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Abstract 

In presence of time-variable energy tariffs, users will try to 

schedule the usage of their electrical appliances with the goal of 

minimizing their bill.  If the variable price component depends 

on the peak aggregate demand during each given hour, users will 

be incentivized to distribute their consumption more evenly 

during the day, thus lowering the overall peak consumption.  The 

process can be automated by means of an Energy Management 

System that chooses the best schedule while satisfying the user’s 

constraints on the maximum tolerable delays.  In turn, users’ 

thresholds on delay tolerance may slowly change over time.  In 

fact, users may be willing to modify their threshold to match the 

threshold of their social group, especially if there is evidence that 

friends with a more flexible approach have paid a lower bill.  It 

will be interesting to study the social interaction effect in a set of 

users by means of evaluating the impact of the Agent based social 

interaction in distributed side management systems.  We provide 

an algorithmic framework that models the effect of social 

interactions in a distributed Demand Side Management System 

and show that such interactions can increase the flexibility of 
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users’ schedules and lower the peak power, resulting in a 

smoother usage of energy throughout the day.  Additionally, we 

provide an alternative description of the model by using Markov 

Chains and study the corresponding convergence times. We 

conclude that the users reach a steady state after a limited number 

of interactions.  
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Abstract (IT) 

In un sistema in cui le tariffe elettriche variano in base alle 

fasce orarie di utilizzo, gli utenti cercheranno di programmare 

l'uso dei propri elettrodomestici allo scopo di ridurre al minimo 

la bolletta. Se la componente variabile del prezzo dell'energia 

dipende dai picchi nella domanda aggregata per ogni ora del 

giorno, gli utenti saranno incentivati a ripartire i propri consumi 

durante tutta la giornata, abbassando così il consumo di picco 

stesso. Questo processo può essere automatizzato per mezzo di 

un Sistema di Gestione dell'Energia in grado di scegliere l'orario 

ottimale, rispettando allo stesso tempo i limiti massimi di 

posticipo imposti dall'utente. A loro volta, questi limiti possono 

cambiare progressivamente nel tempo. Gli utenti, infatti, 

potrebbero voler modificare i propri parametri per farli 

coincidere con quelli del gruppo sociale di appartenenza, 

soprattutto qualora vengano a sapere che amici con un profilo più 

flessibile hanno risparmi concreti sulla bolletta. In questo contesto 

si rivela particolarmente interessante l'effetto delle interazioni 

sociali su un gruppo di utenti. In particolare, sarà oggetto di 

studio il modello ad agenti dell'interazione sociale nella gestione 
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della domanda.   In questo lavoro presentiamo un quadro 

algoritmico che riproduce l'effetto delle interazioni sociali in un 

Sistema di Gestione della Domanda e dimostriamo come le stesse 

possano aumentare la flessibilità dei consumi degli utenti ed 

abbassare la potenza di picco, portando ad un conseguente uso 

più omogeneo di energia nel corso della giornata. Il nostro studio 

fornirà, inoltre, una descrizione alternativa del modello per 

mezzo di processi markoviani ed analizzerà i relativi tempi di 

convergenza. In conclusione verrà constatato che gli utenti 

raggiungono l'equilibrio in seguito a un numero limitato di 

interazioni.  
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Chapter 1.     

 INTRODUCTION          

_________________________________________________________ 

The concept of Demand-Side Management (DSM) has been 

introduced in many fields, more specifically, it is widely studied for 

the electricity industry. It has been originally defined as the planning, 

implementation and monitoring of a set of programs and actions 

carried out by electric utilities, the distribution system operator, to 

influence energy demand in order to modify electric load curves in a 

way which is advantageous to the utilities. This concept gives 

customers a greater role in shifting their own demand of electricity 

during peak period, and reducing their overall consumption overall.  

Enabling customers to transfer their load during periods of high 

demand to off-peak periods can reduce the critical peak demand, 20 to 

50 hours of greatest demand throughout the year, or change the daily 

peak demand, the maximum demand during a 24-hour period.  

Shifting the daily peak demand flattens the load curve, allowing more 

electricity to be provided by less expensive base load generation.  

Changes in load curves must decrease electric systems running costs, 

(both production and delivery costs), and also allow for deferring or 
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even avoiding some investments in supply-side capacity expansion 

such as building new additional generation capacity to meet future 

critical peak demand.  Thus, DSM has been driven by strict economic 

reasons.   

On other hand, smart grid may have a large usage of DSM.  

Provided by this concept, smart grid will have better benefits and 

higher results towards accomplishing smart cities.  Smart grids aim to 

provide more reliable, environmentally friendly and economically 

efficient power systems. In most of the countries interested in smart 

cities, the utility company that sells electricity to consumers has 

equipped their customers with smart meters. These smart meters 

exchange information between consumers and the utility company, 

and schedule the household energy consumption for consumers. The 

information gathered through smart meters can be used by the utility 

company to adjust the electricity prices.  DSM is a key mechanism to 

make smart grids more efficient and cost-effective. DSM then refers to 

the programs adopted by utility companies to directly or indirectly 

influence the consumers’ power consumption behavior in order to 

reduce the peak periods of the total load in the smart grid system. A 

higher peak period results in much higher operation costs and possibly 

outages of the system, while the application of DSM approaches to the 

smart grid ecosystem aims at shaping the aggregated power load 
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curve of groups of customers, avoiding outages and improving power 

quality, or maximizing the usage of Renewable Energy Sources. DSM 

aims to incentivize consumers to shift their peak-time power 

consumption to off-peak times, thereby resulting in significant peak 

reductions in the power system thanks to the installation of smart 

meters. 

In DSM, different strategies may be adopted to motivate users 

to alter their energy usage patterns.  Historically, stakeholders have 

focused on price-based policies: dynamic pricing schemes exhibiting 

hourly variations and reflecting the costs incurred by the smart grid 

system to satisfy the customers’ demand have proven to be effective 

when the objective is the minimization of the users’ bill, since the latter 

is directly related to the amount of energy consumed and includes a 

price component that refers to the peak power.  A typical energy bill is 

comprised of two main sections: the charges for the energy supply 

(kWh) and the charges from the local utility to deliver the energy.  A 

building’s peak demand (kW) for a period is usually the main driver 

for the utility to calculate the delivery charges. In many cases, demand 

charges exceed 50% of the total electric power bill.  This makes DSM a 

very attractive option to reduce costs.  To this aim, customers may opt 

for coordinated optimization schemes to avoid the drawbacks of 

uncoordinated shifts in their energy usage schedules (e.g. excessive 
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consumption peaks during low-price periods).  Coordinated solutions 

include centralized and distributed DSM frameworks: the former 

typically maximize a shared utility function, whereas in the latter each 

consumer locally defines her energy plan according to their personal 

preferences (e.g. bill minimization or comfort maximization).  

However, several recent studies have investigated the effectiveness of 

non-monetary strategies in shaping/reducing consumption by 

stimulating long-term changes in beliefs and norms.  As a matter of 

fact, consumers do not live in isolation: they can interact with each 

other and with public institutions, and therefore can be influenced in 

their own attitudes, preferences and possible actions. This approach is 

consistent with the sociological paradigm, according to which agents’ 

actions are not only determined by the desire to maximize their utility, 

but also driven by shared norms, roles, and relationships.  In addition 

to that, society benefits from DSM by making it greener.  Reduced or 

shifted energy usage can directly translate into less air pollution, less 

carbon emissions, and a way to lower the potential environmental 

threats associated with global warming.  DSM programs are a 

promising alternative strategy to the increased concerns customers, 

utilities and government agencies have now regarding global 

warming and carbon emissions.  Moreover, a properly designed DSM 

program can actually track the program impacts and measure the 



 

5 
 

amount of carbon reduced or saved based on program activities.  The 

domestic electricity consumption has been rising in the last years, 

being the residential and the transportation sectors the ones that 

increased their consumption the most.  Furthermore, the percentage of 

metropolitan citizens has grown leading to a higher demand of the 

national electricity consumption.  This increase is a consequence of 

several factors, such as the growth of electric equipment in the 

dwellings (e.g., audiovisuals, specially personal computers and air 

conditionings).  However, such phenomenon may be a consequence of 

the number of customers and appliances which makes DSM an 

effective tool to achieve smart cities. 

The main objective of our work is to take into account both 

the role of price policies and the influence mechanisms of norms 

on energy consumption behaviors.  To this aim, we propose a 

distributed game-theoretic DSM framework which relies on an 

agent-based modeling approach.  The framework includes a 

model of the social structures and interaction models which 

define the reciprocal influences of socially-connected agents.  

These models make it possible to study the impact of social 

interaction on the user tolerance of a starting delay of appliances 

with and without knowledge of the electricity bill of other users. 
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In turn, the impact of delay tolerance on the electricity bill is 

modeled by using a load scheduling game for distributed 

demand side management, where rational agents run a 

distributed protocol to minimize the users’ bills.   

The main contributions of this work are:  

 A description of the interaction mechanisms aimed at 

modeling the influence of the society on individual 

delay tolerance preferences. 

 An evaluation of how social interactions modify 

individual delay tolerance preferences, which, in 

turn, affects the aggregated energy consumption 

curve obtained at the end of the execution of the load 

scheduling game. 

