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Abstract

Internet of Things (IoT) is experiencing a huge hype these days, thanks to the increasing
capabilities of embedded devices that enable their adoption in new fields of application
(e.g. Wireless Sensor Networks, Connected Cars, Health Care, etc.). This is leading to
an increasing adoption of multi-tenancy solutions of Cloud Computing that analyze and
store data produced by embedded devices. To tackle latency and security requirements
of these applications, Cloud Computing needs to extends its boundaries and to move
closer to the physical devices. This led to the adoption of Fog Computing [1], where part
of the computation is done near the embedded device by the so called "fog nodes".

In this context, power consumption is a major concern as fog nodes can be battery
powered and constrained by the environment in which they are deployed. Moreover, there
is the need to assure some requirements on the performances of the hosted applications,
specified in the Service Level Agreements (SLA).

A fine-grain control mechanism is then needed to cap power consumption, still guar-
anteeing the SLA of the running applications.

In this thesis, we propose DockerCap, a software-level power capping orchestrator
for Docker containers that follows an Observe-Decide-Act (ODA) loop structure: this
allows us to quickly react to changes that impact the power consumption by capping
the resources of the containers at run-time, to ensure the desired power cap. Moreover,
we implemented a policy-based system that, depending on the chosen policy, provides a
fine-grain tuning on the performances of the running containers through resource man-
agement.

We showed how we are able to obtain results that are comparable with the state of
the art power capping solution RAPL provided by Intel, in terms of power consumption,
even if the precision of our software approach is not as high as the one of a hardware
mechanism. Still, we are able to tune the performances of the containers and even
guarantee the constraints of the SLA: this is something that a completely hardware
solution cannot handle.

The study, implementation and validation have been developed within the NECSTLab
at Politecnico di Milano.
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Sommario

Negli ultimi anni, un gran numero di dispositivi viene continuamente connesso a Inter-
net, introducendo il concetto di Internet of Things (IoT). L’IoT permette ai dispositivi
fisici di scambiare informazioni attraverso la rete, per l’acquisizione e lo scambio di dati.
Oltretutto, questi dispositivi non si limitano ad osservare l’ambiente, ma possono intera-
gire con esso tramite attuatori che, insieme alla rete e al software, permettono ai sistemi
informatici di interagire col mondo fisico.

La diffusione di dispositivi IoT ha portato alla produzione di una grande quantità
di dati, che deve essere processata e memorizzata, ma i singoli dispositivi non sono
in grado dare queste funzionalità, per limiti in capacità computazionali e energetici.
Questo ha portato all’adozione del Cloud Computing [2] come soluzione per processare
e memorizzare i dati prodotti dai dispositivi IoT. Nel Cloud, le risorse computazionali
come CPU e lo storage sono fornite agli utenti come servizi utilizzabili pagando in base a
quante risorse vengono utilizzate. Il Cloud fornisce una valida soluzione al problema della
gestione dei dati dell’IoT, ma non è abbastanza in contesti dove la latenza e la sicurezza
sono aspetti critici. Per queste necessità, è stato introdotto un nuovo paradigma, il Fog
Computing [1], che estende il Cloud portando la computazione vicino al dispositivo fisico,
tramite specifiche unità, chiamate nodi fog.

L’introduzione di questi nodi porta a delle nuove problematiche da gestire. Prima
di tutto, i nodi fog hanno dei limiti sul consumo di potenza, perchè possono essere
alimentati a batteria, oppure possono risiedere in ambienti domestici, dove non si ha
grande disponibilità energetica. Questo sottolinea la necessità di utilizzare tecniche di
power capping [3] per limitare il consumo di potenza in un singolo nodo. Un’ altra
problematica è la portabilità della computazione tra il Fog e il Cloud. I nodi fog possono
essere molto differenti tra di loro, ma la computazione deve essere portabile tra i vari nodi
Fog e il Cloud. L’adozione di tecniche di containerizzazione è una soluzione interessante,
considerando che un singolo container contiene l’applicazione con tutte le sue dipendenze,
ed è indipendente dal contesto in cui l’applicazione si trova. Oltretutto, il fornitore del
servizio Cloud deve soddisfare i Service Level Agreements (SLA) stipulati con chi utilizza
il servizio, che si traduce nel garantire dei requisiti di prestazioni delle applicazioni,
definiti come Service Level Objectives (SLO). Nel nostro contesto, questo è un aspetto
importante da considerare, perchè un sistema che esegue power capping senza considerare
le prestazioni non è interessante in un contesto multi-tenant.

In questo contesto proponiamo DockerCap, un orchestrator che limita il consumo di
potenza della macchina tramite una gestione delle risorse a grana fine per poter con-
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trollare le prestazioni di container Docker, soddisfacendo i loro SLO. È basato su un
approccio noto, utilizzato nei sistemi di controllo autonomi: il controllo Observe-Decide-
Act (ODA). Utilizzando questo paradigma, è possibile agire rapidamente sul sistema per
raggiungere un obbiettivo specifico, nel nostro caso il rispettare i vincoli di potenza della
macchina. Inoltre, l’orchestrator è basato su di un sistema di politiche per gestire le
prestazioni dei containers mentre vengono soddisfatti i vincoli di potenza.

DockerCap è strutturato in tre componenti principali: l’Observe component, il Decide
component e l’Act component. L’Observe component si occupa di acquisire il consumo
di potenza della macchina e lo stato dei container Docker attivi. Il Decide component si
occupa di decidere la nuova allocazione di risorse dei container, per soddisfare i vincoli
di potenza e di prestazioni, combinando una logica di controllo e un sistema di politiche.
Infine l’Act component gestisce il cambiamento effettivo delle risorse dei singoli container
tramite Linux Control Groups [4], basandosi sulle allocazioni calcolate durante la fase di
decisione. Questi componenti comunicano fra di loro tramite code condivise.

Durante la fase di decisione, bisogna produrre la nuova allocazione di risorse che
soddisfi i vari vincoli dividendo il problema in due sotto problemi. Inizialmente, troviamo
l’allocazione di risorse globale della macchina che ci permetta di soddisfare i vincoli di
potenza. Per far questo, abbiamo implementato un controllore che, dato il consumo
di potenza della macchina e il cap di potenza da garantire, dia il valore delle risorse
che deve essere allocato in totale. Attualmente, come risorsa supportiamo la quota
di CPU utilizzabile dai processi nel periodo di tempo. Dopo aver ottenuto il valore
totale assegnabile delle risorse, bisogna dividerlo per poter assegnare a ciascun container
una specifica quantità di risorse. A seconda di quante risorse vengono assegnate a un
singolo container, le sue prestazioni cambiano. Così, abbiamo implementato un sistema
basato su delle politiche di partizionamento che dal valore totale assegnabile delle risorse
produca un partizionamento a seconda della politica scelta. Ogni politica implementa
un partizionamento che ha un obbiettivo specifico. Attualmente abbiamo sviluppato
tre politiche diverse: la prima, suddivide in egual modo le risorse tra i container attivi,
senza così considerare le loro prestazioni; la seconda, invece, assegna le risorse basandosi
su una priorità assegnata ai container; infine, l’ultima politica proposta ha l’obbiettivo
di assegnare la quantità minima di risorse necessarie al container per soddisfare i suoi
requisiti di performance, seguendo un ordinamento basato sulla priorità data ai container.

Per validare il nostro approccio, ci basiamo su due metriche differenti: la prima me-
trica è la precisione del sistema di capping, in termini di valore medio di potenza e
oscillazioni; la seconda metrica riguarda le prestazioni dei container, in termini di tempo
di completamento dell’esecuzione, sotto limiti di potenza. Abbiamo analizzato questi due
metriche comparando le diverse politiche del nostro sistema con lo stato dell’arte del po-
wer capping RAPL di Intel, l’interfaccia hardware disponibile dalla seconda generazione
di processori con architettura SandyBridge [5]. RAPL opera direttamente sull’hardware,
cambiando il voltaggio e la frequenza dell’intero socket per soddisfare i vincoli di consumo
di potenza.
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I risultati ottenuti mostrano come il nostro sistema riesca a soddisfare il cap di poten-
za, ma il consumo di potenza non è stabile come RAPL, come ci aspettavamo. Questo
perchè RAPL è direttamente implementato nell’hardware del processore, rispetto alla
nostra gestione delle risorse a livello software, che è molto più lenta. Invece, per quanto
riguarda le prestazioni, DockerCap ottiene risultati migliori di RAPL con valori di po-
wer cap bassi, riuscendo inoltre a soddisfare i SLO imposto ai container e rispettando
comunque il limite di potenza. Tutto questo scegliendo la politica di partizionamento di
risorse più opportuna.

Dai risultati ottenuti, consideriamo il nostro lavoro un ottimo punto di partenza verso
sistemi power capping in contesti multi-tenant. Sicuramente, questo sistema dovrà essere
migliorato sotto vari aspetti. In termini di precisione, con l’adozione di tecniche ibride
hardware-software e modelli di potenza più precisi. Per quanto riguarda le prestazioni,
una valida soluzione è il poter osservare online le prestazioni dei container per prendere
decisioni basandosi sulle prestazioni attuali dei workload.

Il resto della tesi è organizzato come segue:

• il Capitolo 1 fornisce un’introduzione generale al nostro lavoro;

• il Capitolo 2 presentiamo lo stato dell’arte e le limitazioni degli attuali lavori nel
settore;

• il Capitolo 3 definisce il problema affrontato nel lavoro di tesi;

• il Capitolo 4 tratta la metodologia su cui questo lavoro si basa;

• il Capitolo 5 descrive l’aspetto tecnico del sistema sviluppato;

• il Capitolo 6 presenta il setup sperimentale adottato durante gli esperimenti e
discute i risultati sperimentali ottenuti all’interno del lavoro di tesi;

• il Capitolo 7 riporta le conclusioni riguardo al lavoro svolto e diamo delle direzioni
future per estendere il lavoro. �
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Chapter 1

Introduction

Nowadays, a large number of physical devices are being connected to the Internet at
a still growing rate, introducing the concept of the Internet of Things (IoT). The IoT
enables the physical devices that are connected in a network to exchange and acquire
data, by adopting embedded electronic devices. Moreover, those devices don’t stop to
observe the environment through equipped sensors, but they can act on the physical
world through the adoption of actuators that, merged with software and network con-
nectivity, enable computer systems to be better integrate with the physical world. For
example, thermostats and Heating, Ventilation, and Air Conditioning (HVAC) systems
are integrated in the domestic and workplace environments; this gives to smart home
systems the capability of controlling and monitoring the thermal behaviors of the living
environment.

This new technology has lead to a great diffusion of applications in different fields
[6, 7, 8], mostly due to a more ease and accessible adoption of IoT devices all over
the world. Even though the trend is surely positive, this evinces a major problem for
this infrastructure: this will provide a massive amount of data from sensors; those data
need to be stored and processed somehow, but the single IoT device cannot handle such
tasks, mainly for two reasons. First, an IoT device does not have enough computational
capabilities to perform the operations in which we are interested. Then, those devices
can be battery powered, thus performing complex operation takes them to consume all
the available energy in no time, providing low availability the whole ecosystem.

Those needs led to the adoption of Cloud Computing [2] as the solution for storing and
processing the data produces by IoT. With the success of the Internet and the progresses
made in processing and storage technologies, this paradigm emerges by providing a new
computing model. In the Cloud Computing, the resources like CPU and storage are
provided to the user through the Internet as general utilities that can be exploited by
paying the usage of those resources.

Cloud Computing surely provide a valid solution to the problem of storing and pro-
cessing in the IoT, but it is not enough in some contexts. For instance, in latency-sensitive
applications there is the need of taking the computation as close as possible to the device
due to their high latency requirements, and it is not possible with the Cloud, where the
physical machines that perform the computation are in a not-specified data center some-



Figure 1.1: The Internet of Things and Fog Computing architecture [1]

where in the world. Furthermore, in security-critical application, the communication
between the embedded devices and the Cloud must be secure.

Hence, a new paradigm emerges to handle those issues: Fog Computing [1] targets
low-latency and security-critical application by pushing the computation "at the edge
of the Cloud", on specific computational units, called fog nodes, that reside near the
embedded devices; from an architectural perspective, this paradigm adds an additional
layer between the data center (i.e. the Cloud) and the physical device. However, both
Cloud and Fog computing introduce some critical aspects that need to be considered.

First, a significant issue for large scale distributed systems is power management.
Globally, for the the increasing adoption of technologies all over the world has lead to a
still growing energy demand: from 1990 to 2014, the power consumption went from 10
TWh to 20 TWh [9]; furthermore, future predictions estimate that it is still increasing
[10]. To achieve a long-term sustainability, the European Commission stated that energy
is a major concern for a sustainable future [11].

Furthermore, power consumption is an issue even considering small scale systems, the
ones that operate in a Complementary metal oxide semiconductor (CMOS) granularity.
All the infrastructures that exploit processors are constrained by dark silicon [12]: today
hardware is under the Leakage Limited Regime [13], so as the number of CMOS in a
single chip increases [14], the threshold voltage of the CMOS cannot scale proportionally;
then, due to power and thermal issues, with the same power budget the fraction of the
chip that can runs at full speed (i.e. utilization) is decreasing at each generation of
processors [12, 15]. Those issues influence both the design and the utilization of the
hardware.

In our context, both Cloud and Fog computing introduce their specific issues due to
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power consumption.
With the introduction of Cloud Computing, it was needed a great amount of com-

putational resources to support the demand of the clients. This has lead the building
of data centers that requires large spaces and a massive amount of servers. In 2010,
Google was hosting 900000 servers, nowadays it is estimated to be more that 1.5 millions
[16]. With this great number of machines, it is not trivial to provide energy to the whole
infrastructure, both in term of the costs and availability [17]. Thus, there is the necessity
of guaranteeing that the power consumption of the whole infrastructure will stay under
a specified cap.

