
POLITECNICO DI MILANO
Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in Computer Science and Engineering

Inferring High Resolution Terrain, Vegetation and
Visibility Networks from Point Cloud Data

Relatore:
Prof. Pier Luca Lanzi
Correlatore:
Prof. Tanya Berger-Wolf

Tesi di laurea di:
Benedetto Vitale
Matr. 837125

Anno Accademico 2015 - 2016



Alla mia cara famiglia.



Ringraziamenti

Ringrazio profondamente il mio relatore Italiano Prof. Pier Luca Lanzi del Politecnico di
Milano e la mia relatrice Americana Prof. Tanya Berger-Wolf dell’University of Illinois
at Chicago. Il loro essere sempre disponibili quando necessario mi ha consentito di seguire
il percorso che mi ha condotto al completamento dei miei studi.

Ringrazio anche Vena Jia Li, dottoranda dell’University of Illinois at Chicago, per
esserci stata qualora avessi necessità di discutere eventuali problemi ed analizzare varie
soluzioni agli stessi.

Un profondo ringraziamento va alla mia ragazza, Rosa, per avermi sempre support-
ato nonostante l’insormontabile distanza e sempre con un grande cuore.

Ringrazio sentitamente anche il mio amico d’infanzia Walter, per esserci sempre stato
per me qualora necessario sin da quando eravamo bambini.

Infine ringrazio i miei amici e colleghi Italiani Andrea P., Andrea D.V., Davide,
Ettore, Roberto and Vittorio, che hanno condiviso con me questo magnifico pecorso, aiu-
tandomi a fronteggiare grandi quantità di lavoro con momenti di indimenticabile diver-
timento.

BV



List of Figures

3.1 An example of BST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 An example of KDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 An example of Decision Tree to decide whether it is safe to play

outside or not based on weather features. . . . . . . . . . . . . . . . . 23
3.4 An example of KNN where the target point is the one in red. . . . . . 23
3.5 Logit function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Structure of the Random Forest classifier. . . . . . . . . . . . . . . . . 25
3.7 Example of binary classification using SVM. . . . . . . . . . . . . . . 26
3.8 Example of clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9 Example of point cloud surface. . . . . . . . . . . . . . . . . . . . . . 29
3.10 Confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11 An example of interpolation of a curve (blue dashed) generating an

approximate one (red). . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.12 Sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.13 Hyperbolic tangent function. . . . . . . . . . . . . . . . . . . . . . . . 36
3.14 The structure of an artificial neuron. . . . . . . . . . . . . . . . . . . 36
3.15 An example of ANN with one hidden layer. . . . . . . . . . . . . . . . 37
3.16 Structure of an autoencoder. . . . . . . . . . . . . . . . . . . . . . . . 38
3.17 Structure of a stacked denoising autoencoder neural network. . . . . 40

4.1 An example of the Kenya savannah vegetation. . . . . . . . . . . . . . 42
4.2 Ground truth collection process. . . . . . . . . . . . . . . . . . . . . . 43

5.1 Example of a point cloud surface corresponding to a Kenya surface
(on the left) and the same surface classified using a curvature thresh-
old of 0.1 (on the right) where vegetation points are highlighted in
blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Surface in 5.1 classified using a curvature threshold of 0.2 (on the
left) and a curvature threshold of 0.3 (on the right) where vegetation
points are highlighted in blue. . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Area 1 of the ones of interest. . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Area 1 of the ones of interest classified (the blue points correspond

to the vegetation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



LIST OF FIGURES 5

5.5 Area 2 of the ones of interest. . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Area 2 of the ones of interest classified (the blue points correspond

to the vegetation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7 Area 3 of the ones of interest. . . . . . . . . . . . . . . . . . . . . . . 50
5.8 Area 3 of the ones of interest classified (the blue points correspond

to the vegetation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.9 Area 4 of the ones of interest. . . . . . . . . . . . . . . . . . . . . . . 50
5.10 Area 4 of the ones of interest classified (the blue points correspond

to the vegetation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Flow chart summarizing the set of operations performed to identify
a specific tree in the subset of points. . . . . . . . . . . . . . . . . . . 53

6.2 Line plot of the distance threshold values experimented (on the x
axis) and of the number of trees with ground truth detected among
the 19 in the validation set (on the y axis). . . . . . . . . . . . . . . . 54

6.3 Example of the different spacing between trees at different heights. . 57
6.4 Area 1 original point cloud (trees with ground truth are highlighted

by red ellipses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5 Trees identified by the segmentation algorithm in area 1 (missclassi-

fied trees among the ones with ground truth are highlighted by red
ellipses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.6 Area 2 original point cloud (trees with ground truth are highlighted
by red ellipses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.7 Trees identified by the segmentation algorithm in area 2 (missclassi-
fied trees among the ones with ground truth are highlighted by red
ellipses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.8 Area 3 original point cloud (trees with ground truth are highlighted
by red ellipses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.9 Trees identified by the segmentation algorithm in area 3 (missclassi-
fied trees among the ones with ground truth are highlighted by red
ellipses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.10 Area 4 original point cloud (trees with ground truth are highlighted
by red ellipses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.11 Trees identified by the segmentation algorithm in area 4 (missclassi-
fied trees among the ones with ground truth are highlighted by red
ellipses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Highest results obtained for each metric during the various experi-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.1 Baboons habitat with not obstructed lines of sight in green and ob-
structed lines of sight in red. . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Visibility network at timestamp 178573. . . . . . . . . . . . . . . . . . 77



6 LIST OF FIGURES

8.3 Visibility network at timestamp 178574. . . . . . . . . . . . . . . . . . 78
8.4 Visibility network at timestamp 178575. . . . . . . . . . . . . . . . . . 78
8.5 Visibility network at timestamp 178576. . . . . . . . . . . . . . . . . . 79
8.6 Visibility network at timestamp 178577. . . . . . . . . . . . . . . . . . 79
8.7 Visibility network at timestamp 178578. . . . . . . . . . . . . . . . . . 80



List of Tables

6.1 Results of the visual validation process over the four different sub
areas chosen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1 Accuracy, recall and precision results of the inference task with man-
ually extracted features . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Accuracy, recall and precision results of the inference task with man-
ually extracted features except the rgb related features . . . . . . . . 66

7.3 Accuracy, recall and precision results of the inference task using the
RGB features only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4 Accuracy, recall and precision results of the inference task with au-
tomatically extracted features using 3 hidden layers . . . . . . . . . . 68

7.5 Accuracy, recall and precision results of the inference task with au-
tomatically extracted features using 4 hidden layers . . . . . . . . . . 69

7.6 Accuracy, recall and precision results of the inference task with au-
tomatically extracted features using 5 hidden layers . . . . . . . . . . 69



Contents

List of Figures 6

List of Tables 7

1 Introduction 13
1.1 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 State of the Art 16
2.1 Ground/Non-Ground Separation Approaches . . . . . . . . . . . . . . 16
2.2 Tree Segmentation Approaches . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 CHM Based Algorithms . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Raw Point Cloud Based Algorithms . . . . . . . . . . . . . . . 17

2.3 Visual Obstruction Inference . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Visibility Network Computation . . . . . . . . . . . . . . . . . . . . . 18

3 Background 19
3.1 Tree Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 BST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 KDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Density Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Linear Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Polynomial Kernel . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 Averaging Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Point Cloud Representation . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Student t-distribution . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Statistical Significance Tests . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.1 Student t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



CONTENTS 9

3.6.2 The ANOVA Test . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Validation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.2 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.4 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Geographic Coordinates Systems . . . . . . . . . . . . . . . . . . . . . 33
3.8.1 UTM Coordinates System . . . . . . . . . . . . . . . . . . . . 33

3.9 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9.1 TPS Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 Artificial Neural Networks (ANN) . . . . . . . . . . . . . . . . . . . . 34
3.10.1 Artificial Neurons . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.10.2 Structure of ANN . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.10.3 Learning Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.10.4 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.10.5 Denoising Autoencoders . . . . . . . . . . . . . . . . . . . . . 39
3.10.6 Stacked Denoising Autoencoders . . . . . . . . . . . . . . . . 40

4 Dataset 41
4.1 Ground Truth Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Global Positioning System (GPS) Trajectories . . . . . . . . . . . . . . 43

5 Ground/Non-Ground separation 44
5.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Pseudo-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Scale and Curvature Threshold Tuning . . . . . . . . . . . . . . . . . 46
5.4 Separation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Tree Segmentation 51
6.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Pseudo-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Segmentation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Visibility Features Extraction 62
7.1 Addressed Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 Manual Features Extraction . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Automatic Features Extraction . . . . . . . . . . . . . . . . . . . . . . 64
7.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.4.1 Inferring With Manually Extracted Features . . . . . . . . . . 65
7.4.2 RGB Features Ablation . . . . . . . . . . . . . . . . . . . . . . 66
7.4.3 RGB Contribution Estimation . . . . . . . . . . . . . . . . . . 67
7.4.4 Inferring With Automatically Extracted Features . . . . . . . 67
7.4.5 Results Comparison . . . . . . . . . . . . . . . . . . . . . . . 70



10 CONTENTS

8 Visibility Networks 72
8.1 Lines of Sight Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2 Pseudo-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.3 Results and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.4 Visibility Network Construction . . . . . . . . . . . . . . . . . . . . . 77

9 Conclusion 81
9.1 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 83



Astratto

Con la diffusione di tecnologie che consentono l’acquisizione della struttura tridi-
mensionale di varie superfici, è nato un cospicuo interesse per le informazioni ap-
portate da tali tecnologie e per gli usi che sono possibili con questi dati. Un campo
in cui questa tecnologia è stata ampiamente utilizzata è quello ecologico, dato che
i dati 3D offrono la possibilità di analizzare la vegetazione e le sue caratteristiche
direttamente dalla nuvola di punti, mediante tecniche mirate ad isolare i punti del
terreno da quelli della vegetazione stessa, procedure finalizzate alla segmentazione
di singoli alberi nella nuvola di punti ed analisi che utilizzano la struttura a punti
derivata per stimare proprietà degli alberi stessi.

In questa tesi abbiamo proposto un framework che consente di estrarre infor-
mazioni sulla vegetazione e sul terreno a partire dalla nuvola di punti di varie
aree naturali, classificandone prima i punti appartenenti al terreno o alla vege-
tazione tramite un algoritmo di curvatura proposto nella letteratura, poi individ-
uando i punti appartenenti a singoli alberi utilizzando un algoritmo di segmen-
tazione basato sulle distanze tra i punti stessi. Facendo leva sulle informazioni
estratte per quanto riguarda terreno e vegetazione, il framework è in grado di sti-
mare in due fasi l’ostruzione visiva degli elementi individuati tra la vegetazione,
utilizzando l’apprendimento supervisionato. Durante la prima fase vengono estratte
delle caratteristiche dai punti degli alberi individuati, utilizzando sia un approccio
manuale, ovvero un gruppo specifico di funzioni viene usato per estrarre le caratter-
istiche, sia un approccio automatico tramite reti neurali in modo non supervisionato.
Durante la seconda fase invece, diversi algoritmi di apprendimento supervisionato
sono stati usati per stimare l’ostruzione visiva di ogni elemento della vegetazione
utilizzando le caratteristiche estratte nella fase precedente. Abbiamo inoltre fornito
un esempio pratico tra tutti i possibili usi delle informazioni estratte dal frame-
work proposto, il quale consiste nell’utilizzare le informazioni estratte per costruire
una rete di visibilità tra gli individui collocati nell’ambiente. Un altro possibile
utilizzo delle informazioni estratte dal framework potrebbe essere fornire supporto
nella creazione di un’esperienza immersive in ambienti forestali, esplorando l’habitat
esattamente come gli animali stessi che vivono in esso. Il motivo dietro la gener-
azione di una tale esperienza è che le interazioni tra gli animali della stessa o
diversa specie influenzano significativamente il loro comportamento in molteplici
aspetti, risultando pertanto cruciale negli studi del comportamento degli stessi.



Summary

With the diffusion of technologies which enables the acquisition of the 3-Dimensional
(3D) structure of different surfaces, there has been a great focus on the information
brought and the uses that are possible with this kind of data. One of the field in
which this technology has been widely used is ecology, given that 3D data offers the
possibility of analyzing trees and their characteristics directly from the point cloud
structure by means of techniques aimed at isolating ground points from non-ground
ones, procedures with the goal of segmenting individual trees in the cloud and anal-
ysis with respect to the trees point structure obtained in order to derive the trees
properties.

In this thesis we proposed a framework which infers information on vegetation
and terrain starting from raw point cloud data of forested environments, classi-
fying first the points in the point cloud as ground and non-ground by means of
a multiscale curvature algorithm proposed in the literature, then segmenting indi-
vidual trees among the vegetation points by means of an innovative segmentation
algorithm proposed. By leveraging on the information extracted for terrain and veg-
etation, the framework infers also the visual obstruction potential of the identified
vegetation elements by means of a supervised inference approach. The first phase
of the supervised inference consists in extracting a suitable set of features from the
vegetation points structures, in which we tried to extract features both through a
manual approach, meaning that we chose a specific set of features to extract, and
through neural networks in an automatic way. In the second phase instead, different
machine learning algorithms were used in order to infer the visual obstruction po-
tential of each vegetation element using the features extracted in the previous phase.
We also provided a practical example among the possible uses of the information
extracted by the framework, which consists in exploiting the framework results to
build a visibility network relative to the individuals located in the environment.

Another possible use of the information extracted by the framework could be
providing support in generating an immersive experience in forested environments,
experiencing the habitat exactly as animals living in it. The reason behind the
generation of an immersive environment is that interactions among animals of the
same or different specie significantly influence their behavior under many valuable
aspects, thus being crucial in animal behavior studies.



Chapter 1

Introduction

Thanks to the availability of different technologies which enabled the extraction of
the 3D point cloud structure from captured surfaces, there has been a great focus
on what can be accomplished with 3D data in various fields. For example, point
cloud data of forested surfaces has been used to estimate fruit-tree leaf areas [46]
or to generate a vine plantation map [31]. Two are the main technologies used to
obtain the 3D point cloud information relative to a certain scanned surface:

• Laser Imaging Detection and Ranging (LIDAR) is “an active remote sens-
ing technology that measures properties of reflected light to determine range
to a distant object” [17, 27]. “The range to an object is computed by measuring
the time delay between the transmission of a laser pulse and the detection
of the reflected signal” [17, 51]. Thanks to the possibility of generating a 3D
structure with high resolution and accuracy, LIDAR has been widely used in
fields such as ecology [46], geomorphology [31, 39] and remote sensing [28].

• Aerial Photography consists in using flying technologies such as drones
to capture images of surfaces from different angles and at different heights.
Thanks to the fact that each image covers a different height or angle of the
surfaces, they can be assembled in order to obtain a detailed 3D point cloud
structure of the captured surfaces, as successfully done in [16].

There are many advantages in analyzing the 3D structure of a certain scanned
surface, which could be object identifications according to spatial features [45] or ex-
tracting charcteristics of vegetation elements in forested environments once obtained
their points structure [19]. Another useful information which could be extracted from
3D point cloud data corresponding to forested environment derive from the anal-
ysis of the lines of sight among individuals located in the environment and of the
interactions among them.

