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Sommario 
 

Nel presente lavoro di tesi è illustrata l’analisi numerica di uno scambiatore nucleare a 

fascio di barre distanziate da spaziatori a griglia e raffreddato con metallo liquido. Il regime di flusso 

del refrigerante è fortemente turbolento ed introduce forti stress meccanici alle barre le quali, 

caratterizzate da un’alta densità di potenza, potrebbero entrare in contatto e generare un aumento 

locale di temperatura. Tale aumento potrebbe eccedere il limite di sicurezza imposto dai materiali. 

Lo spaziatore a tale scopo fissa le barre nella posizione definita in campo di progetto, ma 

introduce una rilevante perturbazione del flusso alterando consistentemente lo scambio termico 

identificato dal gruppo adimensionale di Nusselt. La campagna di dati sperimentali riguardanti lo 

scambiatore in esame è stata fornita del laboratorio KALLA dell’Istituto di Tecnologia di Karlsruhe 

(KIT) in [1]. Tali dati vengono usati nel presente lavoro di tesi per la validazione dell’analisi numerica. 

Il meccanismo di scambio termico dei metalli liquidi è peculiare e differisce da quello dei 

fluidi più comuni aventi un numero di Prandtl vicino o superiore all’unità. L’analogia di Reynolds 

non è più valida per i metalli liquidi e di conseguenza diversi metodi per il numero di Prandtl 

turbolento sono stati utilizzati ed analizzati in questa tesi. Un modello a quattro equaizoni 

recentemente proposto in [2] e messo a punto per l’analisi numerica dei metalli liquidi. Sono state 

inoltre utilizzate due correlazioni per definire il numero Prandtl turbolento in [3] e in [4], accoppiate 

con tre modelli per il calcolo della viscosità turbolenta. 

Le simulazioni svolte sono compiute su un singolo spacer. Il primo caso riguarda un fascio 

infinito di barre distanziate con lo spaziatore. Il secondo caso è la geoemetria completa dello 

spaziatore comprendente anche il tubo di contenimento del reattore il quale, è considerato 

adiabatico. I risultati così prodotti al variare del numero medio di Pèclet sono confrontati con i dati 

sperimentali tramite numeri di Nusselt e temperature adimensionali. 

 

Parole Chiave: Metalli liquidi, CFD, Convezione turbolenta, Fascio di barre, Spaziatore, 

Scambio di calore, Scambiatore di calore. 
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Abstract 
 

The increasing demand of energy requires a major supply which, coupled with a higher 

environment sensibility leads to study more sustainable energy production systems. The THINS 

project [5], in the nuclear power research area proposes several innovative four generation reactors 

with enhanced safety, economics, sustainability and non-proliferation features which need to be 

developed.  

The KALLA laboratory of the Karlsruhe Institute of Technology (KIT) in Germany took part 

on the THINS project in developing thermal hydraulic feature on a nuclear reactor with ADS 

(accelerator driving system) cooled by liquid metals. The reactor design investigation leads to study 

the thermal dynamics performing several experiments. 

In this thesis based on the experimental data produced by the KALLA laboratory is proposed 

a CFD study on the liquid metals heat exchange in a 19 rod bundle with grid spacers in [6]. A 

computational fluid domain has been developed in several steps simulating a single grid spacer to 

achieve a better understanding of the heat transfer phenomena happening inside the test section 

used at the KALLA laboratory.  

The heat transfer analysis proposes a study on the main flow perturbation produced by the 

grid spacer which, is necessary to assure the rod stiffness avoiding the rods contacts which could 

generate a temperature increase over the materials security limits. 

The analysis has been carried out for several flow regimes. It starts first from an infinite rod 

bundle with grid spacer which simulate the central rods of the bundle. Than the second step it 

consists on the discretization of a complete grid spacer with the external adiabatic wall, to realize 

differences on the heat exchange, how profiles vary from the central rod to the peripheral ones. 

The numerical analysis is also complicated by the fact that the heat transfer mechanism of 

liquid metals differs from that of ordinary fluids. Consequently, the Reynolds analogy cannot be 

applied to these fluid flows. 

A recently proposed four-equation turbulence model in [2], takes in account the 

dissimilarities between the thermal and dynamical turbulence fields. It has been selected to 

perform a part of the numerical analysis. It consists on two additional transport equations, namely 

one for the temperature variance and one for its dissipation rates, have been solved to determinate 

the turbulent thermal diffusivity. The turbulence model has been implemented on through User 

Defined Function in Fluent v.15 CFD code. 

Two other semi empirical correlations computing the turbulent Prandtl number using the 

dynamical field properties have been launched using three different flow turbulent models. The 

results collected were thus compared with the experimental data, in order to find the best 

computational set up data fitting. 

 

Keywords: Liquid Metals, CFD, Turbulent Convection, Rod Bundle, Spacer, Heat transfer, 

Heat exchanger. 
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Chapter 1 

1. Introduction 
 

1.1. Four generation of nuclear power technology 
The increasing demand of energy requires a major supply that coupled with a higher 

environment sensibility leads to study more sustainable energy production systems. In the nuclear 

power research area there are several innovative four generation reactors using different coolants, 

kinds of nuclear reactions, and fuels [7], very high temperature reactor (VHTR), gas cooled fast 

reactor (GFR), sodium-cooled fast reactor (SFR), lead-cooled fast reactor (LFR), supercritical-cooled 

fast reactor (SFR), molten salt reactor (MSR). 

The nuclear waste reduction is an important aspect of the new generation reactors in order 

to meet the demand of a more sustainable energy production. Extensive study in the last years 

brought to light the promising way of partitioning and transmutation the nuclear waste using 

accelerator driven system ADS [8]. 

Thermal hydraulics is than recognized as one of the main key aspects to develop the new 

reactor systems. The research is focused on unconventional heat transfer fluid. New sub-channel 

geometries are tested, which brings to new arrangements and different primary circuit layouts. The 

new working fluids have different behavior, microscopic and macroscopic that need to be 

investigated through new models, computational simulations and experiments [5]. 

In this scenario the European project THINS (www.ifrt.kit.edu/thins/) was developed from 

2010 to 2014. It is a partnership between 24 institutions. The article European activities on 

crosscutting thermal-hydraulic phenomena for innovative nuclear systems [5], reports the THINS 

project main features, focused to develop the nuclear power reactor of generation IV with 

enhanced safety, economics sustainability and non-proliferation features. The design of new and 

innovative reactor cores require several experiments and computational simulations investigating 

the fluid dynamics to find the best solution for the fuel assembly.  

The main working features of the project are: 

 Advance reactor core thermal-hydraulics 

 Single phase mixed convection 

 Single phase turbulence  

 Multi-phase flow  

 Code coupling and qualification  

 

Inside this project, the Karlsruhe Liquid Metal Laboratory (KALLA) of the Karlsruhe Institute 

of Technology (KIT) in Germany, was performed an experiment. A test section was built to study 

the behavior of lead bismuth eutectic (LBE) cooling an electrically heated 19-pin rod bundle with 

three grid spacers that are mounted in the existing THEADES LBE loop in Fig. 1.1. 
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Fig. 1.1 THEADES LBE loop at KALLA laboratory, [9]. 

 

1.2. Liquid metal as a heat transfer fluid 
The first nuclear power facilities using liquid metals date back around 1950s, during the 

Cold War, USA and USSR started their research programs to power nuclear submarines. Both 

nations developed simultaneously pressurized water reactor and liquid metal cooled reactor. URSS 

started its work with lead-bismuth eutectic as a coolant while USA opted for sodium, the results 

was a prototype of submarine called ‘Sea Wolf’ that has been constructed by the USA. The only 

problem is that sodium reacts exothermically with water yielding sodium hydroxide (NaOH) and 

hydrogen gas. Thus the explosion risk didn’t justify the use. USA studied also lead-bismuth coolants, 

but their high corrosion rate and the impurities contamination cause problems related to their 

control and doesn’t repay the advantages. Despite all disadvantages studies were carry out in 

background till nowadays, where the technology allows more economical solutions. 

There are many advantages of liquid metals compared to the more common coolants used 

in the primary circuit of nuclear application such as water or air. In particular considering the alloy 

lead-bismuth eutectic LBE (Pb is 44%, Bi is 56%) it has an high boiling point of (1670°C) which allows 

a low pressure in the primary circuit with an operating temperature of 400-500°C. The materials 

used to contain LBE such as the vessel are subjected to a lower mechanic stresses compared for 

example to supercritical or subcritical reactor cooled by water. The large thermal conductivity 

𝜆 allows to a more efficient heat exchange in the primary circuit. The LBE low viscosity requires a 

lower hydraulic head from the pumps. In case of leakage from the primary circuit there is no 

combustion or explosion caused from the contact of LBE with air or water. All those conditions work 

together to meet more safety requirements and more efficient systems [10]. 

 

 

1.3. Activity performed at KALLA 
In this scenario of increased interest in advanced fast reactor concept and accelerator 

driven-system, with the aim to achieve a better understanding on the thermal-hydraulic behavior 

of heavy liquid metals in a fuel-assembly of nuclear reactors representative geometries, the KALLA 

laboratory [1] performed an experiment.  
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It consists of an electrical heated 19-pin hexagonal rod bundle cooled by LBE in a typical 

reactor operating conditions in terms of temperature power density and mass flow rate. This rod 

bundle include three grid-spacers which both keep the rods in position and provide support for 

detailed temperature measurement at each axial position. The thesis is based on this particular 

experiment. It provides support to validate a numerical models. Database in this kind of application 

are not extensive and the experiments are really important but also expensive due to several issue 

aspects. Thus numerical models give support to an accurate and reliable planning. 

The kind of reactor and its design is one of the project keys components, due to rods 

proximity, their high thermal power and completely turbulent developed fluid dynamic velocity 

profile, rod bundle undergoes severe mechanical stresses. Rods without any mechanical support 

may come in contact causing a coolant lack. In the contact zone there’ll be a wall temperature 

increase over the safety limits imposed by materials. To supply this problem spacers provide 

keeping distance between fuels supports.  

 

1.3.1. Main spacer families  
There are two main spacer families. One is the helical spacer wires, it consists on a metal 

wire helically wrapped around each rod of the bundle providing the contact zones to the adjacent 

rods in Fig. 1.2. 

 

Fig. 1.2 7 Wire wrapped rods in a hexagonal lattice, [11] the black arrow is the main flow direction  

Helical wire wrapped spacer introduces a periodical variation of the main flow properties. 

Taking a domain portion far enough from the rod bundle inlet section to be thermally and 

hydrodynamically fully developed, the proprieties expressed in function of the axial coordinate of 

the main flow direction, like friction factor and Nusselt number can be divided in to a constant value 

and a fluctuating one depending on the helical pitch, rods number and lattice distribution [12]. 

Fluctuations can be considered not consisted compared to the main constant quantities depending 

from case to case. 

The second kind are the spacer grids like in Fig. 1.3. In the picture the hexagonal holes 

where are inserted rods are visible. The small dimples three for each hole are the only portion of 

spacer in contact with the rod wall. Dimples keep every rod in the correct position. 
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Fig. 1.3 Frontal view of the grid spacer used in [1]. 

These spacers represent only a small portion of the rod main axial length, in this specific 

case are three grid spacers in the entire rod bundle [1]. 

This kind of spacer introduce a concentrated pressure loss, instead of the distributed of the 

previous one. In the area close to the spacer the flow field is characterized by vortices and 

recirculation areas [13]. The thermal proprieties like the temperature and the Nusselt number have 

an exponential growth upstream the spacer followed by an exponential decaying trend [14]. The 

magnitude of this behavior depends from the main flow properties and the geometry. 

 

1.4. Scope and content 
Many authors developed semi-empirical correlations to analyze the heat transfer of liquid 

metals in a triangular lattice assembly in fully developed flow without spacers. They are briefly cited 

with their main conclusion in [15]. The spacer introduces significant changes on the main flow 

characteristic and on the heat exchange as descripted in Paragraph (1.3.1). Starting from the 

experiment performed at the KALLA laboratory in [1] many authors simulated the same phenomena 

using system code TRACE [14], and CFX [6]. 

This work pursues the aim to study the heat transfer phenomena of LBE using the CFD 

software Fluent v.15 and compare the results with the experimental data in [1]. Using existing 

models and correlations already developed, they are tested in the in the specific grid spacer 

geometry in Fig. 1.3. This work is focused on the assessment of several meshes to reproduce the 

spacer phenomena which characterize the heat exchange. Than it follows the error investigation to 

asses the computational domain independence. 
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Chapter 2 

2. Problem description 

2.1. Experimental set up 
The experimental set up description from the instrumentation to the derivation of the main 

quantities is cited from [1]. Here follows first the description of the THEADES LBE loop, second the 

section test and at last the derivation of the main quantities used as a reference values in this thesis. 

 

Fig. 2.1 Schematic representation of the THEADES LBE loop, its set-up for this experiment [1]. 

2.1.1. The LBE test loop 
The experiment is performed at the KALLA laboratory [9] using the THEADES loop schematically 

represented in Fig. 2.1. Starting from the position 1 a sump tank contains the complete LBE stock, 

it amounts to 42 𝑡𝑜𝑛𝑠. The procedure to use the instrumentation consist in a loop preheating up 

to 200° 𝐶, to avoid the solidification of LBE. Pressurizing the sump tank with the argon from the gas 

system in position 2 is possible to fill the THEADES loop with liquid metal. The inverse action allows 

to empty the loop .In case of emergency, opening all the valves, the loop disposition allows to drain 

all the LBE into the sump tank only with the Gravity force effect. In position 3 there is an oxygen 

control, it needs to prevent the lead oxide formation and the excessive corrosion rate. These are 

the conditions for the steady state operations up to 450°𝐶.  



Chapter 2.     Problem description 
________________________________________________________________________________ 

8 
 

A filter in position 4 prevent the contamination of the test section located in position 5 by the 

lead oxide. A centrifugal pump is located in position 6, it allows a maximum volumetric flow rate of 

42𝑚3/ℎ, in order to have a better flow rate control. In position 7 there is a bypass line controlled 

with by a valve. The heat sink in position 8 it is a an exchanger which use air as a coolant and have 

a maximum capacity of 500𝑘𝑊. In position F1 and F2 are placed respectively a vortex flow meter 

and a Venturi one, in order to have an high measurement accuracy in a wide flow rates range [1]. 

 

 

 

Fig. 2.2 Side view of the test section from [1]. 

 

2.1.2. Test section 
Fig. 2.2 is the test section side view, it is composed by 19 rods inside an hexagonal pipe. Rods 

are located on a triangular lattice. The main flow is directed against the gravity, from the inlet 

follows an equalizer to stabilize the flow before the measurement with the Venturi flow meter, in 

order to obtain a more homogenous flow distribution over the section and thus a more accurate 

reading from this sensor. Downstream the Venturi nozzle a pin fixer keep the 19 rods in their 

position, there is also a pressure sensor to measure the pressure loss across the pin fixer. At 𝑥 = 0 

starts the heated zone, three grid spacers follows placed at 𝑥𝑠𝑝, 1 =  177𝑚𝑚, 𝑥𝑠𝑝, 2 =  547𝑚𝑚, and 

𝑥𝑠𝑝, 3 =  870𝑚𝑚. Across each spacer a pressure sensor measure the pressure loss of each one. Grid 

spacers give also support to the thermocouples which are placed in a plane upstream each spacer 

inlet section, orthogonally to the main flow direction. The third spacer is movable from its reference 

position to have a deeper understanding of the phenomena happening inside the section test.  
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Fig. 2.3 Exploded view of the test section [1]. 

 

 

Fig. 2.3 is an exploded view of the test section, all rods except the central one are trunked. Table 

2.1 gives the main technical parameters of the section test. 

Table 2.1 Geometrical parameter of the section test [1]. 

Dimension Symbol Value 

Heated rods   
Rod outer diameter d 8.2mm 
Rod total length Ltot 1275mm 
Rod heated length Lheat 870mm 

Triangular array of 19 rods   
Distance between rod centers (pitch) p 11.48mm 
Pitch-to-diameter ratio p/d 1.4 
Minimum distance to the channel wall W 1.716mm 

Hexagonal flow channel   
Apothem A 25.7mm 
Curvature at the corners R 3mm 
Flow area Abdl 1281.71mm2 

Wet perimeter Pbdl 665.8mm 
Hydraulic diameter dh,bdl 7.70mm 

Inner sub channel   
Flow area Asch 30.66mm2 

Wet perimeter Psch 12.88mm 
Hydraulic diameter dh,sch 9.52mm 

Grid spacers   
Length Lsp 25mm 
Solidity 𝜖 0.29 
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2.2. Instrumentation 
The instrumentation installed in the THEADES loop is necessary to control the section test 

boundary conditions and its correct operation. In the next paragraph is descripted the section test 

instrumentation which is useful to obtain the data used in this thesis. In particular are information 

about thermocouples and the thermal power control which is dissipated by the rods. 

 

2.2.1. Temperature 

 

Fig. 2.4 Schematic representation of the thermocouples in the measuring plane upstream the three spacers [1]. 

46 thermocouples are used in the test section. To measure temperature at the entrance and 

exit two thermocouple are placed upstream and three downstream of the test section. Fig. 2.4 is 

the schematic thermocouple representation inside the measuring plane 2,5 𝑚𝑚 upstream each 

spacer. The magenta triangles indicate 24 thermocouples (8 in each spacer) placed to measure the 

heated wall temperature from outside the rod.  

The fluid temperature is measured from thermocouples represented on the red squares, placed 

at the sub channels center. Five sub-channels, including a central channel, three symmetrical ones 

in the first ring and one in the edge are considered for the first two spacers. Four measurement are 

allowed in the third spacer due to space limitations. These thermocouples are placed as the same 

level as the measurement for the wall temperature from outside. 

The black circles are three thermocouples only in the third spacer placed to measure the wall 

temperature from inside the rod, but in this thesis data from these thermocouple are not used. 

 

2.2.2. Thermal power 
Rods are built to dissipate uniformly heat flux longitudinally and circumferentially. A direct 

current-power supply powers the rods. Therefore, measuring independently voltage and current, 

the electrical power applied to the test section is obtained. From the experiments, it was noticed 
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that this value exceeds the thermal-energy balance results, presumably due to the power losses 

(both thermal and electrical) outside the test section [1]. 

 

2.3. The heat transfer in liquid metals 
 

Table 2.2 Proprieties of Air, Mercury, and Water at 20°C. 

  Mercury Air Water  

ρ kg/m3 13 579 1.205 998.3 
cp kJ/kgK 0.139 1.005 4.183 
λ W/mK 8.69 0.026 0.598 
ν (m2/s)∙10-6 0.114 15.11 1.004 

Pr  0.0249 0.71 7.02 

 

Liquid metals are characterized by a higher thermal conductivity (𝜆[𝑊 𝑚𝐾⁄ ]) and a lower 

specific heat capacity (𝑐𝑝[𝐽 𝑘𝑔𝐾]⁄ ) compared to the other heat transfer media. Table 2.2 gives an 

example of common fluids like air and water against mercury, the properties are measured at 20°𝐶, 

the kinematic viscosity of the firsts two 𝜈 = 𝜇 𝜌 ⁄  [𝑚2 𝑠⁄ ] is much smaller. By combining thermal 

conductivity with the specific heat capacity is possible to obtain the characteristic number called 

Prandtl number 𝑃𝑟 in Eq.(2.1). Thus in heat transfer problems it is an essential non-dimensional 

parameter  

 

 Pr =  
𝑐𝑝  ∙  𝜇

𝜆
=  
𝜈

𝛼
 (2.1) 

 

Prandtl number represents the weight of the momentum transport coefficient to that of 

thermal energy. In case of liquid metals is much smaller like showed in Table 2.2.  

Prandtl number appears in the non-dimensional form of the energy equation. It is one of the 

conservation equations together with the continuity, and the momentum equation. These 

equations are used to solve the flow and the temperature fields. Liquid metals belong to the 

Newtonian Fluids category, (the viscous stressed are proportional to the deformation rates). They 

can be considered incompressible (𝜌 = 𝑐𝑜𝑛𝑠𝑡. ). Here the dimensional transport equations: 

 

 ∇⃗⃗  ∙  �⃗⃗� = 0 (2.2) 

 

 
𝐷�⃗⃗� 

𝐷𝑡
=  𝑓 − 

1

𝜌
∇⃗⃗ 𝑝 +  𝜈∇2�⃗⃗�  (2.3) 

 

 𝜌𝑐𝑝
𝐷𝑇

𝐷𝑡
=  𝜆∇2𝑇 +  𝜇𝜙 (2.4) 
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𝜙 = 2 [(

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

] +  (
𝜕𝑣

𝜕𝑥
+ 
𝜕𝑢

𝜕𝑦
)
2 

+  (
𝜕𝑤

𝜕𝑦
+ 
𝜕𝑣

𝜕𝑧
)
2 

+  (
𝜕𝑢

𝜕𝑧
+ 
𝜕𝑤

𝜕𝑥
)
2 

 

(2.5) 

 

Eq.(2.2) is the continuity, Eq.(2.3) is the momentum transport, and the last Eq.(2.4) is the 

energy transport. Multiplying and dividing coefficients introducing also characteristic velocities, 

temperature and length are obtained the non-dimensional forms, respectively: 

 ∇⃗⃗ ∗  ∙  �⃗⃗� ∗ = 0 (2.6) 

 

 
𝐷�⃗⃗� ∗

𝐷𝑡
=  −∇⃗⃗ ∗𝑝∗ + 

1

𝑅𝑒
∇∗2�⃗⃗� ∗ (2.7) 

 

 
𝐷𝑇∗

𝐷𝑡
=  

1

𝑅𝑒𝑃𝑟
∇∗2𝑇∗ + 

𝐸𝑐

𝑅𝑒
𝜙∗ (2.8) 

 

The quantities marked by * are non-dimensional, 𝐸𝑐 is the Eckert number and expresses the 

relationship between the flow kinetic energy and the enthalpy, it is negligible for incompressible 

fluids. If the pressure gradient can be also considered negligible, there is an analogy in the 

momentum equation Eq.(2.7) and the energy equation Eq.(2.8). The resulting temperature profile 

and velocity profile, with these specific approximations, will be directly proportional, connected by 

a constant which is known as the Prandtl number. 