 A Markov-chain model of the interaction mechanisms 

and the evaluation of the time necessary to converge 

to the steady state. 
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1. Statement of the Problem 

Historically, electricity peak demand is used to refer to a high point in 

the sales record at a certain period of time.  In terms of energy use, 

peak demand describes a period where customer demand is at its 

highest.  Peak demand, peak load or on-peak are terms used in energy 

demand management to describe a period in which electrical power is 

expected to be provided for a sustained period at a significantly higher 

than average supply level. Peak demand fluctuations may occur on 

daily, monthly, seasonal and yearly cycles. For an electric utility 

company, the actual point of peak demand is a single half-hour or 

hourly period which represents the highest point of customer 

consumption of electricity. The daily peak demand usually occurs 

around 5:30 pm (Pigenet, 2009).  At this time there is a combination of 

office, domestic demand and at some times of the year, the fall of 

darkness, which induces more usage of lightning systems.  It is a 

common practice that utilities charge customers based on their 

individual peak demand.  The maximum demand dictates the size of 

generators, transmission lines, transformers and circuit breakers for 

utilities, even if that amount lasts just one hour per year.  Natural gas 

fueled power generators must all have adequately sized pipelines.  

Power generation which is able to be rapidly ramped up for peak 

demand often uses more expensive fuels, is less efficient and has 
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higher marginal carbon emissions.  Peak demand may exceed the 

maximum supply levels that the electrical power industry can 

generate, resulting in power outages and load shedding.  In order to 

avoid these consequences and ensure the quality of service that 

customers are promised, DSM may provide a feasible solution 

avoiding many big investments.  The absence of new projects saves the 

customers an unwanted tariff in their bill based on the capex and 

operational costs.  However, customers must apply to this new 

approach and schedule their load wisely avoiding peak hours.   

Nonetheless, scheduling the load may not be so trivial and simple.  In 

our study we used, beside DSM mechanism, an algorithm which can 

allocate the starting time of each appliance of the customer based on 

his prescheduled preferences.  For each appliance of all the customers, 

a comfort level is defined on a daily basis.  Using this type of approach, 

the algorithm can calculate the best solution in a neighborhood.  The 

definition of our proposed solution to use a comfort threshold level  

assigned to each customer has not been experimented before, since 

DSM strategies were: 

 Energy Efficiency: Reduce energy use overall. 

 Peak Load Reduction: Reduce peak load consumption. 

 Load Shifting: Move load to cheaper times. 
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 Load Building: Increase consumption to off-peak hours or 

increase overall consumption. 

These stated strategies lacked the customer comfort level and 

threshold.  In our study, we will be focusing on that to achieve results 

that might be useful for future studies and to reach the global goal of 

a cheaper bill and a smarter city. 

2. Current Status of Art 

The topic of DSM is widely spread and it has already many 

publications in several papers which describe it and use the same 

strategies listed above in order to reach and meet the requirements.  

Numerous agent based models tackle socio-behavioral aspects of the 

interactions among users and between users and utilities: Worm et al. 

in their paper (2015) propose a two-layered framework including a 

short-term choice model, which captures the effects of energy price 

variations on the users’ consumption patterns, depending on their 

comfort needs and on the presence of local renewable energy sources 

(e.g. solar panels), and a long-term behavioral model, which defines 

how social interactions may alter users’ attitudes towards comfort 

requirements, energy efficiency, usage of renewable energy sources 

and price policies. Similarly, in this work we study the effects of social 

pressure on a user-defined delay tolerance threshold, taking into 
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account the users’ personal price-delay trade-off.  As a matter of fact, 

social interaction can provide benefits to diminishing peak demand, 

which is another aspect of our study where we will simulate the 

interaction based on two different scenarios.  The results and 

observations will be discussed in the next section. 

3. Proposed Solution and Objectives 

The DSM solution requires many coordinated and interconnected 

strategies.  The entity is a software agent that is installed at customers’ 

premises.  This entity will allow the customer to schedule and 

reschedule their appliances while considering their comfort threshold.  

The set of customers which are present in a neighborhood have to play 

all together to accomplish the objective of minimizing peak load 

demand at a certain hour.  The mechanism that manages all the 

customers is adaptive to the customer‘s consumption.  Based on that, 

in the study, using a distributed algorithm, the parameters are 

modelled in game theory.  At this point, each player (customer) uses 

best response to achieve the best allocation.  The best response is to 

avoid high demand hours and spam the unused or off-peak hours such 

as night hours.  After the allocation of each appliance of each customer, 

the scheme iterates between them, until the bill is accepted by every 

player, and none of the players is willing to change their schedule since 
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all comfort levels were respected and thresholds meet the allocation.  

At convergence, local max is reached and the solution is given by the 

predicted market prices of the next day.  After the implementation of 

this scheme, the load profile for the neighborhood is flatter.  A 

smoother load profile will imply many benefits , such as less gas 

emissions, more social interaction and mainly lower bill.  The 

objectives reached aim to help the electric utilities in accomplishing 

more smart grids and less expensive rates of electricity.   

4. Relevance of the Project 

The game theory approach is based on the set of customers that a 

neighborhood may present.  Each player have many appliances: some 

are fixed, where the schedule cannot be modified or changed, and 

some are shiftable, where the starting time of each one of them is set 

based on a comfort threshold that each player sets.  The incentive here 

is to have the lowest bill while having a comfort threshold that is 

acceptable.  The importance and the additive structure to most of 

previous DSM study is the comfort threshold and the ability to change 

it based on the interaction among players.   
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Chapter 2.       

 RELATED WORK 

_________________________________________________________ 

DMS strategies may vary depending on the customers.  The most 

popular existing approaches are the Direct Load Control (DLC) and 

the Smart Pricing (SP), which assign to each hour of the day a different 

price based on the amount of power being injected to the gird, for 

implementing DSM.  

DLC refers to the program in which the utility company can remotely 

manage a fraction of consumers’ appliances to shift their peak-time 

power usage to off-peak times (Linqi Song, 2014).  Alternatively, SP 

provides an economic incentive for consumers to voluntarily manage 

their power usage. Examples are Real-Time Pricing (RTP), Time-Of-

Use Pricing (TOU), Critical Peak Pricing (CPP) (J. Jhi-Young, 2007) and 

many others.  However, the stated works do not consider the 

consumers’ comfort level which is induced by altering their power 

consumption patterns.  

In order to explain better the price incentives and tariff structures, in 

(Esmap, 2012), the electricity utilities explore all their aspects.  The 

structure of the electricity tariffs can greatly influence the power 
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demand and electricity use on mini-grids, an aspect which is critical 

for the economic sustainability of the whole system.  Mainly, the 

commonly used tariff structures on mini-grids can be categorized into 

two major schemes (Glania, 2011): capacity-based (or power-based) 

and consumption-based (or energy-based).   

The first category implies the customers to pay based on the maximum 

power that they are allowed to use.  This scheme is often applied on 

mini-grids in which it may offer many other different levels of power  

allowance having the objective to meet the needs of all the existing 

customers in it.  The basic allocation could be determined based on the 

customer’s willingness to pay or by the permissible number of lights 

or type of appliances.  These agreements are enforced through a 

contract, usually written, or implied by the use of current limiters.  

Capacity-based tariffs can make billing much easier, since all the 

parties have set their agreements in advance, however it might be 

faced with some difficulties to enforce the agreement itself.  On the 

other side, current limiters are often subject to tampering and fraud, 

where many attempts of customers has been recorded.  This type of 

tariffs has gained popularity on micro-hydro and other power-limited 

micro-grids, as they inherently limit and distribute the power 

equitably at any given instant.  Additionally, some forms of capacity-



 

14 
 

based tariff or the current limiter may be used in conjunction with an 

energy based tariff on other types of mini-grids. 

The second type of tariffs, the consumption-based, charges customers 

based on their metered energy consumption and can ultimately lead 

or encourage energy conservation.  This features the ability to 

encourage conservation makes consumption-based tariffs appropriate 

for mini-grids that are energy-limited, such as solar and wind mini-

grids.  Nevertheless, micro-hydro mini-grids are not vulnerable to 

excessive power consumption since they are power-limited, so they 

usually do not require metering.  The appropriateness of metering 

based on a biomass or diesel grid depends on the intermittency of the 

generation, the cost of fuel, and the efficiency curve of the generator.  

In other cases, where the system is independent from a battery bank 

and the fuel consumption of the generator, the variation is very small 

according to the generator since the cost of fuel is negligible, so 

capacity-based tariff would be more convenient since energy 

conservation is not critical.  While energy conservation can be achieved 

through metering alone, for isolated mini-grids the peak demand must 

also be limited to prevent system overloads.   

The structure of a consumption-based tariff has several options.  

Electrical utilities in industrialized nations are increasingly 
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implementing dynamic electricity rates, such as real time pricing to 

limit demand during peak periods and encourage energy conservation 

for grid connected customers.  In addition to these sophisticated rate 

structures, simpler ones that have been in wide use for central grid 

customers in industrialized countries, such as time of use or inverte d 

block (or tiered) rates, can be applied to mini-grids in both developed 

and developing countries.  Time of use rates can, in some cases, be 

applied to mini-grids but they are often only used by large commercial 

customers who can afford a more expensive meter or whose 

consumption is easily monitored.  Other researchers investigating 

tariffs for rural utilities argue that use of an inverted block rate can be 

regressive within a given block, may be confusing to the consumer and 

can penalize consumers with connections shared by multiple 

households.  Based on economic theory, these researchers suggest to 

use a flat-rate tariff equal to the unsubsidized marginal cost of the 

service in combination with a lump sum return to ensure that low 

income households can meet their essential needs.  In addition to that, 

on some mini-grids, electricity rate may be highly subsidized so that 

they no longer provide the necessary price signals to encourage 

conservation.  Pelland et al. (2012) found that mini-grid customers in 

Canada were using inefficient electric baseboard heaters and 

suggested that adding an inverted block rate would encourage 
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conservation behavior on the diesel mini-grid.  Nowadays, there are 

some new advanced metering systems offering additional variations 

on the consumption-based tariff that are particularly suited for the 

constraints of an isolated, energy limited grid.  Some of these metering 

systems charge a tariff based on a predetermined daily or weekly 

energy allocation or rate of available energy.   

