

POLO TERRITORIALE DI COMO

Master of Science in Computer Engineering

NASA Web WorldWind: Visualization
tool for multidimensional
environmental variables

Supervisor: Prof.ssa Maria Antonia Brovelli
Co-Supervisor: Patrick Hogan

Master Graduation Thesis by:
Gabriele Prestifilippo id. 835735

Academic Year 2015/16

POLO TERRITORIALE DI COMO
Corso di Laura Specialistica in Ingegneria Informatica

NASA Web WorldWind: Visualization
tool for multidimensional
environmental variables

Relatore: Prof.ssa Maria Antonia Brovelli
Correlatore: Patrick Hogan

Tesi di laurea di:

Gabriele Prestifilippo

matr. 835735

Anno Accademico 2015/16

1

Contents

List of Figures ... 4

List of Snippets .. 6

List of Tables .. 7

Abstract ... 8

Sommario ... 9

Introductive Steps .. 11
 Virtual Globes .. 11
 Big Geo Data ... 12

 Data Collection: Crowdsourcing ... 13

 Data Storing .. 14

 Data Visualization ... 15

 Data Analysis ... 18
 Geographic data over the web ... 18
 Our Solution for Big Geo Data .. 19
 Related Work .. 20

 Virtual Globes .. 21
 Available Virtual Globes ... 21

 AGI Cesium ... 21

 ESRI ArcGIS Explorer Desktop ... 22

 Google Earth .. 22

 NASA World Wind .. 23

 NASA Web WorldWind ... 23

 SOS Explorer ... 24
 Modern Virtual Globes.. 24
 Our choice: NASA Web WorldWind .. 26
 Voxel Model within Virtual Globes .. 26

 Storing Solution for Big Geo Data ... 28
 RDBMS: An Old Inefficient Solution .. 28
 NoSQL DBMS ... 29

 Key-Value Stores ... 30

 Document Stores ... 30

 Wide Columns Store .. 30

 Graph Databases ... 31
 OLAP: Multidimensional Analytic System ... 32
 Rasdaman ... 34

 Application Development .. 36

2

 Requirement Analysis ... 36
 Application Audience and Potential Uses ... 36
 Use Cases .. 37
 Application Introduction .. 37
 Application Architecture: Client Side ... 38

 NASA Web WorldWind Framework ... 39

 jQuery ..40

 Bootstrap ... 41

 jQuery UI ... 42

 Google Charts .. 42
 Application Architecture: Server Side .. 43

 Rasdaman .. 44

 MongoDB .. 44

 Document Model ... 45

 Node.js ... 45

 Express .. 47

 REST Interface .. 47
 Application Components and Flow ... 48

 Terminology and Code Convention... 49

 Data Importing from CSV ... 50

 Doxels creation .. 51

 Data Importing from Database ... 52

 Retrieving Doxels data .. 52

 Big Doxels Creation ... 53

 Big Doxels Showing & Hiding ... 55

 Filtering ... 55

 Latitude & Longitude Filter ... 55

 Altitude Filter .. 57

 Values Filter .. 57

 Time Browsing .. 57

 Updating Options .. 58

 Automatic Big Doxels .. 58

 Starting Height .. 58

 Statistical Index ... 58

 Dataset Comparison .. 59

 Doxel Extrusion ...60
 User Interface Demonstration ..60

 Data Importing from CSV ...60

 Personalization Options .. 61

 Interface Options ... 62

 Dataset Comparison .. 65

 Voxel Extrusion ... 66
 Multiresolution Grid Creator .. 67

3

 Grid Typologies ... 67

 Voronoi Diagram ... 68

 Quadtree .. 69

 Quadtree Grid Generation ... 70
 Development Environment - WebStorm .. 72
 Unit Testing .. 74

 When to test .. 74

 Why testing .. 74

 What to test ... 74

 How to test .. 75

 Testing Environment... 75

 Tests .. 76
 Versioning System .. 77

 Local Version Control System ... 77

 Centralized Version Control System ... 77

 Distributed Version Control System ... 78

 GitHub ... 78

 SourceTree ... 78

 Case Studies ... 79
 Milan: Telecommunication Data .. 79
 Turin: Point Features Data ... 85
 West Turrock: Geological Data .. 88
 World Coverage: Average Land Temperature .. 92

 Conclusions ... 95
 Evaluation of Experiences .. 95
 Future Developments.. 95

 Bibliography ... 96

4

List of Figures

Figure 1 – Cloud data Storage [8] .. 15
Figure 2 – time slices of a 3D representation in archaeology [10] 17
Figure 3 – Cone Tree representation of data [11] .. 17
Figure 4 - Big Geo Data Architecture ... 19
Figure 5 – Color thematization of different buildings in Olbia [21] 26
Figure 6 – Voxel representation of water temperature using EST-WA [21] 27
Figure 7 - Big Data dimension and variety [23] .. 28
Figure 8 - Graph Databases Representation [26] .. 31
Figure 9 - Apache Kylin Architecture [30] .. 33
Figure 10 - Rasdaman Architecture [32] ... 34
Figure 11 - Possible use cases of our application ... 37
Figure 12 – Simple and complex representation of a Voxel .. 38
Figure 13 – Web WorldWind structure [33] .. 39
Figure 14 – Application Architecture .. 43
Figure 15 - Sample MongoDB document ... 44
Figure 16 - MongoDB document model ... 45
Figure 17 – Node.js Server with non-blocking IO [35] .. 46
Figure 18 – Multi-Threaded Server with blocking IO [35] .. 46
Figure 19 – Class Diagram of ESTWA Application .. 48
Figure 20 – ESTWA Class dependencies ... 49
Figure 21 – Layer made of doxels .. 49
Figure 22 – CSV importing configurator ... 50
Figure 23 – Data Importing Flow .. 51
Figure 24 – Subdivision of a rectangle in 3x3*1 dimensions .. 53
Figure 25 – Subdivision of a rectangle in 3*3*3 dimensions .. 54
Figure 26 –Big Voxels creation flow .. 55
Figure 27 – Latitude and Longitude filter flow ... 56
Figure 28 – Importing data interface .. 61
Figure 29 – Color Range interface selector ... 62
Figure 30 – Big Doxels partially hidden .. 63
Figure 31 – Filtered Doxels on value ... 64
Figure 32 – Interface to control the filters .. 64
Figure 33 – Doxel comparison over two variables .. 65
Figure 34 – Doxel extrusion using two variables .. 66
Figure 35 – Doxel Extrusion and Comparison with three variables 67
Figure 36 – Quadtree structure explanation [39] ... 68
Figure 37 – Voronoi Diagram structure .. 68
Figure 38 – Voronoi Sample with four nearby points ... 69
Figure 39 – QuadTree sample with four nearby points... 70
Figure 40 – Fully populated QuadTree ... 71
Figure 41 – Real example of QuadTree from points .. 72
Figure 42 - Testing running successfully ... 77
Figure 43 - Milano Grid, BigData Challenge - Telecom Italia .. 80
Figure 44 – Settings to import data in our study case ... 81

5

Figure 45 - Doxels representing outgoing calls over Milano grid.................................... 81
Figure 46 – Filtering out low values in our study case .. 82
Figure 47 – Values filtered out in our study case .. 82
Figure 48 - Group representation of average outgoing calls ... 83
Figure 49 – Information about a single doxel in our study case 84
Figure 50 – Comparison of two variables in our study case .. 84
Figure 51 – Doxel extrusion in our study case ... 85
Figure 52 - 2D representation of point features .. 86
Figure 53 - QuadTree representation of Turin Dataset ... 86
Figure 54 - Doxel Representation of Turin Dataset ... 87
Figure 55 - Time representation of Turin Dataset .. 88
Figure 56 - Extrusion representation of Turin Dataset .. 88
Figure 57 - WestThurrock: Chalk Deposit in 4 Quadrant subdivision 89
Figure 58 - WestThurrock: Chalk Deposit in 6 Quadrant subdivision90
Figure 59 - West Thurrock chalk data ... 91
Figure 60 - Average Land Temperature, Europe ... 92
Figure 61 - Average Land Temperature, Western Africa ... 93
Figure 62 - Average Land Temperature, North Italy ... 94
Figure 63 - Average Land Temperature, North Italy, 12 Months 94

6

List of Snippets

Code Snippet 1 – Structure of the parsed data .. 50
Code Snippet 2 – Color Retrieval through getColor method... 52
Code Snippet 3 – Process to filter the longitude from UserInterface 56
Code Snippet 4 – Changing time from the UserInterface ... 57
Code Snippet 5 – Switch for the statistic in GlobeHelper ... 59
Code Snippet 7 – sample test structure in Jasmine .. 75
Code Snippet 6 – Testing two properties of an object ... 76

7

List of Tables

Table 1 – Technical characteristics of main Virtual Globes ... 21
Table 2 – Features of main Virtual Globes .. 24
Table 3 - Main NoSQL DBMS .. 31
Table 4 - OLAP Cube Representation [29] .. 32
Table 5 – Example of CamelCase notation .. 50

8

Abstract

In this work of thesis, we presented a Web application created using the NASA Web
WorldWind framework. NASA Web WorldWind is a Web Virtual Globe, which runs in
any modern browser thanks to JavaScript and HTML5. It born to visualize geospatial
data, such as satellite images and environmental data. Although it comes with a well
comprehensive set of APIs (Application Programming Interface) to customize the globe,
and thus, it offers several ways to enrich the globe and extend its functionalities.
Nowadays as an individual, we generate a large volume of data, specifically geographic
ones. Several ways of collecting, visualizing and analyzing data arose in the last few
years.
To face with the necessity of visualizing, storing and analyzing these data, we developed
a whole system permitting to handle in a proper way various datasets.
We, thus, tested the application with some sample datasets, coming from different
areas. We created a use case for telecommunication data, using as sample data from
“Telecom Italia Big Data Challenge” 2015. In this case, we demonstrated how call
records, SMSs, and internet usage can be shown on a Virtual Globe and, we also
presented, possible analysis that could be done.
Another case study we created, refers to the city of Turin, showing data gathered from
weather stations. Here we created a customized grid, generated from a QuadTree
algorithm to implement a suitable model.
A different use case shows some geological data, representing a three-dimensional
model of Chalk deposits in West Thurrock.
And finally we illustrate how we can connect to an external database in real-time to
retrieve any kind of data, and as use case we retrieved the average land temperature,
available for the whole globe, during the year 2014.
Moreover, all available standard WMSs (Web Map Services) and WCSs (Web Coverage
Services) can be connected to enrich the context of data. Data visualization is provided
together with summary statistics, such as minimum, maximum, average, standard
deviation, range and correlation between two variables in the dataset. This approach
allows an easy and interactive way to browse the data, keeping them in their real
geospatial context and providing at the same time basic statistical analysis, useful for
their exploration. The developed tool is multipurpose and can show several kinds of
data. For this reason, in this work of thesis we presented several use cases to show how
the application can be applied to different datasets.

9

Sommario

In questo lavoro di tesi, presentiamo un’applicazione Web creata usando il framework
NASA Web WorldWind. Esso è un globo virtuale, che può essere visualizzato su
qualsiasi browser moderno grazie alle tecnologie JavaScript e HTML5. Web WorldWind
è nato per visualizzare dati geospaziali, quali immagini satellitari e variabili ambientali.
Nonostante ciò, viene fornito con un vasto set di API (Application Programming
Interface) per personalizzare le funzionalità, e quindi offre diversi modi per arricchire il
globo virtuale ed estendere le sue caratteristiche di base.
Al giorno d’oggi, come individui, generiamo un grande volume di dati, specialmente
geografici. La necessità di trovare modi diversi di collezionare, visualizzare ed analizzare
dati, è emersa principalmente negli ultimi anni. Per far fronte a questa necessità,
abbiamo sviluppato un intero sistema che permette di gestire in modo opportuno
diversi set di dati.
Abbiamo quindi testato l’applicazione con diverse tipologie di datasets, provenienti da
diverse aree. Abbiamo creato un caso d’uso per dati di telecomunicazione, usando come
esempio i dati provenienti dal “Telecom Italia Big Data Challenge” del 2015. In questo
caso, abbiamo dimostrato come record di chiamate, SMS ed uso di internet, possano
essere visualizzati su un globo virtuale, ed abbiamo anche presentato possibili analisi
che possono essere effettuate.
Un altro caso di studio che abbiamo creato si riferisce alla città di Torino, dove
mostriamo dei dati raccolti da diverse stazioni metereologiche. In questo esempio,
abbiamo creato una griglia personalizzata, rappresentata da una struttura QuadTree,
generata da un algoritmo apposito che implementa un modello appropriato.
Un differente caso d’uso mostra alcuni dati geologici, mostrando un modello tri-
dimensionale di depositi di gesso a West Thurrock.
Infine, illustriamo come abbiamo sviluppato un sistema per connetterci ad un database
esterno in tempo reale per ottenere svariati tipi di dati. Come caso di esempio abbiamo
usato dei dati contenenti informazioni sulla temperatura del terreno, disponibile per
l’anno 2014, con una copertura globale.

Inoltre, tutti gli standard WMSs (Web Map Services) e WCSs (Web Coverage Services)
possono essere aggiunti alla nostra applicazione per arricchire il contesto in cui i dati
vengono visualizzati.
La visualizzazione dei dati viene fornita insieme a statistiche, quali minimo, massimo,
media, deviazione standard, intervalli dei valori e correlazione tra due variabili in un set
di dati. Questo approccio permette un metodo facile ed interattivo per navigare
attraverso dei dati, mantenendoli nel loro contesto geospaziale e fornendo allo stesso
tempo statistiche di base, utili per la loro esplorazione. Lo strumento sviluppato ha
diverse funzionalità e può mostrare diverse tipologie di dati. Per questo motivo, in
questo lavoro di tesi, abbiamo presentato diversi casi d’uso per mostrare come
l’applicazione può funzionare con svariate tipologie di dati.

10

Introduction

In the last decade, the increase of data collected increased exponentially, in the same
way, methodologies to store, visualize and process a huge quantity of data has
become fundamental. Big data comprehends many sub categories and an important
one is represented by the big geo data. The big geo data consists of sets of data in
which there is information about the location. Therefore, in this work of thesis we
wanted to design and implement a web application to handle and visualize
multidimensional geo-data. To achieve so we had to fulfill several secondary goals.

 Understanding the geo-data and the multidimensional data.

 Understanding the development process of a modern Web application
according to a principled methodology.

 Developing a complete rich Internet application featuring data interaction
and visualization.

 Learning the design of the architecture, data structures, and interactions
of a modern Web application.

 Applying client-side scripting in the JavaScript language, by designing the
dashboard front-end using state-of-the-art client-side frameworks.

 Understanding the usage of frameworks and how to extend their
functionalities.

This paper is organized as follows:

The next chapter explains what is the current state of the art regarding Virtual Globes
and shows some related works. Moreover, it will explain the available solutions for
handling big data and further describe the one we adopt.

The third chapter shows the available solutions to store big data and some analysis
performed using these technologies.

The fourth chapter presents the development of a Web application to visualize data
and illustrates the models we adopted. This chapter is divided into other parts: a first
part to show the internal architecture and the tools used. A second part, explaining
the user interface, and its functionalities. The third part explains what happen
internally in the application when we use it, showing some algorithm and the code
used for it.

The fifth chapter presents our case studies. These show examples of where our
application can be used and what are the advantages. Within this chapter, all the
techniques we used are explained, and some sample images are provided.

The last chapter explains what we achieved and ways that our application might be
further optimized and extended.

11

Chapter 1

Introductive Steps

 Virtual Globes

“Life happens in three dimensions, so why doesn't science?” [1]

In recent decades, Virtual Globes have changed the way we can interact with
visualization of data, improving the user experience for understating different
phenomena. Their proliferation followed the development of VRML - Virtual Reality
Modeling Language - in 1994 providing the opportunity to share a Virtual Globe on
the web. This permitted the web community to see and interact with a three-
dimensional representation of Earth.
Although, developing with VRML was an activity reserved for a select few since it
needed sophisticated programming skills to create even very simple applications.

A few years later, with the start of the new century and the increasing evolution of
the Web, new technologies arose, along with improved tools. Together these made
the 3D visualization more available to a much larger community.

Earth Viewer, created by Keyhole Inc., was presented in 2001 and afterward acquired
by Google in 2004. Earth Viewer renamed in 2005 into Google Earth became a point
of reference for many scientists and a broader public. One unique characteristic of
the virtual globe, besides the possibility of exploring the globe in three dimensions,
is the DEM – Digital Elevation Model – which shows the surface elevation, putting
the user into a very real view of the world.