Visibility information is a crucial aspect in forested environments, especially in
fields such as animal behavior, given the fact that interactions among animals of the
same or different specie significantly influence their general behavior. Given the im-
portance of visibility, using this information to generate an immersive environment



14 Introduction

or to build a visibility network among animals would offer a great support to the
community of scientists focused on animal behavior. It is quite hard to track animals
in some natural environments due to their continuous movements and the fact that
they often reach places where they are not easily observable, as with monkeys on
very high trees. Having the possibility of experiencing forested environments exactly
as animals do during their movements and everyday life would help significantly in
understanding which are the causes that make animals behave or react in a specific
way in their natural habitat. The objective of this thesis raises many technical chal-
lenges however, considering that plenty of information must be extracted from raw
point cloud data.

1.1 Thesis Objectives

In this thesis we used the 3D point cloud data we implemented a framework ex-
tracting various information starting from raw point cloud data. We first infer infor-
mation on the terrain by determining which points belong to the ground elements
and which to the non-ground ones. Then we infer information about vegetation by
detecting individual vegetation elements among the non-ground points identified.
The proposed framework can be used for any ecological study, including those that
focus solely on the vegetation (such as following the blooming and growth of trees
over time). We showcase the use of this habitat information by applying it to com-
pute the visibility network corresponding to the perspective of animals placed in
that landscape. If animal position information is available, we can compute mutual
visibility of animals in the habitat, given that their main obstructing features are on
the scale of the features we can extract from the point cloud data.

At a high level, there are four main steps that must be performed in order to
extract the information necessary to reach the final objective of this thesis:

1. Ground/non-ground separation: the point cloud data must be analyzed in
order to identify points corresponding to the ground and points corresponding
to non ground elements, such as vegetation. This step is crucial, given that
detecting the right vegetation is fundamental for the functioning of the whole
framework and for the correctness of the produced results.

2. Tree segmentation: points corresponding to vegetation must be segmented
in individual vegetation elements. In doing so, it must be considered that a
forest can present a huge variety of vegetation elements, thus it is necessary to
perform a parameter space exploration to determine parameter settings that
capture desired classes of vegetation most accurately.

3. Visibility/obstruction characterization of vegetation: points correspond-
ing to vegetation elements must be analyzed in order to extract a suitable set
of characteristics which would allow to infer the visual obstruction potential



1.1 Thesis Objectives 15

of the vegetation element to which they correspond. Once those features are
extracted, various machine learning classification techniques can be applied
in order to infer the visual obstruction potential.

4. Visibility network computation: Given the location of two individuals, we
must check whether some vegetation elements able to obstruct their lines
of sight are located between those individuals. We use the results of the
obstruction characterization of vegetation from previous step to infer whether
two individuals can see each other and then to build a visibility network
embedding the visibility information derived.

For some of these technical challenges, different approaches had already been
proposed in the literature and we will have a deeper look at them in Chapter 2,
highlighting advantages and limitations of the existing techniques.

For what concerns the structure of the thesis, we now describe the focus of each
chapter:
Chapter 2 provides a review of the most recent solutions proposed in the areas of
interest covered by our framework. Chapter 3 covers the background topics nec-
essary to understand the work performed in this thesis. In Chapter 4 we describe
the data used to perform the experiments in this thesis, their acquisition proce-
dure and the information they provide. Chapter 5 shows in details the first step
performed starting from the raw point cloud data, which is the ground/non-ground
classification of points in the point cloud. In Chapter 6 we explain in a detailed
way the segmentation technique used in this thesis, the underlying assumptions and
the results obtained. Chapter 7 covers the features extraction procedures used and
the experiments performed in order to infer the visual obstruction potential of the
vegetation elements in the environment. In Chapter 8 we showcase a possible use
of the information inferred with the proposed framework by deriving the dynamic
visibility network among animals located in the environment at each timestamp.
In Chapter 9 we make some considerations and reasoning on the presented meth-
ods, showing also potential applications and variants of the methods together with
potential future developments.



Chapter 2

State of the Art

In this chapter we survey the existing work in the literature relevant to the objectives
of habitat feature extraction from point cloud data and visibility calculations. Before
proceeding, given that in our case the vegetation elements are characterized by
trees, we will use the term “tree” instead of vegetation element when referring to
vegetation.

2.1 Ground/Non-Ground Separation Approaches

When analyzing point cloud data, knowing which points correspond to ground el-
ements and which to non-ground elements is fundamental in order to properly
process data with the aim of extracting meaningful information. Given the im-
portance of this operation, in the literature it is possible to find many different
approaches aimed at properly performing this separation [7, 36, 12]. In [12] in par-
ticular the authors performed the ground/non-ground separation by using active
shape models for the ground, which then were matched to the point cloud surface.
However, estimating proper shapes for the ground is time consuming and requires
prior knowledge of the environment. Given the impossibility of estimating shapes
due to lack of information, for this thesis we used the multiscale curvature algorithm
for Point Cloud Data proposed in [14], which is described in details in Chapter 5 and
does not require any prior knowledge about the environment.

2.2 Tree Segmentation Approaches

Before the availability of laser scanning technologies, a typical method to extract 3D
information of forested environments and capturing individual trees characteristics
was field inventory, as done in [34]. However, field inventory can be really time
consuming and limited by spatial accessibility, given that not all study areas can be
accessed so easily. With the development of the 3D point cloud extraction technolo-
gies, various approaches making use of the 3D structure have been proposed, which



2.2 Tree Segmentation Approaches 17

can be mostly grouped into two categories: the Canopy Height Model (CHM) based
algorithms and the raw point cloud based ones.

2.2.1 CHM Based Algorithms

CHM-based approaches have in common the use of the point cloud derived CHM,
which is a “raster image interpolated from the point cloud depicting the top of the
vegetation canopy” [17]. While the CHM model brings a valuable amount of addi-
tional information, it may be affected by inherent errors caused by a various number
of sources. For instance, it was shown that “a spatial error can be introduced during
the interpolation process from the point cloud to the gridded height model, which
can decrease the accuracy of tree segmentations and of the relevant measurements”
[17]. Based on the CHM, various methods were proposed:
In [48] the authors proposed a tree segmentation algorithm with two main steps.
First they adopted a local maxima detection approach to find the tree tops. Then,
they used a region growing procedure to highlight the respective tree crowns, ob-
taining at the end the full trees. In [22] instead, the authors developed a multi-scale
template matching approach in order to find individual trees in the environment.
More in details, they adopted elliptical and other shaped templates in order to
identify the points corresponding to a specific tree. However, this requires a priori
knowledge of the tree shapes characterizing the forest at hand.

2.2.2 Raw Point Cloud Based Algorithms

In order to overcome the inherent errors related to the previous kind of approaches,
algorithms operating directly on the raw point cloud data were proposed, making
use only of the raw information provided by the point cloud elements. In the
literature many approaches can be found:

In [38] the authors applied a clustering algorithm directly to the raw coordinates
triple of the point cloud data (the raw coordinate of the three axis x, y, z). The
clustering algorithm chosen was the K-means [33]. However, using the K-means
implies that the results obtained will always be subject to the initialization points
chosen for the clusters, which were estimated from the local maxima of a rasterized
digital surface model, thus making use of more than just the raw point cloud data.
In addition, it must be known which is the number of trees in the forest in order to
properly choose the k parameter. In [24] instead, the authors developed a method
based on two main steps. During the region growing step they identified subparts
of the trees canopies, which then were merged into a full tree canopy by means of
an agglomerative clustering approach. The most challenging part in such approach
is the choice of the search radius R used to identify the treetops, which must be
estimated by means of a trial and error approach. Another example of raw approach
is [26], where the authors used an algorithm which identifies one tree at a time. In
this method, they first found the point with the highest height in order to consider



18 State of the Art

it as a tree top, then they proceeded with decreasing height to identify the tree
points by means of a minimum spacing rule and a spacing threshold. Once a tree
is found, its points are removed by the initial point cloud. However, running such
a method for a huge amount of points (typical of point cloud data) would be really
time consuming, given that it is necessary to scan all the remaining points in the
cloud in order to identify each tree.

In this thesis we used an approach similar to the one presented in [26] to perform
the tree segmentation, but with different adopted criteria and thresholds in order to
adapt the procedure to our setting.

2.3 Visual Obstruction Inference

After having identified the individual trees in the point cloud, a considerable amount
of information could be extracted by analyzing the points structure of the trees. In
the literature it is possible to find only more general approaches aimed either at
identifying objects in the point cloud or inferring trees properties:
In [45] the authors tried to classify objects in the point cloud into roads, roof, grasses
and trees by means of supervised parametric classification techniques, meaning that
they already knew which was the set of object types in the point cloud. Another
example is [19], where the authors tried to identify the tree species in the forest
relative to the point cloud using the raw points and a rasterized image of the surface,
where all the species present in the forest were already known. To the best of our
knowledge, there are no studies in which the authors tried to infer visual obstruction
potential or other aspects relative to visibility from trees.

2.4 Visibility Network Computation

Given that among the possible uses of the extracted information we chose to com-
pute the visibility network relative to the individuals in the environment, we searched
the existing literature for approaches making use of visibility networks in any set-
ting. In the literature it is possible to find visibility networks in various works:

In [13] the authors demonstrated how to construct a network from a time series
of United States (US) hurricane counts and show how it can be used to identify
unusual years in the record, based on a “line of sight” visibility algorithm. Another
example is [32], where the authors analyzed the gold price time series by mapping
the time series into a visibility graph network analyzed in order to extract trends in
the times series. For what concerns using visibility networks with the aim of depict-
ing lines of sights among individuals in a specific environment, to the best of our
knowledge, we were not able to find any similar work.



Chapter 3

Background

Each implemented step of the framework relies on various data structure, procedures
and basic concepts combined with the aim of extracting more information from the
input data. In order to offer a complete and clear understanding of the whole
process, in this chapter we will go through the concepts and methods on which the
work done in this thesis is based and further developed.

3.1 Tree Data Structures

In order to store the data we have processed, we used tree-like data structures.
A tree is defined as a data structure composed by nodes and edges, not con-

taining any cycle. A non empty tree is made of a root node and many depth levels
containing other nodes that all together constitutes a hierarchy.

In this thesis we focus our attention on two kind of trees data structure, used in
order to reach the final objective, which are the Binary search Tree (BST) and the
K-Dimensional Tree (KDT).

3.1.1 BST

The Binary Search Tree is a tree-like data structure which respects the property that
the key in each node must be greater than all the ones stored in the sub tree on
the left and smaller than all the keys in the subtree on the right [10]. The major
advantage of this data structure is that search, insertion and deletion of elements
can be done with an average time complexity of log(n) by leveraging on the specific
ordering of the elements in the tree. In Figure 3.1 we report an example of BST.

3.1.2 KDT

At a high level, a KDT is a generalization of a BST that stores points in k-dimensional
space [5]. An example of KDT is reported in Figure 3.2.



20 Background

Figure 3.1: An example of BST.

Figure 3.2: An example of KDT.



3.2 Learning Methods 21

As we can see, a KDT is a k-dimensional binary search tree, where each point
defines an hyperplane dividing the k-dimensional space in two parts, where the
left part is represented by the left subtree and right part from the right one. The
greatest advantage of this separation is given by the speed up obtained in the nearest
neighbors lookup, which is performed through the following procedure:

I) Take a guess of where the nearest neighbor is located by taking all the points
inside a certain hypersphere of radius r.

II) Determine if the candidate hypersphere crosses one of the splitting hyper-
planes by checking if |bi − ai| < r.

III) If the hypersphere is just on one side of the hyperplane, then we need to check
only that side, otherwise recursively search both sides of subtrees correspond-
ing to the two parts of the hyperplane.

This procedure yields an average time complexity of m · log(n), where m is the
number of nearest neighbors that we are seeking and n the number of elements in
the tree. The speed up is given by the fact that we are guessing where the nearest
neighbor is and that our hyperplanes are all axis-aligned, making checking if they
an hypersphere crosses them or not a feasible task, thus guiding towards the right
place where to search in a fast and simple way.

In this thesis we used the KDT structure in order to perform fast lookup of the
neighbors of a specific point in the point cloud.

3.2 Learning Methods

In machine learning, with the term learning we are referring to the procedure used
to infer new information from what it is already known about a certain dataset.
Learning can be achieved in two main ways, known as supervised learning and unsu-
pervised learning.

Supervised learning is defined as the procedure used to learn a function f such
that given an input x, corresponding to a set of characteristics of a specific element,
the function is able to infer from x the unknown class y to which the the element
belongs, meaning that f(x) = y. Unsupervised learning instead consists in looking
for meaningful patterns in the data without having any prior knowledge about the
class, thus it is more exploration than inference oriented.

In the next section we will see in details the supervised and unsupervised learn-
ing methods, given the fact that they have both been used in this thesis.

3.2.1 Classification

The most common supervised learning method is classification, which consists in
training a classifier on some labeled data (for which the classes to which data belong



22 Background

are known) in such a way that, when tested on unseen data, the classifier will predict
the right label for those data, given their features [37]. A feature is defined as
a measurable property of a certain observed phenomenon. The process consists
in two main phases: training and testing. During training, a certain amount of
labeled data is used to learn useful patterns with respect to the class label and the
features. During testing instead, the algorithm is used to infer the label of previously
unseen data by means of the patterns detected during the training phase. Given that
labels of data used to train the algorithm are known, procedures computing error
measures by comparing the label inferred by the algorithm and the real one could
be easily applied. Data used to make our classifier learn interesting patterns are
called training set, while the ones used to test our classifier and verify whether the
predictions obtained are correct or not are called testing set. Sometimes, when there
is the need to tune some parameter of the algorithm, another set of data, known
as validation set is used to find the best value for the parameters. A necessary
condition is that training and testing set must be i.i.d., given that any kind of
correlation between the two would lead to biased predictions.

In this thesis we applied this approach to infer the visual obstruction potential
of vegetation elements in the point cloud. In the next sections we will go into details
of the supervised classification algorithms we used to perform inference.

Decision Trees

A decision tree is a tree-like structure in which internal nodes represents a check on
the value of a certain feature (a certain characteristic of an element), each branch
represents one of the outcomes of the previous check (what we wanted to verify)
and each leaf node represents a specific class (final value assigned to the specific
element) [37]. Each paths from root to leaf is a classification rule, which basically
corresponds to a set of values over the checks performed at each internal node
which guide toward a specific class. The tree structure is learned maximizing the
information gain at every possible split.

Formally, let T = {x1, ..., xn, y} be a set of training examples where xi is the
i-th feature and y is the class label, then, for a certain feature i, information gain is
defined as:

I(T, i) = H(T )−
∑

v∈vals(i)

|{x ∈ T |xi = v}|
|T |

·H({|{x ∈ T |xi = v}, (3.1)

where H represents the entropy, which, given a discrete random variable X with
values x1, ..., xn and probability mass function P (X), is defined as:

H(T ) = −
n∑
i=1

P (xi)log2P (xi) (3.2)



3.2 Learning Methods 23

An example of decision tree to decide whether it is safe to play outside or not
based on weather features is reported in Figure 3.3.