Some recent works considered consumers’ load scheduling strategies 

and aimed to jointly minimize the consumers’ billing while changing 

their starting time. These works can be classified into two categories, 

depending on the deployed consumer model. The first category 

assumed that the consumers are price-taking, i.e., they do not consider 

how their consumption will affect the prices. As a result of this 

assumption, the decision making of a single foresighted consumer is 

formulated as a stochastic control problem aiming to minimize their 

long-term total cost in.  Alternatively, in another model, consumers 

aim to minimize their current total costs and their decisions are 

formulated as static optimization problems among cooperative users 

for which distributed algorithms are proposed to find the optimal 

prices.  The second category assumed that the consumers are 

responsible for their load since the bill will be affected by their 

consumption.  In this case, each consumer’s power usage affects the 

other consumers’ billing costs. This type of work is modeled as the 
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interactions emergence among second category consumers in which 

one-shot game of theory is modeled, the latter is the main subject of 

our study. 

However, in our model, the consumers interact with each other 

repeatedly, as per the principle of social interaction, and are 

foresighted, thereby engaging in a repeated game.   

Nevertheless, all the existing works considering multiple consumers 

assumed that the consumers belong to the first category and try to  

minimize their current costs. The optimal DSM strategies in these 

works are stationary, i.e., all consumers adopt fixed daily/weekly 

power consumption patterns as long as the system parameters (e.g., 

the consumers’ desired power consumption patterns) do not change 

(Wayland, 210).   

Numerous ABMs tackle socio-behavioral aspects of the interactions 

among users and between users and utilities.  Ramchurn et al. (2011) 

describe a decentralized DSM framework which allows autonomous 

software agents installed at the customers’ premises to collaboratively 

schedule the usage of domestic controllable appliances with the aim of 

minimizing peaks in the aggregated consumption within a 

neighborhood, assuming the usage of dynamic pricing. The 

framework includes an adaptive mechanism which models the 
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learning process adopted by the users to modify the deferral time of 

their controllable loads based on predicted market prices for the next 

day.  The solution we proposed is also aimed at peak shaving and 

adopts a similar learning approach to update the users’ delay tolerance 

threshold.  In the distributed DSM systems proposed by Barbato et al. 

(2015) and Chavali et al. (2014), residential user agents are modelled as 

rational entities who solve a Mixed Integer Linear Program (MILP) to 

minimize their energy bill. Under this assumption (i.e., each user 

applies a best response strategy), the users can be considered as 

players in a non-cooperative game theoretical framework: it has been 

proved in (C. Rottondi, 2016) that such game is a generalized ordinal 

potential game which converge in a few steps to a pure Nash 

Equilibrium.  In this study, we adopt the same assumptions and build 

upon the theoretical results therein discussed.  However, in this work 

the MILP formulation therein provided has been modified to take into 

account delay tolerance thresholds based on the users’ attitudes.  

Among the ABMs investigating influence and imitation mechanisms 

between agents, Helbing et al. (D. Helbing, 2014) propose a model of 

norm formation in scenarios where agents exhibit incompatible 

preferences, and where rewards or punishment mechanisms are 

adopted to encourage conformity to the behavior of others. In 

Contagion of habitual behavior in social networks, Klein et al. 
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(2012) introduce a computational model for habit contagion and 

change in a social network, in which cognitive processes are combined 

with interaction mechanisms.  Two models have been recently 

proposed to study the influence and diffusions mechanism in 

residential use water consumption. Rixon et al. (2006) propose an ABM 

within a memetic framework capturing imitation of water use 

behavior. Agents are assumed to be characterized by a degree of belief 

in water saving encoded in memes (some which are explicit water 

saving memes and some which are not and suggest indifferent 

behavior), and to consume water according to them. Memes are thence 

spread based on social interaction.  

The model proposed by Athanasiadis et al. in (2005) aims at estimating 

water consumption under different scenarios of pricing policies, 

taking into account the propagation of water conservation signals 

among individual consumers, and responsiveness to water 

conservation policies. In particular, users are classified depending on 

their capability to influence others and to understand influence signals 

sent by others.  In our work, we adopt a similar characterization of the 

social attitudes of the users. 

To minimize the total cost, some consumers are required to shift their 

peak-time power usage to the off-peak times while the remaining 
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consumers can use energy when desired. By deploying this optimal 

strategy, the consumers who shift their peak-time consumption incur 

discomfort costs, but this leads to a reduction of the peak-time price 

and of the billing cost of all the consumers.  More importantly, the 

nonstationary DSM  strategy we propose can achieve the optimal total 

cost while ensuring fairness among consumers by recommending 

different subsets of consumers (referred to as the active set) to shift 

their peak time consumption each day. The active set is determined by 

the consumers’ preferences and the past selection of active sets. 

Moreover, another DSM system proposed by the literature is based on 

energy tariffs that are currently used and data forecasts for DG and 

power demand (e.g., photovoltaic power generation, devices future 

usage), defining a mechanism.  The latter is able to schedule, in an 

automatic and optimal way, the home devices activities for future 

periods and to define the overall energy plan of users (i.e., when to buy 

and sell energy to the grid).  The main goal of these solutions is to 

minimize the electricity costs while guaranteeing the users’ comfort .  

This can be achieved through the execution of methods based on 

optimization models (Le), or heuristics, such as Genetic Algorithms 

and customized Evolutionary Algorithms (Florian Allerding, 2012), 

which are used to solve more complex formulations of the demand 

management problem.  Since RESs diffusion is rapidly increasing, 
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several works include renewable plants into DSM frameworks which 

are needed for management.  In these cases, devices are scheduled also 

based on the availability of an intermittent electricity source (e.g., PV 

plants) and the users’ profits from selling renewable electricity to the 

energy market are taken into account.   

The uncertainty of RESs generation forecasts is tackled through 

stochastic approaches, such as stochastic dynamic programming.  The 

latter is a very suitable tool to address the decision-making process of 

energy management systems in presence of uncertainty, as the case of 

the one related to the electricity produced from weather-dependent 

generation sources.  The efficiency of demand management solutions 

can be notably improved by including storage systems that can 

increase the DSM flexibility in optimizing the usage of electric 

resources.   

Specifically, batteries can be used to harvest the renewable generation 

in excess for later use or to charge the ESS (Energy Storage Systems) 

when the electricity price is low, with the goal of minimizing the users’ 

electricity bill which represents another possible solution to our 

management framework.  These proposed solutions are based on a 

single-user approach in which the energy plans of residential 

customers are individually and locally optimized.  However, in order 
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to achieve relevant results from a system-wide perspective, the energy 

management problem could be applied to groups of users (e.g., a 

neighborhood or micro-grids) – in our study a neighborhood –  instead 

of single users.   

For this reason, some preliminary solutions have been proposed in the 

literature to manage energy resources of groups of customers. In 

“House energy demand optimization in single and multi-user 

scenarios” (A. Barbato A. C., 2011), for example, the energy bill 

minimization problem is applied to a group of cooperative residential 

users equipped with PV panels and storage devices (i.e., electric 

vehicle batteries).  A global scale optimization method is also 

proposed, in which an algorithm is defined to control domestic 

electricity and heat demand, as well as the generation and storage of 

heat and electricity of a group of houses.  These multi-user solutions 

require some sort of centralized coordination system run by the 

operator in order to collect all energy requests and find the optimal 

solution.   

To this end, a large flow of data must be transmitted through the Smart 

Grid network, thus introducing scalability constraints and requiring 

the definition of high-performance communication protocols.   
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Furthermore, the coordination system should also verify that all 

customers comply with the optimal task schedule, since the operator 

has no guarantee that any user can gain by deviating unilaterally from 

the optimal solution.  Therefore, the collection of users’ metering data 

and the enforcing of the optimal appliance schedule can introduce 

novel threats to customers’ security and privacy.  For these reasons, 

some distributed DSM methods have been proposed in which 

decisions are taken locally, directly by the end consumer.  In this case, 

Game Theory represents the ideal framework to design DSM 

solutions.  Specifically, A. Mohsenian-Rad et al. (2011) describe a 

distributed DSM system among users, where the users’ energy 

consumption scheduling problem is formulated as a game: the players 

are the users, and their strategies are the daily schedules of their 

household appliances and loads.  The authors considered a pricing 

mechanism based on a convex and an increasing cost function making 

their work a reference for DSM techniques.  An alternative technique 

known as Vickrey-Clarke-Grove mechanism is proposed in (P. 

Samadi, 2012).  Its aim is to achieve efficiency, nonnegative transfer 

(i.e. from utility to user) and truthfulness among users .  The pricing 

mechanism presented is based on convex, increasing and 

differentiable cost function.  The proposed VCG model encourages 

user to shift their load from peak hours to off-peak hours.  Besides 
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from obtaining a social welfare, the utility also gain benefits by having 

a reduced average load shape curve.  The goal of the game is to either 

reduce the peak demand or the energy bill of users.  Moreover, a game 

theoretical approach is also used in (C. Ibars, 2010), in which a 

distributed load management is defined to control the power demand 

of users through dynamic pricing strategies.  However, these works  

use a very simplified mathematical description to model customers, 

which does not correspond to real use cases.   

 

 

 

 

 

  

 

 

 

 



 

25 
 

Chapter 3.     

