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Abstract

In industrial accidents there can be gas leaks. Among various mobile robotics olfaction
applications, gas source localization is of important value, especially in cases when the
gas of interest is poisonous or dangerous to human lives. The purpose of this thesis is
the  development  of  an  exploration  strategy  with  the  intention  of  localizing  the  gas
source by a mobile robot equipped with in-situ gas concentration sensors. By using
additional information about wind flows in the environment it is possible to estimate the
distance to the gas source and explore accordingly.
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Sommario

In alcuni incidenti  industriali  ci  possono essere perdite di  gas. Tra i  vari  problemi di
rilevamento di gas tramite robot mobili,  la localizzazione della sorgente del gas è di
fondamentale importanza, specialmente in casi in cui il gas di interesse è velenoso o
pericoloso per le vite dei lavoratori. Lo scopo di questa tesi è lo sviluppo di una strategia
di esplorazione  con l'intenzione di localizzare la sorgente del gas da un robot mobile
dotato da sensori in-situ di concentrazione del gas. Utilizzando ulteriori informazioni sui
flussi  eolici  nell'ambiente  è  possibile  stimare  la  distanza dalla  sorgente  del  gas  ed
esplorare appropriatamente.
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Chapter 1

Introduction

Recent research activities in mobile robotics have been showing good results in using
autonomous robots to aid human workers, especially in dangerous or difficult  tasks.
Among  the  vast  applications  of  mobile  robotics  we  can  distinguish  exploration  of
unknown environments, search and rescue missions in disaster situations, monitoring
and surveillance. In order to introduce autonomy in performing these tasks, issues such
as localization of the robot, methods of navigation and sensing of surrounding events
have been studied. The definition of appropriate exploration strategies is among the
many challenging aspects of these problems that is of interest in many applications. The
robots need to be able to autonomously take navigation decisions in order to complete
the exploration tasks in a most efficient manner. 

The mobile robotic olfaction field of research was established as the combination
of  navigation  strategies  in  mobile  robotics  with  gas  sensing  techniques  in  order  to
autonomously perform tasks related to environments where certain gases are present.
This application finds great interest in cases where the types of gases are poisonous or
dangerous to human lives. In many industrial environments or landfill sites, gases such
as methane can be present.  Although methane is  not  considered a  toxic  gas,  it  is
extremely flammable even in low concentrations. Because methane displaces oxygen it
is classified as an asphyxiant and is considered dangerous. In many cases the gases of
interest are odorless and colorless, so it is important that in case of industrial accidents
where there are gas leaks to localize them as soon as possible.

The purpose of this thesis is the development of an exploration strategy with the
intention of localizing the gas source by a single mobile robot equipped with in-situ gas
concentration  sensors.  By  using  additional  information  about  wind  flows  in  the
environment  it  is  possible  to  estimate  the  distance  to  the  gas  source  and  explore
accordingly. The goal is to explore the environment trying to identify areas near the
source of the gas leak and pointing out the nearest reachable point to it. 

Recently there have been some promising results in robotic olfaction on estimating
the distance to the gas source in the presence of a wind flow. It is possible to use in-situ
gas concentration sensors to compute this estimation in a wind tunnel. We introduce an
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exploration method that  tries  to  minimize  this  estimation of  the  distance to  the  gas
source. In order to solve the problem at hand as efficiently as possible, the exploration
method needs to include a model of the wind flows in the environment and how it affects
gas distribution. 

In more detail, after the robot takes measures of gas concentration, wind speed
and direction, it estimates the distance to the gas source and identifies the direction to
follow in order to approach it. The direction to follow is chosen based on a trade-off
between two criteria: exploration of unknown areas in the environment and minimization
of  the  gas  source  distance.  In  the  beginning  of  the  execution  the  robot  prefers
exploration  and  tries  to  go  towards  unknown areas.  After  each  step  that  the  robot
performs, the preference leans slightly towards exploitation, aiming to send the robot
towards areas near the estimated gas source by the end of the execution. 

For the purpose of the exploration method with which we approached the problem,
we  hypothesized  that  the  location  of  the  gas  source  could  be  estimated  in  open
environments and long distances by using the method devised to work in a wind tunnel
with  short  distances.  Simulation  and  real  world  experiments  have  shown  that  the
method is not suitable for this scenario, therefore it was adapted to the needs of this
problem.

From the experiments that were held it was concluded that the approach is able to
identify the reachable areas near the gas source in the upwind direction whenever wind
conditions allow the distance estimation to give realistic results. Successful experiments
have identified the closest reachable point to the gas source as the final position. By
properly tuning the parameters it is possible to use this algorithm in environments of
different sizes. 

The thesis is structured as follows: a presentation of the current state of the art
describing different gas source localization approaches, their benefits and limitations in
Chapter 2, the problem formalization in Chapter 3, the solution proposal in Chapter 4.
After  a  thorough  description  of  the  technical  aspects  of  the  system architecture  in
Chapter 5 follows a presentation of the experimental setup and a discussion on the
results in Chapter 6. A summary of some important concepts and benefits, along with
possible future improvements concludes the thesis in Chapter 7.
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Chapter 2

State of the art

The problem of gas source localization has been researched in the past two decades
and there are several methods to approach it. The algorithms have been categorized in
different  ways:  Kowadlo  and  Russell  [10]  present  a  classification  of  more  than  25
algorithms  in  a  Venn  diagram,  Lochmatter  [9]  categorizes  them  in  ten  categories.
Interesting approaches can be seen in algorithms that feature multiple robots [22, 28,
31, 32, 33] although not discussed further in this thesis which is intended to present a
single robot method. 

In  general,  algorithms  make  use  of  wind  flows  (anemotaxis)  and/or  gas
concentration (chemotaxis) to find a direction for the robot to follow. Chemotaxis refers
to an approach in which the robot moves are defined by the gas distribution, usually gas
concentration gradient. Anemotaxis refers to mechanisms in which the robot determines
the movement according to the airflow. 

A broad group of algorithms can be classified together considering the fact that
they try to mimic odor source localization by insects in nature [13, 14]. These algorithms
are  very  simplistic  and  usually  make  use  of  both  anemotactic  and  chemotactic
principles. 

Some  more  complex  algorithms  model  the  location  of  the  gas  source  with  a
probability distribution and then try to reduce its entropy [19, 20]. 

 2.1 Bio-inspired algorithms

This set of algorithms are inspired from the behaviour of insects such as dung beetles
and  moths  [13,  14]  in  tracking  the  odor  plume to  the  source.  Usually  the  tracking
algorithms  are  based  on  the  well-studied  behaviour  of  silkworm moths  in  following
pheromones [14] to find the partner. This behaviour mainly consists of: acquiring the
gas plume, upwind surge (moving upwind when in the plume), casting (swinging from
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side to side increasing the step size trying to acquire the plume if lost), spiraling (circular
motion if the plume cannot be found) [10].

In order to acquire the plume a simple systematic algorithm called sweeping is
executed  which  consists  in  the  following  steps:  collect  gas  concentration  and  wind
direction  samples  and  average  them  over  the  measurement  time.  If  the  gas
concentration average is above a certain threshold then it is assumed that the robot has
acquired the plume. Otherwise, the robot makes a step towards the orthogonal direction
with respect to the wind.

After the gas plume has been acquired, the plume tracking part of the problem can
be approached in different ways:

 2.1.1 Surge-cast

This behavior is inspired from the silkworm moth and was presented by Lochmatter and
Martinoli [16]. The robot measures the wind direction and moves upwind while it is in the
gas plume. It can be assumed that the robot loses contact with the plume either when it
moves for  a  certain  distance d_lost  out  of  the plume or  immediately  when the gas
concentration measurement goes below a certain threshold. After it loses contact with
the gas plume it  tries  to  reacquire  the plume by measuring the  wind direction  and
performing a cross-wind movement for a distance d_cast [8].

4

Fig 2.1: Illustration of the surge-cast algorithm. The stars indicate the positions where the wind direction is
measured, whereas the gas concentration is measured continuously. The plume is traced by the gray
solid lines and the source is indicated by the red dot. The red arrow illustrates the main wind direction.

The figure was adopted from Neumann's dissertation [8]



 2.1.2 Surge-spiraling

Plume  finding  is  performed  by  an  initial  outward  spiral  search  pattern  [28].  Plume
traversal  is  performed  using  a  type  of  surge  algorithm.  When  an  odor  packet  is
encountered during spiraling, the robot samples the wind direction and moves upwind
for a set distance. If  during the surge another odor packet is encountered, the robot
resets the surge distance but does not resample the wind direction. After  the surge
distance  has  been  reached,  the  robot  begins  a  spiral  casting  behavior,  looking  for
another plume hit.

 2.1.3 Zig-zag

This behavior is typical of the dung beetle [15]. The robot performs a wind measurement
and follows the upwind direction at an angle alpha until it loses the gas plume. After the
plume is lost (at the edge of the plume), then the robot performs a movement at an
angle -alpha with respect to the upwind direction [8].