Moreover, in the context of Fog Computing, there are other power-related issues that
needs to be tackled. Fog nodes have more computational capabilities that traditional
embedded devices to host all the computations needed by the specific IoT infrastructure,
but that does not mean that those nodes are not power constrained. Due to the proximity
of the fog nodes to the embedded devices, it is likely that they may be battery-powered
or deployed in a domestic environment, where you cannot dispose of a great amount
of energy. Thus, we need to manage the power consumption of fog nodes to guarantee
high availability of the nodes and the performance objectives of the IoT applications.
Furthermore, the possibility of dynamically capping the power demand of the nodes can
provide interesting savings, knowing that we are moving towards a context in which
energy is provided through smart grids, where the energy cost may vary during the day
[18].

To tackle those issues, research is moving towards power management techniques that
operate directly on the power consumption of a computational units to achieve specific
goals. Specifically, we are interested in guaranteeing that a computing system does not
exceed a specific quantity of power consumption. This is the aim of a specific family of
power management techniques, called power capping [3], where the knobs of the system
are tuned to achieve the desired power cap. Moreover, by exploiting power capping it is
possible to obtain other interesting properties: in a data center it is possible to achieve a
better machine redundancy by managing the capping in such a way that the global power
consumption of the cluster remains under the cap; in addition, it is possible to boost the
performances of specific servers in a cluster, for example the ones that hosts the most
performance-critical applications, by orchestrating the power cap of all the nodes while
remaining under the power cap of the cluster.

Then, another critical issue that need to be tackled is the portability of the compu-
tation across the Fog and the Cloud. One of the major characteristic of Fog Computing
is that fog nodes are heterogeneous by design [1], due to the distinct form factors and
environments in which they can be deployed. This is an issue considering that the Cloud
needs to exploit the Fog as an extension of its infrastructure at the edge of the network,
because if every fog node has its own software stack, it becomes difficult to maintain
applications that need to operate on different environments. Thus, if we need to run
applications on both the Cloud and the Fog, we need an elastic way of deploying portable
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application from one environment to the other, regardless the underlying architecture.
Moreover, we need to consider that Cloud computing operates in a multi-tenancy con-
text, where applications run independently from one to the others, while sharing the
same resources.

In this context, containerization techniques are becoming an interesting and still
growing trend towards an easy and efficient deployment in a multi tenant environment,
thanks to their characteristic of isolation and resource management. By exploiting con-
tainers, it is possible to hold an application with all its specific software dependencies
in a single entity and then move it from one environment to the other, without caring
about being in a specific context.

On the other hand, there is an important aspect that needs to be highlighted when
we are considering services hosted in the Cloud. The Cloud provider needs to satisfy the
Service level agreements (SLA) stipulated with the client by achieving some performance
levels, defined as Service level objectives (SLO). For example, a web server needs to
maintain a certain number of requests served per seconds and a database needs to provide
a specific number of queries per second. Indeed, those requirements need to be valid in
the Cloud, and consequently in the Fog; not satisfy them means a loss of profit for the
provider. Moreover, those SLA may change during time. Thus, there is the need of a fine-
grained control system that can manage the single application to satisfy the performance
requirements of the latter.

In our context, this is a key aspect that needs to be tackled, because a power capping
that does not consider the performances of the running applications is not an interesting
solution in a multi-tenant context.

A performance-aware control system that performs power capping is then needed to
handle all the described issues. It needs to manage performance and resource allocation
to satisfy the needs of different tenants.

To tackle these problems, we exploit a well known approach used for autonomic
control system: the Observe-Decide-Act (ODA) control loop [19]. By adopting this
paradigm, it is possible to rapidly change the system to achieve a specific outcome. In
our case, we are interested in a system that given the current power consumption of
the machine is able to automatically tune the resources assigned to each container to
meet the power constraints. In this context, we propose DockerCap, a power capping
orchestrator for Docker containers that follow an ODA control loops and a policy-based
system to tune the performances of the containers while satisfying the power constraint.

DockerCap is structured as a composition of three major components: the Observe
Component fetches the current power consumption of the machine and the state of the
running Docker containers; the Decide Component chooses the new allocation of resources
for the container by leveraging a combined control and policy based approach; finally, the
Act component takes care of performing the physical assignment of the resources to the
container through Linux Control Groups [4] based on the decision took in the Decision

4



step.
With the control logic, we obtain a capping on the global allocation of the resources

that will guarantee the constraints on the power consumption. Moreover, with the intro-
duced policy system it is possible to partition the global allocation of resources, calculated
by the control logic, across all the running containers. The choice of a specific partition
policy strongly influences the performance of the container; thus, depending on the per-
formance needs, it is possible to choose the preferred partition policy. To highlight the
generality of the proposed approach, we develop three distinct policies that focus on
distinct outcomes: the first proposed policy splits the resources uniformly across all the
containers, without caring about the performances; the second policy balances the re-
source assignment by relying on a priority assigned to each container; the last proposed
policy instead, allocates the right amount of resources that are needed to satisfy the SLO
of the the containers, following an order of assignment based on the priority associated.

The performance of DockerCap is evaluated in terms of two different metrics: the pre-
cision of the capping, and the performances of the containers under power constraints.
We consider the precision of the capping as how near the power consumption is with
respect to the desired cap. The obtained results are then compared with the state of the
art solution Running Average Power Limit (RAPL) [20].

This thesis is organized as follows:

• in Chapter 2, we present the state of the art and the limitations of the current
works in the field;

• in Chapter 3, we discuss the problem that DockerCap aims to tackle;

• in Chapter 4 and Chapter 5, we give a high level description and a technical spe-
cification of DockerCap;

• in Chapter 6, we present the experimental setup and discuss the results of Docker-
Cap

• Finally in Chapter 7, we draw our conclusions and we provide an insight on future
directions of this work. �
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Chapter 2

State of the art

From 1990 until today the worldwide power consumption doubled from 10k TWh up to
20k TWh; future prediction estimates a consumption of 40k TWh by 2040 [3]. Moreover,
the work of Berl et al. [17] highlights that the power-related costs in a data center
takes up to 53% of the whole annual infrastructure budget. Those motivations has lead
research to produce power management techniques to limit the consumption in the data
center.

The sections are organized as follows: in section 2.1, we analyze the current power
management techniques proposed by the state of the art, especially power capping; in
section 2.2, we; in section 2.3 we discuss about the current trends on fog computing by
describing the requirements and the current works on the field; finally in section 2.4 we
discuss on some other works that proposed similar control-based solution approaches.

2.1 Power capping

The capability to function under power constraints is a major issue due to the limits
of multicore scaling, mostly caused by power and thermal management; the increasing
number of transistors permit processors to reach their power peak during a limited time,
due to the incapability of dissipating the heat produced [12, 13]. Those limitations
introduced the concept of dark silicon [12]: transistors are not powered or constrained
to operate under their possibilities [15]. Moreover, systems could be subject to power
restrictions due to energy savings policies in a given time frame.

Researchers have proposed solutions to perform power capping on different system
granularities: approaches that operates in a context of cluster (i.e. multiple nodes ap-
proaches) or on a single machine (i.e. single node approaches).

Regarding multiple nodes approach, Raghavendra et al. [21] proposed a coordinated
power management architecture that handle distinct single power management solu-
tions, whose operate on different granularities on the single machine. Moreover, Wang
et al. [22] proposed a Multiple Input-Multiple Output (MIMO) controller that exploits
Dynamic Voltage and Frequency Scaling (DVFS) to control the performance and power
consumption of multiple servers.



These two works proposed interesting approaches based on the control theory to
manage a cluster of servers, but they lack to consider the service level agreement of each
application and they are based on an hardware architecture prior to SandyBridge. In
addition, our work targets power capping on a single node.

Regarding single node approaches, we can identify two different kind of power capping
techniques: hardware and software based. Nowadays, the main hardware power capping
technique is RAPL [20, 5], provided by Intel since SandyBridge processors. From a time
interval and a power cap passed through Machine Specific Register (MSR), RAPL es-
timates the energy budget that will meet the desired power cap. At runtime, it reads
various low-level hardware events and estimates the power consumption of the specific
component (e.g. single core, DRAM, socket). At every time interval, RAPL decides
the best processors speed and voltage to satisfy the remaining energy budget and sets
DVFS. By directly operate on the hardware, RAPL is able to guarantee a stable power
consumption of the socket in 3̃50ms [23].

Prior to RAPL, research has proposed techniques that exploits manually DVFS.
Deng et al. [24] proposed CoScale, a method that coordinates CPU and memory

DVFS under performance constraints. It shows that coordinating multiple component
provides better results w.r.t. treating each component separately.

The same authors [25] proposed MultiScale, a technique to coordinate DVFS across
multiple memory controllers, memory channels and memory devices, still respecting the
performance constraints specified by the user.

Cochran et al. [26] proposed Pack & Cap, a control technique that performs DVFS
and thread packing in order to perform under the power budget while maximizing per-
formances.

Rangan et al. [27] presents thread motion, a power management technique for chip
multiprocessors that enable movement of threads to adapt to the performance/power
needs in contrast with the coarse-grained DVFS.

Unfortunately, all the solution that exploits DVFS are limited in a multi-tenant con-
text, because whenever the DVFS is performed, the changes on the frequency and voltage
affects the whole socket of the processor, consequently influencing all the cores in it. Thus,
all the tenants that resides on the same socket are penalized.

Chen and John [28] introduced a predictive mechanism for multiple resource man-
agement in chip multiprocessors. The proposed solution exploits dedicated hardware
components to profile and predict the performances of the threads; it is an interesting
approach but cannot be applied without a specific hardware support.

Unlike hardware, software based approach can tune the resources assigned of the run-
ning application, and consequently its performances, to reduce the power consumption.
On the other hand, software power capping generally provides a double digit degradation
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in performances to reach a stable power consumption w.r.t. RAPL [23].
Considering software power capping, research has moved towards approaches that

coordinate multiple components, like cpu and memory, to achieve better performance.
Hoffmann and Maggio [29] proposed PCP, a general approach that can manage

multiple components to meets the constraints on the power budget while maximizing
performance. It proposes an interesting power capping approach to a general resource
management based on control theory. The major limitation of this work is that all the
experimental evaluations are performed by running a single benchmark at a time. This
is not interesting in a context where multiple tenants that runs on the same machine,
thus competing on the available resources.

Maggio et al. [30] proposed a feedback controller to tailor resource usage online, by
actuating on the number of allocated cores and the possible frequencies in embedded
devices. This work propose an interesting power management approach for embedded
devices, but it is not feasible in a different architecture, especially in a multi-tenant
context.

Meisner et al. [31] explored the possibility of using low-power modes to reduce the
power consumed by the primary server components in Online Data-Intensive services.
This work propose an interesting study on power modes, but it analyze only a single
family of workloads; furthermore without considering other workloads that may run on
the same machine simultaneously.

Nathuji and Schwan [32] proposed VirtualPower, a power management approach to
coordinate each guest VM’s independent power policy to attain desired global objective,
by means of hardware and software methods to control power consumption. In our
context, this methodology is not applicable, because in general a containerized application
does not implements a power-saving policy, in contrast with virtual machine that hosts
an operating system.

Anagnostopolou et al. [33] proposed a power-aware resource allocation algorithm for
the CPU and the memory based on SLA by operating both on the allocation of services
within the cluster and the resource allocated on the single machines. This works focuses
on providing an energy-optimal or resource-optimal allocation, while not giving guarantee
on the power consumed. Moreover, it is not clear how they associate the right amount
of resources given a SLA.

Felter et al. [34] introduce Power Shifting, a system that reduces the peak power
consumption of servers by a dynamic allocation of power across the components, while
minimizing the effects on the performances. It highlight how dynamic power budgeting
(i.e. adapt the tuning of performances for the specific workload type) can achieve better
results than static power budgeting.

Li et al. [35] developed an algorithm that control adaptation of processor and memory
to minimizes the energy consumed without exceeding the target performance loss between
the two components.

Winter et al. [36] studied the scalability and effectiveness of thread scheduling and
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power management algorithms on an heterogeneous many-core architecture.
Li et al. [37] proposed the algorithm Performance-directed Dynamic and Performance-

directed Static to manage memory and disks; respectively. Those algorithms change the
threshold time in which the component operates until it is moved in idle.

Lastly, there are solutions that focuses on exploiting both hardware and software
power capping; Zhang and Hoffmann [23] proposed PUPiL, a hybrid software/hardware
power capping system. It highlights the aspects of the two types of power capping,
hardware and software power capping, and proposes an hybrid capping technique that
provides the advantages of both. The solution are then compared in terms of timeliness
(i.e. the speed with which the cap can be enforced) and efficiency (i.e. the performance
under the power cap). This work provides the motivation on why performing software
power capping is crucial if there is the need of control the performance. Even so, this
work does not consider the needs of the single application (i.e. SLA), because it provides
a general performance improvement w.r.t. RAPL. Moreover, the analyzed workloads are
considered as generic applications, without making any assumption on the how these
workloads are managed (e.g. container, virtual machine). This is an important aspects
that need to be considered, because changing the context implies a different managing
of resources: a single container could hosts multiple processes, but the granularity in
which the resource should be managed is the container and not the process to guarantee
a proper isolation of workload.

2.2 Virtualization and Containerization

Virtualization is one of the motivation of the success of Cloud computing: moving from
physical servers to virtual machines consolidated in less physical servers gives a consid-
erable energy saving to cloud providers [2].

This considerable diffusion led hardware producer to include special support for vir-
tualization [38], thus driving the current architecture to a virtualized context.

Each virtual machine techniques can be classified w.r.t. the type of hypervisor that
implements (i.e. the component that runs each single virtual machine): bare-metal or
hosted hypervisor.

Bare-metal, or native, or type-1 hypervisors (Figure 2.1a) like Xen [39] hosts multiple
operating systems on the same machine while being the only software that runs directly
on the hardware.