Meanwhile, another important point of reference for the GIS community was the
release of NASA WorldWind in 2003 as open source. With NASA WorldWind, the
approach to virtual globes changed, greatly expanding the user community who
could utilize Virtual Globes to interact with geo-data. The essential difference
WorldWind provided versus Google Earth was the opportunity to customize a virtual
globe and create any application one might imagine.

Even though this was just the beginning of the Virtual Globe era, these new
possibilities discoveries into broader areas of study. The use of Virtual Globes began
to escalate in sectors such as: Education, Research for GIS, Disaster Response, Data
Analysis and verification, Geo-Collaboration and much more. Michael F. Goodchild
Professor of Geography at the University of California said:

"It's like the effect of the personal computer in the 1970s, where
previously there was quite an élite population of computer users" [1]

12

The community of GIS users is still rapidly increasing, thanks to the advantage of
Virtual Globes now running on the Web, without the need for any external
components. And what is also creating a favorable environment for development and
use of Virtual Globes is the increase of spatial data resources available. The vastly
increased capability for understanding of the data made possible by this spatial data
being presented in its native context of a virtual globe greatly enhances research and
the decision-making process.

 Big Geo Data

Different kinds of data have become available in the last years, thanks to the advances
in various technology fields. For instance, a lot of satellites orbiting above the Earth
provide enormous amounts of data daily. Among all the information acquired from
satellites, some are available to everyone without costs – such as Sentinel’s data -
while other may be available at a price. For this reason, we can talk about Big Data.

Big data is a term for massive data sets having large, more varied and
complex structure with the difficulties of storing, analyzing and
visualizing for further processes or results. The process of research into
massive amounts of data to reveal hidden patterns and secret
correlations named as big data analytics. [2]

Big Data refers to a large amount of different data, but what is incumbent to all
spatial data is the necessity to access, store, analyze and visualize. Geo-Data is data
that contains information specific to a geographic location. Geo-Data can be
visualized using its geographic location on a map, or have a more flexible
representation in a virtual globe, so it can be experienced in its native context.

When we talk about Big Data, there are several reasons why we use the word “Big”.
A large volume of data is being collected in a short amount of time. The data for each
‘snapshot’ in time might be large and the frequency (Hz) of data sampling might also
be large. This volume easily reaches terabytes and even petabytes of data in a day.
Using Walmart1 as an example, it collects around 2.5 petabytes of unstructured data
from 1 million customers every hour [3]. Having such quantity of data brings many
advantages because they can be analyzed and much information can be extracted
from them. This information can be further used in a variety of ways; it can be sold
to third parties, used for decision-making and applied to many other fields.

A second fundamental point when talking about Big Data is the variety of collected
data. Among the data collected, we can find photo, video, audio, demographic, social
data, and more. It is important to note that much, if not most of these data will be
unstructured.
The last BigData point to be defined is the frequency in which data are collected. To
understand better ‘data velocity’ we can analyze how the data are collected, but in
general, many terabytes of data can be generated in real time via mobile applications,
computer usage, and monitoring sensors, both mobile and fixed.

1 http://www.walmart.com

13

The combination of all these factors generate a gigantic volume of different and
unstructured data, giving rise to multiple challenges especially when there is a need
to manage this data efficiently.

 Data Collection: Crowdsourcing

Every day, large amounts of data are collected. However, they do not come from a
single source, many sources provide those data. Many companies handle everyday
data from their clients, and they collect them, often anonymizing the source. As in
the example of Walmart, there are many more companies having this volume of data
every day. Many of these companies incorporate on-line websites, and thus, as we
visit these website, information is being collected about our on-line behavior. Other
sensor data is also being collected, not only via our smartphones, but also dedicated
sensors established in many cities for different purposes, primarily for monitoring of
the environment, i.e., air and water quality, etc.

The collection of data from the larger community, whether from websites or sensors,
can be defined Crowd-Sourcing. Crowdsourcing is the participatory data collection
for some purpose, involving geodata being provided by a group of people, a crowd.
The term has become popular recently and found important application in diverse
fields.
When crowdsourcing is associated with the geography, it is referred to as
neogeography. M. Goodchild gives us a good definition of it:

In other words, the old geography involves a prescribed
role/interaction between the four main components, namely the
audience, the information, the presenter and the subject, which are
common to most standard practises of learning. In NeoGeography,
there are, however, no such boundaries on roles, ownership and
interactions of these four components [4]

Neogeography and crowdsourcing are possible thanks to the development of the web
and related technologies. Social networking, for example, is a key factor for the
collecting large amounts of data from individuals. Every day more information is
being transferred from even more places throughout the world and stored in
exponentially increasing databases. Then are typically integrated into the cloud, and
from there could potentially be accessible to anyone.

Thanks to GPS, this information is typically georeferenced, with latitude and
longitude information embedded. Take for example the use of the mobile devices and
cameras, they can collect georeferenced pictures and make them available for
sharing. Flickr2 is a good sample of a website with an extensive database of
georeferenced pictures.

We should point out that there are mainly two kinds of crowdsourcing, active and
passive. Active crowdsourcing is where the people collect the information by
volunteering specific information for the purpose of helping in a project.

2 https://www.flickr.com/

14

OpenStreetMap is a sample of volunteers gathering information to improve the
quality of that map, for the benefit of the world community. Passive crowdsourcing
is mostly done through social networks. This is where people may not know they are
contributing information. In this case, the data collection may be anonymizing the
source, while sifting as much information as might be useful for a business purpose.
One concern might be the quality of this data. The quality could be a problem due to
the sensitivity of the sensors used, and large potential for many other types of errors
occurring given the indiscriminate data collection over a large quantity of data. Thus,
it is necessary in some cases to evaluate the collected information and perform
careful quality analyses, before relying on the data.

 Data Storing

The necessity of storing data is one of the first three needs when handling a huge
amount of data. The solutions that are available mainly depend on the kind of data
we want to store. A high-level approach used by Google can be found in “Bigtable: A
Distributed Storage System for Structured Data” [5]. In the case of geo-data we know
that we have datasets with several dimensions, starting with the geo-location
information, often represented by latitude and longitude, giving a set of values that
can identify the origin of any data point. In the case of multidimensional data, the
solutions adopted for less-dimensional data are not feasible.

The place where data are stored is also a really important to take into consideration.
In particular, considering the Cloud as a solution could be an interesting way to
manage those data. As regarding the system that can be used, most of them are able
to run in the Cloud. Some samples systems are the OLAP - On-Line Analytical

Processing - data cubes, used already in many projects. In “Discovery-driven
exploration of OLAP data cubes” [6] we see some examples of the possibilities
available with these cubes, in term of storing and furtherly analysis. As we have seen
the OLAP systems provides some processing tools, some more are explained in
“Range queries in OLAP data cubes” [7] where the authors explain how is possible to
query a data cube and what are the advantages in term of performances compared to
other systems.

15

Figure 1 – Cloud data Storage [8]

 Data Visualization

Data Visualization is something important in every day’s life. The visualization of
data gives many advantages. The area in which the visualization is useful goes from
3D graphics to entertainment, and much more. The visualization consists of
extracting data, of any type, and picture them in 2D or 3D representation.
The visualization of multidimensional data is a difficult challenge faced by many
scholars during the time. To visualize multidimensional data several techniques have
been used, some techniques have been invented and still nowadays new approaches
are growing and spreading continuously.

To present big amount of two-dimensional information, exist several well-known
techniques, used in the past in many studies, and that resulted being productive.
Some examples are star plots, scatter plot matrices and star glyphs.

These techniques though are not often used to visualize multidimensional geo-data,
because the geo-data have the peculiarity to contain information relatives to
geographical coordinates, and thus they belong to the real world.
Although two-dimensional techniques are effective on geo data, the need for a spatial
representation is fundamental. By spatial representation, we refer to a visualization
into a virtual globe, which would be the most appropriate one.

16

“Spatial representation allows the use of recognition mechanisms that
are built into the visual perception system and allow very rapid
recognition. Detection of spatial patterns and groupings is hardwired
into the human visual system”. [9]

Referring to spatial representation the introduction of the third dimension allows
users to perceive the data, viewing a representation as close as the real one. This
system permits to understand the information quickly, especially for the amateur
users.
The need to observe and inspect the datasets and their variables is not restricted to a
limited category of users; indeed, the occasional users are not experts in Geographic
Information Sciences, and a straightforward representation can certainly be more
efficient than an obscure one.
The techniques mentioned before can be surely adapted in different ways to have a
geographical, three-dimensional, representation of the data but another model has
to be used.
Visualizing data in 3 dimensions ease the apprehension of a dataset. To visualize data
in more than two dimensions, we need a 3D environment. Several solutions are based
on Windows and Mac OS application while less for the web.
In general, visualizing objects from the real world gives us a 360° panoramic about
an object, plus, might be possible to view the data and have more evidence rather
than the ones we can observe from the outside.
The visualization of 3D objects is done from different techniques than collected data,
not having three dimensions. Some used techniques are the splatting and textured
splats; that consist on a simulation the surface of an object with small pieces of 2D
surfaces, placed in three dimensions. With the past of the years and the increase of
the computational power of the computers new techniques based on voxels spread
to visualize the objects in an easier way to understand.
Talking about data visualization, thus phenomenal data, fewer techniques are
available. It is fundamental to have a 3D representation because it shows to non-
expert people an accessible illustration, and simple to perceive. An example, taking
into consideration the time, are the time slices of 3D data used in archaeology.

17

Figure 2 – time slices of a 3D representation in archaeology [10]

It consists of a mixed representation of 2D and 3D data
where some slices of a surface are represented and on the z-axis the time is shown.
While talking about more complex structures the Cone Tree technique allows the
visualization of hierarchical information.

Figure 3 – Cone Tree representation of data [11]

18

It consists in a top-down visualization, showing a 3D graph with a parent node, and
some leaves going down in the z-axis, that might have, in turn, other leaves. As
pictured in the image below.

 Data Analysis

As regards for the analysis of the data, several techniques existed even before the
advantages in computer science and the storing in the databases.
The analysis of multidimensional data takes into consideration many relationships
among the dimensions, each of them represented by a variable. Once more a feasible
solution consists of tools available in the Cloud, in the case we want to store our data
in a Cloud platform. As we mentioned, some analytical tools are provided by OLAP
systems; we can see how to use them in “Providing OLAP (on-line Analytical
Processing) to User-analysts: An IT Mandate” [12]. Another solution consists of
having some of these data in our machines, and with some high-level software
analyze them, in this case, many technologies are explained in the book: “Big Data
Analysis” [13].

 Geographic data over the web

One approach of using geographic data is the web. Although the possibility of
showing and interacting with this information on the internet was not always
something available, because the technologies to achieve so were developed recently.
When talking about web technologies, we refer mainly to HTML – Hypertext Markup
Language – and JavaScript. HTML is a pseudo-language to style a web page,
inserting some markups. The pure HTML, at least until HTML5, spread around 2014
[14], did not permit users to interact with the technologies of the geographic world.
JavaScript is a web scripting language, oriented to object and events of a web page.
JavaScript comes from the ES – ECMAScript – language, standardized from ECMA
International. Several versions have been available for the web but only from 2009,
with the version 5, we have some features to create web applications. Such as the
include of the JSON format – JavaScript Object Notation – which is well spread in
the geographic information system world as well.
The first approach to technology to increase the functionalities of the web were the
Java Applets [15]. A Java Applet is a program, written in Java language that can be
visualized on a web page, after installing the proper Java plugin. It is a mix of a
standalone program and a pure web application.
The mentioned technologies all run on the client side, so in the web browser of any
users. However, to extend the functionalities of a web application there are also
server-side technologies such as PHP, J2EE and .Net that provides several additional
features approaching the geographic information to the internet.
Merging client and server side to create a web application we can have some
examples of WebGIS, which is the acronym for the geographic information system
published on the web.
The firsts WebGIS were although developed using old technologies and not including
the latest versions of JavaScript or the new server technologies. Some examples were

19

static maps with marker and few others information.
New solutions, such as Google Maps3 implement modern technologies and spread all
around the web in the last few years. In the same way as Google, other companies
developed their software using client and server technologies to have WebGIS. Other
examples could be MapQuest4 that is a service to provide information within a city
using a map. In the application, there are more than a few information available,
such as real-time traffic, or shops location and so on. Another interesting solution is
OpenStreetMap5; it is a WebGIS that uses an openly licensed map, created by
volunteers, and updated daily thanks to collected information by people using it.

 Our Solution for Big Geo Data

To create our system, we wanted to resolve all the problems that could arise when
creating an application that interacts with Big Geo Data. Thus, our application had
to Store, Visualize and Analyze the data, being in a web environment. To achieve this
aim we started from the storage of big data. We analyzed different solutions, and we
found out that the most efficient for Geographic datasets is to use OLAP data cubes.
Thus we used Rasdaman, a raster data manager. After storing the data, we decided
to show them using a virtual globe in a client-side application. The application
running on the client had to be fully autonomous without the need for a server to
work. Although when we wanted to retrieve data from the server it needed a
connection to it. The last step, the analysis of the data had to be linked to the
visualization. For this reason, we integrated some statistical analysis tool in the
virtual globe.

Figure 4 - Big Geo Data Architecture

3 maps.google.it/
4 https://www.mapquest.com/
5 https://www.openstreetmap.org/

20

 Related Work

Not many applications to show n-dimensional environmental variables exists.
Especially when we take in consideration web technologies.
Regarding general data visualization and not focusing on environmental variables,
few solutions are available. Some are explained from C. G. Healey in “Effective
Visualization of Large Multidimensional Datasets” [16].

Using virtual globes there are currently no web applications that allow users to show
a custom dataset with more than three dimensions in a single view.
However, a similar goal has been achieved using NASA WorldWind, the Java version,
so not available in a pure web application.
The solution is explained in the article “Environmental Space and Time Web
Analyzer.” [17]
The aim of this paper is to show a reproduction of the application implemented by
M. A. Brovelli and G. Zamboni with the Environmental Space and Time Web
Analyzer in a browser compatible Virtual Globe - NASA Web WorldWind - and
improve the previous product with other features.

21

Chapter 2

 Virtual Globes

 Available Virtual Globes

Several virtual globes are available, but there are several differences among them.
We have analyzed many of them, highlighting some technical characteristics and
their features, listing the OGC (Open Geospatial Consortium) standards. The points
that we decided to focus are: the typology of the virtual globe, license, company
running the project and introduction year.
Regarding the technical side, we also listed the technologies used in the development,
the platforms for which they are available, the OGC standards available, their current
state of development and the languages of the API (Application Programming
Interface).

Name Cesium ArcGIS
Explorer

Google
Earth

WorldWind Web
WorldWind

SOS Explorer

Producer AGI ESRI Google NASA NASA NOAA

Int. Year 2011 2006 2004 2003 2015 2015

License Open Source
& Commercial

Freeware Freeware Open
Source

Open
Source

Freeware &
Commercial

Typology Web Desktop Desktop Desktop Web Desktop

Language JavaScript .NET / Java JavaScript /

Table 1 – Technical characteristics of main Virtual Globes

 AGI Cesium

AGI Cesium6 is an open-source JavaScript library for world-class 3D globes. It was
founded by Analytical Graphics, Inc. in 2011. It is free and uses the license Apache
2.0. Cesium runs on any modern browser since it is developed using modern
technologies: WebGL, JavaScript, and HTM5. Cesium implements many open 3D
geospatial formats, some of them have been created from the Cesium team and are
available only on Cesium. Two examples are the CZML, the Cesium Language, made
by a JSON schema for describing scenes animated in time, and glTF which is a
transmission format for WebGL engines.
Among the features, it implements a visualization of high-resolution terrains, layer
imagery such as WMS, TMS and WMTS and vector formats, such as KML (Keyhole
Markup Language), GeoJSON, and TopoJSON. Within Cesium it is possible to create

6 https://cesiumjs.org/

22

data-driven scenes with CZML, draw geometries as polylines, billboards, labels and
so on. The CZML is defined as a language called “Cesium Language”. It is made by a
JSON schema which describes data over time. Thanks to this language it is possible
to implement lines, points, models and other graphical primitives, specifying their
variation during the time. This makes Cesium easy to use thanks to CZML because
any user having such file could import it into Cesium and analyze it during the time.
Cesium is fully navigable from any device and also implements a 2D visualization.
Some other features are available thanks to some external plugins, and some other
DEMs are available to be visualized in it. Some features instead are available only
within the Cesium Pro version, and these are not open-source.