 2.1.4 Pseudo-Gradient

This algorithm requires two gas concentration sensors placed in each side of the robot.
The idea is to rotate the robot according to the gradient direction of the two sensors and
in proportion to the concentration difference [34]. Because it  is a purely chemotactic

5

Fig 2.2: Illustration of the zigzag algorithm introduced by Ishida et al. [15]. The plume is traced by the gray
solid lines and the source is indicated by the red dot. The red arrow illustrates the main wind direction.

The stars indicate the positions where the wind direction is measured, whereas the gas concentration is
measured continuously. The figure was adopted from Neumann's dissertation [8].



approach, the robot cannot distinguish whether it is approaching the source or moving
away from it.  In order to mitigate this problem, a good idea is to rotate the robot in
proportion to the concentration gradient in dependence of the upwind direction. The
algorithm  is  straightforward:  The  robot  turns  clockwise  in  the  event  of  a  positive
concentration difference and counterclockwise otherwise. The magnitude of the turn is
fixed. Afterwards it makes a step forwards and repeats from the beginning [8].

 2.1.5 Source declaration

In  the  bio-inspired  algorithms,  very  often  the  source  declaration  problem has  been
neglected. Usually a human observer would visually establish whether the robot has
reached a pre-defined proximity to the gas source. Among the first  approaches that
didn't involve a human observer we can distinguish Li's approach [38] to send the robot
in cloverleaf trajectories in order to estimate the location of the source. His method uses
six most recent detection points to calculate a bounding box using three of the six most
upstream locations  [8].  When the  diameter  of  the  box  becomes small  enough,  the
source is assumed to have been found and the location is estimated at the center of the
box. However the results were accurate of a few dozen meters, mainly because of a
poor navigation system. A more accurate source declaration is presented can be done
using a particle filter-based gas source localization described in section 2.2.

In  Lochmatter  [9],  the  surge-cast  algorithm  slightly  outperforms  the  surge-spiraling
algorithm. In the pure casting algorithm, by increasing alpha the robot has to turn more
and  the  performance  decreases.  From  a  comparison  between  Lochmatter  and
Neumann  the  surge-cast  algorithm  performs  better  than  pure-cast  with  alpha  75
degrees [8]. However, pure-casting is more robust. The pseudo-gradient tends to be at
least as efficient as the surge-cast algorithm.

 2.2 Probabilistic approach

In many outdoor experiments, it is difficult to intercept the odor because of the rapidly
changing gas plume. The robot needs to respond immediately after having acquired the
plume, but often the MOX gas sensors have long response and recovery times. Having
a fixed gas concentration threshold to indicate the presence of the plume can cause
events of non-detection [5]. If the threshold is too high, the plume could not be detected
because of the lag in response time of the sensor. If the threshold is too low, there can
be events of invalid detection. Therefore in [4] an adaptive threshold is introduced:
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c̄=λ ¯c t−1+(1−λ)c t if t≥1

c̄ t=c t  if t=0
(2.1)

where c t  is the measured odor concentration at time step t  and λ∈[0,1] . The 

larger the value of λ , the slower c̄ t adapts to c t .
Li et al. used algorithms similar to the bio-inspired ones, namely the plume finding

strategy in [21] and the spiral-surge plume tracking algorithm in [22] in order to collect
measures more efficiently in the Particle Filter algorithm introduced in [5]. The Particle
Filter (PF), also known as Sequential Monte Carlo Method [8], is used to represent the
location of the gas source. The basic concept is that any probability density function
(pdf) can be represented by a set of N random state samples (particles) drawn from this
pdf to approximate the target's true world state (in this case the location of the gas
source) [8]. In [5], while the robot explores, the location of the gas source is estimated
iteratively.  The  distribution  of  the  gas  source  is  represented  by  a  particle  set

{Lk
i , i=1 ...N s} , each particle is accompanied by a weight w k

i at each time step k .

The weight  w k
i represents the posterior density of the source location at the Lk

i at

the time step k . If the particles converge in a small area, the location of the source
can be estimated as: 

Pk=∑
i=1

N s

wk
i Lk

i (2.2)

The convergence of the particles is determined by: 

σ k≤Rconv (2.3)

where σ k
2
=∑

i=1

N s

[|Lk
i
−Pk|

2wk
i
] and Rconv is the convergence radius.

The algorithm generates particles after the first odor-detection event happens. The
weights  are  updated  in  each  iteration:  the  particles  with  small  weights  are  deleted
according to a Russian roulette and new ones are generated around particles with high
weights.  An  observation  window  is  defined  as  the  area  composed  of  all  possible
locations at which the particle is likely being observed at a probability density above a
given threshold. If there are no particles in the current observation window, then new
particles are generated and spread out in the observation window as new hypotheses of
the gas source. The algorithm terminates when the particles and the estimated locations
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of the gas source converge. The experiments were evaluated using three criteria: the
localization error defined as the distance between the declared position of the source by
the  algorithm and  the  actual  position,  the  success  rate  defined  as  the  ratio  of  the
successful localizations to the total number of experiments, and the convergence steps.
The successful trials had mean values of 79% success rate, 40 convergence steps and
0.290m localization error[5].

 2.3 Other approaches

Recently different approaches were confronted that aim to determine the distance from
the sensor to the gas source. The source distance or an estimate of it is very useful in
order  to  treat  the  problem  of  gas  source  localization  as  an  optimization  problem.
Lilienthal et al.  [23] discovered that a good indicator of the source location was the
variance of the measured samples. The variance was significantly high at the source
location. Schmucker et al. [7] introduced a novel approach to estimate the distance from
the sensor to the gas source in a wind tunnel by computing the number of bouts in the
pre-processed gas concentration signal.

Other  approaches  include  Lilienthal  and  Duckett  [17]  that  proposed  a  novel
method  where the robot evades local concentration maximums, exploring areas with
low concentration. By leaving out the high concentration areas, this helps to infer the
location of the source by considering that the robot explores all areas except for the
source location. 

In  [24],  an  approach  that  combines  vision,  olfaction  and  airflow  maps  for  gas
source localization is presented.

From the analysis of the state of the art, it was concluded that the majority of the
algorithms work by taking into consideration the gas concentration and/or the wind flows
in the environment. To our knowledge there are no approaches that face the problem of
gas source localization by considering a method to estimate the source distance.  In [7]
it is suggested to combine the proposed bout count feature with robotic navigation as an
interesting remit for future studies. 

Results show that the problem of gas source localization is still an open problem of
great interest. 
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Chapter 3

Problem definition

In this chapter, we address the problem of localizing the gas source by a mobile robot.
The robot estimates the distance to the gas source from samples of gas concentration
and uses information on the wind flows of the environment to perform this task. 

It  is  assumed  that  the  environment  is  known  a  priori  and  it  is  not  subject  of
changes in the shape and/or presence of obstacles. The environment is represented as
a Cartesian grid, thus obtaining a set X of N cells of identical size: X={x1, ... , xN} . The
set of all cells M is partitioned into subsets O and F, where O includes all the cells which
contain an obstacle and therefore are not traversable by the robot. F includes all the
cells which do not contain obstacles and are therefore traversable by the robot.

The robot is equipped with in-situ gas concentration sensors and a wind sensor.
Metal-Oxide  sensors  are  the  most  common  gas  concentration  sensors  in  robotic
olfaction.  These  sensors  are  available  commercially,  have  a  relatively  low  cost
compared to other sensor types and a life span of three to five years. The response and
recovery  times  are  very  acceptable  which  makes  them  very  efficient  for  most
applications. The MOX sensor type belongs to the in-situ type of sensors, which means
that they need to be in direct contact with the gas in order to measure the concentration.

Usually these sensors consist of a heating element inside a ceramic tube coated
with a semiconductor. When the sensor is in direct contact with the gas molecules, the
semiconductor’s resistance drops. As the gas concentration is reduced, the resistance
increases. The relationship between the gas concentration and the sensor’s resistance
is nonlinear and can be approximated like this:

RS≃KC−α
(3.1)

where  RS is  the  resistance  of  the  sensor,  K is  a  scaling  constant,  C is  the
concentration of the gas and α  is the sensitivity of the sensor. 
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The changes of the resistance value are manifested in the voltage signal which
increases when the gas concentration is high and decreases when it is low. 

The robot is equipped with an array of six SGX Metal-Oxide sensors. The sensor
heater temperature can be configured by setting the voltage. In all tests the voltage was
set  to  the maximum (5V).  The sensors were configured differently  in  order  to  have
different  responses  for  the  gas  concentration.  More  specifically,  it  is  possible  to
manually set the resistor load on each sensor.

The gas in question moves in the environment according to the wind flows. In order
to  obtain  information  about  the  wind  flow  in  the  environment,  the  robot  has  been
equipped with a WindSonic sensor manufactured by Gill Instruments Ltd. This sensor
gives in output the direction of the wind and its speed. 

Among the available output formats, the polar representation was used. The wind
speed is measured in meters per second. The speed range of the sensor goes from 0 to
60  m/s  with  a  resolution  of  0.01  m/s  and  an  accuracy  of  2%.  The  direction  is
represented according to the sensor’s reference frame in degrees from 0 to 359  o in
downwind format. 