 FRAMEWORK 

_________________________________________________________ 

In the framework of our study, we consider a distributed DSM 

method, which is able, within a group of residential users, to reduce 

the peak demand.  The framework is modelled and studied using a 

game of theory.  In our vision, the energy retailer fixes the energy price 

dynamically, based on the total power demand of customers; as a 

result, appliances autonomously decide their schedule, reaching an 

efficient equilibrium point.   

1. Design 

Our model proposes a power scheduling system designed to manage 

all electrical appliances of a group of residential users, 𝑼.  The used 

system will schedule the energy plan for the whole set of users, who 

previously allocated their power demand, over a 24-hour time period 

divided into a set, 𝑻, of time slots duration, with the final goal of 

improving the efficiency of the whole power grid by reducing the peak 

demand of electricity, while still complying with users’ needs and 

preferences.  Each user 𝒖 ∊ 𝑼, owns a set of non-interruptible electric 
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appliance, or fixed appliance, 𝑨𝒖, that must run once a day.  In 

particular, the load profile of each appliance is modeled as an ordered 

sequence of time slots, in which a certain amount of power is 

consumed.  The load profile of each appliance 𝒂 ∊ 𝑨𝒖 lasts 𝑵𝒂𝒖  time 

slots and its value in the nth time slot is given by 𝒍𝒖𝒂𝒏 with n ∊ 𝑵𝒂𝒖  =

 {𝟏,𝟐 … ,𝑵𝒂𝒖}.  For the sake of easiness, we assume that 𝒍𝒖𝒂𝒏 is 

constant for the whole duration of the nth time slot.  Each appliance 

𝒂 ∊ 𝑨𝒖 is also associated with a set of parameters 𝒄𝒕
𝒂𝒖 ∊ [0, 1] which 

define the comfort level perceived by user 𝒖 in starting appliance 𝒂 at 

time slot  𝒕 ∊ 𝑻.   

The rationale behind the definition of such comfort level is the 

following: each user decides a preferred time slot for the starting time 

of their appliances.  However, in case of deferrable appliances, they 

may tolerate to delay the starting time up to a certain number of time 

slots.  Intuitively, the higher the delay is, the less comfortable such 

schedule is perceived by the user.  It follows that the less pronounced 

the preference of user 𝒖 for starting appliance 𝒂 at time slot 𝒕 is, the 

lower 𝒄𝒕
𝒂𝒖  is.  In the extreme case of 𝒄𝒕

𝒂𝒖 = 𝟎, user 𝒖 specifies a 

threshold 𝒀𝒂𝒖  ∊ (0, 1] indicating the minimum acceptable delay 

tolerance level for appliance 𝒂, which defines the degree of flexibility 

of the user in scheduling their appliances: the lower 𝒀𝒂𝒖  is, the more 

tolerant to delaying their starting time the user will be.   



 

27 
 

Each user 𝒖 ∊ 𝑼,  may own two different types of appliances.  Fixed 

appliances (e.g., lights, TV), represented by the subset 𝑨𝑭
𝒖 ⊆ 𝑨𝒖, are 

non-shiftable and their starting time is predefined. Such constraint is 

imposed by assuming that there exists exactly one time slot 𝒕𝒂𝒖 ∊ 𝑻 

such that: 

𝒄𝒕
𝒂𝒖 = {

1 𝑖𝑓 𝑡 =  𝑡𝑎𝑢

0 𝑒𝑙𝑠𝑒
} 

which guarantees that fixed devices have only one allowed starting 

time and that the system is forced to start them at time 𝒕𝒂𝒖. 

Conversely, shiftable appliances (e.g., washing machine, dishwasher…), 

represented by the subset 𝑨𝑺
𝒖 ⊆ 𝑨𝒖, are controllable devices and their 

starting time is an output of a scheduling algorithm. For these 

appliances 𝒄𝒕
𝒂𝒖 may assume non-zero values in multiple slots, 

providing that there exists at least one time slot 𝒕 such that 𝒄𝒕
𝒂𝒖 = 𝟏 

(i.e., 𝒕 is 𝒖’s preferred starting time for appliance 𝒂).   

The scheduling strategy 𝒊𝒖 of player 𝒖 is described by a set of binary 

decision variables:  

𝒙𝒕
𝒂𝒖 = {

1 𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝒂 𝑜𝑓 𝑢𝑠𝑒𝑟 𝒖 𝑖𝑠 𝑠𝑡𝑎𝑟𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝒕 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 
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We considered two different types of devices are: 

Shiftable appliances (e.g., washing machine, dishwasher): they are 

manageable devices that must be scheduled and executed during the 

day.  In particular, for each shiftable device 𝒂 ∊ 𝑨𝒖 of the users 𝒖 ∊ 𝑼, 

the minimum starting time and the maximum ending time are limited 

and bounded.  Thus, our goal will be the optimization of scheduling 

their starting time.   

 

Figure 1: Example of a load profile of a washing machine. 

 

Fixed appliances (e.g., light, TV): they are non-manageable devices, for 

which the starting and ending times are prescheduled and fixed, in 

other words they cannot be used in the optimization process.  More 

specifically, for each fixed device 𝒂 ∊ 𝑨𝒖 of the users 𝒖 ∊ 𝑼, the 
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minimum starting time and the maximum ending time are fixed into 

a well-known time frame.   

Table 1: Table of Symbols 

Notation Description 

𝑼,𝑻 Set of users, time slots within the optimization horizon 

𝑨𝒖

= 𝑨𝑭
𝒖 ∪ 𝑨𝑺

𝒖   

Set of appliances of user 𝒖 ∊ 𝑼, including non shiftable 

and shiftable appliances 

𝑵𝒂𝒖  Load profile duration of appliance 𝒂 ∊ 𝑨𝒖 owned by 

user 𝒖 ∊ 𝑼 

𝒄𝒕
𝒂𝒖 Comfort profile of appliance 𝒂 ∊ 𝑨𝒖 owned by 𝒖 ∊ 𝑼 

during each time slot 𝒕 

𝑪𝒖 Comfort threshold of user 𝒖 ∊ 𝑼 

𝒍𝒖𝒂𝒏  Power consumption of appliance 𝒂 ∊ 𝑨𝒖 owned by user 

𝒖 ∊ 𝑼 during 𝒏 ∊ {𝟏, 𝟐. . , 𝑵𝒂𝒖} 

𝝅 Maximum user energy consumption 

𝒚𝒕
𝒂𝒖

 Energy consumption of user 𝒖 ∊ 𝑼 during time 𝒕 ∊ 𝑻  
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𝒑𝒍
𝒖

 Aggregated energy consumption of users 𝑼 ⁄ {𝒖} 

during time 𝒕 ∊ 𝑻 

𝒙𝒕
𝒂𝒖  Binary variable set to 1 if the start time of appliance 𝒂 of 

user 𝒖 

2. Strategies and Constraints 

The set of all strategies of 𝒖 is denoted by 𝑰𝒖 .  This set of strategies is 

modelled as the main constraints of our game theory optimization 

problem.  The feasibility of the strategies is related to the satisfaction 

of their corresponding constraints.  We say that the strategy 𝒊𝒖 is 

feasible if it satisfies the following constraints: 

(1)       ∑ 𝒄𝒕
𝒂𝒖𝒙𝒕

𝒂𝒖 ≥ |𝑨𝑭
𝒖|

𝒂 ∊𝑨𝑭
𝒖

 

(2)         ∑ 𝒄𝒕
𝒂𝒖𝒙

𝒕
𝒂𝒖 ≥ 𝒀𝒂𝒖      ∀ 𝒂 ∊ 𝑨𝑺

𝒖  

𝒕 ∊ 𝑻

 

(3)       ∑ 𝒙𝒕
𝒂𝒖 = 𝟏     ∀ 𝒂 ∊  𝑨𝒖

𝒕 ∊ 𝑻

 

Each of the previous constraint implies and verifies the conditions of 

our model.  Constraints (1)-(2) ensure that the starting time of every 

appliance 𝒂 provides a comfort level higher than the acceptability 
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threshold 𝒀𝒂𝒖 .  Constraints (3) impose that each appliance is executed 

exactly once per day.  Such condition can be easily generalized to 

include an upper bound on the number of usages of an appliance.   

The pair ({𝒄𝒕
𝒂𝒖  | 𝒕 ∊  𝑻,𝒂 ∊  𝑨𝒖 },{𝒀

𝒕
𝒂𝒖 | 𝒂 ∊  𝑨𝒖}) is defined and 

called the comfort characteristic of user 𝒖. Moreover, a comfort 

characteristic 𝑪𝒖 = ({𝒄𝒕
𝒂𝒖 | 𝒕 ∊  𝑻,𝒂 ∊  𝑨𝒖 },{𝒀

𝒕
𝒂𝒖  | 𝒂 ∊  𝑨𝒖}) of user 𝒖 

is said to be consistent with the contractual limit 𝝅𝒖 on the amount of 

purchasable energy per time slot if there exists a strategy 𝒊𝒖 such that: 

(4)    ∑ ∑ 𝒍𝒖𝒂𝒏  . 𝒄𝒕−𝒏+𝟏
𝒂𝒖  ≤

𝒏 ∊ 𝑵𝒖:𝒏≤𝒕𝒂 ∊ 𝑨𝒖

 𝝅𝒖      ∀ 𝒕 ∊ 𝑻 

This constraints (4), determine the overall consumption of the 

appliances in each time slot and bound the amount of purchasable 

energy in order not to exceed the contractual limit,  𝝅𝒖.  Such 

consumption depends on the scheduling strategy: the energy required 

by each device 𝒂 in every time slot 𝒕 is equal to the energy 

consumption indicated by the nth sample (with  𝒏 ∊  𝑵𝒂𝒖 =

{𝟏, 𝟐. . , 𝑵𝒂𝒖}) of the load profile, 𝒍𝒖𝒂𝒏 , executed at time 𝒕.  Note that 

the energy amount indicated by the nth sample of the appliance load 

profile is consumed during slot 𝒕 only in case the appliance is started 

at time 𝒕 − 𝒏 + 𝟏, thus if 𝒙𝒕−𝒏+𝟏
𝒂𝒖 = 𝟏. 
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3. Pricing 

