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Summary

In this document we present a novel approach to the design of mixed reality

(MR) applications, which combines elements from markerless and location-

based augmented reality in order to explore new types of interaction, lever-

aging a spatial representation of virtual content. In particular, we propose a

method for developing both a mobile application, that can be used by peo-

ple to see augmented content in the real world, and an editor application,

which can be used to design and create MR experiences. In our presenta-

tion, we deal with the currently available mobile technologies and we discuss

the integration of different techniques in order to improve tracking within

the context of our location-based approach, in which every content has a

defined position in real space. After discussing the advantages and the new

interaction possibilities enabled by our method, we define the requirements

for a MR authoring tool and we propose our own implementation, aimed

at decoupling the editing process from the use of tracking techniques. We

particularly focus on the mapping between real-world and virtual coordi-

nates and on the possibilities enabled by real-time editing, which allows

the designer to remotely preview the MR experience and to interact with

users. We demonstrate the usefulness of our method by presenting two ap-

plications developed with our approach and by analyzing some real-world

examples. Ultimately, we discuss the feasibility and the future of creat-

ing accurate MR experiences with the currently available technologies, by

analyzing both quantitative and qualitative results obtained from our case

studies.
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Sommario

Con il presente documento presentiamo un nuovo approccio al design di ap-

plicazioni di mixed reality (MR), combinando elementi di realtà aumentata

markerless e geolocata al fine di esplorare nuovi tipi di interazione - basati

su una innovativa rappresentazione dello spazio in cui vengono definiti i con-

tenuti virtuali. In particolare, proponiamo sia un framework per sviluppare

applicazioni mobili, che possano essere usate come tramite per osservare

contenuto digitale nel mondo reale, sia un sistema di editing finalizzato al

design ed alla creazione di esperienze di mixed reality. Durante la nostra

discussione, trattiamo le attuali tecnologie mobili necessarie alla creazione

di tali applicazioni e discutiamo l’integrazione di diversi sensori al fine di

migliorare il tracciamento con un approccio ibrido, basato contemporanea-

mente su tecniche di elaborazione di immagine e su geolocalizzazione, nel

quale ogni contenuto digitale possiede una referenza spaziale al mondo reale.

Dopo aver discusso i vantaggi e le nuove possibilità di interazione offerte dal

nostro metodo, definiamo un insieme di requisiti necessari allo sviluppo di

un tool di editing per applicazioni di MR e proponiamo una nostra imple-

mentazione. Questa seconda parte si concentra in particolare sulla map-

patura tra coordinate reali e virtuali e sulle funzionalità rese possibili dalla

modifica a tempo reale dei contenuti digitali, che consente al designer di

di avere un’anteprima della esperienza di MR e allo stesso tempo di in-

teragire con gli utenti. Al fine di dimostrare l’utilità del nostro metodo,

presentiamo due applicazioni mobili sviluppate mediante il nostro frame-

work e analizziamo alcuni casi di studio ad esse associati. Infine discutiamo

la fattibilità, l’accuratezza ed il futuro della creazione di esperienze di MR

con le tecnologie attualmente disponibili, esaminando quantitativamente e

qualitativamente i risultati ottenuti tramite i nostri test.

XV





Chapter 1

Introduction

Since the dawn of humanity, man has always dealt with an environment

characterized by physical objects, populating an inherently tridimensional

world. Through the use of the five senses, man has been able to explore

the bounds of phisicality and to interact with tangible elements. The way

concrete objects exist and move in our spatial universe have always been

guided by the laws of physics, creating in man an innate sense of perception

of the reality in which he lives: elements of nature are supposed to behave

in a certain way, daily activities are expected to produce determined results.

Many actions appear natural and are taken for granted, like when our visual

perspective changes because we are moving our head. We already know that,

by applying a small force, we can move a small object situated on the table

in front of us; we expect that, after launching an object up in the air, sooner

or later it will fall down onto the floor; if we put our hand closer to the fire,

we already forecast the possibility of burning our hand. Almost everything

in our daily lives has become familiar or at least follows some rules from

which we can expect a particular behavior. Thousands of years later, all

of a sudden, the advent of computing gave birth to a completely new type

of entity, intangible and characterized by totally different conventions. A

new realm of reality was introduced and people had to start learning how

to interact with digital content: objects were not physical anymore, but

unreal - virtual. Like he did during all of his existence, man tried to adapt

to this novelty and evolved, defining better ways to conceive these new

elements and developing innovative interfaces to deal with digital content.

In the attempt of bridging the gap that had been suddenly created, many

approaches tried to uniform the real and the virtual, aiming at creating forms

of interaction that could be perceived as “natural” by human beings - and, at

the same time, at controlling the almost limitless potentialities conceivable
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through the use of this technology. In particular, it turned out that man

was now able to define his own rules in the virtual world, becoming himself

the creator of the environment in which he lived. Despite the possibility of

shaping the world as he wanted, the need of making it appear natural - and

thus consistent with what already existed - still was a fundamental issue

to be solved. This is why the study of mixed reality represents a possible

way to address this problem, exploring at the same time the boundaries of

interaction between what concretely exist and what we would like to exist.

1.1 The virtuality continuum

The terminology “mixed reality” (MR) was formally defined for the first

time by Milgram and Kishino in their paper “A taxonomy of mixed reality

displays”, published in 1994 [61]. The two authors explore through their

work the concept of presenting, within the same display environment, both a

“virtual space” and a “reality”; at the same time, they propose a definition of

the so-called virtuality continuum, whose simplified representation is shown

in 1.1: completely real environments lie on the left side of the diagram,

while completely virtual environments are situated at the right extremity -

everything that falls in between along this continuum is called mixed reality.

Figure 1.1: Virtuality continuum as defined by Milgram and Kishino [61]: mixed reality

consists in merging real world and virtual worlds elements to produce a new type of en-

vironment, enabling the co-existence and the interaction of physical and digital objects.

According to this definition, augmented reality and augmented virtuality represent two

subsets of the broader concept of mixed reality.

Thus, mixed reality can be conceptually defined as the merging of virtual

and real-world elements within the same display environment. According

to Milgram’s taxonomy, a further distinction can be made by identifying

augmented reality (AR), where a real environment is augmented by means

of computer generated graphics, and augmented virtuality (AV), which aims

at augmenting with real elements a mostly virtual world. In relation to this,

it is useful to clarify the distinction between the concepts of real and virtual:

• real objects “have an actual objective existence” [61]
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• virtual objects do not formally or actually exist, but are synthesized

by a computer.

As pointed out by Milgram and Kishino, despite virtual content is often

presented with the aim of making it appear “realistic” to the user to give

the impression it does not belong to an artificial world, the definition of the

two concepts above is completely unrelated to the idea of “realism”.

In order to bridge the gap between these two overlapping but inhrerently

separated worlds, mixed reality leverages many different enabling technolo-

gies, such as special types of displays, tracking and registration techniques,

user interfaces and visualization methods - which we will describe with more

detail in Chapter 2. At the same time, we will try to introduce the reader

to some of the various fields to which MR has been applied to over the

last two decades, spanning from medical and urban planning applications to

education and entertainment.

Most of the topics we are going to present in this document are related to

the concept of enriching the real-world, adding virtual content to reality with

the aim of providing to the user otherwise unavailable information. Despite

there does not exist a rigid bound between the definitions of AR and VR,

our work could be mostly classified as augmented reality. However, where

appropriate, we preferred to always use the broader term “mixed reality”

since in many cases our approach is still valid along all the MR virtuality

continuum. An additional reason for this decision is related to the recent

meaning assumed by this terminology, especially on the internet and outside

research laboratories, according to which mixed reality is a sort of augmented

reality leveraging more elements which originally belonged to virtual reality.

Despite this definition denies Milgram’s terminology, we believe it suits well

our proposed approach and takes into account the improvements obtained

by VR in the last few years. Considering all these motivations, “mixed

reality” seems a more appropriate term for addressing our work.

1.2 Motivation

The cinematographic production of films like The Matrix (Warner Bros.,

1999), Minority Report (DreamWorks Pictures, 2002) and Iron Man (Paramount

Pictures, 2008) has progressively used the audience to futuristic sci-fi ele-

ments, comprehending innovative 3D user interfaces and gesture-based in-

teraction with virtual objects in tridimensional space. Acknowledging the

rapid evolution of technology, these ideas have created great expectations in

the general public, but unfortunately most of them still remain only post-
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processing video effects, leading to a sort of sense of disillusion. However,

motion-pictures have greatly contributed as a source for inspiration and,

as time passes, man has discovered more ways to attempt to fill this gap

between reality and expectations for the future. Considering our personal

passion for sci-fi movies and film production, we personally believe that the

recent improvements in technologies like virtual and mixed reality, despite

their current limitations, is a huge step forward in this process, so that this

research field is gathering more and more attention from a wide spectrum

of stakeholders.

The possibility of creating ourselves something that does not exist in

reality, interacting with it like it was a real entity and defining our own

rules in the world we are shaping is definitely thrilling. It is not anymore

just about expressing our creativity and fantasy by adding content to a video

with After Effects [2] after it has been recorded, but it involves a completely

new way to perceive and interact real-time with an enhanced reality. Mixed

reality is enabled by a full stack of different computer technologies that

need to be combined together: it is something different, an interdisciplinary

field mixing subjects such as computer vision, sensor tracking, computer

graphics and user interfaces, requiring the researcher to develop a minimum

background in all of them and to know how they communicate among them.

The possibility to learn many different technologies at the same time and

the chance to work on some of the most creative and fun topics of computer

science led us to this research.

Since we tried for the first time to develop an application with the Vufo-

ria [96] library, we realized that our interest was also in creating something

that concretely worked on a physical device, used daily by billions of peo-

ple. This is why we preferred an approach with a significant implementation

part, aimed at making mixed reality more available to everyone and thus

addressing issues on a nowadays very common type of handheld device: the

smartphone, with all its continuous improvements and all its still compelling

limitations. In our research, we also made use of more expensive technologies

to demonstrate our contribution, but a special consideration is always kept

towards the daily technology we face every day. Our aim is to contribute as

we can to a very complex and often still unshaped field, in order to make

mixed reality more easily accessible to everyone. The feeling is that, despite

many concepts were already defined 20 years ago and haven’t changed rad-

ically since then, this historical moment in technology is introducing many

new ideas, eventually allowing us to be more influential in shaping the future

of mixed reality in the years to come.
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1.3 Contribution

The research presented in this document involves many different aspects

related to mixed reality, spanning from a concrete implementation on phys-

ical devices to a more abstract generalization for presenting virtual content.

Our particular approach tries to merge the lessons learned from previous

works in augmented reality and to add some elements originally belonging

to virtual reality, trying to conceive mixed reality as an experience defined

in a tridimensional space where each virtual object is bound to a real world

location and where each real element corresponds to specific virtual coordi-

nates. Differently from previous AR works which solely relied on estimating

the relative position of a user with respect to a fiducial, our study is aimed

at defining ways to present virtual content that take into account context-

specific characteristics and environmental features, which allow us to esti-

mate the absolute pose of a mobile camera and to leverage the relationships

between user and virtual objects and among virtual objects themselves. In-

stead of activating independently virtual content based on specific trigger

events, for instance the identification of a pattern image, we want instead to

model an entire parallel virtual world which is constantly overlapped to the

real one based on the movements of the user: within certain accuracy con-

straints, this method enables presenting virtual content more freely in 3D

space, even in situations in which not many tracking features are present

in the environment. This is made possible by creating an abstraction for

currently existing tracking technologies, that we combine in a single virtual

space in in order to exploit the benefits and correct the drawbacks of each

one.

Following a first part in which we present how our paradigm can be

applied to implement a mixed reality mobile application, we leverage the

same concepts to provide a new way to conceive the authoring of MR expe-

riences, presenting the implementation of an editor application that allows

easy real-time customization of virtual content. In the wake of this innova-

tive authoring tool, we also explore new possibilities to study the behavior of

users, preview a mixed reality application from their perspective and allow

direct interaction between them and the designer.

1.4 Document structure

The present document is structured in order to first introduce the reader

to the field of mixed reality, aiming at giving a basic historical background

on the enabling technologies and on the common issues and limitations en-
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countered by MR in the last 20 years. After having introduced some related

works, the document will describe all the steps involved in our proposed

approach, specifying how we leveraged available technologies to provide our

contribution to this research field. With the aim of providing more real

world examples and to demonstrate the feasibility of our method, we will

then present a chapter dedicated to two concrete applications that we de-

veloped with our approach. Finally, we will summarize our work in the final

chapter, by also taking some considerations about the present and future

of mixed reality applications. Overall, the document structure appears as

following:

• Chapter 1, Introduction: basic definitions and motivations that brought

us to this research, with additional information about the nature of

this document.

• Chapter 2, Related Work: brief histocarical background on mixed re-

ality and its evolution over the years, arriving to the current state-of-

the-art technologies.

• Chapter 3, Mobile Application: presentation of our approach to the

development of MR mobile applications, with a particular focus on

tracking methods.

• Chapter 4, Authoring Tool: definition and implementation of the re-

quirements for developing a real-time editor for MR.

• Chapter 5, Case Studies: presentation with qualitative and quanti-

tative results of two mobile applications we developed by using our

proposed approach.

• Chapter 6, Conclusion: final considerations and summary of our re-

search work, with a discussion part involving the future of MR.



Chapter 2

State of the Art

This chapter is aimed at providing the reader a simple background on mixed

reality, presenting the technologies involved in this research area and the so-

lutions that were developed during the years to address common issues.

During our discussion, we will also deal with the possible applications of

MR and we will show how the evolution of technology over the last decades

is rapidly improving the possibilities it may offer to an always broader pub-

lic. As we mentioned in Chapter 1, the terminology “mixed reality” has

become popular only recently and its definition has slightly changed over

time. Despite most of the works presented in this chapter are specifically

addressed to augmented reality, we decided to use anyway the broader term

mixed reality in order to comprehend in a more general way all methods

that mix virtual content with the reality we perceive.

Despite the first works involving augmenting reality go back to the 1960s,

when for the first time Ivan Sutherland presented computer-generated 3D

graphics on a see-through display [84], only in the 1990s enough work was

produced in order to define MR as a research field. After the already men-

tioned taxonomy proposed by Milgram and Kishino in 1994 [61], Azuma et

al. published in 1997 a survey [12] aimed at describing more precisely this

field and at summarizing the work that had been done until then. In the

same years, some annual conferences on MR were organized, among which

we can mention the International Symposium on Mixed Reality (ISMR) and

the Designing Augmented Reality Environments workshop; other organiza-

tions like the Mixed Reality Systems Lab in Japan also started focusing on

MR with relevant investments and the first open-source toolkit (called AR-

Toolkit) for rapidly building this type of application was developed. In 2002,

ISMR was united for the first time in Germany with the International Work-

shop on Augmented Reality, giving birth to the International Symposium on
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Mixed and Augmented Reality (ISMAR), which still nowadays represents one

of the most influential conferences on MR worldwide. From the early 2000s

technology has improved enormously, however most of the original defini-

tions and taxonomies conceived by Milgram, Azuma and other important

authors are still very actual, allowing us to see the evolving solutions to the

instrinsic issues related to the concept of MR.

2.1 Enabling technologies

Among the technologies required in order to produce a mixed reality expe-

rience, a first fundamental aspect is the way virtual content is added to the

reality and presented to the user. In 2001, Azuma et al. defined in their

paper “Recent Advances in Augmented Reality” [11] three main categories

of displays for merging the virtual and real worlds:

• Head-worn displays (HWDs), which are meant to be mounted on the

head of the user, rendering specific imagery in front of their eyes. Also

referred to as Head Mounted Displays (HMDs), they should be ideally

not larger than a pair of sunglasses and can be further classified in

optical see-through and video see-through: the former type generates

an overlay on a transparent display, whereas the latter makes use of

an opaque display, onto which the background for the virtual content

is represented by the video captured from a head-worn live camera. A

slightly different sub-category could be represented by virtual retina

displays, which involve directly drawing on the user’s retina the virtual

content through low-power lasers.

• Handheld displays, which represent the category we will mostly deal

with in this document. They are generally flat-panel LCD displays that

provide video see-through augmentations of the real world, acting as

a “window on the world” (WOW) that overlays virtual content onto

the video stream of a camera.

• Projection displays, representing an alternative approach in which the

virtual information is directly projected onto the real objects. This is

made possible by using one or more room-scale overlapping projectors

that enable visualizing virtual content for multiple users even with-

out special eyewear, but with many types of contraints that we won’t

consider in our discussion.

In the early 2000s, Azuma already noticed the possible limits of MR

displays, defining the properties that still nowadays technology is trying
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to improve. For instance, HMDs should be characterized by a small size

and weight in order to portable and be naturally worn by a user like they

were a pair of glasses. Common issues among see-through displays are often

related to low resolution and field of view, but also insufficient brightness

and contrast [11]. At the same time, video see-through displays suffer from

parallax errors, since the camera is generally mounted at a different location

than the real position of the eyes, producing sometimes a noticeably different

view; even focusing the eyes at a particular distance (eye accomodation)

needs to be considered. Ultimately, cost has always been a huge limit for

the mass production of these type of displays.

2.2 Registration and tracking

A fundamental concept for mixed reality is called registration, which involves

the ability of placing virtual content in order to make it appear in its correct

real-world location. In order to achieve this, a MR application needs to track

the user’s viewing position and orientation: the accuracy of estimating the

posture of the subject is the key parameter that defines how the application

can reasonably superimpose virtual information onto the real-world. We can

define three types of approaches that try to address this problem:

• Visual tracking, based image processing or computer vision techniques:

considering video-based systems have a digitized image of the real en-

vironment, it may be possible to detect and use environmental features

to enforce registration. Visual tracking often relies on modifying the

environment with the addition of fiducial markers, aimed at providing

a more reliable tracking.

• Sensor tracking, involving motion sensors like accelerometers, gyro-

scopes and GPS but also relying on other type of measurements, like

geomagnetic sensors or laser rangefinders.

• Hybrid approaches, combining the two types of tracking above in order

to exploit their strenghts and compensate their individual weaknesses.

Visual tracking is based on the idea of identifying features in the envi-

ronment (digitalized as a video stream), tracking their position and use it

to apply corrections aimed at enforcing a proper registration [12]. However

this is definitely not an easy task, as detection and matching need to hap-

pen in real time with high requirements of robustness. In order to achieve

a reliable tracking through image processing, the environment may need to
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be modified with “artificial” features, which we will generically refer to as

“fiducials”: according to Azuma [12], in the second half of the 1990s, thanks

to the use of LEDs or special markers, it was already possible to achieve

an optimal accuracy of up to one pixel when superimposing virtual content.

Fiducials may be represented by any environmental physical element that

could be used to compute the relative projective relationship between itself

and the video camera, in order to enable tracking, alignment, and identifi-

cation. Owen et al. list in their paper [68] some examples of fiducials along

with a definition of the criterias an ideal fiducial should respect: it should

support determining unambiguously its position and orientation with respect

to a calibrated camera, without favoring particular orientations; it should be

easy and fast to detect with simple algorithms, independently of the camera

specifications; finally, it should be uniquely marked and not mistakable with

other elements present in the environment. Since the 1990s, the most used

type of fiducial has probably been represented by binary markers, generally

characterized by a synthetic square composed by a black border with an

inner binary matrix, from which it is possible to compute an identifier (e.g.

a 4x4 matrix would allow using 16-bit identifiers): this type of fiducials has

the great advantage of being easily trackable with simple algorithms and

sufficient robustness under many lighting conditions; its main drawback is

that, being artificially created, binary markers need to be printed and placed

manually in the environment. A second category of fiducials is represented

by image patterns, consisting in a set of flat features extracted from a given

image: if these features are detected in the environment, they can be used

for tracking. Common use cases for image patterns involve advertising and

interactive books, where the patterns are printed like in the case of binary

markers; however, natural feature detection is aimed at searching these fea-

tures even in environmental elements which are not necessarily artificially

created. A last important type of “fiducial” is given by 3D model detec-

tion, which tries to perform tracking on three-dimensional features, often

specified through the definition of a mesh.

With visual tracking, registration is only possible when one or more

fiducials are available in the video stream obtained from the camera, since

otherwise we would not be able to estimate the pose of the camera. Addi-

tionally, despite visual tracking could be enough to ensure registration for

some applications, it does only provide the relative locations of the objects

and the camera. For instance, by knowing the relative pose of the camera

with respect to a fiducial, we could render some 3D graphics on top of it;

but if we wanted to know their absolute position in space, visualize virtual

content not strictly related to that fiducial or allow a more complex inter-
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action with multiple differently positioned virtual elements, we would not

have enough spacial information about the surrounding environment.

Ultimately, some approaches rely only on the use of sensors in cases in

which precision requirements are not very high or in which the aim is simply

to show geolocated information. A classical example is related to the task of

showing points of interest (POIs) around the user, even if some applications

tried to deal with more complex geolocated content. The main drawback of

these approaches is related to the sensors accuracy, which only recently is

becoming acceptable when dealing with consumer hardware.

2.3 Interfaces and visualization

After defining the technologies needed to augment a scene with virtual con-

tent, it is also fundamental to consider how users will interact with those

objects and how to effectively present information. Since we are dealing

with non-physical objects, interaction may not be immediately natural for

a user.

In the early 2000s, Azuma et. al [11] categorized two possible ways to

interact with virtual information: one is to use eterogeneous devices, com-

bining simultaneously the advantages of different displays according to the

requirements of the application; the other option is to introduce tangible in-

terfaces in order to provide haptic feedback and to support a more physical,

direct interaction with the world. Performing natural actions in mixed real-

ity with the use real objects and tools was originally conceived as a possible

solution to fill the gap between virtual and real worlds. Over the next years,

an increasing number of applications tried instead to leverage gesture and

kinesthetic control, aiming at developing intuitive control mechanisms that

take inspiration from human behavior [15].

Regarding the display of information, issues like error estimate visual-

ization and data density definitely need to be taken into account. Since

registration errors are often unavoidable and sometimes significant, content

may be placed in incorrect locations and in many applications the user

should be aware of this. One solution is generally to visually display, based

on expected tracking and measurement errors, the area where the object

could reside inside the screen space. As Azuma points out, another possibil-

ity is to try to make registration errors “less objectionable to the user”, for

example fading a virtual object, according to some probabilistic function,

in case we are not sure if it needs to be occluded by real objects. If the

number of virtual elements displayed increases too much, another issue is

the unreadability of information on the display, that may become cluttered,
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preventing the correct perception of the two merged worlds. A possible so-

lution to limit data density is filtering information in order to keep in view

the important elements; at the same time, knowledge about the environment

could be used to ensure virtual content is not occluding other information or

important parts of the environment, without which the mixed reality effect

would become meaningless to the user.

Other research in this field has focused instead on advanced rendering

techniques. Ideally, in some applications virtual augmentations should be

indistinguishable from the real-world environment, and automatic extrac-

tion of information such as illumination and reflectance can help achieving

higher quality renderings. However, real-time photorealistic rendering is

generally unfeasible with the wearable hardware, so some trade-offs must be

considered. Another interesting field of research involved in MR is related

to the concept of mediated reality and consists of segmenting individual ob-

jects in an unmodeled real-world environment, deleting them and eventually

replacing the with virtual objects.

2.4 Human factors and perception

Another important aspect in the design or MR experiences involves the study

of human factors. Technological limitations, registration accuracy, miscali-

bration and physical properties of the display can greatly influence how the

user perceives the use of a MR application, especially in cases in which it is

required to use it for a longer amount of time. Arguably the most significant

factor is represented by latency: excessive delays may cause irreversible reg-

istration errors capable of making a MR application completely unusable.

Still in relation to registration errors, depth perception is very important

to understand where virtual content is concretely located; some solutions to

improve depth registration involve the use of stereoscopic displays and the

study of how eye rotations affect perception. The performance of a task ex-

ecuted in MR is also greatly influenced by user adaptation to this new type

of interaction and, in prolonged use, by eye strain and fatigue. All these

factors need to be taken in serious consideration both for the development

of the concrete MR application and for the design of the display, with the

aim of creating a comfortable and at the same time efficient experience for

the user.
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2.5 Possible applications

According to the survey presented by Azuma [12], early applications of

mixed reality involved inspection and industry, for instance aimed at help-

ing assembly-line workers perform their tasks on specific hardware; medical

applications focused instead on aiding doctors during surgery operations or

illnesses detection. In the first years of the XXI century, the development of

new mobile technologies allowed MR to be applied to navigation, providing

situational awareness and contextual information retrieval, often based on

geolocated content. At the same time, the first commercial applications were

introduced, mostly dealing with 2D content for overlaying advertisements,

rendered real-time during broadcast video of sport events. Some attemps of

creating collaborative MR environments were also tried to support remote

and collocated activities, generally involving entertainment or the integra-

tion of already existing tools: in this case users were meant to see the same

augmentations and a “shared understanding of the virtual space” was sud-

denly required [12]. Finally, MR turned out to be useful for learning and

providing information, but also for entertainment, as demonstrated by the

real-life videogame ARQuake [70].

2.6 What has recently changed

In the last decade, many things have changed in the world of computer sci-

ence and technology. Hardware is becoming way more efficient and cheaper,

while software and drivers availability is definitely larger than ten years ago.

Many new technologies have also emerged and have gradually changed how

people behave in their daily life. In this section, we will briefly discuss

how the the key aspects of MR mentioned earlier have changed in the last

decade and how this will possibly reflect on the development of mixed reality

applications in the near future.

The first enormous change has involved the display technology. While

until ten years ago a 640x480 (VGA) camera resolution was considered more

than enough, in 2016 many smartphone models now have 2K video resolu-

tion, while commercial HMDs like HTC Vive [40] have reached a resolution

of 1080x1200 pixels per eye. The improvements made by television technol-

ogy, which is now trending towards the standard of 4K resolution, have also

helped in enhancing aspects that involve light emission,: since the introduc-

tion of OLED (Organic Light Emitting Diode) technology, displays require

much less energy to operate, are thinner and can even be foldable, on top

of providing better contrast and less eye strain.
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For what it concerns visual-based tracking, great advances have been

made by computer vision. With the improvement of feature-based tracking

methods, MR is not required to use anymore regular fixed-dimension mark-

ers for detecting where to put virtual contexts. Many markerless feature

detection libraries such as Vuforia [96] have now become publicly available,

while algorithms for identifying not only pattern images but also 3D objects

are being introduced. Another noticeable innovation involves the real-time

extraction of features from scenes to identify the relationship between the

camera and the real-world coordinate system, especially in unprepared en-

vironments. Despite the early research about Simultaneous Localization and

Mapping (SLAM) goes back to the early 1990s, only in 2007 a first convinc-

ing implementation for monocular mobile devices was presented at ISMAR

with Parallel Tracking And Motion (PTAM) by Kleinet al. [43]: through

the use of this method, based on the concept of structure from motion, it is

possible to build and update a map of the environment while simultaneously

keeping track of the position and orientation of the camera. Within certain

constraints, SLAM allows to completely get rid of classical fiducials in the

environment, by providing a full 6D camera pose. On the trend started

by PTAM, other remarkable steps in the recent history of computer vision

were represented by Fast semi-direct monocular visual odometry (SVO) [29]

and by Large Scale Direct monocular SLAM (LSD-SLAM) [23]. One of the

great limitations of the diffusion of these approaches out of research labs in-

volves the computational power required to run some algorithms on mobile

devices. In 2007, Klein et al. showed that PTAM can be executed at 30 FPS

on an Iphone 3GS, however we had to wait until 2012 to have a publicly

available libray (Metaio [55]) support it for the first time. Recently, even

Vuforia [96] and Kudan AR [44] have introduced their own SLAM imple-

mentation, respectively supporting plane detection and walls identification.

This has finally allowed even non computer vision experts to build their

own application and hopefully this trend will continue with more consumer

oriented solutions, fostered by the continuously improving mobile hardware.

Regarding the user interaction, research has focused even more on the

development of natural user interfaces and on improving the feeling of pres-

ence, originally belonging to the realm of virtual reality. Interacting with

digital information using natural hand gestures has become much easier af-

ter the introduction of cheap depth sensors like Microsoft Kinect [58] and

Leap Motion [63], relatively available even on the user market, that respec-

tively allow to track the position of human body and hand joints in space.

Thanks to these technologies it is easily possible to convey the illusion that

users can directly manipulate 3D objects using their hands or interact with
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them using the natural movement of their body, in an intuitive and easy to

learn way [15]. The wider availability of drivers and public APIs has also

contributed to make developers’ life much easier when creating applications

with this type of interfaces. Future research will probably involve improving

the stability but also the quality of the control interfaces.