The wind sensor  samples at  a  frequency of 4  Hz.  This  frequency is fixed and
cannot be configured. During the measurement operation of the robot, wind information
samples  are  recorded  also.  Then  the  average  is  computed  to  have  a  speed  and
direction. In order to use the wind direction information from the sensor, first a proper
frame transformation needs to be performed. Because the robot is continuously moving
and rotating, the frame of the sensor cannot be used. Besides the angle value of the
wind  direction  increases  in  clock-wise  direction  which  is  contrary  to  the  robot’s
orientation. Therefore in order to have the proper wind direction, the value calculated
from  the  sensor  should  be  converted  in  radians  and  subtracted  from  the  robot’s
orientation. 

The robot records samples of the gas concentration, wind speed and direction from
the  sensors  for  a  certain  amount  of  sampling  time.  After  processing  the  gas
concentration signal, the source distance estimation is derived. We define a function

f :X→R+ to indicate the distance estimation computed in a cell x∈M .
In  this  scenario,  it  is  important  to  move the robot  in  order  to  have an optimal

coverage of the environment according to this sensory function.  The function  f is
unknown a priori and is built from noisy measurements. Therefore it is expressed as
noisy data:

y=f (x )+ϵ where ϵ∼N (0,σn
2) (3.2)

The coverage and the estimation should be performed simultaneously, that is the
robot has to estimate values of the function in unknown areas of the environment from
the measurements that it does and based on these estimates decide how to navigate in
order to cover the environment in an efficient way.
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Chapter 4

Solution approach

This  chapter  describes how to  approach the  problem of  gas source localization  by
considering  the  average bout  amplitude as  a  sensory  function  and using  Gaussian
Regression to optimally cover the environment. After a representation of the algorithm
by means of a flow chart,  each step is described in detail.  In particular, the source
distance  estimation  and  how  to  model  the  problem  with  Gaussian  Regression  is
described in more detail. 

 4.1 Algorithm overview

The goal of this algorithm is to explore the environment trying to identify areas near the
source of the gas leak and pointing out the nearest reachable point to it. 

The approach discussed here broadly consists in the repetition of the following
steps: make a measurement operation which consists in recording gas concentration
and wind samples, compute the source distance estimation, average wind speed and
direction, estimate the source distance function in nearby positions, and finally move the
robot to the next position.

 It  is  possible  to  estimate  the  distance  from  the  robot  to  the  gas  source  by
appropriately  processing  the  gas  concentration  signal  to  compute.  By  using  MOX
sensors, it is possible to extract rapidly fluctuating features of gas plumes that strongly
correlate to the distance to the source [7]. After applying a series of filters to the signal,
it is possible to estimate the source distance by analyzing the rising portions of it.  The
portions where the amplitude of the filtered signal of the MOX sensor was consistently
rising  are  defined  as  “bouts”.  The  extraction  of  the  signal  bouts  is  crucial  to  the
algorithm.
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In  order  to  estimate  the  source  distance  simultaneously  while  making
measurements, the problem is approached by the Gaussian Regression technique. By
properly defining the kernel function between positions in the environment it is possible
to  include  in  the  model  information  about  the  wind  flows  and  make  an  informed
coverage.

The algorithm is defined as follows:
1. Record samples of gas concentration, wind speed and direction
2. Compute bouts from the gas concentration signal
3. Define the kernel function based on the wind speed and direction
4. Estimate the mean and variance in nearby cells
5. Move the robot to the next measuring position

 4.2 Source distance estimation

One of the crucial steps of the algorithm is the detection of the bouts of the signal, i.e.
portions of the filtered signal where the amplitude was rising. In [7] it was discovered
that the number of bouts in a signal is related to the source distance: the higher the bout
count, the closer the sensor is to the gas source. The method that was presented to
compute the bouts was designed to work inside a wind tunnel. It was tested on different
wind speeds and it was seen that reliable results lied in the range of 0.1 m/s to 0.34 m/s
and  on  distances  from 0.25  m to  1.45  m.  However,  in  the  gas  source  localization
problems, the wind tunnel conditions are ideal and not realistic in the real world. Usually
wind flows are too chaotic and can change direction often over time.

In  this  project,  the  bout  computation  was  tested  in  open  environments.
Experiments showed that the bout count gives mixed results in this scenario and cannot
be used to estimate the source distance. On the other hand, the amplitude of the bouts
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showed  to  be  a  good  indicator  of  the  distance  to  the  gas  source:  the  higher  the
amplitude,  the closer  the sensor  is  to  the gas source.  Therefore we used the bout
amplitude to estimate the source distance. To detect the bouts it is necessary to use a
cascaded filtering approach to enhance fast transients in the signal. 

A low-pass filter is first used on the signal in order to smooth it. This is done by
applying a Gaussian convolution with σ smooth=0.3 s to remove high-frequency noise. In
the implementation this basically means that if the sampling frequency of the sensor
board  is  f then  the  standard  deviation  of  the  Gaussian  should  be  such  that
σ=f∗σ smooth .

y (n)=∑
m

x (m)G(n−m) (4.1)

where x (m) the initial signal,  y (n) is the filtered signal, and G(i) is the 
convolution kernel

G(i)=exp {
(i−k−1)2

σsmooth
2 } (4.2)
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On the smoothed signal, a differential convolution is applied by using the kernel
[−1 1] .  This convolution shows the differences among pairs of samples, so it  is

possible to see where the amplitude rises and where it decreases. 
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Fig 4.3: The smoothed signal after applying the low-pass filter

Fig 4.4: The signal after applying the differential convolution



signal := signal to be convoluted
SIGNAL_LEN := length of the signal
kernel := convolution kernel
kernelLen := length of the convolution kernel

procedure convolute(signal, kernel, kernelLen)
   halfKernelLen := kernelLen / 2
   n := 0

   while (n < SIGNAL_LEN)
      result[n] := 0

      if (n < halfKernelLen) 
      then 
         k_min := 0
      else 
         k_min := n – halfKernelLen

      if (n < SIGNAL_LEN – halfKernelLen) 
      then 
         k_max := n + halfKernelLen
      else 
         k_max := SIGNAL_LEN
                     
      k := k_min

      while (k < k_max)
         result[n] := result[n] + signal[k] * kernel[halfKernelLen – n + k]
         k := k + 1      
      
      n := n + 1

   return result

Listing 4.1: Pseudo-code to compute the convolution of the signal

Finally  the  signal  undergoes  an  exponentially  weighted  moving  average  filter
(EWMA) with half life τhalf=0.4 s . The operation that yields the filtered time series y t
from the low-pass filtered x t  can be expressed like in the following equation: 

y t=(1−α)∗y t−1+α∗x t (4.3)

where α=1−exp
log(0.5)
τhalf∗Δ t

 and Δ t is the time step in the equation.
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signal := signal to be convoluted
SIGNAL_LEN := length of the signal
HALF_LIFE := half life of the EWMA filter
DELTA_TIME := time step of the filtered series
y_t_old := 0
x_t := 0
alpha := 1 – exp(log(0.5) / HALF_LIFE * DELTA_TIME))

procedure ewma(signal)
   i := 0
   while (i < SIGNAL_LEN)
      x_t := signal[i]
      result[i] := (1 – alpha) * y_t_old + alpha * x_t

      y_t_old := result[i]
      i := i + 1

Listing 4.2: Pseudo-code of the EWMA filter computation

On the filtered signal, bouts of rising amplitude can be looked up on the differential
of the signal y t . Apply the differential convolution again:

y ' t= y t− y t−1 (4.4)
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The presence of a bout is characterized by y ' t being equal to or greater than

zero.  Let’s  define  a  boolean  variable bt=1 if  a  bout  is  present  at  time  t,  and  0
otherwise.

bt=1 if y ' t≥0

bt=0 otherwise
(4.5)

The bout starts when bt  flips from 0 to 1, and it last until it flips back to 0 again.
The bout amplitude is defined as:

about= y t2
− y t 1

(4.6)

where t1 is the starting time of the bout and t2 is the ending time. 
In this scenario, bouts were considered as such if the amplitude is greater than

zero and no threshold was provided for the duration of the bout. It is assumed that bouts
of very short duration are filtered out by the low-pass filter. 

 4.3 Exploration approach

The  problem  can  be  approached  by  the  Gaussian  Regression  technique.  We
model  the  average  bout  amplitude  function  f (x) as  a  Gaussian  Process  with
covariance function K :X×X→R .

Express the covariance function as cov ( y p , yq)=k (xp , xq)+σn
2
δpq  where δpq=1

if and only if p=q and 0 otherwise. The covariance between the outputs is expressed as
a function of the inputs.

Intuitively,  the  covariance  function  is  an  indicator  of  how  two  cells  of  the
environment are related to each other. If the covariance between two different positions
is close to 1, it means that those two positions are very similar to each other and the
average bout amplitude will be similar. If the covariance is low, then the bout amplitude
value will be very different which means that the two positions are not related to each
other.