Hosted or type-2 hypervisors (Figure 2.1b) like KVM+Qemu [40, 41] instead hosts
multiple virtual machines while running as an application in the host operating system.

Both of the solutions abstract the physical resources as virtual resources that each
virtual machine can exploits.

Nowadays, a new paradigm called Containerization (Figure 2.1c) emerges as an al-
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Figure 2.1: Virtualization and Containerization schema

ternative of Virtualization. Containerization solution like Docker [42] exploits some fea-
tures Linux Kernel [43]: by exploiting Linux Control Groups [4] (i.e. cgroups) and Linux
Namespaces [44] it deploys applications inside containers. Each container runs with its
libraries and binaries but it does not have the extra overhead of the guest Operating Sys-
tem (OS). With Docker Containers, all the dependencies and libraries are inside a single
container and the common library are shared between the containers, having applications
that can be easily deployed.

2.3 Fog Computing

Nowadays, IoT adoption is increasing: Cisco estimates that there will be 50 billion con-
nected devices by 2020 [45] while today there are currently 25 billion of devices connec-
ted. In this context, due to the low computational capacity of embedded devices, Cloud
computing is exploited to share, compute and store the data acquired though sensors.
Furthermore, for certain types of application, there is the need of strict constraint on the
latency and an higher security; this cannot be achieved by IoT and The Cloud alone,
mainly to scaling and proximity issues.

In this context, Fog Computing [1] emerges as a new paradigm as an interplay between
the Cloud and IoT. It takes the computation at the edge of the cloud by exploiting fog
nodes, computational units close to the embedded device, that allows a better scaling,
wide geographical distribution, better security and a better support for latency-sensitive
applications.

10



In the state of the art, there are works that already propose some interesting applic-
ations of Fog computing that need to be explored [46, 47].

Zhu et al. [46] highlight some interesting application of Fog computing on improving
web site performances through compression, caching and some computation on HTML
and stylesheets.

Zhang et al. [47] proposed an higher level of abstraction for the IoT centered around
data: the Global Data Plane is a data-centric abstraction that focuses on distribution,
preservation and protection of the information.

Currently, an issue in Fog Computing is resource management [1], and power consump-
tion is not excluded: usually, Fog nodes may be deployed in a domestic environment, thus
power limited, or they may be battery powered. Those aspects highlight the importance
of power management in the Fog Computing.

2.4 Control Theory

Control theory, especially Feedback control, is a well known technique in computer sys-
tems [48], in situation in which there is a desired output characteristic.
The proposed PI controller is inspired by solution adopted in a context similar to ours
[29, 22] and others adopted in different context [49, 50].

Bartolini et al. [49] proposed AutoPro, a runtime system that enhances IaaS clouds
with automated and fine-grained resource provisioning based on performance SLOs. They
developed a PI controller for each VM that provides resource requests based on the SLO
and the current performance report. All the resource requests are gathered by a resource
broker that adapt all the requests to the actual resource availability. The controller is
based on a resource-performance model that binds the VM performance over a given
time window to resource allocation.

Sironi el al. [50] developed ThermOS, an extension for commodity operating systems,
which provides dynamic thermal management through feedback control and idle cycle
injection. The controller is synthesized from a linear discrete-time thermal model that
describes the temperature behavior.

Both the cited works [49, 50] model the controlled system with an AutoRegressive
with eXogenous input (ARX) model at discrete time steps 2.1.

output(k + 1) = a · output(k) + b · input(k) (2.1)

The parameters a and b can be learned in two different ways: offline [50], through
previous run and regressions, or online [49], through algorithms like Recursive Least
Squares (RLS). �
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Chapter 3

Problem definition

This chapter specifies the base concepts needed to discuss about the problem and the
respective solution proposed and then introduces the problem that we aim to solve.
Furthermore, it gives details about the specific issues that make the problem of power
capping in a containerized environment not trivial to solve.

3.1 Preliminary definitions

In this section, we will introduce the main concept needed to better understand the
problem tackled, defined in section 3.2, and the proposed methodology, introduced in
Chapter 4.
The main concept in which our system relays on is the resource. In general, a resource is
seen as an asset that can be exploited to perform a function [51], but our case, we give
a more contextualized definition of a resource: a resource is a physical or virtual asset
that an application exploits to perform its own workload. The nature of this resource is
bounded to its physical adoption. For example, a process that runs in an operating sys-
tem has a finite amount of memory that can exploits; in this case, memory is a resource
for the process. In the context of containerization, we are interested in the resources
associated to a container, that can be observed and/or controlled.
Another important aspect that stays on the base of our work is power. The meaning given
to the term power is based on its definition in physic: power is the rate of doing work, as
the amount of energy consumed per unit time. More specifically, we focus on the power
consumption of a single machine, the one that runs an instance of the orchestrator. One
of the main aspect in which we are interested in is the possibility of performing power
capping, a power management technique that aims to keep at a stable value the power
consumption of the whole considered system. The amount of power consumption that
this technique wants to guarantee is called power cap.
Moreover, we consider performance as a manner to evaluate the current running con-
tainers. In general, we cannot give a specific metric for the performances, because each
workload can be evaluated by different point of views. This vision is represented by
giving a performance metric for each container. By looking to the performance metrics,
we can evaluate the current computation performed by the containers.



There are some contextes in which a container needs to keep a specific level of perform-
ances. For instance, a single instance of a database must guarantee a specific number of
query served per second, or a web server must provide a defined number of requests per
second. In the context of services hosted on the Cloud, those constraints on perform-
ances are defined in the Service Level Agreements. They are part of a service contract
where aspects of the service are agreed, like quality, scope and responsibilities. Those
requirements need to be satisfied by the provider; if it doesn’t happen, there is a loss of
profit for the provider. Specifically, we focus on performance requirements, that in the
SLA are defined as that Service Level Objectives. Those objectives are a combination of
Quality of Service measures that produces an achievement value.

3.2 Problem statement

Our goal is to perform power capping in a containerized context; furthermore, we want
to have control over the performance of the running container. To be able to achieve the
desired results, there is the need of an orchestrator for container that, depending on the
selected policy, can control the resources of the running containers in such a way that
the cap is guaranteed and the performances are controlled.
First of all, to achieve the desired goal, we need to better highlight the criticality that
need to be tackled by providing such solution.
To perform power capping, we are interested in the relationship between the power con-
sumption of the system and the resources assigned to the running containers. Depending
on the workload, we can obtain a different dependency between the power consumption
and a given resource. This relationship does not hold for all the types of workloads,
because each application performs different operation, thus it exploits the underlying
hardware differently. For example, for a CPU-bound workload the relationship between
the CPU quota assigned to the container influences the power consumption of a machine
proportionally, because with a higher quota, the application can perform more operations
during the same period; this influences the utilization of the hardware, and consequen-
tially the power consumption (Figure 3.1). This highlight the importance of choosing
the right resources that influences the power consumption of the system.
Another important issue that need to be considered is the relationship between the

resources and the performances of each workload. Giving a higher amount of resources,
the workload can better exploits the hardware to perform its operations. For instance, if
a CPU-bound workload has a higher CPU quota, then it will perform more operations
during the time period, thus it will provides higher performances (Figure 3.2). Then,
considering the two described relationship, we need to focus on the problem that we want
to solve: capping power consumption while providing control over resources. The choice
of the right amount of resources that satisfy the goal is not trivial: on the one hand,
we want to limit the power consumption of the machine; on the other hand, we want to
control the performances of the tenants. Unfortunately, those two metrics shows opposite
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Figure 3.1: Relationship between power consumption and CPU quota. In the provided example, we
perform multiple runs of fluidanimate from the PARSEC benchmark suite [52] in a Docker container
and we vary the CPU Quota associated to it across the different runs

Figure 3.2: Relationship between TTC and CPU quota (lower is better) We perform multiple runs of
fluidanimate from the PARSEC benchmark suite, considering as performance metric the TTC of the
benchmark, with different allocation of CPU quota
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Figure 3.3: Dependence with respect to the type of workload. This shows how the power consumption
is strongly dependent from the type of workload. We perform two distinct runs of two different
benchmark, fluidanimate and dedup from the PARSEC benchmark suite [52] and we show how the
power consumption of the same machine differs from one run to the other.

behaviors. Thus, we need to find the right trade-off between the power consumption and
the performances.
In general, all the mentioned relationships between power, performances and assigned
resources are true for all the containers that scale with the assigned resources. However,
the workloads that fall in this category need a different management. Currently, our
focus is to handle workloads that scale their performances with respect to their resources.

Moreover, the solution depends on other factors that need to be considered.
First, the right amount of resources that satisfy the problem differs from an architecture
to the others. Given a workload, it will perform differently by running on two distinct
architectures, because:

1. Each architecture adopts different hardware components

2. Each architecture exploits their components its own way

That’s why we are interested in a solution that is independent from the architecture.
Second, the solution depends on the specific workload considered. Each workload will
perform its own sequence of instructions and this sequence comports the utilization of
specific components of the underlying hardware. Thus, each workload will consume dif-
ferently (Figure 3.3). That’s why we want an orchestrator that is general towards the
type of workload.
Finally, the solution is dependent from all the container that are running. In general,

in a multi-tenant environment there are multiple workloads that runs on the machine,
sharing the same hardware, and the number and type of those tenants vary during time.
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Figure 3.4: Dependence with respect to the allocation of the containers. We perform two distinct
runs of two distinct allocation of container, one with fluidanimate and dedup and the other with
fluidanimate and x264, all from the PARSEC benchmark suit. Even if we change only one workload
from the running containers, the power consumption changes significantly.

Moreover, each tenant may influence the others in terms of resource contention and de-
pendencies between workloads. Thus, given a workload running on a specific machine,
there isn’t a single solution that satisfy the problem, because the outcome depends even
on the other running containers (Figure 3.4). We are interested in a solution that can
adapts at runtime independently on the allocation of tenants on the machine.

Considering all the described issues, we are interested to find an orchestrator that
can find at runtime an allocation that satisfy the power cap and provides control over
the performances of the containers. �
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Chapter 4

Proposed methodology

After the definition of the problem on which this work is focused, we now present the
methodology behind DockerCap. In this chapter, we focus on the details of the approach
of DockerCap, presenting how each single step is designed to guarantee a specific goal.
The chapter is organized as follows: in Section 4.1 we give a general overview of Docker-
Cap; in Section 4.2 we define the problem tackled in the Observe Phase; in Section 4.3
we give an overview on the decision problem and we will discuss in detail the choices
made in each of the subphases; finally in section 4.4 we present the Actuation phase and
discuss about some enhancements exploitable.

4.1 DockerCap in a nutshell

DockerCap is a power capping orchestrator for Docker containers: it manages at runtime
the resources assigned to the running containers to meet requirements of power consump-
tion and of performances.
First, it guarantees that the power consumption will not exceed the desired cap: this is
the main objective of a power capping system.
Second, given the constraint on resources to satisfy the power cap, it partitions and
allocates the right amount of resources that allows some containers to satisfy their per-
formance requirements: while performing power capping, the system will be underused.
Under those constraints, it is not always possible to satisfy the performance requirement
of all the containers. That’s why we need to define policies to tune the performances of
the containers to achieve an goal.

To meet all the desired characteristics, DockerCap implements the ODA control loop
structure.
Figure 4.1 shows the simplified workflow of DockerCap. Following the ODA loop

paradigm comes in help during the design of DockerCap, because it allows a better di-
vision of roles inside the application: each phase is managed separately and the specific
implementation of a single phase is independent from the others.
Thus, each phase is seen as a black-box defined by its interface, i.e. the inputs and the
outputs.



Figure 4.1: General structure of DockerCap

The Observe Phase aims to capture the state of the system and then pass this informa-
tion to the next stages. It fetches the power samples and the current resources of each
container from the OS, then it gives the desired data to the next phase.
It acquires all the raw data gathered from the specific interfaces of the OS; those data
are then processed to meet the requirements of the input of the next phases; finally, the
data are sent to the Decide phase. This phase is described in detail in Section 4.2.

The Decide Phase, the core of DockerCap, aims to define the right allocation of re-
sources for the running containers to meet the desired constraints, in terms of power and
performances.
It takes all the data received from the Observe Phase and it produces the future values
of the resources assigned to each container.
The decision process is the key step to obtain the desired outcomes and it is composed
by two distinct sub-phases: the resource control and the resource partitioning phases.
More detail can be found in Section 4.3.

The Act Phase is the final step of the ODA loop. It takes the values produced by the
Decision phase and then it performs the actual modification on the resources through
specific interfaces.
Again, all the specific details regarding the actuation can be found in Section 4.4.
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Figure 4.2: General structure of the Observe Phase

4.2 Observe Phase

The Observe Phase is the first phase of DockerCap. Its objective is to fetch all the in-
formation required to perform the orchestration.
To better understand this phase, we will see in detail the data that comes into play.

First, we give a definition of observation.

Observation (O)
A sample of the system’s state in a certain stance that is the input of the decision
process

In a single observation, we assemble different kind of information about distinct aspects
of the system. We now formally define the observation Ô.

Ô = (P̂ , R̂, Ê) (4.1)

The observation Ô is the output of the Observe phase, it represents the state of the
computation running on the machine. It is the bundle of a group of information, regard-
ing the power consumption, the resources assigned and the extra information about the
running containers. Now we will formally define those terms.

The first type of information we are interested in is power consumption; to represent
in the observation Ô the power consumption, first we need to describe what is a power
sample.
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Figure 4.3: Power sample sampled overtime during an Observation

Power Sample (p)
A sample of the power consumed by the machine at a specific time.

All the power samples are then aggregated in the vector ~P .