 ESRI ArcGIS Explorer Desktop

ESRI ArcGIS Explorer Desktop7 is a virtual globe developed by ArcGIS, allowing
exploration, visualization and sharing of GIS information. It succeeded ArcExplorer
that is now deprecated. ArcGIS Explorer is closed-source but free of use. It is
available only on Windows OS. The virtual globe allows inserting of live data and
services thanks to a built-in presentation tool. Data can be imported using the more
common formats such as shapefiles, KML, and KMZ, GPX and raster imagery.
Thanks to some integrated tools, it is also possible to insert photos and videos inside
the globe and also embed them in popup windows. It supports some OGC standards,
such as WMS (Web Map Service) and GeoRSS. It also allows the user to switch
between 3D and 2D mode, with data visualized in both ways. There are some base
maps available inside: World Imagery, World Streets, and World Topographic map.
Moreover, it supports a spatial analysis such as visibility, modeling and proximity
research.

 Google Earth

Google Earth8 has been one of the first virtual globes; it was created by Keyhole, Inc.
as a CIA– Central Intelligence Agency - funded project and then acquired by Google
in 2004. It is a well-established virtual globe and is available for Windows, Linux,
and Mac OS. A specific version has also been developed for mobiles OS and runs on
Android and iOS. It uses a freeware license, and in past had a proprietary one for the
Pro version, that is now provided as freeware as well.
It is closed source software and all the images created using it are copyrighted from
Google Earth. Thus, these images cannot be used for commercial purposes. Among
the features there is support of 3D imagery for many models such as 3D trees,
photorealistic buildings with 3D areas being automatically generated. Many users
can contribute to creating 3D building and upload them to a common warehouse.
Google Earth permits a Street View, which is a 360-degree panoramic view of the
street in many cities. It also can display weather data such as clouds, radar and
general conditions, provided by external services. The Pro version, available for free,
can comprehend more features than the basic version, such as the possibility to print
high-resolution images, import georeferenced images, and access layers that have
information about traffic and demographic data. It also includes some measurement
tools for lines, polygons and even circular data. Thanks to a CSV (Comma Separated
Values) reader there is also the ability to read and import external databases. There

7 http://www.esri.com/software/arcgis/explorer
8 https://www.google.com/earth/index.html

23

was an API for developers to interact with the globe programmatically, but it was
deprecated in December 2014.

 NASA World Wind

NASA WorldWind was created in 2003 and released under the NASA Open Source
Agreement license in 2004. The first versions up to 1.4 were available only for
Windows and the developers used .NET as developing language. In 2006 it switched
to Java and became available for every OS. Right from the start, it was an important
point of reference for the GIS community. NASA WorldWind provides an API to
customize the globe and create any number of applications. It can be used to
represent not only the Earth but also the Moon, Mars and other planets. Apart from
imagery, it supports the importing of several types of 3d objects, a large collection of
geometric and geographic shapes and many graphical capabilities. It supports
various data formats like JPG, PNG, GeoTIFF and others as imagery. NITF RPF,
DTED (Digital Terrain Elevation Data) which ae government formats. But also many
GIS formats are available such as shapefiles, KML, GML, GeoJSON, GPX and much
more. It has many analysis capabilities, useful for the understanding of the visualized
data. There are measurements tools, available both for the geometries or following
the terrain. There are tools to measure the intersections among objects and interacts
with shapes. Since it is developed in Java, it is available as a Java Application, but
also as a Java Applet and can be included in web pages as a Java Web Start
Application, thus visualized on the web, with Java installed on the PC. The
documentation provides an API and examples to customize it for implementing any
number of new features. It can be fully configured and customized for the needs of
the users. The API is well documented and there is also a community support forum,
which is very active, and many users interact every day.

 NASA Web WorldWind

NASA Web WorldWind9 is a 3D virtual globe API for HTML5 and JavaScript. It is a
library and API rather than a stand-alone application. This enables it to be included
in any web page or web application as a component. Thus is available on any OS
which implements a web browser. It has a WebGL internal core but provides a
JavaScript interface for operating with it. Web WorldWind is open source, and the
repository is available on GitHub 10. It uses the NASA Open Source Agreement
(NOSA) 1.3 license. Web WorldWind is designed to be easily extensible, thanks to an
interface on top of JavaScript and WebGL. Due to this geospatial approach used in
the Web WorldWind framework, any user with some experience in JavaScript can
create components for it.

Even though WebWorldWind is at the dawn of its development life cycle, different
organizations around the world are using it in many applications, such as Smart
Cities, Terrain and City Visualization, Vehicle tracking, Geospatial data analysis and
more. Starting from 2016, a new collaboration with ESA11 - European Space Agency
- and Thales12 is providing new features to Web WorldWind to implements many

9 https://webworldwind.org
10 https://github.com/NASAWorldWind/WebWorldWind
11 http://www.esa.int/ESA
12 https://www.thalesgroup.com/en

24

functionalities. It supports 2D map mode and several different projections are
available, in this way it can also be visualized as a 2D WebGIS. It permits anyone to
visualize terrain and geographic data from any public or private source. Among the
features, there is built-in high-resolution imagery and support to show more thanks
to REST services and WMS. Regarding the graphical capabilities, there are several
geometric shapes as Paths, Polygons, Circle and others. It supports many OGC
standards such as WMS, WMTS, KML, and more are continually being implemented,
thanks to the collaboration with ESA and Thales.

 SOS Explorer

SOS Explorer13 (SOSx) is a recent virtual globe developed by NOAA. It is a similar
version of what is used on Science On a Sphere (SOS) that is a project in which a real
sphere is available in a big room, and through some projectors, the images
representing the virtual globe are illustrated on a sphere. It is a freeware software
and is available only on Windows and Mac OS. It comes in two versions, SOS
Explorer Lite, which is an introductory version and is available for free to download,
while the other version SOSx is available by paying. The free version allows choosing
a dataset among the 16 included. It permits visualization and analysis of complex
data but does not provide an API for interacting with the globe.

Name: Cesium
ArcGIS

Explorer
Google
Earth

WorldWind
Web

WorldWind
SOS

Explorer

API Yes Yes Deprecated Yes Yes No

Documentation Good Good Good Good Good Poor

KML Yes Yes Yes Yes Yes Yes

WCS No Yes Yes Yes Yes No

WMS Yes Yes Yes Yes Yes Limited

WMTS Yes No No Yes Yes No

WFS No No Yes Yes No Limited

NetCDF External No No External External No

GeoTIFF Yes Yes Yes Yes Yes No

Table 2 – Features of main Virtual Globes

 Modern Virtual Globes

We can think of two core categories to differentiate Virtual Globes, the ones
developed before the Web 2.0 – defined as such from Tim O’Reilly in 2005 [18]– and
the modern Virtual Globes, the ones available for the web, running in a simple web
browser. Two notable examples of modern Virtual Globes are NASA Web
WorldWind and AGI Cesium, which run in any browser thanks to the support of
JavaScript and HTML5 technologies. It means these online tools are cross-platform
and can run on any device (PC, Mac, Smartphone, and Tablet) without the need of
plugins or extensions, and without having to install any additional software.

13 http://sos.noaa.gov/SOS_Explorer/

25

What is especially interesting about these new Virtual Globes is the possibility to
customize them without advanced programming knowledge skills. This means that
almost any user could create their own Virtual Globe application and easily share it
with everyone via the web. This increases the opportunity to create Web-GIS tools
using common programming languages and lets users interact with them easily.
Dealing with three-dimensional data has become much more manageable, thanks to
these web-based virtual globes.

Web WorldWind, along with Cesium and their APIs, offers feasible ways to display a
wide category of data. There are several differences between these two virtual globes.

1. Both frameworks are designed to display data available via web standards, but Web
WorldWind also support formats used by the United States Department of Defense.
Moreover, it also supports other formats and the ability to implement them in the
framework without requiring expert coding skills.

2. Web WorldWind uses a geographic interface for configuring the objects in the
virtual world, while Cesium’s primary interface is 3D-centricversus geographic.
Apart from the primary interface, a second interface using geographic coordinates is
available but is not as good as the primary one.

3. Web WorldWind offers support for different elevation data, using WCS (Web
Coverage Service) and DTED data sources. In the client, at run time, different data
sources are used together and combined in the globe. Instead, Cesium supports
proprietary data but allows using ESRI ArcGIS elevation data sources.

4. Web WorldWind is designed to enable users to extend its functionalities by adding
new components written in JavaScript and WebGL. On the other hand, Cesium is
made of two interfaces, a high level one to interact with JavaScript and another one
to interact with WebGL, but to extend it, it is necessary to learn both.

5. Cesium offers some functionalities, which are available only in the “Cesium Pro”
version, available a proprietary commercial version. Web WorldWind offers all
functionalities free of charge and does not have a “Pro” version.

While Cesium is focusing towards supporting computer graphic features, Web
WorldWind targets to maintain practical features to work with the standard
geospatial data formats. Thus, Cesium can be considered mainly a graphical tool to
visualize 3D data rather than being a geospatial visualization tool.

Thanks to the geospatial approach used in the Web WorldWind framework, any user
with some experience in JavaScript can create components for it while the
extensibility of Cesium requires a broad knowledge of WebGL.

Even though Web WorldWind is still at the dawn of its development life cycle,
different organizations around the world are using it in many applications, such as
Smart Cities, Terrain and City Visualization, Vehicle tracking, Geospatial data
analysis and more.

26

 Our choice: NASA Web WorldWind

We wanted to develop a responsive web application, and this led us to choose a
modern virtual globe running on the internet. We aimed to develop advanced
functionalities, and so we needed the complete freedom of working with an open
platform. Also, we wanted an already existing platform since we had decided not to
develop a Virtual Globe from scratch.
The options available were AGI Cesium and NASA Web WorldWind. Knowing all the
advantages and disadvantages of both platforms, we focused on Web WorldWind.
Our decision was mainly based on the target for the application. Since we had to
represent complex structures to visualize the data, either framework could be used,
but the need for a strong connection with geospatial data formats and the geospatial
environment brought us to the choice of Web WorldWind. Moreover, we already
using Web WorldWind in other projects, and so this choice facilitated our ability to
develop a complex application using a technology we already familiar with.

 Voxel Model within Virtual Globes

Being in a virtual 3D environment is fundamental to show multidimensional
variables. An appropriate model for the 3D environment is the voxel model; it
consists of an array of voxels – akin to cubes – to show data with a volume
representation. Voxels have been used in many study areas. In the article “Computer
Visualization of Three-Dimensional Image Data Using IMOD” [19], voxels are used
to view tomograms. For modeling objects and structures, derived from volumetric
data, a voxel model is proposed in “Beyond volume rendering: visualization, haptic
exploration, and physical modeling of voxel-based objects” [20]

Several approaches based on voxels have been adopted to work with environmental
data, in “Virtual globes for 4D environmental analysis” [21]. In this paper, using
NASA WorldWind Java, there are several examples on how to handle environmental
variables in multiple dimensions. An example is a 4D visualization of Lake Como
water temperature at different depths, represented with different colors. Then there
is the utilization of energy among the buildings in Olbia City thematizing the
buildings by the color, and extruding the heights.

Figure 5 – Color thematization of different buildings in Olbia [21]

Another example developed in this paper is the implementation of the EST-WA
(Environment Space and Time Web Analyzer) to manage environmental variables.
In this paper a voxel is used to represent 4D variables, in this case, having more than
three dimensions, it is a doxel – dynamic voxel –.

27

Figure 6 – Voxel representation of water temperature using EST-WA [21]

“A generalization of a voxel is the doxel or dynamic voxel. This is used
in the case of a 4D dataset, for example, an image sequence that
represents 3D space together with another dimension such as the
time. Although storage and manipulation of such data require large
amounts of memory, it allows the representation and analysis of
spacetime systems” [22].

A 3D array of voxels is created from a NetCDF file and shown on the globe. Moreover,
to view the internal voxels of the 3D object, the volume can be further sectioned with
planes orthogonal each other, to focus on the voxels within the plane

28

Chapter 3

 Storing Solution for Big Geo Data

 RDBMS: An Old Inefficient Solution

When we have to face Big Data, one crucial point is storage of that large amount of
data. As we already mentioned, one solution is to use a Database Management
System. Although to find the correct DBMS (Database Management Systems) for our
data is not always easy, given that many aspects should be considered. The old
solutions, thus the Databases used before the era of Big Data, often are not suitable
for our case, in terms of performances and structure.

The most common DBMS were Relational DBMS, created specifically to handle
relations among the data with a fixed structure. However, the need for a relation
increases the complexity of the database structure and tends to decrease
performance. The decrease of performances in a Database, increases exponentially
when having to handle large amounts of data. Big Data can range from Terabytes to
Petabytes. So, we need to carefully consider the optimal solution for storage.

Figure 7 - Big Data dimension and variety [23]

29

There are certainly conditions when a relational database for storing Big Data is
unnecessary. Three criteria that describe Big Data help to explain this issue, and are
referred to as the three V’s: Volume, Velocity and Variety [24]. Having large volumes
of relational data makes it difficult for those relations to be managed. Given large
volumes of data it is often not even possible to relate many kinds of data with each
other, thus the classic Relational DBMS cannot cope with Big Data efficiently, as
compared with more recent solutions developed specifically for them.

 NoSQL DBMS

The term “NoSQL” stands for “Not only SQL” and refers to a new branch of DBMS
that exploits different structures rather than the classic data tables. Among the
companies implementing NoSQL DBMS are big names, such as Google, Facebook,
and Amazon. The need for NoSQL Databases emerges from the Web 2.0, to address
Big Data and to help the users to store them in an efficient way, rather than using
technologies established in a different era, for different data and purposes.

The advantages of a NoSQL database are many in comparison with the standard
relational DBMS. First of all, the performance is better, by not having the need to
perform complex queries. Then it is the flexibility of the NoSQL database that plays
a fundamental role, and since there is no need for a fixed structure, it is possible to
have an unstructured database, making NoSQL quite suitable for Big Data. And
another vital factor for Big Data management systems is scalability. In fact, databases
that are scalable can accommodate immense amounts of data, without suffering from
space limitations, and can be distributed among different nodes, in different servers
and be extended easily.

When we refer to NoSQL Databases we also refer to OLTP – OnLine Transaction
Processing – which is an online processing that facilitates the transactions inside an
information system. All the NoSQL DBMS rely on this property.

The Relational DBMS were based on 4 key-characteristic called ACID (Atomicity,
Consistency, Isolation, and Durability). However, we have to give up one of these to
handle Big Data more powerfully, and that is the consistency. In fact, another
acronym for the NoSQL was defined by Pritchett [25] and is BASE, which stands for
Basically Available, Soft State and Eventually Consistent. We can see that we might
lack the consistency property to gain more in terms of performances and scalability.

One interesting reason that helps to explain the performance increase comes from
the fact that the types of queries being performed are different. Not having a
relational database, the queries can be simpler and not involve joins among tables.
Thus fewer operations are needed for these less intensive queries and thereby afford
abundant advantages in querying Big Data.

Several Databases are available in the NoSQL field, each of them has some special
characteristics and different approaches for structuring the data. We could
differentiate these databases in 4 general areas: Key-Value stores, Document stores,
Wide Columns stores, and Graph Databases.

30

 Key-Value Stores

The Key-Value model, as the name anticipates, is made by a link between a key and
a value. The value in this link can be slightly flexible, and thus can be a list, a payload
or a set, depending on the database implementing it. These databases allow the
classic operation of NoSQL databases of insertion, deletion and lookup.

The values can be stored both in Disk and RAM. The storage in RAM allows powerful
performances and low latency on accessing the data. Some databases, such as Redis,
store the most used value in RAM, and when the amount of data exceeds the limit of
the available RAM, it automatically continues storing on the Disk.

The Databases implementing the Key-Value structures are often the most efficient
ones since they implement low level commands and do not need to perform complex
operations. Some samples of these databases are Dynamo, Redis and Project
Voldemort.

 Document Stores

The Document model is more complex than a simple Key-value because it
implements a structure in which a document is stored for each entry in the database.
Though there is a document, it does not need to follow a fixed schema, and is flexible,
allowing different entries to have different structures. Some databases, such as
MongoDB, even allows storage of a nested document inside a parent document. The
kind of documents can vary depending on the database. Though some confusion can
emerge when people refer to the word “Document”, even if it does look like a
processed document, it might refer instead to a structured document, such as XML
and JSON.

The databases always use an indexing systems that supports the querying on the
entries without analyzing all the structure of each entry. In the document store, there
can be more than one single index in a document to facilitate the lookup process.
Some examples of Document Stores database are MongoDB, SimpleDB and
CouchDB.

 Wide Columns Store

The Wide Columns structure, as well known as Extensible Record Store, is a
structure that might resemble a relational database. It is made by rows and columns,
but only the rows are indexed. The internal structure is similar to the key-values,
because the entries are made in the same way with a key and a corresponding value
that could be a string, a list or a different structure. These databases differently from
the relational one are grouped by columns. The number of columns and rows though
are not fixed and in a same database we can have different rows with different
columns. This structure can be partitioned both horizontally and vertically. Some
famous examples are BigTable from Google, HBase and Cassandra. These DBMS are
quite similar to classic relational ones, and are used often when porting a database
from a SQL structure to a NoSQL one.