 

Fig. 2.5 Illustration of the influence of the Prandtl number on the magnitude of the viscous and thermal boundary layers 
in a two dimensional flow over a plate with constant wall temperature [16] 

Like shows Fig. 2.5 with a Prandtl number close to unity the profiles are the same, this is called 

Reynolds analogy and it is not valid for liquid metals where 𝑃𝑟 ≪ 1 rather in the case of water or 

air. 
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2.3.1. The Reynolds analogy 
The CFD analysis aim to solve the conservation equations presented in Paragraph 2.3 to obtain 

a velocity and temperature field. But a problem occurs because these equations have a non-linear 

term which can be analytically solved only in few cases. Thus CFD approach is based on a numerical 

solutions, it needs a spatial and temporal discretization, and the solution requires a domain mesh. 

The flow inside the rod bundle is turbulent. Turbulence structures are eddies, their formation 

process begin subtracting energy from the main flow, thus the biggest eddies are formed, with a 

dimension comparable to the characteristic length of the geometry 𝑙[𝑚], these largest eddies are 

dominated by inertia effects and viscous effects are negligible. They can be considered inviscid and 

they conserve their angular momentum. Through a process called energy cascade the biggest 

eddies are divided in to smaller ones, their radius decreases and the angular velocity increases for 

the momentum conservation. The smallest representative scale is the Kolmogorov scale: 𝜂 ≪

𝑙 [𝑚], the smallest eddies kinetic energy is thus converted into internal energy with the viscous 

effects which are dominant in these scales [17]. 

The Reynolds number is a non-dimensional number it represent the ratio between the 

convective momentum transport and the laminar one, it indicates the turbulent intensity and it can 

be related to the ratio of the biggest and the smallest spatial scale: 

 
𝜂

𝑙
=  𝑅𝑒𝑙

−3 4⁄  (2.9) 

 

High turbulent flows require a very fine discretization to catch the smallest scale and the 

computational effort is too high. The solution to this problem is to solve an other equations set 

derived form of the Eq.(2.6), (2.7), (2.8) decomposing the variables into a mean value and a 

fluctuating one, using Eq.(2.10). It is a time average which results are expressed in Eq. (2.11), (2.12), 

(2.13). 

 
𝜑(𝑥 , 𝑡) =  𝜙(𝑥 ) +  𝜑′(𝑥 , 𝑡) 

𝜙(𝑥 ) =  
1

Δ𝑡
∫ 𝜑(𝑥 , 𝑡)
𝑡 + Δt

𝑡

 
(2.10) 

 

 
𝜕𝑈𝑖
𝜕𝑥𝑖

= 0 (2.11) 

 

 
𝜕𝑈𝑖
𝜕𝑡

+ 𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑖

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑖
 (𝜈

𝜕𝑈𝑖
𝜕𝑥𝑗

− 𝑢′𝑖𝑢
′
𝑗) (2.12) 

 

 
𝜕𝑇

𝜕𝑡
+ 𝑈𝑖

𝜕𝑇

𝜕𝑥𝑖
=  

𝜕

𝜕𝑥𝑖
 (𝛼

𝜕𝑇

𝜕𝑥𝑖
− 𝑢′𝑗𝑇′) (2.13) 
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These equation, Eq.(2.11), (2.12), (2.13), are referred to the mean flow than require a 

coarser discretization in space and time. The new terms that appear in these equations are the 

turbulent stresses or Reynolds tresses Eq.(2.14) and the turbulent heat flux Eq.(2.15). 

 

 𝜏𝑖𝑗
𝑡 =  𝜌 𝑢′𝑖𝑢′𝑗 (2.14) 

 

 𝑞′′𝑡 = − 𝜌 𝑐𝑝 𝑢
′
𝑗𝑇

′ (2.15) 

 

These quantities need other transport equations to be solved and find the solution of the 

conservation equations. The Boussinesque hypothesis is used in several models, also in the ones in 

this thesis, it is a way to compute the Reynolds stresses assuming that they are proportional to the 

mean flow rate deformation. The proportionality constants are the turbulent viscosity 𝜇𝑡, and the 

turbulent thermal diffusivity 𝛼𝑡, Eq.(2.16), (2.17). These are the two quantities computed by the 

turbulence models. 

 
𝜏𝑖𝑗

𝜌
=  𝜈 (

𝜕𝑈𝑖
𝜕𝑥𝑗

+ 
𝜕𝑈𝑗

𝜕𝑥𝑖
)  ⟶  

𝜏𝑖𝑗
𝑡

𝜌
=  𝜈𝑡 (

𝜕𝑈𝑖
𝜕𝑥𝑗

+ 
𝜕𝑈𝑗

𝜕𝑥𝑖
) − 

2

3
𝑘𝛿𝑖𝑗  (2.16) 

 

 
𝑞′′𝑗

𝜌𝑐𝑝
=  𝛼

𝑇

𝜕𝑥𝑗
 ⟶ 

𝑞′′𝑗𝑡

𝜌𝑐𝑝
= 𝛼𝑡

𝜕𝑇

𝜕𝑥𝑗
 (2.17) 

 

The following Chapter will explain the models that compute these two quantities. The 

Reynolds analogy states that 𝜈𝑡 = 𝛼𝑡, with these quantities can be defined a turbulent Prandtl 

number in Eq.(2.18). For common heat transfer fluids have the turbulent Prandtl number is close 

to unity or is generally smaller but for liquid metals is greater than the unity stating the different 

heat transfer mechanism. 

 𝑃𝑟𝑡 = 
𝜇
𝑡

𝜌 𝛼
𝑡

=
𝜈𝑡

𝛼𝑡
 (2.18) 

 

The turbulent viscosity and the turbulent thermal diffusivity have both time and space scale which 

are respectively similar under the Reynolds analogy hypothesis. These scales are not similar for 

liquid metals. 
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Fig. 2.6 Sketch of three dimensional energy spectra E(k) 
for velocity fluctuations and temperature fluctuations 

ET(k) in a forced channel flow at Pr<1, [18]. 

 

 
Fig. 2.7 LES at 𝑅𝑒𝜏 = 2000: Visualization of the 

instantaneous velocity field (top) 𝜃 field at 
Pr=0.01(middle) and at Pr=0.025(bottom) in an 
arbitrary x-y plane, all at the same time, [19]. 

 

Fig. 2.6 shows the energy spectra 𝐸(𝑘), as a function of the wave number 𝑘 = 2𝜋 𝐿⁄ , 𝐿 is 

the eddies wavelength. The spectral energy is the turbulent structures energy assigned respectively 

to the velocity fluctuations and to the temperature fluctuations. From the figure is clear that the 

largest eddies have the biggest energy amount that constantly decreases with the eddies dimension 

reduction. 

The figure shows at low Prandtl number the temperature fluctuations are damped strongly 

at small scales due to the high thermal diffusivity which characterize the liquid metals. The biggest 

wavenumber where 𝐸𝑇(𝑘) is still significant is much smaller compared to the 𝐸(𝑘) evaluated at 

the same wavenumber. Taking the same turbulent spatial scale, the energy associated to the 

velocity fluctuations is much relevant compared to the temperature fluctuations. 

Fig. 2.7 shows the instantaneous velocity and temperature field for two Prandtl number 

and is easily visible the complexity of the velocity field compared to the temperature field. The 

velocities shows much smaller turbulent structures, compared to the remaining two. 

A brief explanation, considering a 2D shear flow having 𝑈2 = 0, Fig. 2.8 
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Fig. 2.8 Fluid packet moving in a 2D flow with 𝑈2 = 0 

Considering 𝛿𝑚  an infinitesimal fluid parcel following its trajectory from A to B due to the 

turbulent fluctuations of velocity 𝑢′2
2 . Momentum and energy change along the movement and in 

the position B the parcel is in equilibrium with the fluid around. In the final position of 𝛿𝑚 B the 

velocity and temperature are: 𝑈1𝐵
𝛿𝑚

= 𝑈1𝐴
𝐴
+ 𝛿𝑈1  and 𝑇𝐵

𝛿𝑚
= 𝑇

𝐴
+ 𝛿𝑇 . By assuming that the 

process take place continuously, the effective velocity in 𝑥2 direction is proportional to 𝑢′2
2, 

(𝐶√𝑢′2
2). The turbulent shear stress and heat flux are equal to the net rate 𝑥1 −𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 and 

energy across an area parallel to the 𝑥1 direction, respectively: 

 𝜏𝑡 = 𝐶√𝑢′2
2𝜌𝛿𝑈1  (2.19) 

 

 𝑞′′𝑡 = 𝐶√𝑢′2
2𝜌𝑐𝛿𝑇  (2.20) 

 

Considering 𝑙𝑚𝑖𝑥 small compared to other dimensions of the system, only the first term can 

be retained in the Taylor expansion of 𝛿𝑈1  and 𝛿𝑇 , obtaining then: 

 

 𝜏𝑡
𝜌
= 𝐶√𝑢′2

2𝜌𝑙𝑚𝑖𝑥
𝑑𝑈1
𝑑𝑥2

 (2.21) 

 

 
𝑞′′𝑡
𝜌𝑐𝑝

= 𝐶√𝑢′2
2𝑙𝑚𝑖𝑥

𝑑𝑇

𝑑𝑥2
 (2.22) 

 

By comparing Eq.(2.16) and Eq.(2.17), immediately appears that 𝛼𝑡 = 𝜈𝑡, than with the 

definition of turbulent Prandl number Eq.(2.18), 𝑃𝑟𝑡 = 1. Thus molecular viscosity or molecular 

thermal diffusivity are considered negligible because this approach is based on the hypothesis that 

transfer mechanism for momentum and energy is the same. 
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However, turbulent eddies can transfer momentum not just only with the viscous forces 

but also with the pressure forces. One the other hand there is no mechanism other than molecular 

conduction whereby energy can be transferred to or from an eddy. Therefore the two transfer 

mechanism are not the same. 

Thus is obvious that for liquid metals 𝑃𝑟𝑡 ≠ 1. The role played by the high thermal 

conductivity for liquid metals leads to lose eddies energy by conduction before it travel a distance 

compared to 𝑙𝑚𝑖𝑥, a 𝑃𝑟𝑡 > 1 menas  that turbulent heat transfer is not comparable to the turbulent 

momentum transfer. 

If is considered a fluid with 𝑃𝑟 >  1 is possible to an eddy to loose the biggest amount of 

its 𝑥1 −𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 before travel the 𝑙𝑚𝑖𝑥 distance, so while still having velocity in the 𝑥2 direction. 

Heat, in this case is carried to a greater distance than momentum, looking at the turbulent Prandtl 

number it’ll be lesser than unity. 

Generally the approach adapt Reynolds analogy, to the fluids with a Prandtl number around 

or greater than unity is common to assign a 𝑃𝑟𝑡 = 0.85. This is not the methodology adopted for 

liquids metals. 

Concluding this paragraph low-Prandtl number fluids like liquid metals are not suitable for 

Reynolds analogy, their turbulent heat transfer scales are too different from the turbulent 

momentum scales, thermal ones are much greater than the other. This lead to a temperature field 

too different from a case where Reynolds analogy is applied, whereby it must be chosen a model 

which take in to account these difference. 

 

 

 

2.4. Problem description 
For the liquid metal heat transfer descripted in Paragraph 2.3 the Reynolds analogy is not 

valid and introduces the necessity to use new models to predict the heat transfer in the geometry 

descripted in Paragraph 2.1. The rod bundle with a constant heat flux longitudinally and 

circumferentially cooled by liquid metals is a recurring theme widely studied as cited in this thesis 

introduction in Chapter 1. 

The introduction of a grid spacer in the rod bundle geometry makes the problem peculiar 

differing from the normal cases without spacer [14] thus, it requires a specific study. Manservisi 

and Menghini [15] developed a new model to study the specific liquid metals heat transfer. The 

model will be tested in the rod bundle geometry with grid spacers and its results will be compared 

with the turbulent Prandtl correlations developed by W.M. Kays [4], and X. Chen, N.I. Tak [3]. The 

Chapter 3 describes the turbulent models used to solve the velocity and temperature field which 

are used in this thesis.  
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Chapter 3 

3. The turbulence models  

3.1. Turbulence modeling theory 
The time averaged Navier Stokes equations Eq.(2.2), (2.3), (2.4) using Eq.(2.10) generate 

the new averaged set of Reynolds equations Eq.(2.11), (2.12), (2.13). The computational models 

that use these equations are named with the acronym RANS (Reynolds Averaged Navier Stokes), 

these equations compute the velocity and temperature of the mean flow. The RANS equations are 

divided in two main family the difference is the way used to compute the Reynolds stresses 

Eq.(2.19), and the turbulent heat flux Eq.(2.20), using the Boussinesque hypothesis respectively in 

Eq.(2.21), and Eq.(2.22). The Reynolds stresses became as (3.1), 𝑘 =  1 2⁄  (𝑢′2 + 𝑣′2 + 𝑤′2). is 

the turbulent kinetic energy. 

 �̿�𝑡 = 

{
 
 
 

 
 
 (2𝜇𝑡

𝜕𝑈𝑥
𝜕𝑥

−
2

3
𝑘𝜌) 𝜇𝑡 (

𝜕𝑈𝑥
𝜕𝑦

+
𝜕𝑈𝑦

𝜕𝑥
) 𝜇𝑡 (

𝜕𝑈𝑥
𝜕𝑧

+
𝜕𝑈𝑧
𝜕𝑥

)

𝜇𝑡 (
𝜕𝑈𝑥
𝜕𝑦

+
𝜕𝑈𝑦

𝜕𝑥
) (2𝜇𝑡

𝜕𝑈𝑦

𝜕𝑦
−
2

3
𝑘𝜌) 𝜇𝑡 (

𝜕𝑈𝑦

𝜕𝑧
+
𝜕𝑈𝑧
𝜕𝑦

)

𝜇𝑡 (
𝜕𝑈𝑥
𝜕𝑧

+
𝜕𝑈𝑧
𝜕𝑥

) 𝜇𝑡 (
𝜕𝑈𝑦

𝜕𝑧
+
𝜕𝑈𝑧
𝜕𝑦

) (2𝜇𝑡
𝜕𝑈𝑧
𝜕𝑧

−
2

3
𝑘𝜌)

}
 
 
 

 
 
 

 (3.1) 

 

The Boussinesque hypothesis have also some approximations. The term [2 3⁄ 𝑘𝜌] in the 

tensor main diagonal ensure the correct value of the normal Reynolds stresses. The trace of the 

tensor is −(𝑢′2 + 𝑣′2 +𝑤′2) and is equal to −2𝜌𝑘, under the incompressible fluid hypothesis the 

continuity equation is: 𝜕𝑈𝑖 𝜕𝑥𝑖⁄ = 0. The (3.1) trace without [2 3⁄ 𝑘𝜌] in the main diagonal would 

be equal to zero. The term added to ensure a correct physical value of the Reynolds stresses is 

isotropic, which is an approximation. 

The turbulent viscosity 𝜇𝑡 is a scalar thus, the proportionality of the main deformation rate 

is the same in all the directions. This is the second approximation of the Boussinesque hypothesis, 

a more detailed theory of turbulence can be found in [20].  

Generally turbulent models compute only the turbulent viscosity, since the most common 

fluids used in simulations submit the Reynolds analogy hypothesis, the turbulent Prandtl number is 

taken constant, set to a value of 0.85 and is possible to obtain the turbulent thermal diffusivity 𝛼𝑡 

from the Eq.(2.18). The peculiar liquid metals heat transfer requires a more suitable value of the 

turbulent thermal diffusivity since they don’t submit the Reynolds analogy hypothesis, it is thus 

necessary a model to compute the heat transfer coefficient or the turbulent Prandl number. 
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3.2. Flow field turbulence models 
In this work are used three flow turbulent models. First is the 𝑘 − 휀 AKN (presented by K. 

Abe, T. Kondoh and Y. Nagano). Second is the 𝑘 − 𝜔 𝑆𝑆𝑇 (shear stress model) developed by F.R. 

Menter. The last is a 𝑘 − 휀 − 𝑣2 − 𝑓. All models are all low Reynolds models, they differ from high 

Reynolds because they don’t use a wall functions and the transport equations can be integrated 

down to the wall. 

3.2.1. Low Reynolds models 
 

The choice of low Reynolds models in this particular application that works with LBE is 

necessary. Close to the wall the local Reynolds number and velocity decrease till arrive to quantities 

close to zero, in that region is possible to define non-dimensional quantities: 𝑢+ in Eq.(3.2), 𝑦+ in 

Eq.(3.3) and 𝜃+ in Eq.(3.4). 

 𝑢+ = 
𝑢

𝑢𝜏
;      𝑢𝜏 = √

𝜏𝑤
𝜌

 (3.2) 

 

 𝑦+ = 
𝑢𝜏 𝑦

𝜈
 (3.3) 

 

 𝜃+ = 
𝑇𝑤 − 𝑇

𝑇𝜏
 ;       𝑇𝜏 = 

𝑞′′

𝑢𝜏𝜌𝑐𝑝
 (3.4) 

 

In Fig. 3.1 the first region from the wall is for 𝑦+ < 5 and is a linear region where non 

dimensional velocity 𝑢+ in Fig. 3.1 is equal to non-dimensional distance from wall 𝑦+, and is called 

viscous sub layer. In this region the momentum transport is determined only by viscous stresses. 

The next region is called buffer layer where turbulent effects have the similar magnitude of viscous 

ones, in a 𝑦+ between 5 and 30. Than in a range of 𝑦+ between 30 and 500 the fluid zone is called 

logarithmic region and are dominant turbulent effects. 
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Fig. 3.1 DNS data of u plus  against y plus in a channel 

flow with 𝑅𝑒𝜏 = 640 and Pr= 0.025, from the Kawamura 
database [21] 

 
Fig. 3.2 DNS data of theta plus against y plus in a 

channel flow with 𝑅𝑒𝜏 = 640 and Pr= 0.025, from the 
Kawamura database [21] 

 

High Reynolds turbulent models use a wall function. The wall function reproduces the inner 

layer profile because it is universal and is not any more necessary to integrate the model down to 

the wall. 

Considering a fluid with a Prandtl number across unity the variable 𝜃+ close to the wall 

where the thermal energy transport is dominated by laminar molecular diffusivity 𝛼 the profile is 

linear for an 𝑦+ < 5(linear sub-layer). The buffer layer and the log law is similar in the same velocity 

range respectively: for 5 < 𝑦+ < 30 the thermal energy transport is dominated by laminar effects 

due to 𝛼 and by turbulent effects due to 𝛼𝑡 both of equal magnitude. The last region of the inner 

layer for an 30 < 𝑦+ < 500 is dominated only by turbulent energy transport. Thus the 𝜃+and 𝑢+ 

profile match each other under the Reynolds analogy hypothesis.  

If is considered a low Prandtl number fluid such as LBE 𝑃𝑟 = 0.025 in Fig. 3.2, the Reynolds 

analogy is not valid anymore, in this case the molecular diffusivity 𝛼 is much more important and 

its effect makes the linear temperature profile much more longer. The linear region and the buffer 

layer are extended up to 𝑦+ ≃ 300. This peculiarity makes normal wall functions not suitable for 

these fluids, this is why is better to use low Reynolds models which integrate their turbulent 

equations down to the wall without using wall functions. 

 

3.2.2. 𝒌 − 𝜺 𝑨𝑲𝑵 
 

This model has been developed by K. Abe, T. Kondoh and Y. Nagano, it is a two equations 

𝑘 − 휀 low Reynolds model, the additional partial differential equation for k: turbulent kinetic energy 

𝑘 [𝑚2 𝑠2⁄ ] and the other for the turbulent dissipation rate 휀 [𝑚2 𝑠3⁄ ]. 
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 𝑘 =  
1

2
(𝑢′2 + 𝑣′2 +𝑤′2) (3.5) 

 

 휀 = 2𝜈
𝜕𝑢𝑖

′

𝜕𝑥𝑗

𝜕𝑢𝑖
′

𝜕𝑥𝑗
 (3.6) 

 

AKN model is based on the Buossinesque hypothesis, the turbulent viscosity 𝜈𝑡[𝑚
2 𝑠⁄ ] is 

defined as a product of a turbulent velocity scale 𝜗 [𝑚 𝑠⁄ ], a turbulent leght scale 𝑙 [𝑚] and a 

constant term: 

 

 𝜈𝑡 = 𝐶𝜗𝑙 (3.7) 
 

 𝜗 =  𝑘1/2;       𝑙 =  
𝑘3/2

휀
;      𝜈𝑡 = 𝐶𝜈

𝑘2

휀
 (3.8) 

 

This model use damping function which are derived from the Kolmogorow velocity scale 

𝑢 =  (휀𝜈)1 4⁄ instead of the friction velocity. The friction velocity is equal to zero in the separating 

and reattaching points where 𝜏𝑤 = 0, these are singularity points. 

The Kolmogorow velocity instead avoids singularities because has a non-zero value on the 

wall and on separating and reattaching points. These damping functions which are based on the 

Kolmogorow velocity, are suitable to model the near wall behavior of the flow. Than the model 

defines a local dynamical characteristic time scale that takes into account the correction in to the 

wall region 𝜏𝑙𝑢 in order to compute the turbulent viscosity in Eq.(3.9). 

 

 𝜏𝑢 = 
𝑘

휀
  →    𝜈𝑡 = 𝐶𝜇𝑘𝜏𝑙𝑢 (3.9) 

 

The partial differential equations for the transport of the turbulent kinetics energy is 

Eq.(3.10), and the turbulent dissipation rate is Eq.(3.12): 

 
𝜕𝑘

𝜕𝑡
+ (𝒖 ∙ ∇)k =  ∇ ∙ [(𝜈 +

𝜈𝑡
𝜎𝑘
)∇𝑘] + 𝑃𝑘 − 휀 (3.10) 

 

 𝑃𝑘 = −𝑢𝑖
′𝑢𝑗
′
𝜕𝑢𝑖
𝜕𝑥𝑗

 (3.11) 

 

 
𝜕휀

𝜕𝑡
+ (𝒖 ∙ ∇)휀 =  ∇ ∙ [(𝜈 +

𝜈𝑡
𝜎
)∇휀] + 𝐶1

휀

𝑘
𝑃𝑘 − 𝐶2

휀2

𝑘
𝑓  (3.12) 

 

 𝑓 =  {1 − 𝑒𝑥𝑝(−0.3226𝑅𝛿)}
2{1 − 0.3𝑒𝑥𝑝(−0.0237𝑅𝑡

2)} (3.13) 
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Than completing the initial equation of turbulent viscosity Eq.(3.9). 