~P = p0 p1 ... pn (4.2)

Those samples can be obtained through different types of sources, from an external power
meter to internal sensor included in the hardware. We define those source as power source.
In each observation, we are interested on acquiring a specific number of samples. This
concept is represented by the number of samples n.
To perform a coherent observation, we need to specify the sampling time as the time
between acquiring a power sample and the next one.
The observing period is derived intuitively from the sampling time and the number of
samples n needed (Equation 4.3), and it is the total time spent to observe a system
during a single observation.

observing period = sampling time · n (4.3)

Given those definitions, the power consumption during all the observation is defined as
Observed Power P̂ :

P̂ =

∑
∀pi∈~P

pi

n
(4.4)

P̂ represents the average power consumption of the machine during an observation.

The second type of information in which we are interested in is the one about the current
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resource of each container.
We define the set of all the running container C. For every running container c, we want
to obtain all the resources assigned to it. We define rc as the vector containing all the
observed resources of container c.

~rc = r1 r2 ... rnr ∀c ∈ C (4.5)

Where nr is the cardinality of the considered resources. For example, the amount of
memory assigned to each container is considered as a resource, and if we are interested in
only that resource, the cardinality nr is equal to 1. Those resources are fetched through
interfaces that are specific for each type of the resources.
To sum up all the information about the resources for each container, we aggregate all
the vectors rc in a single representation R̂.

~rc ∈ R̂ ∀c ∈ C (4.6)

Where nc is the cardinality of C, the number of running containers. This single repres-
entation R̂ contains all the current allocation of resources for all the containers. Those
information will be exploited later by the Decision step.

The last information needed is the extra data about the running containers. This in-
formation is represented by ~ec, and it contains all the data of the container c that are
not resources. All the extra information on the containers are then grouped in a single
representation Ê. For example, for each container, we are interested in knowing its id to
better identify the workload and performing a proper actuation on the container. This
id is part of ~ec, as an information about a container that is not a resource.

Once we obtain the observed power P̂ , the current resource allocation R̂ and the ex-
tra information on the container Ê, we finally have the observation Ô. This bundle
is then passed to the next phase, the Decide Phase, where those information will be
processed to produce the new allocation of resources.

4.3 Decide Phase

The Decide Phase is the second phase of the workflow of DockerCap. Its goal is to
find the right allocation of resources that will be assigned to each container, to meet
the constraints on power and performances. The problem is to find the best trade-off
between the power constraints and the desired performances by resource management.
This trade-off between power consumption and performances is not balanced, because
we prioritize the constraint on the first over the latter. The first priority of DockerCap is
to guarantee the power cap; then, under the power constraint, it takes into consideration
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Figure 4.4: General structure of the Decide Phase

the performances of each container by trying to find an allocation of resources that can
provide throughput. This must be performed at runtime.
First, we need to specify the available information in this step; we can classify the inform-
ation in two different types: the information available at runtime, and the ones provided
offline.
On the one hand, the available information at runtime are the ones received by the Ob-
serve phase, i.e. the observation Ô.
On the other hand, the offline information depends on the needs of the specific decision
process. For instance, some policies need to know the SLO of the running containers, if
exists, to better tune the resources with respect to their requirements. The only offline
information that is mandatory is the value of power capping.

We divided the decision process in two separate but yet dependent subphases. Each
subphase is designed to be modular; thus, it is possible to add and change the policy to
meet the desired outcome.
The first subphase is Resource Control : it focuses on solving the primary issue of Docker-
Cap, i.e. finding an allocation of resources that satisfy the power cap. The proposed
policies of the resource control exploits control theory techniques to provide stability to
the power consumption with respect to the power cap.
The second subphase is Resouce Partitioning : it handles the partitioning of the resources
to satisfy the constraints on the performances of each container. Since the previous
supbhase provides the global allocation of resources that with satisfy the power cap, we
need to partition this global assignment across all the running containers. Altering the
resources allocated consequently change the performance of the running containers.

In the next subsections, we describe in detail both the subphases.
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Figure 4.5: Inputs and output of the Resource Control subphase

4.3.1 Resource Control

In this subsection, we define in details the Resource Control subphase and we present
the policies proposed for this step.
The goal of this subphase is to find the right amount of resources to satisfy the power
cap: Figure 4.5 highlight the inputs and the output of this step. The first input con-
sidered is the observed power consumption P̂ , obtained through the observation Ô: this
information is provided at runtime by the Observe Component and contains all the data
about the current state of the system. The second input is the power cap P̄ : it represents
the desired value in Watts that the system must achieve; this information is provided
offline as a configuration of the component.
From the power cap P̄ and the observed power P̂ , we want to estimate the output R̄ for
the next subphase.

R̄ = r1 r2 ... rnr (4.7)

Equation 4.7 gives the formal definition of the output of this subphase.
Each value of the vector represents the total amount of a specific resource that must be
allocated to satisfy the power cap. Those values will be partitioned across the running
containers on the next step. Once these resources are allocated, we are able to satisfy the
first requirement of DockerCap: we want that the maximum power consumption of the
machine will be the power cap P̄ . If this condition is satisfied, then the observed power
consumption P̂ will be equal to the cap P̄ . To guarantee this property, the system needs
to operate on the resources R̄.
The described problem is suited to be considered as a control problem, where the system
S, in our case the server, needs to be tuned in order to achieve a desired outcome. Thus,

23



Figure 4.6: Feedback control loop exploited in the Resource Control phase

we decided to exploit feedback control techniques [48] to tackle this problem.

A model of the machine is then needed if we want to obtain a controller for our sys-
tem. The first model that we considered is an ARX model, based from other works that
handle a similar problem in a different context [49, 50]. The formulation of the problem
is as follows:

p(k + 1) = a · p(k) + b · r(k) (4.8)

The values p(k) and p(k+ 1) represent the power consumption of the machine at time k
and k+1 respectively. The value r(k) represents the total amount of resource assigned to
the machine. For simplicity, we consider r(k) as a single resource but approach remains
feasible even considering multiple resources, as the same problem can be formulated as
a multiple-input and single-output by considering multiple resource in the Equation 4.8.
The parameters a and b are the weights of each component in the model. Those para-
meters can be obtained in two different ways: offline or online.
Offline methods usually imply some kind of regression, like Least Squares (LS), performed
on a set of data acquired through multiple runs of different benchmarks.
Online method, instead, are exploited in contexts in which it is not useful or possible to
learn those parameters by a preliminary characterization. Usually those methods exploit
techniques like RLS or the Kalman filter [53].

Our goal is to find the right value of r(k), the previous defined output of the phase
R̄ that will provide takes the power consumption of the machine as close as possible to
the power cap. Thus, we want to minimize the error e(k):

e(k) = p(k)− P̄ (4.9)

Figure 4.6 represents the structure of the control loop adopted by the resource control
phase.
Once we know the behavior of S, the next step is to find the formulation of the controller
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C. To do that, we apply the Z-transformation [54] to the model of the machine (Equation
4.8) to change the problem from the time domain to the frequency domain.

z · P (z) = a · P (z) + b ·R(z) (4.10)

From Equation 4.11, we obtain the system transfer function S(z).

S(z) =
P (z)

R(z)
=

b

z − a
(4.11)

The controller C(z) is introduced in a feedback control loop to control the resources
assigned to the system to meet the power cap. Considering that we adopting a feedback
control system, we are interested in a stable feedback control loop, because we don’t
want the power consumption to diverge from the power cap P̄ , but we want it to stay
near the reference power. Thus, we impose the transfer function of the feedback control
loop stable. We define the loop transfer function as a first-order transfer function with
a single pole in p. To achieve an asymptotically stable and not oscillating control, the
value of p must be between the interval (0, 1).

L(z) =
C(z) · S(z)

1 + C(z) · S(z)
,

1− p
z − p

p ∈ (0, 1) (4.12)

By combining Equation 4.11 and Equation 4.12, we obtain the transfer function of the
controller C(z).

C(z) =
(1− p) · (z − a)

b · (z − 1)
,
R(z)

E(z)
p ∈ (0, 1) (4.13)

Where E(z) is the error e(k) in the frequency domain.
Finally, by applying the inverse Z-Transform and a time shift, we obtain the formulation
of the controller in the time domain.

r(k) = r(k − 1) +
1− p
b
· (e(k)− a · e(k − 1)) (4.14)

With this formulation, we have a controller that can give us the value of the resources in
which we are interested in.

This first solution can be simplified if we make some consideration about our domain.
We need to notice that there is a major difference between our work and the others men-
tioned [49, 50]: power consumption does not follow a transient behavior, like energy and
temperature. A change in the resource associated to a container implies an immediate
reaction to the power consumption of the machine, and that value is independent from
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the previous one.
In order to consider this phenomenon, we explore a model for the machine that is dif-
ferent from the ARX(1). We proposed a simpler linear model that depends only on the
assigned resources, as follows:

p(k + 1) = b · r(k) (4.15)

This model can be seen as a special case of the ARX model with a = 0. Thus, if we
perform the same steps done from the previous model, we obtain a simpler version of the
controller:

r(k) = r(k − 1) +
1− p
b
· e(k) (4.16)

In chapter 6 we compare the two proposed methodology to find the best controller that
fits our context.

To conclude, with the feedback controller introduced, we are able to exploit a control
logic that provides the total amount of resource that needs to be allocated from the
observed power consumption.
The next subsection handles the problem of partitioning the resources across the running
containers.

4.3.2 Resource Partitioning

In this subsection, we define the Resource Partitioning phase and we introduce the
policies proposed to tackle the problem of performance in different ways.

The goal of this subphase is to find the best resource partitioning that optimizes a
specific metric. This metric indeed influences the selection of the partitioning policy.
For instance, if the provided metric represents the specific performances of the workload
needs to be treated differently with respect to another one that is more general, like the
Hardware Performance Counters (HPC). Figure 4.7 highlight the inputs and the output
of the phase.
The first input is the results obtained from the Resource Control subphase, thus the

available resources R̄ that this phase need to partition. This information is acquired
online, as provided by the previous subphase. The other inputs, the one obtained offline,
are policy-specific informations and the configuration of the partitioning subphase .
Given the resource R̄ and others offline information, this phase must produce a parti-
tioning of resources.

~rcapc = rcap1 rcap2 ... rcapnr ∀c ∈ C (4.17)
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Figure 4.7: Inputs and output of the Resource Partitioning subphase

~rcapc ∈ Rcap ∀c ∈ C (4.18)

We define this partitioning as Rcap, where each element ~rcapc of the vector is the alloca-
tion of resources of a specific container.
After the partitioning is done, the result Rcap is passed to the last phase, the Act phase,
where the real resource actuation is performed .
As already mentioned in other phases, DockerCap is designed to be modular: each com-
ponent is independent from the rest of the system. This property allows an easy change
of the component depending on the needs. This is true especially in the case of the par-
titioning, as the choice of how to split the resources across the containers influences the
final outcome. For example, given a container has specific performance requirements, it
needs a minimum amount of resources to satisfy its constraints. If the resource assigned
are lesser than the minimum, then the container will not satisfy its constraints.
This is why we propose three different partitioning policies to satisfy different needs and
different operation conditions.

The first proposed policy is the Fair resource partitioning.
Its goal is to produce a resource partitioning that is the uniform across all the running
containers.

rcapi =
ri
nc

∀rcapi ∈ ~rcapc ,∀c ∈ C (4.19)
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Figure 4.8: Graphical representation of the Fair resource partitioning

Equation 4.19 provides an equal division of each resource across all the running container,
by partitioning the cap on the resources R produced by the Resource Control subphase.
Indeed, only the resources represented by a real value can be partitioned with Equation
4.19; for the other types of resources, the principle is the same: partition the available
resources uniformly across all the containers.
Furthermore, this approach does not exploit additional information than the resource
capping R; that’s why this approach is considered performance-agnostic: it does not
produce a partitioning with the goal of improve the performances.
This means that by using this policy, all container are treated equally, with the same
importance, and it doesn’t not provide a warranty on the performances. On the contrary,
the other proposed policies does not considers all the container as equally important.
Figure 4.8 gives a graphical representation of the Fair resource partitioning.

The second proposed policy is the Priority-aware resource partitioning.
It introduces a new concept that is not considered the Fair partitioning: not all the
containers have the same importance.
This means that there are container with a higher priority than others; thus, we need to
give priority to them over the other with lower priority during the partitioning.
First, in this policy we introduce the concept of priority of the containers: each container
has a corresponding weight that represent the priority given to a container.

wc ∈W ∀c ∈ C (4.20)
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Figure 4.9: Graphical representation of the Priority-aware resource partitioning

The weight corresponding to container c is represented by wc. Moreover, we define W as
a set of weights; basically it contains as many values as the number of considered priority.

rcapi = ri ·
wc∑

∀i∈C
wi

∀c ∈ C (4.21)

Equation 4.21 represents the partitioning adopted in the Priority-aware resource parti-
tioning. It is a weighted mean of the resource cap provided by the previous Resource
control subphase.
The vision of this approach is that each container will have a corresponding priority;
during the Resource partitioning phase, this priority is seen as an attributed weight to
the container. This partitioning is then calculated by following Equation 4.21.
An interesting aspect of this approach is the possibility of balancing the performance of
the running container: for instance, if in the current pool of running containers there is
a critical workload that has a higher priority than the others, then it is possible to give
a high priority to that container; thus, during the resource partitioning, that container
will have more resources than the other containers.

The last policy that we propose is the Throughput-aware partitioning policy. It extends
the previous Priority-aware resource partitioning to provide a more precise resource as-
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Figure 4.10: Graphical representation of the Throughput-aware resource partitioning

signment.
We need to notice that a set of workload has interest to maintain a specific requirement
on the performances: those requirements are called SLA. If the workload must provide a
certain level of performance, then it needs a specific amount of resources to perform its
work.
A limitation of the previous Priority-aware policy is that it does not have a direct vision
over those requirements: it simply calculate the weighted mean based on the priority
assigned, but we have no guarantee that the amount of resources received by a container
are enough to satisfy the SLA.
To overcome this limitation, we propose the Throughput-aware resource partitioning.
The basic information needed to guarantee the SLA is the minimum amount of resources
needed to satisfy the constraints. In general, obtaining this information is not trivial, be-
cause is an information strongly dependent on the workload: knowing that every workload
performs different operations and has a different purpose, it naturally comes out that
even the outcome that it wants to achieve is dependent from the specific workload.Thus,
there is the need of obtaining this information.