Figure 3.3: An example of Decision Tree to decide whether it is safe to play outside
or not based on weather features.

K-Nearest Neighbors (KNN)

KNN is a memory based supervised classification algorithm, meaning that previ-
ously unseen data are classified with the class of the least distant element or el-
ements in the training set, according to the k chosen [37]. In order to make the
algorithm work properly it is necessary to define a suitable distance measure be-
tween data instances. The k parameter is used to determine how many neighbors
must be considered in distance order. Once identified the k closest neighbors, the
final prediction is obtained by performing majority voting on the classes of found
neighbors. In case of a tie, a random decision is made. It is immediate to notice
that the choice of the k parameter and the distance measure are the crucial factors
in such approach. An example of KNN is reported in Figure 3.4.

Figure 3.4: An example of KNN where the target point is the one in red.



24 Background

Naive Bayes

The naive bayes classifier is a supervised classification method using probabilities to
perform classification, based on the assumption that all the features in the data are
independent from the class [37]. By exploiting to this assumption, the conditional
probability of a training instance x1, ..., xn, y, where xi ∈ Xj is a value of the j-th
feature and y ∈ Y is the class label, could be rewritten in the following way:

P (X1 = x1, ..., Xn = xn|Y = y) = P (X1 = x1|Y = y) · ... · P (Xn = xn|Y = y)
(3.3)

During the training phase all the conditional probabilities of the features val-
ues conditioned by every class label are computed from the training set. Dur-
ing the test phase instead, given a previously unseen instance x1, ..., xn, the pre-
dicted class label is the ŷ ∈ Y that maximizes the following conditional probability
P (X1 = x1, ..., Xn = xn|Y = ŷ computed using the probabilities estimated during
the training phase.

Logistic Regression

Logistic regression is a statistical model that measures the relationship between the
class label and one or more independent features by estimating probabilities by
means of the logit function [37]. The logit function is reported in Figure 3.5.

Figure 3.5: Logit function.

Formalizing, given a previously unseen instance x1, ..., xn where xi ∈ Xj repre-
sents a value of the j-th feature, the probability of a certain class label is estimated
in the following way:

P (Y = y) =
ew0+w1·x1+...+wn·xn

1 + ew0+w1·x1+...+wn·xn
, (3.4)



3.2 Learning Methods 25

where w0, w1, ..., wn are the features weight estimated during the training phase
by minimizing a logarithmic cost function that penalizes in a logarithmic way each
wrong prediction on the training set.

Random Forests

Random forest is an supervised classification ensemble method [37]. The term
ensemble means that we train the same classifier a certain number of times, each
time with different features, and then combine their outcome in some specific way
in order to obtain the final prediction.

More in details, the random forest method consists in training an high number
of decision trees, each one having as features a random selection of all the ones
available in the training set. At testing time the final prediction is obtained by
performing majority voting on all the outcomes of the built trees for the specific
features’ values of the tested data instance. The structure of the Random Forest
classifier is reported in Figure 3.6.

Figure 3.6: Structure of the Random Forest classifier.

Support Vector Machines (SVM)

SVM is a supervised learning model which locate the training instances into an high
dimensional feature space, meaning that each feature becomes a dimension, and
search for the best splitting hyperplane [37]. A best splitting hyperplane is defined
as an hyperplane which separates the instances belonging to one class from the ones
belonging to others classes with the best possible margin, meaning that the distance
of points belonging to a certain class from the hyperplane is maximum. Points
which have minimum distance from the hyperplane are called support vectors, given
that moving those points would result in a different optimal hyperplane. When the
number of dimension is too high, SVM exploits the kernel trick, leveraging on kernel
methods, in order to avoid computing directly the new feature space with the aim of



26 Background

lowering the number of dimensions. The explicit computation of the feature space
is avoided by computing the vectorial product between two elements instead of the
whole space transformation. An example of SVM applied to points in the 2D space
is reported in Figure 3.7.

Figure 3.7: Example of binary classification using SVM where support vectors are
represented by full points.

3.2.2 Clustering

The most common unsupervised learning method is clustering, consisting in group-
ing elements into clusters, where with the term cluster we are referring to a group
of elements which are really similar to each other, according to a chosen similarity
measure [18]. Elements belonging to different clusters instead generally are different
from each other, always according to the chosen similarity measure. Once a cluster
is identified, the centroid, which is the center of a cluster, is identified by the av-
erage value of each coordinate of the points in the cluster. The crucial aspects in
such procedure are determining the best similarity measure with respect to data and
objectives, together with choosing the optimal number of clusters in the data. An
example of the clustering method is reported in 3.8.

In this thesis we have used an approach similar to clustering in order to identify
points in the point cloud corresponding to a specific tree, leveraging on the fact that
distances between points belonging to the same tree are generally different from
distances between points belonging to different trees.

3.3 Kernel Methods

Given that we made use of algorithms exploiting kernel methods, such as SVM, we
briefly describe what they are and how they work.



3.3 Kernel Methods 27

Figure 3.8: Example of clustering where points are grouped in three main clusters
and centroids are represented by crosses inscribed in a circle.

In machine learning kernel methods are techniques which allow to perform a
mapping between two different feature spaces without explicitly computing the
spaces, thus offering a great computational advantage [1]. Kernel methods are mostly
used in pattern analysis. The general aim of pattern analysis is to determine a func-
tion that relates the input data with the output ones. The great advantage in using
them is that it not required to transform the data in raw representation into a fea-
ture vector representation, given a specific mapping defined by the user. Instead it
suffices to define a user-specified kernel, which is a similarity function over pairs of
data instances in their raw representation.

In the next sections we will go through details of the specific kernel methods
used in this thesis.

3.3.1 Density Kernel

Let x1, ..., xn be an identically independently distributed (i.i.d.) sample taken from
a distribution with unknown density f . The objective of the density kernel is esti-
mating the shape of f by using the following kernel density estimator [43]:

f̂h =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K(
x− xi
h

, (3.5)

where K is a kernel function, which is non negative, integrates to one and has
zero mean. The h parameter is a smoothing parameter, also known as bandwidth,
which must be greater than zero. Kh(x) = 1

h
K(x

h
is called scaled kernel with

subscript h.



28 Background

In this thesis we used the density kernel to estimate the density of the points
corresponding to a specific tree.

3.3.2 Linear Kernel

In mathematics a linear kernel is defined as a linear mapping between two vector
spaces [1]. Formally, let V and W be two different vector spaces, L be a linear
mapping between V and W and v be an element of V , then a linear kernel is
defined in :

ker(L) = {v ∈ V |L(v) = 0} (3.6)

In this thesis we used the linear kernel with SVM to apply the kernel trick.

3.3.3 Polynomial Kernel

The polynomial kernel is used to represent the similarity of vectors over polynomi-
als, which are derived from the original variables, thus allowing the use of non-linear
models [7]. Given a degree d polynomial and two input vectors x and y in their orig-
inal feature space, the polynomial kernel is defined as:

K(x, y) = (xTy + c)d, (3.7)

where c is a free-parameter used to balance the influence of higher-order terms
with respect to lower-order ones in the polynomial.

For what concerns the work done in this thesis, the polynomial kernel is used
with SVM to perform inference exploiting the kernel trick.

3.3.4 Averaging Kernel

The averaging kernel is a N ×N sliding-window spatial filter, which assigns to the
central value of the N × N matrix in input the average of all points in the matrix
[25]. The matrix in input is referred to as window or kernel.

The averaging kernel is used during the multiscale curvature algorithm used to
identify ground and non-ground points in the point cloud surface.

3.4 Point Cloud Representation

The analysis on the forested surfaces used in this thesis were performed on the point
cloud representation of the surfaces. A point cloud representation is a collection of
points bringing 3D information relative to an object or a surface [44]. It is a very
basic discrete representation, essentially specifying the geometry of the object by
means of sampling procedures at certain positions. In the geographic field they are



3.5 Probability Distributions 29

mostly used in order to create digital elevation models of the terrain. An example
of point cloud surface is reported in 3.9.

Figure 3.9: Example of point cloud surface.

3.5 Probability Distributions

Many of the methods already seen leverage on the concept of probability distribu-
tions. Probability distributions are used to assign a certain probability value to each
subset of a chosen random experiment [15]. There are two main types of probability
distributions:
Discrete probability distributions, where it it possible to assign a probability to each
possible outcome of the experiment, and continuous probability distributions, where
random variables take value from a continuum, thus probabilities can be assigned
to both intervals and individual values. Two are the main continuous probability
distributions used in this thesis, which we are going to discuss in the next sections.

3.5.1 Gaussian Distribution

The Gaussian distribution is one of the main probability distribution widely used
in various fields, given that a set of random variables can be approximated to a
Gaussian distribution under the following conditions [15]:

• The random variables must be i.i.d.

• They must have a well-defined mean

• They must have a well-defined variance

The Gaussian distribution is defined by the following probability density func-
tion :

f(x|µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (3.8)

where µ is the mean of the distribution and σ the variance.



30 Background

3.5.2 Student t-distribution

The Student’s t-distribution is a member of the family of continuous probability dis-
tributions, which are used in order to estimate the mean of a normally distributed
population (it follows a Gaussian distribution) with small sample size and unknown
standard deviation [15].

Formalizing, let v be the degrees of freedom of the distribution, which corre-
spond to the number of variables in the distribution, then the Student t-distribution
is defined by the following probability density function:

f(t) =
Γ(v+1

2√
vπΓ(v

2

(1 +
t2

v

− v+1
2

, (3.9)

where Γ(t) is called the Gamma Function, defined as

Γ(t) =

∫ ∞
0

xt−1e−xdx (3.10)

3.6 Statistical Significance Tests

Once results of a prediction task are obtained, statistical significance tests are used
in order to verify whether the results obtained are significant or not. Statistical
significance tests consist in checking if a quantity known as p-value is less than a
chosen significance level α [15]. The p-value is defined as the probability of obtaining
at least as extreme results as the one observed, given that the null hypothesis is true.
The null hypothesis is defined as the default condition according to which there is
no relationships between the samples that we are considering. The significance level
instead is defined as the probability of rejecting the null hypothesis given that it is
true. When the p-value is less than α, we can say that our samples are statistically
significant at a 1 − α level. Statistical test are widely used in order to verify if
the improvement in the prediction results obtained is significant with respect to to
another result obtained using a different prediction technique, based on the fact that
comparisons among different prediction results are meaningful only if the relative
samples are significant. For what concerns the tests used in this thesis to verify
the results of the inference task, we used the Student t-test and the The Analysis of
Variance (ANOVA) test, explained in the following sections.

3.6.1 Student t-test

The Student t-test is a statistical test used to check hypothesis where the test sam-
ples are defined by a Student t-distribution, under the condition that that the null
hypothesis is satisfied [15]. This test can be used to determine whether two samples
are significantly different from each other given their means.



3.7 Validation Metrics 31

3.6.2 The ANOVA Test

The ANOVA test is a statistical significance test used to analyze the differences
among groups means and variances [15]. More in details, the ANOVA test performs
a statistical test with the aim of checking if the means of several groups are equal,
thus it generalizes the t-test to more than just two groups.

3.7 Validation Metrics

Validation of results obtained through a classification process is a very important
aspect, given that we want to be as sure as possible that the predictions made
are reasonable and correct. Given that we want to properly validate the results
obtained through supervised inference, we are going to discuss the validation metrics
and procedures adopted. There are many techniques that can be used to perform
validation, but before introducing them we first present the nomenclature used in
their definition [37]:

1. TP: are instances which are predicted as positive (class represented as 1 in bi-
nary classification) according to the truth label and the classification outcome.

2. TN: are instances which are predicted as negative (class represented as 0 in
binary classification) according to the truth label and the classification out-
come.

3. FP: are instances which are predicted as positive by the classifier but they are
negative according to the truth label.

4. FN: are instances which are predicted as negative by the classifier but they
are positive according to the truth label.

These definitions are intuitively represented in the matrix reported in Figure
3.10, known as confusion matrix.

In the next sections we will define the most common validation measures and
techniques used in the field.

3.7.1 Accuracy

According to [37], accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.11)

Accuracy measures the percentage of correctly classified instances with respect
to all the instances in the test set.



32 Background

True
positivep′

p

False
negative

n

False
positiven′

True
negative

ac
tu
al

va
lu
e

prediction outcome

Figure 3.10: Confusion matrix.

3.7.2 Recall

According to [37], recall is defined as:

Recall =
TP

TP + FN
(3.12)

Recall measures the percentage of the positively instances correctly classified
with respect to all the positive instances in the test set.

3.7.3 Precision

According to [37], precision is defined as:

Precision =
TP

TP + FP
(3.13)

Precision measures the percentage of the positively instances correctly classified
with respect to all instances classified as positive.

3.7.4 Cross-Validation

Cross-validations is a model validation technique with the aim of testing how the
results of a certain prediction will generalize with respect to an independent dataset
[37]. Cross-validation consists in dividing the data available in a certain number of
folds, all stratified (with the same number of positive and negative instances). Once
created the folds, the model is trained on all the fold except one, which will be used
as test data. This is done until all folds have been tested. The final error is given by
the average of the errors computed on each fold. When each fold contains only one
instance, then we are performing a validation technique called leave one out cross-
validation (LOOCV), given that we train our model on all the instances available



3.8 Geographic Coordinates Systems 33

except one. In LOOCV the error is computed as the number of correct predictions
on all the folds divided by the number of folds, which corresponds to the size of the
dataset.

3.8 Geographic Coordinates Systems

In this section we introduce the notion of geographic coordinates system, given that
points in the point cloud are relative to specific geographic locations on Earth. A
geographic coordinate system is a coordinate system that enables every location on
the Earth to be specified by a set of numbers or letters, or symbols. The coordinates
are often chosen such that one of the numbers represents vertical position, and
two or three of the numbers represent horizontal position. A common choice of
coordinates is latitude, longitude and elevation. In order to specify a location on a
two-dimensional map a map projection is required.

In this thesis coordinates of points in the point cloud are expressed using the the
Universal Transverse of Mercator (UTM) coordinates system, which we are going to
describe in the following section.

3.8.1 UTM Coordinates System

The UTM coordinates system is a system which uses two coordinates to give lo-
cations on the surface of the Earth: the first coordinate is called Easting and the
second one Northing [11]. As with latitude and longitude, it is a horizontal position
representation, meaning that the location on Earth is identified without considering
any vertical component representing the vertical position of the point. Differently
from latitude and longitude, the UTM system cannot be considered a single map
projection, given that it divides Earth in sixty zones, where each zone corresponds
six-degree band of longitude.

3.9 Interpolation

Given that in this thesis we used the interpolation procedure to generate a new
point cloud surface starting from the original one when performing the ground/non-
ground separation of points, we now introduce the relative concepts. When we use
the term interpolation we are referring to the generation of new data points in the
range of a an available set of discrete data points [41]. An example of interpolation
applied to mathematical functions is reported in Figure 3.11. For what concerns
the work done in this thesis, we are mostly interested in theThin Plate Spline (TPS)
interpolation, presented in the next section.



34 Background

Figure 3.11: An example of interpolation of a curve (blue dashed) generating an
approximate one (red).