31

 Graph Databases

The Graph Databases belong to the NoSQL databases, but rather than having their
own fixed storage system, they implement one of the previously mentioned ones. The
name comes from the structure that is defined as a graph. There are nodes, which are
the points of references for all the entries, then edges, corresponding to the
relationship among different nodes and finally properties, containing information
about the nodes.

Figure 8 - Graph Databases Representation [26]

Querying a graph database is simpler than a normal relational database, because the
relations are handled specifically with respect to the edges. The structure remains
fully scalable, without any joins or a fixed schema. Each Graph database implements
a different NoSQL structure, that can be a Key-Values, Documents or Wide Columns.
Some sample are Neo4J, Arrango and OrientDB.

Listed below is a table with the database name, the typology of storing structure and
the license type.

Name Typology License
Arrango Graph Apache
BigTable Wide Columns Proprietary
Cassandra Document Stores Apache
CouchDB Document Stores Apache
Dynamo Key-Values Internal
HBase Wide Columns Apache
MongoDB Document Stores GPL
Neo4J Graph DB GPL
Orient Graph DB Apache
Redis Key-Values BSD
SimpleDB Document-Stores Proprietary
Voldemort Key-Values None

Table 3 - Main NoSQL DBMS

32

 OLAP: Multidimensional Analytic System

OLAP stands for OnLine Analytical Processing and is an approach used to answer
multi-dimensional analytical queries [27]. There is a very close relation between
OLAP and the databases management system. Since these databases are used to
store data in a layer schema, the structure of these data can be organized following
the OLAP system. OLAP techniques and tools to analyze and process Big Data can be
described as follows:

OLAP operations include rollup (increasing the level of aggregation)
and drill-down (decreasing the level of aggregation or increasing
detail) along one or more dimension hierarchies, slice_and_dice
(selection and projection), and pivot (re-orienting the multidimensional
view of data). [28]

The structure OLAP uses for multidimensional databases, the most common in case of Big Data
is called OLAP Cubes. An OLAP cube, consist on a structure of data, organized in a way that
performing queries is more efficient than a Relational DBMS.

Table 4 - OLAP Cube Representation [29]

In each dimension of the cube there can be a different type of data. The cube, despite
its name, is not restricted to three dimensions but can have several more. Thanks to
this Cube structure, as named, the aggregation over several entries is easy, since the
correspondence is only with the aggregation of a single column. Querying an OLAP
cube gives us a Pivot Table, the report we obtain when querying specific data. This
table can operate in an unrestricted number of dimensions, depending on the

33

available dimensions of our cube.

Thus, having a Multidimensional Discrete Data (MDD) solution for handling them is
necessary. Only a few solutions are available that implement OLAP cube and handle
MDD. A Sample is Apache Kylin14 whose architecture is described from the picture
below.

Figure 9 - Apache Kylin Architecture [30]

We can understand from the image that beside a DBMS, Hadoop Hive, there is a
layer made of a REST server, providing a Query engine and other components to
interact with the OLAP Cubes. This layer can be accessed by third-party applications,
from a REST API via the web.

We have now seen how is possible to interact efficiently with MDD through the web
and the systems used. However, we wish to focus on a specific kind of system to
support spatial data. Even if Apache Kylin looks to be a feasible way for many kinds
of data, a specific solution is more appropriate when treating spatial data in two or
three-dimensions. A well-known solution for this is a system called Rasdaman.

14 http://kylin.apache.org

34

 Rasdaman

Rasdaman15 stands for Raster Data Manager and is a solution for interacting with
MDD thanks to classical database service in a domain independent way.

RasDaMan is a universal - i.e., domain-independent - array DBMS for
multidimensional arrays of arbitrary size and structure. [31]

As we can see from the name, the Rasdaman system allows interaction with raster
data, and thus images. Nevertheless, not only images are storable in the system, but
also data in several dimensions, going from one dimension, like CSV files with a Key-
Value, to two-dimensional images or even multidimensional GeoTIFFs. Thanks to
this vast support for different kinds of data, it appears to be an optimal solution in
the geospatial field.

Behind Rasdaman several NoSQL databases are available. In the picture below, we
can understand further how Rasdaman interacts with the DBMS.

Figure 10 - Rasdaman Architecture [32]

Similarly, to Apache Kylin, Rasdaman takes care of handling all the files we want to
store, but its structure wrapped inside of it and so it is also part of the database.
However, a database is not mandatory because the system allows storage of the data
directly in the file system.

15 http://www.rasdaman.com

35

Rasdaman gives to the end-users an interface to retrieve data in several ways.
Everything can be accessed via a web client, processing the queries in different ways.
It follows OGC standards and permits the interaction through some of them: WMS,
WCS, WCPS (Web Coverage Processing Service) and WPS (Web Processing Service).
We have seen that WCS is available, and this means we can retrieve just a portion of
data, cutting an image specific to a bounding box and retrieve the exact data we want,
without any of the unnecessary parts. Then, thanks to the WCPS and WPS, we can
perform analysis and processing operation on the data, even before obtaining them.
This means we do not need an external tool to perform this operation on our raster
data, but allow Rasdaman to take care of everything, and provide us with the desired
output.

36

Chapter 4

 Application Development

 Requirement Analysis

What we needed to achieve from this application was a simple way to browse through
environmental variables, in multiple dimensions, and understand the data quickly.
Below we list what our requirements were:

 Dynamic Data: The first goal to achieve was the implementation of a model to
display several variables in multiple dimensions.

 Data Interaction: Having in mind our model, we wanted as well to give the
users a way to interact with the data and retrieve statistical information from
them. The visualization should have been also an interactive one, where users
could set several parameters to create their view.

 Customize View: The model should have the capacity to show also customized
view for different variables and being fully customizable on the graphical
interface. With this idea in mind, we wanted to provide many customizations for
the model, for the globe and the data.

 Data Import: Another important requirement was the importing system. With
referring to it we wanted to give the opportunity to use different data sources and
so do not use a specific format for the data.

 Data Validation: The last point was to prove that the system could work with
same sample datasets and try to create simple use cases with those datasets.

 Data Variance: Moreover, it would be useful to analyze how those data are
changing in time and get statistical information – such as the variance – among
the variables and the datasets.

 Application Audience and Potential Uses

We thought that the application we developed could have been the first point of
reference when users need to visualize multi-dimensional data. Our audience so is
very wide, since a wide category of users could use it for different purposes. All the
uses of the application refer to a better understanding of the data thanks to a visual
perception in a 3D environment and can be adopted in many study areas, where
people need to understand the data inside a dataset. Thus the category of users that
can get advantages from it could vary from studies in the telecommunication, to the

37

geological or environmental one. We will see furtherly some examples in the study
case we created in this thesis.

 Use Cases

The actions a user is supposed to do are:

 Upload a data set

 Show the dataset using the voxel model

 Show statistics for a group of voxels

 Compare two variables in a dataset on two different datasets

 Show statistics between two variables

 Filter the data in the dataset using different filters

 Browse the data through the time

Figure 11 - Possible use cases of our application

 Application Introduction

Taking into consideration all the requirements, the main goal of the application was
to reproduce a similar work to the one achieved by the EST-WA from M.A. Brovelli
and G. Zamboni [21], but using different technologies, considered more modern. We
thus implemented a voxel model similar to EST-WA to show n-dimensional variables

38

in a 3D environment.

In this document, we use the terms “doxels” and “voxels” interchangeably, even if
“voxel” refers to the geometric shape while “doxel” to the dynamic voxel to represent
multi-dimensions.

In our model, we represented the fourth dimension by the color of the voxel. These
doxels have a specific color belonging to a color range defined a priori, to represent
a specific environmental variable. The physical character of the voxel/doxel could be
used to describe any number of criteria. One idea could be to assign opacity as a
variable to the voxel. The opacity could decrease with the more transparent doxel
representing the minimum value. Since the voxel would fade to full transparency,
representing the quantity of a variable The user could be offered different ways to
represent the data that would seem most intuitive to their way of thinking.

A representation of a variable could be linked to the outline of the voxel, using a
specific color or thickness for the boundary of the voxel. Although in this case, it may
disorient the user’s perception of the doxels, having a small graphic element to show
a variable, possibly creating confusions with the nearby doxels. Other techniques can
be implemented to visualize various critieria, such as shading, different patterns and
more. Despite the possibility to account for several variables simultaneously with
different physical characteristics to the voxel, the user’s perception of a model having
many variables might be difficult to understand quickly, as we can see in Figure 2
and Figure 3. So we have tried to limit the dimensions visualized –the number of
variables – by limiting the user’s ability to customize only a few parameters of the
data.

Figure 12 – Simple and complex representation of a Voxel

 Application Architecture: Client Side

The architecture of the application is thought to be Object-Oriented. This kind of
architecture is made of components that do not have strict dependencies on the other
components; this means that any part of the application can be re-used. For instance,
we can take into consideration the implementation of voxels: a voxel is an object
made only by Web WorldWind functionalities, and anyone who needs to implement

39

a voxel model can easily copy the related file and import it in his or her application.

 NASA Web WorldWind Framework

All the components available in a Web WorldWind application, as we can see in the
following picture, are divided between internal component and external ones. The
blocks in red are the outer ones; it means the developers can interact with them to
create their own applications.

Figure 13 – Web WorldWind structure [33]

The World Window is an object, which contains all the Web WorldWind
functionalities and connects them to an HTML container: the canvas. Each
application implementing Web WorldWind should have at least one canvas with a
World Window object.

The globe is the 3D representation of the Earth, a WGS84 ellipsoid containing
terrain. Though it allows provides for viewing several different 2D projections in
addition to the 3D mode. Usually, the applications do not interact directly with the
globe, but implement methods to get information from it, even though it also possible
to edit the globe itself.

Layers are fundamental objects to implement several features. Besides the World
Window, they are typically the most important ways of representing spatial data.
They permit one to insert imagery via GeoTIFF, JPG, and PNG. These permits shapes
in 2D and 3D, also terrain conventional ones, to follow its elevation model. At a
minimum there is the compass layer and the coordinates display, in addition to much
more.

The shapes are objects, 2D or 3D, which display some information on the globe.
Various objects belong to the shapes category, such as placemarks, 2D drawings, and
simple or complex volumes. It is possible to import these into the globe or create
them using the related APIs.

The Navigator is responsible for converting user actions to manipulations of the
globe. It monitors mouse events and user gestures and translates them to pan, zoom
or tilt operations on the globe. The Navigator can also be driven by the application to

40

move the view to a particular location or to set its tilt and heading.

The Navigator is an object automatically integrated in each World Window, allowing
interacting with the globe to get all the information about its position and edit them.
Developers can customize this to navigate the globe in different ways. Making it
possible to customize mouse movement and gestures to manipulate the globe. The
navigator can also be controlled by mobile devices, and can be personalized to assign
any mobile gestures to a specific action in the globe.

Among the features, there are also Geocoders that permit discovery of geographic
locations from a query string. Web WorldWind implements the one from Open Street
Map’s Nominatim geocoder at MapQuest16. Thanks to this geocoder, it is possible to
retrieve information about a city, area or location, from its name or coordinates and
then show all the desired information in the globe.

Web WorldWind contains several other objects, most of them run behind the scenes
so it is not required that developers interact with them. Instead, when a developer
wants to extend the WorldWind features, they only need interact with specific
components, using the JavaScript’s APIs. So it is quite easy extend the features
already implemented or even create new ones.

 jQuery

As an external library to interact with the user interface of the application, we used
jQuery17.
jQuery allows to interact easily with the DOM (Document Object Model) thus with
the use interface. It also contains a few functionalities that help with the creation of
algorithms, simplifying the code. jQuery was first published in 2006 and is still an
active project in continuous evolution. jQuery Core is made of different parts. The
main components are listed below.

jQuery Core
Constructors allow easy selecting of elements in the DOM using shorter syntax than
native JavaScript. It is also possible to obtain elements and mentioning a DOM
element as a parameter. Moreover, the core allows creating new elements starting
from pure HTML code.

Methods
Methods allow accessing of the element in any jQuery element. They provide
functionalities to get the size and length of items, iterating through groups and edit
native components from HTML. There are also several methods to handle list,
queues and to extend the framework through plugins and create animations.

Selectors
Selectors allow access to HTML element in a page. The syntax is the same used in the
CSS, Cascading Style Sheets. The selectors can be used to select an element by its
"id", based on the "class", in a hierarchical way or thanks to the content or attributes.

16 https://open.mapquestapi.com/nominatim/
17 https://jQuery.com/

41

Attributes
Attributes provide different functionalities based on the element type. There are
methods for generic attributes to get all the attributes of an element. Then a method
for classes to know if an element belongs to a specific class, and if it is possible to
remove or add classes it. There are also methods for content, to get information of
any HTML element, such as text, inner HTML or any values from a form.

DOM Traversing
The DOM Traversing permits to navigate through the DOM to reach parent and
children of any elements. It is possible to go through it in different ways, thanks to
several features the framework provides.

Manipulation
The manipulation of the DOM is already made possible by JavaScript, but jQuery
simplifies this. It consents to add or remove an element from a page in a specific
position. Moreover, it allows you to substitute elements or to wrap them with other
elements. It also favors the deletion of a specific node and the copying of it.

CSS
There are several ways to control the style of the elements. It is possible to change
the graphical properties of any selectable elements. It allows changing easily some
elements that otherwise would be difficult to manipulate.

Events
The events that happen on the page are recognized by the framework. Is possible to
intercept these events and change their behavior. The event handling also permits to
assign different events such as click, load, and mouse events to various
functionalities.

Effects
The effects of the framework permit to manipulate the visibility of the selected
elements, the manipulation can be done with different effects, such as fading, sliding
and more.

AJAX Effects
The AJAX (Asynchronous JavaScript and XML) calls are an asynchronous call to
diverse pages. jQuery allows using them in an easy way.It is possible to load in a
dynamic way some contents with HTML code. Moreover, to make GET, POST
requests, and integrate them with JavaScript to load JSON objects and execute
remotely script files.

Utility
Also, it provides several utilities to manipulate strings handle components and
manage various JavaScript objects.

 Bootstrap

To represent some elements in the web interface we used and Bootstrap18.
Bootstrap helps to customize all the graphic elements in the user interface.

Bootstrap is a free and open-source library to create and customize items in the front

18 http://getbootstrap.com/

42

end of web applications. It is made by functionalities to design forms, buttons,
navigation and many interface components. It favors the responsive web design;
thus, all the contents are easily scalable to any device.

The architecture of Bootstrap is modular and is made of the different stylesheet to
implement all the functionalities of each component. All the stylesheets are in "Fewer
stylesheets" format, and it is possible to customize them to change the style to apply
to the components. Moreover, Bootstrap provides not only HTML components but
user interface elements. These interface elements are groups of buttons, drop-down
options, navigation lists, navigation tabs and so on.

Some Bootstrap components use jQuery functions. These components provide
several additional functionalities in the framework. Some of these are dialog boxes,
tooltips and so on. Even some jQuery plugins are supported and automatically styled
from Bootstrap, with one example being the Dropdown, Tab, Alert, Collapse, along
with others.

 jQuery UI

jQuery UI19 contains few user interface elements that are not available by default
from HTML. It is an open source library, providing plug-ins for jQuery. It is made of
jQuery components, and each plug-in is made following the architecture of jQuery;
since it is made of jQuery elements, it is fully customizable. It provided interaction
with the DOM and complex animations.

Like jQuery it has a structure in sub-modules. The interactions permit drag and drop,
scaling and selection of components. The widgets are several UI (User Interface)
elements, for different purposes, such as complex buttons, date picker or dialog
windows. The effects are animated transaction among the elements. They permit
changing the color of the user interface's elements, hide and show with some
transitions and much more. The utilities are used to extend and interact with the
components of jQuery UI, and to establish relationships among all the elements.

 Google Charts

Another library used to create some graphs when showing statistics about the data,
is Google Charts20. It simply provides APIs – application user interface –
functionalities to create graphs. It consists of a rich gallery of graphs; there are
scatter plots, glyphs, and others. It is possible to customize them, changing each
property in the chart, from the color to the axis shapes and name. It is cross-browser
compatible and made of pure web technologies, so no external plugins or libraries
are needed and it is provided free of charge.

The APIs allow the users to edit them in real time, connecting to the graph thanks to
some functionalities and interacting with them. The most common way to integrate
Google Charts in a web application consist on inserting a JavaScript snippet in the

19 https://jQueryui.com/
20 https://developers.google.com/chart/

43

HTML page and then it is possible to use the functionalities provided by the library.