We model the price of electricity at time 𝒕 ∊  𝑻, 𝒃𝒕(. ) as an increasing 

function of the total energy demand of the group of users 𝑼 at time 𝒕 

(V. Wong, 2010).  Under this assumption, prices will increase during 

peak consumption periods.  Therefore, an energy utility may impose 

such a price function with the goal of inducing peak shaving. As a 

result, due to the conflicting goals of the users, the load scheduling 

problem cannot be solved with a centralized approach.  For this 

reason, we adopt the distributed game-theoretic framework proposed 

in (G. Verticale, 2016), which models the problem as a game 𝑮 =

{𝑼, 𝑰, 𝑷}, defined by: 

i. The players representing the users in the set 𝑼, each one 

associated to a comfort characteristic 𝑪𝒖 and a contractual limit 

𝝅𝒖 on the purchasable energy per time slot. 

ii. The strategy set 𝑰 ≜ ∏ 𝑰𝑪𝒖
𝒖𝒖 ∊ 𝑼  where 𝑰𝑪𝒖

𝒖  indicates the 

strategy set of player 𝒖 corresponding to its feasible load 

schedules determined by (𝑪𝒖,  𝝅𝒖) (we assume here that such 

set is not empty).   

iii. The payoff function set 𝑷 ≜ {𝑷𝒖}𝒖 ∊ 𝑼 , where 𝑷𝒖 is the payoff 

function of user 𝒖, which coincides with their daily electricity 

bill. 
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The payoff function of each player, 𝑷𝒖, is defined as a function of 𝑰 as 

follows: 

(5)     𝑷𝒖(𝑰) = ∑ 𝒚𝒖𝒕𝒃𝒕(𝒚𝒕)

𝒕 ∊ 𝑻

 

where 

𝒚𝒖𝒕 = ∑ ∑ 𝒍𝒖𝒂𝒏  . 𝒙𝒕−𝒏+𝟏
𝒂𝒖 

𝒏 ∊ 𝑵𝒂𝒖:𝒏≤𝒕𝒂 ∊ 𝑨𝒖

 

is the energy demand of user 𝒖 at time 𝒕 and 𝒃𝒕(𝒚𝒕) is the price of 

electricity at time 𝒕 defined a as linear function of 𝒚𝒕 = ∑ 𝒚𝒖𝒕𝒖 ∊ 𝑼 , 

which represents the total electricity demand of the players at time 𝒕.  

It has been proved that such function is a regular pricing function.  It 

thence follows that 𝑮 is a generalized ordinal potential game, with 

𝑷(𝑰) being the potential function.  Potential games admit at least one 

pure Nash Equilibrium which can be obtained by applying the Finite 

Improvement Property (FIP).  Such propriety guarantees that any 

sequence of asynchronous improvement steps is finite and converges 

to a pure Nash equilibrium.  In particular, a succession of best response 

updates converges to a pure equilibrium (Kukushkin, 2004).  As 

proposed in (C. Rottondi, 2016), we assume that the best response 

method is implemented in an iterative way as follows.  Users in 𝑼 are 

listed in a predefined order.  The first user initiates the algorithm by 
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choosing their optimal load schedule assuming flat tariffs.  Then, the 

user communicates their scheduled energy profile to the next user in 

the list, who executes the same operations but considering the hourly 

energy prices calculated from the expected hourly load obtained by 

summing the schedules of all the users in the list.  At every iteration 

energy prices are updated and, as a consequence, other users can 

decide to modify their schedules.  The process ends when none of the 

users alters their schedule in an iteration, meaning that convergence is 

reached.   

In order to find the optimal schedule, each user solves the following 

Mixed Integer Non-linear Programming Model: 

(6)      𝒎𝒊𝒏 ∑ 𝒚𝒖𝒕  . 𝒃𝒕

𝒕 ∊ 𝑻

 

subject to constraints (1)-(4), where 𝒃𝒕 = 𝒃𝑨𝒏𝒄 + 𝒔(𝒚𝒖𝒕 + 𝒑𝒖𝒕), being 

𝒑𝒖𝒕  the total energy demand of the players of the set 𝑼 ⁄ {𝒖} received 

by user 𝒖 at the current game iteration, 𝒃𝑨𝒏𝒄 the cost of ancillary 

services (e.g., electricity transport, distribution and dispatching, 

frequency regulation, power balance) and 𝒔 the slope of the cost 

function, respectively.   
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4. The Interaction Model 

We consider a time span of 𝑳 days.  During each day, users socially 

interact with the aim of influencing each other’s delay tolerance 

thresholds 𝒚𝒂𝒖 .  As a consequence of such interactions, user 𝒖 may 

modify the values of 𝒚𝒂𝒖  to be used in the next execution of the load 

scheduling game (i.e., during the next optimization time horizon).   

The social interaction is mediated by an automated mechanism that 

collects delay tolerance thresholds and the energy price paid by the 

user’s friends and that adjusts the user’s thresholds according to some 

filtering rule.  For example, a user might be willing to adjust their 

thresholds towards the thresholds of similar users who pay a lower 

price.  However, users may not interact with their friends on a regular 

daily basis (e.g. they may decide to communicate their delay tolerance 

thresholds only occasionally).  Therefore, we assume that each user is 

characterized by a parameter 𝒑𝒍
𝒖

which is set to 1 if user 𝒖 is willing to 

compare (and possibly revise) their delay tolerance thresholds on day 

𝒍 ∊  𝑳, to 0 otherwise.  Moreover, let 𝑹[𝒖] be the list of 𝒖’s social 

neighbors.  Similarly to the approach proposed in (Bloustein, 2005), in 

order to capture the users’ capability to make rational decisions about 

whom to imitate (and up to which extent), for each appliance 𝒂 ∊ 𝑨𝑺
𝒖 

we consider a two-dimensional attitude space (see Figure 2).  This 
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assumption also enables the users to redefine the sets𝑨𝑭
𝒖, 𝑨

𝑺
𝒖 before 

each game execution, e.g. in case some appliances are not regularly 

used on daily basis. 

 

Figure 2: Users' attitude space 

where each user locates themselves and their neighbors based on their 

current delay tolerance threshold 𝒚𝒍
𝒂𝒖

 and normalized daily energy 

bill per appliance 𝑩𝒍
𝒂𝒖 defined as: 

𝑩𝒍
𝒂𝒖 = 

∑ 𝒃𝒕(𝒚𝒖𝒕)∑ 𝒍𝒖𝒂𝒏 . 𝒙𝒕−𝒏+𝟏
𝒂𝒖  𝒏 ∊ 𝑵𝒂𝒖:𝒏≤𝒕𝒕 ∊ 𝑻

∑ 𝒃𝒕(𝒚𝒖𝒕)𝒕 ∊ 𝑻 . 𝒚𝒖𝒕 
 

Based on their position, user 𝒖 defines an area of interest 𝑨𝒍
𝒖  (see 

shaded area in Figure 1) representing acceptable bill-comfort pairs.  

The criteria for the definition of such area depend on the personal 

attitude of the user (e.g., a user with a strong hedonistic attitude would 
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be willing to imitate users with a higher delay tolerance threshold than 

theirs, though their bill is - even significantly- higher than theirs, 

whereas they would never imitate users with a lower delay tolerance 

threshold, even if their daily expense is lower than their own) and may 

be revised at each game execution 𝒍. 

The interaction protocol executed by user 𝒖 at day 𝒍 ∊  𝑳 proceeds as 

follows.  User 𝒖 defines a Boolean parameter ή𝒖′  computed as: 

ή𝒖′ = {1 𝑖𝑓 (𝒚𝒍
𝒂𝒖

,𝑩𝒍
𝒂𝒖) ∊ 𝑨𝒍

𝒖

0 𝑒𝑙𝑠𝑒
} 

For each neighbor 𝒖′ ∊  𝑹[𝒖], user 𝒖 updates the delay tolerance 

threshold 𝒚𝒍
𝒂𝒖

 of each appliance 𝒂:𝒂 ∊ 𝑨𝑺
𝒖  ∧ 𝒂 ∊ 𝑨𝑺

𝒖′  as follows: 

(𝟕)         𝒚𝒍+𝟏
𝒂𝒖

= {𝒚𝒍
𝒂𝒖

+  

∑ 𝒉𝒂(𝒖,𝒖′)(𝒚𝒍
𝒂𝒖′

− 𝒚𝒍
𝒂𝒖

) ή𝒖′∧ 𝒑𝒍
𝒖𝒑𝒍

𝒖′=𝟏 

∣ 𝑹[𝒖] ∣

𝒚𝒍
𝒂𝒖

 𝑒𝑙𝑠𝑒

} 

 

where 𝒉𝒂(𝒖, 𝒖′) is the similarity between the comfort profiles of users 

𝒖 and 𝒖′ with respect to appliance 𝒂.  In this paper we will define 

similarity as half the number of time slots where 𝒄𝒕
𝒂𝒖 and 𝒄𝒕

𝒂𝒖′  are 

both non-zero. The condition of constraints (7) is  
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𝒚𝒍
𝒂𝒖

+  

∑ 𝒉𝒂(𝒖,𝒖′)(𝒚𝒍
𝒂𝒖′ − 𝒚𝒍

𝒂𝒖) ή𝒖′∧ 𝒑𝒍
𝒖𝒑𝒍

𝒖′=𝟏 

∣ 𝑹[𝒖] ∣
> 0 

User 𝒖 will then use the updated delay tolerance threshold 𝒚𝒍+𝟏
𝒂𝒖

 in 

the next day for the execution of the load scheduling game.   