 𝜏𝑙𝑢 = (𝑓1𝜇𝐴1𝜇 + 𝑓2𝜇𝐴2𝜇) (3.14) 

 

 𝑓1𝜇 = [1 − 𝑒𝑥𝑝(−0.0714𝑅𝛿)]
2 (3.15) 

 

 𝐴1𝜇 = 𝜏𝑢 = 
𝑘

휀
  (3.16) 

 

𝜏𝑢 is the dynamical characteristic time of the turbulence. 

 

 𝐴2𝜇 = 𝜏𝑢
5

𝑅𝑡
3 4⁄

 (3.17) 

 

 𝑅𝑡 =
𝑘2

𝜈휀
;     𝑅𝛿 =

𝑦(휀𝜈)1 4⁄

𝜈
 (3.18) 

 

The values of the constants are in (3.19). 

 

 𝐶𝜇 = 0.09;     𝜎𝑘 = 1.4;      𝜎 = 1.4;      𝐶1 = 1.5;      𝐶2 = 1.9 (3.19) 
 

The 𝑘 − 휀 AKN model is already implemented in Fluent v.15, but constants are different 

and they need to set up correctly. The proper boundary conditions to set up in to the wall are in 

(3.20). 

 
𝑑𝑘

𝑑𝑦
|
𝑤
=

2𝑘

𝑦
;      휀|𝑤 = 𝜈

2𝑘

𝑦2
 (3.20) 

 

Further details are available in [22]. 

 

3.2.3. 𝒌 − 𝝎 𝑺𝑺𝑻 
 

An alternative to the standard 𝑘 − 휀, is the Wilcox’s model it uses the turbulence frequency 

𝜔 = 휀 𝑘⁄   [1 𝑠⁄ ] as a second variable instead of turbulent dissipation rate 휀. The turbulent viscosity 

Eq.(3.21) is always defined as a product of a velocity scale and a length scale depending from 𝑘 and 

𝜔. 
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 𝜈𝑡 = 𝑘 𝜔⁄  (3.21) 
 

This model is interesting because it doesn’t require wall damping function in low Reynolds 

number applications. The value of the turbulent kinetic energy at the wall is zero. The frequency 𝜔 

tend to infinity at the wall but is possible to specify a very large value from the formulation of 𝜈𝑡 

which tends to 0. The boundary conditions of 𝜔 in a free stream where turbulent kinetic energy 

𝑘 → 0 and turbulence frequency 𝜔 → 0, is the most problematic feature. Eq.(3.21) shows that 

turbulent eddy viscosity isn’t determinate or tends to infinity. The model is dependent on the 

assumed free stream value of 𝜈𝑡. 

Menter (1992) noted that results of 𝑘 − 휀 model are much less sensitive to the assumed 

values in the free stream, but its near wall performance is unsatisfactory for boundary layers with 

adverse pressure gradients. This led him to suggest a hybrid model called 𝑘 − 𝜔 𝑆𝑆𝑇 (shear stress 

transport) using a transformation of the 𝑘 − 휀 model in to a 𝑘 − 𝜔 model in the near wall region 

and the standard 𝑘 − 휀 model in the fully turbulent region far from the wall. 

The other equations for k and 𝜔 are: 

 
𝜕(𝜌𝑘)

𝜕𝑡
+ ∇ ∙ (𝜌𝑘𝒖) = ∇ ∙ [(𝜇 +

𝜇𝑡
𝜎𝑘
)∇𝑘] + 𝑃𝑘 − 𝛽

∗𝜌𝑘𝜔 (3.22) 

 

 𝑃𝑘 = (2𝜇𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 −
2

3
𝜌𝜔

𝜕𝑈𝑖
𝜕𝑥𝑗

𝛿𝑖𝑗) (3.23) 

 

 

𝜕(𝜌𝜔)

𝜕𝑡
+ ∇ ∙ (𝜌𝜔𝒖)

= ∇ ∙ [(𝜇 +
𝜇𝑡
𝜎𝜔,1

)∇(𝜔)] + 𝛾2𝑃𝑘
∗ − 𝛽2𝜌𝜔

2 + 2
𝜌

𝜎𝜔,2𝜔

𝜕𝑘

𝜕𝑥𝑘

𝜕𝜔

𝜕𝑥𝑘
 

(3.24) 

 

The model peculiarity is the blending function, because numerical instabilities may be 

caused by differences in the computed values of the eddy viscosity with the standard 𝑘 − 휀 model 

in the far field and the transformed 𝑘 − 휀 model near the wall. Blending functions are used to 

achieve a smooth transition between the two models.  

The other change introduced by Menter is in the definition of the turbulent viscosity in 

Eq.(3.25): 

 𝜈𝑡 =
𝑎1𝑘

max (𝑎1𝜔, 𝑆𝐹2)
 (3.25) 

 

This definition bound the turbulent viscosity and improves the performance in flows with 

adverse pressure gradients and wake regions, and the turbulent kinetic energy production is limited 

to prevent the increase of turbulence in stagnation regions. 

 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗;       𝑎1 = 𝑐𝑜𝑛𝑠𝑡. ;       𝐹2 = 𝑏𝑙𝑒𝑛𝑑𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (3.26) 
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 𝑃𝑘
∗ = 𝑚𝑖𝑛 (10𝛽∗𝜌𝑘𝜔, 2𝜇𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 −

2

3
𝜌𝑘
𝜕𝑈𝑖
𝜕𝑥𝑗

𝛿𝑖𝑗   ) (3.27) 

 

Further details are available in [17]. 

 

 

3.2.4. 𝒌 − 𝜺 − 𝒗𝟐 − 𝒇 
 

The 𝑣2 − 𝑓 model is a four-equation model based on transport equations for the 

turbulence kinetic energy 𝑘 in Eq.(3.29), it’s dissipation rate 휀 in Eq.(3.30), a velocity scale 𝑣2 in 

Eq.(3.31), and an elliptic relaxation function 𝑓 in Eq.(3.32). 𝑣2 − 𝑓 model is different from a 

standard 𝑘 − 휀 because uses the velocity scale, 𝑣2, instead of the turbulent kinetic energy 𝑘, to 

evaluate the eddy viscosity in Eq. (3.28). 

 

 𝜈𝑡 = 𝐶𝜇𝑣
2𝑇 (3.28) 

 

This velocity scale can be thought as a velocity fluctuations of the normal streamlines, it has 

shown to provide the right scaling in representing the damping turbulent transport close to the 

wall. 

The variable 𝑓 is the solution of the elliptic relaxation equation in Eq.(3.32), the elliptic 

operator is necessary to compute a term analogous to the pressure strain correlation of the RSM. 

Ellipticity is characterized by a modified Helmholtz operator, which introduces wall effects via linear 

differential equation. 

 
𝜕𝜌𝑘

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝑘) = 𝑃 − 𝜌휀 + ∇ ∙ [(𝜇 +

𝜇𝑡
𝜎𝑘
)∇𝑘] + 𝑆𝑘 (3.29) 

 

 
𝜕𝜌휀

𝜕𝑡
+ ∇ ∙ (𝜌𝒖휀) =

𝐶 1
′ 𝑃 − 𝐶2 휀𝜌

𝑇
+ +∇ ∙ [(𝜇 +

𝜇𝑡
𝜎
)∇휀] + 𝑆  (3.30) 

 

 
𝜕𝜌𝑣2

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝑣2) = 𝜌𝑘𝑓 − 6𝜌𝑣2

휀

𝑘
+ ∇ ∙ [(𝜇 +

𝜇𝑡
𝜎𝑘
)∇𝑣2] + 𝑆

𝑣2
 (3.31) 

 

 𝑓 − 𝐿2∇ ∙ (∇𝑓) = (𝐶1 − 1)

2
3 −

𝑣2
𝑘
⁄

𝑇
+ 𝐶2

𝑃

𝑘𝜌
+
5𝑣2

𝑘
⁄

𝑇
+ 𝑆𝑓 (3.32) 
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 𝑃 = 2𝜇𝑡𝑆
2,     𝑆2 ≡ 𝑆𝑖𝑗𝑆𝑖𝑗,      𝑆𝑖𝑗 =

1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+
𝜕𝑢𝑖
𝜕𝑥𝑗

) (3.33) 

 

The turbulent time scale T and length scale L are defined respectively in (3.34) and (3.35). 

 𝑇′ = 𝑚𝑎𝑥 [
𝑘

휀
, 6√

𝜈

휀
] ;           𝑇 = 𝑚𝑖𝑛 [𝑇′,

𝛼

√3

𝑘

𝑣2𝐶𝜇√2𝑆
2
] (3.34) 

 

 𝐿′ = 𝑚𝑖𝑛 [
𝑘3 2⁄

휀
,
1

√3

𝑘3 2⁄

𝑣2𝐶𝜇√2𝑆
2
] ;        𝐿 = 𝐶𝐿𝑚𝑎𝑥 [𝐿

′, 𝐶𝜂 (
𝑣3

휀
)

1 4⁄

] (3.35) 

 

The constants of the model are in (3.36) where 𝜎𝑘and 𝜎  are turbulent Prandtl numbers 

respectively for 𝑘 and 휀.  𝑆𝑘, 𝑆 , 𝑆
𝑣2

, 𝑆𝑓, are user-defined source terms. 

 

 

𝐶𝜇 = 0.22;   𝜎𝑘 = 1;    𝐶1 = 1.4;    𝐶2 = 1.9;    𝐶𝑙 = 1.4;    𝐶2 = 0.3;    𝐶𝜂
= 70; 

𝐶𝐿 = 0.23;    𝜎 = 1;     𝛼 = 0.6;    𝐶 1
∗ = 𝐶 1 (1 + 0.045√𝑘 𝑣2⁄ ) 

(3.36) 

 

To activate this model which is already implemented in Fluent follow the guide in [23]. 

 

 

3.3. Thermal turbulence models 
 

Enabling the energy equation in Fluent automatically the value of the turbulent Prandtl 

number is already set up to a constant value: 𝑃𝑟𝑡 = 0.85, it is constant in all the spatial and time 

domain. 

This is the strongest limitation, because it means that turbulent thermal diffusivity depends 

only on a constant by the turbulent viscosity, as is shown in Eq.(2.18). The turbulent viscosity is 

defined by the turbulence models and is not constant in the domain. Performing the approach of 

the constant turbulent Prandtl number set up to 0.85 is a good approximation for fluids which have 

a Prandtl number close to unity or greater like air (𝑃𝑟 = 0.71), or water (𝑃𝑟 = 7.01). 

Considering liquid metals this approximation is no more suitable, there are other way to 

calculate turbulent Prandtl number with models or correlations. Two semi-empirical correlations 

are used in this work. First requires average properties of the momentum equations to give a 

constant turbulent Prandtl number (X. Cheng and N. I. Tak). The second correlation works with the 

local proprieties of the momentum equations to give a turbulent Prandtl number depending also 

from the spatial coordinates (W. M. Kays). 
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The other way to compute the turbulent Prandtl number is with a model. 𝑘𝜗 − 휀𝜗 model 

developed by S. Manservisi and F. Menghini which calculates the turbulent thermal diffusivity to 

use in the Eq.(2.18) and obtains the turbulent Prandtl number value in each point. 

 

 

3.3.1. X. Cheng and N.I. Tak turbulent Prandtl correlation 
 

 𝑃𝑟𝑡 = {
1.5,

2.5 − 0.0005𝑃𝑒,
1,

                    
𝑃𝑒 ≤ 2000

2000 ≤ 𝑃𝑒 ≤ 3000
𝑃𝑒 ≥ 3000

 (3.37) 

 

The correlation in Eq.(3.37) is developed by X. Cheng and N. I. Tak, (2006) it relates the 

mean turbulent Prandtl number to the mean Péclet number 𝑃𝑒 = 𝑃𝑟 ⋅ 𝑅𝑒, it is developed for liquid 

metals, in particular for mercury. This means that the Prandtl number is constant or within a range 

around the mercury value which also includes the LBE. The correlation validity is checked by the 

results of Maresca and Dwyer which performed several experiments in a vertically arranged 

triangular rod bundle cooled by mercury. The test section has 13 rods inside a cylindrical shell, data 

where measured only on the central rod. It was assumed that the thermal hydraulic behavior 

around this rod was the same as that around a rod of a rod bundle with infinite rods. 

Results in Fig. 3.3 where than matched 

to the ones performed by Cheng and Tak using 

CFX code, reproducing the same case of an 

infinite rod bundle in fully developed conditions, 

analyzing the Nusselt number behavior varying 

the Turbulent Prandtl number. Starting from a 

Péclet lower than 2000 the turbulent Prandtl 

number matching with the experimental data is 

1.5, increasing the mean Peclét the turbulent 

momentum exchange gain more importance 

compared to the turbulent heat transfer, this 

lower the Péclet till a value of one for a turbulent 

Prandtl number greater than 3000. 

The pitch to diameter 𝑝/𝑑 is the most important parameter to describe rod bundle 

geometry (p is the distance between two rod center and d is diameter of a rod). The correlation 

presented can be used for 𝑝/𝑑 ≥ 1.3 in the triangular lattices or 𝑝/𝑑 ≥ 1.6 in square lattices. A 

more detailed description can be found in [3]. 

 

 

 

Fig. 3.3 Comparison of CFX results with test data in 
Mercury, [18] 



Chapter 3.     The turbulence models 
________________________________________________________________________________ 

28 
 

3.3.2. W. Kays turbulent Prandtl number  
 

The turbulent Prandtl definition presented by Kays showed in Eq.(3.38) comes from a study 

of a numerical simulation (DNS) in a channel heated by constant heat flux. Results show that 

turbulent Prandtl curves collapse in one considering as a variable the turbulent Péclet number: 

𝑃𝑒𝑡 = 𝑃𝑟
𝜈𝑡

𝜈
. 

This variable takes in account the effect of a different fluid with the number of the linear 

𝑃𝑟 and the kind of momentum transport depending also from the wall distance due to the turbulent 

viscosity ratio. 

The curve which represents the function in Eq.(3.38) To great 𝑃𝑒𝑡 values approaches the 

turbulent Prandtl number value of 0.85, it is consistent with the experimental data in the literature. 

 

 𝑃𝑟𝑡 = 0.85 +
0.7

𝑃𝑒𝑡
 (3.38) 

 

At very low values of 𝑃𝑒𝑡, turbulent Prandtl become very high, consistent with the 

observation of liquid metal in the log region. This correlation introduces less approximations 

compared to Cheng and Tak turbulent Prandtl correlation. 

In the W.M. Kays article it is also stated that comparing several experimental test data 

performed in a pipe with liquid metal fluid as a coolant, in a fully developed regime, the equation 

in (3.38) fits the data with a coefficient of 2 instead of 0.7. But is also said that there is a considerable 

scatter of the data. More details are available in [4]. 

Kays 𝑃𝑟𝑡 is based on local quantities that are computed at every iteration. A UDF function is 

coupled to the code Fluent v.15 in order to set the correct value in every point at every iteration, 

the UDF function is available in Appendix B. 

 

 

3.3.3. 𝒌𝜽 − 𝜺𝜽 model 
Manservisi and Menghini 𝑘𝜃 − 휀𝜃  model has an other approach to the problem, this model 

works like a normal 𝑘 − 휀 low Reynolds, thus calculate turbulence scales for turbulent thermal 

diffusivity which coupled with turbulent dynamic viscosity from the momentum turbulence model 

gives the turbulent Prandtl number in 𝐸𝑞. (2.18). The two additional transport equation are for the 

temperature variance and its dissipation rate.  

 𝜅𝜃 =
1

2
(𝑇′)2 (3.39) 

 

 휀𝜃 = 𝛼 (
𝜕𝑇′

𝜕𝑥𝑖
)
2

 (3.40) 
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Now turbulent thermal diffusivity and turbulent dynamic viscosity are not directly related, 

this is a better approximation compared to the two correlations in Paragraph 3.3.1 and 3.3.2, but 

there are two more equations to solve, means a further computational effort. 

K. Abe, T. Kondoh and Y. Nagano developed their 𝑘𝜃 − 휀𝜃 to predict the heat transfer. This 

model was calibrated with air (𝑃𝑟 = 0.71).Manservisi 𝑘𝜃 − 휀𝜃 model is based on the AKN 𝑘𝜃 − 휀𝜃, 

than needs the flow field computed by the AKN 𝑘 − 휀 model in Paragraph 3.2.2. 

The model had been specifically calibrated for liquid metals. The constants used to derive 

it, in fact come from an other two equation turbulence model for the temperature field presented 

in: [24]. This model was developed to work with every kind of fluid varying the Prandtl number 

including the very low ones, according with the theory presented before in Paragraph 3.2. 

The additional transport equations are Eq.(3.41) and Eq.(3.42), where −𝑢𝑖𝑇
′ is modelled 

using the expression 𝑞𝑡
′′ in Eq.(2.17). 

 

 
𝜕𝑘𝜃
𝜕𝑡

+ 𝑈𝑗
𝜕𝑘𝜃
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
{(𝛼 +

𝛼𝑡
𝜎𝑘𝜃

)
𝜕𝑘𝜃
𝜕𝑥𝑗

} + 𝑃𝜃 − 휀𝜃  (3.41) 

 

 

𝜕휀𝜃
𝜕𝑡

+ 𝑈𝑗
𝜕휀𝜃
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
{(𝛼 +

𝛼𝑡
𝜎 𝜃

)
𝜕휀𝜃
𝜕𝑥𝑗

} −
휀𝜃
𝑘𝜃
(𝐶𝑝1𝑃𝜃 − 𝐶𝑑1휀𝜃)

+
휀𝜃
𝑘
(𝐶𝑝2𝑃𝐾 − 𝐶𝑑2휀) 

(3.42) 

 

 𝑃𝜃 = −𝑢𝑖𝑇
′
𝜕𝑇

𝜕𝑥𝑗
 (3.43) 

 

The turbulent thermal diffusivity is than computed in Eq.(3.44). 

 𝛼𝑡 = 𝐶𝜃𝑘𝜏𝑙𝜃 (3.44) 
 

 𝜏𝑙𝜃 = (𝑓1𝜃𝐵1𝜃 + 𝑓2𝜃𝐵2𝜃) (3.45) 
 

 𝑓1𝜃 = [1 − 𝑒𝑥𝑝(−0.0526√𝑃𝑟𝑅𝛿)][1 − 𝑒𝑥𝑝(−0.0714𝑅𝛿)] (3.46) 

 

 𝐵1𝜃 = 𝜏𝑢𝑃𝑟𝑡∞ (3.47) 
 

 𝑓2𝜃𝐵2𝜃 = 𝜏𝑢 (𝑓2𝑎𝜃
2𝑅

𝑅 + 𝐶𝛾
+ 𝑓2𝑏𝜃√

2𝑅

𝑃𝑟

1.3

√𝑃𝑟𝑅𝑡
3 4⁄
) (3.48) 

 



Chapter 3.     The turbulence models 
________________________________________________________________________________ 

30 
 

 𝑓2𝑎𝜃 = 𝑓1𝜃exp (−4 × 10
−6𝑅𝑡

2) (3.49) 
 

 𝑓2𝑏𝜃 = 𝑓1𝜃exp (−2.5 × 10
−5𝑅𝑡

2) (3.50) 
 

The constants values are: 

𝐶𝜃 = 0.1; 𝜎𝑘𝜃 = 1.4; 𝜎 𝜃 = 1.4; 𝐶𝛾 = 0.3; 

𝑃𝑟𝑡∞ = 0.9; 𝐶𝑝1 = 0.925; 𝐶𝑑1 = 1; 𝐶𝑝2 = 0.9 

𝐶𝑑2 = [1.9(1 − 0.3𝑒𝑥𝑝(−0.0237𝑅𝑡
2))] [1 − 𝑒𝑥𝑝(−0.1754𝑅𝛿)]

2 

 

The damping function of the Manservisi 𝑘𝜃 − 휀𝜃 model contain quantities referred both to the 

turbulent scales of velocity and temperature. These are reported in (3.51) and (3.52). 

 

 𝜏𝑢 =
𝑘

휀
;          𝜏𝜃 =

𝑘𝜃
휀𝜃
;          𝜏𝑚 =

𝜏𝑢2𝑅

𝑅 + 𝐶𝛾
 (3.51) 

 

 𝑅𝑡 =
𝑘2

𝜈 휀
;            𝑅𝛿 =

𝑦𝑢

𝜈
;           𝑅 =

𝜏𝜃
𝜏𝑢

 (3.52) 

 

These are three characteristic time scale: 𝜏𝑢 dynamical time, 𝜏𝜃 dynamical thermal time, 

𝜏𝑚 the mixed time. R is the ratio between the thermal time and appears in the damping function 

to model the behavior of the turbulent thermal diffusivity within the linear sub layer and the buffer 

layer. The proper boundary condition to set at the wall for an imposed heat flux are in (3.53).  

 𝑘𝜃|𝑤 = 0;             휀𝜃|𝑤 = 𝛼
2𝑘𝜃
𝑦2

 (3.53) 

 

The present model is not available in the FLUENT v15 code, so it needs to be implemented 

with a UDF it is available in the Appendix A. Model has been presented in [15] and [2]. 
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Chapter 4 

4. The computational domain 

4.1. Meshing the domain 
The CFD approach is based on a numerical solution such as it is explained in Paragraph 2.3, 

this requires the domain discretization which is the mesh and it is made up by an amount of 

elements, the cells, in which every set of equations (continuity, momentum, energy and turbulence) 

are solved. The equations are solved for every cell center and the remaining points are an 

approximation of the surrounding cells center. Thus thinking ideally to fill the geometry with an 

infinite number of infinitesimal cells the equations solution is known in every point belonging to 

the domain. This is actually not possible due to the computational effort. The building mesh work 

consist to find a good compromise with the solution accuracy and the computational time 

necessary to have satisfactory convergence. It means place the lowest number of cells possible to 

solve the equations with reliable solutions. 

There are two main meshes families, structured-grid and unstructured-grid. The following 

section will describe the mesh choice highlighting the advantages and disadvantages. 

 

4.1.1. Structured-grids 

 
Fig. 4.1 Cartesian grid of a circle 

 
Fig. 4.2 body fitted grid of a circle. 

 
Fig. 4.3 Block-structured grid of a 

circle (5 blocks). 

 

The methods to solve transport equations are based on orthogonal coordinate system 

which can also be transposed into cylindrical or spherical, for complex geometry such as in 

engineering applications orthogonal coordinates in two or three dimension are more suitable. Thus, 

in this work, in every cell where equations are solved need to be defined in an orthogonal 

coordinates system. 