3.9.1 TPS Interpolation

TPS interpolation is an interpolation technique that, given a set of data points,
performs interpolation by means of a weighted combination of thin plate splines,
which are numeric functions that are defined piecewise by polynomial functions
[6]. Each spline is centered about each data point and generates the interpolation
function passing through the points while at the same time minimizing the following
integral:

I[f(x, y)] =

∫ ∫
R2

(f 2
xx + 2f 2

xy + f 2
yy)dxdy, (3.14)

where R2 denotes the two dimensional space and fab denotes the second deriva-
tive computed first with respect to a and then b. The above integral is known with
the name of bending energy.

3.10 Artificial Neural Networks (ANN)

In this section we introduce ANN, given the fact that they were used in this thesis
to perform features extraction from the trees point structure in an automatic way.
In machine learning ANN are models reproducing the biological neural networks
and are used to approximate functions depending on generally a huge number of
inputs [50]. An ANN can be depicted as a directed graphic model in which nodes
of the graph are called artificial neurons, which exchange messages in a direct way
with other neurons to which they are connected in the graph.



3.10 Artificial Neural Networks (ANN) 35

3.10.1 Artificial Neurons

An artificial neuron is a mathematical function built to model biological neurons.
They receive one or more inputs (representing dendrites) and combine them to pro-
duce an output (representing a neuron’s axon) [50]. The contribution of each node
is weighted and the sum is propagated by means of a non-linear function, known
as activation function. The first activation function used was sigmoid shaped (out-
put between 0 and 1, defined for all real input values and has a positive derivative
at each point), while in the last years non-linear functions have been widely used,
such as the hyperbolic tangent (antisymmetric function with output between 1 and
-1 and defined everywhere on the x-axis). The shape and formula of the sigmoid
function are reported in Figure 3.12, while of the hyperbolic tangent in Figure 3.13.
Activation functions must be monotonically increasing, continuous and preferably
differentiable in order to easily compute the gradient.

Formalizing the definition of an artificial neuron, the output y is obtained
through the following formula:

y = φ(
m∑
j=0

wjxj + b), (3.15)

where φ denotes the activation function, xj and wj the j-th input and its weight
respectively and b the bias of the specific neuron. In Figure 3.14 we report the
structure of an artificial neuron.

x

1

0.5

1
1+e−ax

Figure 3.12: Sigmoid function.

3.10.2 Structure of ANN

The direct edges connecting nodes in the graph are called connections. Each con-
nection between different neurons has a numeric weight, which is tuned according
to experience, thus making neural networks a model adaptive to inputs and suitable
for learning. Generally neurons are grouped in layers, which are level of the network
corresponding to a certain number of neurons. The first layer is called input layer,
the ones in the middle are called hidden layers, given that values in those layers are
generally not given in output, while the last one is called output layer [50]. ANN
propagating input in successive layers are known as feed-forward ANN. In Figure 3.15



36 Background

y = ex−e−x
ex+e−x

−2 −1 1 2

−1

1

x

y

Figure 3.13: Hyperbolic tangent function.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 3.14: The structure of an artificial neuron.



3.10 Artificial Neural Networks (ANN) 37

we report an example of ANN with one hidden layer, five neurons in the input layer,
three in the hidden layer and one in the output layer.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 3.15: An example of ANN with one hidden layer.

3.10.3 Learning Phase

During the learning phase, the algorithm most commonly used is the backpropagation
algorithm [42]. The algorithm consists of two phases, which we are going to describe
in details through the steps performed at each phase:

• Propagation:

1. Forward propagate the inputs in order to activate the successive layers
until we obtain the output.

2. Backward propagate the gradient of the cost function with respect to
parameters in the network until reaching the input layer.

• Weight Update:
for each connections the following steps are performed:

1. Multiply the gradient computed during the propagation phase for a cer-
tain percentage, known as learning rate.

2. Update the weight of the connection by subtracting to the old value of
the one computed in the previous step.

The two phases are performed until we reach a certain desired error or for a
certain number of cycles, also known as epochs. The learning rate greatly influences
the speed and quality of learning, given that the greater is the ratio the faster
neurons are trained, while the lower is the ratio the slower is the training.



38 Background

3.10.4 Autoencoders

We now introduce a particular ANN of interest with respect to the feature extraction
objective of this thesis. Autoencoders are an ANN mostly used to perform a feature
learning task, which is the case of the work done in this thesis. With the term feature
learning we are referring to the procedure in which we extract from raw input data
interesting properties that could be used in a supervised classification task [4].

The difference between autoencoders and usual multilayer feedforward neural
networks resides in the fact that autoencoders are trained to reconstruct the received
input. The structure of an autoencoder is made of two main parts, the encoder and
the decoder, which could be seen as two transition functions φ and υ:

φ : X → F (3.16)

υ : F → X (3.17)

argminφ,υ||X − (φ ◦ υ)X||2, (3.18)

where X represents the input space and F the feature space.
In the simplest case, which is when we have just one hidden layer, an autoen-

coder maps the input to a set of latent variables representing the initial input, where
the adjective latent refers to the fact that these variables are estimated in the hidden
layers of the network. Once the latent representation of the initial input x is gener-
ated, this representation is mapped to an output x′ of the same shape of x, given the
objective of reconstructing the initial input. In Figure 3.16 we report the structure of
an autoencoder.

Figure 3.16: Structure of an autoencoder.



3.10 Artificial Neural Networks (ANN) 39

During the training phase of an autoencoder, for each input x, the following
steps are performed:

• Compute activations in all hidden layers and in the end in the output layer in
a feedforward way in order to obtain an output x′.

• Measure the deviation between x and x′ by means of a chosen error metric.

• Backpropagate the error through the entire network and update the weights

These steps are performed for a chosen number of epochs, using at each epoch
techniques aimed at avoiding overfitting. With the term overfitting we are referring
to the situation in which our model will perform very good on the data used for
training but poorly on the ones used for testing. Even if using backpropagation
generally provides good results, complications may arise when training networks
with many hidden layers. The reason why complication arises is the so called gra-
dient vanishing problem, which occurs when errors are backpropagated to previous
layers and the gradient gradually becomes smaller until its contribution is insignif-
icant. This could probably lead to the network reconstructing the average of the
input data, thus not updating the weights of the connections anymore, meaning that
no useful information is extracted. The gradient vanishing problem is sometimes
solved by means of more complex training techniques, event if they too often result
in a very slow learning process and uneffective solutions, in particular with respect
to the trade-off between training time and results, critical in neural networks. A re-
liable solution to this problem was proposed in [20], where the pretraining technique
is introduced. This technique consists in using a set of initial weights that approx-
imate the final result. More in details, the pretraining technique proposed in [20]
involves training in sets of two neighboring layers the network and then fine-tuning
the results using standard backpropagation. Different successful experiments using
autoencoders to perform features extraction are discussed in [3, 30, 29].

3.10.5 Denoising Autoencoders

Denoising autoencoders are autoencoders that take a partially corrupted input (they
introduce a noise component) while training with the aim of recovering the original
undistorted input. This technique was introduced with an approach based on the
concept of good representation [49].

A good representation is defined as a representation that can be obtained in
a robust way starting from a corrupted input and thought to be of good use in
recovering the corresponding original clean input. A necessary condition when
corrupting the input is that the representation at a higher level must be stable and
robust with respect to the input corruption itself. Furthermore, in order to train
an autoencoder to denoise data, a preliminary stochastic mapping is necessary to
perform x → x̃ such that data are corrupted but x̃ can still be used as input for a
standard autoencoder, thus reconstructing the initial input x.



40 Background

3.10.6 Stacked Denoising Autoencoders

A stacked denoising autoencoder neural network is simply obtained by creating
a deep neural network, meaning that we use an high number of hidden layers,
where each hidden layer is a denoising autoencoder neural network. With this
kind of structure the output of the first denoising autoencoder layer is forwarded to
the successive denoising autoencoder layer until the output layers is reached. The
structure of the stacked denoising autoencoder ANN is reported in Figure 3.17.

Figure 3.17: Structure of a stacked denoising autoencoder neural network.



Chapter 4

Dataset

Before going into details of how we reached the thesis objective, we first describe
the data used to test the methods proposed in this thesis, their acquisition process
and the relative ground truth together with its estimation process.

The point cloud data used are relative to many sites of the Mpala Research
Centre in Laikipia region of Kenya (covering an area of 2.5 by 1.2 Km), where a
drone senseFly1 was deployed in order to properly capture the area. Drones are a very
common technology used to capture surfaces, thanks to the information that could
be extracted from the ultra light images of the surface [23]. The drone flew 11 days in
January 2015, acquiring data on a different surface each day according to the drone
range limitations. From each captured area, which was characterized by various
photos taken at different height and from different angles, we obtained the point
cloud 3D structure through storing the 3D structure as “las” [9] data format by means
of the senseFly software on the drone. The derived point cloud has a resolution of
1.5 cm. However, there are two main issues related to the data acquisition method
chosen. The first issue is that even if with various images different parts of the
trees structure are properly captured, the inner parts of the same structure are often
partially missing. Inner parts are missing because they are not properly detected due
to the fact that they are covered by dense external parts of the same tree structure,
thus not being captured by means of images only. The second issue is related to
the fact that images capturing the surface included also shadows of objects. When
combining the images into the 3D point cloud structure some assembled shadows
formed amounts of points with low height but slightly over the ground, thus being
classified as non-ground even if they actually are part of the ground.

For each point in the point cloud, the following features are available:

• X: coordinate corresponding to the Easting coordinate of the UTM system.

• Y: coordinate corresponding to the Northing coordinate of the UTM system.

• Z: coordinate representing the absolute height of points in the 3D space.

1More information on the company can be found at https://www.sensefly.com/home.html

https://www.sensefly.com/home.html


42 Dataset

• Red: red color component of the point.

• Green: green color component of the point.

• Blue: blue color component of the point.

• Classification: scalar field that is used by algorithms classifying points in
ground and non-ground in order to mark them. According to the standards,
a value of 2 for the classification field means that the point is part of the
ground, while every other value different from 2 means that it is part of the
non-ground elements.

In order to give a general idea of the forest environment in which we are going
to perform the segmentation, Figure 4.1 shows an example of the Kenya savannah,
which is the area captured by the photos with the aim of studying the behavior of
baboons in their natural habitat.

As we can see in Figure 4.1, there is no spotted dominance of one kind of tree
over the others, but instead there is a high variety of vegetation (trees and bushes
of variable height). Due to the high variability in height, an effective segmentation
algorithm should take vegetation variety into account by means of some flexible
approach.

Figure 4.1: An example of the Kenya savannah vegetation.



4.1 Ground Truth Data 43

4.1 Ground Truth Data

The areas that we are going to consider for the experiments are four, given the fact
that in order to execute all the steps in the framework we must have the ground
truth for the trees, thus having the possibility to verify the correctness of the results
obtained.

The ground truth is available only for 119 trees, of which a measure of the
height and diameter in two directions was taken, as well as notes about their species
and conditions. A figure corresponding to the ground truth collection process is
reported in Figure 4.2. By performing a visual analysis of the ground truth photos
we estimated whether the corresponding trees could represent potential obstruction
elements in the environment or not. Due to the fact that we need the ground truth
in order to properly validate the results, we restricted the tests of the framework
only to the four areas where the trees of which we have the ground truth are located.

Figure 4.2: Ground truth collection process.

4.2 Global Positioning System (GPS) Trajectories

For what concerns the construction of the visibility network, we used the GPS trajec-
tories of a baboons troop living in the nearby areas of the Mpala Research Centre.
The data were collected using GPS collars attached to each of the 26 baboons in
the troop. In addition to collecting the Easting and Northing coordinates of ba-
boons, the GPS collars report also the height of the individuals wearing it. The
GPS position of a specific baboon was captured each second, for a total amount
of 1505507 timestamps. However, due to many GPS errors in which the Easting or
Northing coordinates are corrupted, a high percentage of the measurements is not
usable as valid locations when performing the visibility analysis aimed at building
the network.



Chapter 5

Ground/Non-Ground separation

The first operation that must be performed in order to reach the final objective
proposed in this thesis is identifying which points in the point cloud correspond to
the ground elements and which to the non-ground ones. In this chapter we will
first go through the details of the algorithm used to distinguish between ground and
non-ground points and its tuning procedure, then we will look at the results obtained
using the algorithm with the tuned parameters on the areas of interest.

The algorithm used is the multiscale curvature algorithm for Point Cloud Data
proposed in [14], which was implemented in the C++ freeware command line tool
MCC-LIDAR1. The program requires in input two parameters:

• Scale (post spacing): cell resolution of the surface given in input to the
program.

• Curvature threshold: distance expressed in meters used to compare the
interpolated surface with the original one.

In the following sections we will provide a detailed description of the multiscale
curvature algorithm and a sequence of all the operations performed by means of
suitable pseudo-code.

5.1 Method Description

The first step performed by the algorithm is looking for points with the same x
and y coordinates, classifying them as non-ground and then proceeding to their
removal from the initial point cloud U0. This is a reasonable choice, considering
that the interpolation of a raster surface requires that no two points have the same
x and y coordinates. The reason behind the last requirement is that if points at the
same location have the same value, they are seen duplicates and have they will not
affect the output. If they have different values instead, they are seen as coincident.

1The software can be found at https://sourceforge.net/p/mcclidar/wiki/Home/

https://sourceforge.net/p/mcclidar/wiki/Home/


5.2 Pseudo-code 45

Interpolation functions could handle this kind of data in different ways, using in
some settings the first point of the coincident points for the calculation, while in
other settings the last. Because of this ambiguity, some locations in the output
raster might have a value which is different from the expected one. This issue could
be easily solved by properly preparing the data by means of the removal of these
coincident points, as done in the first step of the algorithm. About the choice of
classifying those points as non-ground, it suffices to notice that if two or more points
have the same x and y location, then all the points except for the lowest point (i.e.
the one with the minimum z coordinate) must be non-ground.

Once dealt with the coordinates issue, for three different scale domains (different
surface resolutions), the following steps are performed:

I) A new raster surface is interpolated using the TPS interpolation technique [6].
Using TPS interpolation offers the possibility to adjust tension between points,
fitting input data and handling the distance at which point samples influence
the estimate of the surface [14].

II) A 3x3 averaging kernel is applied on the computed surface in order to regu-
larize the interpolated surface.

III) For each point, if its height in the original surface is greater than the one in
the interpolated surface plus a curvature tolerance threshold for the specific
scale domain, then it’s classified as non-ground and removed from the original
point cloud.

For each scale domain, these steps are performed until we reach a certain con-
vergence threshold. According to the experiments performed in [14], the best conver-
gence criteria was continuing iterating until the number of classified points during
the current loop iteration is less than 0.1% of the points still unclassified in the orig-
inal point cloud. Once processed the surface for the three different scale domains
chosen, the points which still remain unclassified are all classified as ground.

5.2 Pseudo-code

In this subsection we first introduce the nomenclature that we are going to use in
the pseudo-code and then the detailed pseudcode of the algorithm:

• SD: scale domain, integer contained in [1,3] which represents the resolution at
which the surface is scanned at the current iteration

• ti∈SD: curvature threshold for scale domain i, contained in the set of scale
domains used. The algorithm scans the surface with three different scale
domains, incrementing t of 0.1 meters every time that we increase the scale
domain, starting from the initial value given in input by the user.