Many things have changed even for what concerns human factors. First

of all, the hardware improvements of mobile and wearable processors have

significantly decreased latency, enabling most consumer devices to reach at

least 30FPS of framerate with the most common tracking techniques. The

simultaneous enhancements of displays and VR headsets for what it con-

cerns resolution and lighting technology have slightly decreased eye strain,

while HMD design has become more lightweight and ergonomic (let’s con-

sider Google Glass [32] and Microsoft Hololens [57] for instance, which also

incorporate on board processors). The commercialization of the first VR

headsets for the general public has lead to improvements in comfort and in

grahical user interfaces design, with the aim of making them more and more

tolerable by everyone. At the same time, the success of cheap VR viewing

tools like Google Cardboard [21] and the introduction in 2016 of the sup-

port for 360’ videos by Youtube and Facebook have brought an even bigger

change, related to people’s mentality more than to technology itself: nowa-

days it is becoming more and more socially acceptable to use a headset or a

mobile device for visualizing virtual content - and this is mostly due to the

availability and cheaper price of these tools, which are also better advertised

by the media (mostly in relation to marketing and entertainment). While

many technologies ten years ago were still limited to research laboratories

and unknown to many, now they are slowly becoming available on the con-

sumer market (eventually with limited features) and people are getting used

to hear their name. A relevant example is represented by the very recent

launch of Pokmon GO [45], that in just two months has already brought

SLAM-based augmented reality on the smartphones of millions of people,

increasing their awareness of this type of technology.

Finally, as far as application fields, MR has really expanded its target

public: many systems have matured beyond research prototypes and have

lead to possible uses in engineering and architecture, for instance aimed

at previewing the positioning of new buildings or furniture in an environ-

ment; marketing has greatly increased the use of MR, especially related to

hyperlinking information and to associating advertisements and magazines

with interactive content, with the goal of engaging users and making them

more affectionate to a product. At the same time, research about collab-

orative MR is improving with the creation of multi-user interactive user
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interfaces and hybrid types of tracking, while there is always greater inter-

est for gaming applications, in particular after the presentation of Microsoft

Hololens [57] in 2016. Another relevant potential of MR has been leveraged

by digital storytelling, where narratives and information enrich in interactive

ways real-world elements, often aiming at providing context-aware learning

in many different fields.

2.7 Authoring tools

There are many challenges involved in creating meaningful narratives that

rely on overlaying virtual content on top of real-world objects. Currently,

interfaces for facilitating these experiences lack important functionality due

both to technical challenges and to the difficulty of understanding ahead of

time how users will respond to the various components that make up the

experience. A primary task in MR involves determining how best to over-

lay virtual content on top of real-world objects or within real-world spaces.

Different approaches include identifying features on objects, keeping track

of user and device locations, and incorporating additional sensor data from

beacons, cellphones, or cameras to increase the accuracy of placing virtual

content. The problem is exacerbated in dynamic setting containing many

users within complex environments, and fully understanding the real-world

environment and the location of the users within it in real-time is not pos-

sible. Thus, many MR applications are event-based only, and consist of

creating overlays on top of specific environmental features detected by a

camera, and determine only a relative pose estimation of the device but

do not accurately define the position of virtual content in space. While

effective in some situations, this limits the possibilities of the MR experi-

ence and the types of interactions a player can have with virtual objects.

Another challenge involves registering objects to a specified real-world posi-

tion, a task that greatly depends on the tracking accuracy achievable with

the current technology. That is, heterogeneous devices may have a different

representation of virtual content and may be affected by different environ-

mental conditions; because of this, MR applications generally do not allow

interaction between multiple devices.

Creating MR applications thus requires an in-depth knowledge about

several different technologies. Programming toolkits, such as arToolkit [8],

are meant to facilitate the development of such applications, nonetheless

require low-level skills that are often impractical for content developers to

learn. Considering the potential of MR, effective authoring tools are needed

so that developers and artists can quickly create and customize MR experi-
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ences. A basic challenge when editing MR content is difficulty of previewing

it, as most commonly the position of virtual content is related to a single

device with specific characteristics. This makes it difficult to reason more

generally about the MR experience more multiple users and to determine

if the virtual overlay is correctly positioned onto a live video feed of a real-

world scene. Many solutions to this problem involve prototyping MR expe-

rience from within the mixed reality itself. For example, Rekimoto et al. [77]

propose a method based on 2D printable binary matrix markers aimed at

providing landmarks to registering information on a live camera stream. The

idea of using binary markers for prototyping MR application has been widely

adopted since it provides reliable tracking in many situations. A downside

to this approach is that is necessary to modify the real-world environment

through the placement of fiducial markers. Poupyrev et al. [73] propose

an authoring interface aimed at an easy and effective spatial composition

where digital objects can be arranged within a small MR environment. the

designer, through the use of an HMD display with a mounted camera, could

see both real elements and virtual objects simultaneously and perform ba-

sic operations on them by combining the use of multiple binary markers,

used as physical controllers for the interface. Lee et al. [48] extend this

concept of “tangible” MR interaction by adding cubic marker-based props

for performing authoring tasks in indoor environments. Höllerer et al. [39]

propose instead a method for authoring outdoor MR experiences, leveraging

the combination of a HMD see-through display with a handheld computer.

As Etzold et al. [25] shows, recent progress in smartphone technology has

enabled easier and more accurate ways to interact with and position virtual

content. Langlotz et al. [46] explore on-site modification of content through

interaction via a mobile device. Other alternative approaches include work

by Haringer et al. [38] which extends the Microsoft PowerPoint XML proto-

col for defining the behavior of an MR application. Yang et al. [101] explore

how to leverage mobile phone gestures to perform editing in small environ-

ments. However, as noted by Hampshire et al. [37], the development of a

MR application is often a long and non-intuitive task which imposes signifi-

cant limitations on the creative expression of the designer. Instead of using

an mixed reality environment to author MR experiences, we propose instead

a virtual reality editing environment. This allows us to get rid of the use of

markers entirely and to utilize a spatial representation of content through a

partially modelled representation of the environment, making the develop-

ment of MR applications independent of the tracking issues encountered in

previous solutions.
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Chapter 3

Mobile Application

In Chapter 3 and Chapter 4 we will show all the steps involved in our our

general approach, describing also eventual requirements or environmental

constraints take we have taken into account during our work. After provid-

ing an overview of how our method is conceived and implemented, we will

deal with more real-world examples in Chapter 5 (Case Studies) by apply-

ing our approach to the two applications Chicago 0,0 and Digital Quest.

As previously mentioned, our work involves both the creation of an innova-

tive authoring tool for geo-located mixed reality and the development of the

actual mobile application that we will use to produce concrete results and

comparisons with other previous approaches. From now on, we will refer to

the former as “editor application” (or “authoring tool”) and to the latter

as “mobile application” (or “mobile framework”). Our discussion will start

in this chapter by presenting our mobile framework and then continue in

the next chapter with the authoring tool; we will demonstrate during our

dissertation how they are strictly related and how the need for an editor ap-

plication arises from the advantages (and at the same time the complexity)

provided by the mobile application.

During our work, we used for our implementation many different technolo-

gies, spanning from writing C++ plugins for handling mobile sensors to

using WebGL [64] wrappers or higher level programming environments such

as Unity [92]. We will try to approach problems first from a code-agnostic

point of view and then we will eventually compare the technologies that

we concretely used for our personal implementation, meaning that anybody

could implement in many different ways the concepts that we are going to

present. In our case, considered its easiness of dealing with 3D graphics and

the need of having both native access to sensors and a possibility to deploy

cross-platform applications, we decided to implement our work mostly with
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the Unity development platform and for this reason our discussion will be

mainly oriented to a certain type of development process. We will clarify

the cases in which we used different technologies, such as Three.js [89].

3.1 Mapping the two worlds

Before starting to discuss specifically our mobile implementation, we want

to do a brief introduction about our idea of “mapping the two worlds” one

to each other, a recurring concept in our work that involves both the mo-

bile and the editor application. This idea is strictly related to the classical

implementations of location-based augmented reality, in which every aug-

mented content is associated to specific geo-coordinates in the real world.

As it is possible to see in Figure 3.1, in our work we want two define two

parallel worlds, the real one (where the user is located), characterized by

positions on Earth and concrete objects, and a virtual one, containing all

the content that does not really exist but that we would like to add to our

real-life experience. By overlapping the two worlds with an acceptable ac-

curacy, defining a sort of one-to-one mapping between them, we are able to

make real world elements interact with virtual elements, a concept that we

like to call “merging the two worlds”.

Figure 3.1: Mapping the two worlds. While a user walks in the real world, a virtual

camera moves and rotates accordingly in the virtual scene, defining which elements

need to be rendered on top of the live camera stream of the player’s device [53].

In our case, we refer to the Earth coordinate system provided by the

standard World Geodetic System 1984 (also known as WGS84 [65]), com-

monly used in cartography and in navigation - in particular by the GPS
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system. Overall, what we need is to find a correspondence between Earth

coordinates to virtual units, passing from latitude, longitude and height to

a representation in the 3D space as a (X,Y,Z) vector. In our case, we define

the (X,Z) plane to represent the ground and the Y axis perpendicular to

that plane and increasing with the height, which is defined as heigth from

the ground in that specific position (and not from the sea level for instance).

In order to define orientation, in our virtual world we assign the geographic

North to correspond to the positive value of the Z axis. Our solution is

to define a fixed point on the ground plane as the origin of our coordinate

system and then compute all the other points in relation to that one. The

(0,0,0) point in the virtual world could correspond, for example, to the ini-

tial location on Earth (latitude and longitude) of a user who is using our

application. So, after storing our initial WGS84 coordinates as (lat0, lon0),

we can calulate the horizontal position of other elements with the following

formula:

Data: Latitute and longitude of a location

Result: [x,z] offset from the origin

xoffset ← lon∗20037508.34
180 − x0

zoffset ← log (tan ((90 + lat) ∗ π
360))/ π

180 ∗
20037508.34

180 − z0
if initial coordinates then

x0 ← xoffset
z0 ← zoffset
return [0,0]

end

return [xoffset, zoffset]
Algorithm 1: Coordinates to virtual units conversion, by extending and

generalizing the algorithm proposed by MapNav Geolocation Toolkit [53].

Using the above solution, we obtain an equivalence of 1 unit in the virtual

world for every 100 meters in the real world. Considering that we would like

to operate on smaller scale content and the fact that Unity is less accurate

with small numbers (especially regarding clipping planes), we decided to

multiply all positions by 100 on all the 3 axis, obtaining a correspondence

of 1 unit per 1 meter. We will show in the next chapter with some real

examples the level of accuracy that can be obtained with this method, that

is considerably affected by floating point approximations and distances, since

it deals with projecting Earth’s shape onto a plane. However, considering

storing values as doubles and assuming the application will not generally

be used on a very large area with respect to the initial point, this method

provides good results for our intended purposes.
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After having mapped positions and rotations in the two worlds, we can

represent our real-word user as a camera in the virtual world, assuming a

position equivalent with the one of the user and a rotation equivalent with

the orientation in space of the user’s device. In brief, the camera in the

virtual world moves with the user and represents the real mobile camera of

the device: if the user walks North by 5 meters, the position of the virtual

camera will optimally be increased by 5 units along the Z axis; if the user

looks left and rotates his mobile device accordingly, the virtual camera will

as well rotate counterclockwise by 90 degrees around the vertical Y axis. By

enforcing on the virtual camera the same parameters (e.g. the field of view)

of the real one, we can simply render onto the video stream provided by the

mobile camera what is currently seen by the virtual camera, creating a sort

of moving “window” on the virtual world that we will leverage to generate

the mixed reality effect.

3.2 The dual camera approach

According the the principle of “mapping the two worlds” just presented, our

mobile application is meant to estimate the position and orientation of the

device in the world, eventually rendering the corresponding virtual content

on top of the live video stream provided by the mobile camera: it ultimately

represents the medium through which user are able to experience mixed

reality. Differently from other augmented approaches that solely rely on

geolocation or on marker-based tracking, our hybrid implementation com-

bines different types of tracking in order to achieve a reasonable estimation

of the camera pose in a wide range of situations. In particular, we propose a

method that we called “dual camera approach”, based on the use of two vir-

tual “helper cameras”, that do not concretely exist but act as placeholders

for the values computed by a same number of tracking methods. In Sections

3.2.1, 3.2.2 and 3.3 we will demonstrate how this approach is applicable to

different tracking algorithms and extensible with new techniques in order to

improve its performance in specific situations.

As we mentioned earlier, our approach aims at determining the absolute

pose of the camera in an “always-on” fashion, meaning that the lack of track-

ing features in the environment can reduce the accuracy of our estimation

but should not interrupt our continuous tracking. On top of the live camera

stream, we want to render the output of the main virtual camera, which is

characterized by a position and a rotation in 3D space and whose field of

view matches the one of the mobile device. This camera moves and rotates

in the virtual space as the user walks in the real world, creating a sort of
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parallel world that coexists and overlaps with the normal one, enabling the

augmented reality effect.

The absolute pose of the camera is computed by weighting the parame-

ters of two helper cameras (hence the “dual-camera” approach), defined in

the virtual world as follows:

• the ARCamera, whose pose is computed from the tracking of prede-

fined features found in the live mobile camera stream;

• the SensorCamera, whose position and rotation in space are defined

only through the sensors available on the mobile device.

In order to provide a clearer explanation and not to confuse similar

terms, we will refer to the hardware mobile camera as MobileCamera and

to the virtual camera that renders the final augmentation as MainCamera,

whose position and orientation in space will be computed by weighting the

parameters of the two helper cameras.

3.2.1 ARCamera

In the case of the ARCamera, we used a common markerless approach to

estimate its pose when a fiducial is detected through the real camera of the

mobile device. Though, as we show in the next paragraph, our method is

also appropriate for other kinds of pattern-based tracking algorithms, our

current implementation stores a pattern object with the feature points of

a user-defined image by using the ORB descriptor-extraction algorithm. In

order to match the feature points of the pattern with the live camera input,

our pattern detector performs several steps using the grayscale version of

the input image: (1) descriptors are extracted from the live stream video

frame for the detected feature points and are matched against pattern de-

scriptors; (2) ratio tests are used to remove outliers and the homography

transformation is found using inlier matches; (3) a warping step allows the

computation of a refined homography that is then multiplied by the previ-

ous one to obtain a more precise transformation; and finally, (4) the pattern

corners are transformed to the image coordinate system to make pattern

locations on the input image. On top of this computation, we take into ac-

count the position, orientation and dimension in the real space of the image

provided as a fiducial, thus allowing absolute positioning of the ARCamera.

As an example, imagine we are defining as a fiducial a flat, vertical

image of a panel attached to a wall on a particular building. That panel

would be characterized by a location in space, by its height from the floor

and by its instrinsic width and height. The markerless approach stores
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Figure 3.2: On the left, the position and orientation of the mobile device is shown at

real-time within a partial representation of our laboratory, identified by planes indicating

floor and walls: this pose corresponds to the ARCamera and is computed indoors only

by tracking (one of) the two fiducials on the upper wall. The image on the right shows

instead what the device camera is actually seeing (i.e. the wall with the fiducials) plus

a semi-transparent representation of the walls, whose overlapping with the real ones

can be used to check the estimation accuracy.

relevant features of that image and tries to match them with what the

mobile device camera is seeing. If a match is found, we can compute the

pose of the ARCamera relative to that panel. If we did not consider the

additional information we provided about the panel, then we would not be

able to determine the correct case in which it is placed vertically on a wall

(and the camera is looking horizontally) from the case in which it is placed

horizontally on the floor (and the camera is looking down). However, since

we have these details about our fiducial, we can instead calculate the correct

distance from the object and absolute pose of the camera, which we know

should look at that specific fiducial in the world from a particular angle

and distance. Moreover, our technique supports detecting multiple fiducials

simultaneously, a feature that is useful for maintaining a correct camera

movement once a tracker is lost. The main limitation of the ARCamera is

that it is enabled only in presence of a tracked pattern: if the user doesn’t

have geolocated fiducials within the field of view of his mobile camera, we

are unable to estimate its pose solely from the parameters of the ARCamera.

Markerless AR

In this paragraph we will present how we implemented our own marker-less

augmented reality system, demonstrate also that our approach is indepen-

dent of the computer vision algorithms used for estimating the pose of the

camera. Thus we will deal both with already existing libraries and with our

custom implementation, that will show the basic steps necessary for this

type of applications. Our approach could be used also with binary markers,
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but we decided to focus on marker-less AR since it uses the actual environ-

ment as input and will be later leveraged in our two case studies.

During the last decade, many AR libraries have been developed: some of

them had a very short lifespan, while some others were more succesful and

also produced Unity plugins on top of their original C++ or Java code.

Among those, we decided to test Vuforia [96] and ARToolkit [8]: the former,

developed by QUALCOMM [74], is at present the most popular and most

used worldwide for many types of commercial applications, while the latter

is mostly used in academic research due to the fact its code is completely

open-souce. We decided not to use Metaio [55] due to its recent acquisition

by Apple [6] and the shutdown of its services. Both libraries have their own

Unity plugin and provide many different functionalities, but in this work

we are interested only in marker-less, pattern-based augmented reality. In

particular, our goal is to position the camera in 3D space according to its

relative pose to a real planar image (so we will not consider objects with

complex shapes), a feature provided by the two libraries with different terms

of use and limitations. The third and last library that we decided to take

into consideration is Kudan AR [44], which, despite less-know, in the last

few years has achieved great improvements and has recently become more

popular.

Figure 3.3: Sample image uploaded to Vuforia Target Manager: on the left we can

see the original picture, on the right the image is turned to grayscale and features are

rendered on top of it.

In Vuforia’s documentation, what we previously defined as fiducial is

referred to as Image Target. In order to enable other services like cloud

image recognition, Vuforia expects the developer to manage Image Targets

from its website: the image that we want to track is uploaded and receives

a rating, which expresses the richness of features that can be tracked for

that specific image. For what concerns natural features detection, Vuforia’s



26 Mobile Application

Image Targets are expected to be rigid (non flexible) and non-shiny; highly

textured images generally contain stronger detection and tracking ability,

whereas images with poor contrast, organic shapes or repetitive patterns

generally provide poorer results [95]. In Figure 3.3 we show a simple image

and its relevant features according to Vuforia. Despite Vuforia’s Target

Manager could be useful to keep a mobile application lightweight when a

huge amount of Image Targets need to be registered, in our case it is very

limiting since it forces us to rely on an external online service that does not

allow any type of customization, and also generates a new downloadable

Dataset file which needs to be reimported in Unity every time and cannot

be modified. The use of the library is normally intented for rendering a

3D mesh on top of the recognized image: the content appears when the

image is tracked and disappears when the target is lost. Despite Vuforia’s

API acts as a non-extensible “black box” and offers a very limited API, it

allows us to retrieve at least the pose of the camera and if our fiducial has

been detected or not. Unfortunately, no information about the accuracy of

detection is provided, but still it represents an easy way to obtain the camera

pose. Other issues that we need to consider when using Vuforia in Unity are

the fact that its library locks the camera field of view and clipping plane to

default values that cannot be modified, posing some additional limitations

when rendering object that are too close or too far. In order to solve this, we

created our own camera in Unity configuring manually the clipping planes

and retieving the FOV form Vuforia’s projection matrix.

Ultimately, Vuforia has another big limitation: it is not possible to apply

image pre-processing on the live input from the mobile camera before it gets

analyzed by the tracking algorithm. While this could not represent an issue

on general purpose applications where targets are simple printed images,

it can make the tracking very unreliable in case of Image Targets that do

not comply with Vuforia’s ratings - we will show a concrete example of this

when we will discuss our case study Chicago 0,0.

This was the main reason we also considered the use of ARToolkit, more

appealing by the fact that it is completely open-source and its C++ code

can be modified and build with custom personalizations. In ARToolkit’s

documentation, the feature we are interested in is called Natural Feature

Tracking (NFT) and is mostly oriented towards planar textured surfaces.

Like Vuforia, the provided images should have a reasonable amount of fine

detail and sharp edges, with a low degree of self-similarity and high spatial-

frequency; large areas of single flat color with blurred or soft detail will

probably not track well [9]. ARToolkit provides a standalone external tool to

train images, whose code is publicly available (so we know which algorithms
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Figure 3.4: Visualization of the NFT Dataset generated by ARToolkit on a sample

input image. The features outlined with red squares are used in continuous tracking,

instead the ones with a green cross are used to initialize tracking [9].

are used by the library) and allows us to personalize parameters such us the

size of our fiducial and the desired target DPI resolution. By modifing the

C++ code and building it for the single target platforms, we would have

complete personalization of the code, especially for doing pre-processing

on the mobile camera input stream. However, understanding the source

code of the library is not straightforward and time constraints limited our

exploration of ARToolkit internal workflow, especially because for our work

we are mostly interested in deploying crossplatform application (currently

we only used AndroidNDK [4] for building for Android). Overall, even

personalizing the properties associated to the fiducials, we obtained results

very similar to the ones obtained with Vuforia. The only great advantage

was, in our case, the possibility to retrieve a percentage of accuracy while

detecting a fiducial, that could be used as an index for taking decisions at

runtime.

In relation to our case, the library Kudan AR provides two advantages:

one is the introduction of a discretely reliable implementation of the Fast-

SLAM algorithm [62], which we will leverage in Section 3.3 to extend our

method; the other one consists in its markerless image-based tracking fea-

ture, which does not rely on a cloud based solution nor on external services

like Vuforia. Unfortunately the pattern images are not configurable like in

ARToolkit and the library itself is not previewable in Unity, however it may

turn out useful in cases like Chicago 0,0, where we want to keep the threshold

for recognition low: according to our tests, Kudan AR identifies patterns in

a much wider range of environmental situations than Vuforia (limiting the

problem of oversampling that we will describe in Section 4.2.3 ), however

provinding a slightly less robust tracking.

The last implementation we tried is completely custom and relies on
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OpenCV [67], an open-source computer vision library that allows access to

many useful algorithms for AR. Currently, we tried both a direct implemen-

tation in Unity with a C# wrapper, that links dynamically to the Java and

iOS versions of OpenCV, and an Android-specific implementation in C++,

built for the mobile architecture thanks to Android NDK. In the former case

performances are a bit degraded comprared to building a native library by

using the OpenCV C++ implementation, but the code is cross-platform and

easier to maintain. Despite for most of our tests we used Vuforia due to its

simplicity, we will show anyway the steps performed by our algorithm, that

could be very useful for customizing the application in future works. The

current implementation takes inspiration from the book written in 2012 by

Baggio et al. [13].

Our first step is to apply image recognition in order to search the mobile

camera video input for a particular bitmap pattern, that should be detected

even if it is scaled or rotated. The approach should possibly be brightness-

invariant and use a grayscale version of the input frame. Since comparing

directly the pixels of the pattern and the test image is infeasable due to per-

spective transformations, we need to find “interesting” parts of the images

(that we will call features) and try to match them. Starting from the image

we want to use as a fiducial, we need to apply a feature extraction algo-

rithm, that generally leverages corner or edge detection or the derivatives

of the image gradients. For each feature detected, we store its center point,

radius, orientation (which will allow us to have a rotation invariant image

detection) and score (a value indicating the “quality” of the feature point).

For simplicity, we will call feature points “keypoints” from now on. Among

the most famous algorithms we can cite SURF [14] and SIFT [50], but they

are patented and not available for free commercial use; we will use instead

ORB [80], a modified FAST [79] feature detector that has fixed keypoint

size but is able to estimate keypoint orientation. It is generally very used

on mobile devices due to its lower CPU requirements. From each keypont

we extract one fixed size vector called descriptor, that allows us to consider

a much smaller amount of data when comparing two images; the algorithm

that we use as a descriptor extractor is generally the same that will be later

used as a feature detector. In order to store the data of a train image, we

define a data structure called pattern, holding the list of features with their

extracted descriptors and two vectors of correspondences between 2D and

3D pattern positions.

The next step consists in matching the feature points of a train and a

test image (respectively our pattern image and video frame), finding cor-

respondences in a way very similar to searching the nearest neighbor from
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Figure 3.5: The matching algorithm tries to find the raw correspondences of the train

image on the right in the test image on the left.

one set of descriptors to each element of the other set. In our case we used

the OpenCV implementation of the so called Flann-based matcher. Dur-

ing this step, some mismatches can happen: false-positives represent wrong

correspondences between keypoints, whereas false negatives represent miss-

ing matches between points that are on both images. Though we cannot

do much about false negatives, we can minimize false positives by apply-

ing techniques like cross-match filtering and ratio testing. A second pass of

outlier filtration is done by applying the RANSAC [28] algorithm, that we

use to find the homography transformation from points of a pattern to the

test image coordinate system: considering the reprojection error calculated

by the algorithm for the homography matrix, some other keypoints may be

marked as outliers. Ultimately, our result can be refined by warping the test

image by leveraging the homography previously estimated and try to find

more accurate pattern corners. By multiplying the old homography with

the new refined one we generally obtain a more precise final homography

matrix. Baggio et al. [13] in their book suggest to consider a pattern cor-

rectly identified if at this point at least 25% of the patter features are found

in the test image.

The last step is estimating the pattern pose and solving the so-called

PnP problem by leveraging 3D-to-2D point correspondences. In our case,

we simply assign four 3D points to the corners of our rectangle input image

and use the OpenCV solvePnP function to get the final pose of the camera

relative to the test image. The camera-intrinsic matrix, necessary for ob-

taining a natural-looking augmented reality effect and holding parameters
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Figure 3.6: Refined matches after applying cross-filtering and the RANSAC algorithm.

such as focal length, distortion coefficients and principal point, is currently

computed offline by recurring to Vuforia’s API. In Figure 3.7 we show on

the test image the final reprojection of the pattern image.

This last method represents the classical approach to marker-less AR. It

also represents a good way to understand how already pre-packaged libraries

work and a possibility to build our own code without having dependencies

on external services that may be sooner or later discontinued. Despite we

used this as a general-purpose approach (with less convenience in comparison

with Vuforia and ARToolkit), its main advantage is that in future imple-

mentations we could extend it in order to make it more specific to particular

situations, like building recognition for the Chicago 0,0 case.

3.2.2 SensorCamera

Differently from the ARCamera, he SensorCamera does not rely on any com-

puter vision algorithm, but uses instead the data provided by the internal

sensors of the mobile device - allowing us to track the movements of the de-

vice independently from the visual features present in the environment. In

particular, the compass, accelerometer, gyroscope and A-GPS information

are combined in order to retrieve both position and orientation in absolute

coordinates. Most current smartphone devices have their own native sensor

fusion algorithms that can compute orientation in the coordinate system of

the device, mostly by leveraging the gravity vector, the geomagnetic field,

and the rotational acceleration (whose drift is sometimes already natively

corrected). For this reason, we provide fallback countermeasures to support
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Figure 3.7: Final matches after homography refinement. On the test image on the left

we can observe the reprojection of the pattern image on the right.

older devices, which may however have limited degrees of freedom if more

sensors are absent. Regarding instead the position of the camera, we convert

the position retrieved from the GPS to virtual units. The requested horizon-

tal accuracy can be dynamically set in order to try to obtain more accurate

measurement based on necessity, even if real accuracy depends heavily on

the instrinsic characteristics of the surrounding environment. Though our

current implementation does not comprehend sensor fusion techniques to

smooth GPS information in combination with accelerometer and gyroscope,

any technique could be applied on top of our method (e.g., visual odom-

etry [29], step detectors [102], or multisensor odometry [19]) to improve

horizontal positioning. An intrinsic limitation of the SensorCamera is that

it loses one degree of freedom on the vertical axis and needs to be set to

approximately the height of the user since GPS vertical accuracy is very

low (notice that our system uses height relative to the ground, not relative

to sea level). Just as the ARCamera may be disabled when no pattern is

detected, the SensorCamera loses horizontal positioning if the GPS becomes

unavailable (e.g., indoors) or can have a incorrect heading if magnetic fields

influence measurements, even if this issues can be mitigated by sensor fusion.

Optimally, the two helper cameras would be completely overlapped, having

the same position and rotation. Unfortunately this is not so common in real

life experiments and in the next sections we will describe our approach to

exploit the information available in order to define the MainCamera that

renders the augmented scene.
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Orientation in space

With Inertial Measurement Unit (IMU) we generally refer to an electronic

device that integrates more sensors in order to estimate the force and angu-

lar rate of an object, and sometimes also the magnetic field that surrounds

it. Every smartphone nowadays is equipped at least with a three-axes ac-

celerometer, which is mostly used to track motion and to compute the device

orientation (e.g. landscape vs portrait mode): for instance, by analyzing and

filtering the raw data provided by this sensor, it is possible to compute the

linear acceleration of the device in a particular direction, detect significant

motions, estimate the “Up vector” by taking into account gravity and also

provide simple methods for step detection and counting. The second rele-

vant sensor generally present in an IMU is the gyroscope, which provides the

angular rotation of the device along its three axes, helping us to understand

better its rotational behavior and relative orientation. Each device has gen-

erally its own hardware specifications for these sensors and often provides to

the developer a way to access both raw and pre-computed values, to which

the owner company may have applied filtering algorithms to remove bias and

drifting inaccuracies. By combining the above sensors with a magnetome-

ter (also known as “digital compass”), which provides the orientation angle

with respect to the North pole, it is possible to estimate the absolute orien-

tation in space of the device as a tridimensional vector (rotX, rotY, rotZ).