The  data  collected  from  measurements  is  considered  as  training  data  and  it
provides knowledge about the function. Based on this training data, and the covariance
function, it is possible to estimate the value of the function in unknown positions. The
covariance  function  should  model  the  behavior  of  the  function  in  the  scenario  by
indicating how different positions are related to each other, and the training data gives
information about the values of the function in the measured positions. 
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The  joint  distribution  of  the  observed  values  and  the  function  values  in  test
(unknown) positions can be written under the prior as:

[ yf *
]=N (0,[K (X ,X )+σn

2 I K (X , X*)

K (X* , X ) K (X* , X*)]) (4.7)

The posterior can be written as:

f *∣X , y , X*∼N ( f * , cov (f *)) (4.8)

Where: 

f̄ *=E[ f *∣X , y , X*]=K (X* , X )[K (X ,X )+σn
2 I ]−1 y

cov ( f *)=K (X* , X*)−K (X *, X )[K (X , X )+σn
2 I ]−1 y

(4.9)

However, in this scenario, the robot will evaluate each unknown cell individually to
estimate the value of the function. So instead of a vector of test positions, only one
position is considered. By denoting  k*=K (x* , X ) and  K=K (X , X ) the mean and
variance equations can then be simplified for the one test point scenario like this:

f̄ *=k⃗*
T
(K+σn

2 I)−1 y⃗

V [ f *]=k (x* , x*)−k *
T(K+σn

2 I )−1k*

(4.10)

The mean f̄ * represents the expected value of the function in the position x* .

The variance V [ f *] represents the level of uncertainty in the position x* . When the

variance is close to 1, then the position  x*  is considered unknown and the level of

uncertainty is high. This means that the position  x*  would be interesting to explore
and make a measurement there. On the other hand, if the variance is close to 0, it
means  that  the  position  x*  is  considered  relatively  known  and  the  value  of  the
function can be estimated with a low level of uncertainty. 

The gas in question moves in the environment according to the wind flows. In general,
insects  in  nature  follow the  gas plume against  the  wind in  order  to  locate  the  gas
source. It is necessary to model this phenomenon in the Gaussian Regression model in
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order for the estimation of the sensory function to be as realistic as possible. This is
done by properly defining the kernel function. 

The kernel function describes how different positions are related to each other. In
general, positions that are near each other are more likely to have the same sensory
function value and therefore are highly related. After the robot performs a measurement
operation, it is likely that in the near vicinity of the measuring position, the value of the
sensory  function  is  similar  to  the  measurement  value.  Therefore  the  estimations  in
positions near the measuring position are very reliable. On the other hand, a pair of
positions that are far away from each other are not related to each other in this case. 

This simple kernel function, that is dependent on the distance between points only,
is called a radial kernel. However it is not very informative as it doesn’t give information
about the wind flow. The released gas spreads in accordance with the wind flows in the
environment.  It  is  intuitive  that  the  gas source would be located somewhere  in  the
upwind direction. Most of the state of the art anemotaxis algorithms make use of this
phenomenon. Therefore, the kernel function needs to model this preference of exploring
in the upwind direction, rather than making the robot go downwind. In order to include
the wind information, the radial kernel should be stretched according to the wind speed
and rotated according to the wind direction. 

Denote with σ the spatial scale and with γ the wind scale. Then if we denote
with a the semimajor axis and with b the semiminor axis:

πσ
2
=π ab

a=σ+γu
b= σ

1+
γ|u|
σ

(4.11)

where u is the wind vector.
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In this way, the axes of the stretched ellipse are computed by keeping the same
area of the radial kernel. 

Use the two axes in the 2D covariance matrix of the Gaussian:

Σ0=(a 0
0 b) (4.12)

Rotate the covariance matrix so that the semimajor axis is aligned with the wind
direction :

ΣR=R(α)Σ0 R(α)
−1 (4.13)

where 

R(α)=(cosα −sinα
sinα cosα ) (4.14)

ΣR is  the covariance matrix  of  the stretched ellipse shaped Gaussian kernel.
This  kernel  introduces  the  influence  of  wind  speed  and  direction  in  the  Gaussian
Regression,  but  it  doesn’t  distinguish  between  upwind  and  downwind  directions.  In
order  to  best  model  the wind influence on the problem at  hand,  the ellipse shaped
kernel  should  be  stretched  in  the  upwind  direction  and  squeezed  in  the  downwind
direction. In this way, the kernel represents the fact that positions in the upwind direction
are highly related to the measurement point.  These positions are also interesting in
order to follow the gas plume. The same cannot be said for positions in the downwind
direction. For this purpose, let’s introduce two separate kernel functions, one for each
direction.

In the upwind direction, stretch the semimajor axis by multiplying it by a constant n:

Σ0upwind=(n∗a 0
0 b)

ΣR=R(α)Σ0upwindR (α)
−1

kupwind (x , x ' )=exp−√(x−x ')TΣR
−1
(x−x ') if π /2≤β≤3π/2 and 0 otherwise

(4.15)
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where  is the angle between the vector  and the direction of the wind. 
In the downwind direction, shrink the semimajor axis accordingly:

Σ0downwind=(
a
n

0

0 b)
ΣR=R(α)Σ0downwind R(α)

−1

kdownwind(x , x ' )=exp−√(x−x ')T ΣR
−1
(x−x ') if 3π/2≤β≤π/2 and 0 otherwise

(4.16)

The final kernel function can be obtained by summing up the two partial kernels:

k (x , x ')=kupwind (x , x ' )+kdownwind (x , x ' ) (4.17)

 4.4 Selection of the next position

After computing the estimates and variances of unknown positions in the vicinity of the
measuring position of the robot according to the equations in (4.10), the robot chooses
the next position to go to before repeating the loop. 

Although it is very likely that the gas source is located in the upwind direction, it is
not wise to send the robot in that direction consistently, especially when the gas plume
has not been acquired yet. So in this algorithm the best direction for the robot to follow
is computed from a trade-off between exploration of unknown areas in the environment
and exploitation of the best estimated positions according to the sensory function. 
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windSpeed := speed of the wind in m/s
windDirection := direction of the wind in radians
S_SCALE := spatial scale parameter
W_SCALE := wind scale parameter
N := stretching parameter

procedure computeKernelFunction(windSpeed, windDirection)
   semiMajorAxis := S_SCALE + W_SCALE * windSpeed
   semiMinorAxis := S_SCALE / (1 + (W_SCALE) * windSpeed)) / S_SCALE)

   cos_alpha := cos(windDirection)
   sin_alpha := sin(windDirection)

   rotMatrix[0][0] := cos_alpha
   rotMatrix[0][1] := -sin_alpha
   rotMatrix[1][0] := sin_alpha
   rotMatrix[1][1] := cos_alpha
   
   sigma0Upwind[0][0] := semiMajorAxis * N
   sigma0Upwind[0][1] := 0
   sigma0Upwind[1][0] := 0
   sigma0Upwind[1][1] := semiMinorAxis

   sigma0Downwind[0][0] := semiMajorAxis / N
   sigma0Downwind[0][1] := 0
   sigma0Downwind[1][0] := 0
   sigma0Downwind[1][1] := semiMinorAxis

   sigmaUpwind := rotMatrix * sigma0Upwind * rotMatrix.inverse()
   sigmaDownwind := rotMatrix * sigma0Downwind * rotMatrix.inverse()

Listing 4.3: Pseudo-code for the stretching of the Gaussian kernel

The  robot  updates  its  position xk by  adding uk according  to  the  following
equations:

xk+1=xk+uk

uk=ρ e
jθ (4.18)

The size step ρ can be a fixed parameter. The direction θ   is decided based
on  two  contributions:  the  direction  to  the  highest  mean  estimate  and  the  variance
gradient. The direction to follow is chosen according to the trade-off parameter a(k )
that is  updated at  every step  k .  This parameter  will  take into consideration both
exploration  and  exploitation.  In  the  beginning,  it  is  preferred  to  send  the  robot  to
unknown locations in order to first explore the environment. The trade-off parameter is
high at the beginning of the execution, giving more weight  to exploration. For each
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iteration the trade-off parameter will decrease, slightly leaning more towards exploitation
at each step, until the a posteriori variance is low enough. 

x, x_prime, y, y_prime := coordinates of the two points
windDirection := direction of the wind

procedure getK(x, y, x_prime, y_prime)
   diff_x := x – x_prime
   diff_y := y – y_prime

   diff_v := [diff_x, diff_y]

   if (isUpwind(diff_x, diff_y))
   then
      k := exp(-sqrt(diff_v.transpose() * sigmaUpwind.inverse() * diff_v))
   else
      k := exp(-sqrt(diff_v.transpose() * sigmaDownwind.inverse() * diff_v))

procedure isUpwind(diff_x, diff_y)
   angle := atan(diff_y / diff_x) – windDirection
   return !(angle < M_PI / 2 && angle > -M_PI / 2)

Listing 4.4: Computation of the covariance between two points x and x'

In order to choose whether to follow the direction of the highest mean estimate or
the variance gradient we can sample from a Bernoulli distribution where we assign the
probability of success according to the trade-off parameter. 