46 Ground/Non-Ground separation

• CRi∈SD: post spacing for scale domain i, contained in the set of scale do-
mains used. For the first scale domain, the algorithm uses half of the value
given in input by the user, for the second the exact value received in input
and for the last the initial value incremented of half its value.

• f : tension parameter (invariant across scale domains). The value assigned is
1.5, according to the analysis performed in [14].

• U : vector of points that remain unclassified (P1, ..., Pn).

• n: number of points in U (at the beginning of each loop iteration).

• Pj : single point in the cloud having coordinates xj, yj, zj .

• U0: initial point cloud given in input by the user.

Once we introduced the nomenclature used, we report the pseudo-code of the
main algorithm procedure in Algorithm 1 while the one of the subroutine handling
points with same x and y is reported in Algorithm 2.

Algorithm 1 Multiscale Curvature Algorithm

1: procedure MultiScaleCurvatureAlgorithm
2: U← filterOutPointsSameXY(U0)
3: for scale domain SD = 1 to 3 do
4: repeat
5: S← interpolate new raster surface using TPS(U,CRSD, f)
6: S’← surface resulting from passing 3x3 averaging kernel over S
7: for each Pj ∈ P do
8: if zj > S ′(xj, yj) + tSD then
9: classify Pj as non-ground and remove it from U

10: nC ← number of points classified and removed from U during
11: current iteration of the current loop

12: until nC < 0.1% · n
13: classify all the points remaining in U as ground

For the ground/non-ground classification step we adopted the LIDAR classifica-
tion standard, meaning that when a point is classified as non-ground the value of its
classification field is set to any value different from 2 while when a point is classified
as ground the classification field is set to 2.

5.3 Scale and Curvature Threshold Tuning

In order to assign the best values to the curvature threshold and the scale parame-
ters, a few experiments with different settings were necessary. More in details, for



5.3 Scale and Curvature Threshold Tuning 47

Algorithm 2 Procedure to filter points with same X and Y

1: procedure FilterOutSameXY(U0)
2: for each x,y location in U0 with two or more points do
3: Zlowest ← minimum z coordinate of the points at x,y
4: for each Pj at x,y do
5: if zj > zlowest then
6: classify Pj as non-ground and remove it from U0

the scale parameter we performed experiments using values in the range of [0.5, 2.0]
meters with an increment of 0.5 meters at each experiment but none of the results
obtained improved the classification outcome with respect to the result obtained
using the default value, which is 1.5 meters. For this reason we tuned only the cur-
vature threshold parameter and left the other fixed at 1.5 meters, value suggested
for this parameter by the developers of the application on the software page. The
results of the performed tuning experiments for the curvature threshold are shown
in figs. 5.1 and 5.2.

Figure 5.1: Example of a point cloud surface corresponding to a Kenya surface (on
the left) and the same surface classified using a curvature threshold of 0.1 (on the
right) where vegetation points are highlighted in blue.

Figure 5.2: Surface in 5.1 classified using a curvature threshold of 0.2 (on the left) and
a curvature threshold of 0.3 (on the right) where vegetation points are highlighted in
blue.

During the analysis of the results shown in figs. 5.1 and 5.2 by means of Cloud-
Compare2, a software that allows to explore the point cloud by zooming and rotating
it, we discovered that a curvature threshold of 0.1 would result in classifying many

2The software can be found at http://www.danielgm.net/cc/

http://www.danielgm.net/cc/


48 Ground/Non-Ground separation

ground points as vegetation (many points of the road in the upper left corner of the
surface), while using a curvature threshold of 0.3 would classify many lower trees
as ground. Given that 0.2 represents a good compromise between overclassifying
and underclassifying, we chose it as best value for the algorithm parameter instead
of 0.3, which is the value suggested by the developers of the application for the
curvature threshold parameter.

5.4 Separation Results

In this section we show the results of the ground/non-ground separation of the points
in the point cloud for the four areas of interest. The results of the experiments on
the areas of interest are reported in figs. 5.3 to 5.10.

By looking at the results shown in figs. 5.3 to 5.10 we can easily notice that
almost all the vegetation points are correctly classified but the ground/non-ground
separation procedure introduced a strong noise component, partially due to the
shadows in the images used to build the point cloud, which were often classified
as non-ground elements. In order to weaken the noise component we used the
LasTools3 software suite, which contains a set of tools implemented in C++ aimed
at processing “las” files. More in details, we used the “lasnoise” tool, which scans
the point cloud data looking for isolated or sparse points and remove them from
the point cloud. By using this software, thanks to the fact that the points relative to
shadows were not much dense and relatively sparse, we were able to remove a great
percentage of noisy point from the classified point cloud. A light noise component
still remains after the noise removal operation but this does not represent a crucial
issue, given that noisy points are sparse and isolated, thus they can be removed by
further noise filtering operations during the segmentation phase.

3The software can be found at http://www.cs.unc.edu/ isenburg/lastools/

http://www.cs.unc.edu/~isenburg/lastools/


5.4 Separation Results 49

Figure 5.3: Area 1 of the ones of interest.

Figure 5.4: Area 1 of the ones of interest classified (the blue points correspond to the
vegetation).

Figure 5.5: Area 2 of the ones of interest.

Figure 5.6: Area 2 of the ones of interest classified (the blue points correspond to
the vegetation).



50 Ground/Non-Ground separation

Figure 5.7: Area 3 of the ones of interest.

Figure 5.8: Area 3 of the ones of interest classified (the blue points correspond to
the vegetation).

Figure 5.9: Area 4 of the ones of interest.

Figure 5.10: Area 4 of the ones of interest classified (the blue points correspond to
the vegetation).



Chapter 6

Tree Segmentation

With the information on which points belong to the ground and which to the non-
ground, we can proceed with applying an effective procedure aimed at identifying
individual vegetation elements among all vegetation points identified in the previous
phase. In this chapter we will go into details of the segmentation algorithm used on
vegetation. After having classified the points into ground and non-ground ones, we
first computed the real height of the vegetation points with respect to the ground
ones in order to remove noisy points with negative or excessively positive height and
level the ground. The ground was leveled using the “lasheight” tool of the lasTools
suite, which uses the points classified as part of the ground to compute a Triangular
Irregular Network (TIN) and then calculates the elevation of each point with respect
to the computed TIN. Once we performed this operation, we applied the segmen-
tation algorithm to the surface where height of vegetation points is now expressed
with respect to the previously identified ground.

In the following sections we will provide a detailed description of the segmen-
tation algorithm used and of the reasons behind its implementation. We will also
provide a sequence of all the operations performed by the algorithm by means of
suitable pseudo-code.

6.1 Method Description

The proposed method processes the whole cloud finding one tree at each iteration,
as in [26]. For the segmentation of each tree the main idea is separating the points
into two groups, the ones which actually belong to the tree structure and the ones
belonging to other trees. Once we completed the process for one tree, the points
corresponding to it are removed from the point cloud and the process continue until
there are no points left in the initial point cloud. In order to speed up the process,
we avoided considering the whole cloud at every iteration, but instead we picked a
certain ball of points around the tree top of the considered tree, such to include all
the points belonging to it. The estimation of the right radius requires a trial and



52 Tree Segmentation

error process, given that for each kind of forest it is necessary to estimate how many
points can belong to a certain tree at maximum in order to avoid losing part of the
tree structure. In order to find the target tree top, we look for the highest point in
the cloud, which represents the top of the tree that we want to identify during this
iteration.

The next step performed is getting all the neighbors’ points around the tree top
within a chosen radius such to consider the whole tree structure. Once we identified
this subset, we keep scanning the point from top to bottom and assign each point
to one of the groups according to the minimum distance of each candidate point
with respect to the two groups and to an adaptive distance threshold. Proceeding
from top to bottom is the best way to identify the candidate tree, given that trees are
better delineated at higher levels, while close to the bottom it is hard to determine
to which tree the points belong, given possible overlapping among part of the trees.
This is the reason why adopting a top down scanning direction would also ease the
analysis of lower points, given that they will be analyzed once that the tree points
structure is already partially identified.

Once we identified the subset relative to the target tree top, the algorithm is
initialized by putting in the group of points relative to the target tree the found tree
top, while in the group of the discarded points we put the point in the subset with
greatest 3D euclidian distance from the target tree top. After the initialization step
, each point in the subset is assigned to the right group by means of the following
checks:

I) First we check if the minimum distance of the candidate point from the points
in the cluster is greater than an adaptive distance threshold, determined accord-
ing to the height of the candidate point. In case of a positive result for this
check, we add the point to the discarded ones, otherwise we proceed to step
II.

II) We check if the minimum distance of the candidate point from the points in
the cluster is smaller than the minimum distance of the candidate point from
the points discarded during the segmentation of the tree. In case of a positive
outcome, the point is added to the cluster points, otherwise it is added to the
discarded ones.

We remind that the scanning direction for the points is from top to bottom.
Every time that a point is added to one of the two groups, we remove the point
from the subset that we are considering, so that by taking the maximum each time
we are automatically scanning the points left in the subset in height order. The set
of operations performed to assign each point in the subset into the right group is
summarized in the flow chart in 6.1.

From the analysis of the clustering rules listed above, it is clear that the choice of
the distance threshold is the critical one. An extensive search of the parameter space



6.2 Pseudo-code 53

Figure 6.1: Flow chart summarizing the set of operations performed to identify a
specific tree in the subset of points.

in a subset of the trees used as validation set followed by a human visual comparison
of the produced results between the trees detected and the identified vegetation in
the point cloud showed that the best fixed value for the distance threshold is 2.3
meters for the Kenya data.

In 6.2 we report a line plot with the number of founds trees among the 19 in
the validation set of which we have the ground truth on the y axis and the distance
threshold value used for the experiments on the x axis.

As shown in the plot, using a distance threshold value of 2.3 meters detected the
highest number of trees with ground truth. In addition, this threshold value is also
the one producing the best result with respect to the visual comparison performed
among the original point cloud and the segmented trees.

6.2 Pseudo-code

Now we introduce the nomenclature used in the pseudo-code of the segmentation
algorithm and the psuedo-code itself in order give a sequential ordering of the steps
performed:

• BS: the radius of the ball where to search for neighbors in order to obtain the
subset relative to a specific tree.

• CT: threshold on the number of points necessary to form a cluster. If the
identified tree has less than CP points, then the cluster is discarded, given that
the points in it are considered as noisy points generated by the ground/non



54 Tree Segmentation

Figure 6.2: Line plot of the distance threshold values experimented (on the x axis)
and of the number of trees with ground truth detected among the 19 in the validation
set (on the y axis).

ground classification. By means of an empirical analysis we set this threshold
to 30, given that we checked that no trees with less than 30 points were present
in the point cloud.

• HT: height threshold used to determine the value of the adaptive distance
threshold. This threshold was set to the 90% of the maximum height of points
in the cloud after having analyzed the variation in trees’ height in the areas.

• MDC : the minimum distance of a given point from all the points in the
cluster during the detection of a specific tree.

• MDNC : the minimum distance of a given point from all the points discarded
during the detection of a specific tree.

• DT: initial value chosen for the adaptive distance threshold.

• NGP: non ground points (points corresponding to vegetation).

• CP: list containing the points considered as part of the current tree.

• NCP: list containing the points discarded during the detection of a specific
tree.

• HP: Highest Point.



6.3 Segmentation Results 55

• TT: Tree Top.

Before presenting the full pseudo-code of the algorithm, we first introduce the
auxiliary functions called by the algorithm:

• max_height_point(NPG): returns the point with maximum height among all
the points in NGP.

• get_points(TT, NGP, BS): this function builds a KDT with the NGP using the
python implementation available in the library sklearn1. It then returns all the
neighbors points within distance BS from the point TT in the created KDT.

• compute_distance(point_a, point_b, n_dimensions): computes the euclid-
ian distance between point a and point b in a number of dimensions equal to
n_dimensions, which must be smaller or equal than the number of coordinates
of the points.

• get_most_distant_point(point, points): returns the point in the list of points
passed to the function with maximum distance from the one given in input to
the function using 3D euclidian distance.

• compute_minimum_distance(point, points) returns the minimum distance
of the given point from all the points in the set passed to the function using
2D euclidian distance.

• determine_threshold(HP, HT, DT): computes the adaptive distance thresh-
old by returning DT if the height of HP is greater than HT, otherwise it returns
DT−0.5 meters, given that we could have some trees which are partially over-
lapping or which are lower than other trees to which they are close.

In Figure 6.3 we report a schematic representation of the different spacing be-
tween trees at different heights. As we can easily notice in Figure 6.3, it is clear
that the spacing between the points of tree #2 and tree #1 is lower at a certain
height, due to the fact that tree #2 has a lower height than our target tree and thus
it makes sense to lower the distance threshold of a certain delta meters when the
height of the candidate point is below the height threshold. The full pseudo-code of
the segmentation algorithm is reported in Algorithm 3.

6.3 Segmentation Results

In this section we show the experiments performed and the results obtained using
the segmentation algorithm on the point cloud data relative to the four areas where
trees with ground truth are located. In the results obtained, each tree identified



56 Tree Segmentation

Algorithm 3 Segmentation Algorithm

1: procedure TreeSegmentation
2: NGP← filter the point cloud to keep only points with classification 6= 2
3: DT ← 2.3 meters
4: CP← ∅
5: NCP← ∅
6: while size(NGP ) 6= 0 do
7: TT ← max_height_point(NGP )
8: CP.add(TreeTop)
9: NGP.remove(TT )
10: Subset← get_points(TT,NGP,BS)
11: NCP.add(get_most_distant_point(TT, Subset)
12: while size(Subset) 6= 0 do
13: HP ← max_height_point(Subset)
14: MDC ← compute_minimum_distance_cluster(HP,CP )
15: MDNC ← compute_minimum_distance_not_cluster(HP,NCP )
16: if MDC > determine_threshold(HP,HT,DT ) then
17: NCP.add(HP )
18: else if MDC < MDNC then
19: CP.add(HP )
20: else
21: NCP.add(HP )

22: Subset.remove(HP )

23: if size(CP ) > CT then
24: Save CP as an identified tree
25: NGP.remove(CP )
26: CP← ∅
27: NCP← ∅



6.3 Segmentation Results 57

Figure 6.3: Example of the different spacing between trees at different heights.

has been marked with a different color in order to differentiate its points from the
others.

The segmentation result for Area 1 is reported in figs. 6.4 and 6.5, where the
algorithm correctly detected 11/12 trees of which we had the ground truth. By ana-
lyzing the original point cloud and the one obtained after the ground/non-ground
separation we discovered that the missing tree (highlighted by a red ellipse) was
classified as ground during the ground/non-ground separation phase, probably due
to its low height.

The segmentation result for Area 2 is reported in figs. 6.6 and 6.7, where the
algorithm identified 18/20 trees. By performing the same analysis on the point
cloud relative to area 2 before and after the separation we discovered that the
two missing trees (highlighted by red ellipses) were not detected because the points
corresponding to their structure were classified as ground during the previous step
of the framework.