In our case, we considered both Android and iOS smartphones: the former

allow the developer to access this information through the so called Rota-

tion Vector, which requires us build a specific native plugin for Unity; the

latter exposes directly a public interface to Unity, easily accessible through

the Gyroscope.attitude attribute. Since the two type of smarthphone use

different types of axes reference, in our application we had to convert the

iOS orientation in order to correspond to the Android one; additionally, we

implemented a fallback function for Android devices that tries to combine

all available sensors when one of the required ones is missing, in order to

achieve orientation even on older devices (but possibly loosing one degree

of freedom during rotations). A very useful sensor fusion library that we

used under certain circumstances is Google Cardboard SDK [21], that is

generally used for VR applications but, thanks to our implementation, can

eventually be used for determining the orientation of the SensorCamera after

tracking has been lost, by manually aligning the Cardboard values on the

vertical axis: since this library does not make use of the geomagnetic sensor

and computes only relative rotations, it could be useful for our extended

tracking algorithm in situations with significant magnetic interferences.
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Figure 3.8: Axis references for the accelerometer (left) and the gyroscope (right) mea-

surements on an iPhone [5]

3.2.3 Camera pose estimation

To combine the information provided by the two helper cameras (ARCamera

and SensorCamera), we need to implement a dynamic way to intelligently

estimate the final pose of the MainCamera. Our algorithm takes into ac-

count specific situations where one of the two cameras is preferred over to

the other or where both cameras are merged in order to verify their con-

sistency. By remembering that the SensorCamera is always enabled, while

the ARCamera activates only in presence of a pattern to be tracked, we can

define the following four primary situations: fiducial found, fiducial lost,

multiple fidcucials, and no fiducials.

Fiducial found

When the input video stream matches the pattern of one fiducial, the AR-

Camera activates and assumes a position in space calculated considering the

coordinates and size of that fiducial, which, without considering the intrin-

sic accuracy of the tracking algorithm, may represent the greatest source

of accuracy. If we assume those properties are correctly set by the creator

of the application, the ARCamera pose can be considered in this case more

reliable than the one provided by the SensorCamera. After a few frames

in which the ARCamera stabilizes its position, we store the difference in

orientation between the two cameras as 4r = r−1
ar ∗ rs, where rar and rs

are respectively the rotation in space of the ARCamera and of the Sensor-
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Figure 3.9: Our goal is to estimate the absolute position and orientation of the camera

of the mobile device in space. In order to achieve this, we try to combine information

from two helper (virtual) cameras: the ARCamera (left), based on image tracking, and

the SensorCamera, which relies on mobile sensors. Optimally the two cameras would

have the same pose, but in all other situations we need to intelligently weight their

contribution to the final pose estimation based on the current context.

Camera. Under the assumptions above, the MainCamera pose is set to be

the same of the ARCamera, which in our tests proved to be more reliable

than the SensorCamera, as the sensors could be affected by magnetic fields

and GPS inaccuracies. However, there are cases in which interpolating with

specific weights the poses of the two helper cameras could give better re-

sults. For example, when the dimensions for fiducials are not so accurate

or when there are false positives applying the tracking algorithm. These

tracking errors can be found simply by splitting the 4r matrix over the

three axis and considering how much the ARCamera rotation differs from

the SensorCamera (i.e. if the former is looking forward and the latter is

facing down, probably there has been a false positive in tracking and the

augmented content should not be rendered). Our algorithm enables flags

for each object in order to set its behaviors in case of known environmental

issues in that area.

Fiducial lost

When a fiducial is lost, the ARCamera is disabled and we need to rely on

the SensorCamera for extended tracking. As far as rotation, the 4r matrix
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Figure 3.10: The 4r matrix can be imagined as the difference between the rotation of

the two helper cameras, as if they were in the same position in space. In the example

above, the user rotates the device to his right and looses the tracking of a building.

While the ARCamera becomes inactive, we can leverage the SensorCamera and the

4r matrix to know how much the user rotated from the direction in which tracking

was lost. This way, considering the absolute position in space of elements, we can still

render virtual content nearby the user even if no tracking information is available. At

the same time, we can evaluate the coherence of what we are rendering by analyzing

both how the two helper cameras differ from each other and how they are located and

oriented in 3D space.

is used for maintaining the correct orientation of the main camera even

if the tracking is lost or the two helper cameras are not correctly aligned

(especially in case of magnetic interferences): the new main camera rotation

is simply computed as r = rs∗4r, guaranteeing a smooth continuation of the

movement performed by the user. By filtering out eventual sudden rotations

around the global vertical axis, we can prove this extended tracking solution

is not affected by compass calibration problems. It is very useful to leverage

this situation in cases in which we have few good fiducials that are not in the

direction of which we want our augmented content to appear. Let’s consider

the user is in a poorly textured area where the only reasonable fiducial is a

building, which is 90 degrees left to the object we want to show: in this case

we can direct the user to look at the building, correct his position with the

ARCamera pose computed from the fiducial and then make him turn right

to the virtual object; he will probably lose tracking but by relying on the

SensorCamera the algorithm will allow the object to be seen anyway, taking

into consideration the delta rotation the user has performed since he lost the

tracking Figure (3.10). This situation works under the assumption that the
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user simply rotates the device around without moving. If, after a fiducial

has been lost, the user starts walking around, the main camera position

can be updated basing on available sensors: if GPS is available with an

acceptable accuracy and refresh rate or if other sensor fusion techniques are

available for the SensorCamera (e.g. step detection, visual odometry), the

user can get closer to the augmented content with varying performances;

if the horizontal movement is not retrievable from the SensorCamera, we

are not able to predict his movements and so will need to make the content

disappear with a transition when a relevant linear acceleration is detected.

Multiple fiducials

Our algorithm supports tracking multiple markers at the same time. The

ARCamera pose is computed from the first pattern detected until its tracking

degrades (or the fiducial goes out of screen), then it is automatically switched

to the other available ones with the same smoothing function mentioned

earlier. These multiple tracking images are positioned with relative accuracy

in the virtual world of the application environment. This is particularly

useful for keeping an accurate camera pose and delay. It is also fundamental

for indoor pose estimation, since in that case the GPS signal would not be

available (even if that solution could be solved by other means, for instance

by using bluetooth beacons). If more than one tracker is detected at the

same time, the main camera will still be locked to the ARCamera, otherwise

it will consider relying on the sensors for extended tracking until the new

pattern is detected.

No fiducials available

When no fiducials are available, the algorithm may behave differently based

on different settings. In some cases, we would like augmented content to

be precisely positioned only relative to a fiducial and not be affected by

potential sensor inaccuracy. According to this situation, the algorithm does

not show virtual elements if no fiducials is used for pose correction, even if

the user is in the correct position to see the object in space. An example

could be when we want a user to focus on a building used as a fiducial and

then direct him to look to his right and make the object appear. Maybe we

prefer the user to see the content only from that point of view and with a

certain accuracy, and not to show it if the user is simply roaming around.

This case is also meaningful in the creation of a narrative, where the order

of which virtual content is displayed is meaningful.
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On the other hand, we could simply make the MainCamera correspond

to the SensorCamera when no fiducials are available. This would mean that

the user location will be used for showing nearby virtual elements, with all

the already mentioned limitations in case we are not exploiting sensor fusion

for improving horizontal accuracy. Obviously this feature can be performed

outdoors only if a GPS signal is available and indoors only if other methods

(e.g. beacons) are used for estimating an absolute position in space. Another

option involves showing content based on its size and distance from the user:

like with classical POIs in location-based augmented reality, we could, for

example, allow only the display of distant content in order to limit the effect

of sensor inaccuracy.

3.3 Smoothing and filtering

A recurring issue with the markerless approach is the instability of the cam-

era pose. Even when a pattern is identified and the mobile device is kept

still, the ARCamera will never stay in the same exact position. These small

movements can sometimes be considered acceptable if the purpose is to ren-

der an augmentation on top of the detected pattern. In our case, the more

distant a virtual object is positioned from a fiducial, the more the inaccuracy

in the camera pose estimation will influence the overall positioning of ele-

ments in space. This is why it is fundamental to smooth the movements of

the virtual camera so that if the device is not moved the object will remain

in their position. However, simple smoothing is not sufficient since there are

moments in which the movement of the camera needs to be instantaneous,

such as when a fiducial is first detected. In these cases smoothing would

result in a virtual object entering or leaving the scene too slowly, since the

ARCamera could have been potentially just enabled after having previously

been inactive in a completely different position.

User movements introduce further considerations. We can expect users

to move their device slower when they are focusing their attention on a

virtual object, but they will probably put down their device quickly as soon

as they are done with it. So smoothing the movement in this case would leave

virtual objects on screen for more time than necessary. We define a threshold

for the allowable delta movement that triggers the smoothing feature; if the

user moves too fast, smoothing is simply not applied. For the ARCamera,

smoothing is applied both through linear and spherical interpolation both

to camera position and orientation respectively:
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possmoothed = posold + (poscurrent − posold) ∗
k1
dist

∗ timeframe (3.1)

rotsmoothed = rotold(rot
−1
old ∗ rotcurrent)

k2
dist

∗timeframe (3.2)

Here, pos represents the position as 3D vector and rot represents the ori-

entation as a quaternion; k1 and k2 are two constants that are divided by

the distance from the current fiducial, since the more distant we are the

more smoothing factor is required; and timeframe is the time needed to

render the previous frame. This method averages positions over time also

to prevent unexpected instantaneous movements that can happen for few

frames, especially if the detector erroneously sees the pattern as flipped or

inconsistent.

As for the SensorCamera, our current implementation does not yet pro-

vide by itself additional sensor fusion techniques for improving the horizontal

accuracy, so we apply a permanent smoothing of the GPS position very sim-

ilar to the one performed for the position of the ARCamera, but without

considering distances from eventual objects in the scene.

3.4 Dynamic resource management

Knowing the spatial location of the virtual content and of the fiducials allows

us to manage the resources of the mobile device more wisely, thus limiting

energy requirements that could quickly drain its battery. Pattern matching

and tracking are known to be operations that are computationally onerous.

With our method we know precisely when a user is near to a fiducial and

thus we can choose to activate the feature only in certain circumstances or on

a limited number of patterns, instead of processing continuously the input

video stream and trying to match it with the entire database of pattern

descriptors. Similarly, only virtual content close to the user will be loaded

into the scene.

On the other hand (at least for outdoor applications), this method re-

quires a prolonged use of GPS, which could be responsible for quickly drain-

ing the battery of a smartphone. In order to avoid this, we propose a method

for dynamically requesting a different accuracy and refresh rate to the A-

GPS, which relies also on cellular network and Wi-Fi stations for positioning.

Given the first coordinates of the user and knowing his distance from the

virtual content, we can decide to keep GPS requirements low, for instance

by enabling only the cellular network and Wi-Fi station triangulation: this
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would not provide a good accuracy (which would anyway be useless con-

sidering we don’t have content to show), but would still allow us to know

if the user is in a significant position for the overall narrative. Even when

the application is tracking a pattern, since the main camera mostly assumes

the properties of the ARCamera, no particular GPS accuracy is required.

However, when tracking is lost and the user starts moving or when the user

is approaching some virtual content, we need to demand an improved ac-

curacy and refresh rate, which the operative system and hardware will try

to provide if possible. This way we will utilize the energy intensive tasks

only in the proximity of content in order to have better precision as far as

horizontal positioning.

3.5 A user-centered framework

By leveraging elements from both markerless and location-based AR we

are able to obtain many advantages that will allow us to offer a better

experience to the user. This can be enabled by the presence of multiple

tracking sources which guarantee more data about the environment, and

that we can then constrain selectively thanks to our own knowledge of the

site and the expected behavior of the users.

As we mentioned earlier, having an absolute geolocation for overlays and

fiducials allows us to load and unload content based on user location, prun-

ing the dataset of pattern images to be considered and at the same time

freeing memory on the mobile device, guaranteeing a straightforward form

of dynamic resource optimization. This allows also the display of content

even if no camera tracking is available, assuming environmental characteris-

tics allow us a good accuracy from sensor estimation. Since the application

knows the real position in space of the virtual content, we can also enable dif-

ferent behaviors based on proximity to the user or distance between related

overlays.

Estimating the absolute orientation in space of the mobile device and

computing the 4r matrix enable us to derive important information about

the behavior of the user. For instance, we can know how far and in which

direction a user is moving away from a tracked pattern, and, if desired,

direct him to go back to that specific object. Otherwise, we know at which

orientation the user can find other overlays and we can direct him towards

them instead. This allows us to render content on screen even if tracking

has been lost or is not available at a specific orientation. For example, we

can direct a user towards a reliable fiducial and then tell him to rotate by

a certain angle in order to find virtual content that otherwise we would not



40 Mobile Application

have had the possibility to show due to the lack of tracking features in that

particular direction. By leveraging absolute orientation data we can also

detect incoherent situations, trying to avoid cases in which content is shown

when it shouldn’t (false-positives) or vice-versa (false negatives); we are also

able to know the presence of potentially overlapping virtual content, giving

the user the possibility to visualize only parts of it at a time. Moreover, we

can produce intelligent camera stabilization, providing a run-time optimized

smoothing to avoid jittery movements.

We will discuss in Chapter 5 how these advantages are reflected in par-

ticular on the overall user experience of Chicago 0,0 and how they enable

the creation of smarter interfaces, both for the users and the designers. In

particular, we want to note again that our aim is not to improve existing

tracking techlogies, but to combine them with the goal of improving the

overall experience offered to the user. In the next section we will show in-

stead a recent extension to our dual-camera approach, that shows how our

approach can be generaled by the addition of a new camera representing a

different type of tracking.

3.6 The triple camera approach

Thanks to the dual-camera approach presented in the previous section, we

are able to combine mobile sensors and the recognition of predefined pat-

terns in order to obtain a continuous camera tracking. Hovever, there are

situations in which, in absence of recognizable patterns, the accuracy given

by the SensorCamera alone is not sufficient and we would like some form of

robust tracking that does not rely on a prior knowledge of the environment:

it may be useful to collect and track relevant features collected at run-time

from the surrounding area, of which we assume no prior knowledge - a possi-

ble answer to this requirement is represented by Simultaneous Localization

And Mapping, better known as SLAM.

Since the demonstration performed by Klein et al. in 2007 [43], many

advances have been made in the development of SLAM techniques [29] [23],

but almost none of them reached the smartphone consumer market: they

mostly remained confined to research laboratories or applications involv-

ing Robotics. Only in 2014, Metaio library [55] proposed a first publicly

available feature implementing Klein’s PTAM algorithm, which had already

been proved to run smoothly on some mobile devices seven years earlier.

Through this function, after the user had performed a small horizontal cal-

ibration movement with his smartphone, it was possible to detect a plane

onto which place virtual objects: by creating at runtime a map of features of
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the environment, incrementally added to the ones used in the initialization

step, Metaio’s implementation allowed every developer to completely get rid

of fiducials for the first time, giving the possibility to position virtual con-

tent in totally unprepared situations. This feature had the big limitations of

not working well in poorly textured environments and of requiring the user

to initialize manually the algorithm. Little time later, Metaio presented an

improved 6DOF SLAM technique aimed at tracking the movements of user

in room-scale environments, however it remained available just for a short

amount of time until the company was acquired by Apple. Vuforia [96]

relatively recently proposed its Smart Terrain feature, which represents a

simplified SLAM implementation aimed at detecting a plane and eventually

some 3D props placed on it. However, only in 2015 Kudan AR [44] finally in-

troduced a library supporting an efficient implementation of the FastSLAM

algorithm, allowing on high-end devices a decent markerless tracking with

a framerate of about 20-30FPS, according to our tests on a LG G3 device.

The advantages of monocular SLAM on smartphones are huge, since they

guarantee a completely markerless approach that is executed at runtime on

the currently available features, thus performing consistently with environ-

mental changes as lighting and weather. Despite Kudan’s implementation is

still not completely robust and sometimes has a noticeable latency of nearly

50ms, we considered very useful to apply it to our approach in order to

improve it in two main situations:

• SLAM has proved to be efficient in room-scale environments and, as-

suming the presence of well textured environmental features, it can be

used for small movements of the user in all the cases in which we do

not have visual tracking information, i.e. when we are relying solely on

the device sensors. Normally we would need to make use of other sen-

sor fusion algorithms, since GPS positioning definitely has not enough

refresh rate and accuracy to allow the user a realistich way approach

closely to a virtual object. In this case, it would also allow exploring

on mobile devices new types of interaction in which the user directly

interfaces with virtual content in more natural ways, for intance with

hand gestures and body movement.

• Our tests in downtown Chicago showed that SLAM can also be useful

for incrementing the accuracy in the estimation of the camera pose

by tracking distant or lighting-critical environmental features that it

would normally be impossible to track with the pattern-based image

recognition approach.
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This is why it can be very helpful to define a third “helper camera” in

our approach, to be taken into account for the final camera pose estimation

in the same way we did with the other two helper cameras. Since the new

SLAMCamera requires a much more demanding computational power with

respect to the previous two helper cameras, we can imagine it as an auxiliary

camera that gets enabled and comes to help only in determined situations in

which it could efficiently contribute to the overall user experience. We have

currently identified the following enabling cases, that respectively address

the two situations mentioned above:

• When we are relying solely on the SensorCamera because of the ab-

sence of fiducials in the environment, we wait for the user to arrive at a

reasonable distance from a virtual object and then we activate SLAM

to make that object stick to that position. In this case the content

keeps the same position even in precence of sudden GPS errors and the

user can get close to the object thanks to the small movements com-

putable with SLAM; the content would probably not be tied exactly

to the desired location, depending on the horizontal accuracy at the

moment in which SLAM is activated, but if the object is allowed to

appear within a certain area this approach is completely reasonable.

Alternatively, with the same assumptions, it is possible to activate

SLAM and then insert the object in the nearby location which is most

suitable for tracking.

• When dealing with fiducials, SLAM can be activated as an additional

way to extend tracking, like we did when considering the relative rota-

tions of the SensorCamera. For instance, when a fiducial is lost, it can

be activated to estimate the relative pose of the camera to otherwise

untrackable environmental features, allowing us to compute how much

the user has moved away from the fiducial.

In Chapter 5, after having focused mostly on our dual-camera approach

in the first two case studies, we will consider in a dedicated section how the

addition of the third helper camera can bring advantages to both applica-

tions Chicago 0,0 and DigitalQuest.

3.6.1 SLAMCamera

As we previously mentioned, our implementation makes use of the Kudan

AR [44] library. Among its main features we can list its incredibly fast

initialization time, that does not need the pre-registration of the environ-

ment to be tracked, and its performance in low-textured environments and
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in difficult lighting conditions. As a simple comparison, the previous SLAM

implementation proposed by Metaio [55] and based on PTAM [43] required

the user to perform a predefined movement in order to calibrate the device

camera and, differently than Kudan, was incredibly unreliable in proximity

of walls or desk surfaces.

Kudan framework is based on the idea of keeping a fixed virtual camera

in space (aimed at rendering the scene), around which content will be moved

and rotated based on tracking. However, this behavior, despite acceptable

for very simple applications, is definitely non compatible with our concept

of mapping the two words: in our case, in fact, the camera moves according

to the movements of the device, while content has an intrinsic position,

independent from tracking. In order to make Kudan useful to our purpose,

we need to perform the following steps:

• We leverage the SensorCamera to retrieve the orientation in space of

the device based on sensors and we associate it to the current live

camera video.

• We use Kudan plane detection feature to identify a reference plane,

whose relative position and rotation in space are computed by the

library based on arbitrary features and geometrical properties gathered

at runtime.

• Normally Kudan framework would suggest to place content directly

in the reference system of the detected plane, that is moved and ro-

tated around a fixed point (Kudan rendering camera) according to the

estimated pose of the device with respect to environmental features.

Instead of relying on the plane anchored in camera space, we consider

the position of the rendering camera in the reference system of the

detected plane: by translating and rotating it in order to make it cor-

respond to the position in which the content is placed in the global

coordinate system, we obtain a transformation matrix tbat allows us

to define the pose of our SLAM camera with respect to the detected

plane.

• At this point, we can simply ignore the previous need of moving objects

around the rendering camera - since now we know the position of our

SLAMCamera with respect to real-world features detected during the

algorithm initialization.

This way, the SLAMCamera now moves around the reference system

identified by the algorithm: our next goal is to make that reference system
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correspond to the virtual content we want to show, otherwise the behavior of

the SLAMCamera would still be independent from the geolocation mapping

we defined in Section 3.1 and just render content at arbitrary positions. In

order to better understand how the SLAMCamera is positioned in 3D space,

we need to consider that the SLAM algorithm finds a reference system which

projected origin in normalized screen coordinates corresponds to (0.5, 0.5)

and which orientation with respect to our XZ plane is dictated by the gravity

sensor of the mobile device: in brief, if we wanted to render the plane found

by the algorithm, it would have its center in correspondence of the center of

the device screen and an orientation optimally coinciding with the floor that

we would normally consider using the SensorCamera; the main differences

consists in the orientation of the detected reference system along the global

Y axis and the distance between its origin and the SLAMCamera, which

depends on perspective and has the contribution of making rendered objects

appear smaller or bigger. Thus, a non-precise alignment of the detected

reference system would cause virtual corrent to be rendered with incorrect

rotation or scale. Up to now, We have found two possible solutions to this

problem:

• Let’s consider a situation in which no fiducials are available and only

the SensorCamera is enabled. By leveraging the facts that the al-

gorithm returns a reference system whose origin corresponds to the

center of the screen and that the computation can be run at at least

20Hz (according to our tests on an LG G3 device), we can wait for

the user to get close enough (within a predefined radius) to the virtual

content that we want to show. At that point, we wait for the Sen-

sorCamera to align to the content within a certain angle α and then

we start iterating the SLAM algorithm until the estimated pose of the

SLAMCamera resembles the one of the SensorCamera, so that they

would singularly render content with the same scale. This process can

be performed by considering a proximity threshold or defining the po-

sition of the MainCamera by interpolation. Once this happens, the

MainCamera simply renders what the SlamCamera is seeing without

loss of continuity.

• The second method is simply to ignore the problem and let the SLAM-

Camera be enabled at an arbitrary moment in which we would like to

increase tracking accuracy - for instance when a fiducial is found or

lost or when virtual content is close. In this case we don’t mind the

absolute position in space of the SLAMCamera, but we want to lever-

ages its relative movements and rotations. We fundamentally reuse the
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same idea we described in Section 3.2 for combining the SensorCam-

era and the ARCamera, by computing a 4r matrix encording relative

rotations. Differently from the case of the SensorCamera, we can now

consider even relative position modifications, thanks to the tracking

sensibility of the SLAMCamera. In brief, by recalling Section 3.2.3,

we redefine our fallback method to be ARCamera ¿ SLAMCamera ¿

SensorCamera for the estimation of the pose of the rendering camera

(MainCamera).

In both previous cases, we defined when the SLAMCamera is enabled but

not when it is disabled. Our test show that, after anchoring to the original

environmental features, the algorithm often looses tracking after rotations of

the mobile device that go beyond 100◦, especially if they are fast (similarly

to the ARCamera). Sometimes it is able to reckon, but completely loosing

accuracy on tracking, causing rendered content to scale wrong or to shift

significantly in position. This is why when we detect these situations we

use the same method of the 4r matrix we presented in Section 3.2 for

determining the pose of the MainCamera, leveraging difference in rotations

detected by the SensorCamera, much less sensible to fast rotations. After

the SLAMCamera has been disabled, it can be re-enabled according to the

behaviors explained above.

Despite the main part of Chapter 5 is dedicated to our dual-camera

approach, we consider the addition of the third camera a significant im-

provement, especially for enabling new user interaction possibilities - which

we will discuss in Section 5.4.
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Chapter 4

Authoring Tool

As we demonstrated in the previous chapter, our method may bring many

different advantages in comparison to other classical augmented or mixed re-

ality approaches, in particular with respect to the user experience. However,

despite its apparent simplicity, it requires to define rigorously the dimensions

and the exact location of the virtual objects that we want to appear in the

world and, most of all, of the fiducials that we will rely on for tracking.

Without a precise definition of these elements in space, the computed pose

of the camera would be largely affected by inaccuracy and virtual objects

would not appear in the correct position to create a realistic MR effect.

On top of these specific needs, we would generally like to have some sort

of authoring tool for designing our MR experiences. Like we mentioned in

Chapter 2, the creation of MR content has always suffered the lack of an

easy-to-use editor that could satisfy the definition of rigourous behaviors

in mixed reality. Relatively few tools have been oriented towards general-

porpose MR production, and most of them were related to specific company

constraints or limited in the number of customization possibilites. Among

them, many are mostly intended for defining triggers and information to be

displayed for location-based AR (e.g. a POI to be shown in correspondence

of a geo-coordinate) or for establishing which 3D mesh should appear when

the device detects a particular pattern image. Almost none of them allows a

spatial definition of virtual objects, especially in relation to each other and,

more importantly, provides ways to preview the mixed reality experience as

a whole with sufficient realism and accuracy. Overall, we would like to have

an authoring tool with the following basic characteristics:

• Ease of use, so that each one could learn how to use with little effort,

in order to make the creation of MR experiences available to everyone.

Many previous works were in fact intended for people working at a

47
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specific project and required accurate knowledge about the actual im-

plementation technology. On top of this, it should allow the creation

of content in a natural way, with the secundary goal of speeding up

the entire development process.

• A good level of abstraction, able to encompass multiple aspects of

MR: it would be very useful to define a unique tool for designing those

that are the moment are often considered different types of MR (such

as location-based, marker-based and natural feature detection based).

Just to give an example, if we currently wanted to define the behaviour

of a 3D mesh appearing on top of a picture we could use Vuforia [96],

but, if in the same application we also wanted to define a tag based

on a real-world location, we would need to integrate another library

such as Wikitude [100], eventually with the need of creating a differ-

ent application. At the same time, we would like our authoring tool

to provide a high level interface independent from the actual imple-

mentation used on the client device. We would like something that

could define MR exeperiences to be used on smartphones as well as

on HMD devices. In order to allow this, we would probably have to

define a common protocol to be used by applications for loading the

MR content.

• Customization. This broad concept may refer to several different as-

pects intended by the different flavors of MR experiences, but in our

case we will consider common customization features like the possi-

bility to insert different types of augmented content and define their

position, size and orientation in space or in relation to a fiducial. Later

in this chapter we will also deal about customizing the appearance and

the behaviour of virtual content in relation to the user and to other

virtual objects.

• Possibility to preview the mixed reality experience before its deploy-

ment, simulating what a normal user would see during its execution.

This would allow a better design, making run-time adjustments avail-

able based on the real user experience and also speeding-up the devel-

opment process. It would be relevant for remote testing in particular,

since one common disadvantage of MR applications is that they often

require a significant amount of time for onsite testing.

• Modularity and extensibility, in order to eventually add new function-

alities in the future for supporting new types of interactions in MR.
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In this section, as a continuation of the method we presented for defining

our mobile application, we will show our approach to the creation of a MR

editor respecting the characteristics mentioned above. We will try to explain

the reasons behind each implementation decision and try to highlight the

main advantages of our method. Differently from previous works, our spacial

approach leverages its similarities with virtual reality in order to provide a

more realistic authoring experience. Our discussion will be focused on our

current implementation in a CAVE2 [27] hibrid reality environment, but at

the end of the section we will also deal with porting the editor to the new VR

headsets, such as the Oculus DK3 [66] and the HCT Vive [40]. In addition

to implementing the requirements previously listed, we will also expand our

research to new interaction possibilities made possible by our approach.

4.1 The CAVE2 environment

Figure 4.1: A picture of the CAVE2 environment that we used for implementing our

method. This technology belongs to the Electronic Visualization Laboratory (EVL) of

the University of Illinois At Chicago [27].