The process to mesh a circle starts overlapping a Cartesian grid to the geometry in Fig. 4.1, 

the circle boundary doesn’t coincide with the grid. Than it is necessary to consider only the cells 

inside the circle and on its boundary. It isn’t a good geometry approximation, one solution in this 
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case could be to make the grid more fine increasing the resolution close to the boundary but are 

necessary more cells. The other solution is to move the grid points close to the boundary from their 

original position on the boundary obtaining a body fitted grid such as shows Fig. 4.2. This is the 

simplest way to mesh a complex geometry with a structured grid. A structured grid can be thus 

defined with the following main feature from [17]: 

 Grid points are placed at the intersection of the co-ordinates lines. 

 Interior grid points have a fixed number of neighboring grid points. 

 Grid points can be mapped in to a matrix, their location in the grid structure and in 

the matrix is given by indices (𝒊, 𝒋 in two dimension and 𝒊, 𝒋, 𝒌 in three dimension). 

The body fitted mesh has still some problems because some peripheral cells are highly 

deformed from the original square contour, there isn’t the possibility to increase the number of 

cells in to the center area leaving a coarse resolution on the boundary or the opposite. To overcome 

this problem cells can be divided in macro-areas called blocks. The cells inside a block respect the 

structured mesh main features. The grid in Fig. 4.3 has five blocks one in the center surrounded by 

other four in contact with the circle boundary. The cell distribution inside is more homogenous with 

a lower cell distortion compared to Fig. 4.2.  

Structured grids use square in the plane cases and tetrahedral elements in the space, the 

blocks distribution is a manual operation there still isn’t a commercial algorithm able to do it 

automatically. 

 

 

4.1.2. Unstructured-grids 
In complex geometries it may be necessary to use many 

different shapes blocks. The logical extension of this idea is the 

unstructured mesh. An example is in Fig. 4.4, where each cell is 

considered a block. The advantage is that the main feature of 

the structured mesh are not respected. Fig. 4.4 has some 

internal points where converge four or five lines and the cells 

are mainly square but also triangle shape. The mesh can be 

refined in every zone without influencing the remaining parts. 

Every cell type is allowed with every geometry in two 

dimension cases and in three dimension ones, including the 

generic polyhedral shapes. Specific algorithm were 

developed to create automatically these mesh without 

spending user’s time. The saved time on the grid construction is the best advantage using these 

grids. 

Despite the unstructured grids description seems to be the better choice and sometimes 

also the only way, in this thesis have been used only block structured grids. The advantage using 

only hexahedral cells well-disposed following a precise coordinate system is on cell surfaces, which 

can be disposed orthogonally to the main flow and to the main gradients. It reduces the gradient 

Fig. 4.4 Unstructured grid of a circle. 
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cross-diffusion term, which appears defining the generic quantity gradient on the cell boundary and 

it represents a source of uncertainty. A detailed explanation is available in [17]. 

 

 

4.2. Domain and boundary conditions 
As descripted in Paragraph 2.1.1 the experimental set up, measuring planes are placed 

2.5 𝑚𝑚 upstream of the spacers, the position of each thermocouple is showed in Fig. 2.4. At each 

measuring plane, a local heat transfer coefficient 𝛼 is defined as in Eq(4.1), where 〈𝑇𝑤〉 and 𝑇𝑏 are 

the mean wall and bulk temperatures respectively. On the other hand, 𝑇𝑏is derived from an energy 

balance throughout the test section (from the inlet to the outlet), considering a temperature 

dependent heat capacity as in Eq.(4.2). 

 

 𝛼 = 
𝑞𝑤

〈𝑇𝑤〉 − 𝑇𝑏
 (4.1) 

 

 𝑄
𝑥

𝐿
= �̇�∫ 𝑐𝑝(𝑇)𝑑𝑇

𝑇𝑏

𝑇𝑖𝑛

 (4.2) 

 

Based on the measurements, geometrical parameters and mean physical properties, non-

dimensional local Nusselt and Péclet are formed as in Eq.(4.3) and Eq.(4.4) respectively. In this case 

physical properties (𝜆, 𝑐𝑝) are evaluated at the mean value between the inlet and local bulk 

temperatures. With 𝜆, 𝑐𝑝 at (𝑇𝑖𝑛 + 𝑇𝑏) 2⁄ . 

 

 𝑁𝑢 =
𝛼 𝑑ℎ,𝑠𝑐ℎ
𝜆

 (4.3) 

 

 𝑃𝑒 =
�̇�

𝐴

𝑑ℎ,𝑠𝑐ℎ 𝑐𝑝
𝜆

 (4.4) 

 

 𝑑ℎ = 𝑑 [
2√3

𝜋
(
𝑝

𝑑
)
2

− 1] (4.5) 

 

Analyzing the Nusselt number results from the experimental campaign in Fig. 4.5 can be 

noticed the differences for each Péclet number between the first spacer and the other two with a 

lower Nusselt number. The second and third spacers have the same Nusselt number value. This is 

because the first measuring point is relatively close to the heated zone beginning 

(𝑥1 𝑑ℎ,𝑠𝑐ℎ = 17.02⁄ ) from Fig. 4.5, the flow is in the thermally developing region. In fact Maresca 

and Dwyer [25], have observed that following the flow development after a perturbation, the 
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Nusselt number continuously decrease axially up to 𝑥 𝑑ℎ,𝑠𝑐ℎ = 25⁄ . The other two measuring point 

according with Fig. 4.5 are beyond this limit and thus correspond to a fully developed region. 

The experimental setup allows to move the third spacer up to +90 𝑚𝑚 and −120 𝑚𝑚 

around its reference position (𝑥𝑠𝑝,3,𝑟𝑒𝑓 = 𝐿ℎ𝑒𝑎𝑡 = 870 𝑚𝑚). The investigation results keeping all 

the other parameters constant are shown in Fig. 4.6 for two different flow rates, corresponding to 

𝑃𝑒 = 778 ± 9 and 𝑃𝑒 = 2680 ± 30 (statistical deviation). Thus it confirms, the flow is a fully 

developed region. 

  
Fig. 4.5 Result of Nusselt number from the experimental 

campaign at KALLA laboratory, the line is the 
Mikityuk(2009) correlation for Nu in fully developed flow 

[1]. 

Fig. 4.6 Result for Nusselt number moving the third 
spacer [1]. 

 

The line in Fig. 4.5 is the Mikytiuk correlation for the fully developed flow interpolated from 

experimental data, fit a wide range 1.1 < 𝑝 𝑑⁄ < 1.95 and 30 < 𝑃𝑒 < 5000. The correlation 

results underestimate the measured Nusselt value of the 15%. 

 𝑁𝑢 = 0.047(1 − 𝑒
−3.8(

𝑝
𝑑
−1)
) (𝑃𝑒0.77 + 250) (4.6) 

 

In a developing flow, heat transfer coefficient is expected to decrease asymptotically in the 

flow direction downstream of a perturbation, such as the duct entrance or the grid spacers. As a 

reference, when the differences in Nusselt are smaller than 5%, the flow is said to be fully 

developed [1]. Although the result presentment in Fig. 4.6 indicate some differences in Nu (up to 

6.8% for the largest flow rate), it should be noted that these are smaller than the experimental 

uncertainties. Under these conditions, the flow can be assumed fully developed. 

The mesh domain, is created to simulate one spacer located in the fully developed region, 

since the second and third spacers have the same value of non-dimensional temperature and 

Nusselt number. The domain schematically represented in Fig. 4.7, starts with the heated rod 

𝑧𝑖𝑛 𝑑ℎ⁄ = −10.54, the spacer inlet is at 𝑧𝑖𝑛−𝑠𝑝 𝑑ℎ⁄ = 0, it ends at 𝑧𝑜𝑢𝑡−𝑠𝑝 𝑑ℎ⁄ = 2.23, the end of 

the heated rod is at 𝑧𝑜𝑢𝑡 𝑑ℎ⁄ = 32.39. 
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Fig. 4.7 Longitudinal domain representation. 

Boundary condition at inlet and outlet of the domain are periodic, in a turbulent flow the 

fully developed hydrodynamic condition is in Eq.(4.7). Considering the thermal standpoint the fully 

developed flow is verified in Eq.(4.8), and if in the boundary condition at the wall is imposed a 

constant heat flux, this implies Eq.(4.9), where𝑇𝑏 is the bulk temperature. 

 

 
𝜕𝑢

𝜕𝑥
= 0 (4.7) 

 

 
𝜕

𝜕𝑥
(
𝑇𝑤 − 𝑇

𝑇𝑤 − 𝑇𝑏
) (4.8) 

 

 
𝑑𝑇

𝑑𝑥
=
𝑑𝑇𝑏
𝑑𝑥

=
𝑑𝑇𝑤
𝑑𝑥

= 𝑐𝑜𝑛𝑠𝑡;                  𝑁𝑢 = 𝑓(𝑅𝑒, Pr) (4.9) 

 

Thus in Fluent v.15 code periodic boundary conditions are set. The assumption of 

periodicity implies that the velocity components repeat themselves in space after a periodic length 

𝑳 in Eq.(4.10). Pressure can’t be treated as the velocity but the pressure drop is the same after a 

periodic length 𝑳 in Eq.(4.11). Thus also temperature behave such as the pressure having a periodic 

increase of bulk temperature 𝜎 after a periodic length 𝑳 in Eq.(4.12). 

 𝒖(𝒓) = 𝒖(𝒓 + 𝑳) = 𝒖(𝒓 + 2𝑳) = ⋯ (4.10) 
 

 ∆𝑝(𝒓) = 𝑝(𝒓) − 𝑝(𝒓 + 𝑳) = 𝑝(𝒓 + 𝑳) − 𝑝(𝒓 + 2𝑳) = ⋯ (4.11) 
 

 𝜎 =
𝑇(𝒓 + 𝑳) − 𝑇(𝒓)

𝐿
=
𝑇(𝒓 + 2𝑳) − 𝑇(𝒓 + 𝑳)

𝐿
 (4.12) 

 

 𝜎 =
𝑄

�̇�𝑐𝑝𝐿
=
𝑇𝑏,𝑜𝑢𝑡 − 𝑇𝑏,𝑖𝑛

𝐿
 (4.13) 
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4.2.1. Central rod of the bundle 
 

 
Fig. 4.8 Spacer rendering, only one rod is 

visible for displaying purpose, the red part is 
the domain.  

 

  
Fig. 4.9 Mesh domain is the red fluid zone in  Fig. 

4.8. 

 

The first mesh is to study the fluid domain around the central rod of the bundle. Fig. 4.8 

shows the entire spacer inside the hexagonal pipe. It is visible only the central rod for displaying 

purpose, the red zone next to the rod is the fluid domain. A domain detailed view showing the grid 

is available in Fig. 4.9. The yellow surface is the inlet, the red surface is the rod wall, the blue zone 

is one of the symmetry surfaces. The black part is the fluid zone close to the spacer wall, colors are 

not visible because the mesh lines become too thick. The top edge of the blue surface is interrupted 

by a little light blue step which is the spacer wall. 

The dimples inside the spacer channels visible in Fig. 1.3 necessary to hold up rods are not 

used as shown in [14]. It reports the Nusselt number perturbation to the thermal field in an LBE 

cooled fast reactor gave from a grid spacer is not influenced by the presence of the pin fixers in the 

grid spacer, thus the choice to simplify the grid and build it without dimples. 

The central rod channel passing through the 

honeycomb spacer is axial-symmetric, this allows to reduce 

fluid volume to a 30° angle of the entire rod. The fluid domain 

is a block structured mesh. Five blocks are necessary to have 

continuity to the surface nodes of each block. The block 

distribution is showed in Fig. 4.10. The shared surface which 

connect two blocks needs the same grid distribution, each cell 

on a surface of adjacent blocks needs to correspond to an other 

one in the adjacent block. This represents a problem, because 

it is difficult to mesh complicated geometries with block 

structured grids. The nodes number and their distribution in 

one block depends on the adjacent one and the blocks need 

also to be insert into the geometry. 

The models used in this thesis descripted in Chapter 3 are low Reynolds models, they 

require a cell center distance which corresponds to an 𝑦+ < 1 in the first cell adjacent to the wall. 

Thus the mesh needs a refinement close to the rod surface which is visible in the yellow inlet section 

Fig. 4.10 Block distribution from the mesh  
showed in Fig. 4.9. 
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in Fig. 4.9 and in the spacer wall. The y is predicted from the main flow characteristic using Eq.(4.14), 

where 𝑦 is the first cell center distance, 𝑢∗is the friction velocity, 𝜏𝑤is the wall shear stress, 𝑢𝑏is the 

bulk velocity and 𝐶𝑓is the friction factor coefficient from the P. R. H. Blasius correlation for the pipe 

geometry in Eq.(4.15) the Reynolds number is calculated using the hydraulic diameter from Eq.(4.5). 

 𝑦 =
𝑦+ 𝜈

𝑢∗
;      𝑢∗ = √

𝜏𝑤
𝜌⁄  ;      𝜏𝑤 =

1

2
 𝜌 𝐶𝑓 𝑢𝑏

2 (4.14) 

 

 𝐶𝑓 = 
0.316

𝑅𝑒0.25
 (4.15) 

 

After the first evaluation of the wall cell thickness the other corrections are performed using 

the 𝑦+ point value computed by Fluent. The critical points to evaluate the 𝑦+ are inside the spacer 

channel, where the flow area decreases compared to the inlet surface area. Thus decreasing the 

flow area velocity increases and turbulence effect gains more relevance requiring a lower first cell 

thickness adjacent to the wall. From equations in (4.14), the bulk velocity 𝑢𝑏
2 increases, the Reynolds 

number increases too in Eq.(4.15) but its magnitude is not comparable to the velocity one, because 

they have different exponential factors, than the 𝜏𝑤 and consequently 𝑢∗increase. Leaving the 

remaining parameters constant, the y belonging to the cells adjacent to the spacer walls decreases. 

All simulations are performed with an 𝑦+ < 1. 

The geometry has an 𝒙 and 𝒚 extension two order of magnitude lower than the 𝒛 extension, 

from the rendering in Fig. 4.8 and Fig. 4.9 is not visible the domain depth because is showed with 

an orthographic point of view and not prospective. 

The near walls cell thickness is the 𝑦 value which is obtained from the equations in (4.14). 

It is five order of magnitude lower than the domain main dimension (𝒛). Using an unstructured grid, 

cells, composed by prism and tetrahedral geometries, have all the three dimensions proportionate. 

Building the grid with these cell types the domain requires a cell number over 10𝑒6, it is too much 

to perform several simulations in a short time with the available instrumentation. The alternative 

is to use hexahedral cells with a structured mesh. A cell can have a predominant dimension 

compared to the other two leaving all its boundary normal to the gradient and flows directions. 

This is not possible with tetrahedral or pyramidal cells because increasing only one cell dimension 

the cross-diffusion term gains too relevance compared to the gradient value. 

The grid aspect ratio is one of the most used parameter used to define the cell distortion, 

considering a quadrilateral cell in the plane like in Fig. 4.11 with its edge named respectively a, b, c 

and d the aspect ratio (AS) is defined in Eq.(4.16), where for quadrilateral 𝑛 = 2, for hexagonal 𝑛 =

3 and 𝑒1 = (𝑎 + 𝑐) 2⁄  and 𝑒1 = (𝑏 + 𝑑) 2⁄ . 

 

 𝐴𝑆 =  
𝑚𝑎𝑥(𝑒1, 𝑒2, … , 𝑒𝑛)

min (𝑒1, 𝑒2, … , 𝑒𝑛)
 (4.16) 



Chapter 4.     The computational domain 
________________________________________________________________________________ 

38 
 

 

The aspect ratio is equal to one when the cell 

respects the proportion of an ideal geometry (a 

square in this case), or it can rises to very high value 

when adjacent sides have different length. Taking the 

Icem definition in [26], it is the size of the minimum 

element edge divided by the size of the maximum 

element edge. The values are scaled and the default 

range of values is 1–20, such that an Aspect ratio of 1 indicates a regular element. The displayed 

result of the mesh in Fig. 4.9 is in Fig. 4.12. 

 

Fig. 4.12 Icem Aspect Ratio of the grid in Fig. 4.9. 

According with the Aspect ratio criteria is clear that cell quality is not satisfying, but it isn’t 

relevant. Hexahedral cells in this case have a predominant dimension along the main flow direction. 

The main mass flow, crossing these cells, is in a region far enough from the spacer to be said fully 

developed. This justifies the high Aspect ratio. 

Thus, to ensure the mesh quality a different criteria is used for the Aspect ratio. It is the 

Quality criteria implemented by default in Icem [26]. In case of hexahedral cells: the Quality is a 

weighted diagnostic between Determinant (between -1 and 1), Max Orthogls (normalized between 

-1 and 1; if deviation from orthogonality is greater than 90 degrees, then the normalized value will 

be smaller than 0) and Max Warpgls (normalized between 0 and 1; warpage of 0 degrees is 1, 

warpage of 180 degrees is 0). The minimum of the 3 normalized diagnostics will be used. In case of 

prism cells: the Quality is calculated as the minimum of the Determinant and Warpage. Warpage is 

normalized to a factor between 0 to 1, where 90 degrees is 0, and 0 degrees is 1.  

 

 

Fig. 4.13 Icem, Quality criteria applied to the grid in Fig. 4.9. 

In Fig. 4.13 the ordinate axis shows the cells number, the arrow at the top of the columns 

means that it goes over the axis limit: every cell is displayed in the range between 0.85 and 1. 

According with the description at the paragraph beginning the grid in Fig. 4.9 has an excellent 

quality. 

 

 

Fig. 4.11 Quadrilateral cell in the x-y plane. 
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4.2.2. Complete grid  

 

Fig. 4.14 First structured spacer grid. 

The initial mesh is shown in Fig. 4.14. It isn’t conceived to have an 𝑦+ < 1 on the walls, with 

a cell thickness increase from the walls to the channels center. The blocks disposition doesn’t allow 

a uniform cell distribution it can be seen at the inlet section in Fig. 4.14 there are some dark areas 

which mean a high cell concentration. It is also evident the minimal symmetric geometry isn’t used, 

it can be still divided in three identical parts. 

 

 
Fig. 4.15 Detailed grid of the bottom right corner of Fig. 4.14. 

 
 

The view in Fig. 4.15 is the bottom right corner of Fig. 4.14. It has been set a 𝑦+ < 1 on the 

rods walls and on the external wall. It’s a main errors representative zone contained inside the grid. 

1. Generally on the walls cells are denser compared to the remaining mesh areas. In 

Fig. 4.15 there are three zones, one of these is marked by a red ellipse which 

contains a dense cells area. These zones are inevitable in this approach. A high cells 

concentration in that position can compromise the simulation results. In this case 

simulations diverged after few iterations. 



Chapter 4.     The computational domain 
________________________________________________________________________________ 

40 
 

This happens when a block share only one point with a wall surface which has an 

𝑦+ < 1 refinement. 

 

 

 
Fig. 4.16 detailed view of the highlighted area in Fig. 4.15. 

In Fig. 4.16 blocks (a), (b) and (c) are highlighted. Blocks (a) and (c) have the bottom 

sides on the external wall with an imposed grid distribution. These blocks are 

connected to block (b), (they have the same nodes distribution on the shared side). 

It means that block (b) has its nodes distribution on both visible sides already 

determined by the neighboring blocks. The grid refinement is imposed by blocks (a) 

and (c) on block (b), thus the dense cells zone inside the domain highlighted by the 

ellipse in Fig. 4.15 is formed. 

2. The red arrow in Fig. 4.15 crosses a dense mesh area and a coarse one successively. 

These areas are related to two different blocks the first shares one side with the 

rod wall, the second shares one side with the rod wall at the top and the opposite 

side with the external wall at the bottom. Those blocks are connected, they have 

the same nodes number at the interface. While the first block needs to supply only 

one wall refinement the second needs to supply two walls refinements using the 

same nodes number. This explains the two different cells density areas. 

3. The blue arrow in Fig. 4.15 crosses two blocks and it marks a sudden grid 

refinement change. The denser block pointed out by the arrow is connected to the 

blocks inside the blue triangle. Those blocks need a high cells number which it’s 

imposed to the block pointed out by the arrow. The blue triangle contains the grid 

which crosses the spacer inside the triangular channel visible in Fig. 4.8. 

 

Fig. 4.17 Icem mesh Quality criteria from the mesh showed in Fig. 4.14. 

The histogram in Fig. 4.17 shows a very low grid quality. The first columns inside the range 

from 0 to 0.2 are due to a wrong blocks associations, these columns represent cells with collapsed 

edges or with negative volumes. Blocks need to be correctly associated to the geometry surfaces, 

lines and points in order to reproduce all the geometrical details. 

The new block disposition is made of 276 blocks instead the 210 of the previous one, the 

changing process brigs to have a more uniform grid visible in Fig. 4.19. 

 

(a) 
(a) 

(b) 
(b) (c) 

(c) 
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Fig. 4.18 spacer rendering with the new fluid 

domain which is the red part inside, rods are not 
displayed for viewing purpose. 

 

 
Fig. 4.19 frontal grid view of the red fluid domain in Fig. 

4.18Fig. 4.19. 

 

In Fig. 4.18 is showed the spacer grid inside its containing pipe, the red part is the new fluid 

domain, the spacer grid is axisymmetric every 60°, this allows to use three time less the cell number 

used in the first grid. The grid dense areas narrow and long in the fluid domain center of Fig. 4.19 

are blocks placed in front of the spacer wall which is the yellow zone in Fig. 4.18. These areas need 

a thicker grid because the spacer wall has also a grid refinement with the 𝑦+ < 1. 

 

 
Fig. 4.20 Detailed view of Fig. 4.19 contained in the red rectangular. 

 
 

The critical grid zone is the one contained in the red rectangular in Fig. 4.19. Here the 

changes for a more uniform grid distribution: 
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1. The solution of points 1 and 2 is to add a blocks layer on the external wall at the 

bottom side of Fig. 4.20. This allows an independent cell distribution close to the 

wall by the mesh above. Thus every boundary block facing with a wall in the domain 

have only a grid refinement in one direction. 