The charts are JavaScript classes, and when a user needs to edit the graph, he will
interact with the class representing the specific graph. The customization is possible
since the JavaScript classes are customizable, and all the parameters can be accessed
and edited. To populate a chart, a specific "DataTable"class is used. This makes it
easy to switch among all the different types of charts having a predefined class for
the data. Within the DataTable class are methods for diverse functionalities. It is
possible to sort and filter the data and can be filled from different databases.

Figure 14 – Application Architecture

 Application Architecture: Server Side

Our application run fully on any recent browser, so on a client. However, the
implementation of a server helps to manage the data and show our case study. We
allow users to perform any operation from the client and handle their dataset on the
client side, but following our implementation idea of the server may help to handle
better the data. Having a server might help the users to upload the data to a database
to require them easily. We show how we implemented the server and which
techniques we have used to perform the queries to the database. We thus
implemented two typology of databases. One for handling NetCDF files, so huge
amount of data in multiple dimensions with a geographic component. While we
implemented another typology for different datasets with smaller dimensions and

44

not georeferenced directly but with a reference to a cell ID that contains the
information about the position. In the case studies we will see the structure of the
data and it will be easier to understand the choice we have made for the typology of
databases.

 Rasdaman

We chose Rasdaman for implementing large coverages provided by Raster file or
NetCDF datasets with several dimensions. As we explained before in Chapter 3
Rasdaman is the best options when handling huge datasets that have georeferenced
information. Rasdaman provides WPC and WPCS that can be queried easily from
our application to retrieve the data with AJAX requests. Thus it was the optimal
solution to store a vast amount of information.

To use Rasdaman, we simply imported the desired dataset in the database, specifying
all the information regarding the geographic extensions. Then, it is possible to
perform queries through simple HTTP requests using the WCS and WCPS.

 MongoDB

MongoDB21 is a document-oriented database. We choose it for datasets that are not
directly georeferenced but implement relational information with the spatial
reference. In this case the position can be associated to the data on the client side.
MongoDB It belongs to the NoSQL database, which means it does not have relations
among tables, like in the SQL databases. It is published under open-source license
from 2009. It stores JSON-like documents, making the database highly portable to
JavaScript application, for using the data in a client. The presence of a JSON-like
document is an advantage in our case, having a JavaScript application, since all the
documents work without any conversion of format, using pure JavaScript code.

Each record in MongoDB is a document. Each document has key-value fields, and
each field can contain other children made of key-value. Those children can be not
only single values but arrays, or documents as well. It has an easy query language
that allows to, sort and aggregate data with simple instructions, without writing long
and complex codeHere is shown a sample of a MongoDB document.

Figure 15 - Sample MongoDB document

21 https://www.mongodb.com

45

 Document Model

Since with MongoDB we wanted to store information for datasets not directly geo-
referenced we created a sample model that the application is capable of reading.
Taking as example the structure of a simple dataset we are using, made of
telecommunication data, and having information about: a timestamp, an ID, and
several variables, among them also a timestamp. This document may represent the
sample for several datasets exploiting a grid and a cell ID to show data in the
application. A sample model for the document is shown in the picture below.

Figure 16 - MongoDB document model

 Node.js

MongoDB offers several functionalities to the external client. To connect to it and
perform some queries, there are thus different techniques. An easy way to query
MongoDB is using Node.js.

Node.js is a platform built on Chrome's JavaScript runtime for easily
building fast, scalable network applications. Node.js uses an event-
driven, non-blocking I/O model that makes it lightweight and efficient,
perfect for data-intensive real-time applications that run across
distributed devices. [34]

The choice of Node.js22 derives from the requirements of scalability to handle
different clients asynchronously and having good performances at the same time.
The usage of Node.js is straightforward and intuitive and permit to create easily
efficient REST APIs to allow the interaction with the client. Moreover, is useful to
share the same programming language between client and server, enabling to
transfer objects that will be treated in the same way from the functionalities of the
application. Most important, we are designing a scalable web application, at high

22 https://nodejs.org/

46

levels of concurrency, so we can appreciate the management of non-blocking
asynchronously request done by Node.js.

Figure 17 – Node.js Server with non-blocking IO [35]

Figure 18 – Multi-Threaded Server with blocking IO [35]

47

 Express

“Express is a minimal and flexible Node.js web application framework
that provides a robust set of features for web and mobile
applications.” [36]

The choice of Express23 is almost mandatory with Node.js since it implements a lot
of useful features, and together these two provide efficient ways to interact with the
clients and handle GET and POST requests in a very easy way.

 REST Interface

In computing, representational state transfer (REST) is the software architectural
style of the World Wide Web. More precisely, REST is an architectural style
consisting of a coordinated set of architectural constraints applied to components,
connectors, and data elements, within a distributed hypermedia system. [37]

Since we need to query the database from the application, we had to implement a
service to connect the database and the web application. We created a REST interface
that permits the communication between the two, sending AJAX requests from the
web page to the Node.js server.

23 http://expressjs.com

48

 Application Components and Flow

The following class diagram shows all the JavaScript classes implemented and their
methods.

Figure 19 – Class Diagram of ESTWA Application

49

We can then observer a particular class ESTWA and the dependency of the class in
the diagram below.

Figure 20 – ESTWA Class dependencies

The application has a linear structure rather than a hierarchical one. All the
functionalities and modules can communicate with each other. We are going to show
now all the classes and how their methods are implemented, to understand which
functionality is supported by which class and method. We can see from the picture
below, how the classes are connected each other.

 Terminology and Code Convention

For ease of use, from now on, the word “layer” refers to a Web WorldWind layer
object, made of a single array of doxels corresponding to a specific time range,
depending on the time’s resolution of the dataset.

Figure 21 – Layer made of doxels

When we refer to a JavaScript “Class”, by the term class, we refer to a single file,
named with the same name of the class and a “.js” extension. Moreover, by the term
class, we mean a JavaScript Objects that has some functionalities and we will call

50

those functionalities “Methods”. In this document, every time we want to mention a
class, we will write the name in italic with the first letter capitalized, following the
CamelCase notation [38]. As well, for the methods we will use the same notation used
for the Classes, but the first letter will be lowercase.

Type: Notation:

Classes MyClass

Methods myMethod

Table 5 – Example of CamelCase notation

 Data Importing from CSV

In this process, the user can select a dataset in a CSV format and a relative grid to
import. The importation mechanism retrieves a sample of the dataset and the user
can choose which column of the CSV file correspond to which variable in the
application.

Figure 22 – CSV importing configurator

After the configuration of the file and grid is set, the system will request the data and
import the grid. The request will go through a module “Data Importer” which will
check the configuration created from the user interface when starting this process.
Once we have imported the data we need to handle them. The application will now
create an object “myData” to structure the data, grouping them by the timestamp. In
this way, we have the following structure for each of our objects:

myData = {

 "3/1/2015 12:00:00 AM": [

 ["3939_0_0", "9.880.921 ", "1.570.428"],

 ["3939_0_1", "8.362.754 ", "1.051.640"],

 ["3939_0_2", "13.907.400 ", "18.715.431"]]

}

Code Snippet 1 – Structure of the parsed data

In the meanwhile, the bounds of the data will be calculated, to know the minimum
and the maximum values in our dataset.

51

Figure 23 – Data Importing Flow

 Doxels creation

After the importation, the new data will now be sent to the GlobeInterface to create
the doxels on the globe. At this point, for each entry in the data, we will invoke the
module to create the Voxels having the coordinates of each one, retrieved from the
gridId, and the desired color.

To calculate the color, we take into consideration the minimum and maximum values
available among all the entries in the dataset. We then assign a percentage value for
each voxel to retrieve a specific color in a three colors range as shown in the image
below.

GlobeHelper.getColor = function (weight, inputColors) {

 var p, colors = [];

 if (weight < 50) {

 colors[1] = inputColors[0];

 colors[0] = inputColors[1];

 p = weight / 50;

 } else {

 colors[1] = inputColors[1];

 colors[0] = inputColors[2];

 p = (weight - 50) / 50;

 }

 var w = p * 2 - 1;

 var w1 = (w / 1 + 1) / 2;

 var w2 = 1 - w1;

52

 var rgb = [Math.round(colors[0][0] * w1 + colors[1][0] * w2),

 Math.round(colors[0][1] * w1 + colors[1][1] * w2),

 Math.round(colors[0][2] * w1 + colors[1][2] * w2)

];

 return [rgb[0], rgb[1], rgb[2], 255];

};

Code Snippet 2 – Color Retrieval through getColor method

All the doxels will be placed in layers, each layer for each timestamp. This means that
for each timestamp we have a single group of doxels placed at the same height. All
the layers will now be positioned in the globe, although we will show just the desired
ones, configured from the user interface. After all the layers are available in the globe,
we will show the new user interface with the sliders and the settings to handle the
doxels.

Involved Classes and Methods
To achieve the importing, we start from the user interface where the ESTWA class
manages the configuration of the data in the interface. Therefore, the class
AppConstructor is invoked through the method init to set the entire setup and
initialize the GlobeInterface class. Moreover, the class DataLoader is instantiated.

Now thanks to the method loadGrid of the GlobeInterface class we load the grid. In
the meanwhile, with the method getData from the DataLoader, we retrieve all the
entries from the CSV. When the grid has finished loading, and the data is available,
we call the method doxelFromData from the GlobeInterface to create the Voxels,
passing the data we imported. Then the UserInterface class will start and also the
sliders will be instantiated calling the method startSlider.

 Data Importing from Database

Depending on the configuration, the data might be imported from the database or a
CSV, file. When importing from the database the system will perform a query to our
database to retrieve the dataset. In this case, no configuration is needed, since the
database is already configured for our application.

 Retrieving Doxels data

To retrieve all the information about each doxel we created a click handler to
recognize when a user clicks on the globe and select a visible doxel. The click handler
will be activated by a double click.

The double click action will activate the handler in the ESTWA class to recognize the
specific doxel. Since each doxel is represented by an object, we store all the
information inside it. Therefore, we first highlight the selected doxel is creating a
simple white outline and slightly lifting it, changing its height, to show that it has
been chosen.

53

Then we retrieve all the information about the doxel and the other doxels having the
same position in different time. We thus display them in the user interface in a graph,
showing the time trend. This is done for each variable available in the input file. We
can observe thus a view with several variables in time. Also, we can see a correlation
value taking into consideration the values of the selected. Besides the correlation
among a single doxel, we also calculated the correlation for all the voxels in all the
layers of the time.

The retrieving process of the information from the big doxels works in the same way.
We cannot retrieve all the information about the doxels as grouped, but just the
statistical index stored inside each of them.

Involved Classes and Methods
When clicking on the doxels, the ESTWA class calls the method getDoxel from the
class HandlePicks. Wihtin the method getDoxel is another helper that will be called
to retrieve the information and the statistics of the doxels, such as the method
getCorrelation of the Correlation class.

 Big Doxels Creation

The creation of the big doxels will consider the configuration specified by the user
interface when importing the data. To create them, a few steps are taken into
consideration. The first parameter we have from the configuration is for
subdivisions 𝑠. We us this to subdivid the area of the grid in 𝑠 ∗ 𝑠 equally spaced
rectangles. Of course 𝑠 should be less than the number of rows and columns of the
grid.

Figure 24 – Subdivision of a rectangle in 3x3*1 dimensions

In each layer we then linked, each doxel to the corresponding rectangle, by

54

intersecting the projection on the globe of each doxel with the rectangles and
identifying for each doxel the related one. We then have 𝑠 ∗ 𝑠 rectangles and each has
a direct reference to specific doxels. Also, a number ℎ of subdivisions in the z-axis is
selectable from the configuration that we can assign the doxels linked by these
rectangles to some groups. Depending on the timestamp we subdivide the doxels into
further groups. Once more ℎ should be less than the visible layers of doxels.

Figure 25 – Subdivision of a rectangle in 3*3*3 dimensions

We will thenn have the doxels subdivided among 𝑠 ∗ 𝑠 ∗ ℎ groups. To now create the
big doxels with the color of statistical representation of the data, we process all the
data in each group and retrieve all the value information to represent the color. With
this we can create the big doxels, each having the dimension of the specified group.
The color will be calculated from the statistical index specified in the configuration,
and this is possible by having the number of doxels, their dimensions, and all the
data for each of them. In the same way, a value representing the statistic will be
stored in each big doxel object.

Involved Classes and Methods
To first create the rectangles, we invoke the method createRect from the class
GlobeInterface. Then the GlobeInterface will also call the method makeBigDoxels,
which will hide the layers of normal doxels, check how to create the doxels and then
create them with the method getBigCubes. To create them, we need to get the
statistic information that is provided from the GlobeHelper with the method
getStatistics

55

Figure 26 –Big Voxels creation flow

 Big Doxels Showing & Hiding

Alongside the handler to recognize the click to retrieve the data, we created a second
handler to allow users to switch between the big doxels to the original one. A radio
button allows the users to select which handler to use. When the big doxel handler is
selected, the big doxels will be created. From that moment, double-clicking on a big
doxels will show the grouped doxels it contains. In this process, we select all the
doxels that belong to the rectangle assigned to the big doxels and show them, given
that no filters are hiding that specific doxel.

Involved Classes and Methods
A click on a doxel is handled from the procedure to recognize clicks. It is activated
from the class HandlePicks using the method getBigDoxels, which instantiates a
recognizer for the click from the ESTWA class.

 Filtering

The filtering functionalities to hide the data works in different ways. We explain
below the technique adopted to create them. Other techniques might have been used,
but we implemented the best ones regarding performances. All the filters are
activated from the interface on the web application, which is handled by the ESTWA
class and then coordinated with the UserInterface class.

 Latitude & Longitude Filter

To filter the values of latitude and longitude we created a hidden moving rectangle
with the dimension of the grid. From the sliders when we move the handles they will
change the dimension of the rectangle. Each step of the slider’s handles will trigger
the process to modify the dimension of the rectangle and start the function to decide

56

which doxels to show or hide.

The process will start by setting the new dimension and then check for each visible
doxel if its projection is inside the area of the rectangle, in the same way, used for the
creation of the big doxels. If a doxel is not inside the rectangle, the process will hide
it. During this process, we also check if the big doxels are visible, and if so, instead of
hiding or showing the single doxels, if the big doxels is placed inside or outside the
area, it will be shown or hidden.

gInterface.changeSize(ui.values, 1);

var direction;

if (ui.values[0] > self.oldValLng[0] || ui.values[1] <

self.oldValLng[1]) {

 direction = 0;

} else {

 direction = 1;

}

gInterface.moveWindow(direction);

Code Snippet 3 – Process to filter the longitude from UserInterface

Involved Classes and Methods
All the filters are called from the UserInterface class that instantiates some handlers
to get the movement of the handles in the interface. When the handles are moved,
after retrieving the value we call two methods from the GlobeInterface class. First,
we call the changeSize method to change the size of the rectangle that controls the
doxels visibility. Then we call the moveWindow method to check inside the rectangle
which doxels should be shown or hidden and to check if the big doxels are active.

Figure 27 – Latitude and Longitude filter flow

57

 Altitude Filter

The slider on the altitude works in an easy way by hiding the layers of doxels in the
range of the slider. Although it is possible to change the time view and display
different layers, the application detects which layers are visible at the current time
and can operate alongside the other filters.

Involved Classes and Methods
Similarly, to what happens in the latitude and longitude filters, moving the handles
to control the altitude, we trigger the handler for the altitude, which calls the method
changeAltitude from the GlobeInterface. This method will execute all the changing
in the altitude and show the new doxels on the globe.

 Values Filter

The slider for the values will retrieve the bound of the data, and operate within the
range between the minimum and the maximum in the data. Each time we move the
handles, it will create a range of minimum and maximum. The process will then go
to all the available layers and check if the data stored in each doxels is within the
range; if not the doxels will be hidden.

Involved Classes and Methods
The changes on the handles for the values trigger the recognizer in the UserInterface
to get the values we want to filter and pass this information to the GlobeInterface.

 Time Browsing

The opportunity of going through different time ranges is given, thanks to the slider
that allows users to select a different time. It will choose the starting time and show
a predefined number – designated in the configuration interface – of layers after that
interval. When changing values, we start a process from the Globe Interface that
changes the new starting time range. Each step performed by the moving of the
handle will increase or decrease the beginning time. The values of the starting time
are available in the “myData” object. The process will thus set a starting time that is
the next or the previous of the current time.

gInterface.changeTime(ui.value);

if (gInterface.autoTime) {

 var compare = $("#checkCompare").is(':checked') ? 1 : 0;

 gInterface.compare = compare;

 gInterface.UI.resetFilter();

 gInterface.makeBigDoxels();

}

gInterface.changeAltitude(self.oldValAlt);

self.oldValTime = ui.value;

Code Snippet 4 – Changing time from the UserInterface

58

In the view, what happens is a shifting of all the doxels in the z-axis. Increasing the
time, a process will start to go through all the doxels in all the layers and change the
position of each doxel by decreasing their height by an amount equal to each doxel’s
size. This will look like that the values are moving in time. We also had to hide the
least bottom layer – the old first time value – and show the next one on the top – last
time value on the range – to keep the same number of visible layers.