CAVE2 [27] is a hybrid reality environment developed by the Electronic

Visualization Laboratory of Chicago in 2012 ad is the successor of the orig-
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inal CAVE [17], developed by the same laboratory in 1991. CAVE2 is an

immersive system characterized by high resolution tiled display walls that

enable visualizing both two and three dimensional information, providing

great flexibility for mixed media applications spanning from virtual real-

ity to scientific visualization. The system has an 8 feet tall cilindrical shape

with a diameter of 24 feet, consisting of 72 “near-seamless, off-axisoptimized

passive stereo LCD panels” [27], for a total coverage of approximately 320

degrees of panoramic environment. CAVE2 is able to display information

with a resolution of up 74 Megapixels in 2D mode and is characterized by

20/20 of (horizontal) visual acuity. It is designed to support multiple operat-

ing modes, including virtual simulation and hybrid interaction, creating new

opportunities for users to collaborate using both 2D and 3D. Regarding the

underlying hardware, the system is built with a 36-node high-performance

computer cluster, where each node takes care of controlling two displays;

among these, one node acts as a master and is directly accessible to devel-

opers. Other specifications involve a 20-speaker surround audio system, that

can be used for generating 3D audio, an optical tracking system composed

of 10 IR cameras and a public internet interface with 100-Gigabit/second

bandwidth. In particular, the camera system is capable of tracking in space

different types of user-defined markers inside all the circular inner space,

providing their position and orientation in space. Regarding the software

architecture available to programmers, the system is based on Omegalib [91]

- a middleware software that enables the support of OpenGL, OpenScene-

Graph and Vtk. Only recently, a wrapper for Unity has been introduced in

order to enable additional interaction possibilities.

Our choice of using CAVE2 for implementing our authoring tool is based on

various considerations related to the high resolution and to the interaction

possibilities offered by this technology. The space inside CAVE2 is large

enough for making the user feel comfortable during the design process, hav-

ing the possibility to move or to sit on table collaborating with other users.

At the same time, the almost circular panoramic view can be seen with 3D

perspective with easiness of movement, by rotating the head like we would

do with a VR headset or by moving and turning around. Compared to other

technologies like Oculus Rift [66], CAVE2 induces less stress in the user and

allows longer development sessions. On top of this, by using a pair of spe-

cial 3D tracked glasses, the 3D perspective can be adjusted according to the

position in space of the user, that can come closer to the interested content

and perform editing with greater accuracy thanks to the high resolution of

the screens. The system offers millimetric-precise tracking features, giving

the possibility to track the movement of the user and most of all of eventual
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wireless controllers, that we will exploit for interacting with the system. Ul-

timately, a Kinect v2 [58] is positioned at the bottom-front of CAVE2, with

the possibility of tracking the joints of up to 6 users inside the environment.

Regarding the software implementation, we decided to leverage the Unity

3D wrapper provided by Machdyne [54], the company that currently com-

mercializes CAVE2. In order to run a Unity application in CAVE2, the

executable needs to be uploaded to all the 36 nodes of the cluster, which are

synchronized by the master node: overall, 36 application instances will be

running at the same time, communicating with each other through the high-

bandwitdh LAN. Each instance will have a duplicate of the main camera of

the instance running on the master node, but with a different orientation:

in a configuration file, all the positions in space of the screens are stored and

each camera renders the scene in such a way to display on a specific pair of

screens the correct content for that position. This causes a set of limitation

in the use of cameras and user interfaces in Unity, but does not influence

anyhow the results of our work. Another important implementation detail

that we had to consider involves syncronizing calls to procedures on the

nodes of the cluster: for example, if we are creating an object in a random

position, each node of the cluster will compute its own different value, thus

leading to the presence of up to 36 different objects in the scene. In this

case, the master node needs to take care of the computation and perform

an RPC call to the other nodes, specifing the already computed position for

the new object.

4.1.1 Setting up the virtual scene

The main idea behind the development of our editor is the same about

which we dealt at the beginning of the previous chapter: creating a mapping

between the virtual and the real worlds. The concept consists in recreating

in CAVE2 a virtual environment resembling the real one, to which we can

add our own digital content. This environment, as we did for the mobile

application, is characterized by 1-to-1 scale with the real world: this means

that, with a certain approximation, a concrete object of width 2 meters

needs to be represented in the virtual environment as an object of width 2

units and vice-versa. This is very similar to what we showed in Section 3.1,

with the only difference that now the real world is not represented by a live

camera stream anymore, but by digital content, like in a virtual simulation.

So one first issue is that in this environment both real and virtual elements

will have a digital representation as 3D meshes and will need to be somehow

distinguished. An important prerequisite for our approach to work in the



52 Authoring Tool

Figure 4.2: The 3D model of the city of Chicago that we will use for our experiments.

The scale of the model is approximately 1 to 1, so that one unit in virtual space

corresponds to one meter in the real world.
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best conditions is having a 3D representation of the real environment that we

want to augment, so that it is possible to see how our content is conretely

positioned in space. Despite this could seem a very strong assumption,

the trend of the current years expects 3D models to become more and more

available to the public. Obviously models with a higher accuracy would allow

more precise editing, but script-generated models from open map providers

could be a good start; other alternatives could involve loading meshes from

Google Earth [33], Bing Maps [56] or external sources. In our specific case,

we relied on a 3D texturized model of the entire city of Chicago, that we

used both for the Chicago 0,0 and the Digital Quest experiments. By loading

the model on top of a specifically generated map of Chicago and scaling it

accordingly, we achieved a rough 1-to-1 scale with the real environment,

of which we will provide numerical accuracy results in the next chapter.

Though this solutions may not seem easily scalable, in Section 4.6 we will

show how our research comprehends also a prototypal web-based editor that

leverages Google Street View imagery [36], without the need for 3D models,

and we will demonstrate how the approach to the problem does not change.

4.2 Defining virtual elements

As a first step, we need to select and classify which type of content needs

to be represented in our editor application. The main idea is to have a

representation of the real world in which we could add our augmented virtual

content, so we will need to include both a 3D recontruction of the real

environment and a representation of what we previously defined as virtual

objects. Our goal is to allow the designer to insert the virtual content in

the scene so that a user, when running the mobile application, will see that

content in the corresponding real world location defined by the designer.

In simple words, we can imagine the mobile camera of the user as directly

connected to a virtual camera moving around the scene built with the editor,

leveraging the real to virtual world location correspondences but rendering

only the virtual content: in fact, the user will not see the 3D representation

of the world that we have in the editor, but the live video stream from his

mobile phone.

In addition to the content that will concretely provide the “augmented”

effect, we also need to deal with fiducials, that will need to be accurately

positioned in space according to their real-world position, in order to provide

a higher precision in the pose estimated by the ARCamera. Indeed, as

explained in the previous chapter, our approach relies on geolocating both

virtual content and fiducials with the highest possible accuracy.
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4.2.1 Types of elements

As mentioned above, excluding the 3D representation of the environment,

we define two main categories of elements inside our editor: virtual objects

and fiducials.

Virtual objects may represent every kind of content we would like to add

to our MR experience. In particular, our current implementation enables

the user to insert the following elements:

• Bidimensional images, oriented in the 3D space, that the user might be

able to see only from a specific position defined by the angle of view.

For instance, we may want an image to be seen only from one side and

to appear transparent from the other one. Alternatively, images could

also be defined as billboards, rotating as the user moves in order to

always face him.

• Bidimensional videos, loaded from internal storage or streamed through

a web server; the same consideration we mentioned for images holds

for videos, since they represent bidimentional content positioned in a

tridimensional space.

• 3D meshes, including both static and animated tridimensional models.

Two examples could be including respectively a new virtual building

near to already existing ones and adding a butterfly flying in a con-

trained area of a park in the virtual scene.

• Spatial audio content, that will need to be played according to the

position of the user: for instance, in the mobile application we may

want the audio to increase its volume when the user gets closer to its

source; we may also want to make so that the current orientation of

the user influences the ways the audio is played, as to make him more

aware of the direction to take in order to reach its source.

For what concerns the fiducials, we define them as elements belonging to

the real world that allow us to determine the position of the user: knowing

their position in space enables the placement of virtual content with respect

to them. We currently defined two types of fiducials:

• Bidimensional pattern images used for tracking, the same one ones

we dealt with when we defined the behavior of the ARCamera. In

the virtual scene, they are represented in a very similar way to the

bidimensional images representing virtual content: the main difference

is while the latter will be rendered as visible content on the mobile
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application, the former will never be visible to the user and will only

be used for tracking. Pattern images can indeed be seen only by the

designer in order to allow him to position and orientate them in space

to improve tracking.

• Placeholders for bluetooth beacons, which are physical devices that

can be put in the real world to allow an estimation of the position

of the user indoors or simply enable custom behaviours based on the

proximity of the user to the device. Despite, in our case studies we

will not deal with great detail the implementation of this feature, we

will demonstrate how our approach represents an abstraction able to

comprehend even this type of technology.

As we will show in the next paragraphs, our approach is intended to be

extensible: so, new type of virtual content or fiducials could be added in

the future in order to broaden the available ways to display augmentations

inside the application.

4.2.2 Protocol definition and basic architecture

In order to allow the display of virtual content and the correct definition

of fiducials, we need to define a common protocol for each of these two

categories of elements. This protocol will need to be adopted both by the

editor application, which will have to store the information about the scene,

and by the mobile application, which will have to load the content and the

behaviors defined with the editor. Despite we could treat virtual content

and fiducials in a very similar way and even if they may appear almost

undistinguishable in the editor application, we preferred to maintain a clear

distinction when storing the data involving the MR experience, mostly due

to their very different purpose.

As we already highlighted many times, the first common characteristic

of virtual objects is their position in space, which is mapped to real world

coordinates. Considering the 1-to-1 correspondence we created between the

real and the virtual world, it may seem legit to define their position as a

(X,Y, Z) tridimensional vector. However, this approach results to be unfea-

sible, since our mapping works in relation to the initial coordinates given by

the mobile or by the editor application. This means that every time we build

our MR experience, the center of the virtual world system will be placed in

a different position and so objects positioned at a specific geolocation will

always correspond to different positions in the virtual system. That is why

we need to store the position of our virtual content with the usual latitude
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and longitude value in a bidimensional vector (lat, lng): when the scene is

loaded, those coordinates are transformed to virtual units; when the scene is

modified or saved, the virtual units are converted back to geolocations. In-

stead, for what concerns orientation, we defined our virtual X axis to always

match the geographic North direction; at the same time, the Z axis is par-

allel to the Equator and the Y axis is along the direction that goes from the

center of the Earth to the current position, so it is always perpendicular to

the surface. In this case, we can define absolute rotations around these axis

that do not require further translations: so we can store orientations simply

by considering the rotation of virtual content with respect to the virtual

coordinate system. While in our application we leverage the use of quater-

nions for rotations, we decided to store this information as Euler angles, so

as a tridimensional vector denoted as (rotX, rotY, rotZ). Another common

property of virtual content is its size: we want to store if an object is large

2, 5 or 10 meters and we want to render it on screen so that the perspective

reflects these dimensions. Since in our system we can measure easily virtual

units and we have a direct correspondence with real worlds measures, we

could potentially store this information in meters. However, since every 2D

or 3D asset in Unity is characterized by its own size even before its instan-

tiation inside the scene, it turns out to be much easier to store the scale of

virtual objects with respect with their original size. For instance, when a

virtual object is added in the editor, its scale is set to the identity vector

(1, 1, 1), which may correspond to different dimensions based on the original

properties of the asset, that may have been created with different external

pieces of software. By calculating the bounds of the mesh in the editor, we

can always compute and show to the designer how many meters each object

measures in the three dimensions; still, it is easier to let the designer modify

the size of the object and store the modifications in the value of its scale,

which is computed natively by Unity. For this reason, we decided to store

the size of objects as the tridimensional vector (scaleX, scaleY, scaleZ).

On top of position, orientation and scale, which characterize every vir-

tual object, many other properties are specific of the type of content that

we want to show. For example, the designer may want to add different

behaviours for audio and video content: while an audio should be played

automatically when the user is at least x meters distant from its source,

we would eventually want a video to start playing only if the user arrives

in front of it and clicks on it with his finger; we may also want to define

if an audio is only played once or generates a loop, or decide the way its

volume is influenced by the position and orientation of the user (e.g. linear

or exponential decay). For 2D images, we may want to set the angle defining
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the correct perspective from which the content needs to be seen. It could

be useful, also, to leave the designer the possibility to define the activation

of specific behaviours and animations for 3D meshes. Since the supported

types of content and interaction may be extended in the future based on the

needs of users and designers, we decided to define a flexible data structure

so that the editor uses only the minimum amount of information needed

to edit the MR experience and the designer can further customize elements

by inserting its own modifications. Thus, each object is characterized by

one numerical type attribute and by a variable number of parameters that

are specific of that type. The implementation of the mobile application will

need to take care of how to handle this information: when loading the list of

objects to insert in the MR experience, it should first interpret the type of

the content and then render it dynamically based on its specific properties.

For instance the mobile application, when loading an object of type audio,

should implement its own logic to create an audio object in the specified

position in space, and then apply the optional properties defined by the

protocol for that type of object (e.g. decay, volume, activation distance,

play mode...).

Additionally, we should be able to specify to the mobile application how

to retrieve the content that it needs to render on screen: it may be already

available on the device or it may be required to download it from an external

server, then eventually caching it locally. For this reason, we added a field

id that uniquely identifies an object and a field media, that indicates where

the mobile application should search for an asset if it is not available on the

local storage (e.g. it could provide the URL from which to download it).

For what it concerns the definition of fiducials, we used the same ap-

proach. They are commonly characterized by position, orientation and scale,

but may belong to different types with different specific properties. For in-

stance, the estimation of the ARCamera pose may take into account eventual

parameters defined for pattern images, whereas beacon placeholders can be

characterized by their activation distance (in RSSI level). As before, our

first concern is to leave to the designer the maximum flexibility of extending

the behavior of the application, guaranteeing a simple way of adding addi-

tional variables that may be taken in consideration at runtime on top of the

already existing ones.

Considering all the requirements mentioned until now, we decided to

store all the information in JSON format, which is human readable and easily

modifiable, but also widely supported. On top of some system information,

the JSON file contains a simple list of the virtual objects and of the fiducials

that need to be considered during the MR experience, along with their
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specific properties. In the code snippet below, it is possible to see a very

simple example of configuration file. In the chapter Case studies we will

show how it can be easily extended to provide more advanced features based

on the specific requirements of an application.

” data ” : {
” t i t l e ” : ”MR Example” ,

” l a s t e d i t e d ” : 1460851200 ,

. . . // o t her g e n e r i c in format ion

” o b j e c t s ” : [{
{
” id ” : 1 ,

” a s s e t ” : ” In foPane l ” , // content to load

” type ” : 1 , // b i d i m e n s i o n a l image

” p o s i t i o n ” : {41 .867272 , −87.675434}
” r o t a t i o n ” : {90 , 37 . 4 , 0} ,

” s c a l e ” : {2 , 2 , 2} ,

” p r o p e r t i e s ” : {
” ang le ” : 30 ,

” area ” : 10 ,

” v i s i b i l i t y ” : ” fad ing ” ,

” transparency ” : 1

} ,

”media” : ”” ,

” cache ” : ”no”

} , {
” id ” : 2 ,

” a s s e t ” : ”3 DAudioEffect ” , // content to load

” type ” : 0 , // audio content

” p o s i t i o n ” : {41 .867687 , −87.654148}
” r o t a t i o n ” : {0 , 0 , 0} ,

” s c a l e ” : {1 , 1 , 1} ,

” p r o p e r t i e s ” : { // s p e c i f i c o f t h i s type

”volume” : 0 . 8 ,

” d i s t ance ” : 30 ,

”decay” : ” exponent i a l ” ,

” d i r e c t i o n a l ” : ” yes ”

” v i s u a l i z e ” : ”no”

} ,

”media” : ” http : / / . . . / a s s e t s / f i l e a u d i o . ogg” ,
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” cache ” : ” yes ”

} ,

. . .

] ,

” f i d u c i a l s ” : [{
” id ” : 1 ,

” a s s e t ” : ” Bui ldingFacade ” , // a s s o c i a t e d f i d u c i a l

” type ” : 0 , // p a t t e r n image

” p o s i t i o n ” : {41 .867496 , −87.673975}
” r o t a t i o n ” : {90 , 22 . 7 , 0} ,

” s c a l e ” : {3 . 4 , 3 . 4 , 3 . 4} ,

” p r o p e r t i e s ” : {
” smoothing ” : 3 . 5 ,

” r e l i a b i l i t y ” : 1 ,

” d i s t ance ” : 30

} , {
” id ” : ” Bui ldingFacade ” , // a s s o c i a t e d f i d u c i a l

” type ” : 0 , // p a t t e r n image

” p o s i t i o n ” : {41 .867496 , −87.673975}
” r o t a t i o n ” : {90 , 22 . 7 , 0} ,

” s c a l e ” : {3 . 4 , 3 . 4 , 3 . 4} ,

” p r o p e r t i e s ” : {
” smoothing ” : 3 . 5 ,

” r e l i a b i l i t y ” : 1 ,

” d i s t ance ” : 30 ,

” th r e sho ld ” : 0 .25

}
} ,

. . .

]

}

In the first simple architecture we propose, we rely on a server storing the

configuration for the MR experience and in multiple clients requesting the

configuration file to load virtual content locally. In particular, the mobile

application and the editor application interact with the central server in the

following way:

• The editor application is used to create and edit the MR experience.

The information about the position and the eventual behavior of vir-

tual content is stored in a JSON configuration file, which is uploaded to
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the central server. When the scene needs to be edited again, the editor

downloads the configuration file from the server and loads it, enabling

additional customization of the scene; once done, a new configuration

file is generated and re-uploaded to the server.

• The mobile application contacts the server and, if necessary, down-

loads the configuration file and interprets it. For each virtual object

and fiducial present in the configuration file, the application loads

needed assets and inserts them into the scene. After this moment,

the mobile application checks for appliable behaviors based on the

properties defined in the JSON file. If the mobile application has the

requirement of not needing internet connection, the configuration file

can simply be stored locally and loaded from memory each time the

application is run.

Figure 4.3: In a first possible configuration, the editor application running in CAVE2

uploads the configuration file to a separate web server. The mobile devices can then

connect to the web server, request the configuration file and finally load the virtual

content inside the MR application.

In our implementation of this very basic architecture (Figure 4.3), the

server was running APACHE with PHP backend and MySQL as a database

for tracking connections and users. However, many other configurations are
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Figure 4.4: In the image on the left, it is possible to observe the 3D glasses that need

to be worn by the user of the editor application and the two available controllers. On

the right, the model of the Wand controller is shown on screen: by pressing the ‘X’

button, the user can generate a ray to facilitate the selection of objects.

possible and, few paragrahs later, we will present another architecture for

supporting more advanced features.

4.3 User interaction

In this section we will go deeper in the details of the user interface offered

by our editor application, analyzing the available types of interaction with

which the designer can customize virtual elements. We will describe first

how we leveraged the technology offered by the CAVE2 environment and

how this impacts on the editing experience, then we will describe the single

features aimed at adding and modifying virtual content.

4.3.1 Interacting with the environment

After launching the editor application from a dedicated computer located

outside the CAVE2 environment, all the 36 nodes of the cluster activate

and start rendering the application on the 72 displays. The 3D perspective

inside the environment is controlled by taking in consideration the position

and movements of the person using the application: this is achieved by

leveraging the camera system of CAVE2, which tracks the markers attached

to a pair of passive 3D glasses that the user has to wear during all the editing

session. This way, we know the position and rotation in space of the head of

the user, enabling us to move the camera inside the Unity scene accordingly,

while a plugin called getReal3D (produced by the company Mechdyne [54])

automatically takes care of correcting the perspective for all the displays.

We will demonstrate later how the possibility of walking around a concrete,
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immersive, hybrid reality environment has some significant differences with

respect to perform the same actions in standard virtual reality.

Interaction with the editor application is mostly performed through wire-

less controllers. Aside from the 3D glasses shown in Figure 4.4, we can see

the two devices we mainly used for our experiments: one is represented by

an Xbox One [59] controller and the other one is Playstation Move [81] con-

troller. Both of them are modified with the addition of markers that enable

us to compute their position and orientation inside CAVE2 by leveraging

the camera system; we mapped the buttons of both of them in order to

perform all the actions required by the editor. The main difference is that,

while the Xbox controller allows the use of a greater number of buttons and

joypads, the Playstation Move controller can be used just with one hand.

Since we considered using some features of the editor much more natural by

using only one hand, in the following paragraphs we will decribe only how

interaction is performed through he use of the latter, which we will shortly

call “Wand” controller.

Inside the editor application, the controller is represented by a 3D model

that moves according to the real movements of the device. In addition to

this, pressing buttons on the controller causes the respective buttons on the

3D model to highlight as a simple form of visual feedback. We will start by

the describing the most important function in the editor, which is strictly

related to the pose of the Wand controller: selection. Since the tasks involve

selecting and editing content in an inherently tridimensional space, we relied

on the possibilieties offered by the CAVE2 environment in order to use the

Playstation Move controller as a 3D input device. By pressing and holding

the ‘X’ button, a infinite ray is cast from the front of the Wand in a direction

parallel to the one of the device. Whenever that ray enters in contact with

an object inside the scene, it stops in that point producing a simple particle

effect that shows the user that he is pointing towards a specific object. For

simplicity, from now on we will refer to this ray as “the laser” and we will

call “pointer” its intersection with an object. Thanks to this, the user can

always know which is the direction in space of the controller and can use

it as reference when selecting content or interacting with the user interface.

Our experiments show that without any sort of visual feedback, it is almost

impossible to determine precisely where the controller is pointing at, issue

that is completely solved thanks to the mechanism we just introduced.

The main idea behind the use of this type of controller is to make almost

all actions directly available through its use, in order to have as much as

possible a natural and at the same time fast way to perform tasks. From

these considerations, we defined a minimal user interface system that can be
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activated by pressing specific buttons on the controller. Since the shape of

CAVE2 is circular, normal 2D interfaces would greatly suffer from perspec-

tive and parallax problems. For this reason, we created a resizeable curved

user interface: placed in the 3D virtual space with a distance from the user

that is equal to the one that separates him from the walls of the environ-

ment, the UI is deformed along the Y axis in order to stick perfectly onto the

displays even if the perspective changes. The main menu of the editor can

be activated by pressing quickly the ‘X’ button and is composed of a simple

window that allows the user to select through some dropdowns which type

of content to insert inside the scene. Elements are filtered based on their

type: the user can choose among the different types of virtual objects (2D

images, videos, audio and 3D models) and fiducials (pattern images and

beacon placeholders). By pointing the Wand at the dropdown of the UI

window, the user can select between the available elements by pressing the

‘X’ button; then, a second dropdown is populated dynamically with a list

of predefined content of the chosen type available for being inserted. When

the user points at an element of the user interface, it becomes highlighted

in order to show where he is pointing at, even if he is not pressing the ‘X’

for activating the laser feedback. This is achieved by explicitly defining col-

liders for each UI element and by exploiting the raycasting functionality of

Unity, that allows us to identify which objects are hit when casting a ray in

a direction. After having selected an element to insert into the scene, the

user can simply move the pointer to an “Add” button and then press ‘X’ to

instantiate that particular object in front of himself. In the current imple-

mentation, all the elements that can be added to the scene are predefined

media assets, located in a particular folder of the master node of CAVE2,

where the application loads them dinamically. By themselves, these assets

do not contain any type of additional information more than their size (in

pixels for images or relative units for 3D models) or eventually their anima-

tion properties. For instance, when the user selects the type “3D model”,

the application loads in the second dropdown the list of all available 3D ob-

jects, among which the user may choose “Horse”; after selecting the “Add”

button on the UI, a horse appears in the scene, in front of the user. At this

point it is possible to close the main menu by pressing the ‘O’ button on

the Wand. This operation can be repeated multiple times and there is not

a theorical limit to the number of elements that can be added to the scene.

Another fundamental operation performed through the controller is the

camera movement. Differently from headset-based VR applications, the

camera in the scene does not rotate with the head of the user. In fact, since

the displays cover nearly 320 degrees of field of view, the user can simply
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Figure 4.5: In the image on the left, coloured corners appear around an object to show

that the controller is hovering that particular content, that can now be selected; on the

right, it is possible to observe how the default shader of an object is replaced in order

to show which objects are currently selected.

observe the rest of the scene from the lateral and back screens. However,

there may be cases in which the user would prefer not no rotate his head

and rotate the scene instead (we also need to consider that CAVE2 does

not cover all 360 degrees); at the same time, the enviroment allows limited

space where to move, so a way to move the camera around the scene is

needed. The control of the camera, complimentary to the one performed by

the perspective correction mentioned before, is defined through the joypad

of the controller: moving it left or right rotates the camera along the vertical

axis, while moving it forward or backward allows moving the camera along

the (X,Z) horizontal plane, in the direction which the designer (wearing the

tracked pair of 3D glasses) is looking at . Optionally, with a combination

of buttons, it is also possible to move the camera up and down (in order to

“fly” over the scene) and to increase or decrease the speed of movement.

4.3.2 Objects customization

After having inserted a virtual element inside the scene, the main task to

be accomplished by the designer is to position it in the correct location in

which it has to appear when a user will run his mobile application. In order

to do this, an object first needs to be selected. Selection is performed by

pressing the ‘X’ button on the controller when it is aiming at a particular

object. On top of the feedback provided by the laser, four coloured corners

appear around an object when the user hovers on it with the controller,

in order to show the elements that he is about to select (Figure 4.5, left).

Once the selection button is pressed, the material of that element is replaced

by a shader meant to highlight the object and to make it distinguishable
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Figure 4.6: In the above images it is shown how it is possible to select and edit multiple

objects at the same time: after selecting the three elements (left), performing a scaling

operation produces the result shown in the right image.

from the other ones, as it is possible to see in Figure 4.5, right. At the

same time, a window containing information about the object pops up on

the curved UI: it displays the identifier and the type of the object, its size

in meters (height, width, depth) and its location (latitude and longitude);

two buttons on the UI allow to reset the object rotation and scale and to

delete the object from the scene. In this first implementation, only one

window is displayed on the UI at a time: for instance, if the main menu is

open, the activation of the object details window will make it automatically

disappear. To deselect an object, the user can simply press the ‘O’ button,

that will restore the default shader of the selected element and will make

the details window disappear. As it is possible to observe in Figure 4.6, our

editor application allows selecting and editing multiple elements at the same

time. By remembering that only virtual objects and fiducials are selectable

(it is not currently possible to interact with the 3D reconstruction of the

real-world environment), it is possible to define the following actions to be

performed:

• Horizontal translation: by pressing the 4 arrows present on the Wand

controller, it is possible to move the selected objects along the hori-

zontal (X,Z) plane. In particular, the forward and back arrows move

the object along the direction that connects the center of CAVE2 to

the object, whereas the left and right arrows allow movements in the

perpendicular direction.

• Rotation: combined rotations around the global X and Y axes are

enabled by using respectively the up / down and left / right arrow

buttons.
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• Scale: by pressing the up and down arrows, it is respectively possible

to increase or decrease the local scale of objects, making them bigger

or smaller while maintaining their original proportions.

• Vertical translation: in this mode, it is possible to increase or decrease

the height of selected objects (global Y axis) by pressing the up and

down arrows.

All the operations mentioned above are shown in Figure 4.7. When

a selected object is modified, its information on the details window are

updated real-time to reflect changes, so that the user can decide when to

stop editing.

Since these actions are activated by the same buttons on the controller,

we defined them as four separate editing modes of which only one can be

activated at a time. When one or more elements are selected, it is possible

to cycle through these editing mode by pressing the ’L1’ button. In order to

tell the user which editing mode is currently set, a respective icon is shown

on the UI. During our tests, we also tried putting the selection of the editing

mode on the UI, however it lead to significantly longer operation times with

respect to pressing the ‘L1’ button. In relation to this, we must also consider

that positioning the UI is a critical decision: placing windows too close to

the currently edited content may occlude important areas of work, while

putting it too distant will increase the time needed to reach it with the

controller; at the same time, UI elements should be big enough in order

to be easily selectable, since selecting small objects with the 3D controller

requires the user to have a very high accuracy, increasing the effort needed

to perform these simple tasks. For the above reasons, our general approach,

when possible, prefers natural and quick ways of interaction, leaving the UI

as minimal as possible at the cost of eventually decreasing the learnability

of such actions.