By sampling from this distribution we can determine the main direction to follow
θm .  We give a more probabilistic nature to the final direction by sampling from a

Gaussian distribution, centered in θm .

p(θ)=exp{
−(θ−θm(k))

2

σm
} (4.19)

Finally, after computing the direction to follow, the robot moves along it making a
step  sized  according  to  the ρ parameter.  After  completing  the  motion,  the  robot
repeats the loop of the algorithm from the beginning.

When the a posteriori variance is low enough (i.e. the trade-off parameter goes
under a certain threshold) the algorithm terminates by declaring the position where the
highest bout amplitude estimate was found as the final one. 
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Chapter 5

Experimental results

This chapter describes the results obtained by testing the bout detection algorithm in
different distances from the sensor in simulation and in the real world. Afterwards, the
results  from the  execution  of  the  exploration  algorithm follow, showing examples  in
different  scenarios  of  wind  flows  and  concluding  with  a  discussion  on  how  the
parameters influence the execution.

 5.1 Bout detection results in simulation

To test the bout detection algorithm, a gas dispersion simulator was used. The simulator
is a filament-based algorithm: the concentration of the gas is determined by a number of
filaments released from the gas source. Gas dispersion is determined by a series of
files that  are used to  describe the spatio-temporal  changes of  the wind flow in  the
environment.  The  wind  flow  pattern  is  generated  by  OpenFOAM  [40],  which  is  an
external tool. Given a predefined environment and the corresponding files that describe
the wind flow information , the gas dispersion simulator allows the user to simulate the
dispersion  process  of  the  filaments  released  from the  source.  As  the  filaments  are
distributed  in  the  environment  according  to  the  wind  flow  and  gravity,  the  gas
concentration in the environment changes [39]. 

The bout detection algorithm was tested in environments of different size in order
to evaluate whether the number of bouts is related to the distance to the source. The
number of bouts is a good estimator of the source distance in wind tunnel applications
[7]. It was tested on different wind speeds and it was seen that reliable results lied in the
range of 0.1 m/s to 0.34 m/s and on distances from 0.25 m to 1.45 m. It is interesting to
see  whether  the  bout  count  is  related  to  the  distance  to  the  source  in  open
environments, higher wind speeds and longer distances. Wind tunnel conditions are not
very realistic in the real  world  because wind flows are too chaotic and can change
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direction  often  over  time.  Therefore  the  algorithm  needs  to  perform  well  in  open
environments in order to be useful for mobile robotic olfaction applications.

The first  experiment was run in a rectangle shaped environment,  discretized in
voxels of 1 m each. The environment had an area of 11mx6m and was 5m high (see Fig
5.1). The gas source was placed at the position (2,2) and 3m high. The generated wind
files simulated a wind flow along the U direction that ranged from 1.7m/s to 2m/s. The
simulator  ran  for  300  snapshots,  therefore  300  gas  concentration  samples  were
available for the execution of the bout detection.

Fig 5.1: First environment (11x6) where the bout count was tested in
simulation.

5 5 6 9 9

4 4 8 8 9

5 6 8 8 9

5 4 8 5 5

1 20 3 21 20

32 1 30 19 22

2 1 21 22 5

31 28 25 22 2

0 32 27 29 18

Fig 5.2: First results of the bout count in cells around the source in the environment presented in Fig 5.1.
The green filled cell indicates the location of the source. The blue arrow represents the wind flow

direction.
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By defining  α=1−
1

2∗τhalf∗Δ t
 in  the  EWMA filter  step  of  the  bout  detection

(equation  4.3)  and  computing  the  bouts  in  each  cell  it  was  seen  that,  contrary  to
expectations, the bout count doesn’t decrease with distance but rather increases (see
Fig 5.2). 

4 3 3 3 3

5 6 4 4 3

5 6 6 5 5

6 5 5 5 4

6 6 5 5 4

6 1 6 5 8

4 9 8 5 7

2 2 2 2 5

8 1 0 2 1

1 0 1 7 0

Fig 5.3: Results of the bout count in cells around the source in the environment presented in Fig 5.1. The
green filled cell indicates the location of the source. The blue arrow represents the wind flow direction. 

On the other hand by defining α=1−exp{
log(0.5)
τhalf∗Δ t

}  and using it in the EWMA

filter (equation 4.3), the bout count increased slightly for up to 4 meters from the source
(see Fig 5.3). However, the changes in the number of bouts are almost negligible. The
bout detection algorithm was designed to work on low wind speeds in the range of 0.1-
0.3m/s, so the high wind speed could be a factor for not detecting any notable changes.

In the second simulation experiment a bigger environment (see Fig 5.4) was used
(41mx16m). Because of the very long computation time, the concentration signal was
built out of 150 simulation snapshots. The wind flows according to the U axis direction.
The gas source was placed at the position (8, 10) and 3 meters above the ground. 
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Fig 5.4: Second environment (41x16) where the bout count
was tested in simulation.

The  wider  area  of  the  environment  allows  this  experiment  to  show  a  more
complete pattern of the number of bouts with respect to the distance from the source. It
can be noticed that the bout count increases when moving away from the source for up
to 6-7 meters before decreasing again gradually. After 12-13 meters the effect of the gas
plume on the bout count seems to vanish. 

 5.2 Bout detection results in real world experiments

Several experiments were held in real world environments. The robot was equipped
with six SGX MOX sensors (described in Chapter 3) configured with the respective
approximate resistor loads: 

S1 S2 S3 S4 S5 S6

R (kOhm) 10 1 1 4 12 1

Table 5.1: Respective resistor loads of the MOX sensors

28



6 6 7 8

8 6 7 6

8 9 8 7

9 28 26 9

12 12 5 23 23 12 23 7 8

11 14 10 27 30 24 10 9 9

12 11 12 27 25 26 23 12 8

13 14 22 33 30 28 29 9 12

12 24 12 27 30 28 20 7 12

14 19 10 33 28 30 10 7

13 13 14 30 27 27 22 12

14 13 14 27 27 24 7 10

11 11 21 22 25 27 11 9

12 8 10 25 21 26 3 10

13 29 29 16

22 19 18 9

7 11 0 9

7 5 4 4

4 4 3 5

4 4 2 4

Fig 5.5: Results of the bout count in some cells around the source in the environment presented in Fig
5.4. The green filled cell indicates the location of the source. The blue arrow represents the wind flow

direction.
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The  gas  plume  was  generated  through  evaporation  of  propanol  from  a  small
container. In order to generate the wind flow a fan was used that blew towards the
robot.  The bout detection was tested on low wind speeds (0.1m/s and 0.3m/s).  The
container was placed in between the robot and the fan in different distances from the
robot in the range from 2 to 4 meters. The sampling rate of the sensors was set to 74
Hz and the sensing time of the robot was 135 seconds, obtaining gas concentration
signal with a total of 10000 samples for the bout detection algorithm. The bout count
was computed individually for each sensor. 
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Fig 5.8: Plot of the bout count results from 
the first experiment with 0.3m/s wind 
speed

Fig 5.6: Plot of the bout count results from 
the first experiment with 0.1m/s wind 
speed

Fig 5.7: Plot of the bout count results from 
the second experiment with 0.1m/s wind 
speed

Fig 5.9: Plot of the bout count results from 
the second experiment with 0.3m/s wind 
speed



From the different experiments that were held, in simulation and in the real world it
can be said that the bout count gives mixed results in open environments. In some
cases (such as from the signal of the S5 sensor in the first test at 0.1m/s wind), instead
of decreasing as we would expect,  the bout count increases with distance. In other
cases, the bout count changes isn't related to the distance at all, giving mixed results
that would make it useless for the purpose of estimating the location of the gas source.
This can be typically seen in the response of the S2 and S3 sensors at 0.3m/s wind
conditions. Detailed results are presented in Appendix B.

From the analysis of the gas concentration signal, however, it could be noted that
there is another pattern in the bout detection that can potentially be used for estimating
the gas source distance. In general, the amplitude of the bouts tends to decrease with
distance, making it possible to estimate the distance to the source more accurately. In
the experiments in the real world, the bout amplitude was computed for each sensor as
the mean value of the amplitudes of all the bouts. 
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Fig 5.10: Plot of the bout amplitude results of the first experiment with 0.1m/s
wind speed
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Fig 5.11: Plot of the bout amplitude results from the second experiment
with 0.1m/s wind speed

Fig 5.12: Plot of the bout amplitude results from the first experiment
with 0.3m/s wind speed



From the results it can be seen that, although not very robustly, the average bout
amplitude is a good indicator of the distance to the gas source. We can see that the
sensors with lowest resistor loads are more sensible to the distance than the other
ones. The average bout amplitude is not very accurate in estimating the source distance
within the range of 0.5m, meaning that in some sensors responses, when moving away
from the source the amplitude sometimes slightly increases. However in most cases,
the average bout amplitude decreases when moving away from the source for more
than  1m.  This  makes  it  useful  to  mobile  robotic  olfaction  applications  in  open
environments.

