

POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione
Dipartimento di Elettronica, Informazione e Bioingegneria

A GAUSSIAN REGRESSION BASED EXPLORATION STRATEGY FOR GAS SOURCE
LOCALIZATION

Relatore: Prof. Francesco AMIGONI
Correlatore: Dr. Erik SCHAFFERNICHT

Tesi di Laurea Magistrale di:
Mikel VUKA matr. 817609

Anno Accademico 2015-2016

To my family.

III

IV

Contents

List of Figures VII

List of Tables IX

List of Listings XI

Abstract XIII

Sommario XV

Acknowledgements XVII

1. Introduction 1

2. State of the art 3
2.1. Bio-inspired algorithms . . 3

2.1.1. Surge-cast . 4
2.1.2. Surge-spiraling . 5
2.1.3. Zig-zag . 5
2.1.4. Pseudo-gradient . . 5
2.1.5. Source declaration . 6

2.2. Probabilistic approach . 6
2.3. Other approaches . 8

3. Problem definition 9

4. Solution approach 11
4.1. Algorithm overview . 11
4.2. Source distance estimation . 12
4.3. Exploration approach . 17

V

4.4. Selection of the next position . 21

5. Experimental results 25
5.1. Bout detection results in simulation . 25
5.2. Bout detection results in real world experiments 28
5.3. Exploration results . 34
5.4. Parameter tuning . 39
5.5. Discussion about the results . 40

6. Conclusions and Future Works 43
6.1. Conclusions . 43
6.2. Future Works . 44

Bibliography 45

 A ROS Architecture 51
 A.1 Navigation . 51
 A.2 Mapping . 52
 A.3 Localization . 53

 B Bout detection experimental results 57

VI

List of Figures

2.1: Illustration of the surge-cast algorithm. The stars indicate the positions
where the wind direction is measured, whereas the gas concentration is
measured continuously. The plume is traced by the gray solid lines and the
source is indicated by the red dot. The red arrow illustrates the main wind
direction. The figure was adopted from Neumann's dissertation [8] 4

2.2: lllustration of the zigzag algorithm introduced by Ishida et al. [15]. The plume
is traced by the gray solid lines and the source is indicated by the red dot.
The red arrow illustrates the main wind direction. The stars indicate the
positions where the wind direction is measured, whereas the gas
concentration is measured continuously. The figure was adopted from
Neumann's dissertation [8] . 5

4.1: Algorithm flowchart . 12
4.2: Example of a recorded gas concentration signal at a 3m distance from the

source and 0.1m/s wind speed . 13
4.3: The smoothed signal after applying the low-pass filter 14
4.4: The signal after applying the differential convolution 14
4.5: The signal after applying the Exponentially-Weighted Moving Average filter 16
4.6: Influence of the wind speed and direction on the shape of the kernel 19
4.7: Influence of the wind in the shape of the kernel, distinguishing upwind and

downwind directions 21

5.1: First environment (11x6) where the bout count was tested in simulation 26
5.2: First results of the bout count in cells around the source in the environment

presented in Fig 5.1. The green filled cell indicates the location of the
source. The blue arrow represents the wind flow direction 26

5.3: Results of the bout count in cells around the source in the environment
presented in Fig 5.1. The green filled cell indicates the location of the
source. The blue arrow represents the wind flow direction 27

5.4: Second environment (41x16) where the bout count was tested in simulation. 28
5.5: Results of the bout count in some cells around the source in the 29

VII

environment presented in Fig 5.4. The green filled cell indicates the location
of the source. The blue arrow represents the wind flow direction

5.6: Plot of the bout count results from the first experiment with 0.1m/s wind
speed . 30

5.7: Plot of the bout count results from the second experiment with 0.1m/s wind
speed . 30

5.8: Plot of the bout count results from the first experiment with 0.3m/s wind
speed 30

5.9: Plot of the bout count results from the second experiment with 0.3m/s wind
speed . 30

5.10: Plot of the bout amplitude results of the first experiment with 0.1m/s wind
speed . 31

5.11: Plot of the bout amplitude results from the second experiment with 0.1m/s
wind speed . 32

5.12: Plot of the bout amplitude results from the first experiment with 0.3m/s wind
speed . 32

5.13: Plot of the bout amplitude results from the second experiment with 0.3m/s
wind speed . 33

5.14: Husky A200 (Clearpath Robotics) equipped with a Windsonic sensor, MOX
sensors and the LIDAR scanner . 34

5.15: Teknikhuset corridor at the Örebro University where the experiments were
held . 35

5.16: Sketch indicating the map layout, position of the source and starting point of
the robot . 35