We identify two different ways in which is possible to obtain such information: obtain
the data on performances directly online or having a model of the workload computed
offline. In this work, we focus on exploiting the offline method.
The main goal of the offline profiling is to have a model that follows the structure de-
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Figure 4.11: Relationship between the CPU quota and the resource assigned to the container. It can
be seen that all the considered workloads from the PARSEC benchmark suite follow a hyperbola

scribed by Equation 4.22.

performancec = fc(~rc) ∀c ∈ C (4.22)

This presented structure is feasible if we consider a workload with a stable behavior:
given a certain amount of resources, the workload provides almost the same value of
performances.
The offline model is obtained through previous runs of the same container in different
resource configuration. With the obtained data, it is performed a regression to establish
the parameters of th offline model. For example, the benchmarks from the PARSEC suite
represented in Figure 4.11 can be represented by a model structured as an hyperbola,
defined by the following equation:

TTCc · qc ≈ Kc ∀c ∈ C (4.23)

We exploits this type of model for the PARSEC benchmarks, obtaining a minimum R2

coefficient [55] of 97.54%. Given the model, we can find the resource needed by the
benchmark to satisfy the SLA, specifically the SLO metric.

~rSLAc = f−1c (SLOc) ∀c ∈ C (4.24)

We define this value ~rSLAc as the minimum amount of resources that the container c
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must have available to satisfy its SLA.
Moreover, by exploiting a priority assignment method like the one described for the
Priority-aware policy, and with the allocation ~rSLAc for each container, we can introduce
the Throughput-aware resource partitioning policy.
First, we need to specify that each container must receive a minimum amount of resources,
so that the whole capping process should not terminate a running container.
Knowing that each container has its own priority, we need to assign the right amount of
resources first to the ones with the highest priority. Then the same process is repeated
for all the priorities of the containers with specified SLA.
Furthermore, it may happen to have containers without a defined SLA. In this case, we
have defined a special priority, known has best effort, that is treated separately by the
Throughput-aware policy.
All the containers with the best effort policies will receive the resources leavings of the
other priorities, partitioned by following the Fair resource partitioning policy. This is
possible because we don’t necessarily allocate all the available resources with the previous
assignments, because each container with a defined SLO demand a specific amount of
resources.
On the other hand, there are cases in which, for a given priority, there are not sufficient
resources to satisfy all the SLO of the containers with that priority. In this case, it is
performed a Fair resource assignment across all the containers with that priority. All
the containers that have a lower priority, included the best effort, will remain with the
minimum quantity of resources guaranteed by the partitioning policy.
Figure 4.10 shows a graphical representation of a run of the Throughput-aware resource
partitioning.

4.4 Act Phase

The Act Phase is the last phase of the workflow of DockerCap. Its goal is to perform
the physical allocation of the resources given the allocation of resources produces by the
Decide Phase.
Performing the actuation on the resources is dependent from the type of resource that
we are managing.
That is why we introduce the concept of Actuation Interfaces.

Actuation Interface(A)
A software interface that takes care of performing the physical change on a specific
type of resource

In addition to the physical changes on the resources, each Actuation Interface takes care
of normalizing the computed resource value for the specific resource.
Thus, given an allocation of resources Rcap, we associate each resource value rcapi to its
specific Actuation Interface Aj .
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Figure 4.12: General structure of the Act Phase

Moreover, the allocation may need other parameter different from the one computed by
the Decide Phase. But, we need to notice that the Observation Phase provides not only
the observed power consumption P̂ , but the whole observation Ô, that contains the old
resource assignment R̂ and the extra informations gathered for each container Ê. Those
informations are not touched by the decide phase. Those informations can be exploited
in different ways.
First, the extra informations Ê on the containers in some cases are mandatory for the
Actuation Interface, because there are extra parameters that need to be specified for
specific types of resources (e.g. the id of the Docker container).
Second, with the old resource assignment R̂ it is possible to develop a caching system.
For certain types of resources, it is possible to don’t perform the actuation if the old
value coincide with the new one from the Decide phase Rcap (e.g. the pinning of the
cores for a container). �
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Chapter 5

Implementation

In this chapter, we present the current implementation of DockerCap. In Section 5.1 we
give an overview on the properties of DockerCap and in Section 5.2 we give a detailed
description of the architecture and on the functionalities of each component;

5.1 Implementation goals

DockerCap is a power capping orchestrator for Docker containers that manages resources
to meet constraints on power consumption and to optimize the performances of the
containers.
In Chapter 4, we discussed about some properties that DockerCap needs to have. In
the following sections, we explicit those properties and we highlight the implementation
effort that has been made to produce this orchestrator.
Those properties are:

• Modular
Every component in DockerCap should be independent from the others. This allow
us to develop and to plug-in different component without affecting the other parts
of the system.

• Configurable
Even if our system is modular, we also need each component of our system to be
configurable, to adapt the specific need of the system.

• Provide precise capping
This is an important property for a power capping system. We expect that the
oscillations of the power consumption under strict power capping to be present,
but we need to ensure that it is still limited.

• Provide performance guarantees for containers
Under the power constraints, we are interested in having guarantees on the per-
formance of the running containers.



Figure 5.1: Runtime architecture of DockerCap

We discuss about the properties of the precise capping and the performances guarantee
for the containers in Chapter 4. The other properties will be discussed in the following
sections.

5.2 Proposed system architecture

DockerCap is an orchestrator for Docker Container written in Python [56] and it is
designed to follow an ODA loop paradigm. In this control structure, each phase performs
a distinct role and does not depend directly on the others, but only on the inputs received.
Figure 5.1 shows the runtime architecture of DockerCap. The system is structured to
run each component on a separate thread, communicating with the others via thread-
safe queues [57]. The messages passed in the queues are encoded using the JSON format
[58]; this allows the components to communicate with a standard format, instead of
introducing an ad-hoc encoding.
Moreover, DockerCap needs to communicate with other elements that are not part of
the orchestrating logic. Each component has the shared set of interfaces that abstract
the communication with specific external elements. The provided interfaces are:

• DockerInterface This interface abstracts the communication with the Docker
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Client [42]. It allows to gather information on the currently running containers
(e.g. through the ps utility) and to perform actions that directly influence the
container, e.g. starting, stopping and killing a container.

• CGroupInterface This interface abstracts the access to the CGroup hierarchy [4].
This is done mainly because the hierarchy may change with respect to the specific
version of the operating system or by how each CGroup is mounted. By adopting
this interface, it is possible to get and set the values of: cpu_quota, cpu_period,
memory_limits and cpuset (i.e. core pinning). To perform those actions, the
interface need to know informations such as the container id and how the hierarchy
of the CGroups is structured (provided through configuration file).

• PerfInterface This interface abstracts the access of the perf tool to monitor hard-
ware performance counters [59]. To do that, it hides the direct communication with
the tool and handle the parsing of the output provided by it. Currently, we adopt
the PerfInterface to read the value provided by the RAPL interface.

In the following subsection, we introduce other interfaces that were adopted only by spe-
cific components of DockerCap. Each component exploits its own configuration and its
own submodules. The configuration file is stored as a XML file [60] in the folder of the
corresponding module. This configuration is then read by the module through a config-
uration interface that abstracts the physical read of the file by providing the parameters
in a data structure.

We developed three major modules that implement the three phases of the ODA loop
described in Chapter 4: the Observe Component, described in subsection 5.2.1, the De-
cide Component, described in subsection 5.2.2, and the Act Component, described in
subsection 5.2.3.

5.2.1 Observe Component

The Observe Component is the implementation of the Observe phase introduced in sec-
tion 4.2. The goal of this component is to produce the observation Ô and to provide
those data in the Observe Queue. The observation will be fetched from the queue by the
Decide Component.To produce the observation Ô we need to compute the three basic
elements that compose it: the observed power P̂ , the current allocation of resources R̂
and the extra information on the containers Ê. The pseudocode of the Observe Com-
ponent is described in Algorithm 1.

The observed power P̂ is the aggregation of multiple power samples fetched through a
power source. In general, the possible power source could be various, from external power
meters to internal sensors included in the hardware. Moreover, each power source needs
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Algorithm 1 Observe Component pseudocode
1: procedure Observe(ObserveQueue, powerSource, resourceSource)
2: P̂ ← powerSource.get_samples()
3: R̂, Ê ← resourceSource.get_resources()
4: Ô ← (P̂ , R̂, Ê)

5: ObserveQueue.put(buildJSON(Ô))

6: return

to be treated differently from the others, especially in terms of sample time. For example,
the RAPL interface [20] provides measurements in the order of ms; instead, the WattsUp
power meter [61] provides power samples every second.
That’s why we abstract the access on a specific power source through the interface Power-
Source, that requires to specify the sample time and the how many power sample are
needed through configuration file of the Observe Component.
The PowerSoure interface is implemented by the two types of power source supported by
DockerCap: the RAPLPowerSource and the WattsUpPowerSource, that implement the
communication with the RAPL interface and with the WattsUp Power meter interface
respectively.
On the one hand, the RAPLPowerSource gets the power sample from the RAPL interface
by exploiting the Perf Linux tool. This tool provides access to the underlying perform-
ance counters provided by the CPU and it is maintained by the Linux community. To
communicate with it, we developed the PerfInterface, that abstracts the specific com-
munication with the tool. To read the power consumption of the CPU socket, RAPL
doesn’t read it directly from the hardware, but it implements internally a model of the
HPC provided by the CPU [5]. It provides a minimum sampling time of 350ms [23].
On the other hand, the WattsUpPowerSource gets the power sample from the attached
WattsUp power meter. The communication with the device is done by using the WattsUp
[62] software interface. This interface communicate with the serial over USB and has a
sampling time of at least 1 second.
The current allocation of resources and the extra information on the containers are
fetched by a single source, the ResourceSource. To gather the extra informations, it
exploits the DockerInterface to gather all the information needed about the running con-
tainers. Then, through the CGroupInterface, it fetches the current resource allocation of
the container. All the data gathered by the Observe Component through the interfaces
are represented in Table 5.1.
The objects powerSource and resourceSource are initialized when the DecideCompon-
ent thread is launched. The choice of the specific PowerSource and ResourceSource is
possible by specifying it on the configuration file.

When we have all the information needed for the observation, we encode them in a
single JSON and then we send it in the ObserveQueue.
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Table 5.1: Information gathered by the Observe Component

DockerInterface CGroupInterface PerfInterface
container id cpu period observed power

image cpu quota
command pinning

Listing 5.1: An example of a JSON produced by the Observe Component

{
"timestamp": 1466462552,
"power": 17.5,
"resources": [
{
"id": "container1_ID",
"image": "contaner1",
"command": "container1 --type 2--input 37",
"cpu_period": 10000,
"cpu_quota": 40000,
"pinning": "0-4"

},{
"id": "container2_ID",
"image": "container2"

...
}]

}

An example of the produced JSON can be seen in Listing 5.1. Moreover, in the Appendix
Listing A.1 shows an example of the XML configuration file of the Observe Component.

5.2.2 Decide Component

The Decide Component is the implementation of the Decide phase described in section
4.3. The goal of this component is to produce the new allocation of the resources for
the containers Rcap while guaranteeing the power cap P . This value is computed from
the observation Ô, fetched from the ObserveQueue.The pseudocode that represents the
whole Decide Component is specified in Algorithm 2. It fetches from the ObserveQueue
the observation Ô, then it perform the decision through the chosen decider and finally
puts the new allocation of resources Rcap in the ActQueue.
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Algorithm 2 Decide Component pseudocode
1: procedure Decide(ObserveQueue,ActQueue, decider)
2: Ô ← parseJSON(ObserveQueue.get())

3: Rcap ← decider.decide(Ô)

4: ActQueue.put(buildJSON(Rcap))

5: return

As already specified, the decision process is divided in two subphase, the Resource Con-
trol and the Resource Partitioning phases. Regarding the specific adoption of those
subphases, the choice of which Resource control policy and Resource Partitioning policy
is grouped in a single entity, the Decider.
The Decider is an interface that provides the method decide; a specific implementation
of this interface takes care of running the two subphases and providing the final resource
allocation Rcap.
The algorithm that describes the general decision process is defined in Algorithm 3. As
already mentioned it performs first the Resource control, by obtaining the global resource
allocation R, then it perform the Resource partitioning phase that produce the final re-
source allocation Rcap.

Algorithm 3 Decider pseudocode

1: procedure Decide(Ô, controller, partitioner)
2: R← controller.decide(Ô)

3: Rcap ← partitioner.partition(R)

4: return Rcap

In the decision module, it is possible to find all the specific implementation of the decider
interface currently supported by DockerCap. For each subphase, we have developed a
module that hosts all the available policies that are exploited by the implementations of
the decider interface.
Currently, we developed our policies to support as a resource only the cpu_quota (of
the CGroup cpu )given to a container. The cpu_quota value represents the amount of
CPU time in µs that every task in the CGroup can use during one period, specified in
the cpu_period parameter. When the amount of time is expired, the tasks are throttled
until the next period.