The bout detection algorithm was tested in outdoor environments also, but with no
promising  results.  The  wind  flow conditions  are  not  stable  in  outdoor  environments
which results in the wind changing direction very often. Moreover, the wind speed is in
general much higher than in indoor environments. In the experiment that was held the
wind  speed  was  in  the  range  of  1  m/s  which  makes  the  bout  detection  algorithm
useless.  The average bout  amplitude was very low and practically  indistinguishable
from the blank case.
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Fig 5.13: Plot of the bout amplitude results from the second experiment with
0.3m/s wind speed



 5.3 Exploration results

The exploration algorithm was tested on the Husky A200 physical platform, produced by
Clearpath Robotics. Besides the six SGX MOX sensors on an Arduino board, the robot
was equipped with a Windsonic sensor produced by Gill Instruments Ltd. In order to
build the map of the environment and determine the obstacles' distance from the robot a
Light Detection and Ranging (LIDAR) sensor was mounted on the base platform. 

The environment on which the robot performed the exploration was setup on the
Teknikhuset  corridor  at  the  Örebro  University. The environment  used was about  22
meters long and 4 meters wide.

To simulate gas leaks, a container filled with propanol was placed on a table and
the gas plume was created through evaporation. The fan placed on the table near the
gas  source  is  used  to  simulate  a  wind  flow.  Different  experiments  were  held  by
positioning the fan in order to generate wind flows with different directions and different
wind speeds.
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Fig 5.14: Husky A200 (Clearpath Robotics) equipped with a Windsonic sensor, MOX
sensors and the LIDAR scanner



 

Fig 5.15: Teknikhuset corridor at the Örebro University where
the experiments were held

In all experiments, the robot was placed on the start position on the west point as
indicated in the environment map. The obstacles introduced in the map represent the
location of the table where the gas source is placed and the presence of stairs in the
corridor. Although these obstacles are clearly marked in an occupancy grid, in order to
properly avoid them the robot keeps a certain distance from them. This is achieved by
inflating these obstacles in the occupancy grid according to the robot's size.

The  sensory  function  for  Gaussian  Regression  was  derived  from  the  bout
amplitudes of the signals of  each sensor. As it  can be seen from the results of  the
source  distance  estimation,  the  bout  amplitude  indicator  is  not  very  robust.  The
estimation of the source distance wouldn't always be accurate if it were to be derived
from a single sensor, especially in high wind speeds. The low resistance sensors are
highly  sensitive  and not  very  reliable.  The bout  amplitude from the  high  resistance
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Fig 5.16: Sketch indicating the map layout, position of the source and starting point of the robot



sensors, on the other hand, shows slight changes with distance. Therefore, the distance
was estimated by a contribution of each sensor. More specifically, for  each sensing
operation, the average bout amplitude for each sensor was calculated first and then the
six values are averaged together to have the final value. In this way, the effect of the
very sensitive sensors is attenuated by the others in order to give a good estimation.
The map for navigation purposes was discretized in cells of one meter per side because
of  the  robot’s  size.  On  the  other  hand,  the  mean  estimation  and  variance  maps
computed from Gaussian Regression are discretized in cells of ten centimeters per side
each in order to have a finer grid of values. 

a)

In  Fig  5.17,  the  mean  estimation  and  variance  maps  computed  by  Gaussian
Regression  at  the  end  of  execution  are  represented,  considering  the  average  bout
amplitude as the sensory function. In this scenario, the fan placed on the table was
oriented towards the stairs in order to have a southeast  direction for the wind.  The
robot’s sensing time was set to 135 seconds, which correspond to 10000 samples of
gas concentration. In the mean map, the dark blue regions represent low values of the
mean  estimate,  the  lighter  regions  indicate  areas  with  higher  estimate  of  the  bout
amplitude. In this case, the robot identified the area immediately to the south of the
table as the nearest to the source. By considering the starting position of the robot as
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b)

c)

Fig 5.17: Results from the first experiment. Wind flows towards the south-east direction. Sensing time is
135 seconds a) the mean map: light blue regions indicate a high mean value. b) the variance map: yellow

regions indicate low variance c) the red circle indicates the final position of the robot



the origin,  then the final  chosen position was in coordinates (9,  0) which is located
immediately south of the table.  If  we consider also the inflation of the obstacles for
navigation purposes,  then this  final  position that  was chosen is  actually  the closest
reachable position to the gas source. It is noteworthy to mention that at the beginning of
the execution, the robot made a broad exploration of the environment (on the west
side). By the end of the execution, the robot instead of exploring further in the east side,
it chose positions near the table, which are located in the upwind direction. As expected,
the robot tends to prefer exploration in the beginning of the execution and slightly move
towards exploitation by the end of it.

In  Fig  5.18,  the  mean  and  variance  maps  represent  the  results  of  another
experiment in which the fan was oriented towards the starting position of the robot and
so the wind was flowing towards the south-west direction. In this experiment, the robot’s
sensing  time  was  set  to  67  seconds  which  correspond  to  5000  samples  of  gas
concentration. The area in the west side of the map, where the gas was flowing, is
marked in light blue to indicate high bout amplitude values. Although the overall light
blue area is not very accurate in indicating the positions near the source, in the end the
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Fig 5.18: Mean and variance map of the second experiment. Wind flows towards the south-east
direction. Sensing time is 67 seconds. a) the mean map: light blue regions indicate a high mean value.
b) the variance map: yellow regions indicate low variance c) the red circle indicates the final position

a)

b)

c)



robot chose the position (5, 1) as the nearest one to the source. This position is located
in fact immediately in the south-west direction of the source and is the location where
the highest bout amplitude was measured. By analyzing the variance map it can be
seen that the robot after making a broad exploration in the west side, by the end of the
algorithm decided to just go upwind (in the east direction).

In Fig 5.19, the mean map of the same scenario as in Fig 5.18 is represented, but
doubling the sensing time. With a longer sensing time, the robot was able to identify the
more accurately the areas near the gas source. However, in both cases, the robot in the
end chose the same cell as the final position nearest to the source.

Fig 5.19: Mean map of the third experiment. Wind flows towards the south-west
direction. Sensing time is 135 seconds.

In Fig 5.20, an experiment with higher wind speed is represented. In this scenario,
the  wind  speed  was  about  1  m/s.  The  wind  was  flowing  towards  the  south-west
direction. Unfortunately, the bout detection algorithm is not reliable in high wind speeds.
The maximum speed of operation is in the range 0.3-0.4 m/s. As a result, although the
robot  went  near  the  source during  the  exploration,  the  highest  bout  amplitude was
measured near the starting position, thus failing to find the gas source. 

Fig 5.20: Mean and variance maps of the fourth experiment. The wind flows
towards the south-west direction with a 1 m/s speed. 
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 5.4 Parameter tuning

The algorithm introduced in Chapter 4 makes use of a few parameters that need tuning.
The robot step size   is a parameter that is used to calculate the distance the robot
should cross once the direction to follow has been determined. 

The exploration vs exploitation trade-off  parameter  should be updated in every
algorithm iteration.  This  update  should  make the  trade-off  lean slightly  towards the
exploitation in every iteration. This is modelled by setting the parameter equal to 1 in the
start of the execution and then multiplying it by a decay factor in each iteration. After the
trade-off parameter goes under a threshold (which means that the a posteriori variance
is  low enough),  then the  robot  goes for  the  position  with  the  highest  average bout
amplitude and the execution ends. This decay factor is a parameter that indicates how
fast the trade-off should go from a total preference of exploration towards exploitation.
In  order  for  this  preference  to  be  as  uniformly  distributed  as  possible  between
exploration and exploitation, the threshold should be as low as possible. In this way,
when the trade-off parameter goes near the threshold, the robot will almost exclusively
choose to go towards areas with high bout amplitude. 

Because  of  the  fine  grid  map  representation  of  the  variance  and  mean,  it  is
computationally very expensive to use Gaussian Regression to compute the estimates
in the whole environment in every iteration. Therefore, the mean and variance were
calculated  in  neighboring  cells  of  the  measuring  position  inside  a  window  of  a
heuristically fixed size.

In the exploration experiments mentioned above, the robot step size was fixed at
two meters. This is done because, as it can be seen from the bout detection results, the
amplitude of the bouts changes significantly when moving away from the source for a
distance longer than one meter. For some technical reason, the localization of the robot
didn’t always coincide with the odometry, resulting in the robot moving in steps shorter
than specified by the step size parameter. Therefore in order to cope with these errors,
a step size of two meters is reasonable. 

The trade-off decay factor can indirectly define the total number of iterations of the
algorithm execution. Because the trade-off parameter is updated at every iteration, it is
possible to calculate how many iterations it will take for it to go under the threshold. The
number  of  iterations  should  be  chosen  heuristically  but  in  accordance  with  the
environment  size  and shape.  In  the  experiments  that  were  held  in  the  Teknikhuset
corridor, the decay factor was set to 0.88 and the threshold at 0.1. In this way the robot
would make 18 iterations. The environment was about 22 meters long, and the robot
would move for one or two meters in every iteration, so 18 iterations are enough to
cover a good part of the environment. 

From the bout detection experiments, it can be seen that the bout amplitude is
reliable for up to 4 meters distance from the source. The amplitude decreases a lot after
4 meters and it  cannot  be distinguished from the amplitude at the absence of  gas.
Therefore,  in  the  exploration  experiments  the  mean  estimate  and  variance  was
computed in a window around the robot of 5 meters in each side. The reason for this is
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that estimating outside that window would be irrelevant, as the bout amplitude cannot
be used to estimate source distances longer than 4 meters. 