During this process, all the previous filters will keep their effect. This means that if a
filter on the latitude were applied, all the doxels that were hidden would stay hidden
now. To achieve so, each time we cover up a doxels we had to specify which filter hid
it, to avoid the interaction with the other filters.

Involved Classes and Methods
The time browsing is more complex than the filters and involves more methods. It is
still activated from the UserInterface but each movement of the handle. Thus, a
changing in the initial time will first call the method changeTime on the
GlobeInterface along with changeAltitude. Then another set of processes will be
activated in case the big doxels are visible. If so, the UserInterface will first reset the
current filters with resetFilter, and then the GlobeInterface will call the method to
create the big doxels again at each iteration with makeBigDoxels.

 Updating Options

To allow the user to customize their experience, we give the user the possibility to
change a few options even after the importing of the data.

 Automatic Big Doxels

Selecting this option, each time the time-browsing slider will change, a new array of
big doxels will be created. All the processes executed in the Big Doxels creation step
will be reproduced. In this way, when changing the time, we will achieve in real time
a statistical representation.

 Starting Height

This will replace the starting height of the layers, setting the first layer shown at the
selected height. The process that takes place here will go through all the doxels and
change their position. All the position will decrease in the z-axis by a factor equal to
the previous value, minus the new one. And again, once more, all the big doxels will
be re-created.

 Statistical Index

This option will set the flag that is checked during the Big Doxel’s creation process.
In this way, any time a new big Doxel is created, the corresponding formula will be
computed to achieve the desired statistic.

switch (index) {

 case 0: //weighted average

59

 value = sum / sumweight;

 break;

 case 1: //arithmetic average

 value = sumValue / iteration;

 break;

 case 2: // variance

 var aritAvg = sumValue / iteration;

 var variance = 0;

 for (n = 0; n < rect.cubes.length; n++) {

 if (rect.cubes[n].heightLayer == height) {

 var val = rect.cubes[n].data[compare];

 variance += (val - aritAvg) * (val - aritAvg);

 }

 }

 variance = variance / (iteration - 1);

 value = Math.sqrt(variance);

 break;

 case 3: //median

 median = Math.ceil(iteration / 2);

 value = rect.cubes[median].data[compare];

 break;

 case 4: //max

 value = max;

 break;

 case 5: //min

 value = min;

 break;

 default:

 value = sum / sumweight;

 break;

}

Code Snippet 5 – Switch for the statistic in GlobeHelper

 Dataset Comparison

The comparison of two datasets changes the standard behavior of the application.
From the interface, we can import the second dataset. When we select this option,
the Creation process will invoke once more the Data Importer module, and we will
have so two instances of “myData” object. Not all the previous modules can work
with two cases of data, in the same way, so we created a reference parameter,
referring to which “myData” the other processes have to take into consideration.
Since the two data sets may have a different number of doxels in each layer, we create
only the doxels that belong to both datasets. We create the doxels with the half color
of one dataset and half of the other. We retrieve the color once per dataset and then
in the creation of the doxel we set an option to create an image made of two colors,
to use it as a texture for the doxel. Also, we store all the information about the two
datasets inside one doxel. This means that even if it looks there are two doxels in one;
it is just one doxel, with a texture and some data inside.

60

When we use filter functionalities to show the big Doxels, they will take into
consideration the reference dataset and not the second one. If we want to operate
with the second dataset, there is a checkbox to switch the reference dataset, it will
change this flag, and so all the functionalities will know that the new reference
changed and used it for the filtering. To get the information about the doxels when
we have two datasets, the same click handler works, and we retrieve both the
information for the two datasets.

Involved Classes and Methods
The flow to compare the dataset starts from the ESTWA where the user specifies all
the parameters to import the data, calling the method newData from
AppContrusuctor, which will import the data in the application calling the
DataLoader class and the getData method. Then when the data are available, the
GlobeInterface will start the creation of the doxel with doxelFromData and then
makeDoxel.

 Doxel Extrusion

The extrusion of the doxel is possible with one layer per time. All the functionalities
work like the original flow, except the altitude slider, since we cannot change the
range of altitudes. During the creation of the doxels, we take into consideration the
second information from our dataset. We represented it modifying the default height
specified in the configuration, but creating a range of minimum and maximum
height, as we did for the colors. We obtain the weight thanks to the minimum and
maximum value in the dataset, and we then multiply this by a constant value of
height, to achieve the desired height for each doxel. This is the same flow made
during the assignment of a color for each doxel but reproduced to modify the height.

Involved Classes and Methods
The extrusion of the height is a special case that will change the normal behavior that
the application follows when importing the data from the interface. Thus, the same
classes and method are executed. The exception flow is on the makeDoxel method in
the GlobeInterface class. It will check if the option to extrude the doxel is active and
extrude them based on their value.

 User Interface Demonstration

Below all the functionalities previously explained are shown with a detailed
description on how to get them and where to find them. Some images are available
to see the result of them in the user interface.

 Data Importing from CSV

To configure the importer for data we first select the CSV file for the dataset and
clicking on “Load Configuration”, we will import the first line to let the user select
from dropdown and input boxes the right parameters.

61

Figure 28 – Importing data interface

 Personalization Options

Height of Voxel
Allow to choose the height of each voxel, thus the height of each layer.

Maximum layers visible
Will limit the number of layers shown in the view after importing the data.

Initial Height
Allows selecting an altitude from which the least bottom layer of doxels will start to
be visualized. Inserting a value of zero all the doxels will start from the ground, but
not following the terrain elevation model, so attached to the highest point in the
elevation model; this is done to have all the doxels corresponding to a time layer at
the same height.

Max layers in view
Permits to select a maximum number of layers to display simultaneously in the view.
The minimum is one while the maximum is the maximum number of timestamp
available containing data.

X/Y- Subdivisions
Indicates the number of row and columns in which one layer would be subdivided on
the x-axis and y-axis (latitude and longitude) to represent the big doxels; thus
indicates the root square of the number of large doxels represented. The minimum
is one, to have a statistical representation over the whole layer. The maximum is the
smallest number between the number of rows and columns in the grid, although
having a number close to the maximum would not be much useful since no
aggregation would take place hence no statistical representation of data.

Z – Subdivision
Refers to the number of layers of big doxels in which we desire grouping our layers.
Once again, the minimum is one, to have a single layer of big doxels, while the
maximum is the same as the maximum number of layers in view. Even in this case
choosing the maximum value would be the same as not grouping them in the z-axis.

62

Color Range
Consists of three colors selectors from which the users can select the color range to
use for displaying their data.

Figure 29 – Color Range interface selector

Statistical Index
A drop-down menu in which there are several statistical indexes available to choose;
in order to show the desired statistic while grouping the data. The statistic will be
represented following the same color range selected in the color-range option.
We implemented the following indexes: weighted average, arithmetical average,
variance, median, maximum and minimum. Naturally, the weighted average and the
arithmetical one will be the same in the case of a regular grid in which the cells have
all the same dimension.

 Interface Options

The second type of choices available are the ones for the interaction with the globe.
They will be available only after having imported the data and thus have all the doxels
available.
After inserting all the input values, clicking on the “Start” button we can process the
data and display them in the globe.
A new Interface will appear now where we have more controls and other options.

Retrieving Doxels Data
Clicking on a doxel when the appropriate click handler is selected, will show a graph
with the information about the doxel during the time and some statistics.

Big Doxels Creation
On the user interface, we placed a radio button to choose the handler, for showing
and hiding the big doxels or selecting a single doxel and retrieve the information.
Clicking on the button for the big doxels the process will start the creation of them.

Big Doxels Hiding
When the handler for the big doxels is selected, double clicking on a big doxel will
show the doxels inside, and vice-versa, clicking on a single doxel will show the big
doxel to which it belongs.

63

Figure 30 – Big Doxels partially hidden

Latitude & Longitude Sliders
We can drag and drop the left and right extent of this slider to limit the doxels we
want to display, creating a range of values on the latitude.
The filter is the same as the latitude filter but permits to restrict the number of doxels
to be displayed, creating a range of longitudes. It can operate alongside the latitude
slider to limit the view up to a single doxel per layer.

Altitude Slider
This slider can restrict the number of layers to be displayed in the view. It is possible
again to select a range; in this case, a range on timestamp to be visualized in the view.
In the default case, the maximum number of layers available in the view are
visualized.

Values Slider
This slider permits the user to set a range of values, between the minimum and
maximum of the data set. The doxels that will be outside the range of values will be
hidden.

64

Figure 31 – Filtered Doxels on value

Time Browsing
This slider is the one to control the fourth dimension. It allows selecting a range of
timespan to visualize. In this case, since many layers of timespan can be visualized
in the view, it permits to navigate through the time. The initial value of the slider is
the first available timestamp; it is thus possible to change this value up to the
maximum timestamp available among the layers.
Moving this slider will create a sort of animation of what is happening to the layers
during the time.

Figure 32 – Interface to control the filters

65

Updating Options
From the interface, it is possible to change few of the options we set during the
importing of the data. Not all the options are available to be modified since some will
require creating the voxels again from scratch.
Among the options is possible to change the initial height of the voxels, the statistical
index for creating the big voxels and setting the automatic creation of the voxel when
browsing through the data.

 Dataset Comparison

The alternative flow of the dataset comparison consists in showing two datasets, or
two variables, of the same dataset and comparing them in a single view. To do so, we
need to limit the number of layers to one to appreciate the view.

After having a dataset visible from the options, we can upload a CSV representing the
second dataset. It should contain the same time values and grid indices in order to
be visualized beside the first dataset.
When the upload is completed, as we can see in the image below, it will appear and
shows the doxels subdivided into two parts.

 As regarding the filtering functionalities, they are available both for the first and
second dataset. By default, the filtering, and all the options are set to the first dataset,
but from the interface, selecting the box to use the second dataset instead, we can
swap all the functionalities to have the second dataset as a reference.

Figure 33 – Doxel comparison over two variables

66

 Voxel Extrusion

The voxel extrusion, it is an alternative flow that can be shown instead of stacking
the layers, one on top of the others. When we want to extrude the voxel, we lose the
time variable in the same view, giving space to another variable, if the dataset
comprehends more than one. Although it is still possible to go through the time with
the slider time. We can thus observe five variables in the application: latitude,
longitude, time, and two variables that we choose.

To achieve the voxel extrusion, we need from the user interface, before importing the
data, to select the voxel extrusion checkbox. It will automatically set the number of
maximum layers to one.

Figure 34 – Doxel extrusion using two variables

When imported, we will have a similar view, and still use all the filtering that were
working before. Moreover, it is possible to add another dataset for comparison and
show in the view, to have once more another variable in the application.

67

Figure 35 – Doxel Extrusion and Comparison with three variables

 Multiresolution Grid Creator

Besides developing the application for importing and visualizing the data, we created
a side tool, to generate a grid for visualizing georeferenced data.
The system permits to generate a grid that can be imported in the visualization
application to be a point of reference the visualization of the data.
Thanks to this system any geo-referenced dataset can be visualized in the application,
even if not based on a grid.
An interesting study case could be the weather stations that are represented by
points. However, in our system, they cannot be visualized using a voxel model unless
converted to a suitable format for the application.

 Grid Typologies

Referring to a grid, we usually imagine a two-dimensional matrix with equally spaced
cells. That is a regular grid. Although there are several kind of grids.
The cells in a grid can, for instance, have different dimensions among each other.
Also, it is possible to have non-squared cells.
An unstructured grid or irregular is made by cells with simple shapes: triangles,
rectangles and so on.
A particular example of a grid is the grid having a Quadtree structure, which is a 2D
square divided into four squares. Some of them are in turn subdivided into other four
squares and so on.

68

Figure 36 – Quadtree structure explanation [39]

Another sample is the subdivision following a Voronoi diagram structure, which
subdivides a space into several polygons, as shown below.

Figure 37 – Voronoi Diagram structure

 Voronoi Diagram

The Voronoi diagram is a way to partition the Euclidean space thanks to points. The
subdivisions are based on the distance between the points.

The partitioning of a plane with n points into convex polygons such that each polygon
contains exactly one generating point and every point in a given polygon is closer to

69

its generating point than to any other. A Voronoi diagram is sometimes also known
as a Dirichlet tessellation. The cells are called Dirichlet regions, Thiessen polytopes,
or Voronoi polygons. [40]

 Quadtree

A Quadtree is simple data structure where there is one parent with four children.
Each child can have 0 or 4 children in turn.
This data structure is used in many studies area, such as computer graphics, game
development, computer vision and for visualization.
It was created by Raphael Finked and J.L. Bentley in 1974."Quad Trees: A Data
Structure for Retrieval on Composite Keys". [41]

To insert data in a Quadtree, we start from the root node and determine which of the
four quadrants contains our point. Then we continue until we explore all the children
in that quadrant and so on. Although it is possible that we want to define a maximum
number of elements that a quadrant can have. In that case, we could split the
quadrant itself among four children.

In our case, we needed to generate a grid having some points in the space. A Voronoi
diagram representation is the one which fit most with the scenario, but the
visualization of the shapes generated from the Voronoi is harder to visualize rather
than the Quadtree one with rectangles.
Moreover, the space occupied by the cells of the Quadtree is proportional to the
distance between the points, meaning that if we have for instance four close points,
they will have a small area, rather than a big one from the Voronoi.
We can see an example in the two images below.

Figure 38 – Voronoi Sample with four nearby points

70

Figure 39 – QuadTree sample with four nearby points

In our case, since we wanted to represent with the voxel, only the areas of the grid
occupied by them, the Quadtree is the most appropriate.

 Quadtree Grid Generation

To generate the Quadtree, we followed a JavaScript implementation of Quadtree
developed by Mike Chambers24 and released under MIT license.

In our case, we wanted to set the maximum number of element in each child to one.
So that we could generate a grid, from a Quadtree, made of cells that are smaller
where there are more points and larger where fewer points are available. In this way,
we show a high concentration of data with a better resolution, While the areas where
we have less data will be larger. Looking at a grid like this we know that we can
present a dataset without a fixed resolution. Just looking at a sample dataset
represented in a similar grid, we can understand where is the best resolution and
which are the relative points.

To create a grid with this structure, we start reading the data from the dataset to
create the initial rectangle. We look for the maximum latitude and longitude and as
well the minimums. Thanks to this four information we can define the original
rectangle. To do so, we take the maximum longitude and minimum latitude to obtain
the top-left corner, then the maximum latitude and longitude to get the top-right

24 https://github.com/mikechambers/ExamplesByMesh/tree/master/JavaScript/QuadTree

71

corner, and so on. Creating a rectangle in this way, we can be sure to have all the
points inside it.

Then to insert the points, we take all the points from the dataset in consideration,
and we insert them one by one. To add a point, we follow the algorithm of the
Quadtree insertion, thus, after inserting one point verify if another point is present
in that quadrant. If so we split the quadrant in four more. If the new quadrant still
contains another point, we keep splitting it until we have exactly one point in the
desired quadrant.

After all the point have been inserted we can generate the grid. To do so, we retrieve
all the quadrants and produce a GeoJson file from it. In this way we will have,
possibly, more quadrants than the number of points, since each insertion of a point
could generate four quadrants.

Below we can see a Quadtree grid that we generated thanks to this system, in the case
the QuadTree is almost fully populated, so the points are well distributed over the
grid.

Figure 40 – Fully populated QuadTree

Another sample instead, that happens more often, when there are several points not
well distributed, and in some case some close each other, will generate a similar grid,
as the one in the image below.

72

Figure 41 – Real example of QuadTree from points

The above image represents a sample of a QuadTree generated by the precipitation
over the city of Torino, recorder by some weather station from ARPA Piemonte25 (
Agenzia Regionale per la Protezione Ambientale) – on the 3rd May 2016.

The grid can be furtherly exported in GeoJson, thus, can be used for our system
where a grid is needed. In this way, with a grid, and the data, related to the grid, we
can generate the voxel model as mentioned before.

This method shows an alternative way to import data in the application and visualize
them, feasible for greater study cases.

 Development Environment - WebStorm

In our case, to develop the application and furtherly to create the tests we used the
same environment, which is WebStorm26 from JetBrains.
WebStorm is an IDE (Integrated Development Environment) and it provides several
functionalities. Inside it, there is a big set of tools oriented to programming and allow
supports of different web technologies. It is available for Mac and Windows.