While the actions defined above can be used for very precise modifica-

tions, in general we rely on a much more natural type of interaction, that

leverages the particular shape and one-hand control of the controller we have

chosen to use: when an element is selected, it is possible to press again and

hold the ‘X’ button to grab the object and move it freely around the scene,

like we had it in our hand. The current implementation casts a ray to the

object and registers the point of contact, then makes it child of the Wand

controller object, so that they move along in the same way by maintaing the

distance defined when the ’X’ button was pressed. This way, it is possible

to move the selected object around the scene in the 3 dimensions with a

single movement; at the same time, the user can rotate the object along the
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Figure 4.7: The four basic editing operations are shown in the above images: in the first

one, the object is translated along the forward direction; in the second one (rightmost,

topmost) image, the object is rotated; in the third scaling is applied, increasing the size

of the object; finally, the last one shows an increase in the height of the object.
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direction defined by the raycasting or in more complex ways by orientating

the Wand in space. This possibility of moving almost with no constraints an

object in 3D, allowing complex positioning with single-hand precision and

in a highly natural and learnable way, proved to guarantee the best trade-off

in terms of prototyping speed and accuracy. The main drawbacks of this

method are two: moving an object feely with both translation and rota-

tion enabled could cause unwanted modifications of the orientation of the

object; the intrinsic way of moving the controller around the the CAVE2

environment makes it easy to move objects in the scene by maintaining

their distance from the user, thus preferring circular translations. To ad-

dress these two issues, we introduced the possibility to reset at anytime the

default orientation of objects and the four editing modes mentioned before,

that, despite maybe less intuitive, can be more effectively used for precisely

moving elements in the desired way. Another limitation of the free move-

ment of objects by dragging them around the scene is that, since space in

CAVE2 is limited, it is not possible to directly walk with them in a specified

position. However, by controlling the joypad of the controller with the other

hand, it is possible to combine the movement of the dragged object with the

movement of the camera, thus making it possible to move objects around

the scene even at longer distances.

As we said before, these transformations can be applied both to virtual

objects and to fiducials. Since in some cases their representation may be

undistinguishable and since sometimes they could be not easily spotted in-

side the 3D reconstruction of the environment, we adopted two visualization

techniques in order to allow the user to easily identify them:

• By pressing button ’L2’, all virtual content is highlighted with an

outline effect, whose color depends on the type of content (i.e. virtual

objects are highlighted in white, fiducials in red - Figure 4.8, right).

• We defined a shader that allows virtual elements to be rendered even

if behind other meshes present in the scene, often belonging to the

reconstruction of the 3D environment. This way, the user can always

notice the presence of an object even if hidden behind a wall (Figure

4.8, left).

As a reminder, we remember to the reader that the peculiarity of our

editor application does not consist in simply editing objects in a virtual

scene, but in modifying their real-world appearance when multiple users

will run the mobile application. So every change in the editor is reflected

by a change in how users will see the content with respect to the live video

stream from their mobile device.
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Figure 4.8: On the left, a virtual object is selected and highlighted in green; a panel

with the object details allows some additional editing features, while in the background

a wireframe shader makes an object behind a wall visible to the designer. The figure on

the right shows instead how content is categorized by pressing the ‘L2’ button: virtual

content (not belonging to the environment) is temporarily highlighted in white, while

fiducials are visualized in red.

4.4 Real-time editing

Until now, we have dealt with an off-line approach to editing the elements

characterizing the MR experience: the designer uses the authoring tool to

insert and preview the desired virtual content, a configuration file is created

(according to the protocol defined in Section 4.2.2 ) and mobile clients are

able to visualize the content by loading this specific file. As normally hap-

pens with this type of applications, after the MR scene has been loaded on

the mobile device the designer doesn’t have anymore control over the single

instances of the application, which operate independently. In some cases it

may be useful instead to allow the designer to edit the MR experience at

run-time and to keep track of the running mobile instances: this would allow

the development of dynamic MR applications able to change over time and

to adapt to concrete user behaviors. For example, we could improve at run-

time the position of an object that turns out to be hardly reachable due to

environmental contraints, limiting the accuracy of mobile devices in a par-

ticular area; otherwise we could simply change the disposition of elements

when organizing collaborative MR live events, so that users will see different

content based on external variables such as time, weather and behavior of

the other users. On the other hand, a real-time approach would also open

to new interaction possibilities from the client’s perspective, which include

allowing mobile users to modify the virtual content directly from their de-

vice. In chapter Case studies we will show some other concrete examples of

how real-time editing can be used to improve an MR experience. However,

the system architecture presented earlier does not allow a smooth transition

to a real-time approach. For instance, we could update through the editor
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Figure 4.9: In the above figure, the left image shows a user with one virtual content

that has been added to the the real world, while the middle one represents how that

user is able to see the AR overlay through his mobile phone; in the the image on

the right it is instead possible to observe how the user and the virtual elements are

represented at real-time in our authoring tool, together with a partial reconstruction of

the environment.

the configuration stored on the central server and then make each mobile

application do a request every few seconds in order to check if something has

been modified in the meantime. This method, with a larger number of users,

would create a massive number of requests to the server with a big useless

overhead; in addition to this, it would not be able to render movements

smoothly ad in some cases, if modifications happen very quickly, it wouldn’t

even be able to show transitions at all. Some small improvements could be

done by timestamping modifications to the single elements and updating

clients only when a modification is performed, but a dedicated networking

architecture is required in order to guarantee solid performances. We note

that, while we previously defined a way for mobile devices to operate off-line,

by enabling real-time features mobile connectivity becomes required on all

devices.

4.4.1 System architecture

The necessity of having a networking system able to operate real-time mod-

ifications to the MR experience involves configuring a lower level infrastruc-

ture for serializing data, sending and receiving network messages, commands

and events - all by maintaining an acceptable delay between the operations

on the virtual content and their modified rendering on all other devices. To

implement these features, we relied on the HLAPI [93] service offered by

Unity, which greatly simplifies communication between devices, taking care

of all basic networking services.

In the new system architecture we propose, we do not use anymore an

external server for storing the MR configuration, but we leverage directly

the master node of CAVE2 as both editor and server. All client mobile

applications, at startup, will have to connect to the master node through a
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dedicated IP address and port. While mobile devices, depending on the type

of connectivity (e.g. Wi-Fi or cellular) and eventually the phone carrier, may

result connected to private networks, CAVE2 has its own public IP address

and thus does not require NAT traversal or proxy servers for establishing

and maintaining internet connectivity: this simplifies noticeably incoming

connections and makes CAVE2 a good candidate for acting as a server.

One first main difference with the previous off-line approach, is that the

information about the MR scene is not stored anymore in a configuration

file that clients need to download and interpret. Now every virtual content

defined in the editor and meant to appear on the mobile application is

characterized by a network identity. When a client connects to the server,

this instantiates automatically on the mobile device all elements having a

network identity, placing them with the correct position and orientation in

space. The virtual scene built inside the editor acts indeed as a reference

for all other instances of the same MR experience. By leveraging Unity’s

network transform component and the use of syncronized variables, when

a content is modified inside the editor all changes are propagated to the

clients, which will be able to see them with very low latency (¡ 40 ms in all

our tests, with both WiFi and mobile connectivity).

Figure 4.10: Second and final version of our system architecture: the master node of

CAVE2 now acts as a server and maintains the networked state of the MR application;

both mobile devices and the other CAVE2 nodes act as clients of the master node. In

the Unity networking diagram on the right [94], it is possible to observe how commands

are used by the clients to update the state of the server, while techniques such as

spawning, RPC calls and synchronized variables are used in order to keep consistency

on the clients.

We want to note that the CAVE2 cluster is composed of 37 computers,

of which exclusively one (the master node) acts as a server: otherwise every

obile device would have to keep 36 open connections to all the nodes of the
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cluster, which is inconceivable. This means that the nodes of the cluster do

not run anymore the same instance of the editor application, since the slave

nodes will not apply the server logic. From this point of view, these 36 nodes

now act themselves as “clients” of the master node, which in some cases will

need to update them manually through RPC calls in order to maintain

consistency. Let’s consider two cases: when some edits are operated from

the editor and when eventual modifications are allowed to be performed by

mobile clients. In the former case, the insertion, modification or deletion of

content inside the editor scene is performed identically on all nodes, since

the input of the wand controller is connected to all of them; however, only

the master node will take care of sending updates to the mobile clients. In

the latter case, a modification on a client will notify the server running on

the master node, that will update the editor scene correspondingly and then

forward these changes to the other instances of the mobile application; at

this point, the state of the networked scene will not be consistent inside

CAVE2, since only the master node will have the updated version of the

content and thus the modifications will not be rendered on the 72 displays

controlled by the remaining nodes of the cluster. To solve this issue, the

master node needs to manually update the properties of networked items on

all the other nodes: this can simply achieved by keeping a data structure

with the list of virtual content and update it on all the cluster to RPC calls.

In this sense, if modifications to the content are performed from external

applications, the master node will now have to maintain consistency both

on mobile clients and on local nodes of the cluster.

4.5 A portal between the two worlds

Real-time editing of a MR experience can be very useful to adjust content

and to correct design choices, but leads also to many more interesting ap-

plications. Until now, in our editor we have defined three types of visible

content: virtual objects, fiducials and the non-interactive 3D reconstruction

of the environment, aimed at guiding the designer during content definition

and modification. Trying to consider mixed reality from a different perspec-

tive, a very important type of content is still missing: mobile users. By

enabling real-time capabilities of the editor application, we also opened the

possibility to visualize and potentially interact with users while the run our

mobile MR experience. This would allow many advantages for the designer,

among which:

• Knowing the position of users at run-time, in order to study their
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behavior and modify future design decisions accordingly.

• Correcting the displacement of content if users appear not to be able

to reach it due to environmental contraints.

• Preview the user mixed reality perspective directly from the editor,

without the need of observing phisically each single person during the

use of the mobile application.

• Testing the MR experience before public deployment, with the possi-

bility to collect a larger amount of user data and to debug selectively

the entire MR solution.

• Experimenting new ways of interaction between the mobile users and

the people staying in the CAVE2 environment, creating a sort of “por-

tal” interconnecting the designers and the people in the outer world.

4.5.1 Representing users

We wil start our discussion by first considering how users can be represented

inside the editor application. Thanks to the information gathered through

our mobile aplication, we are able to know the geolocation (latitude and

longitude), estimated horizontal accuracy and mobile device orientation in

space of a user. On top of this, we are also able to know the field of view of

the mobile camera and other statistical information about the device itself.

Unfortunately, we are not able to determine other parameters such as the

height or the shape of his body nor the position of the joints. Overall, by

considering the horizontal position on the (X,Z) plane and the 3D orientation

of the device, we have a total of 5 degrees of freedom. Since this is actually

the information we need for our purposes and for now we are not interested

in a realistic representation of users, a simply yet efficient way to render

them in the editor application is to use avatars.

In our editor an avatar is instantiated each time a user connects auto-

matically to the server when starting the mobile application. The avatar is

set to have human-like proportions and default height of 170 centimenters.

Its position in space is based on the geolocation estimated by the mobile

application and is computed by using the same map projections explained

in Chapter 3, section Mapping the two worlds. Since smoothing and filtering

are already performed on the mobile application, in the editor we can sim-

ply use the already pre-computed values. Not modifying original values has

also the objective of seeing exactly the same behavior of the mobile applica-

tion, in order to notice eventual incoherences and eventually take the needed



74 Authoring Tool

countermeasures. Currently, the avatar is characterized by two animations:

standing and walking, activated depending on the variation of position over

time. It is very important to take into account the horizontal accuracy of

the position of the avatar: is it probable that the user will not be in the

same exact position indicated by the avatar, since, as we showed in Chapter

3, many factors may influence the camera pose estimation. To address this

problem, we defined for each avatar an area which indicates what is the

“probable” location of the user: a red circle between the ground and the

feet of the avatar has a diameter corresponding to the estimated horizontal

accuracy of the mobile device. This way, we can expect the real position of

the user to be anywhere inside the highlighted area, in order to have a re-

alistic and quantitative image of the accuracy of the overall MR experience

for that specific user. Another very important aspect of the avatar repre-

sentation resides in mapping the device orientation in space to the rotation

of the head of the avatar. In the real world case, the device of the user can

be both moved and rotated in space, passing from situations in which it

stays in the pocket of the user to others in which it is kept in front of the

user’s eyes (when concretely using the application) or simply kept in hand

along the side of his body (when the application is inactive or the person is

resting). Since we are mostly interested in the moments in which the device

is held for a continuous use in front of the user’s eyes, with some approxi-

mation we decided to map its orientation to the head of the avatar, rotating

it correspondingly. The hardware mobile camera is indeed represented in

our application with a virtual camera placed orthogonally to the eyes of the

avatar, with a field of view that matches the real one. While the rotation of

the head is defined by the pose estimated by the mobile camera, a possible

question involves the orientation along the vertical axis of the avatar itself:

should it rotate togheter with the head, by keeping only the rotation on

the Y axis, or rotate independently? In real life, the user may rotate the

device up to a certain angle before actually rotating his body and moving

his legs. Since our main interest is the rotation of the head of the avatar,

this may appear as a secundary issue, especially considering we do not have

a precise way to estimate the rotation of the body with respect to the head.

However, in order to make the movements of the avatar realistic, we applied

the unmodified estimated pose of the camera to the head, and rotated the

body by applying a smoothing factor to the head rotation along the vertical

axis: this way, the avatar will first move its head with real-time rotations

and, after a certain amount of time, slowly rotate its body to match the

orientation of the head.

As a final result, in the editor we will have one avatar for each person
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currently using our mobile application, where the head of the avatar is placed

and oriented according to the estimated camera pose of the mobile device.

For instance, if a user moves the device up in order to see a far building, we

will see the head of its corresponding avatar rotate up at real-time with the

same angle; if a user spots an object to his left and tries to get closer to it, we

will be able to observe its avatar turning left and walking towards the virtual

content. By considering the accuracy area highlighted below the avatar, we

are able to take into account which may be the possible real position of the

user and at the same time know exactly the position according to which the

content the user sees is rendered. For instance, even if we don’t know very

precisely the real location of a user, by seeing in the editor its estimated

position we can eventually move content towards the user if we realize he is

not able to reach it: in fact, the content is rendered by the mobile application

based on the estimated pose of the camera, not the real one.

For what it concerns our networking implementation, the master node of

CAVE2 takes care of handling the incoming connections from mobile users

and creates an avatar for each of them, keeping a centralized list of connected

users. Instead of using Unity’s default NetworkManager, we preferred to

implement ourselves a customized network solution on top of the HLAPI

offered by the engine: this way, we are able to track with more precision

each networked event, spawn avatars on client nodes and update their state

(otherwise they would be shown only on the master node but not in CAVE2)

and handle specific actions that go beyond the functionalities offered by

Unity’s ready-made solution.

4.5.2 Visualizing user data

Inside the editor application it is possible to select avatars with the Wand

controller in the same way this operation is performed with normal virtual

elements; however, since the size of avatars is fixed and their position is

controlled by the devices running our mobile application, customization fea-

tures are disabled for avatars. In place of those functionalities, it is possible

to performs more actions that are specific for visualizing users’ data and

interacting with them.

When selecting an avatar, its shader is replaced in order to highlight it

like with virtual content, but a wireframe camera frustum is also represented

in front of the eyes of the avatar, allowing a more precise visualization of the

orientation of the related user’s device. The details window that appears

on the graphical user interface shows the the geolocation of the user with

latitude and longitude coordinates and some useful information information
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involving the user’s device:

• Its model, operative system and screen resolution.

• The field of view and resolution of the mobile camera.

• The estimated horizontal accuracy of the device.

• The framerate of the rendering and tracking threads running on the

device processor.

• The types of tracking currently used for determining the position and

orientation of the device.

By taking into account this information, the designer can collect statistical

data and make considerations about the technology currently used by the

people running the mobile application, eventually taking some runtime de-

cisions on the displacement of content. For example, the designer can easily

detect if users are trying to run the application with a non fully compatible

device or if one of the tracking methods is not working properly.

4.5.3 Assuming the user’s perspective

By knowing the absolute position and orientation of the user’s device in the

real world and by leveraging our recontruction of the environment, we are

able to preview what a user is seeing according to the tracking performed

by his smartphone. The idea is that we simply put a virtual camera in cor-

respondence of the eyes of an avatar and we make its parameters (i.e. the

field of view) correspond to the ones of the real camera. This way, without

any difficult computation, we easily obtain a dynamic 2D texture containing

what we expect the user to see on his mobile display according to the best

of our knowledge. In particular, this texture will contain only the elements

visible inside the editor application, which means that only the augmented

content and the reconstruction of the environment will be shown, not the ac-

tual video stream from the camera. This feature allows us to know real-time

what the user is looking at, but is dependent on the tracking performed on

the mobile device and is accurate in relation to the quality of our environ-

ment reconstruction. For instance, an unstable horizontal accuracy of the

GPS signal could cause our preview to be completely inaccurate, whereas

environmental modifications with respect to the model in the editor could

never be represented (e.g. weather conditions, a new building, the passing

of vehicles, the presence of unexpected obstacles in the real world). For this

reason, in order to provide a visual comparison between what the player
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Figure 4.11: In the upper image, the user in the real world is seeing the augmented

content through his mobile device; in the lower image, the designer is able to observe

in real-time from the editor application what that specific user is seeing. In particular,

the red area below the avatar represents the estimated horizontal accuracy of the user,

while in the panel on the left some information about his mobile device are displayed.

The right panel shows instead a comparison between two views: the upper one is the

expected perspective of the user, while the lower one is represented by a video streaming

of what he is actually seeing.



78 Authoring Tool

sees and what we expect him or her to see, we provide also a simple form of

image streaming between the mobile devices and our editor application.

When an avatar is selected, a window shows in two separate views both

what the user is seeing according to the position of his avatar in the editor

application and, on request, the live video stream from his or her mobile

device, including the augmented content from his or her perspective. Since,

due to accuracy errors, content is rendered on the device according to the

estimated position and orientation of a user, comparing these two views

allows the designer to immediately understand if the user is perceiving the

virtual content in the correct way and to eventually adjust the location of

objects inside the scene. Having the possibility to activate the live video feed

from the mobile camera makes it possible to identify external elements that

are not modeled inside the virtual environment, such as weather conditions,

passing of people or cars, environment modifications— elements that may

significantly affect the AR experience. In Figure 4.11 (right), it is possible

to observe how the two views are located inside the GUI: the upper one

renders how the user is expected two see a statue considering the estimated

position of his device, while the lower one reflects how the user concretely

sees the augmented content. Video streaming has currently been tested only

on a LG G3 device with a framerate of 10 FPS, wich we consider a good

compromise in order not to use too many additional resources on the mobile

device - especially regarding the data network; video streaming is in fact

disabled by default and should be activated only when required.

In order to enable more accurate debugging of the overall AR experience,

once an avatar is selected, it is also possible to activate what we called

“user perspective” mode: the camera rendering the scene inside the editor

application is placed in the position of the avatar and follows its movements,

in order to simulate a first person view of the mobile application from the

user’s perspective. Since the CAVE2 is characterized by a cylindrical shape,

it is not so straightforward to represent the limited field of view of a mobile

camera. Aiming at addressing this problem, we propose the solution of

creating a “mask” whose size is proportionally related to the field of view

of the device (Figure 4.12). All the content outside this mask is slightly

darkened in order highlight only what the player is currently seeing.

Another decision involves how to render the mask when a user is rotating

his or her device. A first option is keep the mask fixed in the central screens

of CAVE2 and rotate the surrounding scene according to the orientation in

space of the device. An alternative is to leave the scene as it is and move

the mask on different screens. The former solution has the advantage of

leaving the point of interest fixed in front of the designer, but can possibly
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Figure 4.12: By defining a mask proportional to the field of view of the mobile device

camera of a user, it is possible to simulate inside CAVE2 a first-person perspective of

what he sees.

create unpleasant rotations of the content rendered on all the other screens,

especially in case of fast orientation changes; the latter requires instead the

designer to follow the movements of the mask with his head, but has the

advantage of not modifying the content rendered on the screens and could

potentially by extended to the selection of multiple users. Overall, for our

implementation in CAVE2, we preferred to keep the former option as we

consider its “first-person” perspective a more natural way to impersonate a

user. A last possible solution is based on implementing the editor as an HMD

application, leveraging the inherently first-person view of this technology:

we will briefly explain this alternative implementation at the end of this

chapter.

4.5.4 Physical participation of the designer

In the previous subsection we explored many possibilities for putting the

designer in the perspective of the users of the mobile application and we

focused on how to visualize inside our editor application elements belonging

to the outer world. An interesting possibility is to consider also the inverse

relationship: what if elements inside CAVE2 could be rendered in the real

world? In particular, the camera tracking system and the Kinect v2 sensor
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of CAVE2 allow us to track the movements of the people inside the envi-

ronement, allowing to recreate virtually their movements through motion

capture. With an accuracy slightly dependent on the implementation tech-

nology (camera system vs Kinect), we are able to digitalize the designer and

the eventual other people as animated avatars, that can be inserted into the

mixed reality scene as virtual content. For instance, by using the Kinect

sensor, we can track up to 6 people inside CAVE2, determining at real-time

the position and rotation in space of a maximum of 29 body joints for each

person. While the camera system of CAVE2 allows a much more precise

tracking, it requires people inside the environment to wear markers on the

joints of their body, which is often less practical unless there are specific

requirements of accuracy. By allowing the designer to place these avatars at

a specific location in the editor, these people appear at the corresponding

real-world position on the screen of mobile users. For instance, the designer

can insert himself next to a user and give him physical indications on how to

reach a nearby virtual object; another example, involving Chicago 0,0, could

be related to enabling remote touristic guidance to users in the city, without

needing a guide to go phisically onsite for this task. In brief, it is possible

to project a person into whichever desired part of the world and make him

appear as a contextualized avatar onto the mobile MR application of the

users in that location. While the position of the avatar is determined by

the position of the camera rendering the editor and the pose of the avatar

joints is given by the tracking performed by the Kinect, the audio is se-

lectively streamed to nearby users from the Kinect’s built-in microphone.

The current state of this feature is still under development and will not be

evaluated in the case studies presented in Chapter 5, however our current

implementation already demonstrated its feasibility by projecting four peo-

ple inside CAVE2 on the screen of a mobile device located outdoors in front

of the EVL laboratory. In this case we preferred the use of the Kinect due

to the above mentioned reasons: an average of 20 + 20 joint rotations and

positions per tracked person is collected at 30 FPS by the master node of

CAVE2, allowing the computation of the required inverse kinematics and

a smooth representation of the avatars within the editor; the refresh rate

with which avatar movements are propagated to the client application is

currently 15 FPS.

4.6 Alternative implementations

Since not everybody can afford to develop an editor application in a CAVE2

environment, we also tried to explore more scalable implementations of our
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authoring tool with slightly different features. We will now list some of

them, discussing the pros and cons of which implementation with respect to

the previously presented one.

4.6.1 Head Mounted Displays

Basically, this implementation uses the same virtual scene that we presented

for CAVE2, but relies on slightly different user interfaces. The designer,

instead of walking inside a hybrid environment, wears an HMD display (in

our case, we used an HTC Vive [40]) and is completely immersed inside the

3D representation of the real world, to which virtual objects are added. Both

the features available and the user interface are the same, since, similarly to

the shape of CAVE2, the head rotation is performed along a circular path.

One first main difference is that in this case the user of the editor application

needs to stand or seat in a fixed position for eventually prolonged time, thus

sometimes leading to fatigue and eye strain due to the excessive use of the

HMD display. For what it concerns interfacing with the application, HTC

Vive provides two controllers that are very similar to the Wand we used in

CAVE2: with a simple mapping of the available features, it was very easy to

port the activation of many actions from one type of controller to the other

one; despite the new touchpad can naturally substitute the joypad of the

Wand, HTC Vive’s input devices present less buttons with respect to the

Playstation Move controller, so we preferred to deal with this limitation by

enabling the use of both the controllers available with the VIVE (i.e. one

controller is mostly related to moving the camera, the other one is used for

customizing content). Instead, a great advantage of this implementation is

that, differently from CAVE2, it allows to have a full spherical environment,

thus including also the floor and the sky; on top of this, when enabling the

perspective of a mobile application user, the HMD is more suited to simulate

his first-person point of view.

4.6.2 Unity Editor extension

This is probably the simplest and cheapest implementation, that we used in

the early phases of the development of the two applications Chicago 0,0 and

DigitalQuest. It leverages the use of Google Maps [34] and can be performed

directly inside Unity Editor, without requiring a complete 3D reconstruction

of the environment 5.2. In this implementation we defined two different

views: a User mode, a 1:1 scaled simulation where we can preview what the

user would be able to see from a particular perspective, and a Map mode,

a 1:100 scaled map representation with a 3D perspective top-view of the
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previous mode. A more detailed description of this environment will be

provided in Section 5.2.2 in relation to the development of Chicago 0,0.

4.6.3 Mobile editor

This prototypal implementation is complimentary to the Unity Editor one

and provides the possibility to adjust the positioning of content by going

onsite and testing overlays directly on top of a live camera feed. In brief,

it consists in a modified version of the client application we normally used

for viewing augmented content: the idea is that, after defining the posi-

tion of virtual content through one of the other editor implementations, the

designer can go onsite to check if content appears in the correct locations.

With the help of an auxiliary map and some additional controls, the de-

signer can modify with simple gestures the position, orientation and scale of

each virtual object, trying to align them with the current views of the real

world. The main difference with the other implementations is in fact that

the Mobile editor is conceived as a helper tool, aimed at “correcting” onsite

eventually imprecise content definitions previously made with the remote

editor; this feature is mostly achieved thanks to the video see-through capa-

bility of smarthphone devices, allowing us to match real video footage and

synthetic virtual elements. When a modification is performed, the Mobile

editor simply updates the configuration file related to the MR experience.

However, as we explained in Section 2.7, “editing MR from within MR” may

suffer from imprecise tracking, so that testing the application in a different

situation or with a different device may not guarantee the same results.

4.6.4 Web-based editor

An alternative idea aimed at creating a very scalable tool is to implement it

as a web application, so that it could be used remotely and be accessible by

everyone through a simple web browser. The key concept of this prototypal

editor is to leverage the huge imagery dataset provided by Google Street

View [36] in order to build a tool that allows the placement of virtual content

in 3D inside widely available spherical panoramas, combined with a partial

reconstruction of the environment based on depth maps.

The implementation is based on the WebGL [64] wrapper THREE.js [89],

used in combination with Google’s imagery to avoid the necessity to obtain

3D models of the environment. Currently, the designer is prompted to input

an address or to select a location from Google Maps, and then the editor

loads the closest Google Street View panoramic image, if available. By

leveraging WebGL and Google APIs, the imagery is projected onto a sphere



Authoring Tool 83

Figure 4.13: Implementing a web-based editor by leveraging Google Street View im-

agery. In the figure above it is possible to observe a sample panoramic image (top)

and its relative computed depth map (middle). The depth information is used to allow

a more precise positioning of the virtual objects in the real world (bottom), which can

simply be dragged into the scene and then moved, scaled or rotated.
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in order to obtain a spherical panorama viewer. The user can then drag

and drop the virtual object into the scene in order to preview how the

augmentation will look like when running on the mobile application. In

order to place objects inside the spherical projection, we need to retrieve

the depth map corresponding to the current panorama in order to determine

distances and permitted positions. The Google Maps REST API provides

functionality to download a compressed JSON representation of the depth

image, which contains the distance from the camera to the nearest surface

at each pixel of the panorama. We obtain a grid of pixels after decoding

the image from Base64 and converting it to a more suitable data structure.

Each of the pixels in this grid corresponds to one of several planes, defined

by its normal vector and its distance to the camera. Therefore, in order to

calculate the depth at each pixel we have to determine the intersection point

of a ray starting at the center of the camera and the plane corresponding

to the pixel. Iterating for all the planes, we can then populate our depth

map which will have a representation similar to the one in Figure 4.13. By

considering the correspondence between the points in the 2D texture and

the points projected on the sphere, we can calculate the 3D position of the

objects (e.g. the walls of the buildings) that are present in the panoramic

image. We can then restrict the positions that are available for the virtual

object to placed at. By mapping the 3D scene distances with the real world

ones in a similar way to the one we presented for our CAVE2 editor, we can

obtain the absolute coordinates, orientation, and dimensions of the object

as if it were a real object. This information can then be stored on the server

and loaded by users on the mobile application.

4.7 Final considerations

In this section we have showed how our authoring tool can be used to cre-

ate and customize an AR experience in an easy and precise way and we

have then introduced how adding real-time features to the customization of

content allows us many additional interaction possibilities, especially with

respect to the users. In particular, we believe that many of the advantages

involving real-time applications lie around the possibilities of interaction of

users among themselves and with the people eventually coordinating the

AR experience from CAVE2. For instance we can identify the following use

cases:

• It is very common for virtual content not to be rendered as the designer

originally expected due to many reasons, mostly related to the low
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accuracy of mobile sensors and to changes in the environment. In this

case, users can notify this problem and at the same time the designer

can verify the possible motivations by analyzing what the user is seeing

and the statistics gathered from his device. This way, the designer

can operate adjustments to the location of virtual content taking in

consideration the current environmental situation and the state of the

mobile device; alternatively, by considering the live stream video, he

can provide guidance and assistance to the user in completing a task

or visualizing content correctly.