2. In Fig. 4.20 the highlighted triangle on the right side is the same in Fig. 4.15, the one 

in the left side is added to give a more uniform grid distribution. Thus all the blocks 

surrounding the rods walls have a more uniform trapezoidal contour. The grid 

distribution become more symmetric. It also can be noticed the symmetry from the 

nodes number, lines with the same colors have the same nodes number in the 

blocks facing the boundaries. 

The second solution is based on the block surface transformation in the x-y plane from 

structured mesh to unstructured. The surface is meshed with triangular and quadrilateral cells than 

is extruded along z direction, thus hexahedral and prismatic cells are formed. The mesh remain 

similar to the one showed in Fig. 4.19 except for the part inside the red rectangle which is showed 

in Fig. 4.21. 

 
Fig. 4.21 Detailed view of Fig. 4.19 contained in the red rectangular, three central blocks are unstructured. 

 
 

The advantage in unstructured blocks is that every block side can have different nodes 

number or have different geometrical contour. In Fig. 4.21 there is one triangular and two 

quadrilateral pointed out with the arrows. These blocks simplify the assembly breaking all 

connections highlighted with different colors in Fig. 4.20 making blocks independent by the 

adjacent blocks nodes number. 

The problem of these kind of blocks is that the only control is the nodes number on each 

edge. On the blocks sides pointed by the arrows cells change their structures, they became suddenly 

bigger. In a good mesh every changes should be gradual. On the block side highlighted by the red 

circles the cell density is much higher compared to the neighboring structural mesh. The mesh 

quality in these zones isn’t satisfying compared to the rest of the mesh. In Fig. 4.22 the columns 

inside the range from 0.2 to 0.4 represent the cells on the highlighted parts belonging to the 

unstructured blocks. 
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Fig. 4.22 Icem mesh Quality from the mesh showed in Fig. 4.21. 

The Quality criteria from the grid in Fig. 4.20 is the one below in Fig. 4.23, is the best 

compromise found working on the grid the only other way to reduce the cells distortion without 

change the block disposition is to increase the cells number but going over the limits of 10 million 

cells simulations became too much slow. 

 

Fig. 4.23 Icem Mesh Quality from the mesh showed Fig. 4.20. 

 

4.3. Fluent set up 
 

The numerical simulations performed in this work have been computed assuming a steady-

state. For the pressure and velocity coupling has been used SIMPLE algorithm. 

The FLUENT 15 is set on pressure based solver. The diffusion terms are discretized with a 

central difference scheme and a second-order upwind scheme is used for the convective terms. 

Buoyancy forces have been neglected and thermo-physical properties are considered 

constant. This hypothesis allows to decouple momentum equations from the energy one. First the 

simulation is computed only with momentum equations, when the convergence is reached is 

possible to compute energy equation with the turbulence energy model or correlations, keeping 

frozen the velocity field, 𝑘 and 휀. The solutions are considered converged when the following 

conditions are satisfied: 

 Steady drag coefficient on the walls. 

 Steady Nusselt number on the walls. 

 Scaled residuals of continuity, momentum and turbulence parameters below 10−7. 
 
Velocity and temperature field have been considered fully developed, therefore at the inlet and 

outlet sections than were imposed periodic boundary conditions. For periodic condition has been 

imposed a specified mass flow rate in order to set the bulk velocity of each case. 
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Chapter 5 

5. Results 
The study on the rod bundle with grid spacer has been performed using several turbulence 

models to compute the flow field: the 𝑘 − 휀 𝐴𝐾𝑁 in Paragraph 3.2.2, the Menter 𝑘 − 𝜔 𝑆𝑆𝑇 in 

Paragraph 3.2.3 and the 𝑘 − 휀 − 𝑣2 − 𝑓 in Paragraph 3.2.4. The Manservisi 𝑘 − 휀 − 𝑘𝜃 − 휀𝜃 in 

Paragraph 3.3.3 has been used for the thermal field and the two correlations for the turbulent 

Prandtl Number respectively Kays in Paragraph 3.3.2 and Cheng in Paragraph 3.3.1. 

The thermal turbulence model 𝑘 − 휀 − 𝑘𝜃 − 휀𝜃 developed by Manservisi and Menghini has 

been tested against the DNS data in the channel and in the pipe geometry demonstrating a good 

data reproducibility. Results are showed in [2]. 

 

5.1. Validation of 𝒌 − 𝜺 − 𝒌𝜽 − 𝜺𝜽 
Here follows 𝑘 − 휀 − 𝑘𝜃 − 휀𝜃 validation previously performed by Manservisi and Menghini 

in [15]. Is the simple case of infinite rod bundle without spacers in periodic conditions at the inlet 

and outlet sections. A constant uniform imposed heat flow at the rods, in order to achieve a fully 

developed flow both thermal and hydrodynamic. 

The geometry is based on a triangular array with a 𝑝 𝑑⁄ = 1.3 as showed in Fig. 5.1. The flow 

field is computed only with the AKN turbulence model from Paragraph 3.2.2, such as the 

simulations performed in the article where the energy turbulence model 𝑘𝜃 − 휀𝜃 is presented. In 

order to analyze the solution behavior, the solution 𝑇 of the fully developed flow in Eq.(5.1), is 

usually written a sum of three terms: 

 𝑇 = 𝜃 + 𝑇𝑐 + Δ𝑇𝑚 𝑧 (5.1) 
 

𝑇𝑐 is the constant temperature at the center of the triangular rod bundle 𝑧 = 0 and Δ𝑇𝑚, 

the linear increase of temperature per unit of length in the vertical direction. In fully developed 

flow with constant heat flux on the wall, the temperature grows uniformly on horizontal section 

and linearly along the vertical direction. The slope of linear growth Δ𝑇𝑚, can be easily computed 

with an energy balance as Δ𝑇𝑚 = �̇� 𝑐𝑝�̇�⁄ , where �̇� is the heat flux on the wall and �̇� the mass flux 

through the triangular bundle. Thus the non-dimensional temperature value is obtained in Eq.(5.2), 

where 𝑞 is the heat surface flux. 

 𝜃∗ = 𝜃
𝜆

𝑞𝐷𝑒𝑞
 (5.2) 
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The non-dimensional variable 𝜃∗ 

resemble the inverse of the local Nusselt 

number. Fig. 5.1 shows the lines where the 

temperature profile is plotted. Starting from 

vertical line (ab) the second and over the 

horizontal line (bc). The temperature is set 

to 0 in the coldest fluid domain point (a), till 

arrive to the maximum in the rod wall 

following the lines (ab) and (bc). The 

reference value in the plots legend are 

results of 𝑘 − 휀 − 𝑘𝜃 − 휀𝜃 taken from [15] 

computed by the authors. 

 

 
Fig. 5.2 Theta star, ab line Pe=360, p/d=1.3. 

 
Fig. 5.3 Theta star 𝑏𝑐 line Pe=360, p/d=1.3. 

 

 
Fig. 5.4 Theta star ab lin,e Pe=530, p/d=1.3. 

 
Fig. 5.5 Theta star, bc line Pe=530 p/d=1.3. 

 

 
Fig. 5.1 Ab, bc and cd lines on a triangular rod bundle lattice. 

p d 

a 

b c 
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Fig. 5.6 Theta star, ab line Pe=1470, p/d=1.3. 

 
Fig. 5.7 5.8 Theta star, bc line Pe=1470 p/d=1.3. 

 

 
Fig. 5.9 5.10 Turbulent Prandtl  ab line Pe=360 p/d=1.3. 

 
Fig. 5.11 Turbulent Prandtl line Pe=360 p/d=1.3. 

 

 
Fig. 5.12 Turbulent Prandtl ab line Pe=530 p/d=1.3. 

 
Fig. 5.13Turbulent Prandtl  𝑏𝑐 line Pe=530 p/d=1.3. 
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Fig. 5.14 Turbulent Prandtl ab line Pe=1470 p/d=1.3. 

 
Fig. 5.15 Turbulent Prandtl 𝑏𝑐 line Pe=1470 𝑝 𝑑⁄ = 1.3 

 

Simulation have been computed for three different Péclet numbers, respectively (𝑃𝑒 =

 360, 530, 1470). The energy equation has been launched a posteriori, thus each Péclet number 

case has an identical velocity profile varying the turbulent thermal models. The greatest turbulent 

Prandtl values are visible for the lowest turbulent flow regime. In the low Péclet numbers case the 

influence of laminar conductivity is more relevant compared to the turbulent effects. Fig. 5.9 and 

Fig. 5.11 show the turbulent Prandtl number for the Pe=360, the greatest value is given by the Kays 

correlation and is the 66% greater than the value computed by the model 𝑘𝜃 − 휀𝜃 it is considered 

the rod bundle central zone on the ab line because close to the wall it diverges to infinite. The near 

wall turbulent Prandtl trend is not relevant because is a fluid region dominated by laminar effects 

which have a greater magnitude compared to the turbulent ones. The value reported in the article 

computed by Manservisi and Menghini differs at maximum of the 14% in the ab line. The turbulent 

Prandtl number computed by Cheng and Tak is constant in all the domain and underestimate the 

𝑘𝜃 − 휀𝜃 28% of its maximum value in the ab line. The turbulent Prandtl number of 0.85 is lower 

than the half of the value in the ab line.  

The temperature profiles for the 𝑃é = 360 are visible in Fig. 5.2 and Fig. 5.3 while the Cheng 

and Kays correlations differ of −4% and +4% respectively from the 𝑘𝜃 − 휀𝜃, in the temperature 

maximum value on the wall 𝑥∗ = 1. The temperature profile computed with a 𝑃𝑟𝑡 = 0.85 differs 

from 13.5%. Taking into account the 𝑃é = 530, the turbulent Prandtl number profiles in Fig. 5.12 

and Fig. 5.13 have a lower value compared to the previous ones. Analyzing the ab line in detail the 

one computed using Kays correlation and the one computed by Manservisi fit well the 𝑘𝜃 − 휀𝜃  

model. The Cheng correlation give the same value of the previous case which differs from the 𝑘𝜃 −

휀𝜃 of the 25% in 𝑦∗ = 1. The 𝑃𝑟𝑡 = 0.85 differs from the 57.5% in the same point.  

The related temperature profiles are in Fig. 5.4 and Fig. 5.5, taking the 𝑘𝜃 − 휀𝜃   as a 

reference profile, the Kays profile fit perfectly, the one computed by Manservisi is the 4% greater, 

while the Cheng correlation gives a 5% lower profile always considering the warmest point in 𝑥∗ =

1.  

In the last 𝑃é = 1470 case the turbulent Prandtl profiles in Fig. 5.14 and Fig. 5.15 show the 

lowest profile values compared to the previous cases, the values on the 𝑦∗ = 1 vary form a 
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maximum of 1.7 from the Kays correlation to a minimum of 1.3 from the 𝑘𝜃 − 휀𝜃. The relative 

temperature profiles are in Fig. 5.6 and Fig. 5.7, except the one from the turbulent Prandtl set to 

0.85 the others fit perfectly with an univocal trend. The Péclet number increase correspond to a 

turbulence rate increase and the different Turbulent Prandtl numbers predicted decrease and 

collapse together till ideally reach 0.85 value. The temperature profiles decrease and collapse too. 

These results show that Kays and Cheng correlations give both a reliable turbulent Prandtl number 

profiles such as the 𝑘𝜃 − 휀𝜃.  

Results quality is still confirmed from the average Nusselt number reported in Table 5.1, 

derived using Eq.(4.3). 

Table 5.1 Nusselt number varying the Péclet number and the models.  

𝑁𝑢(𝑃é) 𝑘 − 휀 − 𝑘𝜃 − 휀𝜃 𝐾𝑎𝑦𝑠 Cheng and Tak 𝑃𝑟𝑡 = 0.85 
𝑃𝑒 = 360 12.7541 12.3888 13.0935 14.1075 
𝑃𝑒 = 530 13.7847 13.5462 14.4872 16.2229 
𝑃𝑒 = 1470 17.4173 17.6515 18.1672 22.1574 

 

The Kays correlation result showed in [15] is much different. The predicted Nusselt for a 

Pé=1470 is 29.64. Fig. 5.16 and Fig. 5.17 show the 𝑅 form equations in (3.52), it is the ratio between 

the thermal turbulent characteristic time and the dynamical turbulent characteristic time. It is 

displayed in the ab and bc lines of Fig. 5.1. The plots show the three Péclet number cases computed 

with the 𝑘𝜃 − 휀𝜃 and the respective three cases computed by Manservisi. On the ab line the trend 

show a local maximum value at the center plot, while the absolute maximum is in the near wall 

region on the bc line. The increased turbulence rate causes an upper profile translation emphasizing 

the maximum value compared to the two relative minimum values. Tacking into account same 

Péclet numbers cases profile are not coincident. The maximum variation is in the greatest Péclet 

number case in the near wall region. That region is dominated by laminar effects and differences 

can be neglected. On the central channel ab line the greatest differences are in 𝑦∗ = 1 In the 

Pé=360 the difference is the 37% of the computed value for Pé= 530 the difference is the 35% and 

the greatest Pé=1470 is the 20%. 

 
Fig. 5.16  R, ab line,  p/d=1.3. 

 
Fig. 5.17 R, bc line, p/d=1.3. 
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The non-dimensional root mean square temperature is defined Eq.(5.3), where 𝑘𝜃 is the 

average square temperature fluctuations in Eq.(3.39).  

 𝜃𝑟𝑚𝑠 = 𝜆
√2𝑘𝜃
𝑞𝐷ℎ

 (5.3) 

 

The profiles in Fig. 5.18 and Fig. 5.19 are shown respectively along the ab and bc lines. On 

the ab line profiles show a relative maximum value at the line center, with two minima values on 

𝑦∗ = 0 and 𝑦∗ = 1, while on the bc line profile starts with a relative minimum on the 𝑥∗ = 0, grows 

till reach an absolute maximum and decrease till becomes 0 on the rod wall in 𝑥∗ = 1. The profile 

are for three different Péclet numbers 𝑃𝑒 = 360, 530, 1470, the last profile are the Mnaservisi’s 

results for the 𝑃𝑒 = 530, which are visible onlu in Fig. 5.19 close to 𝑥∗ = 1. Its results magnitude 

are 10 times greater than the ones computed in this thesis it is probably due to an error in the 

dimensionless process. The Pe=360 and Pe=1470 results match on the ab line while on the Pé=530 

has a greater value. On the bc line the trend is similar in the central channel region from 𝑥∗ = 0, to 

𝑥∗ = 0.5. Afther that region from 𝑥∗ = 0.5, to 𝑥∗ = 1 the trend values decreases with the Péclet 

number. 

 
Fig. 5.18 Theta rsm, ab line, p/d=1.3. 

 
Fig. 5.19 Theta rsm, bc line, p/d=1.3. 
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5.2. Central bundle rod results 
Here follows the results computed from the mesh descripted in Paragraph 4.2.1. The flow 

field has been computed using the three models in Paragraph 3.2, the results show the non-

dimensional velocity 𝑢 𝑢𝑏𝑢𝑙𝑘⁄  and the turbulent viscosity ratio 𝜈𝑡 𝜈⁄  against the non-dimensional 

𝑥 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑥+ from Eq.(3.3). Values are taken in a fully developed region upstream the 

spacer, in the Fig. 5.1 ab line, which is orthogonal to the rod surface. 

 

 
Fig. 5.20 Dimensionless velocity against x plus ,Pe=1500, 

bc line, infinite rod bundle with spacer, z/Dh=-5. 

 
Fig. 5.21 Turbulent viscosity ratio against x plus, 

Pe=1500, bc line infinite rod bindle with spacer, z/Dh=-5. 

 

Fig. 5.20 is the velocity profile and the turbulent viscosity ratio is in Fig. 5.21. To a flatter 

velocity profile corresponds a greater turbulent viscosity value. The profile computed by the v2f 

model has been taken as references. The models differ in the log region where the turbulence 

become relevant. In 𝑥+range between 0 and 300 there are the greatest difference: the 𝑘 − 휀 AKN 

underestimate the v2f of the 4.1% while the 𝑘 − 𝜔 𝑆𝑆𝑇 is the 1.09% greater. On 𝑥+=400 the trend 

is inverted the 𝑘 − 휀 AKN computes the greater and the 𝑘 − 𝜔 𝑆𝑆𝑇 the smaller values. 

The turbulent viscosity ratio trend in Fig. 5.21 is univocal for the three models in an 𝑥+ 

range between 0 and 160, after that all the three curves diverge, the greatest difference between 

the v2f and the 𝑘 − 휀 AKN is 40% while the greatest difference between the v2f and the 𝑘 − 𝜔 𝑆𝑆𝑇 

is the 29%. 

In the same flow section follow the non-dimensional temperature from Eq.(5.2) and the 

turbulent Prandtl number from Eq.(2.18) in the ab, bc and cd lines showed in Fig. 5.1. 
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Fig. 5.22 theta star ab line Pe=1500, infinite rod bundle 

with spacer z/Dh=-5. 

 
Fig. 5.23 Theta star bc line Pe=1500, infinite rod bundle 

with spacer, z/Dh=-5. 

 

Fig. 5.22 is the temperature profile 

on the ab line, the 𝑦∗ = 0 on the point a is 

the coldest point into the channel center. 

𝑇(𝑦∗ = 1) = 𝑇(𝑥∗ = 0), is the b point 

belonging to both lines. The temperature 

profile increases to the rod wall intersection 

in b which corresponds to the warmest lines 

point. The 𝑘 − 휀 𝐴𝐾𝑁 𝑘𝜃 − 휀𝜃, 𝑘 −

휀 𝐴𝐾𝑁 𝐾𝐴𝑌𝑆, 𝑘 − 휀 𝐴𝐾𝑁 𝐶𝐻𝐸𝑁𝐺 and 

𝑣2𝑓 𝐾𝐴𝑌𝑆 have an univocal, the greatest 

difference is computed by the 𝑘 − 𝜔 𝐾𝐴𝑌𝑆. 

On the wall line cd in Fig. 5.24, 

𝑇(𝑎𝑛𝑔𝑙𝑒 0°)  = 𝑇(𝑥∗ = 1). The temperature 

profiles show a different temperature 

distribution on the wall from the warmest point in 𝑎𝑛𝑔𝑙𝑒 0° temperature decrease up to the coldest 

wall point on 𝑎𝑛𝑔𝑙𝑒 30°  

Fig. 5.25 and Fig. 5.26 show the turbulent Prandtl value respectively on the ab and bc lines. 

The Cheng correlation being function of the mean Péclet number which is the same for every 

simulation (Pe=1500) gives a constant turbulent Prandtl for each flow turbulent model equal to 1.5. 

Kays correlation is function of the turbulent viscosity ratio thus is a space dependent turbulent 

Prandtl. The 𝑘 − 휀 𝐴𝐾𝑁 𝐾𝐴𝑌𝑆, the 𝑣2𝑓 𝐾𝐴𝑌𝑆 and CHENG have a similar trend varying from 1.45 

to 1.7 on the ab line while the 𝑘 − 휀 𝐴𝐾𝑁 𝑘𝜃 − 휀𝜃  and 𝑘 − 𝜔 𝑆𝑆𝑇 𝐾𝐴𝑌𝑆 have a lower value trend 

varying from 1.2 to 1.3 always in the ab line.  

Fig. 5.24 ̰Theta star, cd  line, Pe=1500, infinite rod bundle 
with spacer, z/Dh=-5. 
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Fig. 5.25 Turbulent Prandtl ab line Pe=1500, infinite rod 

bundle with spacer, z/Dh=-5. 

 
Fig. 5.26 Turbulent Prandtl number bc line Pe=1500, 

infinite rod bundle with spacer, z/Dh=-5. 

 

 

Fig. 5.27 and Fig. 5.28, show the non-dimensional temperature profile respectively on the 

ab and bc lines. The displayed model is the 𝑣2𝑓 𝐾𝐴𝑌𝑆, the temperature profile is displayed varying 

the mean Péclet number and leaving all the remaining parameters constant. Increasing the Peclét 

number the temperature values decreases with an exponential law, the profile trend becomes 

flatter. The warmest point on the c point (𝑦∗ = 1) has a 𝜃∗ = 0.106 value belonging to the 𝑃𝑒 =

500, while the warmest point relative to the maximum Péclet number (𝑃𝑒 = 2500) is 𝜃∗ = 0.067. 

 

 

 
Fig. 5.27 Theta star ab  line v2f KAYS, infinite rod bundle 

with spacer, z/Dh=-5. 

 
Fig. 5.28 Theta star bc line v2f KAYS, infinite rod bundle 

with spacer, z/Dh=-5. 
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Fig. 5.29 is the wall temperature profile varying the Péclet number. Such as in the ab and 

bc lines the trend profile becomes more flat increasing the Pé number, the greatest rod 

temperature difference with a 𝑃𝑒 = 500 is ∆𝜃∗ = 0.067, while the greatest Péclet number 

difference is ∆𝜃∗ = 0.061. 

Fig. 5.30 is the rod wall temperature plotted along the main flow direction which is pointed 

out by the arrow in Fig. 4.7. The axial coordinate 0 has been set on the spacer inlet and the 

temperature 0 value has been set at the domain inlet, at 𝑧 𝐷ℎ = −⁄ 10.54. The grey zone highlights 

the axial spacer length, the dotted green line identify the plane 2.5 mm upstream the spacer where 

thermocouples are placed in the experiment performed at KALLA laboratory.  

The wall temperature plotted is the integral temperature calculated at each axial 

coordinate z. Dimensional temperature  𝑇 has been transformed to non-dimensional using the 

Eq.(5.2) where 𝜃 = 𝑇 − 𝑇(𝑧 𝐷ℎ⁄ = −10.54). In Fig. 5.30 flow turbulence models are grouped with 

the same colors and thermal turbulence model are grouped with the same line type.  

The temperature profiles start with an univocal trend. Upstream the spacer in the green 

line intersection the temperature profiles show a local maximum point. The temperature sampled 

by thermocouples is in region influenced by the spacer. Inside the spacer every temperature 

profiles have a different local minimum point. Every model gives different values. Downstream the 

spacer temperature profiles converge again in a univocal trend. 

The wall temperature inside the spacer decreases because inside the spacer the flow area 

decreases, the mean velocity increases with the turbulence rate and this process emphasize the 

convective heat exchange which makes the rod colder. 

Fig. 5.29 Theta star bc line v2f KAYS, infinite rod bundle with 
spacer, z/Dh=-5. 
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Fig. 5.30 Wall non-dimensional temperature profiles z-coordinate, Pe 1500 infinite rod bundle with spacer. 