All the policies that handle the Resource Control problem are implemented in the re-
source_decision module.
These policies implement the interface Controller ; it provides the decide method that
produces the global constraint on cpu_quota Q that satisfies the power cap constraint
P .
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Algorithm 4 ARX resource control policy

1: procedure Decide(P , P̂ , Q̂, old_e,Qmin, Qmax, a, b, p,)
2: Q̂← normalize(Q̂)

3: e← normalize(P − P̂ )

4: Q← Q̂+ 1−p
b · (e− a · old_e)

5: old_e← e

6: Q← de_normalize(Q)

7: if Q > Qmax then
8: Q← Qmax

9: else
10: if Q < Qmin then
11: Q← Qmin

12: return Q

We developed two different policies; those policies are based on the two control-based
techniques introduced in subsection 4.3.1.
First, the ARX policy is the implementation of the PI controller based on the ARX
model of the system. Second, the Linear policy implements the controller obtained by
modeling the system with the linear model.
As mentioned previously, the total cpu_quota that guarantee the power cap is defined
as Q. The power capping constraint P is specified in the configuration file of this com-
ponent. Moreover, at the end of the procedure (line 7-11) we perform a control on the
calculated result to guarantee that it between the boundaries: we define the value Qmin

as the the minim cpu_quota Qmin accepted and the maximum cpu_quota Qmax. The
latter value depends on number of cores available on the hardware, because the period
represented in the parameter cpu_period represents the time period of a single core of
the CPU.
We define the cpu quota fetched during the observation as qc for the container c; the sum
of all the cpu_quota of the running container is defined as Q̂.
The pseudocode that describes the ARX resource control policy is defined in Algorithm
4, and the Linear resource control policy is defined in Algorithm 5.

All the policies that handle the Resource Partitioning problem are implemented in the
resource_partitioning module.
These polices implement the interface Partitioner that exposes the method partition:
given the total cpu that guarantees the power cap Q, it will produce the partitioning of
cpu_quota Qcap.
The implemented policies in this module are the ones described in subsection 4.3.2.

The first policy that we describe here is the Fair resource partitioning one. It produces
a fair cpu_quota partitioning by dividing the total cpu_quota Q across all the running
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Algorithm 5 Linear resource control policy

1: procedure Decide(P , P̂ , Q̂, Qmin, Qmax, a, b, p,)
2: Q̂← normalize(Q̂)

3: e← normalize(P − P̂ )

4: Q← Q̂+ 1−p
b · e

5: Q← de_normalize(Q)

6: if Q > Qmax then
7: Q← Qmax

8: else
9: if Q < Qmin then

10: Q← Qmin

11: return Q

Algorithm 6 Fair resource partitioning

1: procedure Partition(Q,C, nc)
2: for c ∈ C do
3: qc ← Q

nc

4: Qcap ← Qcap ∪ {qc}
5: return Qcap

containers, equally. The algorithm that describes this policy is defined in Algorithm 6.
For all the containers, it perform the calculation of the quota by dividing the global quota
Q with the number of containers nc. The results are then grouped in a single bundle
Qcap.

The second policy described is the Priority-aware resource partitioning one. It provides
the partitioning Qcap by performing a weighted mean of the available cpu_quota Q. The
weights wc are specified for each priority in the configuration file. Furthermore, the asso-
ciation of the container with the corresponding priority is done by comparing the extra
information extracted ~ec, i.e., the image name, with a profile, that lists all the ”known”
containers and their associated priorities. The not known containers will be treated with
a special priority that has associated the lowest weight.
The algorithm is described in Algorithm 7. First, we calculate the total sum of the
weights W . by fetching all the weight wc associated to each containers through the
method get_weight(~ec, profile). Then, for all the running containers, we calculate the
partitioning Qcap by calculating the quota of each container qc with the weight wc

W and
the global quota Q.
The last policy developed is the Throughput-aware resource partitioning one. In addition
to the priority system presented in the Priority-aware resource partitioning, it allocates
the right amount of resources that are needed to satisfy the constraints on the SLO.

41



Algorithm 7 Priority-aware resource partitioning

1: procedure Partition(Q,C, nc, profile, ~ec)
2: W ← 0

3: for c ∈ C do
4: wc ← get_weight(~ec, profile)
5: W ←W + wc

6: for c ∈ C do
7: qc ← Q · wc

W

8: Qcap ← Qcap ∪ {qc}
9: return Qcap

First, to obtain the information on how much cpu_quota the container needs, we ex-
ploits the already mentioned profile, enhanced with the performance model f−1c of the
container c, introduced in the subsection 4.3.2.
Then, we also need to follow the priorities of the container. Currently, we support three
different types of priorities: high priority, low priority and best effort (i.e., without a spe-
cified SLO). This is the reason why we introduced an algorithm that satisfies the needs
of the containers with the highest priority, first; then we consider all the others priorities.
The remain cpu_quota is divided across the "best effort" containers. For example, lets
consider three containers, each one with a different priority. The high priority one needs
at least 40% of the CPU quota to satisfy its requirement. The low priority one needs at
least 20% of the CPU quota. If the global CPU quota that satisfy the power constraints
is 70% of the CPU quota, then the high priority one and the low priority one take the
desired quota and the best effort one takes the remaining 10%.
If for a single priority there aren’t enough resources to satisfy all the corresponding con-
tainer, then it is performed a fair partitioning of the cpu_quota of all the containers
with that priority. Considering the same example as before, but with a global CPU
quota constrained at 30%, then the low priority and best effort will receive the lowest
priority assignable, for instance 5%, and the high priority will receive the greater part of
the resources, the 20%. If we have more than one container with an high priority, the
20% is fairy partitioned across the two of them. Thus, the two high priority container
will obtain 10% CPU quota.
The algorithm that represents the described policy is Algorithm 8. The containers are
partitioned in three different groups, that represents their corresponding priority (i.e.
high priority HP , low priority LP and best effort BE). At the end of the algorithm, an
assign_leftover function is invoked to assign all the remaining leftover (if any) to the
containers with priorities. This is done to use all the provided quota Q.

At the end of the decision process, the Decide component produces as output a JSON
that is enqueued in the ActQueue. An example of the produced JSON file can be seen
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Algorithm 8 Throughput-aware resource partitioning

1: procedure Partition(Q,C, profile,HP,LP,BE, qmin)
2: for c ∈ C do
3: qc ← qmin

4: for c ∈ HP do
5: qc ← f−1c (profile.SLOc)

6: if
∑
∀i∈C qi > Q then

7: for c ∈ HP do
8: qc ← Fair_partitioning(Q)

9: for c ∈ HP do
10: Qcap ← Qcap ∪ {qc}
11: return Qcap

12: for c ∈ HP do
13: Qcap ← Qcap ∪ {qc}
14: for c ∈ LP do
15: qc ← f−1c (profile.SLOc)

16: if
∑
∀i∈C qi > Q then

17: for c ∈ LP do
18: qc ← Fair_partitioning(Q−

∑
∀c∈Qcap

qc)

19: for c ∈ LP do
20: Qcap ← Qcap ∪ {qc}
21: return Qcap

22: for c ∈ LP do
23: Qcap ← Qcap ∪ {qc}
24: for c ∈ BE do
25: quotac ← Fair_partition(Q−

∑
∀c∈Qcap

qc)

26: Qcap ← Qcap ∪ assign_leftover(Qcap, HP,LP )

27: return Qcap
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Listing 5.2: An example of a JSON produced by the Decide Component

{
"timestamp": 1466462552,
"resources": {

"container1_ID": {
"image": "contaner1",
"command": "container1 --type 2--input 37",
"cpu_period": 10000,
"cpu_quota": 5203},

"container2_ID": {
"image": "container2"
...

}
}

}

in Listing 5.2. Moreover, an example of configuration file of the Decide Component is
described in the Appendix in Listing A.2.

The class diagram that represents all the policies of the Resource control and Resource
partitioning step is in Figure 5.2

5.2.3 Act Component

The Act Component is the implementation of the Act phase, described in section 4.4.
The goal of this component is to change the resources assigned to each container as in the
information found on ActQueue.We are interested to implement the Actuation Interfaces
that support the resources in which we are interested in. The algorithm that describes
the workflow of the Act component is Algorithm 9. First, we fetch the JSON obtained
from the ActQueue that contains the Rcap value that needs to be actuated. For each
resource, we perform the specific actuation through its actuation interface Arcap

Algorithm 9 Act Component pseudocode
1: procedure Act(ActQueue,A)
2: Rcap ← parseJSON(ActQueue.get())

3: for rcap ∈ Rcap do
4: Arcap .act(rcap)

5: return

The current implementation of DockerCap supports only one resource, i.e., the cpu_quota
assigned to each container; thus, we exploited the CGroupInterface: it writes on the files
to act on the cpu_quota. The only CGroup subsystem exploited is the cpu resource

44



Figure 5.2: Class diagram of the Controller and Partitioner interfaces with the respective implemented
policies

manager. This subsystem manage the access to CPU resources, that is scheduled us-
ing the Completely Fair Scheduler (CFS), a proportional share scheduler which divides
the CPU time (CPU bandwidth) proportionately between the cgroups depending on the
weight of the task or share assigned to cgroups. The files in which we are interested in
is the cpu.cfs_quota_us and the cpu.cfs_period_us. The first represents th amount of
time that the tasks in that cgroup need, the latter represents the CPU time available for
a single core. For example, if we want that a container will exploits 4 cores of the ma-
chine, we will write in the file cpu.cfs_quota_us four times the value cpu.cfs_period_us.
Docker create a cgroup in each subsystem for each of its running container. If we want
to perform actuation a specific container, we need to know how the cgroup hierarchy is
structured. The CGroupInterface can actuate on the specific container using to the con-
tainer id; this is need to build the correct path to access the specific files of the CGroups.
Moreover, it handle all the normalizations that needs to be done to write the desired
value. For instance, in the Decide phase the value are represented in percentage, thus we
need to convert this value to be writable in the cpu.cfs_quota_us file. �
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Chapter 6

Experimental results

In this chapter, we discuss the results obtained during the evaluation of DockerCap.
As introduced in the previous chapters, DockerCap is a power capping orchestrator that
provides control over the performances of the running containers. The proposed approach
is compared with the state of the art power capping solution RAPL [20], an hardware
interface provided by Intel in the processors since Sandy Bridge [5]. The proposed tech-
niques and RAPL are evaluated with respect to two different metrics:

• Precision: how much the power consumption of the machine is close to the desired
power cap;

• Performance: what are the performance of the running containers with each specific
power capping technique.

The chapter is organized as follows: in section 6.1 we define the experimental setup
adopted during all our experiments; in section 6.2 we show the results in terms of precision
and in section 6.3 we show the results in terms of performances.

6.1 Experimental Setup

In this section, we give a description of the environment in which we developed and eval-
uated DockerCap. Considering that we exploit Docker as container engine, our system is
developed to operate in a Linux environment, with a kernel that supports Linux Control
Groups [4] with CONFIG_CFS_BANDWIDTH set to "y" in the Kernel configuration
to permit the CFS scheduler to limit the bandwidth rates for tasks running in the groups.

The adopted processor is an Intel Xeon E5-1410 [63] that supports the RAPL [20]
interface, Turbo Boost [64] and Simultaneous Multithreading (SMT) [65] technology.
During our experiments, we disable both Turbo Boost and SMT to remove all the non-
linear behaviors of the power consumption that may occur during the execution of the
benchmarks. Currently, DockerCap supports two types of power source. To allow the
Observe Component to exploit a given power source, it is necessary to deploy DockerCap
in contexts that support those sources:



Table 6.1: Experimental setup

Runtime Python 2.7.6
Container engine Docker 1.11.2

OS Ubuntu 14.04
Kernel Linux 3.19.0-42-generic
CPU Intel Xeon E5-1410
RAM 32GB

• To exploit the RAPLPowerSource to fetch the power consumption of the CPU
socket, it is mandatory to deploy DockerCap on a machine with a hardware ar-
chitecture more recent than SandyBridge 2nd generation [5], since RAPL is not
supported before that architecture;

• To exploit the WattsUpPowerSource to fetch the power consumption of the ma-
chine, a WattsUp? Power meter [61] must be attached to the USB of the machine
that we want to control, then we read through Serial over USB.

The experimental setup is summarized in Table 6.1.

The benchmarks adopted for the evaluation of DockerCap are taken from the PARSEC
benchmark suite [52]. Our experiments consist of running three containers simultaneously
with different benchmarks. The benchmarks adopted are:

• Dedup: it is a kernel that compresses a data stream with a combination of global
compression and local compression;

• x264 : it is a H.264/AVC(Advanced Video Coding) video encoder;

• Fluidanimate: it simulates an incompressible fluid for interactive animation pur-
pose by solving the Navier-Stokes equation [66].

All those workloads are multi-threaded. During all the experiments, the containers were
run simultaneously with 8 thread instantiated per benchmark. Moreover, each bench-
mark processes its respective native input: it is the biggest input available in the bench-
mark suite that represents a realistic workload that a benchmark of that category may
process. The native input of dedup is an archive of 672 MB; the native input of x264 is
a video with 1920 x 1080 pixels with 512 frames; finally, the native input of fluidanimate
is a group of 500000 particles, with 500 frames.

On the one hand, We choose dedup and x264 as test benchmark for the validation be-
cause they represent two workloads that are interested in the context of Fog Computing,
like compression and streaming computation [46].

On the other hand, we choose to add fluidanimate to the benchmark set as a generic
CPU-bound workload to stress the most the CPU.
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6.2 Precision Evaluation

In this section, we discuss about the results of DockerCap in terms of the precision of
the power cap. Then, we compare those results with the state of the art solution RAPL.
Considering that we are interested in the precision of the capping, we need to analyze
two distinct properties that characterize a precise capping technique:

• the average power consumption during a run must be equal to the power cap;

• the oscillations of the power consumption must be limited

On the one hand, from the point of view of the energy consumed, if we provide the
first property, then we achieve the same outcome of having a constant power consumption
that is equal to the power cap.

On the other hand, if we do not provide the second property, the system may shows
peaks in the power consumption during its utilization. This is not desirable, because
those peaks may imply bursts in the power consumption that the infrastructure cannot
afford. That’s why it is important to provide a power capping technique that introduces
a limited oscillation in the power consumption. We performed tests under different power
caps, specifically 20W, 30W and 40W on a CPU with a Thermal Design Power (TDP)
of 80W.

First, we need to find the best values of the parameters that influence the orchestrator.
The parameter that influences the observation is the sampling time of the observe phase.
We performed multiple runs of the benchmarks under different policies of capping and
we varied the sampling time from 0.1 to 2 seconds. We found empirically that the value
that gives the better performance in terms of power capping precision during the runs is
1 second.