• A real-time implementation allows even users themselves to customize

the environment, by adding and moving their own content and make

this changes reflect on the instance of the application run by other

users. Some examples could involve picking up virtual items at a

certain location or replacing them, trading objects, activating events

for collaborative tasks or implementing videogame-based features like

shooting virtual bullets.

• Interesting possible applications involve the monitoring of users’ be-

haviour and the centralized control of activities. For example, we may

consider directing from CAVE2 independent or collaborative tasks,

that are assigned to multiple teams of people. The possibility to con-

trol all users at the same time from a single location makes it possible

to direct and study how they “perform specific missions”.

• In Chapter 5 we will briefly discuss the possibility of of providing re-

motely onsite assistance by rendering the body of the designer directly

on the users’ mobile device as augmented content; similar applications

could include the introduction of intelligent “helping avatars”, con-

trolled by AI and aimed at helping people during their tasks.

• Ultimately, a real-time implementation allows the presence of dynamic

content and animations: virtual content can be moved under certain

narrative circumstances or to force users to follow its movements; ele-

ments such as NPCs, animals and virtual creatures can be added and

act with their own logic, moving closer to users or interacting with

them, while keeping consistency on all devices at the same time.
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Chapter 5

Case Studies

This chapter is aimed at presenting to the reader some real-world examples

to which our approach can be applied, in order to show more clearly its

advantages with respect to traditional methods. In addition to this, we will

show how our editor application can be used to greatly improve the design

and creation of MR experiences and how our protocol can be extended in

order to suit different needs. We will ultimately provide quantitative data

and discuss the feasability of building accurate MR applications with the

currently available technologies. In particular, we will present two different

mobile applications developed with our approach, Chicago 0,0 and Digi-

talQuest. Despite based on the same method, these two applications have

very different characteristics:

• Chicago 0,0 is aimed at presenting historical photographs of the city

of Chicago in an urban environment, characterized by low sensors ac-

curacy and thus requiring the use of fiducials. The virtual content that

need to be shown is composed of bidimensional transparencies, that

need to be located in 3D space in order to make them overlap with

particular views of the city.

• DigitalQuest is a collaborative videogame intended for organizing events,

providing a digital version of the classical scavenger hunts. The vir-

tual content associated to this application involves mostly 3D content,

which does not need to have an extremely precise registration in space

but requires the definition of custom behaviors associated to it, accord-

ing to different in-game variables that need to be taken into account.

Differently from Chicago 0,0, DigitalQuest is mostly intended for out-

door open spaces where mobile sensors are more accurate.

For each of these two applications, we will provide a brief background,
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presenting eventual previous works and stating what are the specific ad-

vantages of applying our approach to that context. In particular, we will

highlight the significant implementation details that describe how our ap-

proach has been adapted to the different situations. We will also provide

some data gathered during sample executions of both applications, in order

to allow space for a short discussion on the advantages and limitations of our

method. Specifically, Sections 5.2 and 5.3 will be focused on our standard

dual-camera approach, while Section 5.4 will explore the additional advan-

tages achievable through the use of the SLAMCamera. Before starting with

the presentation of Chicago 0,0, in the next section we will quickly describe

how we approached the measurement and analisys of the quantitative data

we used for our discussion.

5.1 Measurements and feasability

In order to being able to produce useful data to be used in our evalutations,

we slightly modified the normal implementation of our two mobile applica-

tions, allowing the debug of raw values gathered from mobile sensors and at

the same time storing the values computed by our algorithm. By adding the

possibility to see on an optional map the position and orientation in space of

helper cameras and virtual content, we are also able to see directly, during

the execution of the application, how well our approach is performing; with

a simple in-app tool we created, we can ultimately compute real-world dis-

tances between elements inside the scene, specifying manually positions and

rotations on the map in order to make the difference between actual and es-

timated values explicit. Most of our measurements are expressed in meters,

with a resolution of 0.1m, or in degrees, with a resolution of 1◦; despite we

could potentially use more precise values, we believe resolutions lower to the

ones we provide would be meaningless with respect to the accuracy of our

measurement tools.

For what concerns the mobile application, we gathered the following

main types of data, which we considered relevant in order to discuss the

performance of our approach:

• Estimated GPS error (egpsest), calculated as half of the horizontal ac-

curacy (in meters) estimated natively by the device, based on the

combination of GPS, cellular and Wi-Fi signals. In our experiments,

the device was set in order to request the best accuracy achievable

through these technologies, given the environmental limitations.

• Real GPS error (egpsreal), computed as the distance in meters between



Case Studies 89

the GPS position estimated by the device and the real position of the

device, manually specified through an interactive map we introduced

in our application for debug purposes.

• Location error (eloc), representing the distance in meters between the

position computed with our apporach and the real position of the

device.

• Compass orientation error (ecomp), providing the angular difference

on the vertical axis between the orientation provided by the compass

sensor and the vector connecting the device and the position of the

current virtual object. Optimally, it should tend to zero when the

device is perfectly aligned towards the center of the virtual content.

• Orientation error (eor), very similar to the compass orientation error,

but referred to the direction computed through our approach and not

by the compass.

• Fiducial, stating if pattern-based tracking was performed in order to

compute the values of eloc and eor and, in case, with which type of

fiducial.

• SLAM, stating if the SLAMCamera was added to our standard dual-

camera approach, affecting the estimation of the values eloc and eor.

During the estimation of the position and orientation of the device cam-

era, our goal is to minimize the two errors eloc and eor, based on the values

computed by our approach. Since we cannot improve the available hard-

ware technology, it is impossible to bring the estimation error to zero, but

we can still use the raw values computed by the single mobile sensors as a

rough comparison. On top of this, it is fundamental to consider that our

approach does not aim at improving already existing localization or track-

ing technologies, but tries to combine them in novel ways to enable a wider

range of possibilities both for the user and the designer. So, the experiments

proposed in this chapter will represent more a feasibility study than an at-

tempt to enhance other techniques, and will be accompanied by substantial

discussion parts.

A different method was used to evaluate the usefulness of our editor

application. In this case, taking into account accuracy measurements related

to a specific mobile device would be meaningless, so we decided to apply

more abstract criterias to our authoring tool. In particular, we focused

on the task of inserting and placing virtual content through the following

definitions:
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• Insertion time, referring to the time (in seconds) that was required to

the user to insert and position a virtual object in a desired position.

• Acceptable overlay is represented by a binary value (‘yes’ or ‘no’) in-

dicating if, excluding accuracy errors related to the mobile device, the

virtual content concretely appeared in the specified real-world loca-

tion.

• Should be improved is a binary value related to the optimal position

in space that could be chosen for placing virtual content, considering

the acceptable locations around the originally conceived location. In

brief, this measure indicates if, through the editor, it was possible to

“improve” the position of an object beyond what the user decided in

mind at first: a “yes” value means that the real-world location ob-

tained is not satisfactory enough, while a “no” shows that the location

could not be improved more than this.

• Type of content, indicating the nature of the content to be inserted

(e.g. bidimensional image, 3D mesh, ...), since there may be cases in

which positioning particular virtual objects requires more effort than

dealing with other ones.

Regarding the above definitions, unfortunately there are not authoring

tools that could be directly compared to our editor application. For this

reason, we will have to compare it to what we define “manual insertion” of

virtual content, a concept that slighty changes depending on the context of

the application and that we will have to redefine each time before presenting

the results of our experiments.

We would like to precise that the author of this document, who can

be considered an experienced user of the the system, is the only person

who has been tested in order to collect performance data about the Editor

application. He is also the one in charge of deciding if a virtual content

is perceived in the correct position, according to how much that specific

content is aligned with the established narrative (e.g. some objects may

require to be in very precise positions, while the location accuracy of others is

meaningless to the MR experience). Due to the complexity and subjectivity

of the evaluation method for the Editor application, motivated by the novelty

of our tool and by the absence of similar systems, we reserve ourselves right

to modify this approach in the future.

Ultimately, we want to note that the values defined in this section may be

possibly measured in a slightly different way in the two applications: where
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necessary, further details will be specified to explain our choices. Other

significant measures, like the network performance for the real-time editing

feature, won’t be analyzed in this chapter: since they are specific of our

approach and do not change in the two applications here proposed, they

have already been discussed in their respective sections in Chapters 3 and

4.

5.2 Chicago 0,0

The Chicago 0,0 Riverwalk AR experience provides a novel, interactive way

for users to explore historical photographs sourced from museum archives.

As users walk along the Chicago River, they are instructed to use their

smartphone or tablet to view these photographs alongside he current views

of the city. By matching location and view orientation the Riverwalk appli-

cation creates an illusion of “then and now” co-extant. This superimposition

of the historical photographer’s view and the user view is the basis of ed-

ucational engagement for the user and a key factor in curating the images

and the narrative surrounding them, facilitating a meaningful museum ex-

perience in a public, outdoor context.

As such, creating the AR experience involves a complex back-and-forth

between 3D and 2D experiences of locations: the historical images are 2D,

taken from specific locations through specific optics and views; the user,

present at the real-world 3D location is orienting their own camera and

2D phone video screen in space in order to achieve the AR experience and

illusion; and the ultimate experience of superimposition is one of seeing

two integrated views simultaneously — the stream of data taken from a

smartphone’s camera and the historic image. The site-specific nature of the

publication makes it necessary to utilize a virtual 3D environment in which

to place 2D augmented content that enhances the experience. This content

needs to be placed in such a way so that the designer can accurately visualize

what the user will see on screen from a particular location.

The first episode of the Riverwalk AR experience focuses on a single

block between N. LaSalle and Clark Streets; the site of the Eastland Dis-

aster in 1915. The site was selected because of the importance of this his-

torical event — the sinking of the Eastland cruise ship 100 years ago was

the largest single loss of life in Chicago’s history — and because of the

abundant media available in the archive including extensive photographic

documentation, newspapers and film reels. Moreover, the site potentially

offers natural wayfinding characteristics that are amenable to developing

our project, including a newly built pedestrian walkway along the river with
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Figure 5.1: Chicago 0,0 is a mobile application aimed at presenting 2D media content

from archives of historical media through the use of augmented reality.

viewing platforms, views from pedestrian walks along the bridges, and his-

torical markers. Additionally, the urban environment offers many features

providing sufficient quality for robustly tracking user location based on their

cameras from a variety of views and positions. This is a typical scenario in

the creation of public outdoor AR experiences; the quality of content and

narrative are the primary motivations for their creation.

There is only one major architectural site that is available from all van-

tage points along the Riverwalk, the Reid, Murdoch & Company building

on the north side of the river (a historic building that is also featured in

the archival photographs of the disaster). However, there are also smaller

tracking-adequate features along the site — mainly signage as well as more

distant buildings that could be used for tracking from a more limited number

of views. Inversely, the archival photography was captured from a variety

of angles: from the riverside, from the bridges, from boats on the river. In

order to match rich historical imagery with a user’s current orientation, a

form of “extended tracking” is necessary and is part of both the design of

the primary Riverwalk experience as well as the in-app user guidance in

which users are directed to obtain and calibrate tracking by pointing their

cameras at the Reid, Murdoch & Company building.

Tracking performed by the ARCamera is extended beyond views of this



Case Studies 93

Figure 5.2: Two sample photos from the historical archive superimposed on the live

camera stream. In order to create an appealing augmented reality effect, the two photos

need to appear aligned with specific environmental features (in this example, the edge

of the river) and need to be seen by the user from a particular point of view. On the

left, the half-sunken ship, the Eastland, can be seen placed accurately in the river the

exact location it sunk 100 years ago.

one building by exploiting the SensorCamera introduced by our approach.

The two virtual cameras need to calibrate and intelligently turn on and off

depending on the users situation and the content available for augmentation.

Though existing platforms, like Vuforia, include extended tracking behavior,

our method is able to create a more robust extended tracking technique

that can be used in an “always on”, mode suitable for public outdoor AR

situation. In addition, because of its real-world application for a specific site

and experience, we want to enable customization of the tracking behavior

based on known variables and constraints for each specific site.

Below we will present how we applied our approach to developing a mo-

bile augmented reality system that incorporates 2D historical photographs,

analyzing how domain-specific considerations can be used to improve both

the tracking and the user experience. We will also show how our author-

ing tool is fundamental for easily geolocating content in this type of public

outdoor projects.

5.2.1 Background and contribution

Available public platforms for image-based AR — such as Layar [47], Daqri [20],

Aurasma [10], Vuforia [96], and ARToolkit [8] — focus on robust image

tracking for 2D features, and generally work well for print publishing and

advertising campaigns that incorporate AR components. Research in natu-

ral feature detection for 3D space, and particularly architecture, has focused

on surveillance and military applications [41]. Though museums, city arts

councils, and tourist boards are interested in creating public AR exhibitions
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within the urban landscape, there does not yet exist a platform optimized

for the challenges that are presented by public outdoor contexts in urban

environments.

Despite previous works that utilize location-based augmented reality

with the support of mobile sensors (such as the Andy Warhol Museum’s Geo

Layer and the Museum of London’s Street Museum, both of which highlight

geolocated media archives within the urban community), in our case the need

for accuracy prevents us from relying solely on GPS and mobile sensors for

positioning content. The desired illusion is inherently about matching and

alignment rough, “floaty” approximation would defeat the goal. In fact,

while it has sufficient accuracy in open spaces, its performance degrades sig-

nificantly in urban environments [75], since shadowing from buildings and

signal reflections greatly reduce its availability. At the same time, inertial

sensors are often prone to drift, while local magnetic fields encountered in

urban environments may disturb magnetic sensors on mobile devices. Other

approaches rely instead only on markerless augmented reality techniques.

For instance, Tidy City [98] and City-Wide Gaming Framework [103] gener-

ate urban scavenger hunts by leveraging existing platforms to detect image

patterns corresponding to the facades of the desired buildings. However,

this general-purpose approach has drawbacks related to the recognition of

3D landscape features from multiple viewpoints, the recognition of features

that are changeable by lighting, weather conditions, and man-made interven-

tions. In the latter case, for instance, oversampling can be used for storing

multiple tracking images for each building in order to overcome environ-

mental changes. At the same time, many architectural features include flat

surfaces, repetitive patterns, and shiny materials, properties that require

more sophisticated detection algorithms.

In order to enable accurate, real-time overlays for a handheld device in

urban environments, other works have tried to combine different approaches.

Art et al. [7], for instance, propose a method for estimating the 3D pose for

the camera using only untextured 2D+height maps of the environment, to

refine a first estimate of the pose provided by the device’s sensors. In order

to obtain this result, the leveraged image processing for detecting straight

line segments aligned the 2D map with a semantic segmentation of the input

image. Ct et al. [16] note that augmented reality fails to provide the level of

accuracy and robustness required for engineering and construction purposes

and present a live mobile augmentation method based on panoramic video.

In their system the user manually aligns the 3D model of the environment

with the panoramic stream, thus avoiding sensor calibration issues. Takacs

et al. [85] approach the problem by using an adaptive image retrieval algo-
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rithm, aimed at creating a database of significant features that are continu-

ously updated over time, in order to reflect changes in the environment and

to prune features that may be seen as outliers. Their system relies on geo-

tagged data collected by many people from different locations, at disparate

times of the year and day. The tracking method proposed by Reitmayr and

Drummond [75] combines several well-known approaches, providing an edge-

based tracker for accurate localization, gyroscope measurements to mitigate

problems arising from fast motion, drift compensation by measuring gravity

and magnetic field, and automatic re-initialization after dynamic occlusions

or failures. However, it does not take advantage of geolocated content and

does not address the way in which this content is provided to users in real-

world contexts.

5.2.2 Implementation

Considering all the environmental problematics we just mentioned, our ap-

proach concretizes in Chicago 0,0 with giving more priority to the ARCam-

era, with the decision of not trusting solely the device sensors for te display

of virtual content. The general flow of the application consists in roughly

guiding a user towards a desired point of view through GPS and then sug-

gesting him which content is available around him, explicitly telling him how

to point his device camera at fiducials; once tracking is established, the AR-

Camera estimates the device position and orientation without the need for

GPS and, through some guidance provided by the GUI, the user is directed

towards content by leveraging the rotations estimated by the SensorCamera.

Due to the intrinsic nature of 2D content positioned in 3D space, archive

photos can be correctly seen only from a specific perspective and angle, so

we defined in our configuration a way to limit the appearance of content

only to realistic viewpoints. In the following paragraphs we will deal with

the project-specific features and issues related to Chicago 0,0, which mostly

involve site-specific considerations, the definition of a smart graphical user

interface to guide tourists towards content and the need of providing multi-

ple copies of the same fiducial to mitigate lighting and weather conditions.

Site-specific and user-based considerations

In real-world applications, an AR system does not need to perform in all

areas without any user input. Instead, it is typically advantageous for the

system to be limited to only function at specific sites, under specific user-

generated conditions that result in the best experience. These limitations are

complementary to natural limitations in the environment (naturally occur-
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ring wayfinding characteristics on site) and available content; they become

part of the user experience design as well as curatorial narrative. Because dif-

ferent aspects of the AR experience are created by different team members—

graphic designers, photographers, writers, curators, programmers, etc— it

is highly useful for the AR behaviors to be customizable by site, so that

the application design can incorporate existing knowledge about the sites

and desired AR experiences on a project by project, site by site, augment

by augment basis, giving this ability to all primary team members (not just

programmers).

Though in practice the jobs of creating an AR experience are frequently

segmented, we introduce a more holistic approach to AR experience design,

recognizing that the archival research, the narrative writing, the experience

design, the onsite photography, and the creation of an AR platform and ar-

chitecture share challenges and goals that are motivated by both the desired

content and real-world sites. This is true in designing the experience, where

technical considerations of bad tracking can be countered by designing in to

the application user direction and onsite wayfinding, as well as in the graphic

design and fabrication of AR illusions and images, which are based on the

same spatial, architectural, 2D photographic overlays of 3D space that must

be represented in the AR design platform. The use of actual coordinates,

simple interfaces, and sharing of site photography and naming conventions

allow a back and forth communication of information between programmers

and designers.

Navigation and information browsing

Our user-centered approach to AR leverages all available and site-specific

information to guarantee an intuitive user experience. This reflects mostly

in the graphical interface with which the user interacts during the AR ex-

perience, and which relies on the new possibilities offered by our approach.

We opted for a minimal user interface in order to dedicate more screen

space to the AR experience and make the user feel more engaged. with a

simple swipe, a slider containing information about nearby virtual content

may be activated on the right side of the screen: points of interest are

color-coded and grouped based on their location or historical relationship,

allowing the user to explore all related content before moving to a different

area. The sequencing of the content mirrors the linear movement along the

river. When the user selects a point of interest, a popup shows where he

has to aim his mobile camera at in order to enable tracking, as shown in

Figure 5.3. The AR experience relies on directing the user to a location and
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view orientation that matches one by a photographer decades ago; the app

UI seeks to communicate this positioning, and the number and breadth of

locations available, in a highly visible way. A minimap at the bottom of

the slider may be toggled on and off, showing points and areas of interest,

respecting the color convention mentioned above.

When the user has reached a specific area or has focused his camera

on a fiducial, different types of interaction may be enabled. For instance,

the fiducial itself can be a piece of architecture, onto which an overlay with

related historical imagery is superimposed. Narrative textual content may

be added to the experience through annotations, historical descriptions or

pre-recorded audio. Alternatively, directing the user aim at a fiducial can

even have the purpose of tracking his position with a higher accuracy, in

order to show him content that is not necessarily in the direction in which

he is looking. For example, we can make our users look at the facade of the

Reid, Murdoch & Company building because of its robust tracking, and then

rely on relative rotations in order to display overlays 90 degrees to the left,

where the bridge and the skyscrapers in the background would not allow an

acceptable tracking. An in-app UI can direct the user to this view. We can

rely on narrative audio, visual and textual annotations to guide the user

towards the desired content, indicating for instance to turn his device to

the left until he reaches the desired orientation. By leveraging the absolute

rotation in space of the device, we can also know when the user suddenly

puts down his mobile device and as a consequence we can dismiss eventual

indications. If an incoherency from the mobile sensors is detected, some

instructions guide the user back to the fiducial, in order to re-establish a

robust tracking; in particular cases of sensors unreliability (e.g. in presence

of relatively strong geomagnetic fields), some suggestions will be displayed

on screen explaining how the user can perform a calibration procedure by

moving its device.

When multiple contents are closely available from a particular point

of view, an orientation threshold is used for determining how to update

eventual annotations when a user is moving his attention from the previous

overlay to the next one. In particular, there are many cases in which two or

more overlays may appear overlapped one to each other. This eventuality is

dealt by considering the angle at which the contents overlap and showing a

colored dot that, when pressed, activates a transition between one overlay to

an adjacent one, changing their opacity accordingly. A similar very common

case happens when from a specific point of view has multiple overlays that

need to be displayed in the same position, so that they completely hide each

other. Here we decided to allow the user to see one of them at a time,
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displaying the availability of multiple content and creating a transition to

the next overlay when the user touches the screen.

Additionally, we consider a feature that allows users to correct for them-

selves their position or the camera orientation is case of poor tracking or mis-

aligned content. Asking explicitly to the user to manually improve tracking

could represent an interesting innovation for AR applications for the general

public, but we reserve to study this behavior more accurately in the future

and in user testing.

Ultimately, we consider fundamental the presence of a static user inter-

face for letting the user visualize the content if the environmental conditions

do not allow tracking or a realistic AR experience. Weather conditions like

fog or rain or simply the absence of light may cause the tracking not to

work properly or the overlays to appear inconsistent with the real scene.

More importantly, non-AR based methods to display the content created

for the experience a broad range of images, overlay illusions, site photogra-

phy, historical annotation, audio and textual narrative allow this content to

be viewed off site, in other cities, countries, or simply at the user’s home. In

these cases, we allow the user to activate a more classic static user interface

where he can access the historical imagery and the available narrative con-

tent. For instance, Figure 5.4 shows two sample interfaces through which the

user can select available content, organized according to the site geography.

Figure 5.3: Our approach involves also leveraging as much as possible a simple yet

smart user interface for allowing the user to better experience AR augmentations. In

the picture above, a popop indicates where the user should aim his device in order to

activate an augment.
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Figure 5.4: On top of the augmented reality features, we added support for a linear

reading experience, that can be activated within the same app. The image on left allows

the user to select manually among different photos overlayed onto a single site view,

while the image on the right shows a slider navigation for a browsable set of spreads of

images and text with color-coded photos related to locations.

The problem of oversampling

As already mentioned, the low accuracy of sensors that characterizes the ur-

ban environment in downtown Chicago forces us not to excessively rely on

the SensorCamera, creating the need to find good features to track around

the overlays that we want to show. The big size, unchanging position and

availability from many different views of some buildings (the Reid, Murdoch

& Company building in particular) seem to make them ideal fiducials for

our purpose. However, if we recall the principles for good tracking that we

introduced in Paragraph 3.2.1.1.1, we soon realize they often do not respect

properties such as high texturization, good local contrast nd even feature

distribution; sometimes skyscrapers also present reflective surfaces and the

displacement of windows creates many repetitive patterns, that can confuse

the tracking implementation. Additionally, in order to be used as pattern

images, buildings need to be photographed as flat surfaces, requiring some

effort to produce orthographically aligned patterns, without perspective dis-

tortion.

Despite all these issues, surrounding buildings still represent a good fea-

ture for tracking, mostly because the intrinsic displacement of virtual el-

ements along the river walk does not provide us close trackable features:

if they are too far, they need to be of a certain dimension, otherwise the

tracking algorithm would not be able to detect them. However, problems

related to tracking to not end here: most of the key points detected by many

algorithms reside within the windows of the buildings, whose state may be

changed during the day from open to close and viceversa, thus changing the

set of feaures of the building; secundarily, the changing of the lighting condi-

tions create big moving shadows along the surfaces of buildings, misleading
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the tracking process. Finally, buildings appearance is significantly affected

by weather conditions such as rain and snow.

Similarly to other approaches we presented in Section 4.2.1, we tried to

collect features from the buildings in more than one circumstance, in order

to have more sets of keypoints to be searched for correspondences in the live

camera stream of the mobile application. Our experiments showed that, by

using Vuforia, at least 7 different image patterns, recorder at different times

of the day and in different environemntal conditions, need to be provided to

the tracking algorithm in order to always recognize the building (excluding

night time). Kudan AR demonstrated instead to accomplish this task with

only 3 to 5 samples, however with a lower precision with respect to Vuforia: it

seems that Kudan AR has a threshold for recognition involving less features.

Unfortunately, the tracking algorithm provided by these pre-packaged

libraries cannot be modified and even pre-processing the image given as

fiducial would not work (e.g. removing uninteresting parts or elements af-

fected by daily changes, restricting the number of features), since then the

algorithm would search for different features when processing the raw camera

stream. So for now we have temporarily resolved this issue with oversam-

pling fiducials and feeding the tracking algorithms with more images of the

same building, however we are currently working on two better solutions:

• Creating our own algorithm for tracking buildings, to be implemented

together with the OpenCV algorithm we proposed in Paragraph 3.2.1.1.

With this method, we could freely do pre-processing both on the pat-

tern images and mostly on the live camera input, thus feeding the

algorithm with a simplified representation of buildings, aimed at keep-

ing only invariant features. Among the many features of a building,

we could consider for example its outer shape, number of windows

or alternatively directly eliminate problematic elements like the glass

inside windows.

• Leveraging the additional type of tracking presented in Section 3.6,

based on features calculated at real-time through SLAM, thus com-

pletely eliminating the problem of changes over time. This approach

will be explained with greater detail in Section 5.4.

5.2.3 Discussion

This section is aimed at showing and analyzing some of the data we collected

during our onsite tests of the application and during its design through our

authoring tool.
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Mobile application

In this experiment proposed below, we consider the use of our Chicago 0,0

application for the visualization of 10 overlay images differently placed along

Chicago Riverwalk. In 5.1 it is possible to observe the data we gathered

during one sample execution on a LG G3 smartphone device, within a single

session of approximately 42 minutes.

Content / Accuracy egpsest egpsreal eloc ecomp eor Fiducial SLAM

1 8.3 m 5.4 m 1.3 m 23◦ 4◦ Building No

2 7.7 m 4.2 m 2.0 m 9◦ 8◦ Building No

3 9.2 m 6.7 m 2.2 m 33◦ 16◦ Building No

4 8.9 m 4.8 m 1.7 m 14◦ 6◦ Building No

5 10.4 m 7.2 m 1.9 m 126◦ 14◦ Building No

6 8.6 m 4.3 m 2.4 m 21◦ 11◦ Building No

7 9.1 m 5.3 m 3.4 m 93◦ 5◦ Building No

8 8.4 m 5.8 m 1.5 m 67◦ 8◦ Building No

9 9.0 m 6.0 m 0.2 m 23◦ 2◦ Panel No

10 8.9 m 6.2 m 0.3 m 42◦ 7◦ Panel No

Table 5.1: Estimated and actual accuracy with which each virtual content has been

rendered while running the Chicago 0,0 application. The meaning of each symbol is

explained in detail in Section 4.1.

It is possible to see from the second to last column of the table how

the content that needs to be rendered is bidimensional and is characterized

by the problem of showing it in 3D space, possibly overlapping with its

respective real-view of the city. The two photographs shown in 5.2, for

instance, are situated right next to river and need to be aligned to its edge in

order to make them appear realistic form a specific point of view. To achieve

this effect, we would need a tracking that is as accurate as possible, since

an unprecisely positioned overlay would not respect the correspondences

between the photograph and the live camera stream. In certain cases, some

photographs need to be positioned on still existing buildings that can be used

as fiducials, providing an acceptable tracking. However, most archive photos

are related to environmental elements that nowadays do not exist anymore or

need to be placed in a location where there are not many trackable features

available.

As we can observe by the egpsest column of 5.1, it is unfeasible for us to

rely on the position given by the SensorCamera alone: with an estimated

horizontal positioning error of almost 10 meters, the overlay could appear

positioned in a completely different place with respect to the desired one.
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This is mostly caused by the presence of many skyscrapers and tall buildings

that obstruct the GPS signal and cause its reflection. On top of this issue,

column ecomp shows how unreliable is the orientation natively provided by

the device, that literally goes crazy due to the high geomagnetic field per-

ceived in this area and leads in one case to an incredible error of 126◦: it is

thus inconceivable to use the absolute pose provided by mobile sensors, we

necessarily need tracking.

Figure 5.5: In the above sample scenario, the user is situated along Chicago Riverwalk

and the only available fiducial is the façade of the Reid, Murdoch & Company building;

the application has to show an overlay with a sinking boat, appearing on the surface of

the river. In the scene three arrows are represented: the blue arrow represents the pose

of the SensorCamera, the red one is associated to the ARCamera and the yellow one

shows the MainCamera estimated pose. As the user aims at the façade of the building,

the ARCamera becomes enabled and estimates the position of the user, possibly more

accurate than the one obtained from the SensorCamera. When the user turns right to

see the augmented content, the tracking is lost and the ARCamera is disabled, however

the computation of the 4r matrix (in combination with the current SensorCamera

pose) allows us to extend the tracking and render the content anyway the estimated

pose of the MainCamera.