Fig. 5.31 is the local Nusselt number computed using Pe=1500, is plotted along the main 

flow direction z. The Nusselt number is derived from Eq.(4.3), and Eq.(4.1). Upstream the spacer 

the Nu has a flat profile, it confirms that the temperature field is fully developed, thus also the 

velocity field. The intersection between Nusselt profiles and the green line has a value slightly 

greater than the undisturbed value, the maximum variation is lower than 1.5%, compared to the 

undisturbed value. It isn’t relevant compared to the maximum variation visible using different 

models. The greatest Nusselt number belonging to the 𝑘 − 𝜔 𝐾𝐴𝑌𝑆 is 20.81, the smallest from 𝑘 −

휀 𝐴𝐾𝑁 𝑘𝜃 − 휀𝜃 is 19.05, taking the values on the green line intersection. Inside the spacer every 

model has different values but same flow turbulence models have a similar trend profiles.  

The 𝑘 − 휀 𝐴𝐾𝑁 is plotted with the black profiles it has a monotonous growth from the 

spacer inlet section and it reaches an absolute maxima values on the spacer outlet section. 

Dowstream the spacer the Nusselt profiles have a monotonous decrease. The CHENG correlation 

shows a completely flat profile passed 𝑧 𝐷ℎ = 20⁄ , while the 𝑘𝜃 − 휀𝜃  model still decreases slightly 

of about 1.3% the value measured on the green line intersection, passed the 20 hydraulic 

diameters. The KAYS correlation has a little increasing trend after 20 hydraulic diameters lower than 

0.5%.  

The 𝑘 − 𝜔 𝑆𝑆𝑇is plotted with the blue profiles, on the CHENG case it has a relative maxima 

value close to the spacer inlet section and one absolute value close to the outlet section, KAYS has 

the relative one on outlet section and the absolute one on the inlet section. Downstream the spacer 

the KAYS correlation shows a relative minimum and maximum value file across 𝑧 𝐷ℎ = 5⁄  therefore 

decreases and becomes flat again close to the grid outlet section. The CHENG correlation instead 

show a monotonic decreasing Nusselt profile. Passed 𝑧 𝐷ℎ = 20⁄  the variation are lower the 2% the 

reference value on the green line intersection  
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The 𝑣2𝑓 Nussel profiles results which are plotted with the red profiles, on the KAYS 

correlation it has a double maximum inside the spacer close to the inlet and outlet section which 

are approximately of the same magnitude. Downstream the spacer a relative maximum and 

minimum values respectively on 𝑧 𝐷ℎ = 4⁄  𝑎𝑛𝑑 3, thereafter the profile decreases and becomes 

flat after 𝑧 𝐷ℎ = 20⁄  with a damped oscillation lower than 4% the value of the reference value. The 

case using the CHENG correlation has a monotonic growth form the spacer inlet section with an 

absolute maximum value near the spacer outlet section, after that it show a monotonic decrease 

trend which become completely a flat profile passed the 20 hydraulic diameters. From a general 

point of view passed the 20 hydraulic diameter the Nusselt profiles can be considered flat, they still 

have a residual damped oscillation lower than 4% into the worst case. 

 

Fig. 5.31 Local Nusselt number Pe 1500, infinite rod bundle with spacer. 

Fig. 5.32 are Nusselt profiles using the same models with a Péclet number of 500. The 

maximum variation measured on the green line varies from a minimum of 14.4 belonging to the 

𝑘 − 휀 𝐴𝐾𝑁 𝐾𝐴𝑌𝑆 and a maximum value of 15.98 belonging to 𝑣2𝑓 𝐾𝐴𝑌𝑆.  

The 𝑘 − 휀 𝐴𝐾𝑁 plotted with the black profiles respects the trend descriped in the previus 

case (𝑃𝑒 = 1500). The difference inside the spacer can be noted on the Nusselt maximum value 

which, for KAYS and the 𝑘𝜃 − 휀𝜃  in Fig. 5.31 is similar and in this case the 𝑘𝜃 − 휀𝜃 is much closer to 

the CHENG maximum value. The Nusselt profiles downstream the spacer decrease and became 

completely flat passing 𝑧 𝐷ℎ = 15⁄ , the remaining damped oscillations are lower than 0.1% the 

value measured on the green line interseciton. 

 The 𝑘 − 𝜔 𝑆𝑆𝑇 profiles have a trend similar to the 𝑘 − 휀 𝐴𝐾𝑁 with a single maximum close 

to the spacer outlet section which is reached after a monotonic growth, downstream the spacer 

the Nusselt profile decrease and became flat at 𝑧 𝐷ℎ = 13⁄ .  
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The v2f on the gren profile shows only with the KAYS correlation a double maxima values 

one realtive and one absolute inside the spacer, downstream the spacer become flat after 

𝑧 𝐷ℎ = 15⁄ . The CHENG correlation has a monotonic growing profile with the maximum close the 

spacer outlet section and the Nusselt profile become flat passing 𝑧 𝐷ℎ = 20⁄ . 

 

Fig. 5.32 Local Nusselt number Pe 500, infinite rod bundle with spacer. 

Fig. 5.33 shows the Nusselt profiles on a Péclet number of 2500. It appears evident the 

difference on the green line intersection, all models are included on a wider Nusselt values range, 

compared with the two others Péclet numbers in Fig. 5.31 and Fig. 5.32. The greatest value of 26.6 

is computed from the 𝑘 − 𝜔 𝑆𝑆𝑇 𝐶𝐻𝐸𝑁𝐺 while the lowest of 22.1 is computed by the 𝑘 −

휀 𝐴𝐾𝑁 𝑘𝜃 − 휀𝜃. In this case the difference between each flow model is more emphasized due to 

the different approach to the turbulence visible in Fig. 5.21. Every model give different turbulent 

viscosity values which become more relevant with the mean Reynolds number increases.  

The 𝑘 − 휀 𝐴𝐾𝑁 maintains its trend inside the spacer a monotonic Nusselt profile growth 

followed by a monotonic decrease downstream the spacer, in this case the CHENG correlation is 

the one which have the greatest Nusselt values in all the points of the profile, such as in the previous 

two Péclet cases. In this case the 𝑘𝜃 − 휀𝜃 computes the lowest values. Passing the 𝑧 𝐷ℎ = 20⁄  the 

KAYS and CHENG correlations reach a local minimum thereafter is noted a smooth Nusselt growth 

lower than 3% compared to the value at the green line intersection. The 𝑘𝜃 − 휀𝜃 haven’t this 

damped oscillation trend downstream the spacer the profile decreases without any concavity 

change.  

The 𝑘 − 𝜔 𝑆𝑆𝑇 plotted on the blue profile has a double maximum values inside the spacer, 

downstream the spacer it shows a relative maximum and minimum only with the KAYS correlation 

on a range across 5 hydraulic diameter thereafter an absolute minimum at 𝑧 𝐷ℎ = 15⁄  and a slight 

growth which is at the maximum the 4% the value on the green line. The CHENG case downstream 
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the spacer decreases up to the absolute minimum in 𝑧 𝐷ℎ = 15⁄  and increases slightly of about 4% 

the value on the green line intersection. 

The 𝑣2𝑓 has a double maximum value inside the spacer for both the correlation used and 

downstream it and in the range across 5 and 8 hydraulic diameter a relative minimum and 

maximum value respectively. The absolute minimum value is on 𝑧 𝐷ℎ = 20⁄  than the Nusselt profile 

grows of about the 3% the value measure on the green line intersection. 

Inside the spacer in every case analyzed the CHENG Nusselt values are greater than the 

KAYS one. In the rest of the domain is not always true. 

 

Fig. 5.33 Local Nusselt number Pe 2500, infinite rod bundle with spacer. 

Fig. 5.34 is the Nusselt value from the green line interseciton varying the Peclét number.The 

red circles are the experimental data with their uncertainties hilighted by the red error bars from 

[1]. The filled square connected by the green line are the Mikityuk Nusselt correlation results for 

fully developed flow from Eq.(4.6). It should be rememberd that experimental Nusselt number has 

been computed using the warmest wall temperature instead the mean wall temperature value. It 

corresponds graphically to the c point in Fig. 5.1. From Fig. 5.29 the wall temperature distribution 

varies on about 7% from its mean value, Nusselt number computed using the maximum wall 

temperature are thus lower than the ones computed using the mean wall temperature. In Fig. 5.34 

all Nusselt value are computed using Eq.(5.4) intesad of Eq.(4.1). 

 𝛼 = 
𝑞𝑤

𝑇𝑚𝑎𝑥,𝑤 − 𝑇𝑏
 (5.4) 

 

It appears evident that experimental results are spread on a wide range and models don’t 

match at all, thus the infinite rod bundle hypothesis is not so satysfing for the entire rod bundle 

Nusselt. Most of the models are in the experimental range and all of them give a result lower than 
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the mean experimental values. Following the lines whcich connect each result varing the Peclét 

number is clear to note that models don’t respect a precise order. The ones which match better the 

results are 𝑘 − 𝜔 𝑆𝑆𝑇 𝐶𝐻𝐸𝑁𝐺 and 𝑣2𝑓 𝐶𝐻𝐸𝑁𝐺, the worst ones are 𝑘 − 휀 𝐴𝐾𝑁 𝐾𝐴𝑌𝑆 and 𝑘 −

휀 𝐴𝐾𝑁 𝑘𝜃 − 휀𝜃 which in the Pe=500 and Pe=2500 are out of the experimental range. The flow 

turbulence models coupled with the CHENG corelation give results which don’t reverse their trends 

and are the most similar to the mean experimental values. 

 

 

Fig. 5.34 Nusslet number value on the green line intersection varying the Peclét number. 

 

5.2.1. GCI study 
To ensure the consistency of results in Paragraph 5.2, has been performed an analysis based 

on the Richardson extrapolation that quantify the results validity. 

The main computational errors source is the discretization. In steady-state problems, using 

double precision with strong convergence criteria, and when the code is free from programming 

errors and bugs, the remaining error is caused by the geometric discretization and the numerical 

discretization which is the numerical scheme. In order to quantify these errors, two different 

parameters are adopted: ℎ, which is representative of the mesh spacing in Eq.(5.5), N is the entire 

cells amount and ∆𝑉𝑖 is the sigle cell volume. The other representative parameter is 𝑝 in 

Eq.(5.9)(5.9), which stands for the order of the numerical scheme accuracy. The h-refinement 

treatment is commonly used to reduce the grid discretization errors in finite volumes techniques 

(the numerical scheme is fixed and the mesh is refined). In these studies the Richardson 

extrapolation can be adopted as a formally upper order extrapolated solution estimator and as an 

error estimator. 
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 ℎ = [
1

𝑁
∑∆𝑉𝑖

𝑁

𝑖=1

]

1 3⁄

 (5.5) 

 

Taking a domain point 𝒙, according to the Richardson extrapolation theory, when the 

solution of two or more simulations which is solved on a h-refinement criteria it is in the asymptotic 

range, the extrapolated value with an higher solution accuracy order can be found within Eq.(5.6), 

and its relative error is in Eq.(5.8), while the approximate relative error belonging to the fine 

solution grid is in Eq.(5.7) . 

Thus, with three problem solutions ( 𝜙1(𝑥), 𝜙2(𝑥), and 𝜙3(𝑥)) obtained performing an h-

refinement treatment on the grids ℎ1 = ℎ2 𝑟21⁄ , (fine grid) ℎ2 = ℎ3 𝑟32⁄ , (middle grid) and ℎ3 

(coarse grid), these equations take form: 

 

 𝜙𝑒𝑥𝑡
21 =

𝑟21
𝑝
𝜙1 − 𝜙2

𝑟21
𝑝
− 1

 (5.6) 

 

 𝑒𝑎
21 = |

𝜙1 − 𝜙2
𝜙1

| (5.7) 

 

 𝑒𝑒𝑥𝑡
21 = |

𝜙𝑒𝑥𝑡
12 − 𝜙1

𝜙𝑒𝑥𝑡
12 | (5.8) 

 

Where the accuracy order 𝑝 in Eq.(5.9) is assumed to be dependent on the position 𝒙, and 

𝑟 is the refinement ratio. 휀21 = 𝜙2(𝑥) − 𝜙1(𝑥), and 휀32 = 𝜙3(𝑥) − 𝜙2(𝑥) 

 𝑝(𝒙) =
1

ln 𝑟21
|𝑙𝑛 |

휀32
휀21
| + 𝑞(𝑝)| (5.9) 

 

 𝑞(𝑝) = 𝑙𝑛 (
𝑟21
𝑝
− 𝑠

𝑟32
𝑝
− 𝑠

) (5.10) 

 

 𝑠 = 1 ∗ 𝑠𝑖𝑔𝑛 (
휀32
휀21
) (5.11) 

 

The equations in (5.9), (5.10), (5.11) can be solved using a fixed point iteration, with the initial guess 

equal to the first term. 

The accuracy order 𝑝 with this particular formulation is meaningfully in case of monotonic 

convergence and in case of oscillatory convergence. With this formulation, can be calculated a 

formally upper-order extrapolated value𝜙𝑒𝑥𝑡
21  from Eq.(5.8) only in case of monotonic convergence. 

However, the use of the extrapolated value 𝜙𝑒𝑥𝑡(𝒙), is generally not recommended because of its 

calculation not always apply in practical problems. On the other hand, the estimator of the relative 
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approximate error Eq.(5.7), is a good parameter in order to give credibility to the numerical 

solution. Roache [27] includes a safety factor 𝐹𝑠into this estimator and defines the Grid 

Convergence Index (GCI). At a given point x of the computational domain, the GCI corresponding 

to the fine grid solution 𝜙1(𝒙)takes form in Eq.(5.12), with this formulation, it includes also the case 

of oscillatory convergence [28]. 

 𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21 =

𝐹𝑠 ∗ 𝑒𝑎
21

𝑟21
𝑝
− 1

 (5.12) 

 

In a two-grid convergence study where 𝑝(𝒙) must be assumed according to the formal 

accuracy order, is recommended a 𝐹𝑠 = 3 value. Using three or more grids, such as are presented 

in this work, and where 𝑝(𝒙)can be estimate with Eq.(5.9) a value of 𝐹𝑠 = 1.25 appears to be 

adequately conservative [29]. 

Numerical problems can arise when analyzing 𝜙(𝒙) values close to 0 or node with both 

solutions changes approaching to 0. It is useful to classify the calculation nodes into three groups 

according to the following conditions: 

 𝑅𝑖𝑐ℎ𝑎𝑟𝑑𝑠𝑜𝑛 𝑛𝑜𝑑𝑒: [𝜙2
∗(𝒙) − 𝜙3

∗(𝒙)][𝜙1
∗(𝒙) − 𝜙2

∗(𝒙)] > 𝐶0 (5.13) 
 

 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝑛𝑜𝑑𝑒: [𝜙2
∗(𝒙) − 𝜙3

∗(𝒙)][𝜙1
∗(𝒙) − 𝜙2

∗(𝒙)] < 𝐶0 (5.14) 
 

 𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟𝑦 𝑛𝑜𝑑𝑒: [𝜙2
∗(𝒙) − 𝜙3

∗(𝒙)][𝜙1
∗(𝒙) − 𝜙2

∗(𝒙)] <  −𝐶0 (5.15) 
 

Where the upper index * indicates the that the solutions have been normalized using the 

maximum absolute 𝜙(𝒙), and 𝐶0 is a positive coefficient approaching 0 (𝐶0 = 10
−30, in this work 

where all the computations have been performed using double precision real numbers). 

The formal or theoretical accuracy order depends on the accuracy of the numerical 

schemes used in the inner and boundary nodes for both the diffusive and convective terms. In some 

cases such as when the numerical scheme is fully first order (upwind differential scheme) or second 

order (central difference), the accuracy of these is formally known. Thus, it is expected an overall 

order of accuracy 𝑝 bounded by the minimum and maximum theoretical values for the present 

numerical scheme 𝑝𝑚𝑖𝑛 = 1 and 𝑝𝑚𝑎𝑥 = 2, from [28]. 

Analysis in this work has been performed using the grids with the elements number 

reported in Table 5.2, the grid volume to calculate the characteristic grid spacing in Eq.(5.5) can be 

derived from the mesh set up in Chapter 4. The GCI algorithm has been implemented in Matlab 

R2015a code the script used is in Appendix C. It is made to calculate the error bars with the GCI 

index in the Nusselt profiles, it calculate the percentage of Richardson, Oscillatory and Converged 

nodes, the minimum, maximum and average accuracy order p from. It display also the minimum 

maximum and average GCI index in each case. 
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Table 5.2 grids elements used in this thesis 

 Grid 1 Grid 2 Grid 3 

Pe = 500 1556800 297010 70497 
Pe = 1500 1556800 297010 70497 
Pe = 2500 7346680 2135835 282500 

 

Analysis has been performed on every case varying the model and the Peclét number from 

a total of 21 cases here follow the most representative and a table which recapitulates the results 

in the measurement plane with the uncertainties. 

 
Fig. 5.35 Nusselt k-epsilon AKN, k theta epsilon theta 

Pe=500.  

 

 
Fig. 5.36 Nusselt with GCI bars k-epsilon AKN, k theta 

epsilon theta Pe=500. 

 

 
Fig. 5.37 Nusselt k-epsilon AKN, k theta epsilon theta 

Pe=1500. 

 
Fig. 5.38 Nusselt with GCI bars k-epsilon AKN, k theta 

epsilon theta Pe=1500. 
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Fig. 5.39 Nusselt k-epsilon AKN, k theta epsilon theta 

Pe=2500. 

 
Fig. 5.40 Nusselt with GCI bars k-epsilon AKN, k theta 

epsilon theta Pe=2500. 

 

 
Fig. 5.41 Nusselt k epsilon AKN KAYS Pe=1500. 

 
Fig. 5.42 Nusselt with GCI bars k epsilon AKN KAYS Pe=1500. 

 

 
Fig. 5.43 Nusselt k epsilon AKN CHENG Pe=1500. 

 
Fig. 5.44 Nusselt with GCI bars k epsilon AKN CHENG 

Pe=1500. 
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Fig. 5.45 Nusselt k omega AKN KAYS Pe=1500. 

 
Fig. 5.46 Nusselt with GCI bars k omega AKN KAYS 

Pe=1500. 

 

 
Fig. 5.47 Nusselt k omega AKN CHENG Pe=1500. 

 
Fig. 5.48 Nusselt with GCI bars k omega AKN CHENG 

Pe=1500. 

 

 
Fig. 5.49 Nusselt v2f KAYS Pe=1500. 

 
Fig. 5.50 Nusselt with GCI bars v2f KAYS Pe=1500. 
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Fig. 5.51 Nusselt v2f CHENG Pe=1500. 

 
Fig. 5.52 Nusselt with GCI bars v2f CHENG Pe=1500. 

 

Every case has two figures showing on the left side the three grids solutions and the 

extrapolated points because in this analysis the oscillatory nodes number is a great amount. The 

extrapolated curve is not defined on these points, thus oscillatory points don’t have an extrapolated 

value. The right side figure is the fine grid plot with the error bars displaying the GCI value for each 

plane it plots and the relevant information on the case from the GCI study. Reducing the grid nodes 

number with an equal constant parameter h from Eq.(5.5) in every direction. The coarse grid results 

in some case don’t follow the trend of the other two grids specially in the fluid zone upstream the 

spacer, this make a relevant part of the nodes to be classifies oscillatory nodes from Eq.(5.15). 

The first consideration is on the 𝑘 − 휀 𝐴𝐾𝑁 𝑘𝜃 − 휀𝜃  reliability it is shown in Fig. 5.36, Fig. 

5.38 and Fig. 5.40. The maximum GCI value is 5.66% on the greatest Peclét number because of the 

first cells in the inlet domain the medium grid discretization caused a non-homogenous profiles. 

The plots show a small GCI error especially in the measurement plane highlighted on the legends 

with the letter m in the subscript. Inside the spacer the error grows till reach its maximum value on 

the Nusselt pick. Downstream the spacer the GCI value grows slowly moving away from the spacer, 

the maximum GCI value is 5%, on the first node in the inlet section of the Pe= 2500 case. The 

maximum average GCI is 1.14% in the Pe=2500 case. 

The 𝑘 − 휀 𝐴𝐾𝑁 𝐾𝐴𝑌𝑆 and the 𝑘 − 휀 𝐴𝐾𝑁 𝐶𝐻𝐸𝑁𝐺 in Fig. 5.42 and Fig. 5.44 have 

respectively an average GCI value of 0.38% and 0.4%, with a maximum value of 2% and 1.4 

respectively. The widest error bars are downstream the spacer in the decreasing trend after the 

Nusselt maximum value inside the spacer and at the grid outlet section. In that grid zone the mesh 

resolution on the flow direction is coarser compared to the one close to the inlet and near the 

spacer zone because the temperature field is undisturbed. 

The 𝑘 − 𝜔 𝑆𝑆𝑇 𝐾𝐴𝑌𝑆 and the 𝑘 − 𝜔 𝑆𝑆𝑇 𝐶𝐻𝐸𝑁𝐺 are in Fig. 5.46 and Fig. 5.48 respectively, 

they have an average GCI of 0.45% and 0.34% with a maximum value of 3.5% and 2.58%. These 

value are computed on the ascendant Nusselt profile zone close to the spacer inlet. The Nusslet 

growth is much more quick compared to the ones computed with the 𝑘 − 휀 𝐴𝐾𝑁 on the KAYS and 

CHENG cases. The coarse grid visible in Fig. 5.45 and Fig. 5.47 respectively shows a good trend as 

the medium and fine grid but underestimate their values close to the inlet and outlet section 

regions. 
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The worst converged cases are the ones computed using the 𝑣2𝑓 model the medium grid 

has an oscillatory convergence. The Richardson nodes are 7%. The 𝐶𝐻𝐸𝑁𝐺 case has an average GCI 

value of 0.95% and a maximum value of 2.4%. The widest Nusselt range error bars are at the inlet 

section and the outlet. The case computed using 𝐾𝐴𝑌𝑆 model shows a similar error bars trend, the 

Richardson nodes are the 37%, the maximum and average GCI values are respectively 2.4% and 

0.95%, the medium mesh convergence in both cases give worse result compared to the fine and 

coarse grid which have an almost overlapped profiles. 