After having encountered the same problem in Area 1 and 2, it is reasonable
assuming that the separation algorithm has some issues in correctly classifying as
vegetation the trees which have too low height. A positive aspect highlighted by
the results obtained in area 2 is that the segmentation algorithm is able to correctly
discern between overlapping trees, as shown by the partial overlap of different colors
which then proceed highlighting well delineated trees structures.

The segmentation result for Area 3 is reported in figs. 6.8 and 6.9, where the
algorithm detected 28/32 trees of which we had the ground truth. Many missing
ones were not detected due to the same issue of the segmentation algorithm (trees
highlighted by the red ellipses with ids 59, 73, 75), which we already discussed with
respect to the segmentation results in area 2. For what concerns the tree highlighted
by the red ellipse with id 99 instead, it was not detected due to the fact that it was
too close to another bigger tree, thus the algorithm classified it as part of the bigger
adjacent tree.

1implementation details at http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html


58 Tree Segmentation

Figure 6.4: Area 1 original point cloud (trees with ground truth are highlighted by
red ellipses).

Figure 6.5: Trees identified by the segmentation algorithm in area 1 (missclassified
trees among the ones with ground truth are highlighted by red ellipses).

The segmentation result for Area 4 is reported in figs. 6.10 and 6.11, where the
algorithm identified 48/55 trees. The majority of the missing trees (highlighted by
the red ellipses with ids 179, 202, 203, 211) were classified as ground due to their low
height. The fact that the segmentation issue related to low trees affects more Area
4 is predictable, given that Area 4 is the area with the highest percentage of bushes
among the areas of interest. The remaining missing trees (highlighted by the red
ellipses with ids 170, 171, 219) instead were not detected because they were too close
to a bigger tree, thus being classified as part of the bigger one. Correctly separating
trees which overlap too much or which are too close to each other is a hard task also
for the human eye, thus it is reasonable that the algorithm commits some mistakes
in the hardest cases.

In order to perform a more detailed analysis of the results we chose in each area
a subarea in which it was possible to discern through a visual approach the various
trees using CloudCompare, thus we were able to compare the trees segmented by the
algorithm with the ones in the original point cloud. More in details, we estimated
the TP by counting the trees which were correctly detected and the FP by counting
the trees which were detected as individual ones but in the original point cloud they
were part of bigger tree. The precision of the algorithm with respect to the trees



6.3 Segmentation Results 59

Figure 6.6: Area 2 original point cloud (trees with ground truth are highlighted by
red ellipses).

Figure 6.7: Trees identified by the segmentation algorithm in area 2 (missclassified
trees among the ones with ground truth are highlighted by red ellipses).

correctly identified in the four subareas is reported in Table 6.1.

Table 6.1: Results of the visual validation process over the four different sub areas
chosen

Subarea TP FN Precision
Subarea 1 43 12 78%
Subarea 2 36 7 83%
Subarea 3 30 8 79%
Subarea 4 55 13 80%

By analyzing the results reported in Table 6.1, we can notice that the segmen-
tation algorithm correctly detected a very high percentage of the trees located in
the subareas chosen. However, it must be said that this validation approach is not
enough detailed to properly validate the results, but given that we don’t have enough
information about the true number of trees in the areas and their ground truth, due
to the fact that the ones with ground truth are sparsed across the areas, we cannot
perform a more detailed validation procedure. This does not represent a factor in-
fluencing in a significant way our final goal however, given that even if a single tree
is misdetected, as more than one tree or as part of a bigger tree, we are interested



60 Tree Segmentation

Figure 6.8: Area 3 original point cloud (trees with ground truth are highlighted by
red ellipses).

Figure 6.9: Trees identified by the segmentation algorithm in area 3 (missclassified
trees among the ones with ground truth are highlighted by red ellipses).

in inferring if it is going to represent a potential obstruction factor in the environ-
ment and this could be inferred correctly in both cases. About the trees classified
as ground, this issue cannot be solved by the segmentation algorithm, considering
that those trees are lost during the ground/non-ground separation phase.



6.3 Segmentation Results 61

Figure 6.10: Area 4 original point cloud (trees with ground truth are highlighted by
red ellipses).

Figure 6.11: Trees identified by the segmentation algorithm in area 4 (missclassified
trees among the ones with ground truth are highlighted by red ellipses).



Chapter 7

Visibility Features Extraction

After having obtained the individual vegetation elements among the whole vegeta-
tion points, we have to extract features embedding useful information from the trees
point structure. In this chapter we will first go through the two main approaches
chosen to extract features from the trees point structure and then we will analyze
and compare the result obtained by performing inference with the extracted features.
We followed two different approached for the features extraction procedure:

• In the first approach we engineered a certain number of chosen features con-
sidered suitable for the task at hand and extracted them from the trees’ points
structure. We will refer to this approach as a manual extraction of features,
given that we chose before which features we want to extract from the data
and then performed the extraction.

• In the second one we used the stacked denoising autoencoders neural network
to automatically extract features from the trees points structure.

Before entering into details of the features extraction process, we first provide a
detailed description of the inference task that must be performed.

7.1 Addressed Problem

Given the individually segmented trees through their points structure, our aim is
extracting useful features that could be used to infer the visual obstruction potential
of a specific tree.

In this setting we are interested in two classes: the “see” class marked as 1
(positive), corresponding to when the tree does not have visual obstruction potential,
and the “notSee” class marked as 0 (negative), corresponding to the opposite case.
For what concerns the mapping between the ground truth and the individual trees we
exploited the fact that the UTM locations of the trees in the photos were known, thus
they were easily mapped to the UTM locations of groups of points corresponding to
specific trees.



7.2 Manual Features Extraction 63

7.2 Manual Features Extraction

In this section we describe in details each one of the features we considered suitable
for the inference task at hand and the reasons behind their choice:

• Height: height is simply computed by taking the height coordinate of the
point with maximum height in the cluster corresponding to the tree. The
height is considered a useful feature given that the highest a tree is, the most
probable is that it is going to be a potential source of obstruction.

• Trunk Width: the trunk width is computed by taking all the points at mini-
mum height and computing the maximum distance between them. This fea-
ture is quite significant w.r.t the task, given the fact that the greater the trunk
width is, the harder it will be to see through the tree.

• Density: density of the tree points is computed applying a Gaussian Density
Kernel on all the points and then taking the mean of densities of all points in
order to obtain one density value for the tree. Density is a crucial aspect with
respect to our task, given that the more points corresponding to vegetation
are dense, the harder it will be to see through the tree.

• Delta X: represents the maximum variation in the x coordinate of the points
corresponding to the tree. The reason why we chose to compute this feature is
because including the coordinates interval as features could help the classifier
better understand which are the relevant coordinates intervals with respect to
to the inference task.

• Delta Y: represents the maximum variation in the y coordinate of the points
corresponding to the tree. The reason why we included it is the same for the
Delta X variation.

• Average Height: it is simply computed as the mean of the height of all the
points corresponding to the tree. This feature could bring useful insights to
estimate how the height of each point influences the outcome.

• Red Intensity: the red intensity is computed as the variance of the red values
of all points corresponding to the tree. Adding such feature could be useful in
order to get the intensity of the tree color, which could be related to visibility
issues among animals.

• Green Intensity: the green intensity is computed as the variance of the green
value of all points corresponding to the tree. This feature could be useful for
the same reason of the Red Intensity feature.

• Blue Intensity: the blue intensity is computed as the variance of the blue
value of all points corresponding to the tree. This feature could be useful for
the same reason of the Red Intensity feature.



64 Visibility Features Extraction

7.3 Automatic Features Extraction

In order to automatically extract features from the trees points structure we used a
stacked denoised autoencoder ANN, where we had to make some modifications to the
input in order to make it fit to the ANN requirements:

• Given that neural networks expect a fixed size for the input but each tree is
made of a variable number of points, we first found the minimum size tree and
then sampled without replacement trees with size greater than the minimum
one for a number of times equal to the minimum size found before, thus
obtaining a fixed number of points for each tree.

• In order to make each input given to the neural network correspond to one
tree, we concatenated the points picked from the tree structure into a unique
array of size
minimum_size · features_number_of_point.

• All the train and test data were normalized between 0 and 1 by means of
a min-max normalization, given that neural networks are able to learn much
more information from normalized data than not normalized ones.

Once prepared the input, we modified the code1 already provided in the deep
learning tutorials2 based on the Theano3 library.

The following modifications were applied to the original stacked denoising au-
tonecoders source code:

• We modified the network in order to make it return the output of the last hid-
den layer instead of the output layer, given that it is where the most advanced
features are extracted.

• The fine-tuning part was removed because we were not interested in using the
neural network to perform a full inference task but just to extract features in
an unsupervised fashion.

After the completion of all the preliminary steps, the network was trained with
all the trees available in the four areas except the ones for which we had the ground
truth, given that we used them as test set. Once the network was trained and
tested, we used the obtained features to perform the inference task using different
machine learning inference techniques in order to find the ones performing best for
this specific task.

1The original code can be found at http://deeplearning.net/tutorial/code/SdA.py
2The tutorials can be found at http://deeplearning.net/tutorial/
3More information at http://deeplearning.net/software/theano/

http://deeplearning.net/tutorial/code/SdA.py
http://deeplearning.net/tutorial/
http://deeplearning.net/software/theano/


7.4 Experiments and Results 65

7.4 Experiments and Results

Before performing the experiments, we first had to stratify our dataset, given that
there was a significant dominance of the ’notSee’ class. The reason why data should
be stratified is that otherwise the classifier could be biased towards inferring the
class appearing the most (majority class). To perform stratification, we checked
which was the majority class and then we took all the instances corresponding to
the minority class and an equal amount of instances from the majority class.

Once the dataset was balanced, we performed various experiments, which we
are going to describe in the following sections together with the analysis of the
result obtained. In order to take into account the fact that many machine learning
methods produce different results due to the randomly chosen elements used for the
initialization or to some functions used having multiple solutions, we trained and
tested each method several times on our dataset. The final results are reported as the
mean value plus-minus the standard deviation of the predictions obtained during the
various calls. For the results relative to the deterministic machine learning methods
which are insensitive to initialization or to the multiple solutions case, the standard
deviations are zero, given that they always give the same results.

7.4.1 Inferring With Manually Extracted Features

The first experiment performed was trying to apply different machine learning tech-
niques once we manually extracted the features presented in Section 7.2.

In order to properly evaluate the results we performed a LOOCV of which we
report the results in Table 7.1.

Table 7.1: Accuracy, recall and precision results of the inference task with manually
extracted features

Method Accuracy Recall Precision
Random Forest 0.623 ± 0.017 0.463 ± 0.018 0.636 ± 0.023
Decision Tree 0.617 ± 0.023 0.542 ± 0.019 0.607 ± 0.022
Logistic
Regression

0.703 ± 0.000 0.378 ± 0.000 0.809 ± 0.000

K-Nearest
Neighbors

0.641 ± 0.000 0.512 ± 0.000 0.636 ± 0.000

Naive Bayes 0.609 ± 0.000 0.641 ± 0.000 0.581 ± 0.000
SVM
Polynomial
Kernel

0.500 ± 0.000 1.000 ± 0.000 0.500 ± 0.000

By analyzing the results in Table 7.1 we notice that all the tested classifiers
performed better than the baseline, which is 0.5 given that we have stratified the



66 Visibility Features Extraction

dataset.
More in details, the best results for accuracy and precision are 70% and 80%,

obtained using respectively Decision Tree and Logistic Regression, while for recall
the best result is obtained when using Naive Bayes with 61%. The worst result instead
is obtained when using SVM with a polynomial kernel, which inferred exactly as the
majority class.

The results obtained are all statistically significant according to an ANOVA test
performed, which yielded a p-value of 1.65 · e−14.

7.4.2 RGB Features Ablation

The next experiment performed was removing the RGB related features from the
ones considered in order to check if extracting features relative to the RGB value
was actually bringing additional information or not.

In order to validate the results obtained we performed again a LOOCV, obtain-
ing the results reported in Table 7.2.

Table 7.2: Accuracy, recall and precision results of the inference task with manually
extracted features except the rgb related features

Method Accuracy Recall Precision
Random Forest 0.592 ± 0.025 0.449 ± 0.016 0.606 ± 0.031
Decision Tree 0.621 ± 0.034 0.523 ± 0.015 0.616 ± 0.029
Logistic
Regression

0.578 ± 0.000 0.459 ± 0.000 0.586 ± 0.000

K-Nearest
Neighbors

0.656 ± 0.000 0.452 ± 0.000 0.678 ± 0.000

Naive Bayes 0.625 ± 0.000 0.475 ± 0.000 0.633 ± 0.000
SVM
Polynomial
Kernel

0.547 ± 0.000 0.514 ± 0.000 0.545 ± 0.000

From Table 7.2 we can immediately notice that removing the RGB related fea-
tures causes a drop in the validation metrics computed, meaning that with the RGB
features we are extracting more valuable information for the task at hand.

We can notice that many of the tested classifiers perform worse or in the same
way with respect to the previous experiment, exception made for Naive Bayes and
SVM with polynomial kernel, which performs considerably better but still worse
than the results obtained using also the RGB features in the previous experiment.
In addition, results are not statistically significant according to an ANOVA test with
p-value 0.967.



7.4 Experiments and Results 67

7.4.3 RGB Contribution Estimation

By analyzing the results of the previous experiment we noticed that the RGB features
made a considerable contribution to the information available for the inference
process. In order to determine the importance of this contribution among all the
features, we decided to perform inference using only the information given by the
RGB features. The LOOCV results of this experiment are reported in Table 7.3.

Table 7.3: Accuracy, recall and precision results of the inference task using the RGB
features only.

Method Accuracy Recall Precision
Random Forest 0.662 ± 0.014 0.476 ± 0.011 0.674 ± 0.017
Decision Tree 0.523 ± 0.022 0.528 ± 0.025 0.522 ± 0.021
Logistic
Regression

0.703 ± 0.000 0.378 ± 0.000 0.809 ± 0.000

K-Nearest
Neighbors

0.640 ± 0.000 0.512 ± 0.000 0.636 ± 0.000

Naive Bayes 0.609 ± 0.000 0.641 ± 0.000 0.581 ± 0.000
SVM
Polynomial
Kernel

0.500 ± 0.000 1.000 ± 0.000 0.500 ± 0.000

From the results shown in 7.3 we can notice that not only results are comparable
with the ones obtained using all manually extracted features, but there is also a
slight improvement in accuracy for Random Forest and recall for Decision Tree.
The improvement obtained is statistically significant according to an ANOVA test
with p-value 2.16 · e−14. This last experiment showed that the RGB features are the
features bringing the most valuable information to the inference task, outperforming
all the other features.

7.4.4 Inferring With Automatically Extracted Features

The last experiment performed was inferring using the features automatically ex-
tracted with the stacked denoising autoencoders neural network. The main problem
using neural networks is finding the best network configuration for the task. The
only way to achieve this goal is testing different configurations and analyzing the
drops or improvements in the results obtained and acting consequently. Generally
speaking, one way to obtain an improvement is incrementing gradually the number
of hidden layers and the neurons in each layer, based on the fact that a gradual
deeper elaboration of the information at each layer could produce more valuable
insights in output. By adopting this approach the improvement will be null or in-
significant at a certain point, especially with respect to the trade-off between results



68 Visibility Features Extraction

and the time needed in order to properly train the network. We again performed
a LOOCV in order to properly evaluate the results obtained using each different
configuration.