As far as good tracking features, this particular urban environment has

unfortunately many issues: differently from the properties a good fiducial

shoud have (that we presented in Paragraph 3.2.1.1.1, the area is mostly

characterized by buildings with repetitive patterns (i.e. many identical win-

dows) and sometimes reflective surfaces; another component of the environ-

ment is the river, that however cannot be used as fiducial since its dynamic,
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Figure 5.6: In the above figure, two sample overlays are rendered on top of the live

camera video thanks to our dual camera approach. On the left if is possible to see the

the result of the scenario already described in Figure 5.5, while on the right a different

boat is visible from a viewpoint located on a bridge.

too uniform and has little contrast. Most of the minor elements in the

scene are generally too small to be detected and thus cannot be used either;

ultimately, candidate fiducials should be considered also in relation to the

passing of people, which may occlude their visibility and make tracking un-

practical. Through the method we explained in Section 4.2.2, we can rely

anyway on few sgnificant buildings, which are fortunately available from

many different views. For this reason, our goal becomes to leverage the

graphical interface we introduced in Section 4.2.2 in order to direct the user

towards one of this buildings and then use them as fiducial to estimate his

position: according to column eloc of 5.1, our approach is able to reduce the

horizontal accuracy to few meters, even without using the GPS. For content

that needs to be overlayed on top of the buildings used as fiducials, rendering

is pretty straightforward and can easily rely on the pose estimated by the

ARCamera. Virtual content belonging to locations without trackable fea-

tures needs instead to merge the information from the two helper cameras:

after the mobile phone has detected the fiducial, the user interface suggests

to rotate the device towards the target content, aware that tracking will be

lost; when this event happens, the delta rotation registered by the mobile

sensors is used to continue rendering even with no tracking. So, the value

present in column eor can be referred directly to the rotation error of the

ARCamera (if a fiducial is still visible) or to the rotation error caused by

mobile sensors after the fiducial has been lost. The values obtained thanks

to our approach are significantly smaller than the ones shown in column

ecomp, but not all are very close to zero yet due to many hardware and pos-

sibly software reasons. However, considering we are dealing mainly with big

floating billboards, occupying a good part of the device screen and situated

at distances from the user that in most cases range from 15 to 60 meters,

such an orientation error is slightly perceivable by the user and the overall
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mixed reality effect appears to be realistic.

A side note needs to be made with respect to the fiducials used in Chicago

0,0 : since the content needs to be rendered at a certain distance from the

user and generally there are no close features to be tracked (most of them

are on the other side of the river), the fiducials need to be very big in order

to be tracked by common libraries su as Vuforia or Kudan AR. If we con-

sider that the live video texture resolution is often reduced to 640x480 pixels

before applying the image processing algorithms, it is easy to understand

that a small object on screen won’t have enough pixels to be recognized as

a tracked pattern image. This is why the use of buildings as fiducials was

necessary. However having so distant trackable features has two drawbacks:

the accuracy of the pose estimated by our algorithm decreases and small

fluctuations of the ARCamera, despite being of few degrees, can make vir-

tual content move by many meters if its very distant from where the fiducial

is positioned. For instance, we can see how the values of eloc and eor are

much smaller in rows 9 and 10 of 5.1: this is mostly due to the fact for

those two overlays we relied on tracking two signage panels along the river

walk, with a size that is of about one meter compared to the 90x63 m that

characterized the Reid, Murdoch & Company building fiducial. Luckily, our

smoothing function takes into account distances and provides an easy solu-

tion to stabilize these small erroneous movements done by the ARCamera.

Editor application

Building the environment for Chicago 0,0 was not an easy task, because

of two strong requirements related to the accuracy and realism of overlays:

archive photographs need to be precisely oriented in 3D space in order to

appear in a certain way from a user perspective and fiducials need to be

properly sized in order to guarantee an accurate position estimation, espe-

cially considering the problem of long distances mentioned above. Actually,

it is even very difficult to conceive this situation without defining an ap-

proach like ours with a dedicated authoring tool. The common way to

handle the problem of overlapping images to real-world views involves asso-

ciating those photos directly with the pattern images generated from those

views, that are then used for tracking: however, this type of approach would

not allow visualizing content in the absence of fiducials, like our approach

does; on top of this, it would not allow a comprehensible spatial represen-

tation. For instance, 5.7 shows how our entire application would appear in

Unity Editor with the usual Image Target approach provided by Vuforia:

the designer would place the fiducials inside the Unity scene, where their
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Figure 5.7: A screenshot of how the Unity Editor would appear with the traditional

conception of Image Targets: on the left side, it is possible to see a list of 32 tracking

images, that are represented in 2D on the right inside the Unity scene, where the

designer tryes to make them overlay correctly with their respective fiducial. Since

the camera pose estimation is only relative and the content is selectively switched on

and off, their position in space is completely irrelevant and for this reason the lack of

conscientiousness leads to a very confusonary editing environment.

position is irrelevant, and would then try to overlap in a 2D environment

the archive photos to their respective pattern image. It is easy to notice

how the editing environment can become very cluttered when many images

are added and the absence of the notion of space makes the content shown

apparently meaningless to the overall MR experience. Additionally, as we

already mentioned, this method would only allow to position overlays on

top of a fiducial, which is very limiting in our case.

In the early phase of the development of Chicago 0,0, we greatly made

use of one of the alternative implementations of our authoring tool: the one

that in Section 3.3.8 we defined as “Unity Editor implementation”, of which

it is possibile to see two screenshots in 5.8. This decision was originally taken

due to the early stage of the development of our CAVE2 editor and to the

need to make the tool remotely accessible to other designers, for whom the

availability of a personal CAVE2 system is simply inconceivable. We will

briefly describe below this first editor implementation and then compare it
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with the current one.

In the in-Unity implementation of our authoring tool, we defined two

different views: a User mode, a 1:1 scaled simulation where we can preview

what the user would be able to see from a particular perspective, and a Map

mode, a 1:100 scaled map representation with a 3D perspective top-view of

the previous mode. In both modes, the designer is able to move a virtual

camera representing the mobile camera of a user running our application:

we can move and rotate the camera around the virtual scene as a user would

walking on the Chicago Riverwalk and rotating the device to see points of

interest. This way, we can explore the scene from many perspectives and

preview how overlays will appear in a user’s mobile device. In both modes,

both fiducials and overlays are located in space, in correspondence to a

specific geolocation: this allows us to position accurately our overlays with

the help of a reference map but also to define the correct position in space

of eventual fiducials, whose accuracy is fundamental for the ARCamera to

estimate the pose of the camera in absolute coordinates. By switching to

Map mode, we are able to see the position and orientation of the virtual

camera and position exactly the points of interests needed to build a correct

perspective of the overlays. We decided to adopt a slightly 3D perspective

even in the Map mode, since otherwise it would be hard to distinguish 2D

vertical overlays from a pure top-view. In both modes, overlays and fidu-

cials can be moved in space, scaled and rotated; changes in one mode are

reflected in the other. At the end of the design process, each virtual object

will be characterized by a geolocation, an orientation and a scale and the

data representing the whole scene will be stored in a JSON file for future

modifications.

In this simple implementation, overlays and fiducials are moved, rotated

and scaled manually through Unity’s built-in functionalities and one script

automatically takes care of registering all modifications correctly. Despite is

method is visually very helpful and conveys greatly the user perspective to

test the correct overlapping of photographs, it has two main drawbacks: the

precise scaling of fiducials requires a certain effort, since their height needs

to be computed externally (i.e. if using a building as a tracking pattern,

we need to first estimate its height in meters), and at least some other

images should be added to the scene to “recreate” part of the environment.

Overall, both these issues caused the horizontal accuracy of the estimated

camera pose to be between 5 and 10 meters and, eventually, also slightly

erroneous correspondences between the overlays and the real-world view.

However, it proved to be efficient if used in combination with our mobile

editor implementation, which allowed us to go onsite and correct manually
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Figure 5.8: Two sample screenshots of the early virtual environment that we created

inside Unity in order to design our application Chicago 0,0. In User mode (left) we can

move and rotate a virtual camera inside the environment and preview offline how a user

would see the overlays from that perspective. At the same time, Map mode shows a

pointer indicating our current position and orientation, allowing us to position ourselves

in the desired positions. From both modes it is possible to move, scale and rotate the

overlays to personalize their appearance from a particular perspective.

from a mobile device the possible imperfections generated by our tool (see

Section 3.8.8 for more details about this implementation). Anyway, despite

more precise, using two editor applications and the need of going onsite

generally required a considerable amount of time to desgin and customize a

MR experience.

Our CAVE2 editor implementation provides all the functionalities of

the in-Unity implementation mentioned above, but has one key advantage:

it already has a 3D model of the environment, correctly scaled in order

to maintain 1-to-1 correspondences with the real world. Thanks to this,

when an image is positioned in 3D space, the user can directly see how it

is overlayed onto a view of the environment; on top of this, a feature allows

and easy auto-positioning of fiducials onto other elements (e.g. buildings)

and does not require to provide manually their size, since it is automatically

computed from the 3D reconstruction of the environment. On top of this,

the CAVE2 user interface allows a much faster customization of the virtual

objects with respect to Unity Editor.

In 5.2, we present some information regarding the task of inserting 10

archive photographs in the environment at a specified location, comparing

its “manual” execution and its execution with our CAVE2 editor application.

In this case, for manual execution we intend the action of inserting manu-

ally the values for latitude, longitude, orientation and size for each virtual

object, making use of Google Maps [34] tools for obtaining geocoordinates

and distances.

It is possible to notice how the time to insert and position an image is

much lower with our editor, mostly to the problem of trying to orient man-
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Manual vs Editor Insertion time Acceptable overlay Should be improved Type of content

1 73.5s / 32.0s No / Yes Yes / No 2D Image

2 81.4s / 29.7s No / Yes Yes / No 2D Image

3 75.2s / 34.2s No / Yes Yes / Yes 2D Image

4 70.1s / 22.3s No / No Yes / Yes 2D Image

5 69.4s / 26.3s No / Yes Yes / No 2D Image

6 50.1s / 24.3s No / Yes Yes / No 2D Image

7 92.2s / 31.1s No / Yes Yes / No 2D Image

8 60.4s / 29.2s No / Yes Yes / Yes 2D Image

9 65.9s / 28.3s No / Yes Yes / No 2D Image

10 82.3s / 27.5s No / Yes Yes / Yes 2D Video

Table 5.2: Comparison between manual insertion of virtual content with respect to

the use of our editor for the application Chicago 0,0. The meaning of each column is

explained in detail in Section 4.1.

ually images in 3D space and compute their real-world dimensions without

having the possibility to preview the surrounding environment: our tool

instead extracts automatically size parameters for a fiducial and enables

semi-automatic alignment to building surfaces. More importantly it is more

reliable: without our method, the inserted image never overlayed correctly

onto a specific real-world view. Our editor, in particular, created the cor-

rect overlay in all but one cases. The second-to-last column indicates that,

according to a posterior consideration about the real-world displacement of

content, the virtual objects positioned with our editor were often already

positioned in the best conceivable location.

Overall, our editor demonstrates to be fundamental for the positioning

and previewing overlays from the user perspective. In addition this this,

features such as the auto-positioning and auto-sizing of fiducials greatly

helped decreasing the insertion time for content.

5.3 DigitalQuest

DigitalQuest mobile application is a videogame involving futuristic “scav-

enger hunts”, where multiple users search for virtual objects positioned in

the real world, and where each object is related to a riddle or a challenge to

be solved. Each player can compete with the other participants by finding

virtual objects and solving puzzles, thereby unlocking additional challenges.

Virtual objects are represented by animated 3D meshes locked to a deter-

mined position in the real world. The objects are activated when a player

gets within a proximity threshold and then taps the object on the screen

of his or her mobile phone. In our demonstration application, configurable

virtual content appears, followed by a question that must be answered in
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Figure 5.9: A sample camera view of the mobile application showing the user arriving in

proximity of a virtual object. The buttons in the upright corner allow the user to change

to map view and to see the current active challenge; the buttons on the bottom-left

corner bring up a options. The upper-left bar indicates instead the score for the current

DigitalQuest and the current GPS accuracy.

order to be pass to the next challenge. The displayed content may consist

of images, video and audio streams, graphical effects, or a text message that

provides hints on how to advance in the game. The editor makes it easy

to create puzzles that can be solved by exploring the surroundings of the

virtual object in order to discover clues and making use of location-specific

knowledge. When a participant figures out the correct solution, he or she

scores points related to the complexity of the challenge and also unlocks

remaining puzzles that cause new virtual object to appear in the world. At

the end of the event, the player with more points wins. Fig. 5.9 shows an

example of a virtual object attached to a real-world location; in this case, a

public sculpture on the East Campus of University of Illinois at Chicago.

DigitalQuest follows our approach for adding user-defined virtual content

to the real world, allowing the personalization of a “mirror world” that could

be explored by anyone with a GPS-enabled mobile device simply by using

the application. Though these Quests were originally meant for creative

exploration and mixed reality scavenger hunts, our application could also

potentially support a wide range of use cases, for example: team building

and team-work enhancement events, tourism, virtual galleries, and cultural

heritage. DigitalQuest can also be used to create augmented narratives,

engaging users by telling an interactive story that makes use of real-world
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architecture; we also believe that it could be used to provide context-aware

opportunities for learning. DigitalQuest can additionally be leveraged for

marketing purposes, allowing companies to organize events with customized

content in order to make customers more attached to the brand.

5.3.1 Background and contribution

Scavenger hunts are an effective means to provide a continuous mixed real-

ity engagement that mediates between a virtual environment and the real

world [49]. Traditionally, virtual content is delivered through location-based

applications, mostly used indoors, or via markers or image patterns, exploit-

ing live input from a mobile phone camera. A recent example of a mixed

reality scavenger hunts is HUNT [51], where users seek a set of objects and

scan them with the built-in camera on a smartphone, enabling the display of

related multimedia content that includes images and videos overlaid on the

real world view. Some scavenger hunts utilize game-based learning environ-

ments. For example, Loiseau et al. [49] propose an MMORPG videogame

approach applied to the archaeological domain aimed at raising awareness

of cultural heritage by providing relevant information in the virtual environ-

ment. They leverage Game-Based Learning (GBL) by immersing learners

in digital environments and rely on collaboration order to enhance learning

and motivation. Considering that digitalization, for better or worse, is natu-

ral for children, Doong et al. [22] explore how educational environments can

enable individuals or groups of users to embark on a “quest for knowledge”.

ARLearn [88] similarly adopts a learning-oriented approach.

Scavenger hunts have also been used to orient people to new environ-

ments. Rogers et al. [78] exploit the use of pervasive AR aimed at designing

a serious game for improving navigational skills in public environments.

The University of Illinois at Urbana-Champaign proposed a similar idea for

a team-based orientation activity aimed at orienting new students in the

Department of Computer Science, demonstrating how these types of game

promote a sense of community and effectively help new students getting

involved in university life [86].

Some works broaden the concept of augmented reality based scavenger

hunts by introducing new elements. Focusing on the growing trend of In-

ternet of Things, TagHunt [30] enables interaction between smartphones

and daily objects by leveraging additional technologies such as NFC. This

encourages the user to interact through “hyperlinking” with the surround-

ing environment, asking them to look for clues in the game. Gonzales et

al. [31] analyze the creative collaboration environment in their GISHWES
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(The Greatest Scavenger Hunt the World Has Ever Seen), a scavenger hunt

where each item requires the user to insert an image or a video, with the

goal of making players produce art and/or help each other while attempting

complex, creative and time-limited collaborative tasks.

While most of the above works focus on enabling digital content through

the use of classical augmented reality (e.g. marker detection or pattern-

based recognition), our framework concentrates on outdoor location-based

mixed reality, making use of GPS and mobile sensors and resolving issues

related to accuracy. Similar projects include for instance Tidy City [99],

where players have to explore their city and interpret clues in order to dis-

cover new places, or LMAC mobile application [71], where children are able

to gather geo-referenced information to learn about the environment in a

playful way. Zund et al. [104] similarly propose a city-wide gaming frame-

work that renders interactive content on top of the existing architecture,

gardens, and streets.

A main issue regarding location-based mixed reality is that it is difficult

to ensure the accuracy of the position of virtual objects. Accuracy is greatly

affected by the measurement errors generated by the sensors of mobile de-

vices. Our approach leverages the improved technology in current mobile

phone sensors, eventually mitigating poor accuracy by enabling sensor fu-

sion techniques to minimize the positioning error. This allows us to conceive

of scavenger hunts in a novel way and provides new creative opportunities.

For instance, virtual objects can be represented as animated 3D meshes even

without using computer vision techniques. A similar sensor-based approach

is used in MIPos [26], which describes how to detect the pose of a user’s de-

vice by taking advantage of sensor fusion and filters able compensate sensor

noise, thus avoiding excessive image processing. Using the sensors available

on smartphones allows us to define a virtual scene where all objects can be

located at the same time, mirroring their position in the real world. This

simplifies both content management (from the designer’s perspective) and

introduces new interaction possibilities (from the player’s point of view).

Through a web-based dedicated interface we implemented, the protocol

we proposed in Chapter 3.3.3.2 can be easily extended for creating Quests,

advancing previous work proposed by Wetzel [99] and Pirker [71]. In partic-

ular, our version enables more sophisticated logic to control when and where

virtual objects appear. It also provides additional types of triggers, enables

the use of a 3D window for positioning objects in space, and provides a pre-

view mode for viewing the final appearance of virtual objects in the mobile

application.
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5.3.2 Implementation

As we mentioned earlier, DigitalQuest is mostly aimed at open green spaces,

usually characterized by a better sensor accuracy, especially in relation to

GPS and magnetic field measurements. In many cases, these type of envi-

ronments do not have many significant fiducials to be used, but since we do

not need a precise positioning of objects we can often avoid visual tracking;

differently from Chicago 0,0, content has to be always available and there are

no specific viewpoints from which the user is expected to see virtual objects.

For these reasons, the estimated pose of the camera is mostly based on the

values computed by the SensorCamera. As we will show in Section 5.4, Dig-

italQuest is also the application we mostly used for testing our third helper

camera, the SLAMCamera. Before presenting the results of our tests, we

want to explain more in detail one of the application-specific characteristics,

which involves the personalization of the behavior of virtual objects.

Extending the protocol with behaviors

Being a videogame aimed at providing entertainment to users, DigitalQuest

cannot simply settle to display virtual content at certain locations in the

world, but needs to define ways with which players can interact with objects,

to which various riddles need to be associated. Unfortunately, it is impossi-

ble to implement an editor capable of creating any possible MR application

that can be conceived; however, our protocol definition allows the designer

to extend the configuration file in order to define additional attributes that

can be associated to every single object.

Let’s start with a more detailed definition of what Quests are. A Quest

can be imagined as a directed graph structure where each node corresponds

to a virtual object. Like in the standard definition of our protocol, each

object is characterized by a size and by position and orientation in space; it

can be represented by a 3D model, an image, a video or an audio content,

which can be downloaded from a server and eventually cached if not present

on the local storage of the mobile phone. Each virtual object is associated

to a challenge: when a user approaches to an object, he can activate it by

selecting it on his mobile device; after an optional animation, a window

with some instructions is displayed on screen, indicating what task needs to

be performed or simply giving some clues; if the text requires the user to

solve a riddle or to perform actions which lead to a result, the user is asked

to insert the answer inside a textbox; depending on th type of challenge,

some additional multimedia content (e.g. images) can be shown on the

GUI in order to help him solve the riddle. If the user inserts the correct
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Figure 5.10: On the left, an example of a simple puzzle appearing on screen after

a team reaches a virtual object. On the right, a sample map view showing the user

approaching his next challenge, represented by an animation on the map (which may

differ from the virtual object that will be shown in the camera view); the light blue

element on the upper-right corner is instead a virtual sound zone – a particular type

of virtual object that emits a sound whose intensity is proportional to the its distance

from the player.

answer, the object and the window disappear with an animation and new

instuctions are given, possibly unlocking new challenges. Regarding the

dependencies between objects, each node of the graph becomes unlocked

when a configurable logical expression involving its ancestors is satisfied.

For instance, a fourth challenge could become available only if the player

has completed puzzles one and two or puzzle three, but has not yet solved

challenge number five.

Since a general purpose authoring tool could never be capable of defining

such fine-grained behaviors, there is the necessity to extend the protocol we

previously defined. Since the main addition involves the definition of chal-

lenges and is strictly related to the single virtual objects, their definition in

the protocol can simply be extended by adding special parameters, that the

mobile application has to interpret by itself. For instance, each object has an

associated challenge, characterized by a numeric identifier, by a message to

be displayed when the object is reached (that often corresponds to a riddle,

by a set of possible correct answers and by a message to be displayed after

the challenge is solved (usually a hint to the next object). Some of those

attributes can also remain empty, thus enabling configurations where ob-

jects are used simply to represent clues, without any puzzle that be solved.

In order to represent the graph structure of relationships between objects,

each challenge also has to store the list of dependecies it requires in order

to become active. By considering the previous requirements, we can extend

our protocol as follows:

” data ” : {
” t i t l e ” : ” Dig i ta lQues t Example” ,
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” l a s t e d i t e d ” : 1460851200 ,

” s t a r t t i m e ” : 1460973600 ,

” end time ” : 1460977200 ,

. . . // o t her event in format ion

” o b j e c t s ” : [{
. . .

} ,

{
id : 4 ,

” a s s e t ” : ” DarkSkull ” , // content to load

” type ” : 0 , //3D model

” p o s i t i o n ” : {41 .867272 , −87.675434}
” r o t a t i o n ” : {−12, 76 . 4 , 0} ,

” s c a l e ” : {2 , 2 , 2} ,

” p r o p e r t i e s ” : {} ,

” a t t r i b u t e s ” : {
”name” : ” Rosenthal ” ,

” precedences ” : ” ( ( 1 & 2 ) |3 ) ! 4 ” ,

” pre ” : ” Ancient s t o r i e s t e l l that . . . ” ,

”answer” : [ ” sun” , ” p lanet ” ] ,

” post ” : ”The sun i s s t r i c t l y r e l a t e d . . . ” ,

” s co r e ” : 250 ,

” type ” : 0 , //no a d d i t i o n a l content

” content ” : ”” ,

” d i s t ance ” : 4 ,

”map” : ” v i s i b l e ” ,

” i con ” : ” s e l f ” , // r e p r e s e n t a t i o n on the map

” animation ” : ” Sp lashDefau l t ” ,

. . .

}
} ,

. . .

] ,

” f i d u c i a l s ” : [ . . . ]

}

Application-specific parameters are simply added as “attributes” to the

configuration file and DigitalQuest itself takes care of handling them through

the desired program logic. When a Quest is initialized on the mobile ap-

plication, all objects without precedences are enabled and their position is
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eventually shown on a map, as it is possible to observe in 5.10. When a

user gets close to an active virtual object within the specified distance, in-

teraction is allowed and the specified animation and challenge window are

displayed. When the user solves the riddle by inserting one of the possible

correct answers, his achievement is stored in a separate data structure and

his score is increased. The game can then proceed with the next challenges,

that are eventually enabled by iterating the remaining virtual objects and

checking if their dependencies have been satisfied. This way, the application

can seprately have its own logic and associated behaviors to virtual content,

as shown by the different UI features present in 5.9.

5.3.3 Discussion

Similarly to what we did for Chicago 0,0, in this section we will analyze some

of the data we gathered during the execution of our DigitalQuest application,

discussing if our approach allows to accuracy and realism requirements and,

the same time, enables an effective authoring of the MR experience.

Mobile application

Differently from Chicago 0,0, DigitalQuest does not require to precisely

overlap virtual content onto real-world views, but it rather aims at plac-

ing objects inside a small area of acceptance, inside which that content is

meaningful to the development of the Quest. For this reason, in many cases

tracking could not have the significant importance it has in Chicago 0,0,

thus allowing us to possibly rely more on generally not very accurate mea-

surements, like the GPS. In this experiment we will refer to a Quest we

organized on the campus of the University Of Illinois at Chicago, consisting

in 12 virtual objects connected to the same amount of challenges. Data

has been collected from a LG G3 device, which was used to complete all 12

challenges in a single session of about 34 minutes.

From 5.3 it is possible to observe how a different enviroment, distin-

guished by open green areas instead of the tall buildings characterizing

downtown Chicago, can significantly improve the accuracy of the Sensor-

Camera, requiring the use of fewer fiducials. For example, in this case the

horizontal positioning estimated error (egpsest) has dropped below 5 meters

in all cases and the compass orientation accuracy (ecomp) seems to be much

more reliable, with a worst case error of 27◦. In particular situations in

which a slightly higher accuracy is required (especially with 2D content),

simple fiducials such as panels have been used in order to have a more pre-

cise positioning of the virtual content.
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Content / Accuracy egpsest egpsreal eloc ecomp eor Fiducial SLAM

1 2.2 m 1.9 m 1.9 m 9◦ 9◦ None No

2 3.1 m 2.4 m 2.4 m 27◦ 27◦ None No

3 2.7 m 2.1 m 2.1 m 12◦ 12◦ None No

4 3.8 m 3.2 m 1.4 m 14◦ 7◦ Building No

5 2.6 m 1.8 m 1.8 m 13◦ 13◦ None No

6 2.2 m 2.0 m 2.0 m 8◦ 8◦ None No

7 2.3 m 1.5 m 1.5 m 10◦ 10◦ None No

8 4.6 m 4.4 m 0.2 m 19◦ 4◦ Panel No

9 4.9 m 4.6 m 0.4 m 22◦ 6◦ Panel No

10 3.2 m 2.3 m 2.8 m 17◦ 24◦ None Yes

11 3.5 m 3.2 m 2.4 m 13◦ 11◦ None Yes

12 2.8 m 2.2 m 2.2 m 18◦ 5◦ Panel No

Table 5.3: Estimated and actual accuracy with which each virtual content has been

rendered while running the DigitalQuest application. The meaning of each symbol is

explained in detail in Section 4.1.

Editor application

In relation to the task of inserting and positioning 12 virtual objects of dif-

ferent nature, 5.4 shows a comparison between using our editor and inserting

the required values manually in the configuration file. This comparison is

meaningful especially in comparison with other location-based AR libraries

like Metaio [55] and Wikitude [100], where the user has to input manually

the geocoordinates of a virtual object without being able to preview its

concrete positioning in space.

Manual vs Editor Insertion time Acceptable overlay Should be improved Type of content

1 20.7s / 18.2s No / Yes Yes / No 3D model

2 15.3s / 20.0s Yes / Yes No / No 3D model

3 13.7s / 19.7s No / Yes Yes / No 3D model

4 16.9s / 15.2s No / Yes Yes / No 3D Model

5 14.4s / 16.9s No / Yes Yes / No 3D Model

6 15.2s / 17.4s No / Yes Yes / Yes 3D Audio

7 12.7s / 8.4s Yes / No Yes / No 3D Audio

8 23.9s / 10.2s Yes / Yes No / No 2D Image

9 17.1s / 34.2s No / Yes Yes / No 2D Image

10 16.2s / 28.7s Yes / Yes No / No 3D Model

11 14.5s / 21.0s No / Yes Yes / No 3D Model

12 19.6s / 20.2s Yes / Yes Yes / No 2D Video

Table 5.4: Comparison between manual insertion of virtual content with respect to

the use of our editor for the application DigitalQuest. The meaning of each column is

explained in detail in Section 4.1.

As it is possible to observe from 5.4, differently from the results obtained
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with Chicago 0,0, for what it concerns insertion time our editor does not de-

crease much the time to position an object. This is mostly related to the low

expectations that a classical location-based application would require: a user

would have to check on a map provider (e.g. Google Maps) the desired loca-

tion coordinates for his virtual content and then simply write them inside a

configuration file. Instead, our editor requires the user to move the camera

towards the desired location, add the object to the scene and position it in

to the desired location, eventally modifying its scale and rotation. However,

time in this case is not sorelevant, since the manual approach would not

allow previewing the customization of the virtual constent with respect to

the surrounding environment: it would just place the object more or less in

the desired position, without guaranteeing the correct orientation and scale.

That is why the column Expected location for the manual approach does not

reflect the intention of the user, while the values referred to our editor indi-

cate that content was precizely positioned in desired way in the real-world.

At the same time, the previewing function of our editor enabled discovering

more appropriate locations for content, with respect to the originally coin-

ceived ones: the final position of varius objects, for instance, was changed

to a nearby location in which the content better fit into the environment. It

is also possible to note from 5.4 how insertion time depends on the type of

virtual object inserted, since some of them could have different positioning

requirements (e.g. images sometimes need to be orientated more precisely).