Table 5.3 is the Nusselt value calculated on the measurement plane upstream the spacer 

with their uncertainty range for all the simulated cases. The Nusselt number is computed with the 

average wall temperature in Eq.(4.1). The greatest result validity range is one magnitude order 

lower than the ones in the experiment. It shows that a cell number increase don’t change the final 

simulated result. Thus the central rod of the bundle underestimates the mean Nusselt value from 

the rod bundle tested in the experiment. 

 

 

Table 5.3 Nusselt number and their uncertainties in the measurement plane, from the mesh in Chapter(4.2.1) 

 𝑃𝑒 = 500 𝑃𝑒 = 1500 𝑃𝑒 = 2500 

𝑘 − 휀 AKN 𝑘𝜃 − 휀𝜃 14.88 ± 0.17 19.05 ± 0.036 22.09 ± 0.0098 

𝑘 − 휀 AKN Kays 14.4 ± 0.04 19.32 ± 0.071 23.95 ± 0.045 

𝑘 − 휀 AKN Cheng  15.4 ± 0.05 19.94 ± 0.1 25.24 ± 0.04 

𝑘 − 𝜔 𝑆𝑆𝑇 Kays 14.89 ± 0.006 20.53 ± 0.014 25.95 ± 0.17 

𝑘 − 𝜔 𝑆𝑆𝑇 Cheng 15.93 ± 0.008 20.93 ± 0.047 27.07 ± 0.089 

𝑘 − 휀 𝑣2𝑓 Kays 15.98 ± 0.11 20.81 ± 0.104 25.08 ± 0.067 

𝑘 − 휀 𝑣2𝑓 Cheng 15.58 ± 0.087 20.40 ± 0.188 26.62 ± .053 
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5.3. Complete mesh results 
The analysis performed in Paragraph 5.2.1 shows the best compromise between the grid 

cells density and the results quality performing a simulation on the infinite rod bundle with spacer. 

Taking the case with a Pe=1500 as a reference the GCI analysis shows that the medium grid gives 

acceptable results with a small deviation compared to the fine one. Thus has been used the domain 

discretization on the medium grid to achieve a grid cells density similar in the complete mesh. 

The mesh descripted in Paragraph 4.2.1 is 1/12 of a single rod while this one includes 3 

complete rod and 1/6 of a single rod, the cell number should be at least: 297010 which is the cell 

number belonging to the mesh in Fig. 4.9, taking the value from the Table 5.2, and multiplying it for 

3 ∗ 1 6⁄ , it comes out a cells amount of 106. Than it remains to mesh the two triangular channel 

and the external wall. In Fig. 5.53 are visible only the spacer walls and the external wall. The rods 

are plotted only inside the spacer. The mesh is showed on a plane upstream the spacer and on a 

plane inside the spacer. The yellow narrow and wired surface is frontal spacer wall, which is normal 

to the main flow direction. 

 

 
Fig. 5.53 Spacer grid, rods are visible only inside the spacer for displaying purpose, the mesh is visible on a plane 

upstream and inside the spacer. 

 

The computational power available allows to use Fluent code in parallel up to 7 ∗ 106 cells, 

this value has been found after several attempts. Thus the grid has been built using all the 7 ∗ 106 

cells, to have the best results. Simulations in this case are performed using the 𝑘 − 휀 𝐴𝐾𝑁 and the 

𝑘 − 𝜔 𝑆𝑆𝑇, because the v2f model looking the GCI analysis in Paragraph 5.2.1 had the worst 

convergence. The 𝑘 − 휀 − 𝑘𝜃 − 휀𝜃 using this mesh diverged in all the attempts performed. All the 

simulations are performed using a main Péclet number set to 1500. 

The Fluent is set up using the discretization scheme to Second Order for the pressure, the 

momentum and the energy equations, the Least Square Cell Based for the continuity equation, the 



Chapter 5.     Results 
________________________________________________________________________________ 

68 
 

turbulent models are all set to the First Order Upwind. Setting the turbulence equations to the 

Second Order Upwind the simulation diverges. 

The under-relaxation-factors are set up to a lower values compared to the default ones. 

The under relaxation factors used in these simulations are available in Table 5.4.  

Table 5.4 Under relaxation factors for the mesh descripted in Paragraph 4.2.2.  

 𝒌 − 𝜺 𝑨𝑲𝑵 𝒌 −𝝎 𝑺𝑺𝑻 Default values 

Pressure 0.15 0.2 0.3 
Momentum 0.4 0.5 0.7 

Turbulent kinetic 
energy 

0.3 0.6 0.8 

Specific dissipation rate 0.3 0.6 0.8 
Turbulent viscosity 0.7 0.8 1 

Energy 1 1 1 

 

It is visible from Table 5.4 that the under-relaxation-factors are set up to a lower values on 

the 𝑘 − 휀 𝐴𝐾𝑁 case because leaving them to the default ones the turbulence model doesn’t 

converge. The turbulent viscosity needs to be under-relaxed too, to avoid the fluent bound in some 

critical cells. The 𝑘 − 𝜔 𝑆𝑆𝑇 is a more stable turbulence model but needs to be under-relaxed from 

the default values to reach the converge. 

Both models reached the convergence with flat residuals profiles available in Table 5.5. 

These values are still great values compared to the previous case on the infinite rod bundle with 

spacer. 

Table 5.5 Complete mesh residuals. 

 𝒌 − 𝜺 𝑨𝑲𝑵 𝒌 − 𝝎 𝑺𝑺𝑻 
continuity 1.2 ∗ 10−3 8.89 ∗ 10−4 
x-velocity 1.13 ∗ 10−5 5.24 ∗ 10−6 
y-velocity 1.12 ∗ 10−5 3.98 ∗ 10−6 
z-velocity 1.5 ∗ 10−5 7.13 ∗ 10−6 

𝑘 2.12 ∗ 10−4 7.76 ∗ 10−5 
Specific dissipation rate 4.8 ∗ 10−4 2.72 ∗ 10−5 

 

The analysis starts from the velocity contours for the 𝑘 − 휀 𝐴𝐾𝑁 and the 𝑘 − 𝜔 𝑆𝑆𝑇 are 

respectively in Fig. 5.54 and Fig. 5.56. The contours are plotted in a plane orthogonal to the main 

flow upstream the spacer at 𝑧 𝐷ℎ = −5⁄  in Fig. 4.7, the same plane position as the previous case. 

The contours are plotted with the cell center values thus is visible in some areas the cells 

discretization. The dimensional velocity values are divided with the bulk velocity value. The 

velocities contorus are similar but the maximum values is greater in the the 𝑘 − 휀 𝐴𝐾𝑁 case, it is 

the same in the infinite rod bundle with spacer, the 𝑘 − 휀 𝐴𝐾𝑁 model reaches a greater velocity 

pick values. 

The turbulent viscosity ratio plots are in Fig. 5.55 and Fig. 5.57 respectively for 𝑘 − 휀 𝐴𝐾𝑁 

and the 𝑘 − 𝜔 𝑆𝑆𝑇. On the upper zone the 𝑘 − 𝜔 𝑆𝑆𝑇 has a contour more symmetric to the rod 

bundle geometry and also greater values compared to the 𝑘 − 휀 𝐴𝐾𝑁. On the bottom part close to 
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the external wall region the contours have both their maxima values and they aren’t symmetric 

probably due to the triangular spacer channels which are in the same positions moving along the z 

coordinate. The 𝑘 − 휀 𝐴𝐾𝑁 on its bottom zone have a maximum range of values higher on the right 

zone. 

 
Fig. 5.54 Dimensionless velocity contour k-epsilon AKN, 

complete mesh. 

 
Fig. 5.55 Turbulent viscosity ratio k-epsilon AKN, 

complete mesh. 

 

 
Fig. 5.56 Dimensionless velocity profile k-omega SST, 

complete mesh. 

 
Fig. 5.57 Turbulent viscosity ratio k-omega SST Pe 1500, 

complete mesh. 

Fig. 5.58 is the frontal rod bundle view with the red lines located to sample the 

thermodynamics and the kinematic quantities. 

The sampling lines are placed in the same position in order to reproduce the contour of the 

infinite rod bundle with spacer analysis in Paragraph 5.2. The geometry used in the in the previous 

paragraph is thus repeated 5 times in order to sample the data from the central rod to the 

peripherals ones. 

On the bottom zone lines ab4 and bc4 are symmetric to lines ab5 and bc5 respectively, in 

order to quantify the asymmetry visible in the contours. On the upper zone lines are all in different 

positions in order to quantify the changes from the central rod to the peripherals ones. 

Lines ab1 and bc1 which belongs to the central rod of the bundle are supposed to give the 

closer results to the in finite rod bundle with spacer. On the following plots the variables values 

from the previous paragraph are reported on the legend using the word ‘ref’. 



Chapter 5.     Results 
________________________________________________________________________________ 

70 
 

 

 
Fig. 5.58 Frontal rod bundle view with the red sampling lines. 

 
 

The velocity profiles are plotted on the bc line, they are visible in Fig. 5.59 and Fig. 5.61. The 

lines bc1, bc2 and bc3 have an identical profile, the bc4 and bc5 lines have also an identical profile 

but it reaches greater values compared to the central rods profiles. Thus the velocity profile 

belonging to the first three rods from the upper zone can be considered independent from the 

external wall. Otherwise there would expected several profiles which converge to the central one. 

The profiles plotted using small empty circles are the infinite rod bundle with spacer cases 

and they are the lowest ones in both cases. 

Fig. 5.60 and Fig. 5.62 are the turbulent viscosity ratio profiles respectively for the  𝑘 −

휀 𝐴𝐾𝑁 and the 𝑘 − 𝜔 𝑆𝑆𝑇 sampled in the same lines. The general trend is similar to the velocity 

one, to greater velocity values correspond greater turbulent viscosity ratio values. The bc4 and bc5 

lines trend are slightly different on both the turbulence models, confirming the contour asymmetry. 
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Fig. 5.59 Dimensionless velocity profiles, complete mesh 

k-epsilon AKN.  

 
Fig. 5.60 Turbulent viscosity ratio profiles, complete 

mesh, k-epsilon AKN. 

 

 
Fig. 5.61 Dimensionless velocity profiles, complete mesh 

k-omega SST. 

 
Fig. 5.62 Turbulent viscosity ratio profiles, complete 

mesh, k-omega SST. 

The 𝑘 − 휀 𝐴𝐾𝑁 temperature contours are in Fig. 5.63 and Fig. 5.64 respectively using the 

turbulent Prandtl number correlation of CHENG and KAYS. The temperature contour is made non-

dimensional using Eq.(5.15). 

 𝜃∗ =
𝑇 − 𝑇𝑎1
𝑞 𝐷ℎ

𝜆 (5.16) 

𝑇𝑎1 is the coldest point of the infinite rod bundle with spacer. To compare the infinite rod 

bundle with the central rod of the current case, the temperature on 𝑎1 in Fig. 5.58 has been set to 

zero value. 

The contours are similar, it is evident the asymmetry between the right bottom side and 

the left bottom side while the upper zone close to the central rod respects the geometry symmetry. 

The spacer grid is asymmetric on the bottom part such as is visible on Fig. 5.53. The coldest zone 

on the contour corresponds to the biggest flow area inside the spacer, thus the profile is clearly 

asymmetric even if the contour outside the spacer is symmetric. Thus the thermal field is not fully 

developed. 

Fig. 5.65 and Fig. 5.66 are the non-dimensional temperature contour respectively for 

CHENG and KAYS using the 𝑘 − 𝜔 𝑆𝑆𝑇 flow turbulence model, considerations are dame to the 𝑘 −

휀 𝐴𝐾𝑁 but contours are on a lower temperature range values. 
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Fig. 5.63 Theta star contour, k-epsilon AKN CHENG, 

complete mesh. 

 
Fig. 5.64 Theta star contour, k-epsilon AKN KAYS, 

complete mesh.  

 

 
Fig. 5.65 Theta star contour k-omega SST CHENG, 

complete mesh. 

 
Fig. 5.66 Theta star contour k-omega SST KAYS, complete 

mesh. 

 

The non-dimensional temperature profiles are plotted on the lines showed in Fig. 5.58. 

Temperature profiles are transformed to non-dimensional ones using Eq.(5.16), thus only the ab1 

and bc1 profiles have positive values, the remaining profiles have negative temperature values. 

In all the cases the on the line ab1 and bc1 the profile have the greatest temperature value 

the profile fit with the infinite rod bundle with spacer case. The wall temperature on 𝑥∗ = 1 is 

approssimatively the 10% higher compared to the infinite rod bundle case. 

Following the temperature profile from the warmest in a1, b1 and c1 and moving toward 

the external wall till arrive to the a4 b4 and c4 profile the curves gradient increases its magnitude. 

The abc1 has a flatter profile confronted with the abc4 and abc5. 

The 𝑘 − 𝜔 𝑆𝑆𝑇with CHENG and KAYS is plotted from Fig. 5.71, to Fig. 5.74 has its abc1 

profile which fits better with the infinite rod bundle case compared to the 𝑘 − 휀 𝐴𝐾𝑁 visible from 

Fig. 5.67 to Fig. 5.70. The total temperature range is also lower and the abc4 profile is closer to the 

abc5 profile compared with the 𝑘 − 휀 𝐴𝐾𝑁 profiles. 
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Fig. 5.67 Theta star k-epsilon AKN CHENG ab lines, 

complete mesh. 

 

 
Fig. 5.68 Theta star k-epsilon AKN KAYS bc lines, 

complete mesh. 

 

 
Fig. 5.69 Theta star k-epsilon AKN KAYS ab lines, 

complete mesh. 

 
Fig. 5.70 Theta star k-epsilon AKN KAYS bc lines, 

complete mesh. 

 

 
Fig. 5.71 Theta star k-omega SST CHENG ab lines, 

complete mesh. 

 
Fig. 5.72 Theta star k-omega SST CHENG bc lines, 

complete mesh. 

 



Chapter 5.     Results 
________________________________________________________________________________ 

74 
 

 
Fig. 5.73 Theta star k-omega SST KAYS ab lines, complete 

mesh. 

 
Fig. 5.74 Theta star k-omega SST KAYS bc lines, complete 

mesh. 

Fig. 5.75 is the dimensionless average wall temperature moving along the flow main 

direction. Upstream the spacer the profile is univocal. Getting closer to the spacer the temperature 

profile grows and shows a maximum on the green line intersection, where are placed the 

thermocouples. Inside the spacer the profiles are different for each models and turbulent Prandtl 

correlations, downstream it there are two separate profiles grouped for the two flow turbulence 

models, KAYS and CHENG with the 𝑘 − 휀 𝐴𝐾𝑁 model are overlapped and the same for the 𝑘 −

𝜔 𝑆𝑆𝑇.  

The difference with the infinite rod bundle with spacer in Fig. 5.30, crossing the spacer in 

this case the temperature profile decreases its magnitude locally. Upstream and downstream the 

profile is univocal. In the 19 rod bundle it has a further increase crossing the spacer and downstream 

the spacer there are two different profiles. 
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Fig. 5.75 Dimensionless wall temperature, complete mesh. 

Fig. 5.76 is the local Nusselt number sampled along the main flow direction using Eq.(4.3). 

The first aspect to note is the general trend which is the opposite compared to the infinite rod 

bundle with spacer in Fig. 5.31 crossing the spacer in this case the Nusselt number decreases its 

magnitude and than increases again while on the infinite rod bundle, the spacer disturbance lead 

to a Nusselt profile increase followed by a decaying trend and stabilization on a undisturbed value.  

In Fig. 5.76 can be note that every Nussel profiles are corrugated probably because of the 

coarse mesh discretization. The Nusselt plotted is an integral quantity, to an average wall 

temperature on the rod line for a determinate axial coordinate corresponds a plane in which is 

computed the bulk temperature. Taking three consecutive value for three consecutive coordinate 

the bulk temperature is different in the three different planes but the wall temperature is the same 

because is computed on the same cells. This is due to the low grid axial discretization. Taking the 

inner spacer zone in the grey area the profile is not corrugated because in that zone the grid 

resolution is fine to catch the flow changes. 

From this figure is clear that the Nussel profile never became flat thus the thermal profile 

in this case is never fully developed. 

 

Fig. 5.76 Local Nusselt number, complete mesh. 

To compare the computed cases with the experimental data it necessary to make 

dimensionless variables using the same forms. The Nusselt has been computed from the bulk 

temperature in the section highlighted by the green line and the wall temperature sampled by the 

thermocouples in the same plane. The wall temperature is sampled in the points highlight with the 

triangles in Fig. 5.77 (a) and reported in the computational domain in Fig. 5.77 (b) according to the 
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symmetry criteria. The same has been done with the red squares to sample the temperature at the 

central channel. 

(a)

 

(b)

 

Fig. 5.77 Thermocouples scheme in (a) reported in the grid used in (b). 

Thus the wall temperature in the Nusselt number in Eq.(4.3)has been computed performing 

an arithmetic mean of the Tw. Results are in Table 5.6. 

The dimensionless temperature has been computed using Eq.(5.17) where 𝑇𝑏 is the bulk 

temperature in the same plane, 𝐷ℎ the hydraulic diameter, 𝑞 the wall heat flux and 𝜆 the laminar 

thermal conductivity. 

 𝜃 =
𝑇 − 𝑇𝑏
𝐷ℎ 𝑞

𝜆 (5.17) 

 

Results are in Table 5.6 with data belonging to the second and third spacers from the 

experiment. Results are different unfortunately there isn’t the possibility to test the simulation 

reliability with a GCI study such as is performed on the previous case in Paragraph 5.2.  

Table 5.6 Nusselt numbers and dimensionless temperature confronted with the experimental data, complete mesh. 

 
𝑘 − 휀𝐴𝐾𝑁  
𝐶𝐻𝐸𝑁𝐺 

𝑘 − 휀𝐴𝐾𝑁  
𝐾𝐴𝑌𝑆 

𝑘 − 𝜔𝑆𝑆𝑇  
𝐶𝐻𝐸𝑁𝐺 

𝑘 − 𝜔𝑆𝑆𝑇  
𝐾𝐴𝑌𝑆 

Experiment 
Sp 2 

Experiment 
Sp 3 

Nu 7.9568532 7.923413 8.650534 8.942569 20.3±2.6 19.8±4.4 
𝜃𝑤,𝑚𝑎𝑥 0.2508588 0.250932 0.220154 0.208721 -0.54 -0.564 

𝜃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 0.0229147 0.02248 0.023288 0.021957 -0.162 -0.109 

 

The mesh is still coarse specially on the 𝑧 𝐷ℎ⁄  direction as is visible in the the Nusselt and 

wall temperature plots a further refinement up to 20 ∗ 106 cells should be tested to improve the 

results. 

 

Tw1=Tw2 

Tw4 

Tw3 

Tw5=Tw7 

Tw6=Tw8 

Tc1 

Tc2=Tc3=Tc4 
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Chapter 6 

6. Conclusions 
The heat transfer in a 19-rod bundle with grid spacers operated with a liquid metal having 

a representative Prandtl number of 0.025 has been numerically analyzed. 

First of all the operation of a rod bundle with grid spacer has been outlined in Section 

(2.1.2), in particular has been studied the spacer details and their discretization on the RANS 

approach in Section(4). Since the grid spacer represent a relevant perturbation on the velocity and 

in particular the temperature field, the applicability of Nusselt correlation developed for fully 

developed thermal field isn’t aviable. 

The analysis has been focused on the spacer geometry study, how it influences the thermal 

field and the liquid metals characteristic heat transfer. The Reynolds analogy which assumes a 

characteristic and constant turbulent Prandtl number close to unity is not valid, the characteristic 

liquid metals physical properties lead to peculiar heat transfer. A crucial point for the RANS analysis 

has been to follow a suitable approach of computing the heat transfer flux. 

Different approaches has been analyzed in Section (3) and assessed, in particular a recently 

proposed 𝑘𝜃 − 휀𝜃 model which is specifically calibrated for liquid metal has been implemented and 

coupled to the solver (Fluent v.14). Besides the equations for the turbulent kinetic energy and its 

dissipation rate, have been solved, in order to locally calculate the turbulent thermal diffusivity. 

Other approaches lead to use two semi empirical correlations to compute the turbulent 

thermal diffusivity the first developed from Cheng and Tak in Section (3.3.1) and the second 

developed from Kays in Section (3.3.2). 

These correlations were coupled with several flow turbulence model already implemented 

in the Fluent code and descripted in Section (3.2). The correlations and the thermal turbulence 

model results are confronted in order to quantify the differences and find the best agreement with 

the experimental data champing performed at the KALLA laboratory at the KIT institute in Karlsruhe 

(Germany). 

The 𝑘𝜃 − 휀𝜃  model and the correlations show very similar results in the infinite rod bundle 

case without grid spacer with fully developed velocity and temperature fields in Section (5.1), in 

this case has been used only the turbulence flow model 𝑘 − 휀 AKN.  

The second case studied is the infinite rod bundle with grid spacer in Section (5.2), in this 

case has been tested the several flow models the results are inside the band of uncertainties 

computed from the experimental data. The 𝑘𝜃 − 휀𝜃 model has low a result trend compared to the 

other correlations. Considering the three Péclet number cases tested the greater Péclet which 

corresponds to 2500 the 𝑘𝜃 − 휀𝜃 give the lowest Nusselt number profile compared to the other 

case and the experimental data out from the uncertainties band. All simulation perfume in this case 

downstream the spacer show a residual perturbation lower than 5% on the measured value in the 

thermocouples plane, the thermal field can be considered fully developed taking in account that 

the Nusselt variation on the same case changing the models is greater than 5%. 
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The third case studied is the complete mesh of a spacer, the cell number amount has been 

bounded from the maximum computational power available. The grid discretization wasn’t 

satisfying for the 𝑘𝜃 − 휀𝜃 model convergence, thus has been used the CHENG and KAYS correlations 

with the 𝑘 − 휀 AKN and 𝑘 − 𝜔 𝑆𝑆𝑇 flow turbulence models. The results don’t match the 

experimental data, they show a not fully developed Nusselt profile, in the upstream measuring 

plane the values are influenced from the spacer presence, the Nusselt number downstream the 

spacer never became fully developed. 

This work has been carried out in collaboration with the KALLA team of the Institute for 

Nuclear Energy Technology IKET at KIT, where the experiments were performed in the THEADES 

loop descripted in Section (2.1). 

The spacer geometry has a great influence on the crossing spacer flow thus need to be 

simulated in detail to achieve reliable results. Future work could simulate the whole test section 

with the 𝑘𝜃 − 휀𝜃 in order to produce detailed results which are not available with the experimental 

tests due to a several complications on the data sampling. 
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Appendix A 
 

User Defined Function to implement the 𝑘𝜃 − 휀𝜃 model from paragraph 3.3.3 into the Fluent code. 