The bout computation accuracy increases with long sensing times. However, the
sensing time is a bottleneck for the total execution time. In order to reduce the execution
time of the algorithm, we need to reduce the sensing time, losing in accuracy. In the
experiments, two tests were run in the same scenario with sensing times respectively
67 seconds and 135 seconds. Although, using a shorter sensing time didn’t perform well
in indicating areas near the gas source, in the end of the exploration, the end result was
the  same.  However,  the  longer  sensing  time  experiment  was  more  accurate  in
identifying  areas  of  interest  for  the  problem  of  gas  source  localization.  Therefore
sensing time also should be used heuristically, trading off time of execution with the
accuracy of finding the gas source.

 5.5 Discussion about the results

From the experiments it can be seen that the bout count isn't useful to estimate the
source distance in open environments. The bout amplitude on the other hand is very
reliable to distinguish distances with a granularity of one meter or more. Results show
that the amplitude isn't very robust when moving away from the source for distances of
half a meter. The amplitude sometimes increases instead of decreasing, as it can be
noticed in distances of 2.5m and 3.5m from the source. In other cases the amplitude
generally decreases. 

In order to measure the success rate of the exploration experiments, we consider
an experiment successful if the robot chooses as the final position the reachable cell
that is nearest to the table, where the gas source is placed, in the wind direction. From a
total of 12 complete runs of exploration, 8 were successful in identifying the proper final
position,  giving  this  method  a  67%  success  rate.  Among  the  failed  experiments,
possible reasons were high wind speed, misplacement of the sensor with respect to the
height of the gas source, and problems in the navigation system of the robot. 

The bout  computation  isn't  designed  to  work  with  high  wind speeds,  and it  is
unusable above the level of 0.3m/s. 

As described in section 5.3, the gas source was placed on a table which was
higher than the robot platform. The MOX sensors were placed on the robot platform.
When the gas source was placed near the edge of the table, it was seen that the robot
cannot perceive a high bout amplitude when going near it. This could be because the
wind fan placed immediately behind the source would force the gas to flow on top of the
sensor,  without  it  being  able  to  record  samples  of  high  concentration.  This  is  an
important issue with in-situ gas sensors: the sensor needs to approximately match a
height such that it perceives being in the gas plume when it is located near the source.

In some experiments there were problems with the localization of the robot: the
position measured from the odometry sometimes is off by a few tens of centimeters with
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respect to the goal position where the robot is sent to. The positions are rounded in cells
sized one meter on each side. So this error is mitigated most of the time by considering
both positions inside the same cell. However, if the error becomes greater than half a
meter, then the two positions are rounded to different neighboring cells. By design, the
measurement done by the robot is recorded on the position given by the odometry. This
might cause a failure in the experiment by declaring a wrong final position.
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Chapter 6

Conclusions and Future Work

 6.1 Conclusions

In  many  dangerous  or  cumbersome  tasks,  human  workers  are  being  replaced  by
robots.  Mobile  robotics  is  considered very useful  in  minimizing  risks  and increasing
efficiency in many applications. In the last years, research in robotic olfaction is growing
and finding many applications in industrial environments. 

This thesis analyzes the problem of gas source localization, and introduces an
approach to solve it by a mobile robot equipped with in-situ gas concentration sensors
and a wind sensor. 

The proposed solution adapts a general exploration strategy based on Gaussian
Regression for the purpose of localizing the source of the gas leak in an environment.
As a sensory function, the method uses the amplitude of bouts of the gas concentration
signal, trying to drive the robot towards areas where its value can be maximized. Bouts
are defined as portions of the concentration signal where the amplitude was consistently
rising. Their  amplitude can be used to  estimate the source distance.  By taking into
consideration the wind flows in the environment, the algorithm builds a kernel function
for the Gaussian Regression that best models the characteristics of the bout amplitudes
around the measurement positions.

The exploration  strategy  implements  a  decision  making  for  the  navigation  that
tends to drive the robot towards unknown areas in the beginning of the execution and
towards high bout amplitudes by the end of it. This is modelled by a trade-off between
exploration and exploitation that  starts with a high preference for exploration and in
each iteration slightly leans towards exploitation.

By  properly  tuning  the  parameters  and  execution  time,  this  approach  can  be
adapted to different kinds of environments and to different interests of the user. 

Experimental  results  in the physical  Husky A200 platform have shown that  the
amplitude  of  the  bouts  of  the  gas  concentration  signal  is  a  good  estimator  of  the
distance  to  the  source.  The  exploration  strategy  based  on  Gaussian  Regression
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performed with a success rate of 67% in indoor environments, identifying areas near the
gas source in wind flow conditions with relatively low speed and declaring the closest
reachable position to the gas source.

 6.2 Future works

The work done in this thesis can be extended in several aspects. 
In the approach presented here it was assumed that the gas source is unique and

that it is present somewhere in the environment. It is localized in the position where the
bout amplitude is highest. However, the robot would declare the highest bout amplitude
position as the gas source even when there is no gas leakage. Therefore, a possible
improvement would be to consider scenarios where there is no gas leakage or where
there are more than one. The robot should be able to declare that the gas source is
missing or that there are more than one. A possible approach to do this would be to
study the bout amplitude response of different gases and try to establish thresholds in
order to distinguish the presence of a gas source or the lack of it. In that case a more
precise and robust method to declare the position of the gas source is needed.

A more interesting area of research would be to further study the signal processing
part  and  make  it  more  robust,  especially  in  scenarios  with  high  wind  speeds  and
outdoors. In [7] it was described how to tune the parameters of the filters: if the filter is
tuned to higher frequencies, it will resolve distance best if it is close to the source. The
simple design of the method allows to use differently tuned instances simultaneously, so
it is possible to construct a filter bank that resolves a wide range of source distances
and wind speeds.

Finally, in order to increase efficiency, an area of interest would be to consider
using a multi-robot system. It could be more efficient to partition the environment with a
Voronoi diagram and adapt a strategy to assign the robots in each partition. 
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Appendix A

ROS Architecture

The algorithm was tested to  run on the Husky A200 robot  developed by Clearpath
Robotics. To this purpose, the code was implemented on the Robot Operating System
(ROS) framework. ROS is a very convenient framework for writing software designed
for robotics applications [1]. It is a collection of libraries, and tools that aim to provide a
middleware framework  that  obscures low-level  control  and facilitates communication
between different processes. 

ROS provides  a  publisher-subscriber  paradigm that  allows  different  processes
organized in nodes to use a client library to communicate among them. Communication
happens through topics by sending ROS messages. Publisher and subscriber nodes
must  respectively  send  and  receive  messages  of  the  same  type  in  order  to
communicate. Besides the asynchronous publisher/subscriber message passing, ROS
provides a synchronous client-server paradigm for nodes to send requests and receive
responses.

This type of communication is very efficient in robotics applications. It can hide the
communication  details  between  nodes  and  facilitate  the  development  of  interfaces
between nodes.

 A.1 Navigation

The ‘move_base’ package provides a ROS interface for running and interacting
with the navigation stack on a robot. The ‘move_base’ node and how it interacts with
other components is shown in Fig A.1. The white nodes are provided for every system
and are mandatory, the gray are optional but also provided while the blue components
are dependent of the robot platform.
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Fig A.1: Navigation stack tf tree (wiki.ros.org)

For a successful run, the navigation stack requires the following requisites [1]:
● ROS: The navigation stack assumes that the robot is using ROS.
● Transform configuration:  the robot  should be publishing information about  the

relationships between coordinate frames using tf.
● Sensor information: The navigation stack uses information from sensors to avoid

obstacles  in  the  world,  it  assumes  that  these  sensors  are  publishing  either
‘sensor_msgs/LaserScan’ or ‘sensor_msgs/PointCloud’ messages over ROS.

● Odometry information: The navigation stack requires that odometry information
be published using tf and the nav_msgs/Odometry message.

● Base  controller:  The  navigation  stack  assumes  that  it  can  send  velocity
commands using a ‘geometry_msgs/Twist’ message assumed to be in the base
coordinate frame of the robot on the "cmd_vel" topic. This means there must be a
node subscribing to the "cmd_vel" topic that is capable of taking (vx, vy, vtheta)
<==>  (cmd_vel.linear.x,  cmd_vel.linear.y,  cmd_vel.angular.z)  velocities  and
converting them into motor commands to send to a mobile base.