The first configuration tried consists in using all the trees in the four areas as
input which do not correspond to one of the photos and in giving them in input to
a stacked denoising autoencoder neural network with 3 hidden layers, the first with
256 neurons, the second with 512 neurons and a target number of features to be
extracted equal to 1000 (corresponding to the number of neurons in the last hidden
layer of the neural network). In Table 7.4 we report the results obtained with the
first chosen configuration.

Table 7.4: Accuracy, recall and precision results of the inference task with automat-
ically extracted features using 3 hidden layers

Method Accuracy Recall Precision
Random Forest 0.753 ± 0.014 0.487 ± 0.007 0.764 ± 0.019
Decision Tree 0.676 ± 0.028 0.531 ± 0.022 0.663 ± 0.032
Logistic
Regression

0.750 ± 0.000 0.333 ± 0.000 1.000 ± 0.000

K-Nearest
Neighbors

0.734 ± 0.000 0.404 ± 0.000 0.826 ± 0.000

Naive Bayes 0.750 ± 0.000 0.354 ± 0.000 0.944 ± 0.000
SVM Linear
Kernel

0.685 ± 0.000 0.363 ± 0.000 0.800 ± 0.000

As we can easily notice, Table 7.4 reports an overall significant improvement
with respect to the results relative to the manually extracted features according to
an ANOVA test with p-value 0.0021. In the best case we obtain 75% accuracy using
Logistic Regression, Naive Bayes and Random Forest against the 68% relative to the
manually extracted features case, 48% recall using Naive Bayes and 100% precision
using Logistic Regression.

The result of this first experiment proves that using neural networks to extract
deeper features is indeed promising and worth experimenting more in order to im-
prove the results.

The second configuration tried consists in using again all the trees in the four
areas which do not correspond to one of the photos as input for the stacked denois-
ing autoencoder neural network with 4 hidden layers, the first with 256 neurons,
the second with 512 neurons, the third with 1024 neurons and a target number of
features to be extracted equal to 2000.

The result of the inference task with the second configuration adopted are re-
ported in Table 7.5, where we can notice that performances are almost the same for
Random Forest, Decision Tree, Logistic Regression and SVM with linear kernel with
respect to the previous configuration, while we notice a significant improvement for



7.4 Experiments and Results 69

Table 7.5: Accuracy, recall and precision results of the inference task with automat-
ically extracted features using 4 hidden layers

Method Accuracy Recall Precision
Random Forest 0.750 ± 0.015 0.462 ± 0.006 0.784 ± 0.019
Decision Tree 0.665 ± 0.030 0.512 ± 0.018 0.662 ± 0.032
Logistic
Regression

0.750 ± 0.000 0.333 ± 0.000 1.000 ± 0.000

K-Nearest
Neighbors

0.750 ± 0.000 0.416 ± 0.000 0.833 ± 0.000

Naive Bayes 0.734 ± 0.000 0.361 ± 0.000 0.895 ± 0.000
SVM Linear
Kernel

0.671 ± 0.000 0.372 ± 0.000 0.761 ± 0.000

KNN and Naive Bayes, according to an ANOVA test with p-value 0.0079.
The third configuration tried consists in using again all the trees in the four

areas which do not correspond to one of the photos and in giving them in input to
a stacked denoising autoencoder neural network with 5 hidden layers, the first with
256 neurons, the second with 512 neurons, the third with 1024 neurons, the fourth
with 2048 neurons and a target number of features to be extracted equal to 3000.
The results of the third configuration tried are reported in Table 7.6.

Table 7.6: Accuracy, recall and precision results of the inference task with automat-
ically extracted features using 5 hidden layers

Method Accuracy Recall Precision
Random Forest 0.775 ± 0.012 0.492 ± 0.008 0.782 ± 0.002
Decision Tree 0.753 ± 0.029 0.504 ± 0.017 0.750 ± 0.041
Logistic
Regression

0.734 ± 0.000 0.240 ± 0.000 0.941 ± 0.000

K-Nearest
Neighbors

0.828 ± 0.000 0.453 ± 0.000 0.889 ± 0.000

Naive Bayes 0.750 ± 0.000 0.354 ± 0.000 0.944 ± 0.000
SVM Linear
Kernel

0.750 ± 0.000 0.333 ± 0.000 1.000 ± 0.000

The result shown in Table 7.6 confirms the theory that incrementing the num-
bers of layers and its neurons in a gradual way leads to a significative improvement,
confirmed by an ANOVA test with p-value of 0.0026 for this last attempt.

More in details, the above table reports an improvement in accuracy and preci-
sion respectively with a 83% obtained with KNN and a 100% obtained with Logistic
Regression, while we observe a slight drop in the recall with an highest result of 48%



70 Visibility Features Extraction

obtained by Random Forest against the 51% obtained by Decision Tree when using
the 4 hidden layers network configuration.

Even if we managed to obtain a significant improvement in the validation met-
rics used with these last attempts, when using neural networks a trade off between
training time and results obtained must be always taken into account, especially
when incrementing the number of hidden layers used and the neurons in them.
Experiments with more hidden layers than in the last configuration presented yielded
results which did not bring any relevant improvement in any of the metrics used
while the training time increased considerably. From the results of the experiments
with more hidden layers we concluded that incrementing the number of hidden lay-
ers and their neurons was not improving performances anymore. An explanation
to this limitation could be that not enough trees are given in input to the neural
network, thus maybe increasing too much the number of hidden layers with too few
trees in input does not allow to extract enough information at too deep levels of
the network, thus leaving the result unchanged. For this reason we decided to avoid
testing configuration with even more hidden layers, given the fact that we already
used all the available trees as input.

7.4.5 Results Comparison

In order to make a comparison among the results obtained in the different experi-
ments and configurations used, in Figure 7.1 we report a bar chart with the highest
results obtained in each performed experiment.

As reported in Figure 7.1, the best results for accuracy is obtained by the 5HL
neural network with KNN, while for recall with the 3HL one by using Random For-
est, excluding the 100% obtained when SVM was behaving exactly like the majority
class, and for precision with all the neural network configurations by using Logistic
Regression and SVM.

This last comparison highlights that the best results with respect to the evalua-
tion metrics used were obtained by means of neural networks, confirming the deep
learning effectiveness for the task at hand. From the bar graph we can also notice
that overall we obtained low results for recall with a highest value of 60%, meaning
that the inference algorithms used are biased toward the negative class with respect
to the dataset used, considering that we have an high number of FN which lower the
recall percentage.



7.4 Experiments and Results 71

Figure 7.1: Highest results obtained for each metric during the various experiments
where error bars are reported only for results with standard deviation different from
zero. The legend is the following:

• ME: manually extracted features

• WRGB: RGB features ablation test

• RGB: RGB features only

• nHL: configuration with n hidden layers



Chapter 8

Visibility Networks

Once we obtained the visual obstruction potential labels, one of the most immediate
uses for the information extracted is building a visibility network among individuals
located in the environment. The idea is computing a different visibility network at
each timestamp in which each individual in the environment has a specific location.
This chapter is focused on describing the intuitive procedure used to efficiently an-
alyze the lines of sight among individuals, given that edges of the visibility network
will be drawn according to the results obtained with this procedure. The reason
why we chose this specific example to showcase a possible use of the information
extracted is that the approach used to build a visibility network among animals in
forested environments could be generalized to generic individuals in any kind of
environment, given the availability of the necessary information.

The data we used to build the visibility network are the baboons GPS trajecto-
ries. Of the whole trajectories we considered only subsets inside Area 2 geographic
boundaries, given that in order to perform the analysis of the lines of sight we need
the ground truth, which is fully available only for Area 2 thanks to the fact that we
manually labeled each tree by analyzing the point cloud with CloudCompare. We
are aware that labeling the trees by manually analyzing the point cloud is a very
long shot but these information could be extracted in a real setting using the pro-
posed framework. Once filtered the GPS trajectories according to Area 2 geographic
boundaries, we have a total amount of 86505 timestamps during which the highest
number of baboons were inside Area 2 geographic boundaries. The total amount
of available timestamps for the baboons trajectories is 1462848, while timestamps
in which baboons were simultaneously in Area 2 go from 92191 to 178696. Among
timestamps relative to Area 2, we computed the visibility networks for timestamps
from 178495 to 178595, with a total amount of 100 visibility networks.

In the following sections we will give a detailed description of the method used
to analyze the lines of sight among individuals together with suitable pseudo-code,
then we will show the results obtained in the experiments performed and the visi-
bility networks obtained.



8.1 Lines of Sight Analysis 73

8.1 Lines of Sight Analysis

In order to build the visibility network for a specific timestamp we need an algorithm
to analyze the line of sight among two individuals, which could be used to determine
whether a specific edge in the network must be drawn or not. An explanatory image
of analysis of the line of sight among two individuals in the environment is reported
in Figure 8.1.

Figure 8.1: Baboons habitat with not obstructed lines of sight in green and obstructed
lines of sight in red (baboons behind the tree pointed by the red lines cannot be
seen).

In order to speed up the analysis and the whole processing operations we ap-
proximated the geometry of entities which must be modeled for the lines of sight
analysis to a 2D world. More in details, the idea is approximating each tree with an
ellipse built using only two of the three available coordinates. After having tested
the results obtained with different sets of coordinates, we chose the Easting and
Northing coordinate to build the ellipse, given the fact that they gave us the best
approximation according to the results obtained. In order to model the geometric
entities necessary to analyze the lines of sight we used the python library “simpy”1.

Once geometrically modeled the entities, the following information is necessary
to properly analyze the lines of sight:

• The position of the two individuals in the UTM system and their heights in
meters.

• The variation on the Easting and Northing coordinates computed using the
positions at successive timestamps in the GPS trajectories.

1The library can be found at http://docs.sympy.org/latest/index.html

http://docs.sympy.org/latest/index.html


74 Visibility Networks

The positions of the two individuals are used to identify which are the trees
located between them while the variation of the UTM coordinates is used to perform
an orientation analysis aimed at determining if the two individuals are oriented one
towards the other. Based on the fact that if the first individual is able to see the
second it is not guaranteed that the second is able to see the first, the line of sight
analysis will check the visibility only under the first individual perspective. The
reason behind this choice is that the line of sight analysis procedure is called for
any possible couple in both possible orders, thus it will be checked if the second
individual is able to see the first as well.

Once received all the necessary information in input, the following operations
are performed to determine whether the first individuals is able to see the second
one or not:

I) Perform an orientation analysis using the variation of the UTM coordinates.
More in details, if the first individual is located further or before geographi-
cally with respect to the second and the variation of the UTM coordinates is
such that the first individual is oriented in a way that does not allow him to
see the second, then the procedure terminates otherwise proceed to step II.

II) Compute the 2D line passing between the two individuals using the Easting
and Northing coordinate.

III) Collect the trees with obstruction potential using the inferred labels and keep
only the ones in range of the Easting and Northing coordinates of the individ-
uals.

IV) For each of the collected trees, the following checks are performed:

i) Check if the height of the tree is greater than the one of both individuals.
In case of positive outcome, proceed to step (b), otherwise skip the tree
given that it is too low in order to obstruct the line of sight.

ii) Compute an ellipse approximating the tree shape using the Easting and
Northing coordinate. This is done by using as center for the ellipse the
centroid (average of all points for each coordinate) of the tree points for
the chosen coordinates, as horizontal radius the value corresponding to
half of the maximum variation in the Easting coordinate and as vertical
radius the value corresponding to half of the maximum variation in the
Northing coordinate.

iii) Check if the line connecting the two individuals intersects the ellipse
approximating the tree. In case of positive outcome, then the line of
sight is considered obstructed and the the first individual is not able to
see the other.



8.2 Pseudo-code 75

V) If no tree with visual obstruction potential crosses the line of sight among the
two individuals then the line of sight is considered not obstructed and a di-
rected edge is drawn in the network to represent that at the relative timestamp
the first individual is able to see the second.

Once the procedure terminates, the method returns the network with the even-
tually added edges.

8.2 Pseudo-code

For completeness we provide also the pseudo-code of the algorithm used to analyze
the line of sight among two individuals. Before showing the complete pesudocode,
we first describe a set of auxiliary functions and parameters used in the algorithm:

• a, b: lists corresponding to the locations of the two individuals which in
sequence contain the Easting coordinate, the Northing coordinate and the
height of individuals.

• dx, dy: variation of the Easting and Northing coordinates of the first individ-
ual, computed as the difference between the location relative to the successive
timestamp in the GPS trajectory and the location relative to the actual times-
tamp.

• compute_line(a, b): this function uses the ’simpy’ library to construct a 2D
line passing between the two individual locations a and b using the Easting
and Northing coordinates.

• get_trees_with_obstruction_potential_in_range(a, b): this function returns
the trees which were inferred to be visual obstruction potential elements and
which are also in range of the Easting and Northing coordinates of the two
individuals.

• height(point): returns the height of the point.

• compute_ellipse(center, h_radius, v_radius): construct an ellipse having as
center the one passed to the function, as horizontal radius and vertical radius
the ones specified in input.

• check_intersection(line, ellipse): checks if the line in input intersects the
ellipse given in input to the function.

The set of operations described in Section 8.1 corresponds to the pseudo-code
reported in Algorithm 4.



76 Visibility Networks

Algorithm 4 Lines of Sight Analysis

1: procedure CheckVisibility(a, b, dx, dy, network)
2: if a[0] ≥ b[0] ∧ a[1] ≥ b[1] ∧ dx ≥ 0 ∧ dy ≥ 0 ∨
3: a[0] ≤ b[0] ∧ a[1] ≤ b[1] ∧ dx ≤ 0 ∧ dy ≤ 0
4: a[0] ≥ b[0] ∧ a[1] ≤ b[1] ∧ dx ≥ 0 ∧ dy ≤ 0
5: a[0] ≤ b[0] ∧ a[1] ≥ b[1] ∧ dx ≤ 0 ∧ dy ≥ 0 then
6: check ← False
7: else
8: check ← True
9: if check then
10: line← compute_line(a, b)
11: trees← get_trees_with_obstruction_potential_in_range(a, b)
12: for each tree in trees do
13: if height(tree) < height(a) ∧ height(tree) < height(b) then
14: continue
15: else
16: ellipse← compute_ellipse(tree_centorid, delta_x

2
, delta_y

2
)

17: if check_intersection(line, ellipse) then
18: return network
19: network.add_direct_edge(a, b)

20: return network

8.3 Results and Experiments

In order to properly test the lines of sight analysis method proposed we used the
labels obtained by manually analyzing the point cloud surface relative to Area 2.
Once that we have the labels, we called the method a certain number of times on
random locations in Area 2 range. The outcome was then compared with the result
obtained by performing a manual analysis with CloudCompare of the point cloud
with respect to the lines of sight corresponding to the random locations generated
for the experiment. By performing 15 calls of the procedure with random locations
we obtained a 86% of accuracy, analyzing correctly 13/15 lines of sight. The visual
check performed to validate the results does not have an high reliability however,
given that labeling in a proper way the trees just by looking at their points structure
in the point cloud is a very long shot. Anyway, given the low availability of ground
truth for the trees in the four areas, we did not have a different option to perform a
more reliable validation procedure for the method proposed.