________________________________________________________________________________ 

/*  

 * UDF for the LRN model of Abe-Kondoh-Nagano according to the 

following papers: 

 * [1] Abe K., Kondoh T., Nagano Y. (1994) A new turbulence model for 

predicting fluid flow and heat transfer in separating and reattaching 

flows - I. Flow field calculations, Int. J. Heat Mass Transfer, 

37(1), 139-151 

 * [2] Abe K., Kondoh T., Nagano Y. (1995) A new turbulence model for 

predicting fluid flow and heat transfer in separating and reattaching 

flows - I. Thermal field calculations, Int. J. Heat Mass Transfer, 

38(8), 1467-1481 

 * [3] Manservisi S. Menghini F. (2014) A CFD four parameter heat 

transfer turbulence model for engineering applications in HLM, In. 

Jou. of Heat and Mass Transfer, 69, 312-326 

 * [4] Manservisi S. Menghini F. (2014) Triangular rod bundle 

simulations of a CFD k-e-kt-et heat transfer turbulence model for 

heavy liquid metals, Nuclear engineering and Design 273 (2014) 251-

270 

*/ 

 

/* This is the implementation for ANSYS Fluent of the turbulent 

heat transfer model presented in article [3] and [4].  

 This implementation concerns only the thermal field, you can use 

it with any k-e model. 

 However the constants are setted for Pr=0.025 starting from a 

flow field computed using the turbulence model (AKN) presented in 

article [1].  

 Thus the results obtained using a flow field computed using 

other turbulence models might be not trustworthy.  

 If Pr differs from 0.025 some changes are needed. 

 */ 

  

/* Loading flow specification */ 

#include <udf.h> 

#include <math.h> 

 

/* Turbulence model constants for K_t and TDR_t*/ 

#define SIG_KT 1.4 

#define SIG_DT 1.4 

#define Cp1 0.925 

#define Cp2 0.9 

#define Cd1 1 

#define C_EMME 0.3 

#define C_LAMBDA 0.1 

#define Prt_inf 0.9 

 

typedef enum   

{ 
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 KT = 0, 

 TDR_KT = 1, 

 N_REQUIRED_UDS 

}UDS_Scalars; 

 

typedef enum  

{ 

 TAU_U = 0, 

 TAU_T = 1, 

 P_KT = 2, 

 ALPHA_T = 3, 

 PR_T = 4, 

 P_TKE = 5, 

 SOURCE_Kt = 6, 

 SOURCE_TDR_KT = 7, 

 MUt = 8, 

 tau_lT = 9, 

 N_REQUIRED_UDM 

}UDM_Memory; 

 

#define C_Kt(c,t) C_UDSI(c,t,KT) 

#define C_TDR_KT(c,t) C_UDSI(c,t,TDR_KT) 

#define C_PKT(c,t) C_UDMI(c,t,P_KT) 

 

/******************************************************************** 

    DEFINITIONS USEFUL QUANTITIES 

********************************************************************/ 

 

real ni(cell_t c, Thread *t) 

{ return C_MU_L(c,t)/C_R(c,t); } 

 

real alpha(cell_t c, Thread *t) 

{ return C_K_L(c,t)/(C_R(c,t)*C_CP(c,t)); } 

 

real Pr(cell_t c, Thread *t) 

{ return ni(c,t)/alpha(c,t); }  

 

real Re_d(cell_t c, Thread *t) 

{ return C_WALL_DIST(c,t)*pow(C_D(c,t)*ni(c,t),0.25)/ni(c,t); } 

 

real Re_t(cell_t c, Thread *t) 

{ return SQR(C_K(c,t))/(ni(c,t)*C_D(c,t)); } 

 

real tau_u(cell_t c, Thread *t) 

{ return C_K(c,t)/C_D(c,t); } 

 

real tau_t(cell_t c, Thread *t) 

{ return C_Kt(c,t)/C_TDR_KT(c,t); } 

 

real R(cell_t c, Thread *t) 

{ return tau_t(c,t)/tau_u(c,t); } 

 

real C_PTKE(cell_t c, Thread *t) 

{ return C_UDMI(c,t,MUt)/C_R(c,t) * SQR(C_STRAIN_RATE_MAG(c,t)); } 

 

/******************************************************************** 
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    DAMPING FUNCTIONS 

********************************************************************* 

 

real f_1a(cell_t c, Thread *t) 

{ return (1.0-exp(-0.0714*Re_d(c,t))); } 

 

/*Errata corrige Pr^(0.5) */ 

  real f_2a(cell_t c, Thread *t) 

  { return (1.0-exp(-(0.0526*Re_d(c,t))*sqrt(Pr(c,t)))); } 

   

   

real f1t(cell_t c, Thread *t) 

{ return (f_1a(c,t)*f_2a(c,t)); } 

 

real B1t(cell_t c, Thread *t) 

{ return (tau_u(c,t)*Prt_inf); } 

 

real f_2ao(cell_t c, Thread *t) 

{ return (f1t(c,t)*exp(-4E-6*SQR(Re_t(c,t)))); } 

 

/*Errata corrige Re_t instead of Re_d */ 

  real f_2bo(cell_t c, Thread *t) 

  { return (f1t(c,t)*exp(-2.5E-5*SQR(Re_t(c,t)))); } 

   

// /* Originale Manservisi*/ 

  // real f_2bo(cell_t c, Thread *t) 

  // { return (f1t(c,t)*exp(-2.5E-5*SQR(Re_d(c,t)))); } 

 

real f2tB2t(cell_t c, Thread *t) 

{ return 

tau_u(c,t)*(f_2ao(c,t)*(2.0*R(c,t)/(R(c,t)+C_EMME))+f_2bo(c,t)*sqrt(2

*R(c,t)/Pr(c,t))*(1.3/(sqrt(Pr(c,t))*pow(Re_t(c,t),0.75)))); } 

 

real Cd2(cell_t c, Thread *t) 

{ return SQR(1-exp(-0.1754*Re_d(c,t)))*(1.9*(1-0.3*exp(-

0.0237*SQR(Re_t(c,t))))-1); } 

 

 

/******************************************************************** 

    DEFINE UDS SOURCES 

********************************************************************* 

 

DEFINE_SOURCE(KT_src,c,t,dS,eqn) 

{ 

 real source = C_R(c,t) * (C_PKT(c,t) - C_TDR_KT(c,t)); 

 C_UDMI(c,t,SOURCE_Kt)=source; 

 dS[eqn] = 0; 

 return source; 

} 

 

 

DEFINE_SOURCE(TDR_KT_src_mans,c,t,dS,eqn) 

{  

 real source1 = (C_TDR_KT(c,t)/C_Kt(c,t))*(Cp1*C_PKT(c,t)-

Cd1*C_TDR_KT(c,t)); 
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 real source2 = (C_TDR_KT(c,t)/C_K(c,t))*(Cp2*C_PTKE(c,t)-

Cd2(c,t)*C_D(c,t)); 

 real source = C_R(c,t)*(source1 + source2); 

 C_UDMI(c,t,SOURCE_TDR_KT)=source; 

 dS[eqn] = C_R(c,t)*((Cp2*C_PTKE(c,t)-

Cd2(c,t)*C_D(c,t))/C_K(c,t)+(Cp1*C_PKT(c,t))/C_Kt(c,t)-

2.0*C_TDR_KT(c,t)*(Cd1/C_Kt(c,t))); 

 return source; 

} 

 

 

/******************************************************************** 

   DEFINE UDS FLUXES AND DIFFUSIVITY  

 

********************************************************************* 

DEFINE_DIFFUSIVITY(keMANS_diffusivity,c,t,eqn) 

{ 

 switch(eqn) 

 { 

  case KT:  return C_R(c,t)*(C_UDMI(c,t,ALPHA_T)/SIG_KT + 

alpha(c,t)); break; 

  case TDR_KT:  return C_R(c,t)*(C_UDMI(c,t,ALPHA_T)/SIG_DT 

+ alpha(c,t)); break; 

  default: return 0;  

 } 

} 

   

DEFINE_UDS_FLUX(UDS_flux_keMANS, f, t, eqn) 

{  

 switch(eqn) 

  { 

  case KT: return F_FLUX(f,t); break; 

  case TDR_KT: return F_FLUX(f,t); break; 

  default: return 0;  

  } 

} 

 

/******************************************************************* 

    ADJUST FUNCTIONS 

******************************************************************** 

   

DEFINE_ADJUST(adjust_keMANS,d) 

{ 

 Thread *t; 

 cell_t c; 

 real tau_lu, tau_lt; 

 real term1, term2, term3; 

  

 thread_loop_c(t,d) 

  if (FLUID_THREAD_P(t)) 

  { 

   begin_c_loop(c,t) 

    { 

     C_UDMI(c,t,TAU_U) = tau_u(c,t); 

     C_UDMI(c,t,TAU_T) = tau_t(c,t); 

     tau_lt = f1t(c,t)*B1t(c,t) + f2tB2t(c,t); 
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     C_UDMI(c,t,tau_lT)=tau_lt; 

     C_UDMI(c,t,ALPHA_T) = 

C_LAMBDA*C_K(c,t)*tau_lt; 

     C_UDMI(c,t,P_TKE) = C_PTKE(c,t); 

      

     if ( NULL != THREAD_STORAGE(t,SV_T_G) ) 

      { C_UDMI(c,t,P_KT) = 

C_UDMI(c,t,ALPHA_T) * NV_MAG2(C_T_G(c,t)); } 

     else 

     { 

      Message("\nAllocated temperature 

gradients!\n"); 

      MD_Alloc_Storage_Vars(d, SV_T_RG, 

SV_T_G, SV_NULL); 

      C_UDMI(c,t,P_KT) = 

C_UDMI(c,t,ALPHA_T) * NV_MAG2(C_T_G(c,t)); 

     } 

     C_UDMI(c,t,PR_T) = 

C_UDMI(c,t,MUt)/C_R(c,t)/C_UDMI(c,t,ALPHA_T); 

    } 

   end_c_loop(c,t) 

   } 

}/* end of function */ 

 

 

/******************************************************************** 

    DEFINE TURBULENT PRANDTL NUMBER 

********************************************************************* 

 

DEFINE_PRANDTL_T(pr_t_MANS,c,t) 

{ return C_UDMI(c,t,PR_T); } 

 

 

/******************************************************************** 

    BOUNDARY CONDITIONS 

********************************************************************* 

 

DEFINE_PROFILE(TDR_KT_BC_CHF, t, i) 

{ 

face_t f; 

cell_t c0; 

Thread *t0; 

  

begin_f_loop(f,t) 

 { 

  t0 = THREAD_T0(t); 

  c0 = F_C0(f,t); 

  F_PROFILE(f,t,i) = 

2.0*alpha(c0,t0)*C_Kt(c0,t0)/SQR(C_WALL_DIST(c0,t0)); 

 } 

end_f_loop(f,t) 

} /* end of function */ 

 

 

/******************************************************************** 

     DEFINE ON DEMAND FUNCTIONS 
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********************************************************************* 

 

DEFINE_ON_DEMAND(check_UDS_UDM) 

{ 

/* Domain *d = Get_Domain(1);*/ 

 check_uds_udm(); 

}/* end of function */ 

  

  

/* The thermal field must be computed performing few iteration with 

a model already  

 implemented in Fluent. Then this function is needed to 

initialise all the quantities  

 in order to perform the first iteration. */ 

  

DEFINE_ON_DEMAND(interpolation_energy) 

{  

Domain *d = Get_Domain(1); 

Thread *t; 

cell_t c; 

real tau_lt; 

real term1, term2; 

 

thread_loop_c(t,d) 

 {  

  if (FLUID_THREAD_P(t)) 

  { begin_c_loop(c,t) 

   {  

    C_UDSI(c,t,KT) = C_K(c,t);  

    C_UDSI(c,t,TDR_KT)=C_D(c,t); 

    C_UDMI(c,t,TAU_U) = tau_u(c,t); 

    C_UDMI(c,t,TAU_T) = tau_t(c,t); 

    C_UDMI(c,t,ALPHA_T) = 

C_R(c,t)*C_UDMI(c,t,MUt)/0.85;  

    if ( NULL != THREAD_STORAGE(t,SV_T_G) ) 

    {  C_UDMI(c,t,P_KT) = C_UDMI(c,t,ALPHA_T) * 

NV_MAG2(C_T_G(c,t)); } 

    else 

    { 

     Message("\nAllocated temperature 

gradients!\n"); 

     MD_Alloc_Storage_Vars(d, SV_T_RG, SV_T_G, 

SV_NULL); 

     C_UDMI(c,t,P_KT) = C_UDMI(c,t,ALPHA_T) * 

NV_MAG2(C_T_G(c,t)); 

     

    }  

     C_UDMI(c,t,PR_T) = 

C_UDMI(c,t,MUt)/C_R(c,t)/C_UDMI(c,t,ALPHA_T); 

   } 

  end_c_loop(c,t) 

  } 

 } /* end of thread_loop_c */ 

  

 Message("\nInterpolation successfully executed\n"); 

} /* end of function */ 
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DEFINE_ON_DEMAND(instruction) 

{ 

 Message("\nSome iteration with the energy equation enabled using 

Prt=constant must be performed\n"); 

 Message("\nIf the flow field has been computed using UDS unload 

this library and read first patchingTKEtdr.jou\n"); 

 Message("\nIn any case you must define %d UDM and read the file 

patchingMUT.jou that patch the values of the turbulent viscosity in 

udm-8 \n",N_REQUIRED_UDM); 

 Message("\nYou must define %d UDS", N_REQUIRED_UDS); 

 Message("\nDefine->user defined scalar->Flux-function: 

UDS_flux_keMANS\n");  

 Message("\nDefine->function Hooks: adjust_keMANS\n"); 

 Message("\nIf you start from the V2F model implemented in fluent 

you must change the turbulence model (for example with a k-e one 

because the v2f model doesn´t allow you to set a user-defined Energy 

Pr Number\n"); 

 Message("\nModels->Energy Prandtl Number :pr_t_MANS\n");  

 Message("\nMaterials->UDS diffusivity->user-

defined:keMANS_diffusivity\n");   

 Message("\nCell-zone-condition->fluid->enable Sources Terms-> 

set UDS sources: (KT_src, TDR_KT_src)\n"); 

 Message("\nDefine->User-Defined->Execute-on-Demand-> 

interpolation_energy\n"); 

 Message("\nBoundary conditions-> wall-> UDS-> specified value 

(KT=0, TDR_KT=TDR_KT_BC_CHF)\n"); 

 Message("\nBe careful the boundary conditions for the UDS at the 

wall must be set to 'Specified Flux=0' before doing the 

initialization.\nThey must be turned in to the right value after 

performing the initialization\n"); 

 Message("\nYou can start from a solution of the thermal field 

computed using the AKNT model (article [2]). In this case if UDS are 

used to compute Kt and TDR-Kt no interpolation is needed. The 

convergence is faster\n"); 

} 

/* Setting the boundary condition is always the last thing to do 

because the UDS fields are initialized to values that  

 do not fit the new boundary condition. Thus if the boundary 

condition are setted before initialising the UDS fields 

 a "Segmentation Fault" error will occur. *\ 

 

 

 

 

/******************************************************************** 

**                       AUXILIARY FUNCTIONS         ** 

********************************************************************* 

 

void check_uds_udm(void) 

{ 

/* Check for minimum defined UDS and UDM */ 

 

 if (n_uds < N_REQUIRED_UDS || n_udm < N_REQUIRED_UDM) 

 { 
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   Message("nERROR: You must define at least %d UDS and 

%d UDM\n", N_REQUIRED_UDS, N_REQUIRED_UDM); 

   Internal_Error("Not enough UDSs defined\n"); 

 } 

 else 

 { Message("\nCheck completed succesfully.\nEnough UDS and/or UDM 

allocated!\n"); } 

 

} /* end of check_uds_udm */ 
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Appendix B 
 

User Defined Function to implement the Kays correlation in Paragraph 3.3.2 into the Fluent code. 

________________________________________________________________________________ 

#include <udf.h> 

#include <math.h> 

 

 

real ni(cell_t c, Thread *t) 

{ return C_MU_L(c,t)/C_R(c,t); } 

 

real alpha(cell_t c, Thread *t) 

{ return C_K_L(c,t)/(C_R(c,t)*C_CP(c,t)); } 

 

real Pr(cell_t c, Thread *t) 

{ return ni(c,t)/alpha(c,t); }  

 

DEFINE_PRANDTL_T(pr_t_KAYS,c,t) 

{ return 0.85+0.7/(Pr(c,t)*C_MU_T(c,t)/C_MU_L(c,t)); } 
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Appendix C 
 

Matlab script to implement the GCI study in Pragraph 5.2.1 

________________________________________________________________________________ 

% NB vectors must be already interpolated 

 

function [a,b,c,d,e,f] = GCI(fi_3, fi_2, fi_1, n3, n2, n1, vol) 

 

% a = extraapolated values 

%b = GCI_2_1_fine all nodes 

%c = percentual of converged nodes 

%d = percentual of oscillatory nodes 

 

%f1 f2 f3 variables 

%n1 n2 n3 number of nodes 

 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% GCI SCRIPT %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% volmume mesh 

vol_mesh = vol; 

 

% number of cells 

n_cell_grid_3 = n3; 

n_cell_grid_2 = n2; 

n_cell_grid_1 = n1; 

 

h_grid_3 = (vol_mesh / n_cell_grid_3)^(1/3); 

h_grid_2 = (vol_mesh / n_cell_grid_2)^(1/3); 

h_grid_1 = (vol_mesh / n_cell_grid_1)^(1/3); 

 

r_2_1 = h_grid_2 / h_grid_1; 

r_3_2 = h_grid_3 / h_grid_2; 

 

 

epsilon_3_2 = (fi_3 - fi_2) ; 

epsilon_2_1 = (fi_2 - fi_1) ; 

 

 

 

nn = size(epsilon_3_2); 

n = max(nn); 

 

 

%used vectors 

os_n = 0; 

conv_n=0; 

r_n=0; 
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os_nodes = zeros(1,n); 

GCI_2_1_fine_os = zeros(1,n); 

GCI_3_2_coarse_os = zeros(1,n); 

GCI_2_1_fine_n = zeros(1,n); 

GCI_3_2_coarse_n = zeros(1,n); 

 

p = zeros(1,n); 

iii=1; 

 

% minimum value for epsilon 

err = 1e-40; 

 

 

 

% if os_nodes = 1 solution is oscillation if is = 2 epsilon32 or 

epsilon 21 

% are lower than err 

 

 

 

for i = 1:n 

    if ( abs(epsilon_3_2(i)) > err & abs(epsilon_2_1(i)) > err) 

         

    

        s(i) = 1* sign(epsilon_3_2(i) / epsilon_2_1(i)); 

        

     

    fun = @(pp) (-pp + 1 / log(r_2_1) * abs(log(abs(epsilon_3_2(i) / 

epsilon_2_1(i)) + log((r_2_1^(pp) - s(i)) / (r_3_2^(pp) - s(i)))))); 

    pp0 = 0.1; 

     

    xx = fzero(fun , pp0); 

     

    %bound 1 < xx < 2  

    if (xx < 1) 

        xx = 1; 

    end 

    if (xx > 2) 

        xx = 2;  

    end 

     

    p(i) = xx; 

    

     

    fi_2_1_ext(i) = (r_2_1^p(i) .* fi_1(i) - fi_2(i)) ./ (r_2_1^p(i) 

- 1); 

    fi_3_2_ext(i) = (r_3_2^p(i) .* fi_2(i) - fi_3(i)) ./ (r_3_2^p(i) 

- 1); 

     

    e_2_1_a(i) = abs((fi_1(i) - fi_2(i)) ./ fi_1(i)); 

    e_3_2_a(i) = abs((fi_2(i) - fi_3(i)) ./ fi_2(i)); 

     

    e_2_1_ext(i) = abs((fi_2_1_ext(i) - fi_1(i)) ./ fi_2_1_ext(i)); 

    e_3_2_ext(i) = abs((fi_3_2_ext(i) - fi_2(i)) ./ fi_3_2_ext(i)); 

     

    GCI_2_1_fine(i) = 1.25 .* e_2_1_a(i) ./ (r_2_1^p(i) - 1); 
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    GCI_3_2_coarse(i) = 1.25 .* e_3_2_a(i) ./ (r_3_2^p(i) - 1); 

     

    else 

      GCI_2_1_fine(i) = 0; 

      GCI_3_2_coarse(i) = 0; 

      

    end 

     

   

     

    C0 = 1e-30; 

    max_abs = max(max(abs([fi_1, fi_2, fi_3]))); 

     

    %richarrdson node index == 1 

    %extrapolated curve only bild with richardson and converged nodes 

    %oscillatory are set to 0 value 

    if ((fi_1(i)/max_abs - fi_2(i)/max_abs) .* (fi_2(i)/max_abs  - 

fi_3(i)/max_abs) > C0) 

    os_nodes(i) = 1; 

    extt(i) = fi_2_1_ext(i); 

    pp(iii)=p(i); 

    iii=iii+1; 

    r_n = r_n + 1; 

    end 

    %converged node index == 2 

    if(abs((fi_1(i)/max_abs - fi_2(i)/max_abs) .* (fi_2(i)/max_abs  - 

fi_3(i)/max_abs)) < C0) 

    os_nodes(i) = 2; 

    extt(i)=fi_1(i); 

    conv_n = conv_n + 1; 

    end 

     

    %oscillatory node index == 3 

    if ((fi_1(i)/max_abs - fi_2(i)/max_abs) .* (fi_2(i)/max_abs  - 

fi_3(i)/max_abs) < -C0) 

        os_nodes(i) = 3; 

      os_n = os_n + 1; 

      extt(i)=0; 

    end 

end 

 

GCI_2_1_fine; 

GCI_3_2_coarse;     

GCI_2_1_fine_os; 

GCI_3_2_coarse_os; 

GCI_2_1_fine_n; 

GCI_3_2_coarse_n; 

os_nodes; 

 

p; 

 

r_2_1; 

r_3_2; 

 

 

epsilon_2_1; 
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epsilon_3_2; 

 

a = extt; 

b = GCI_2_1_fine; 

c = conv_n / n * 100; 

d = os_n / n * 100; 

e = pp; 

f = r_n / n * 100; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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