 

 

 

Figure 3: Home users sending their preferences (comfort level, appliance scheduling) to the aggregator 
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To sum the potential social interaction and evaluate the effects of uses’ 

social interactions, we define the following two scenarios: 

On day 1, we assume that no interaction occurs among the users .  This 

assumption is considered as the benchmark of our study into the game 

of theory. 

 Scenario I assumes that users can influence the comfort 

threshold 𝑪𝒖 of their neighbors. 

 Scenario II assumes that users can influence both the comfort 

threshold 𝑪𝒖 and the comfort parameter 𝒄𝒕
𝒂𝒖 of their neighbors. 

In the following section we will provide the details of the social 

mechanisms which characterize the two latter scenarios. 

 

i. Scenario I 

In order to characterize the social attitudes of the users (i.e. their ability 

to promote or comprehend price signals and sensibility to the 

mechanism), we allocate to each user 𝒖 of the neighborhood: 

 An influence probability 𝒑𝒖
𝒂𝒖

 

 An imitation coefficient 𝒉𝒖 
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The probability 𝒑𝒖
𝒂𝒖

 characterizes the strength of the influence of user 

𝒖 on their neighbors (the higher is 𝒑𝒖
𝒂𝒖

, the more likely user 𝒖 will be 

successful in convincing the neighbors about the interaction to alter 

their preferences).  The imitation coefficient measures the extent up to 

which user 𝒖 is disposed to imitate the preferences of their neighbors. 

In this scenario we assume that users exchange only comfort signals, 

i.e. they socially interact with the aim of influencing each other’s 

comfort threshold 𝑪𝒖.  We also assume that the social interactions 

occur after the execution of the load scheduling game which will be 

described in the next scenario.  As a consequence of the interactions 

with their neighbors, user 𝒖 may modify the value of 𝑪𝒖 to be used in 

the next execution of the load scheduling game (i.e., during the next 

optimization time horizon).   

User 𝒖 will use the updated comfort threshold in the next iteration of 

the load scheduling game.  Note that the updating mechanism defined 

in Eq. 7 is purely imitative and does not assume any critical attitude of 

the users towards the type of social messages provided by their 

neighbors, i.e. user 𝒖 will be equally likely to imitate each of their 

neighbors 𝒖′, regardless to the value of their comfort threshold 𝑪𝒖.  

However in real scenarios, users could show higher propulsion 

towards the imitation of hedonistic (or non-hedonistic) behaviors.  
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Therefore, in the next scenario we refine our social interaction 

mechanism to model the users as rational decision makers.   

ii. Scenario II 

Similarly to the approach proposed previously, in order to capture the 

users’ capability to make rational decisions about whom to imitate 

(and to which extent), we consider the same attitude space adopted in 

Figure 1, where all users locate themselves and their neighbors based 

on their current comfort threshold 𝒄𝒍
𝒖 and daily energy bill 𝑷𝒖.  Based 

on their position, user 𝒖 defines an area of interest 𝑨𝒍
𝒖 (the shaded 

area in Figure 1) representing acceptable bill-comfort pairs.  The 

criteria for definition of such depend on the personal attitude of the 

user (e.g., users with a strong hedonistic attitude would be willing to 

imitate users which a higher comfort threshold than theirs, though 

their bill is –even significantly- higher that their own, whereas they 

would never imitate users with lower comfort threshold, even if their 

daily expenses is lower that their own) and may be revised and 

executed at each game execution 𝒍.   
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5. Implementation 

The most peculiar property of potential game theories is that they have 

at least one pure Nash equilibrium, namely the strategy that minimizes 

𝑷(𝑰).  Furthermore, in such games, best response dynamics always 

converge to a Nash equilibrium although it might not coincide with 

the optimal equilibrium of the issue.  It is a sort of a local maximum 

which guarantees the solution for all the users in the neighborhood.   

Hereafter, we describe a simple implementation of best response 

dynamics, which allows each user 𝒖 (namely each appliance 𝒂) to 

improve its cost function in the proposed power scheduling game.  

Such algorithm is the best response strategy for a player 𝒖 minimizing 

objective function Eq. 6, assuming other appliances are not changing 

their strategies.  Specifically, each appliance, in an iterative fashion, 

defines its optimal power scheduling strategy based on electricity 

tariffs (calculated according to other players’ strategies) and 

broadcasts its energy plan (i.e., its daily power demand profile) to the 

group.  At every iteration, energy prices are updated according to the 

last strategy profile and, as a consequence, other appliances can decide 

to modify their consumption scheduling by changing their strategy 

according to the new tariffs.  The iterative process is repeated until 

convergence is reached.  Once converged, the appliances power 
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scheduling and the energy prices are fixed as well as the energy bill 

charged to each user 𝒖, which is simply the sum of all his appliances 

prices  

The best response mechanism is executed by solving, in an iterative 

way, an optimization model.  Specifically, at every iteration and based 

on the energy demands of other appliances, this model is used to 

optimally decide the power plan of the appliance in charge of defining 

its energy demand at this step of the iterative process, with the goal of 

minimizing the electricity bill.  We will show in the Numerical Results 

section that our proposed algorithm converges, in few iterations, to a 

Nash equilibrium. 

Note that the best response dynamics here proposed is only used to 

identify and study the efficiency of the Nash Equilibrium of the game.  

While the transmission of the power profile to other users may raise 

security and privacy concerns, we observe that each appliance needs 

only the aggregated power profile of other appliances for the real 

implementation of the DSM algorithm.  Therefore, we can envisage a 

system in which appliances communicate only with the operator that 

broadcasts the aggregated information after collecting all appliances’ 

schedules.   
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Chapter 4.     

 NUMERICAL RESULTS 

_________________________________________________________ 

In our model we used the software Matlab, in order to create the 

algorithm and all the functions necessary to build the program.  

We implemented many and different solutions trying to figure 

out what would be the most convenient to our case study.  The 

results are obtained after many simulation and the numerical 

data used are described in the section below. 

1. Numerical Assessment   

In the tests that we conducted, the 24-hour time horizon is 

represented by a set of 𝑻 of 24 times slots of which each 𝒕 = 𝟏 

hour.  We consider a total of 𝑳 = 𝟑𝟎 consecutive executions of the 

load scheduling game already presented and simulate social 

interactions at the end of each execution.  The parameters of the 

electricity tariff, 𝒃𝒕, are defined based on the real-time pricing 

currently used in Italy for large consumers.  Specifically, 𝒃𝑨𝒏𝒄 =

𝟎. 𝟎𝟓 €/𝑴𝑾𝒉 and 𝒔 = 𝟐. 𝟑 ∗ 𝟏𝟎−𝟒 €/𝑴𝑾𝒉𝟐.   
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We consider a scenario with 𝑼 = 𝟓𝟎 users.  The set 𝑹[𝒖] of each 

user’s neighbors is computed based on the topology of a random 

scale-free network graph generated according to the Barabasi-

Albert model with mean degree 𝒅, which is a popular generative 

model for based social networks and online communities (Albert, 

1999).  If not differently stated, we assume 𝒅 = 𝟔. 

Each user  𝒖 has a contractual limit, 𝝅, of 3kW and owns 4 

shiftable appliances (i.e., 𝑨𝑺
𝒖 = { washing machine, dishwasher, 

boiler a recharge of robotic vacuum cleaner}) and other 7 fixed 

ones (i.e., 𝑨𝑭
𝒖 = {refrigerator, purifier, lights, microwave, oven, 

TV, iron}).  The operation of shiftable appliances is assumed to be 

controllable and fully automatized (i.e. by means of a home 

energy management system such as the one described in (D. m. 

Han, 2010)).  The energy consumption patterns of each appliance 

have been extracted from a real dataset (MICENE, 2015).  On 

average, the energy consumption due to deferrable appliances 

accounts for 55% of the total daily consumption.  For each 

appliance, the comfort curve 𝒄𝒕
𝒂𝒖 assumes a right angled 

triangular shape of 4 slots duration randomly placed within the 

24-hours scheduling horizon, with values [1, 0.75, 0.5, 0.25] (i.e., 
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we assume that the preferred starting time is the slot 𝒕 such that 

𝒄𝒕
𝒂𝒖 = 𝟏 (see figure 3), and that users’ satisfaction decreases 

linearly with delay).   

 

Figure 4: Comfort curve of an appliance 

 

The initial values of the appliance delay tolerance thresholds 𝒚𝒍
𝒂𝒖

 

are randomly chosen with uniform distribution in the range [0, 

0.75].  If not differently stated, we assume that 𝒑𝒍
𝒖
= 𝟎. 𝟖𝟓 .  In 

order to evaluate the performance of the proposed interaction 

mechanism we consider three scenarios. The first one assumes 

that the area of interest 𝑨𝒍
𝒖 of user 𝒕 is defined as: 
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𝑨𝒍
𝒖 = {(𝒚𝒍

𝒂𝒖′ ,𝑩𝒍
𝒂𝒖′): 𝑩𝒍

𝒂𝒖′ < 𝑩𝒍
𝒂𝒖} 

(i.e., users imitate neighbors whose daily bill is lower than theirs); 

in the second one we define 𝑨𝒍
𝒖 as: 

𝑨𝒍
𝒖 = {(𝒚𝒍

𝒂𝒖′ ,𝑩𝒍
𝒂𝒖′): 𝒚𝒍

𝒂𝒖′ < 𝒚𝒍
𝒂𝒖

} 

(i.e., users imitate neighbors who impose lower delay tolerance 

thresholds than theirs), whereas in the third one we set 𝑨𝒍
𝒖 as: 

𝑨𝒍
𝒖 = {(𝒚𝒍

𝒂𝒖′ ,𝑩𝒍
𝒂𝒖′): 𝒚𝒍

𝒂𝒖′ <  𝒚𝒍
𝒂𝒖

∧  𝑩𝒍
𝒂𝒖′ < 𝑩𝒍

𝒂𝒖} 

(i.e., users imitate neighbors who have both lower daily bill and 

delay tolerance thresholds).   