8.4 Visibility Network Construction 77

8.4 Visibility Network Construction

Once defined and tested a valid procedure to analyze the line of sight among two
individuals in the environment, we called this procedure for any possible couple in
both orders with respect to the baboons which were in Area 2 at the same times-
tamps, thus generating a visibility network for each timestamp depicting the visual
contact among individuals. The directed graphs corresponding to the visibility
networks computed for timestamps going from 178573 to 178578 are reported in
figs. 8.2 to 8.7 where numbers in the nodes correspond to the ids of baboons.

Figure 8.2: Visibility network at timestamp 178573.

As we can see in in figs. 8.2 to 8.7, the dynamic of the sighting among baboons
is correctly captured, as remarked by the presence of many directed edges and their
variability.



78 Visibility Networks

Figure 8.3: Visibility network at timestamp 178574.

Figure 8.4: Visibility network at timestamp 178575.



8.4 Visibility Network Construction 79

Figure 8.5: Visibility network at timestamp 178576.

Figure 8.6: Visibility network at timestamp 178577.



80 Visibility Networks

Figure 8.7: Visibility network at timestamp 178578.



Chapter 9

Conclusion

9.1 Final Considerations

In this thesis we proposed a framework capable of extracting information about
terrain and vegetation starting from raw point cloud data corresponding to forested
surfaces. From the vegetation data, each individual vegetation element is then iden-
tified by grouping together the corresponding points through a clustering approach.
The terrain and vegetation data are then used to infer the visual obstruction po-
tential of the vegetation elements identified by extracting features from their points
structure and by performing inference using the extracted features. We provided
also a practical application of the data extracted by building a visibility network
for each timestamp leveraging on a lines of sight analysis procedure among indi-
viduals located in the environment and on the visual obstruction potential inferred
starting from the point structure of the vegetation elements identified. The com-
putation of visibility networks for each timestamp however is just one example of
how the information extracted could be used, many other uses are feasible, such as
supporting the creation of a fully immersive experience of the animals movements
and actions in the environment, which would help understanding how animals per-
ceive their habitat during their everyday life, thus providing really useful insights
for studies related to animal behavior. To identify vegetation elements we described
a fast and effective segmentation algorithm that could be used to segment trees in
heterogeneously shaped forests, once properly tuned, thus providing information on
vegetation that could be used to infer even more on the environment itself or on the
elements linked to it. To conclude, even if the final objective of this thesis is a very
domain specific one, single steps of this framework could be easily adapted and in-
tegrated in frameworks with different final objectives. For instance, with the ground
truth of the specific task that one wishes to perform, the automatic unsupervised
features extraction approach making use of the stacked denoising autoencoder neu-
ral network could be easily applied to obtain features for another domain specific
inference task.



82 Conclusion

9.2 Future Work

There are also many feasible extension for the work done in this thesis. One of the
feasible future improvement could be estimating the threshold value used during the
tree segmentation phase in a dynamic way, directly from the characteristics of the
points in the point cloud surface, thus making the procedure adaptable to any kind
of forested environment without the time-consuming tuning procedure.

For what concerns the visual obstruction potential inference, training the neural
network with an even higher number of inputs, if available, and using an higher
number of hidden layers and neurons in the configurations adopted could be an
interesting experiment. This experiment could be used to verify whether the limit
to the deep learning improvement was just the limited number of training instances
or was due to some other aspect of the training procedure, given that in this thesis
our inputs was limited to the trees located in the four areas of interest.

Another improvement could be obtained in the analysis of the lines of sighs
by modeling the relative forested environment by means of 3D geometry. With a
3D modeling of the environment, it would be possible to perform a more detailed
analysis of the lines of sight among individuals, exploiting the orientation at which
the lines of sight intersect the vegetation elements and modeling in a more detailed
way the vegetation elements themselves without any kind of approximation.



Bibliography

[1] A Aizerman, Emmanuel M Braverman, and LI Rozoner. Theoretical founda-
tions of the potential function method in pattern recognition learning. Automa-
tion and remote control, 25:821–837, 1964.

[2] Vitale B. Inferring high resolution terrain, vegetation, and lines of sight models
from point cloud data. University of Illinois at Chicago, 2016.

[3] Yoshua Bengio. Learning deep architectures for ai. Foundations and trends® in
Machine Learning, 2(1):1–127, 2009.

[4] Yoshua Bengio, Aaron Courville, and Pierre Vincent. Representation learning:
A review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(8):1798–1828, 2013.

[5] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[6] Ian C Briggs. Machine contouring using minimum curvature. Geophysics,
39(1):39–48, 1974.

[7] Y Chang, A Habib, D Lee, and J Yom. Automatic classification of lidar data
into ground and non-ground points. International archives of Photogrammetry
and Remote Sensing, 37:463–468, 2008.

[8] Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, and Chih-
Jen Lin. Training and testing low-degree polynomial data mappings via linear
svm. The Journal of Machine Learning Research, 11:1471–1490, 2010.

[9] Qi Chen. Airborne lidar data processing and information extraction. Pho-
togrammetric engineering and remote sensing, 73(2):109, 2007.

[10] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[11] Joseph F Dracup. Geodetic Surveying 1940-1990. US Department of Commerce,
National Oceanic and Atmospheric Administration, National Ocean Service,
1995.



84 BIBLIOGRAPHY

[12] M Elmqvist. Ground surface estimation from airborne laser scanner data using
active shape models. International Archives of Photogrammetry Remote Sensing
and Spatial Information Sciences, 34(3/A):114–118, 2002.

[13] JB Elsner, TH Jagger, and EA Fogarty. Visibility network of united states hurri-
canes. Geophysical Research Letters, 36(16), 2009.

[14] Jeffrey S Evans and Andrew T Hudak. A multiscale curvature algorithm for
classifying discrete return lidar in forested environments. Geoscience and Remote
Sensing, IEEE Transactions on, 45(4):1029–1038, 2007.

[15] Brian Sidney Everitt. The cambridge dictionary of statistics. The Indian Journal
of Statistics, 69(4):887–888, 2007.

[16] Christian Früh and Avideh Zakhor. 3d model generation for cities using aerial
photographs and ground level laser scans. In Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference
on, volume 2, pages II–31. IEEE, 2001.

[17] Qinghua Guo, Wenkai Li, Hong Yu, and Otto Alvarez. Effects of topographic
variability and lidar sampling density on several dem interpolation methods.
Photogrammetric Engineering & Remote Sensing, 76(6):701–712, 2010.

[18] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised learning.
Springer, 2009.

[19] Johannes Heinzel and Barbara Koch. Exploring full-waveform lidar parameters
for tree species classification. International Journal of Applied Earth Observation
and Geoinformation, 13(1):152–160, 2011.

[20] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–507, 2006.

[21] Shridhar D Jawak, Satej N Panditrao, and Alvarinho J Luis. Validation of high-
density airborne lidar-based feature extraction using very high resolution opti-
cal remote sensing data. Advances in Remote Sensing, 2013, 2013.

[22] I Korpela, B Dahlin, H Schäfer, E Bruun, F Haapaniemi, J Honkasalo, S Ilves-
niemi, V Kuutti, M Linkosalmi, J Mustonen, et al. Single-tree forest inventory
using lidar and aerial images for 3d treetop positioning, species recognition,
height and crown width estimation. In Proceedings of ISPRS workshop on laser
scanning, pages 227–233, 2007.

[23] Olivier Küng, Christoph Strecha, Antoine Beyeler, Jean-Christophe Zufferey,
Dario Floreano, Pascal Fua, and François Gervaix. The accuracy of auto-
matic photogrammetric techniques on ultra-light uav imagery. In UAV-g 2011-
Unmanned Aerial Vehicle in Geomatics, number EPFL-CONF-168806, 2011.



BIBLIOGRAPHY 85

[24] Heezin Lee, K Clint Slatton, BE Roth, and WP Cropper Jr. Adaptive cluster-
ing of airborne lidar data to segment individual tree crowns in managed pine
forests. International Journal of Remote Sensing, 31(1):117–139, 2010.

[25] Qi Li and Jeffrey Scott Racine. Nonparametric econometrics: theory and practice.
Princeton University Press, 2007.

[26] Wenkai Li, Qinghua Guo, Marek K Jakubowski, and Maggi Kelly. A new
method for segmenting individual trees from the lidar point cloud. Photogram-
metric Engineering & Remote Sensing, 78(1):75–84, 2012.

[27] An Lidar and Of plant canopies. Lidar remote sensing for ecosystem studies.

[28] Kevin Lim, Paul Treitz, Michael Wulder, Benoît St-Onge, and Martin Flood.
Lidar remote sensing of forest structure. Progress in physical geography, 27(1):88–
106, 2003.

[29] Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou. Au-
toencoder for words. Neurocomputing, 139:84–96, 2014.

[30] Cheng-Yuan Liou, Jau-Chi Huang, and Wen-Chie Yang. Modeling word per-
ception using the elman network. Neurocomputing, 71(16):3150–3157, 2008.

[31] Jordi Llorens, Emilio Gil, Jordi Llop, and Meritxell Queraltó. Georeferenced
lidar 3d vine plantation map generation. Sensors, 11(6):6237–6256, 2011.

[32] Yu Long. Visibility graph network analysis of gold price time series. Physica A:
Statistical Mechanics and its Applications, 392(16):3374–3384, 2013.

[33] James MacQueen et al. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of the fifth Berkeley symposium on mathe-
matical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA.,
1967.

[34] Helena Mäkelä and Anssi Pekkarinen. Estimation of forest stand volumes by
landsat tm imagery and stand-level field-inventory data. Forest ecology and man-
agement, 196(2):245–255, 2004.

[35] Xuelian Meng, Nate Currit, and Kaiguang Zhao. Ground filtering algorithms
for airborne lidar data: A review of critical issues. Remote Sensing, 2(3):833–860,
2010.

[36] Xuelian Meng, Le Wang, José Luis Silván-Cárdenas, and Nate Currit. A multi-
directional ground filtering algorithm for airborne lidar. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 64(1):117–124, 2009.



86 BIBLIOGRAPHY

[37] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. MIT press, 2012.

[38] Felix Morsdorf, Erich Meier, Britta Allgöwer, and Daniel Nüesch. Clustering in
airborne laser scanning raw data for segmentation of single trees. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
34(part 3):W13, 2003.

[39] Bastiaan Notebaert, Gert Verstraeten, Gerard Govers, and Jean Poesen. Qual-
itative and quantitative applications of lidar imagery in fluvial geomorphology.
Earth Surface Processes and Landforms, 34(2):217–231, 2009.

[40] Doyun Park, Tek-Jin Nam, and Chung-Kon Shi. Designing an immersive tour
experience system for cultural tour sites. In CHI’06 extended abstracts on Human
factors in computing systems, pages 1193–1198. ACM, 2006.

[41] Lawrence R Rabiner. Multirate digital signal processing. Prentice Hall PTR, 1996.

[42] Raul Rojas. The backpropagation algorithm. In Neural networks, pages 149–182.
Springer, 1996.

[43] Murray Rosenblatt et al. Remarks on some nonparametric estimates of a den-
sity function. The Annals of Mathematical Statistics, 27(3):832–837, 1956.

[44] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point render-
ing system for large meshes. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 343–352. ACM Press/Addison-
Wesley Publishing Co., 2000.

[45] Martin Rutzinger, Bernhard Höfle, Markus Hollaus, and Norbert Pfeifer.
Object-based point cloud analysis of full-waveform airborne laser scanning data
for urban vegetation classification. Sensors, 8(8):4505–4528, 2008.

[46] Ricardo Sanz-Cortiella, Jordi Llorens-Calveras, Jaume Arnó-Satorra, Manel
Ribes-Dasi, Joan Masip-Vilalta, Ferran Camp, Felip Gràcia-Aguilá, Francesc
Solanelles-Batlle, Santiago Planas-DeMartí, Tomàs Pallejà-Cabré, et al. Inno-
vative lidar 3d dynamic measurement system to estimate fruit-tree leaf area.
Sensors, 11(6):5769–5791, 2011.

[47] Fayez Tarsha-Kurdi, Tania Landes, Pierre Grussenmeyer, et al. Hough-
transform and extended ransac algorithms for automatic detection of 3d build-
ing roof planes from lidar data. In Proceedings of the ISPRS Workshop on Laser
Scanning, volume 36, pages 407–412, 2007.

[48] Dirk Tiede, Gregor Hochleitner, and Thomas Blaschke. A full gis-based work-
flow for tree identification and tree crown delineation using laser scanning. In
ISPRS Workshop CMRT, volume 5, page 2005, 2005.



BIBLIOGRAPHY 87

[49] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion. The Journal of
Machine Learning Research, 11:3371–3408, 2010.

[50] Philip D Wasserman. Advanced methods in neural computing. John Wiley & Sons,
Inc., 1993.

[51] Aloysius Wehr and Uwe Lohr. Airborne laser scanning—an introduction and
overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2):68–82,
1999.


	List of Figures
	List of Tables
	Introduction
	Thesis Objectives

	State of the Art
	Ground/Non-Ground Separation Approaches
	Tree Segmentation Approaches
	CHM Based Algorithms
	Raw Point Cloud Based Algorithms

	Visual Obstruction Inference
	Visibility Network Computation

	Background
	Tree Data Structures
	BST
	KDT

	Learning Methods
	Classification
	Clustering

	Kernel Methods
	Density Kernel
	Linear Kernel
	Polynomial Kernel
	Averaging Kernel

	Point Cloud Representation
	Probability Distributions
	Gaussian Distribution
	Student t-distribution

	Statistical Significance Tests
	Student t-test
	The ANOVA Test

	Validation Metrics
	Accuracy
	Recall
	Precision
	Cross-Validation

	Geographic Coordinates Systems
	UTM Coordinates System

	Interpolation
	TPS Interpolation

	Artificial Neural Networks (ANN)
	Artificial Neurons
	Structure of ANN
	Learning Phase
	Autoencoders
	Denoising Autoencoders
	Stacked Denoising Autoencoders


	Dataset
	Ground Truth Data
	Global Positioning System (GPS) Trajectories

	Ground/Non-Ground separation
	Method Description
	Pseudo-code
	Scale and Curvature Threshold Tuning
	Separation Results

	Tree Segmentation
	Method Description
	Pseudo-code
	Segmentation Results

	Visibility Features Extraction
	Addressed Problem
	Manual Features Extraction
	Automatic Features Extraction
	Experiments and Results
	Inferring With Manually Extracted Features
	RGB Features Ablation
	RGB Contribution Estimation
	Inferring With Automatically Extracted Features
	Results Comparison


	Visibility Networks
	Lines of Sight Analysis
	Pseudo-code
	Results and Experiments
	Visibility Network Construction

	Conclusion
	Final Considerations
	Future Work

	Bibliography