Considering the Resource Control, in the Decide phase, we compared the two pro-
posed models, i.e., the ARX and the Linear one, defined in subsection 4.3.1. In this first
tests, to assess the precision of DockerCap, those two models are compared adopting
the Fair resource partitioning policy in the Resource partitioning phase, to ensure that
the comparison between the two model is not influenced by the resource partitioning
policy. The parameters of the models were obtained by performing a Least Square re-
gression from the data acquired offline by running a pool of CPU-bound benchmarks
(e.g. stress[67], fluidanimate). This comparison is made while considering the different
values of the parameter p that influence feedback control loop in the Resource control
subphase. As stated in subsection 4.3.1, p must be between the interval (0, 1) to ensure
the stability and limited oscillation of the control. We explore the precision of those
policies under three different values of p and three power caps by analyzing the average
power consumption and standard deviation of 10 runs of the benchmarks, 10 times in
each configuration. We repeat the same number of runs with RAPL under the three
power caps.
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Figure 6.1: Power consumption of the server under different power caps, controlled by the ARX Fair
partitioning policy and the Linear Fair partitioning policy in different value of p. The results obtained
with RAPL are reported as reference
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Figure 6.2: Power consumption of the server under different power caps, controlled by the three
proposed Partitioning policy with the ARX model used in the controller

Figure 6.1 shows that on average the power consumption of the machine is equal to
the power cap in the two stricter power cap (i.e. 20W and 30W), while under 40W the
mean power consumption is lower than the cap.

Moreover, in terms of standard deviation, the ARX Fair partitioning outperform the
Linear one in all the considered values of p and power caps. This highlights that, even if
the considerations on the linear power-resources model are legit, a linear model with the
parameter learned offline is not precise enough to perform better than an ARX offline
model: as a consequence, in the next evaluations we consider the ARX controller as the
reference solution.

In all the proposed configurations, the ARX Fair partitioning model performs better
with p equals to 0.5: again, this value is then used during all our experimental evaluations
that follows in Section 6.3.

As expected, RAPL outperforms our solution in terms of precision: this is reasonable,
as our solution is a software-based power capping and with resource management alone
it is not possible to achieve the same precision of RAPL, that has a direct control over
the hardware frequency and voltage of the processors. Instead, DockerCap in the best
configuration shows an average power consumption that is close to the power cap with a
standard deviation of ≈ 4.2W in all the partitioning policies.

Then, we analyzed the power consumption of all the proposed policies under the ARX
controller, since it is the one that performs better in terms of oscillations. Figure 6.2 shows
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Table 6.2: Weights of the priorities

High priority 10
Low priority 3
Best effort 1

Table 6.3: Benchmark configurations, priorities and SLO

Container Number of Threads Input type Priority SLO
fluidanimate 8 native High priority 400 s

x264 8 native Low priority 600 s
dedup 8 native Best effort -

how all the proposed policies have a similar behavior in terms of power consumption.
Even if the Throughput-aware partitioning policy has a mean power consumption lower
than the others under a power cap of 30W, they have a comparable standard deviation
in all the cases.

6.3 Performance Evaluation

In this section we discuss the results obtained from DockerCap in terms of the perform-
ances of the workloads running on the machine under a power cap.

The benchmarks are configured by adopting the values specified in Table 6.2. Moreover,
in Table 6.3 there are all the information about the configuration of the benchmarks and
the priorities and SLO in the profile file. This specific profile file is adopted to constraint
the slowest benchmark fluidanimate against the other faster benchmarks.

The performance metric chosen is the TTC of the benchmark, as it is generic with
respect to type of workload and it can be extracted without making any instrumentation
on the container. This implies a non negligible advantage, because any instrumentation
may have altered the real performance of the benchmark and the extraction of the specific
performance metric differs from one workload to another. With this metric, having a
lower TTC value means having greater performances.

The first comparison made is between RAPL and the Fair resource partitioning policy.
This is done to compare the two performance-agnostic techniques, considering that they
don’t know anything about the current running containers, thus they treat them as
"black boxes". Results in Figure 6.3 highlight that there isn’t a single solution that gives
better results in general. RAPL performs better under the higher power caps (e.g. 30W
and 40W). While our Fair resource partitioning approach performs better than RAPL
under a low power cap (e.g. 20W). Considering fluidanimate as reference, under 40W
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Figure 6.3: Performance comparison between the Fair resource partitioning policy and RAPL with
respect to three different power caps. (lower is better)
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Figure 6.4: Performance comparison between the Fair resource partitioning policy, the Priority-aware
partitioning policy and the Throughput-aware partitioning policy, with respect to three different power
caps (lower is better).

and 30W RAPL has an average gain on performance of ≈ 51s and ≈ 36s, respectively.
On the other hand, with the Fair resource partitioning the benchmark terminate ≈ 209s
before RAPL on average, under a 20W power cap. The second comparison is between the
three proposed policies: Fair, Priority-aware and Throughput-aware resource partitioning
policies. Those policies have a different view on the running container: as stated before,
the Fair policy is performance-agnostic, as it doesn’t consider the specific containers
that are running. Instead, the other two policies rely on the knowledge of the running
containers: The Priority-aware policy performs a weighted mean of the CPU quota based
on the priority assigned to the containers in the configuration profile; the Throughput-
aware policy assigns the right amount of resources by exploiting an offline model of the
known containers. Results in Figure 6.4 compare the proposed policies and highlight
the characteristics of the performance-aware ones. In this experiment, our goal was to

53



increase the performance of fluidanimate, the slowest benchmark under the performance-
agnostic policies.

The Priority-aware partitioning policy tunes the resources following the priorities
given to the container. By choosing an appropriate assignment of weights, it is possible to
obtain the same TTC for all the containers. In this case, the performance of fluidanimate
are improved w.r.t. the Fair partitioning.

The Throughput-aware partitioning allocates the right amount of resources that needs
to satisfy the SLO by following their priorities. We gave a high priority with a SLO of
400s to the benchmark fluidanimate. Under high power cap (e.g. 40W and 30W), in
all the policies (including RAPL), fluidanimate satisfies its performance constraints for
all the policies, thanks to the less strict constraints on the resources. On the contrary,
under a low power cap (e.g. 20W) the Throughput-aware partitioning policy is the only
one able to satisfy the performance constraints, because it always assigns the resources
that fluidanimate needs at the expense of the other running containers. Thus, it is the
only technique able to satisfy the SLA of the container. �
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Chapter 7

Conclusions and Future work

Power management is a key aspect that needs to be considered in nowadays technologies.
With the great diffusion of IoT technologies, the need of storing and processing data leads
to an increasing adoption of Cloud in the IoT environment. In this context, the Cloud
was obliged to extends its computation near to the physical devices, mostly to scale
properly and to provide specific functionalities needed by specific IoT applications. This
has led the introduction of a new paradigm: Fog Computing. With this technology,
the computation is taken near the physical device through specific computational units,
defined as fog nodes. Those nodes cannot dispose of a great amount of energy, because
they are usually deployed in a domestic environment or they are battery-powered. Thus,
to provide an higher availability for fog nodes, we need to adopt power management
techniques to limit the consumption of a single node still guaranteeing its constraints on
performances. Moreover, in this context there is the need of moving the computation
between the cloud and the fog.

In this thesis work we proposed DockerCap: a performances-aware orchestrator for
Docker containers that manages their assigned resource at runtime to meet constraints on
power consumption and the performance requirements of different tenants. We develop
DockerCap by following the ODA control loop, a well known approach of control systems
and a policy-based system to tune the performance of the containers.

In the Observe phase, we gather the information that represents the current state of
the system that hosts DockerCap: the power consumption of the machine, the current
allocation of the resources, specifically the CPU quota, and extra information about the
running containers.

In the Decide phase, we focus on computing a new allocation of resources that will
take the system to satisfy its constraints, both in terms of power consumption and per-
formances. To better tackle these requirements, we divide the decision problem in two
subphases. In the first subphase, called Resource control, we decide the global allocation
of resources that the containers will exploit. In this subphase, the focus is satisfying the
constraint on the power consumption of the machine. We develop a controller that, given
the current power consumption and an offline model of the machine, it will provide the
global allocation of resources that needs to be assigned to stay under the power cap. The
second subphase, called Resource Partitioning, focuses on partitioning the whole amount



of resources, provided by the previous subphase, to tune the performances of the running
containers. In this subphase, we develop a policy-based system and we propose three
policies that handle the resources to reach for different purposes. The first policy, the
Fair resource partitioning, simply splits the CPU quota in equals parts for all the run-
ning containers. The second policy, the Priority-aware resource partitioning, performs a
weighted mean of the CPU quota based on the priority assigned to each containers. The
third and last proposed policy is the Throughput-aware partitioning policy; by following
the priority of the containers, it allocates the right amount of resources needed to satisfy
the SLO of a specific container. The information about the priorities and the amount of
resources required to satisfy the constraints on performances are given through a profile
file. By performing the two subphases sequentially, we obtain the amount of CPU Quota
that needs to be assigned for each container.

In the Act phase, we perform the actual allocation of the resources by exploiting the
Linux Control Groups, all of this based on the allocation computed in the previous step.

In order to evaluate our proposed solution, we compare all our proposed policies with
the state of the art power capping solution RAPL, both in terms of precision and perform-
ances. In the precision evaluation, we analyze how the controlled system behaves when
DockerCap enforces a power cap, expressed in terms of the mean power consumption.
Instead, in the performance evaluation we analyze the performance of each benchmark
under a power cap with respect to its requirements. From the results obtained, we see
that RAPL provides better precision in terms of power capping, thanks to its capability
to operate directly on the voltage and frequency of the processors and its fast reaction
time. On the other hand, our proposed policies provide a better alternative to RAPL
in terms of performances, in a multi-tenant scenario. The Fair resource partitioning
provides better performances under a lower power cap, and comparable performances
under higher power caps. The Priority-aware resource partitioning policy can uniformly
distribute the resources such that the TTC of the containers is the same. Moreover, the
results obtained with the Throughput-aware policy shows that it is possible to guarantee
the SLO of specific workloads, in contrast with the other techniques, while still guaran-
teeing the power constraints.

Future work The most incumbent work that can improve DockerCap is related to
the precision of the power capping. An interesting option that needs to be explored is the
adoption of the MARC framework [68] during the Resource control phase. This could
lead to an improvement in the precision of the model of the system S adopted in the
feedback control, thus providing a more precise capping.

Another option could be to add in the control loop the possibility of learning the model
of the system online, through RLS or a Kalman filter [53]. With an online model, it is
possible to adapt the control with respect to the containers that are currently running.

Unfortunately, a software-based power capping technique is not enough to provide a
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power capping as precise as an hardware-based one, like RAPL. Regarding this issue, it is
necessary to integrate RAPL in the DockerCap methodology to exploit the advantages of
both the techniques: a fast and precise power capping and a fine-grained control over the
resources of the containers to satisfy the constraints on the performances of the tenants.

Another important aspect that needs to be extended is the observation of the perform-
ances of the running containers. Currently, DockerCap exploits a resource-performance
model of the container that is computed offline; this it is not always feasible in a Cloud
environment, where you host workloads that are not known a priori. In this context,
there is the need of obtaining those informations at runtime, by extracting metrics about
the current computation. Those metrics can provide information on the right allocation
of resources that satisfy the performance requirements. Moreover, it is not easy to obtain
a performance metric at runtime from the container, because a general workload does
not provide such data. We recommend to explore the possibility of adopting the hard-
ware performance counters as a metric to gather useful information about the running
containers. �

57



Bibliography

[1] Flavio Bonomi, Rodolfo Milito, Jiang Zhu and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the first edition of the mcc
workshop on mobile cloud computing. ACM, 2012, pages 13–16.

[2] Qi Zhang, Lu Cheng and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1):7–18, 2010.

[3] Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona Brandic, Jean-Marc Pierson
and Athanasios V Vasilakos. Cloud computing: survey on energy efficiency. Acm
computing surveys (csur), 47(2):33, 2015.

[4] Linux cgroups. July 2016. url: https://www.kernel.org/doc/Documentation/c
group-v1/cgroups.txt.

[5] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Doron Rajwan and Eliezer
Weissmann. Power-management architecture of the intel microarchitecture code-
named sandy bridge. Ieee micro, (2):20–27, 2012.

[6] Franck L Lewis et al. Wireless sensor networks. Smart environments: technologies,
protocols, and applications:11–46, 2004.

[7] Luigi Atzori, Antonio Iera and Giacomo Morabito. The internet of things: a survey.
Computer networks, 54(15):2787–2805, 2010.

[8] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari and
Moussa Ayyash. Internet of things: a survey on enabling technologies, protocols,
and applications. Ieee communications surveys & tutorials, 17(4):2347–2376, 2015.

[9] Enerdata. Global energy statistical yearbook 2014. 2014. url: http://yearbook
.enerdata.net/ (visited on 2016).

[10] U.S. EIA. International energy outlook 2016 with projections to 2040. technical
report. 2016. url: http://www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf
(visited on 2016).

[11] European Communities European Commission. Energy efficiency plan 2011. tech-
nical report. 2011. url: http://ec.europa.eu/clima/policies/strategies/20
50/docs/efficiency_plan_en.pdf (visited on 2016).

[12] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam
and Doug Burger. Dark silicon and the end of multicore scaling. In Computer
architecture (isca), 2011 38th annual international symposium on. IEEE, 2011,
pages 365–376.

58

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://yearbook.enerdata.net/
http://yearbook.enerdata.net/
http://www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf
http://ec.europa.eu/clima/policies/strategies/2050/docs/efficiency_plan_en.pdf
http://ec.europa.eu/clima/policies/strategies/2050/docs/efficiency_plan_en.pdf


[13] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson and Michael Bedford Taylor. Conser-
vation cores: reducing the energy of mature computations. In Acm sigarch computer
architecture news. Volume 38. (1). ACM, 2010, pages 205–218.