The daily results obtained in the three scenarios are compared to 

the ones obtained during the first day (i.e. for 𝒍 = 𝟏), when no 

social interactions among the users have occurred.  For the 

assessment, the following metrics are measured: inductive bill, i.e. 

the electricity bill for each user 𝒖 ∊ 𝑼, and peak demand, i.e. the 

peak of the aggregated energy demand of the group of users 𝑼 

define as max 𝒚𝒕 .  This allows us to assess the peak power 

consumption before the optimization theory and after like in 

Figure 4. 
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Figure 5: Power consumption 

2. Numerical Results  

Average results obtained over 50 instances of each scenario are 

reported in Figure 5 and 6, which show that in all scenarios the 

imitation of virtuous behaviors lead to non-negligible decreases 

of the individual daily bills and of the aggregate peak energy 

consumption.  Bill reductions are more consistent in scenario 2, 

i.e. when users imitate neighbors with lower delay tolerance 

thresholds regardless to their bill (0.5% reduction versus 0.3% in 

scenario 1 and 0.4% in scenario 3).  This is due to the fact that 

achieving a low bill does not necessarily imply a low delay 

tolerance threshold: users can indeed achieve low bills if their 
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preferred appliance usage periods are very different from the 

ones of the other users (e.g. they span night hours), which would 

lead to lower values of the aggregate power consumption and, 

consequently, to lower energy prices.  It follows that imitating 

users with low bills does not always lead to an increase of the 

flexibility of the individual schedules. In terms of aggregate peak 

reduction, simulation results make it possible to conclude that 

Scenario 1 leads to the least peak power reduction, which settles 

at about 0.9% less than the peak power obtained with no social 

interaction.  Better performance is obtained in the other two 

scenarios, which provide similar peak power reductions. 

 

Figure 6: Percentual reduction of peak energy consumption 
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Figure 7: Percentual bill reduction 

 

Figure 7 shows the evolution of the delay tolerance threshold 𝒚;
𝒂𝒖

 for 

usage of the washing machine for the whole population of users in a 

representative instance of the two scenarios.   
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Figure 8: Trend of the washing machine delay tolerance over time depending on the definition of the 

users' area of interest 

As depicted in Figure 7a, in the first scenario the imitation of the 

neighbors with lower bills leads to a homogenization of the thresholds.  

Moreover, the average value of 𝒚;
𝒂𝒖

 tends to decrease, due to the fact 

that people experiencing lower bills are more likely to have chosen low 

delay tolerance thresholds.  It follows that imitating them leads to 

more elasticity in the scheduling patterns.  However, some users never 
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alter their delay tolerance threshold: this happens when none of their 

neighbors ever experiences lower bill than theirs.  Conversely, in 

scenario 2 the benefit of imitating neighbors with lower delay 

tolerance threshold clearly emerges: in this case, 𝒚;
𝒂𝒖

 never increases 

with time w.r.t. its initial value and remains constant only in case the 

delay tolerance threshold of a given user is always lower than the one 

of all their neighbors.  Results obtained in scenario 3 show trends 

analogous to Scenario 2 and are thus not reported for the sake of 

conciseness. 

We now further refine our assessment focusing on scenario 1 (i.e. 

the imitation of users experiencing lower bills).  Figure 8 reports 

bill and peak power savings depending on the level of 

participations of the users to the social interactions. Intuitively, 

the more the users are willing to interact and revise their 

strategies based on the comparison of their bill to those of their 

neighbors, the higher are the obtained savings.  Figure 8 shows 

that increasing the level of user activity from 50% to 100% doubles 

both the bill reduction and the peak power reduction achievable 

in one month 
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Figure 9: Percentual reduction of daily bill and peak energy consumption for different values of the 

parameter 𝒑𝒍
𝒖
.   95% confidence intervals are plotted. 
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Moreover, we evaluate the impact of the mean degree of 

connectivity 𝒅 of the social network.  Figure 9 shows that 

increasing 𝒅 from 3 (which corresponds to a user interacting with 

around 4% of the other users) to 6 (i.e. each user interacts on 

average with 10% of the other users) almost triplicates the bill 

reduction and doubles the peak power reduction.  Further 

increasing 𝒅 did not lead to noticeable additional savings. 

 

Figure 10: Percentual reduction of daily bill and peak energy consumption depending on the 

average connectivity degree of the social network. 95% confidence intervals are plotted. 
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Nevertheless, we investigate the impact of the total number of 

users participating to the DSM protocol.  Interestingly, as shown 

in Figure 10, increasing the cardinality of the set of users does not 

lead to significant variations in the average bill reduction, 

whereas the peak power reduction is highest for very small 

groups (e.g. 25 users).  In fact, when users are fewer, the impact 

of each user on the peak power is larger and it is sufficient that a 

single user lowers their delay tolerance threshold to have a 

beneficial effect on the peak power.  As the number of users 

grows, it is necessary that many users improve their tolerance for 

having a significant effect.   
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Figure 11: Percentual reduction of daily bill and peak energy consumption depending on the total 

number of users. 95% confidence intervals are plotted. 
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Chapter 5.       

 STUDY OF CONVERGENCE 

_________________________________________________________ 

Until now, the majority of the studies conducted on 

probability has dealt with independent trials processes.  These 

processes are the basis of classical probability theory and much of 

statistics. We have discussed the main theorem in which we will 

realize our model: the game theory.  We have seen that when a 

sequence of chance experiments forms an independent trials 

process, the possible outcomes for each experiment are the same 

and occur with the same probability.  Furthermore, knowledge of 

the outcomes of the previous experiments does not influence our 

predictions for the outcomes of the next experiment.  The 

distribution of the outcomes of a single experiment is sufficient to 

construct a tree and a tree measure for a sequence of 𝒏 

experiments, and enabling us to answer any probability question 

about these experiments by using this tree measure.  Modern 

probability theory studies chance processes for which the 

knowledge of previous outcomes influences predictions for 
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future experiments.  In principle, when we observe a sequence of 

chance experiments, all of the past outcomes could influence our 

predictions for the next experiment.  For example, this should be 

the case in predicting the next possible state of a user 𝒖 to arrive 

to another state or remain in the same position.  But to allow this 

much generality would make it very difficult to prove general 

results.  In 1907, A. A. Markov began the study of an important 

new type of chance process.  In this process, the outcome of a 

given experiment can affect the outcome of the next experiment.  

It concerns about a sequence of random variables, which 

correspond to the states of a certain system, in such a way that the 

state at one time epoch depends only on the one in the previous 

time epoch.  This type of process is called the Markov chain.  We, 

in our study, will use the discrete Markov chain process, in order 

to study the convergence of our model.   
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1. Modelling the System Evolution with Markov Chains 

Model 

The agent-based model described above can be analyzed with the 

help of a discrete-time Markov Chain.  In order to do so, we need 

to make the following assumptions: 

 The user delay tolerance threshold can only take values that 

are integer multiples of a fixed step ∆γ.  The total number 

of possible tolerance threshold levels is: 

𝟏 +
1

∆γ
 

 The agent state is represented by its tolerance thresholds at 

any given time for each appliance. 

 Each day is divided in iterations.  At each iteration 𝒊, a 

single agent interacts with another user and modifies its 

delay tolerance threshold. This is slightly different than the 

model in the section of the interaction scenario, which 

considers that the effects of multiple interactions are 

applied at the same time.  This assumption will make the 

Markov matrix more sparse and, thus, more manageable.  
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On the other hand, the system will evolve more slowly. 

Without loss of generality, we consider that each user has a single 

appliance.  Since the thresholds for the various appliances evolve 

independently, the full state of each user can be described by a set 

of identical Markov Chains evolving independently 

The full state at iteration 𝒊 for appliance 𝒂 is thus given by the tuple: ( 

γᵗ
𝒂𝟏

,γᵗ
𝒂𝟐

,γᵗ
𝒂𝟑

,… ,γᵗ
𝒂𝑼

).  Thus, the total number of states is 

∣ γ ∣𝟏+𝟏/∆γ , which grows exponentially fast as ∆γ become small.  

Therefore the model can be used only with a small number of levels.    

At each time slot, an agent 𝒖 uniformly at random interacts with 

another user 𝒖′ uniformly at random and changes its delay threshold 

to: 

γ𝒕+𝟏
𝒂𝒖 =  γ𝒕

𝒂𝒖
+ ⌊  

 𝜹𝒖,𝒖′

∆γ
 ⌋∆γ 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

 𝜹𝒖,𝒖′

∆γ
− ⌊  

 𝜹𝒖,𝒖′

∆γ
 ⌋ 

Or  

γ𝒕+𝟏
𝒂𝒖 = γ𝒕

𝒂𝒖 + ⌊
 𝜹𝒖,𝒖′

∆γ
 ⌋ ∆γ 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦⌊

 𝜹𝒖,𝒖′

∆γ
 ⌋− 

 𝜹𝒖,𝒖′

∆γ
 

with  

𝜹𝒖,𝒖′ =  𝒉𝒂(𝒖,𝒖′)(γ𝒊
𝒂𝒖′

− γ𝒊
𝒂𝒖

) 
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It follows that the transition probability is as follows: 

 

For all integer 𝒌 such that 𝟎 ≤  𝛄𝒕
𝒂𝒖

+ 𝒌 ∆γ ≤ 𝟏, while it is equal 

to zero in all other cases.   