It supports client side and server side languages such as JavaScript, HTML, CSS and
similar ones. Besides the programming languages, also major frameworks are

25 https://www.arpa.piemonte.gov.it
26 https://www.jetbrains.com/webstorm/

73

supported, such as Angular JS, React, and Meteor. Also, Cordova, Ionic are
supported for developing mobile solutions. Nonetheless is available a developing
environment for Node.js as regarding the server side.

The interface is one of the points of strength of WebStorm. It is quickly possible to
create new projects, import other projects and manage them
We can also find supports for several key combinations to speed up each operation.
Moreover, it supports functionalities for finding classes, methods and files through
shortcuts. The code completion for all the languages client and server side speed up
the coding and simplifies it.
One of the best features, and well implemented is the orthographic corrector, which
allows checking comments, string and anything helping to reduce errors. Several
inspections are automatically performed on the code and when an error or problem
if found the IDE provides a detailed explanation of the error and some quick fixes to
solve it.
WebStorm moreover allows some features for debugging client-side code and has
many features for it, such as supports for breakpoints, steps and expression
evaluation.
Another important feature is the capacity to support unit testing; it integrates two
famous test runners: Karma and Mocha. It is thus possible to run inside the IDE all
the tests and set up them easily.
Spy-js is another interesting feature to trace the JavaScript code. Thanks to Spy-js it
is possible to explore the files, their connection and identify performances issues. As
well is possible to solve them and to determine bottlenecks in the code.

Many tools are available for WebStorm; it is possible to integrate it easily with the
most popular tools for web developing. Some examples are the code quality tools,
like JSHint, ESLint, JSCS or JSLint. We can add these inspectors for the code and
get on the fly all the suggestion from the linters.
Project templates are supported as well; we used the Express generator on the server
side to create the template for our simple server.

WebStorm is based on the open-source IntelliJ platform; it is then a customization
of it. It provides so support for VCS – Version Control Systems – for working with
the most popular versioning systems like GitHub, SVN, and Mercurial. In this way,
having a local history is possible any time to roll back to a previous version of the
code and navigate through all the different versions. Another point of interest for
WebStorm is the opportunity to customize it, changing colors, fonts, themes and
placing all the components in the place we want to.
WebStorm also provides a built-in terminal to run command line instructions
without going outside the IDE.
Besides all the features and functionalities, thanks to the support of plugins available
in the IDE Plugin Repository is possible to extend it and integrate any functionality
we want which is not included by default.

74

 Unit Testing

Making unit-testing means creating some tests to make sure the code behaves
correctly.
The word "unit" refers to the unit of code that we have to test. When we want to test
a specific part of the code is significant to test the entire class piece by piece, to do so,
our code has to be divided into small pieces.
In general, but especially in JavaScript is problematic to have always a standalone
piece of code. Often the methods call other methods, and they interfere with the
DOM. Especially in client side projects, like in our case, might be difficult to break
the code in the necessary pieces to test.

 When to test

Having a client-side JavaScript, the project would be more efficient if we manage to
test all the method one by one during their creation. Creating the tests side by side
with the functionalities would also assure better performances the absence of bugs.
Doing the unit tests in the end, after having all the code, will instead be difficult to
achieve. Moreover, breaking significant parts of the code and several classes into
pieces is sometimes one of the most arduous tasks for a programmer.

 Why testing

Writing the code, having in mind the testability of it, it favors the creation of a
modular design, which is the most suitable for this kind of application. Modular
design, as already mentioned, is a design style that allows having several modules
that can be reused without altering the code consistently. It also reduces the
complexity of the code, because having several part separated we do not need to have
a long code which can cause some problem to be read and understood.
Testing the code and creating proper unit tests gives various advantages. One of the
most important is to avoid the code to have a bug in the future, moreover, when we
alter the code or implement new functionalities, the tests permits to follow the proper
structure and keep coding in a modular way without making it complex. It also
facilitates the code to be integrated everywhere. As well, any modules are easily
importable in other projects.

 What to test

When it comes to which part of the code we want to test, depending on the content,
it is possible sometimes to test a high percentage close to 100%, even if when we want
to create tests for JavaScript is hard to achieve this level.
It is not useful to test just the main behaviors of all the modules in our code, but
sometimes it might be necessary to test unexpected behavior or conditions that
should not be expected.
To test the code, we start from the highest level, and we go then into details.
To do so, we take a class in consideration, and inside we choose the first method.
From this method, we create an implementation of it, inserting an input and getting
an output.

75

 How to test

The test consists of creating a proper input and expecting a specific output, in a way
that we can predict what the output should be, and check if the condition is verified.
The input of the method we want to test can be created, as we want or also imported
from other classes. In case, we want to take the test individual and not being
dependent on the other classes we can create a mock object that simulates the
behavior of a complex object that is what an output of a method from another class
could be.
After having, the input we know what is the expected behavior of the method. Also,
we know what the output should be. We then compare and assert they are equal, the
expected output with the real one. If the assertion is true, the test is passed. The
assertion we do can be made just on some property of the output or even in many
aspects, taking into consideration a wide knowledge of our output.

 Testing Environment

In order to create our tests we set up our testing environment using the testing
framework Jasmine27 within the environment of Karma28.

Jasmine is a behavior-driven development framework for testing
JavaScript code. It does not depend on any other JavaScript
frameworks. It does not require a DOM. And it has a clean, obvious
syntax so that you can easily write tests. [42]

Thanks to Jasmine is possible to set up all our test with a good and clear syntax for
the testing code. It allows describing each test and create for each method a testing
file with the description of many kind of tests. A particular aspect of Jasmine is that
it doesn’t invade the application or the integrated development environment. The
syntax used to create a simple test is the following:

describe('Hello world', function() {

 it('says hello', function() {

 expect(helloWorld()).toEqual('Hello world!');

 });

});

Code Snippet 6 – sample test structure in Jasmine

We can see that the “describe” part is useful to indicate the general functionality to
test, while with the “it” part we can define the exact part we want to test.

Jasmine also implements several pre-defined matchers to use in the code. The
example matcher used in the above example “toEqual” is used to guarantee the
equality condition. Some other matchers are: “toBe”,to represent the exact equality
condition, “toMatch” that call a regular expression, “tobeUndefined” to test the
“undefined” condition and much more.

27 http://jasmine.github.io
28 https://karma-runner.github.io

76

To implement the test environment of Jasmine, we used Karma. Karma allows to test
the code in any browser and doing it in multiple ones. It allows testing during the
development and has the possibility to track any change to the code, to run the
require tests when a class is edited.
Also, setting-up the environment is very easy thanks to Karma, because it simplifies
the creation of the configuration files thanks to some simple questions from the
command line, and gives out a working environment, ready to work.
Moreover, it allows the use of RequireJS29 to call external dependencies easily.

RequireJS is a JavaScript file and module loader. It is optimized for in-
browser use, but it can be used in other JavaScript environments, like
Rhino and Node. Using a modular script loader like RequireJS will
improve the speed and quality of your code. [43]

 Tests

We created some tests to reduce the possibility of having bugs in the future. We
created a specific folder “test” where we placed all our tests.
We followed the paradigm of starting from high-level tests going into details.
A sample test is provided below.

As we can see in the snippet below, the testing of a method is given. In the output,
we take into consideration the type of the output and the result of it. In this case, we
are testing two properties of the method. The more we test, the better it is, because
it allows identifying bugs, and avoiding the unnecessary behavior.

describe('Color test', function () {

 it('Color white', function () {

 var color = GlobeHelper.getColor(0, [[255, 255, 255], [0, 0,

0], [0, 0, 0]]);

 expect(typeof(color)).toBe("object");

 expect(color).toEqual([255, 255, 255, 255]);

 });

});

Code Snippet 7 – Testing two properties of an object

It shows the testing of the class “GlobeHelper”, showing a test for the method
“getColor” to verify a sample conversion of color from Hexadecimal to RGB.
We created an assertion of the type of output, in our case an object and then
compared the expected output with the real one.
Running the test, the IDE shows that it passed successfully, and no problem was
found.

29 http://requirejs.org

77

Figure 42 - Testing running successfully

 Versioning System

The versioning is the management of different versions of accurate information. In
software development, it refers to the changes in the versions of software which is in
the development phase.
The version control system - VCS - allows keeping in memory the changes made to
any file, to be able to go back any time to a previous version, or check which changes
have been made.
When we "version" a file it means that we are going to create a copy of that file each
time we make a change, and we commit this change to the system. These changes
will be stored in the system we want to use. We will use the term "repository" to refer
to the group of files for a specific project.

 Local Version Control System

It is possible to create a version control even manually copying and pasting the file
before doing any edit, but this technique is time-consuming, very prone to error and
occupies additional memory.
Using a VCS, we have a database to keep track of all the single changes made to a file,
in this way we do not have to make a hard copy of the file, but just of the applies
changes.

 Centralized Version Control System

A big leap from the local VCS is the centralized one, which favors the collaboration
of more people on the same project. This consists of a server that hosts all the files
related to a project, and the users can connect to it to download and upload changes.

78

 Distributed Version Control System

The advantage of a Distributed VCS is that the client makes a copy of the repository,
so that if a server goes down, it is still possible to work on the files and commit them
when the server is available. In the same way is possible to create a copy on another
server if necessary.

The VCS is mostly used in software development. It has several features, depending
on the system used to support the edit of the files. Some systems use a technique to
lock the files that are being edited from other people so that one developer per time
can make changes to the file. Another structure, especially on the distributed system,
allows many people committing the changes to the same file, and if there are no
conflict among them, is possible to merge them easily. In the case of conflict among
some lines from the previous and the actual file are present, the supervision of the
user who committed for last is necessary.

 GitHub

GitHub30 is a website which provides a service to host repositories. The name "Git"
comes from a VCS called Git developed in 2005 from Linus Torvald.
The website provides social network functionalities, allowing users to check the
development of the projects.
It provides support for free accounts for public repositories and private repositories
for a fee. Mostly, open source projects are hosted on public repositories, such as in
our case.
The website supports many features for each repository, an example in the
documentation that is possible to provide for each project showing much
information about it. In the case of collaborative projects, there is an issue tracking
system to keep people updated on the bugs, improvements or requested feature on a
project.

Our project31 was thus hosted on GitHub, and all the changes to versions, are kept
updated on this system.

 SourceTree

SourceTree32 is a free Git client for Windows and Mac. It simplifies the handling of
repositories in GitHub. Instead of using Git directly from command line, it provides
a graphical user interface to manage all the repositories, hosted or even local.
It can be connected to GitHub to manage all the projects, without the necessity to go
to the website. It supports different branches of the same projects, visualizing all the
versions of a file and comparing files in case of conflicts. Moreover, it provides
support for external plugins to extend the features, such us conflict management
tools.

30 https://github.com
31 https://github.com/GabrielePrestifilippo/EST-WA-Javascript
32 https://www.sourcetreeapp.com

79

Chapter 5

 Case Studies

 Milan: Telecommunication Data

In our study case, we wanted to address the visualization to telecommunication data
and social media data.

“Global telecommunication services create an enormous volume of
real-time data” [44]

Visualizing these data is becoming a significant challenge, especially when we have
several variables to represent. The use of a 3D visualization can ease the user's
understanding of the data and their interpretation. We took into consideration an
important dataset: Big Data Challenge 201533 from Telecom Italia. The data provided
are available for few cities in Italy: Bari, Milan, Naples, Palermo, Rome, Turin and
Venice. There is information about telecommunication events: SMSs, calls and
internet usage. Apart from telecommunication events some data about other fields
such as demographic information of people living in those areas.

Referring to telecommunication data, all the entries have a timestamp expressed in
milliseconds, and each one represents information for 15 minutes from that
timestamp. Therefore, each entry refers to 15 minutes of events in the time interval.
The data refer to the year 2014, and we have 2 months of data for this year, March
and April. In particular, for the SMSs, we have information about the number of
received SMSs, sent SMSs, and country code of the sim card used. Regarding the
phone calls, we have a number of incoming calls, outgoing calls, and country code.

Regarding the internet data, we have the number of started connections, closed
connections and amount of data transferred. The social media dataset contains
geolocalized tweets originated from Milano. Each entry has an anonymous user
identifier; thus, different entries could have a repeated user-ID in the case of
repeated tweets.

Telecom Italia provided a Geo-referenced irregular grid, for some cities in Italy,
where an ID represents each grid cell. An irregular grid means that each grid element
has a different size. The concept of rows and columns for regular grids does not apply
anymore, and more peculiar is to have a grid not circumscribed by a rectangular
shape, but open to any geometric contour. In our case, the grid is made of cells
varying from a dimension of 255 x 325 meters to 4080 x 5200 meters as shown in
Figure 5.

33 http://www.telecomitalia.com/tit/it/innovazione/big-data-challenge-2015.html

80

Figure 43 - Milano Grid, BigData Challenge - Telecom Italia

In the data, each entry has a grid-ID number to link the value of the data to the
corresponding grid cell, a timestamp, and value for each of the mentioned data. A
singular fact is that there are several “holes” in the data. This means some data are
missing, in particular, in each timestamp some values for the grid elements are not
present. The case study presented considers the city of Milano, and we show data
about call-in and call-out. However, since all of the data has the same structure and
refer to the same grid, we could work with all of the data in the same way.

As we mentioned before, the data have no information on the altitude, and we could
exploit altitude (z-axis) to represent the time. This permitted the user to view an
accessible three-dimensional representation of the data within a time range. In this
way, four dimensions are represented for a specific meta-data: value, latitude,
longitude, and time. To do so we imported some data in the application from a CSV
file, selecting the right parameters from the configuration. In this case, we imported
the outgoing calls from Milano, in the day 01/03/2014 at hour 00:00. We also
selected the colors for the representation, as shown below.

81

Figure 44 – Settings to import data in our study case

After importing, we obtained the following representation with the doxels. We can
see that some doxels are missing since the data were not available. Moreover, having
an irregular grid, we can see that the dimension of the doxels is not uniform. It
follows the dimension of the blocks in the grid, with smaller blocks in the center of
Milano, so with a higher concentration of data in the center.

Figure 45 - Doxels representing outgoing calls over Milano grid

What is novel in this case is the irregular grid and non-continuous entries for each
timestamp.

82

NASA Web WorldWind offers good performances to represent the significant
amount the doxels; without the need of any simplification, and in any case not
possible for our study case. Thanks to the web application we could observe the data
and filters out doxels within a range in the three axes.

The sliders in the application interface permit us to limit the extension of latitude,
longitude, and time that we want to show on the globe. We have the possibility to cut
the model using three cutting planes and visualize slices of the original volume. We
can thus observe fewer doxels reducing the complexity of the model.

Figure 46 – Filtering out low values in our study case

Figure 47 – Values filtered out in our study case

Using an outgoing call dataset and filtering on the values, we could observe the
number of calls that is increasing or decreasing in the X part of the grid. Applying the
filter, we can see from the picture below the high concentration of calls, represented
with the Y color.

We adopted a heuristic approach to face with a statistical representation of data –
weighted average, variance, median, maximum and minimum. We could subdivide
the data into subsets, choosing a number of groups to present the data; the grouping
is possible for the altitude, longitude and time.

83

Figure 48 - Group representation of average outgoing calls

Moreover, performance improvements came in handy as well. Having a lower
number of doxels to represent - since we put them in the subgroups - allows better
performances on the virtual globe. When we want to show the doxels contained in a
big doxel, so in a group, we could activate the appropriate click handler and click on
a big doxel to see all the doxels it represents the statistic for.

Thanks to the click handler, any user can interact with the globe and the data. Is also
possible to select a single doxel or a subgroup and obtain the information regarding
the available variables. Clicking on a doxel, we could retrieve the information about
the variable it represents and show time behavior of the variable for the selected
doxel on a 2D graph. Although the chart also shows other variables available in the
dataset. We can then compute the correlation between two variables. In our case, we
compared the number of outgoing calls with the length of the calls.

Taking as an example the 3rd January 2015 at noon, we saw an high correlation is
present in the dataset. While comparing the single doxels we noticed some doxels
have a stronger correlation, while other not.

84

Figure 49 – Information about a single doxel in our study case

Forasmuch as we represented the time using altitude, not many layers of doxels can
be appreciated because inserting more than a few, make it difficult to observe in a
meaningful way and also begin to cause some slowdown of the globe performance.
To solve this issue, we could keep visible a limited number of time layers for a fixed
time range and, from the interface, move this range to animate the desired time range
view.

We demonstrated the introduction of another way to show the time, but this
technique can be as well used to handle another variable in the scene if needed.

In our study case, we tried comparing the dataset of outgoing calls with a
demographic one, representing the number of people in a given area, thus in a grid
block. We then imported the two datasets and obtained a representation of the two
datasets in a split view of the doxels.

