop") 

Sys.setenv(HADOOP_CMD="/usr/lib/hadoop/bin/hadoop") 

Sys.setenv(HADOOP_STREAMING="/usr/lib/hadoop/share/hadoop/tools/lib/hadoop-

streaming-2.7.2.jar") 

 

Install rhbase Package: 

rhbase release versions can be obtained from github.com.  Assuming an internet connection is 

available, the install.packages command in an R session will do the trick. 

 install.packages("rhbase ") 

 