We used Equation (8) to model an homogenous system with 

𝒉𝒂(𝒖, 𝒖′) = 𝟎. 𝟓 for all users 𝒖, 𝒖′  and study the number of time slots 

to reach state.  Figure 10 shows the average number of interactions 

after which the state probabilities change over time by less than 

1%.  
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Figure 12: Number of iterations to a steady state, depending on the number of users and states per 

users. 

The results are averaged over 100 Monte Carlo simulations with 

random initial conditions.  Figure 11 shows that the number of 

discrete threshold levels has a limited impact on the convergence 

time, making it possible to study this important parameter with 

large discretization steps, resulting in smaller, more manageable 

chains.  Additionally, we note that, for a very small number of 

users, the interactions to reach steady state grow as the number 

of users grows. Instead, for more than 5 users, the number of 

social interactions to reach equilibrium does not depend on the 

size of the social community.  Consequently we can state that, for 

a large network, the number of users has a limited impact on the 

convergence time, whereas the important parameter is the 
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frequency at which users interact. Frequent interactions with a 

large set of neighbors result in faster convergence. 

 

2. Numerical Assessment of Markov Chain Model 

In order to project the numerical assessment of our Markov chain 

model, we assigned the following set of variables the following 

parameters: 

 We considered having a set of user, each having shiftable 

appliances. 

 Each shiftable appliance is associated with a comfort level. 

 Each user is associated with a comfort threshold level. 

To be clearer a simple example is listed.   

Let us consider a small neighborhood having only 2 users 𝒖, where all 

users have only one shiftable appliance 𝒂.  The quantization step 𝒇 is 

set to 4 steps, meaning that the approximation of the values will be 

based from [0, 1/3, 1/6, 1].  As shown in the example, this choice of 

numbers will very much impact the size of the matrix as well as the 

number of iterations in order to reach convergence.  Note that the 

choice of number is taken for the sake of simplicity and clearness.   
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First, the Markov chain model implies building the state matrix.  The 

quantization step will define the number of rows 𝒓 of our matrix and 

the sum of the number of shiftable appliances of each user will set the 

number of columns.   

We can define it as follow: 

𝒓 = 𝒇^(𝒖 ∗ 𝒂) 

We can notice that the size of the matrix grows exponentially with the 

size of its consistent elements.  In our examples we will have a 16x2 

matrix as which will allow to enumerate all the possible states of our 

problem. 

After building the state matrix, we can start building the transition 

matrix which contains all the probabilities of moving from a current 

state to either changing or remaining in the current one.  Moreover, we 

need to define the size of the matrix 𝒄, which is described as the 

number of rows of the state matrix for the row and column.  The size 

is as follows: 

𝒄 =  𝒓  

As expected, the size will be very huge and we might face some 

computational problems calculating neighborhood with large number 

of users or big number of shiftable appliances.  Usually, the transition 
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matrix is a sparse matrix, and the sum of probabilities of every 

transition of each state should be equal to 𝟏.   

∑𝒑𝒊 = 𝟏

𝑐

𝑖=1

 

In order to obtain the elements of the transition matrix, we need to 

assume some approximation.  The probabilities of the states are 

calculated based on their distance from the corresponding step value 

as following: 

𝒑𝟏 = (
𝒅𝟏

𝐃
) ∗ (𝐮)−𝟏 ∗ [(𝐮 − 𝟏) ∗ 𝒂]−𝟏 

𝒑𝟐 = (
𝐃 − 𝒅𝟏

𝐃
) ∗ (𝐮)−𝟏 ∗ [(𝐮 − 𝟏) ∗ 𝒂]−𝟏 

where 

𝒅𝟏 is the position of the value that we want to approximate 

𝐃 is the entire distance of the step 

The choice of each probability is dependent on the approximation to 

the floor or ceiling of each value and element of the transit ion matrix.  

This procedure is made in order to increase the number of elements of 

the matrix since for each non integer element we would be able to 
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calculate two elements in which the probability of the closest one is for 

𝒅𝟏

𝐃
 and the other is for 

𝑫− 𝒅𝟏

𝐃
.  In this way the sparse matrix would have 

some more elements, which will be used for the study of the 

convergence.   

Considering again our example, having two users each having one 

shiftable appliance, and after building the state matrix, the 

𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 matrix will be as follows: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

1 0
0 5/8

0 0
0 0

1/8 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

    

0 0
0 0

4/8 0

0 4/8
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

    

0 0
0 3/8
0 0
0 0

7/8 0
0 1
0 0
0 0

4/8 0

0 1/8

0 0
0 0

1/8 0
0 0
0 0
0 0

    

0 0
0 0

4/8 0
0 1/8

0 0
0 0

5/8 0

0 4/8
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

   

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

4/8 0

0 7/8

0 0
0 0

3/8 0
0 4/8

0 0
0 0

    

0 0
0 0
0 0
0 3/8

0 0
0 0

3/8 0

0 4/8
0 0
0 0
1 0
0 5/8

0 0
0 0

1/8 0

0 0

    

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

4/8 0

0 4/8
0 0
0 0

    

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 3/8

0 0
0 0

7/8 0
0 1

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The transition matrix will be the key element in studying the 

convergence of our system.  We will need the indexing vector 𝒗 which 

has the same number of rows of both matrices. 

The indexing vector is initialized as uniform distribution among all of 

its rows, this is only one case of choosing the vector, since any random 



 

67 
 

vector would lead to convergence, but for the sake of simplicity and 

ensuring a more random environment, we chose a uniformly 

distributed vector, which is as follows 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Furthermore, the average number of interactions after which the 

state probabilities change over time by less than 1%, at that point 

we can note convergence of our system and the number of 

iterations is registered.  The error vector is calculated by the 

multiplication of the transition matrix by the indexing vector. 

𝒗′ = 𝒗 ∗  𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 
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Finally, we considered that each user has a set of 4 shiftable appliances, 

where users can interact with all others having the same set of shiftable 

appliances.  In the first study conducted, we tried to highlight the 

difference between having the interaction based on the neighboring 

preferences or based on the comfort level of a neighboring user having 

a higher threshold of comfort.  The convergence in Figure 13 shows the 

difference between having more preference in order to convergence 

since the transition matrix will be sparser, pointing more and bigger 

number of iteration to reach convergence. 
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Chapter 6.     

 CONCLUSIONS  

_________________________________________________________ 

 Nowadays, electric utilities still have many reasons to be 

skeptical about the projections of DSM results.  Since 1970s, they 

have tried to capture load shifting and load reduction benefits, 

with mixed results.  These efforts, however, were limited in scope 

and relied on costly, proprietary technology solution.  The good 

news is that there has been significant progress in areas vital to 

the success of DSM.   

Electric Utilities are using federal stimulus funding opportunities 

to deploy statistically significant pilots to measure the impact of 

various DSM program designs.  Also electric regulators are 

considering reforms that credit utilities for DSM reductions.  Still 

much work at all levels remains to be done if the economic and 

social promise of DSM is to be fully realized in the next decade.  

In this study, we assumed and proposed a very good aspect of 

DSM which aims at reducing the peak demand of a group of 
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residential users.    We have modeled our system into a game 

theoretical approach, where players are the customer’s 

appliances, which decide autonomously when to execute.  Also 

we were able to demonstrate that having the proposed 

parameters of our game theory, and it is a generalized ordinal 

potential one, and we proposed a best response dynamics 

mechanism which is guaranteed to converge in few steps to 

efficient Nash equilibrium solutions, which is the local maximum.  

Furthermore, we showed that our approach performs extremely 

close to a more complex setting where each customer must 

optimize the schedule of all their appliances, since it provides 

practically the same results in terms of minimizing their daily 

electricity bill.  For this reason, due to its intrinsic simplicity, 

robustness and distributed architecture, we recommend the 

adoption of our proposed approach.  The latter were able to show 

the benefits that social interaction can have on the peak power 

demand by users with deferrable appliances. One of the problems 

with demand side management is that user flexibility may vary 

over time depending on observed savings and social pressure.  In 

this study we assume that users are willing to vary their delay 

tolerance thresholds over time by matching the ones of the users 
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of their social group that have a lower energy bill.  We show with 

simulations that this has a beneficial impact on the overall peak 

demand, reducing energy management costs.  The models and 

the findings of this paper can be used by utilities to study how 

much user awareness of other users’ behavior can impact on the 

demand behavior.  The simulations results in this work show that 

the knowledge of the electricity bill or delay tolerance of similar 

users yields a peak power reduction in the long term.  We also 

show that a limited number of interactions with a relatively small 

set of neighbors is sufficient to achieve a steady state condition.   

Finally, the numerical results obtained using realistic load 

profiles and appliance models demonstrate that the proposed 

DSM system having interaction mechanisms helps at modeling 

the influence of the society on individual delay tolerance 

preferences which affects the aggregated energy consumption by 

the execution of the load scheduling game.  It also, represents a 

promising and very effective solution to reduce the peak 

absorption of the entire system and the electricity bill of 

individual customers in applying social interaction mechanisms. 
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