 A.2 Mapping

Before running the experiments, it was necessary to build the map of the environment
where  the  robot  would  run  its  tests.  This  can  be  made  possible  by  using  the
‘map_server’ ROS package. This package allows the user to build a map dynamically
and save it into a pair of files: the YAML file which describes the map’s metadata and
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the image file which encodes the occupancy data [1]. The map is represented as an
occupancy grid. The image file describes the occupancy state of each cell of the 2D
map in the color value of the corresponding pixel. White pixels represent free cells,
black  pixels  indicate  the  presence of  obstacles,  and gray  pixels  are  unknown.  The
metadata YAML file stores thresholds used to divide the three categories; thresholding
is done inside the map_server. The occupancy grid is encoded in a ROS message as
an  array  representing  each  cell  in  row-major  order,  starting  from  (0,  0),  with  the
occupancy probability ranging in [0, 100]. An unknown cell is notated with -1.

image: testmap.png
resolution: 0.1
origin: [0.0, 0.0, 0.0]
occupied_thresh: 0.65
free_thresh: 0.196
negate: 0

Listing A.1: Example of a YAML file

The YAML metadata file includes the following parameters [1]:
● image: Path to the image file containing the occupancy data; can be absolute, or

relative to the location of the YAML file
● resolution: Resolution of the map, meters / pixel
● origin: The 2-D pose of the lower-left pixel in the map, as (x, y, yaw), with yaw as

counterclockwise rotation (yaw=0 means no rotation). Many parts of the system
currently ignore yaw.

● occupied_thresh: Pixels with occupancy probability greater than this threshold
are considered completely occupied.

● free_thresh:  Pixels  with  occupancy  probability  less  than  this  threshold  are
considered completely free.

● negate:  Whether  the  white/black  free/occupied semantics  should  be reversed
(interpretation of thresholds is unaffected)

 A.3 Localization

The localization of the robot needs to be very robust in mobile robotics applications.
Associating sensor data with locations in a static map is paramount. 

For the purpose of localization, the environment was represented according to a
method called Normal Distribution Transform (NDT), presented by Biber and Strasser
[37]. Robot localization can be achieved by Monte Carlo Localization [36]. Saarinen et
al. [35] propose a map based localization method, called NDT-MCL, that is based on a
well established probabilistic framework. They use NDT as an underlying representation
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for both map and sensor data and improve accuracy and repeatability by relaxing the
hard discretization assumption imposed by grid-map models and utilizing the piecewise
continuous NDT representation.

The implemented NDT-MCL ROS node publishes ‘nav_msgs/Odometry’ messages
in the topic ‘ndt_mcl’. The ‘nav_msgs/Odometry’ message type includes an estimate of
the position and orientation of the robot in the ‘geometry_msgs/PoseWithCovariance’
attribute along with a covariance that is used to represent the certainty of that estimate.
The velocity is also included in the ‘geometry_msgs/TwistWithCovariance’ attribute.

void GMap::init(unsigned int width,
unsigned int height,
double resolution,
double origin_x,
double origin_y,
int * data

)
{

this->width = width;
this->height = height;
this->resolution       = resolution;
this->origin = Position(origin_x, origin_y);

occupancyGrid = (int **)malloc(width * sizeof(int *));

for (int i = 0; i < width; i++)
occupancyGrid[i] = (int *)malloc(height * sizeof(int));

for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)

occupancyGrid[i][j] = data[width * j + i];

this->_isInit = true;
}

Listing A.2: Initialization of the occupancy grid from published by ‘/move_base/global_costmap/costmap’

The pose of the robot is represented by a 3D coordinate for the position and a
quaternion for the orientation. Because in this project, the motion was two dimensional,
to get the localization of the robot it is sufficient to get the x and y coordinates. For the
orientation  of the robot, we can use the z and w components of the quaternion where:
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(A.1)

# This represents an estimate of a position and velocity in free space.  
# The pose in this message should be specified in the coordinate frame given by 
header.frame_id.
# The twist in this message should be specified in the coordinate frame given by 
the child_frame_id
Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose
geometry_msgs/TwistWithCovariance twist

Listing A.3: Message type of 'nav_msgs/Odometry'

void DataHandler::ndt_mcl_callback(const nav_msgs::OdometryConstPtr& 
ndt_mcl_msg)
{

double x =(double)ndt_mcl_msg->pose.pose.position.x;
double y =(double)ndt_mcl_msg->pose.pose.position.y;
double sin_theta_half =(double)ndt_mcl_msg->pose.pose.orientation.z;
double cos_theta_half =(double)ndt_mcl_msg->pose.pose.orientation.w;

currentPosition = Position(x, y);
currentPosition.setOrientation(2 * atan2(sin_theta_half, cos_theta_half));

}

Listing A.4: Getting the position and orientation when localizing the robot
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bool moveBase(Position position)
{

MoveBaseClient moveBaseClient("move_base", true);

while (!moveBaseClient.waitForServer(ros::Duration(5.0)))
ROS_INFO("Waiting for the move_base action server to come up");

move_base_msgs::MoveBaseGoal goal;

goal.target_pose.header.frame_id = "map";
goal.target_pose.header.stamp = ros::Time::now();

goal.target_pose.pose.position.x = position.getX();
goal.target_pose.pose.position.y = position.getY();
goal.target_pose.pose.orientation.z = sin(position.getOrientation() / 2);
goal.target_pose.pose.orientation.w = cos(position.getOrientation() / 2);

ROS_INFO("Sending goal");
moveBaseClient.sendGoal(goal);
moveBaseClient.waitForResult();

if (moveBaseClient.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
return true;

else
return false;

}

Listing A.5: Sending a MoveBaseGoal message to move the robot

56



Appendix B

Bout detection experimental results

S1 S2 S3 S4 S5 S6

R (kOhm) 10 1 1 4 12 1

Table B.1: Respective resistor loads of the MOX sensors

2m 2.5m 3m 3.5m 4m blank

S1 53 61 59 59 55 81

S2 53 60 65 63 68 68

S3 50 57 69 63 74 61

S4 65 72 96 81 85 86

S5 49 51 56 51 57 86

S6 93 86 89 93 90 86

Table B.2: Bout count results of the first experiment with 0.1m/s wind speed
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2m 2.5m 3m 3.5m 4m blank

S1 53 56 57 55 61 83

S2 58 57 66 56 64 73

S3 57 56 63 52 62 54

S4 63 64 87 69 82 93

S5 58 52 52 52 53 88

S6 84 83 84 89 89 92

Table B.3: Bout count results of the second experiment with 0.1m/s wind speed

2m 2.5m 3m 3.5m 4m

S1 63 61 57 55 64

S2 61 63 71 53 72

S3 66 53 62 55 69

S4 74 80 83 75 90

S5 61 56 60 56 56

S6 87 89 88 90 82

Table B.4: Bout count results of the first experiment with 0.3m/s wind speed

2m 2.5m 3m 3.5m 4m

S1 59 58 62 53 65

S2 58 56 68 59 65

S3 56 52 62 59 70

S4 73 60 91 82 91

S5 64 56 61 52 61

S6 89 90 84 94 92

Table B.5: Bout count results of the second experiment with 0.3m/s wind speed
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2m 2.5m 3m 3.5m 4m blank

S1 0.259031 0.242454 0.053002 0.088940 0.049044 0.002421

S2 0.28154 0.032801 0.009919 0.015037 0.009056 0.006197

S3 0.024555 0.027224 0.009043 0.012206 0.008914 0.008593

S4 0.004981 0.008725 0.002632 0.003874 0.004185 0.001750

S5 0.252173 0.236431 0.053594 0.095147 0.043552 0.002065

S6 0.001754 0.005360 0.002898 0.002664 0.004029 0.002176

Table B.6: Bout amplitude results of the first experiment with 0.1m/s wind speed

2m 2.5m 3m 3.5m 4m blank

S1 0.174989 0.201247 0.050532 0.089271 0.037915 0.002421

S2 0.019698 0.027655 0.009360 0.016511 0.009235 0.006197

S3 0.017368 0.022874 0.009544 0.014993 0.010086 0.008593

S4 0.004582 0.007214 0.002649 0.003012 0.002097 0.001750

S5 0.142774 0.196063 0.050088 0.090647 0.043734 0.002065

S6 0.002621 0.003794 0.002916 0.001581 0.001791 0.002176

Table B.7: Bout amplitude results of the second experiment with 0.1m/s wind speed

2m 2.5m 3m 3.5m 4m blank

S1 0.137733 0.145804 0.056458 0.147123 0.016579 0.002185

S2 0.020106 0.021713 0.010828 0.024278 0.007058 0.005620

S3 0.021626 0.025085 0.012955 0.019471 0.007825 0.010033

S4 0.003634 0.005554 0.004323 0.005098 0.002609 0.001440

S5 0.135975 0.168036 0.058110 0.125577 0.017929 0.001824

S6 0.002023 0.004073 0.004019 0.003672 0.003143 0.001817

Table B.8: Bout amplitude results of the first experiment with 0.3m/s wind speed
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2m 2.5m 3m 3.5m 4m blank

S1 0.112104 0.194767 0.070264 0.148091 0.015392 0.002185

S2 0.018416 0.029040 0.012279 0.021198 0.007241 0.005620

S3 0.022945 0.030820 0.014979 0.018361 0.006701 0.010033

S4 0.003728 0.005511 0.004364 0.005411 0.001868 0.001440

S5 0.115748 0.182451 0.074441 0.137633 0.015500 0.001824

S6 0.001842 0.001889 0.003944 0.004186 0.001585 0.001817

Table B.9: Bout amplitude results of the second experiment with 0.3m/s wind speed
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