Figure 50 – Comparison of two variables in our study case

85

Using doxel extrusion, we then showed the same variables used in the first
representation, the outgoing calls and the length of the calls. Extruding the duration
of calls, while color represented the number of calls. We can observe in the picture
below what one layer looks like. We again used 3rd January 2015 at 12:00:00 as
sample day. We can clearly see the correlation of the observed variables

Figure 51 – Doxel extrusion in our study case

 Turin: Point Features Data

Another case studies involves a different typology of the dataset. In this case we
wanted to visualize a dataset made of point features. The dataset used comes from
ARPA Piemonte34 and is made by point data for about 100 weather stations in the
surrounding area of Turin. This weather station data contains wind speed and
precipitation, thus only two variables. The dataset contains information for a week
and has a temporal resolution of one sample per hour. Below is a 2D map showing a
possible representation of such data. Although this representation cannot show some
information available in the dataset. Especially we cannot analyze the variation
during the time and the values of the variables.

34 https://www.arpa.piemonte.gov.it

86

Figure 52 - 2D representation of point features

Thanks to our Multiresolution grid creator, we could import the dataset and create a
QuadTree representation. In this case we set a maximum limit of subdivisions to 5
quadrants and obtained the following representation:

Figure 53 - QuadTree representation of Turin Dataset

87

Having the grid in the application and the dataset we could then import the data and
display them using the voxel model.

Figure 54 - Doxel Representation of Turin Dataset

We can see how a single layer of data is represented. However, all the representations
shown before are possible to analyze and display the different data. Below is a
representation in time of the dataset, showing the variation for a single day.

88

Figure 55 - Time representation of Turin Dataset

To also show the second variable we can represent the dataset with the extrusion
representation and analyze the correlation of the two variables, wind speed and
precipitation. We represented the wind speed with the color and the precipitation
with the extrusion in the altitude.

Figure 56 - Extrusion representation of Turin Dataset

We have seen how any dataset made of point features can be represented in the
application we made and how the dataset can be easily analyzed to obtain
information and view statistic from the dataset.

 West Turrock: Geological Data

An interesting case study, to show the wide set of data that can be shown of the
application, refers to a case study in which we wanted to visualize some geological
data. From the British Geological Survey website 35 we downloaded some samples of
LithoFrame files.

LithoFrame is a concept to produce models of Britain's subsurface
geology; the 3D equivalent of the geological map. LithoFrame models

35 http://www.bgs.ac.uk/

89

have been created at a range of scales to answer specific questions
about geology and the composition of the subsurface. The adjacent
map of Britain shows our coverage of current geological models at
varying resolutions. [45]

In particular, we retrieve a model representing bedrock geology in West Thurrock.
The model covers about 10 square kilometers of area with a resolution of 10m. The
bedrock of the area is dominated by the Chalk which extends to a depth of -150m
under the ground.
The presence of Chalk shows the effect of excavation over a large area [46].

The LithoFrame was originally in an ASCII grid format, preventing us from
importing it directly into the application. Thus we converted it to a CSV, in order to
show that data in our application.

Since the data in an ASCII grid are equally spaced and the information represented
by point data, we had to use the CSV importer for point feature data, as in the case
study of Turin. During the importation we have chosen to represent two variables.
The depth of the base for the chalk and the thickness of it.

We thus imported the data selecting a maximum subdivision of quadrants in our
QuadTree to four. To import the two variables, we decided to use the extrusion model
and we associated the color to the depth of the chalk deposit while the height for the
thickness, obtaining the following representation.

Figure 57 - WestThurrock: Chalk Deposit in 4 Quadrant subdivision

We can observer from the image that the depth of the deposit varies from -152.12m
to -149-77m becoming deeper close to the river. In the same way the thickness

90

increases while going close to the river. The thickness, represented by the height of
the doxels, is exaggerated on the extrusion order to appreciate the image from a
distant view.

To have a more accurate representation, we can subdivide the quadrant in five or six
sub-quadrants obtaining smaller voxels.

Figure 58 - WestThurrock: Chalk Deposit in 6 Quadrant subdivision

The representation with a subdivision in six quadrant reaches a resolution per doxel
of about 10m x 30m which is the maximum we can obtain for such model. Having a
better resolution, we can appreciate better the thickness of the chalk deposit,
observing very small variation of height in the center of the model (the orange part).
Moreover, we can retrieve the data from the doxels, as shown before, clicking on each
doxel.

91

Figure 59 - West Thurrock chalk data

The figure above shows the value of the thickness of a single doxel, in this case
corresponding to a single entry of the LithoFrame. For the Variable 2, the thickness
has a value of 134.53m over a base of 150.82m.

Is also possible to observe the fine variation to the depth of chalk’s deposit, varying
from east to west (left to right) in the below image. We can see how it becomes deeper
going to east, while the thickness has a not significant variation.

Thanks to this case study we witnessed the big opportunities available within the
application we created for showing data available in multiple fields of research.

92

 World Coverage: Average Land Temperature

This case study is different from the previous for many reasons. Firstly, because of
the dataset which has a full coverage of the globe. We used a dataset provided by
NASA for the Average Land Temperature during the year 2014. This dataset is
accessible, along with some sample, from some the Big Data Standards website36,
using as sample Rasdaman. The dataset has a resolution greater than 10km.

In this case, we implemented a system using Rasdaman to store the dataset. This
allowed us to access it using the Web Coverage Processing service, thanks to an HTTP
request using AJAX calls from the application.

Though the coverage is available for the entire globe, we are not able to visualize it
entirely in a single view. Thus, we use the application to query the dataset and
retrieve data within the boundaries of our selected view . Selecting a view which
includes almost all Europe, and specifying as date January 2014, we can retrieve a
similar result.

Figure 60 - Average Land Temperature, Europe

The above image shows the queried dataset, using a voxel model and the QuadTree
creator. This means, we have an aggregation of values, in this case using a maximum
subdivision in four quadrants. Though, if we want to query other part of the globe we
can move around it and select an option to automatically download the new data.
Just moving across the globe, and selecting the western part of Africa, in few seconds
we automatically get the result for that view.

36 http://standards.rasdaman.com/

93

Figure 61 - Average Land Temperature, Western Africa

We can also notice how the color scale has recalculated the range, reaching now a
maximum value of 41°, while before it was 16°.

Since the resolution of the dataset is higher than this, we can also zoom in some areas
to retrieve detailed information, keeping still a maximum of four quadrant
subdivision in the QuadTree. In case we also want more detailed information we can
increase the number of the subdivisions, obtaining more voxels. In the image below,
we zoom-in further to the north part of Italy and increase the subdivision of the
QuadTree up to six.

94

Figure 62 - Average Land Temperature, North Italy

Thanks to this image we can understand that there are several customizations
available when querying big dataset like the one we selected. Moreover, all the
techniques we have shown before are all still valid in each use case, thus, if the dataset
permits, we can navigate through time, showing different times with differening
height, comparing two variables, grouping the data in Big Voxels, filtering out other
data and obtaining relevant statistics.

Below, we can see a picture representing all the data for the twelve months of 2014.
In the chart below the image, we obtain the statistics for a single voxel, seeing that
we reached a maximum temperature of 28° for the month of June.

Figure 63 - Average Land Temperature, North Italy, 12 Months

95

Chapter 6

 Conclusions

 Evaluation of Experiences

The newly developed application satisfies the expectations for visualization features
and performance. We experienced some performance issues when visualizing a
significant amount of data, but with the simplifications we applied, we can still
process large quantities of data without performance issues.

In our case study, the application shows data from sample datasets, but we can
visualize any data source in this CSV format since the application is predisposed to
any other source of data, or the application can also be configured to connect directly
to a database in order to retrieve the data.

As shown, the application works both with a reference grid in which we can place the
doxels, but also works without the use of the grid, as shown in the QuadTree
implementation. This allows users to import any geo-referenced data and display a
doxel model without knowing the bounding boxes of each doxel a priori. In this way,
we found several datasets that could be shown in the application, and many possible
study cases are available.

We implemented several features and all of them can be shown, specific to the
desired use-case by simple customization of a dataset, or adjusting a few options to
visualize any number of datasets.

 Future Developments

To extend the application more, new ideas could be implemented. A useful feature
might be to import NetCDF files into the application. However, currently there are
no pure JavaScript readers for these files. Without a JavaScript reader, a fully client-
based solution would need a server side to read the files and convert them to the
desired format. This is the reason we implemented the Rasdaman system, so as to
query the data in an effective and efficient way.

Also working more on the importing system would allow making more general the
input file the application accepts, even if at the current state, the most common
formats are available.

96

Bibliography

[1] D. Butler, NATURE|Vol 439|16 February 2006.

[2] D. S. S Sagiroglu, "Big data: A review," in Collaboration Technologies and Systems (CTS),
2013 International Conference on, 2013, pp. 42 - 47.

[3] "How Big Data Analysis helped increase Walmart’s Sales turnover?," Dezyre, 23 May
2015. [Online]. Available: https://www.dezyre.com/article/how-big-data-analysis-helped-
increase-walmart-s-sales-turnover/109. [Accessed 19 06 2016].

[4] M. Goodchild, "NeoGeography and the nature of geographic expertise," Journal of
Location Based Services, vol. 3, no. 2, pp. 82-96, 2008.

[5] J. D. S. G. W. C. H. D. A. W. M. B. T. C. A. F. R. E. G. Fay Chang, "ACM Transactions on
Computer Systems," ACM Transactions on Computer Systems, vol. 26, no. 2, 1998.

[6] R. A. N. M. Sunita Sarawagi, "Discovery-driven exploration of OLAP data cubes," Lecture
Notes in Computer Science, vol. 1377.

[7] R. A. N. M. R. S. Ching-Tien Ho, "Range queries in OLAP data cubes," in Proceedings of the
1997 ACM SIGMOD international conference on Management of data.

[8] V. Marx, "Biology: The big challenges of big data," Nature, no. 498, pp. 255 -260, 2013.

[9] D. D. J. Peuquet, "Representations of Space and Time," Guilford Press, 2002, p. 119.

[10] G. L. S. N. M. T. C. T. Q. L. Nuzzo, "Application of 3D visualization techniques in the
analysis of GPR data for archaeology," 2002.

[11] P. B. Tamara Munzner, "Visualizing the Structure of the World Wide Web in 3D
Hyperbolic Space," in Special issue of Computer Graphics, 1995.

[12] S. B. C. C. T. S. E. F. Codd, "Providing OLAP (on-line Analytical Processing) to User-analysts:
An IT Mandate," Codd and Date, vol. 32, 1993.

[13] S. M. Y. Z. V. C. M. L. Min Chen, Big Data Analysis, Springer, 2014, pp. 51 -58.

[14] "HTML5," [Online]. Available: https://en.wikipedia.org/wiki/HTML5. [Accessed 20 05
2016].

[15] "Java Applet," [Online]. Available:
https://docs.oracle.com/javase/tutorial/deployment/applet/. [Accessed 20 05 2016].

[16] C. G. Healey, "Effective Visualization of Large Multidimensional Datasets," 1996.

[17] M. A. Brovelli and G. Zamboni, "Environmental Space and Time Web Analyzer," in
Proceedings of the 2014 conference on Big Data from Space , 2014.

[18] T. O'Reilly, "What Is Web 2.0," 30 09 2005. [Online]. Available:
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html. [Accessed 15 05
2016].

[19] M. D. M. J. Kremer JR1, "Computer visualization of three-dimensional image data using
IMOD," PubMed, pp. Jan-Feb;116(1):71-6., 1996.

[20] S. F. Gibson, "Beyond volume rendering: visualization, haptic exploration, and physical
modeling of voxel-based objects," Visualization in Scientific Computing' 95, 1995.

97

[21] M. A. Brovelli and G. Zamboni, "Virtual globes for 4D environmental analysis," in Applied
Geomatics, 2012, pp. 163-172.

[22] "Voxel," [Online]. Available: https://it.wikipedia.org/wiki/Voxel. [Accessed 15 05 2016].

[23] S. Connolly, "7 KEY DRIVERS FOR THE BIG DATA MARKET," [Online]. Available:
http://hortonworks.com/blog/7-key-drivers-for-the-big-data-market/. [Accessed 16 06
2016].

[24] D. Laney, "3D Data Management: Controlling Data Volume, Velocity, and Variety.," META
Group, 2001.

[25] D. Pritchett, "Base: An Acid Alternative," vol. 6, no. 3, pp. 48 -55, 2008.

[26] "Databases: relational vs object vs graph vs document," [Online]. Available:
http://www.cbsolution.net/techniques/ontarget/databases_relational_vs_object_vs.
[Accessed 21 06 2016].

[27] "Online analytical processing," [Online]. Available:
https://en.wikipedia.org/wiki/Online_analytical_processing. [Accessed 21 06 2016].

[28] S. K. M. K. N. Di Sourav S. Bhowmick, Web Data Management: A Warehouse Approach,
Springer Science & Business Media, 2006.

[29] "Converting Snowplow data into a format suitable for OLAP reporting tools e.g. Tableau,
Qlikview, Pentaho, Microstrategy," [Online]. Available:
http://snowplowanalytics.com/guides/tools/olap/. [Accessed 21 06 2016].

[30] "APACHE KYLIN™ OVERVIEW," [Online]. Available: http://kylin.apache.org. [Accessed 21
06 2016].

[31] A. D. P. F. R. R. N. W. P. Baumann, "The Multidimensional Database System RasDaMan,"
in Proceedings of the 1998 ACM SIGMOD international conference on Management of
data, 1998.

[32] "Rasdaman," [Online]. Available: http://www.rasdaman.com/product.php. [Accessed 21
06 2016].

[33] "Web World Wind," [Online]. Available: https://webworldwind.org. [Accessed 20 05
2016].

[34] "Node.js," [Online]. Available: https://nodejs.org/en/. [Accessed 5 20 2016].

[35] "What Makes Node.js Faster Than Java?," [Online]. Available:
https://strongloop.com/strongblog/node-js-is-faster-than-java/. [Accessed 20 05 2016].

[36] "Express," [Online]. Available: http://expressjs.com. [Accessed 20 05 2016].

[37] "Representational state transfer," [Online]. Available:
https://en.wikipedia.org/wiki/Representational_state_transfer. [Accessed 20 05 2016].

[38] "CamelCase," [Online]. Available: https://en.wikipedia.org/wiki/CamelCase. [Accessed 20
05 2016].

[39] D. E. L. G. H. L. K. S. J. H. U. An, "Applicability Evaluation of Flood Inundation Analysis
using Quadtree Grid-based Model," Journal of the Korean Water Resources Association,
vol. 46 N°6, pp. 655 - 666, 2013.

[40] "Voronoi Diagram," [Online]. Available:
http://mathworld.wolfram.com/VoronoiDiagram.html. [Accessed 20 05 2016].

[41] J. L. B. R. A. Finkel, "Quad Trees: A Data Structure for Retrieval on Composite Keys.," Acta
Informatica, vol. 4, no. 1, pp. 1-9, 1974.

98

[42] "Jasmine," [Online]. Available: http://jasmine.github.io/2.4/introduction.html. [Accessed
20 05 2016].

[43] "RequireJS," [Online]. Available: http://requirejs.org. [Accessed 20 05 2016].

[44] E. E. Koutsofios, F. P. N. U. AT&T Bell Labs., S. C. North and D. A. Keim, "Visualizing large
telecommunication data sets," EEE Computer Graphics and Applications, vol. 19, no. 3.

[45] N. G. M. |. L. Resolutions. [Online]. Available:
http://www.bgs.ac.uk/services/3dgeology/lithoframe.html. [Accessed 23 06 2016].

[46] "West Thurrock model information," [Online]. Available:
http://www.bgs.ac.uk/services/3Dgeology/modelInfo/thurrock.html. [Accessed 23 06
2015].

[47] "Skewness To Systematic review (Statistics)," [Online]. Available: http://what-when-
how.com/statistics/skewness-to-systematic-review-statistics. [Accessed 11 05 2016].

[48] M. Crawley. [Online]. Available: https://fas-
web.sunderland.ac.uk/~cs0her/Statistics/UsingLatticeGraphicsInR.htm. [Accessed 15 05
2016].

[49] M. O. WardIn, "Multivariate data glyphs: Principles and practice,," in Handbook of data
visualization, 2008, p. 180.

[50] J. K. H. H. Andreas E. Lie, Proceedings of the Spring Conference on Computer Graphics ,
2009.

[51] D. J. Fuchs, "Evaluation of Alternative Glyph Designs," [Online]. Available:
https://www.vis.uni-konstanz.de/en/members/fuchs/. [Accessed 15 05 2016].

[52] N. Elmqvist, P. INRIA, P. Dragicevic and J.-D. Fekete, "Rolling the Dice: Multidimensional
Visual Exploration using Scatterplot Matrix Navigation," 2008.