Figure 5.11: The above picture shows how the horizontal inaccuracy, represented by

the red area under the avatar, can significantly affect the positioning of virtual content

on the mobile device. In this example, the object is rendered in the middle of the street,

made inaccessible by the passing of cars. Thanks to our editor, the designer can detect

and adjust at real-time these kind of issues.

Among the two applications proposed in this chapter, DigitalQuest is the

one for which we mostly tested the real-time capabilities of our authoring

tool. While running a simple quest event with the same 12 virtual objects
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mentioned above, we observed at real-time the situation from CAVE2. Two

first interesting cases happened due to inaccuracy of mobile devices, which

caused their users to spend much more time than expected in reaching a

virtual object. In the first case, a user tried to reach an object located at

the edge of the road, but the estimated GPS accuracy of his device was

much lower then expected: 7 meters of error caused the object to appear on

the road, preventing the user to reach it due to the passing of cars 5.11. It

is important to remember that the position of the corresponding avatar in

the editor is given by the location retrieved from the mobile device, that is

not the real position of the user but the position according to which content

is rendered. So, by noticing the accuracy area in the editor, the position

of the avatar and the time spent in the same position, it was possible to

identify that the user had correctly reached the object position, but it was

still rendered far from him (possibly due to a missing GPS update). By

moving the object closer to the avatar in the editor, its rendering on the

user mobile application got corrected and at the same time the users who

came next to him didn’t have the same problem, since now the content

was positioned more inwards with respect to the edge of the road. The

second example is very similar and involves another accuracy problem for

which a user could not reach an object, because according to his mobile

application it was situated inside a building, instead of being in the garden

outside of it. By considering the horizontal accuracy of that user, it was

possible to make some considerations on a new possible collocation for that

content, so that even low accuracy situation users could be able to reach it.

Another insteresting situation that happened during our demo quest involves

the presence of too many users trying to interact with the same object at

the same time, because of non-ideal configuration of the precedences which

enabled challenges: on top of showing a possible game design improvement,

the editor in this case allowed us to move the object away from the users,

disperding them and making them follow different paths. Additionally, in

order to leverage even more the real-time editing features of our editor, we

are going to test in the near future the new prototypal functionalities we

introduced in DigitalQuest, which are aimed at user-to-user interaction with

the possibility for users to move and customize content by themselves.

5.4 SLAMCamera extension

While in the previous sections we mostly dealt with our dual-camera ap-

proach, this section is entirely dedicated to the addition of the third virtual

camera. The ability to position digital content anywhere, without the need
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for a graphic trigger, means that MR applications can be even more ver-

satile, contextual and realistic. In particular, we will show the additional

tests we performed on the two applications Chicago 0,0 and DigitalQuest :

in the former case, we reused the same system to present few urban over-

lays in Manhattan, New York (USA), while in the latter we tested some

closer-range interactions in the city center of Munich, Germany. Please note

that, since our method allows to decouple tracking techniques and content

definition, the usage of our authoring tool is not affected by the addition of

a new virtual camera and all the discussion of the previous section is still

valid. All the accuracy data presented in this section has been gathered with

the same procedure we described in Section 5.1 and with the same mobile

device we used in the previous sections.

5.4.1 Chicago 0,0

Two of the main issues we encountered in Chicago 0,0 were low reliability

of sensors and the difficulty of tracking image patterns in an environment in

which weather and lighting are critical. Despite the SLAMCamera has great

capabilities of tracking real-time features, without the need of knowing in

advance lighting conditions, it is unfortunately not suited for recognition.

This means that once we have started tracking with the SLAMCamera,

tracking would probably work smoothly, but the problem is that we simply

don’t know reliably where the tracking should start, for instance without

detecting the interested building onto which to place the overlay. So, the

only options in this case are two: 1) if horizontal and orientation accuracy

allows it, try to rely only on the SensorCamera for placing an overlay, and

then enable the SLAMCamera; 2) still use the ARCamera and then add the

SLAM-based tracking for increased robustness.

Due to external necessities, we weren’t able to perform the tests in down-

town Chicago, so we decided to run our application in Manhattan, New York

(USA) - a location that can be considered very similar under many aspects.

We decided to place only 4 overlays in the city, measuring for each content

the results in both cases 1 and 2, for a total of 4 measurements. Also, since

we did not have an archive of historical photos like the ones provided by the

History Museum of Chicago, we had to use fictitious overlays properly sized

in order to fit the façades of buildings.

As it is possible to see from the two egps columns, GPS accuracy in

Manhattan appears to be very similar to the one in Chicago (about 10

meters) due to the concentration of skyscrapers, even if more open spaces

close to Central Park revealed a better estimation (e.g. case 4 in Table
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Content / Accuracy egpsest egpsreal eloc ecomp eor Fiducial SLAM

1 9.4 m 5.4 m 3.3 m 31◦ 10◦ Building Yes

1 10.5 m 5.4 m 5.4 m 26◦ 27◦ None Yes

2 9.0 m 4.5 m 3.0 m 22◦ 11◦ Panel Yes

2 8.6 m 4.5 m 4.5 m 17◦ 19◦ None Yes

3 10.7 m 8.4 m 4.3 m 18◦ 7◦ Building Yes

3 10.7 m 8.4 m 8.4 m 23◦ 26◦ None Yes

4 5.2 m 3.2 m 2.1 m 15◦ 5◦ Statue Yes

4 5.3 m 3.2 m 3.2 m 13◦ 17◦ None Yes

Table 5.5: Estimated and actual accuracy with which each virtual content has been

rendered while running the Chicago 0,0 application with the triple camera approach.

The meaning of each symbol is explained in detail in Section 4.1.

5.5). As far as compass orientation, the average error seems to be lower

with respect to downtown Chicago (and, in general, rotational tracking with

the SensorCamera appears to be more stable), probably due to a smaller

influence of electromagnetic fields.

While in Section 5.2.4 we dealt with combining the ARCamera and the

SensorCamera in order to estimate the pose of the MainCamera, the 4 sit-

uations listed in Table 5.5 are used to test the two alternative solutions

mentioned above: for each overlay we considered first the combination of

the ARCamera with the SLAMCamera and then the combination of the

SensorCamera with the SLAMCamera. In the first case for each overlayed

content, an easily identifiable trackable (for instance a building well visible

from different view points) was used to align the ARCamera - while the

SLAMCamera was activated once the tracking of the ARCamera was lost

or became unstable. This is the same idea we used in the dual camera

approach, by using the values of the SLAMCamera instead of the ones of

the SensorCamera in order to estimate the pose of the MainCamera. The

improvement from column ecomp to column eor of Table 5.5 is very similar

to the one already performed in the dual camera approach by combining the

ARCamera with the SensorCamera. The SLAMCamera proved on average

to be much less affected by environmental issues (e.g. magnetic fields) and

less prone to drift; however, its tracking is also computationally more ex-

pensive with respect to the one of the SensorCamera and, since overlays are

placed quite far in space, does not take advantage of the greater accuracy

in tracking smaller movements of the user. Overall, except in situations

in which we could have a particularly unstable SensorCamera orientation,

the addition of the SLAMCamera in this case doesn’t seem to bring many

significant advantages - if we are considering distant virtual objects.
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Figure 5.12: In the above sample scenario, SensorCamera (dual camera approach,

left) and SLAMCamera (triple camera approach, right) extended tracking methods are

compared in a sample situation in which the user has lost a tracked fiducial (a statue

- not visible in the figure) and then rotated his mobile phone clockwise along the

vertical axis by about 80◦. In the left image, we can notice how larger rotations in

an urban environment can be affected by sensor unreliability. Despite in Chicago 0,0

the addition of the SLAMCamera appears to slightly increase the robustness of the

tracking, eliminating the magnetic interferences that could limit the accuracy of the

SensorCamera, it cannot however replace the ARCamera: in order to obtain a reasonable

image overlay, we still need to leverage the presence of a geolocated fiducial.

The second test case for each overlay tries instead to get rid of the

ARCamera and just use the SensorCamera in combination with the SLAM-

Camera, without relying on the presence of fiducials. Despite this apparent

advantage, the initial horizontal and rotational error given by the Sensor-

Camera in the urban environment cannot be mitigated by the SLAMCam-

era, which simply considers relative movements with respect to the target

location. So, even in this case, the addition of the SLAMCamera doesn’t

bring significant advantages to the user experience of Chicago 0,0 - if we are

aiming at a precise overlay of 2D photography.

Overall, despite its capabilities of lighting-indepentent tracking and high

sensibility movement detection, the SLAMCamera did not contribute its

best to the Chicago 0,0 application: it seems that for achieving a good

initial pose for placing an overlay, a fiducial is needed; even after tracking

is lost, the SLAMCamera just represents a slightly more robust form of

extended tracking with respect to the SensorCamera, since the distance of

overlays does not allow to appreciate its accuracy on small movements.

In the next section, we will instead see how the SLAMCamera is per-

fectly suited for an application like DigitalQuest, where close-range interac-

tion with 3D models is required and accurate alignment of overlays is not

necessary.
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5.4.2 DigitalQuest

In the case of DigitalQuest, we really wanted to push the boundaries of the

dual-camera aaproach, in particular with respect to realism and interaction.

Keeping the same requirements we described in Section 5.3, extreme loca-

tion accuracy is definitely not an issue, since in this case we do not need

content to perfectly overlap onto views of the city. A relevant limitation

of the dual-camera approach for DigitalQuest was instead related to small

movements around the virtual content: depending on the GPS accuracy and

refresh rate, in many situations it was good practice to define abstract or

floating objects - with which to interact possibly from a certain distance, in

order to make less evident to the human eye eventual tracking inaccuracies

of the SensorCamera. In particular, despite smoothing and interpolation

offered an acceptable compromise, the act of walking closely to an object

was often unrealistic for two reasons: sudden position or rotation changes

could make the user perceive the content was not fully anchored to one real-

world location; movements of the user towards the object were definitely not

real-time (and not even perceivable when too close to the content), giving

an overall effect of low framerate. Our triple camera approach completely

solves this two issue thanks to ability of the SLAMCamera to make objects

stick solidly to one real-world arbitrary location, achieving an accuracy for

small movements that could be even considered better than the one provided

by the ARCamera.

Content / Accuracy egpsest egpsreal eloc ecomp eor Fiducial SLAM

1 6.7 m 4.3 m 4.3 m 11◦ 11◦ None Yes

2 5.5 m 3.7 m 3.7 m 16◦ 16◦ None Yes

3 4.8 m 2.6 m 2.6 m 8◦ 8◦ None Yes

4 5.1 m 2.2 m 2.2 m 17◦ 17◦ None Yes

5 8.6 m 5.2 m 5.2 m 46◦ 46◦ None Yes

6 4.3 m 1.7 m 1.7 m 12◦ 12◦ None Yes

7 6.6 m 3.5 m 3.5 m 20◦ 20◦ None Yes

8 4.3 m 1.1 m 1.1 m 13◦ 13◦ None Yes

Table 5.6: Estimated and actual accuracy with which each virtual content has been

rendered while running the DigitalQuest application with the triple camera approach.

The meaning of each symbol is explained in detail in Section 4.1.

In particular, we placed 8 animated 3D models around the city center

of Munich (Germany) and performed the same type of test we presented in

Section 5.3. In this case we preferred to consider only 3D meshes, preferably

animated and randomly moving around the environment, leveraging the
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Figure 5.13: On the left, a close-up image of a butterfly landing on a flower: despite

tracking started meters away, getting closer to the virtual object preserved a certain

realism with respect to tracking and perspective. In the right image, an example of

content placed up in the air without the need of pattern-based tracking.

possibility to easily define areas of movement given by our authoring tool.

With respect the results previously obtained from DigitalQuest, the hor-

izontal accuracy has decreased, but we need to consider that this this time

we are not running the application in a green area but in an urban envi-

ronment. A more significant comparison would be with the values obtained

in downtown Chicago, which are definitely worse than the ones obtained

in Munich. This is probably due to the lower height of the buildings in

the German city, which causes less signal reflection and allows cleaner GPS

readings. While relying only on the SensorCamera would not be feasible in

downtown Chicago, this data shows that running DigitalQuest in a city like

Munich is completely acceptable, considering an error range of few meters.

As we may also notice from the table, the addition of the SLAMCamera

is not correlated to the horizontal accuracy: the position where the content

appears is determined by the SensorCamera and, when the SLAMCamera is

enabled, it starts already shifted by the horizontal error given by the GPS.

However, as we already explained, this is irrelevant to our case: the advan-

tages of the third virtual camera consist instead in the improved reliability

(no unexpected movements, at least in a static environment), sensibility (few

centimeters insted of few meters) and frequency (20-30Hz instead of 2-5Hz)

of the SLAM-based tracking with respect to using solely the SensorCamera.

In brief, we get the same results of the ARCamera, with the disadvantage of

not having a very accurate initial positioning in the real world, but with the

advantage of not needing a pattern image to detect in predefined conditions

in order to start rendering the content.

When placing objects in a static context, with fixed environmental fea-

tures, the result we obtained were quite promising. In Figure 5.13 (left) it is

possible to see the addition of a butterfly, moving along a regular pattern,

on a set of flowers: despite the tracking started about 5 meters away from
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Figure 5.14: Sample test of a virtual object inserted into a scene with continuously

changing environmental features. In this case, the tracking of the SLAMCamera alone

becomes very unreliable due to the passing of people, making the animated zombie in

the left image appear, few seconds later, in a completely different setting (right image).

This can be avoided by combining the SLAMCamera with the SensorCamera.

the target, it was possible to get close enough and see the butterfly landing

on the same flower, with the correct scaling. We noticed that is even easier

to have realistic objects flying at a certain height (Figure 5.13, right): to

have precise tracking, we don’t need anymore to make the user lock to an

environmental feature (e.g. a building) and then turn to the interested area,

but now it is possible to directly start tracking without patterns, as long as

the scene doesn’t have a completely clear sky.

In a second case, we tried to insert into Marienplatz square in Munich

an animated zombie, for which we defined a height of 1.60m. We verified

that the SLAMCamera was able to track with the correct perspective up to

a distance of about 30m: all along this range, the animated content seemed

to keep the correct proportions according perspective, appearing the same

height as people in the scene at the same distance. Another aspect to con-

sider is the robustness of the tracking despite the repetitive floor pattern of

the square, which in the case of the ARCamera would have probably caused

recognition issues. However the third camera alone is not enough in certain

cases: we noticed that turning the mobile device by a wide angle or very

fast caused tracking to degrade significantly; at the same time, the passing

of people sometimes caused the content to be unnecessarily shifted and ro-

tated, due to the change of tracked runtime features (as shown in Figure

5.14). In this case our solution in simply to detect when the angle between

the SLAMCamera and the SensorCamera goes beyond a certain threshold

due to a sudden movement of the SLAMCamera, as we explained in Sec-

tion 3.6 in this situation, we use our usual 4r method to detect relative

changes in orientation with the SensorCamera. For instance, in the case of

Figure 5.14, while the passing of people could produce a result similar to the

right image using the SLAMCamera alone, the detection of the unexpected
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Figure 5.15: Sometimes tracking flaws can turn out to be useful: in the above images,

the user can “catch” a virtual object with his hands and bring it close to the camera,

hypothetically enabling some event or interaction.

camera movement allows us to give priority to the SensorCamera, which,

detecting no real device motion, will still render the image on the left. Un-

fortunately, still much work needs to be done in this direction, especially if

we consider the problem of occlusion: for now, even if a person passes in

front of our content (i.e. between our device and the object), it will still

be rendered on top of the person. Also, despite we are potentially able to

define the real-world boundaries in which objects can move thanks to our

editor, dynamic elements such as people cannot be modeled a-priori, thus

the zombie cannot be aware of their position in space without adding some

sort of real-time, dedicated image processing feature.

A relatively curious aspect we discovered regarding the SLAMCamera

is that the tracking issue we just mentioned can turn out to be useful in

some cases: Figure 5.15, shows how the flaw can be leveraged for “catching”

objects with hands. Obviously there are no guarantees of keeping the exact

same scale and orientation of the object, but it is a cheap way to achieve

what a bulky Leap Motion [63] or a more complex OpenCV [67] monocular

gesture detection algorithm could do on a mobile device.
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Chapter 6

Conclusions

In this document we have presented our location-based, spatial approach

to mixed reality through the implementation of both a mobile and an edi-

tor application. Differently from many augmented reality applications, our

method is based on the principle of geolocating content in a tridimensional

space, creating a 1-to-1 mapping between real-world and virtual world co-

ordinates.

By leveraging both mobile sensors and visual tracking techniques through

our “dual camera” approach, we are able to estimate an absolute 6DOF pose

of the camera: while the user walks in the real world with his device, a virtual

camera moves and rotates accordingly in the virtual space, defining what

content needs to rendered on top of the live video stream acquired by the

hardware mobile camera. This way, we can take advantage of the benefits

provided by both location-based augmented reality and pattern-based image

recognition, since defining the 3D position and size of fiducials allows us to

define an abstraction that deals in the same way with the two approaches.

Indeed, in Section 3.6 we demonstrated how adding a new type of tracking

as a third helper camera (the SLAMCamera) does not change the mechanics

of our framework. In particular, some of the advantages provided by our

approach are:

• The possibility to combine different types of tracking in a single ref-

erence system, where every virtual position is directly associated to a

real world location.

• Performing extended tracking and displaying content even if visual

tracking is not available (e.g. a fiducial has been lost), leveraging

mobile sensors as a fallback.

• Knowing the absolute position of user and content, allowing to load
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and unload content according to the user location, pruning the dataset

of tracking images based on proximity, leveraging real world con-

straints and site-specific considerations that characterize the position-

ing or virtual content.

• Providing intelligent camera smoothing to remove the jitter normally

provided by AR applications; in particular, we focused on stabilizing

camera pose estimation in case of sudden changes in tracking avail-

ability.

• Using rotational information in order to understand how much a user is

moving away from a target object, orienting him towards new content

or making him return to the desired position; at the same time, our

approach allows showing content dynamically to avoid overlapping in

3D space and is able to signal incoherent absolute and relative poses,

in order to enable the application of corrective countermeasures.

• The possibility to define smart user interfaces, that take into account

context-specific information to suggest the user how to experience at

best mixed reality.

• Being easily extensible and agnostic with respect to the visual tracking

and sensor correction algorithms.

Additionally, we have leveraged our spatial representation of mixed re-

ality in order to create an editor application, aimed at easily defining the

position of content and fiducials in 3D space: still exploiting the mapping

we defined between the two worlds, each object inserted in the editor appli-

cation is meant to appear in the corresponding real-world position when a

user will look at that direction with his mobile device. After defining the

user interface and the controls for customizing content in the editor applica-

tion, we proposed a system architecture enabling real-time editing of mixed

reality content: if the designer moves a virtual object 3 units to the left in

the editor, a user in that location will see at real-time that object moving

to the left by 3 meters. We showed also how a real-time architecture may

be very helpful for representing users directly inside the editor: shown as

avatars, they are characterized by the location and orientation defined by

their mobile device, which update as they move in the real world. This rep-

resentation allows us to study the behavior of users and at the same time to

take design decisions aimed at “correcting their MR experience, by enabling

the designer to assume the user’s perspective. Starting from here, we have

also explored possible new types of interaction between the designer and the
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people using the mobile application, like assuming and previewing a user’s

perspective, streaming audio and video and introducing the designer him-

self inside the mixed reality world. In particular, we believe that decoupling

tracking techniques and content definition is a relevant contribution with re-

spect to the authoring process of MR applications, allowing the creation of

experiences remotely without the need of knowing in advance which tracking

methods will be used.

In order to prove the feasibility of our approach, we developed two case

study mobile applications compliant with our method: with Chicago 0,0 we

showed how it is possible to insert bidimensional virtual content in 3D space

to match specific user views, relying on extended tracking with the avail-

able environmental features due to the high inaccuracy of mobile sensors

in downtown Chicago; with DigitalQuest we demonstrated how our proto-

col can be easily extend to create more complex MR experiences and we

showed how our approach behaves with tridimensional content in cases in

which mobile sensors are more reliable. In both cases, we also dealt with

user interface aspects based on the user and content location and aimed at

improving the overall MR experience. Ultimately, we explored the addition

to our standard approach of a SLAM-based type of tracking, able to track

environmental features detected at runtime: by applying it to both Chicago

0,0 and DigitalQuest, we showed in different settings how it can improve

the realism and robustness of the overall MR experience.

6.1 The future of MR

Despite our work mostly relies on the significant technology improvements

in mobile computing that have characterized the last few years, much work

still has to be done in the world of mobile and wearable mixed reality.

Mobile displays now have a much greater resolution and commercial

smartphone processors may now rely on up to 16 cores allowing an incredi-

ble computational power if compared to the early 2000s. Nowadays almost

all wearable and mobile devices are equipped with more accurate inertial

sensors, whose drift and inaccuracies have decreased significantly thanks to

the development of sensor fusion techniques. The positioning of other type of

technologies, like GPS, has been improved by combining different new tech-

niques. More and more open-source code or public libraries become available

each day on the internet and a greater number of developers, considering

also the rapidly decreasing cost of hardware, has had the opportunity to

develop its own applications outside of research laboratories.

Despite the enabling technologies of mixed reality were defined more
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than 20 years ago, only few years ago augmented reality has concretely tried

to expand to consumer products and to the advertising world in particular.

This has been possible thanks to all the recent changes mentioned above

and almost everyone now can afford a smartphone supporting this type

of technology; however, the he terminology “mixed reality” is still pretty

unknown to the general public, which eventually refers to the “classical”

conception of marker-based or pattern-based AR of making virtual content

appear on top of some sort of fiducial - which has very limited applications if

compared to the whole MR spectrum. The real innovation, in fact, has not

been brought by augmented reality, but by another realm along the virtuality

continuum that was a popular field of research in the 1990s: virtual reality.

At Los Angeles Vision Summit 2016 and at the IEEE VR 2016 confer-

ences, this year has been (arguably) defined multiple times as the year in

which VR will become available to everyone. For sure the previous two ver-

sions of Oculus Rift [66] and of Google Cardboard [21] had already started

changing the way VR was developed in the 90s, but the new technologies

presented with Oculus Rift v3 and HTC Vive [40] really represent great im-

provements for consumer scale solutions in the near future, even if their price

is still too high for mass distribution. A great interest from the world of

cinema, videogames and marketing has recently brought incredible amounts

of money to this field; even big companies like Google and Facebook started

trying to bring VR solutions to a wider public, for instance by making 360

videos available on both platforms with the support for Google Cardboard.

Recent virtual reality research has focused mostly on improving tracking,

especially combining sensors and visual techniques for room-scale environ-

ments, design of head-mounted displays, resolution and interaction, through

new types of physical controllers or gesture based interfaces like Leap Mo-

tion [63]. A good amount of these improved technologies has many features

in common with MR: indeed, only recently the term “mixed reality” has

become more popular for intending something that is more flexibly oriented

towards virtual reality with respect to the constrained augmented reality

the public has always been used to. In this sense, Milgram’s taxonomy [61]

has lost part of its original meaning, since outside research labs MR often

is not considered anymore a superset of AR, but a more flexible mixture

between AR and VR. The most significant example that made used of the

term “mixed reality” is Microsoft Hololens [57], which has been just released

on the market and heavily relies on marker-less SLAM techniques for build-

ing maps of the environment: from a certain point of view, it is a headeset

very similar to the the ones that have become popular for virtual reality,

except for the fact it allows the user to interact with the real world. This
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is why it will probably be easier to conceive mixed reality as an evolution

of the current state-of-the-art well-known VR technology, more than an ex-

tension of the aumented reality few people knew about ten years ago. An

interesting role will be played also by Playstation with the introduction of

its Playstation VR headset [82], that will try to bring VR headsets at a

more reasonable price in the houses of many people, in a similar way to

how Google has done with Cardboard but aiming at a high-end dedicated

solution. At the same time, the company Lenovo has recently launched the

first “mixed reality enabled” mobile phone in Summer 2016, with a partic-

ular camera configuration able to support the technology developed with

Google’s Project Tango [35]. However, as we also discussed in Section 1.2,

the goal is not just to create a technology but also to make it widely avail-

able to people: despite the recently published Pokémon Go [45] application

still has a limited number of features, it had the great contribution of mak-

ing millions of people more acquainted to the world of mobile augmented

reality, especially in relation to monocular SLAM-based techniques - that

will probably become the standard approach for the near future.

There has been a significant change in the technology in order to allow

all of this, but we believe the greatest revolution is happening right inside

the mind of people, which are embracing the interaction with more and more

virtual content during their daily lives and are getting used to the idea of

using wearable technologies that time ago ago would have been inconceivable

for mass production. Both technical and sociologic progresses recently made

by VR represent a significant contribute to MR, but, if we want to consider

mixed reality as an evolution of virtual reality, we also need to admit that

MR still has even more challenges that the ones which VR is still trying

to solve. If we think about the narrow field of view offered by Microsoft

Hololens, it seems almost to go back to Azuma’s survey of augmented reality

in 1997 [12]. The accuracy results shown by our tests describe even more

how we are still distant from the ideal of mixed reality we have. At Vision

Summit 2016 [1] it was predicted that, 10 years from now, mixed reality will

completely surpass virtual reality in many fields and become widely available

in our daily lives. For the moment, we can just say that much work still

needs to be done in order to achieve reasonable results, but at least we can

proudly say we are walking the right path.
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[16] Stéphane Côté, Philippe Trudel, M Desbiens, Mathieu Giguère, and

Rob Snyder. Live mobile panoramic high accuracy augmented real-

ity for engineering and construction. Proceedings of the Construction

Applications of Virtual Reality (CONVR), London, England, 2013.

[17] Carolina Cruz-Neira, Daniel J Sandin, Thomas A DeFanti, Robert V

Kenyon, and John C Hart. The cave: audio visual experience auto-

matic virtual environment. Communications of the ACM, 35(6):64–73,

1992.

[18] Davide Antonio Cucci and Matteo Matteucci. A flexible framework

for mobile robot pose estimation and multi-sensor self-calibration. In

ICINCO (2), pages 361–368, 2013.

[19] Davide Antonio Cucci and Matteo Matteucci. On the development of a

generic multi-sensor fusion framework for robust odometry estimation.

Journal of Software Engineering for Robotics, 5(1):48–62, 2014.

[20] DAQRI. Daqri. http://daqri.com/, 2016. [Online; accessed

08/03/2016].



BIBLIOGRAPHY 135

[21] Google Developers. Google cardboard.

https://developers.google.com/cardboard/, 2016. [Online; accessed

16/04/2016].

[22] Ji-Liang Doong, Ching-Huei Lai, Kai-Hsiang Chuang, and Chun-Chia

Hsu. Learning effects of location based mixed reality game: A pilot

study. Procedia Manufacturing, 3:1603–1607, 2015.
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pening to virtual and augmented reality applied to architecture? In



BIBLIOGRAPHY 141

Conference on Computer-Aided Architectural Design Research in Asia

(CAADRIA 2013), volume 1, page 10, 2013.

[84] Ivan E Sutherland. A head-mounted three dimensional display. In Pro-

ceedings of the December 9-11, 1968, fall joint computer conference,

part I, pages 757–764. ACM, 1968.

[85] Gabriel Takacs, Vijay Chandrasekhar, Natasha Gelfand, Yingen

Xiong, Wei-Chao Chen, Thanos Bismpigiannis, Radek Grzeszczuk,

Kari Pulli, and Bernd Girod. Outdoors augmented reality on mobile

phone using loxel-based visual feature organization. In Proceedings

of the 1st ACM international conference on Multimedia information

retrieval, pages 427–434. ACM, 2008.

[86] Jerry O. Talton, Daniel L. Peterson, Sam Kamin, Deborah Israel,

and Jalal Al-Muhtadi. Scavenger hunt: Computer science retention

through orientation. In Proceedings of the 37th SIGCSE Technical

Symposium on Computer Science Education, SIGCSE ’06, pages 443–

447, New York, NY, USA, 2006. ACM.

[87] Hideyuki Tamura, Hiroyuki Yamamoto, and Akihiro Katayama.

Mixed reality: Future dreams seen at the border between real and vir-

tual worlds. Computer Graphics and Applications, IEEE, 21(6):64–70,

2001.

[88] Stefaan Ternier, Roland Klemke, Marco Kalz, Patricia van

Ulzen, and Marcus Specht. Arlearn: Augmented reality

meets augmented virtuality. 18(15):2143–2164, aug 2012.

http://www.jucs.org/jucs 18 15/ARLearn augmented reality meets.

[89] Three.js. Javascript 3d library. http://threejs.org/, 2016. [Online;

accessed 06/03/2016].

[90] Christian Tonn, Frank Petzold, Oliver Bimber, Anselm Grundhöfer,
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