[14] Robert R Schaller. Moore’s law: past, present and future. Spectrum, ieee, 34(6):52–
59, 1997.

[15] Michael B Taylor. Is dark silicon useful?: harnessing the four horsemen of the com-
ing dark silicon apocalypse. In Proceedings of the 49th annual design automation
conference. ACM, 2012, pages 1131–1136.

[16] Jean-Marc Pierson. Large-scale distributed systems and energy efficiency: a holistic
view. John Wiley & Sons, 2015.

[17] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Hermann De
Meer, Minh Quan Dang and Kostas Pentikousis. Energy-efficient cloud computing.
The computer journal, 53(7):1045–1051, 2010.

[18] Xi Fang, Satyajayant Misra, Guoliang Xue and Dejun Yang. Smart gridâăťthe
new and improved power grid: a survey. Ieee communications surveys & tutorials,
14(4):944–980, 2012.

[19] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: landscape and re-
search challenges. Acm transactions on autonomous and adaptive systems (taas),
4(2):14, 2009.

[20] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna and Christian
Le. Rapl: memory power estimation and capping. In Low-power electronics and
design (islped), 2010 acm/ieee international symposium on. IEEE, 2010, pages 189–
194.

[21] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang
and Xiaoyun Zhu. No power struggles: coordinated multi-level power management
for the data center. In Acm sigarch computer architecture news. Volume 36. (1).
ACM, 2008, pages 48–59.

[22] Xiaorui Wang, Ming Chen and Xing Fu. Mimo power control for high-density
servers in an enclosure. Parallel and distributed systems, ieee transactions on,
21(10):1412–1426, 2010.

[23] Huazhe Zhang and Henry Hoffmann. Maximizing performance under a power cap:
a comparison of hardware, software, and hybrid techniques. In International con-
ference on architectural support for programming languages and operating systems
(asplos), 2016.

[24] Qingyuan Deng, David Meisner, Arup Bhattacharjee, Thomas F Wenisch and Ri-
cardo Bianchini. Coscale: coordinating cpu and memory system dvfs in server sys-
tems. In Microarchitecture (micro), 2012 45th annual ieee/acm international sym-
posium on. IEEE, 2012, pages 143–154.

59



[25] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F Wenisch and
Ricardo Bianchini. Multiscale: memory system dvfs with multiple memory control-
lers. In Proceedings of the 2012 acm/ieee international symposium on low power
electronics and design. ACM, 2012, pages 297–302.

[26] Ryan Cochran, Can Hankendi, Ayse K Coskun and Sherief Reda. Pack & cap: ad-
aptive dvfs and thread packing under power caps. In Proceedings of the 44th annual
ieee/acm international symposium on microarchitecture. ACM, 2011, pages 175–
185.

[27] Krishna K Rangan, Gu-Yeon Wei and David Brooks. Thread motion: fine-grained
power management for multi-core systems. In Acm sigarch computer architecture
news. Volume 37. (3). ACM, 2009, pages 302–313.

[28] Jian Chen and Lizy Kurian John. Predictive coordination of multiple on-chip re-
sources for chip multiprocessors. In Proceedings of the international conference on
supercomputing. ACM, 2011, pages 192–201.

[29] Henry Hoffmann and Martina Maggio. Pcp: a generalized approach to optimiz-
ing performance under power constraints through resource management. In 11th
international conference on autonomic computing (icac 14), 2014, pages 241–247.

[30] Martina Maggio, Henry Hoffmann, Marco D Santambrogio, Anant Agarwal and
Alberto Leva. Power optimization in embedded systems via feedback control of
resource allocation. Control systems technology, ieee transactions on, 21(1):239–
246, 2013.

[31] David Meisner, Christopher M Sadler, Luiz André Barroso, Wolf-Dietrich Weber
and Thomas F Wenisch. Power management of online data-intensive services. In
Computer architecture (isca), 2011 38th annual international symposium on. IEEE,
2011, pages 319–330.

[32] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated power manage-
ment in virtualized enterprise systems. In Acm sigops operating systems review.
Volume 41. (6). ACM, 2007, pages 265–278.

[33] Vlasia Anagnostopoulou, Susmit Biswas, Heba Saadeldeen, Ricardo Bianchini, Tao
Yang, Diana Franklin and Frederic T Chong. Power-aware resource allocation
for cpu-and memory-intense internet services. In, Energy efficient data centers,
pages 69–80. Springer, 2012.

[34] Wes Felter, Karthick Rajamani, Tom Keller and Cosmin Rusu. A performance-
conserving approach for reducing peak power consumption in server systems. In
Proceedings of the 19th annual international conference on supercomputing. ACM,
2005, pages 293–302.

[35] Xiaodong Li, Ritu Gupta, Sarita V Adve and Yuanyuan Zhou. Cross-component
energy management: joint adaptation of processor and memory. Acm transactions
on architecture and code optimization (taco), 4(3):14, 2007.

60



[36] Jonathan A Winter, David H Albonesi and Christine A Shoemaker. Scalable thread
scheduling and global power management for heterogeneous many-core architec-
tures. In Proceedings of the 19th international conference on parallel architectures
and compilation techniques. ACM, 2010, pages 29–40.

[37] Xiaodong Li, Zhenmin Li, Francis David, Pin Zhou, Yuanyuan Zhou, Sarita Adve
and Sanjeev Kumar. Performance directed energy management for main memory
and disks. Acm sigplan notices, 39(11):271–283, 2004.

[38] Keith Adams and Ole Agesen. A comparison of software and hardware techniques
for x86 virtualization. Acm sigplan notices, 41(11):2–13, 2006.

[39] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt and AndrewWarfield. Xen and the art of virtualization. Acm
sigops operating systems review, 37(5):164–177, 2003.

[40] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin and Anthony Liguori. Kvm: the
linux virtual machine monitor. In Proceedings of the linux symposium. Volume 1,
2007, pages 225–230.

[41] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Usenix annual
technical conference, freenix track, 2005, pages 41–46.

[42] Docker. Docker - build, ship, and run any app, anywhere. 2013. url: https://ww
w.docker.com (visited on 2016).

[43] Linux kernel. July 2016. url: https://www.kernel.org.

[44] Linux namespaces. July 2016. url: http://man7.org/linux/man-pages/man7/n
amespaces.7.html.

[45] Dave Evans. The internet of things: how the next evolution of the internet is chan-
ging everything. Cisco white paper, 1:1–11, 2011.

[46] Jiang Zhu, Douglas S Chan, Mythili Suryanarayana Prabhu, Prem Natarajan, Hao
Hu and Flavio Bonomi. Improving web sites performance using edge servers in fog
computing architecture. In Service oriented system engineering (sose), 2013 ieee
7th international symposium on. IEEE, 2013, pages 320–323.

[47] Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Ken Lutz, Eric Allman,
John Wawrzynek, Edward Lee and John Kubiatowicz. The cloud is not enough:
saving iot from the cloud. In 7th usenix workshop on hot topics in cloud computing
(hotcloud 15), 2015.

[48] Joseph L Hellerstein, Yixin Diao, Sujay Parekh and Dawn M Tilbury. Feedback
control of computing systems. John Wiley & Sons, 2004.

[49] Davide B Bartolini, Filippo Sironi, Donatella Sciuto and Marco D Santambrogio.
Automated fine-grained cpu provisioning for virtual machines. Acm transactions
on architecture and code optimization (taco), 11(3):27, 2014.

61

https://www.docker.com
https://www.docker.com
https://www.kernel.org
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html


[50] Filippo Sironi, Martina Maggio, Riccardo Cattaneo, Giovanni F Del Nero, Dona-
tella Sciuto and Marco D Santambrogio. Thermos: system support for dynamic
thermal management of chip multi-processors. In Parallel architectures and com-
pilation techniques (pact), 2013 22nd international conference on. IEEE, 2013,
pages 41–50.

[51] Oxford English Dictionary. Oxford: oxford university press. 1989. url: http://ww
w.oxforddictionaries.com (visited on 2016).

[52] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh and Kai Li. The parsec
benchmark suite: characterization and architectural implications. In Proceedings
of the 17th international conference on parallel architectures and compilation tech-
niques. ACM, 2008, pages 72–81.

[53] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Journal of basic engineering, 82(1):35–45, 1960.

[54] Pierre Simon marquis de Laplace. Théorie analytique des probabilités. V. Courcier,
1820.

[55] Norman R Draper and Harry Smith. Applied regression analysis. John Wiley &
Sons, 2014.

[56] Python. Python - work quickly and integrate systems more effectively. 1991. url:
https://www.python.org (visited on 2016).

[57] Python. Queue - python module that implements multi-producer, multi-consumers
queue. url: https://docs.python.org/2/library/queue.html (visited on
2016).

[58] JSON. Json - a lightweight data-interchange format. url: http://www.json.org
(visited on 2016).

[59] Liunx. Perf - monitoring performance counters on linux. 2009. url: https://per
f.wiki.kernel.org/index.php/Main_Page (visited on 2016).

[60] W3. Xml - simple and very flexible text format. 2007. url: http://www.w3.org/X
ML/ (visited on 2016).

[61] Communicationsprotocol090824, 2015. url: https://goo.gl/ZKzctJ (visited on
2016).

[62] pyrovski. Wattsup - a program for interfacing with the watts up? power meter.
2012. url: https://github.com/pyrovski/watts-up (visited on 2016).

[63] Intel. Intel xeon processor e5-1410 specifications. 2012. url: http://ark.intel
.com/products/67417/Intel-Xeon-Processor-E5-1410-10M-Cache-2_8-GHz
(visited on 2016).

[64] Intel. Intel turbo boost technology 2.0. 2012. url: http://www.intel.com/conte
nt/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-tec
hnology.html (visited on 2016).

62

http://www.oxforddictionaries.com
http://www.oxforddictionaries.com
https://www.python.org
https://docs.python.org/2/library/queue.html
http://www.json.org
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.w3.org/XML/
http://www.w3.org/XML/
https://goo.gl/ZKzctJ
https://github.com/pyrovski/watts-up
http://ark.intel.com/products/67417/Intel-Xeon-Processor-E5-1410-10M-Cache-2_8-GHz
http://ark.intel.com/products/67417/Intel-Xeon-Processor-E5-1410-10M-Cache-2_8-GHz
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html


[65] Dean M Tullsen, Susan J Eggers and Henry M Levy. Simultaneous multithread-
ing: maximizing on-chip parallelism. In Acm sigarch computer architecture news.
Volume 23. (2). ACM, 1995, pages 392–403.

[66] D. Pnueli and C. Gutfinger. Fluid mechanics. Cambridge University Press, 1992.

[67] Liunx. Stress - tool to impose load on and stress test systems. url: http://linu
x.die.net/man/1/stress (visited on 2016).

[68] Andrea Corna and Andrea Damiani. A scalable framework for resource consump-
tion modelling: the marc approach. Master’s thesis. Politecnico di Milano, 2016.

63

http://linux.die.net/man/1/stress
http://linux.die.net/man/1/stress


Appendix A

DockerCap configuration

This appendix describes the configuration files adopted in DockerCap.

The first file is the configuration file of the Observe Component. It is divided in three
different secitons:

• default: contains all the parameters needed by the general Observe phase.

• watts-up: contains all the parameters needed by the WattsUpPowerSource

• rapl: contains all the parameters needed by the RAPLPowerSource

The WattsUpPowerSource needs to know the serial ID of the power meter attached by
the USB and the path to the executable that permits the power readings.
The RAPLPowerSource, needs only the sample time (in ms) to perform the power
samplings. An example of the configuration is represented in Listing A.1.

The second file is the configuration file of the Decide Component. It is divided in multiple
sections, as follows:

• default: contains all the parameters needed by the general Decide phase.

• arx: contains all the parameters needed by the ARX Resource control

• linear: contains all the parameters needed by the Linear Resource Control

• partitioner: contains all the parameters needed by the Partitioning policies

Regarding the default section, It is possible to specify the Decider chosen in the de-
cision process by writing its label in the controller parameter.The variable power_init
and power_cap represent the init value that will be passed to the Decider and the power
cap P̂ that the resource control phase must guarantee. The path in which will be written
the log files is described in the output value. Last, we have quota_min as the minimum
value of global CPU quota that can be assigned.
Instead, in the arx and linear sections, they contains all the parameter that are specific
for the controller, like the weights of the model a and b, the pole p and the parameter



A.2

Listing A.1: XML Configuration file of the Observe Phase

<config>
<watts-up>

<device>ttyUSB0</device>
<path>/home/user/wattsup/wattsup</path>

</watts-up>
<rapl>

<sample_time>1000</sample_time>
</rapl>
<default>

<num_sample>10</num_sample>
</default>

</config>

used during the normalization of the power and quota. Finally, in the partitioner sec-
tion there are the weight associated to the three priorities in the Priority-aware resource
partitioning and the minimum quota that needs to be asigned to each container.



Listing A.2: XML Configuration file of the Observe Phase

<config>
<default>

<controller>linear-fair</controller>
<power_init>24.7542</power_init>
<power_cap>20</power_cap>
<output>output/decide</output>

</default>
<arx>

<a>-0.5673</a>
<b>1.662</b>
<p>0.5</p>
<power_avg>24.7542</power_avg>
<power_sd>11.0470</power_sd>
<quota_avg>212.7088</quota_avg>
<quota_sd>115.3326</quota_sd>
<quota_min>5</quota_min>

</arx>
<linear>

<a>0.9558</a>
<p>0.1</p>
<power_avg>24.7542</power_avg>
<power_sd>11.0470</power_sd>
<quota_avg>212.7088</quota_avg>
<quota_sd>115.3326</quota_sd>
<quota_min>5</quota_min>

</linear>
<partitioner>

<quota_container_min>5</quota_container_min>
<weight_high>5</weight_high>
<weight_low>3</weight_low>

</partitioner>
</config>

A.3
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