5.17: Results from the first experiment. Wind flows towards the south-east
direction. Sensing time is 135 seconds a) the mean map: light blue regions
indicate a high mean value. b) the variance map: yellow regions indicate low
variance c) the red circle indicates the final position of the robot 36

5.18: Mean and variance map of the second experiment. Wind flows towards the
south-east direction. Sensing time is 67 seconds. a) the mean map: light
blue regions indicate a high mean value. b) the variance map: yellow
regions indicate low variance c) the red circle indicates the final position . . . 37

5.19: Mean map of the third experiment. Wind flows towards the south-west
direction. Sensing time is 135 seconds . 38

5.20: Mean map of the third experiment.Wind flows towards the south-west
direction. Sensing time is 135 seconds . 38

A.1: Navigation stack tf tree (wiki.ros.org) . 52

VIII

List of Tables

5.1: Respective resistor loads of the MOX sensors . 21

B.1: Respective resistor loads of the MOX sensors . . 50
B.2: Bout count results of the first experiment with 0.1m/s wind speed 50
B.3: Bout count results of the second experiment with 0.1m/s wind speed 51
B.4: Bout count results of the first experiment with 0.3m/s wind speed 51
B.5: Bout count results of the second experiment with 0.3m/s wind speed 51
B.6: Bout amplitude results of the first experiment with 0.1m/s wind speed 52
B.7: Bout amplitude results of the second experiment with 0.1m/s wind speed . . 52
B.8: Bout amplitude results of the first experiment with 0.3m/s wind speed 52
B.9: Bout amplitude results of the second experiment with 0.3m/s wind speed . . 53

IX

X

List of Listings

4.1: Pseudo-code to compute the convolution of the signal 8
4.2: Pseudo-code of the EWMA filter computation . 9
4.3: Pseudo-code for the stretching of the Gaussian kernel 15
4.4: Computation of the covariance between two points x and x' 16

A.1: Example of a YAML file . 46
A.2: Initialization of the occupancy grid from published by

‘/move_base/global_costmap/costmap’ . 47
A.3: Message type of 'nav_msgs/Odometry' . 48
A.4: Getting the position and orientation when localizing the robot 48
A.5: Sending a MoveBaseGoal message to move the robot 49

XI

XII

Abstract

In industrial accidents there can be gas leaks. Among various mobile robotics olfaction
applications, gas source localization is of important value, especially in cases when the
gas of interest is poisonous or dangerous to human lives. The purpose of this thesis is
the development of an exploration strategy with the intention of localizing the gas
source by a mobile robot equipped with in-situ gas concentration sensors. By using
additional information about wind flows in the environment it is possible to estimate the
distance to the gas source and explore accordingly.

XIII

XIV

Sommario

In alcuni incidenti industriali ci possono essere perdite di gas. Tra i vari problemi di
rilevamento di gas tramite robot mobili, la localizzazione della sorgente del gas è di
fondamentale importanza, specialmente in casi in cui il gas di interesse è velenoso o
pericoloso per le vite dei lavoratori. Lo scopo di questa tesi è lo sviluppo di una strategia
di esplorazione con l'intenzione di localizzare la sorgente del gas da un robot mobile
dotato da sensori in-situ di concentrazione del gas. Utilizzando ulteriori informazioni sui
flussi eolici nell'ambiente è possibile stimare la distanza dalla sorgente del gas ed
esplorare appropriatamente.

XV

XVI

Acknowledgements

I would like to express my most sincere gratitude to Dr. Erik Schaffernicht and Prof.
Francesco Amigoni for assisting me in my Master Thesis Project.

I am very grateful to Prof. Achim J. Lilienthal for giving me the opportunity to join
his research team in the Mobile Robotics and Olfaction laboratory at the University of
Örebro.

Throughout the stress and efforts I put in my work, I received great support from
my friends: Chitt, Elsa, Han, Malcolm, Ravi, Maike. I had a great time and a lot of fun
working alongside them. I would also like to thank Hali for encouraging whenever I
needed it.

Special thanks go to my parents and my brother for moral support throughout my
entire University studies. They were always there for me whenever I felt down and
discouraged.

XVII

XVIII

Chapter 1

Introduction

Recent research activities in mobile robotics have been showing good results in using
autonomous robots to aid human workers, especially in dangerous or difficult tasks.
Among the vast applications of mobile robotics we can distinguish exploration of
unknown environments, search and rescue missions in disaster situations, monitoring
and surveillance. In order to introduce autonomy in performing these tasks, issues such
as localization of the robot, methods of navigation and sensing of surrounding events
have been studied. The definition of appropriate exploration strategies is among the
many challenging aspects of these problems that is of interest in many applications. The
robots need to be able to autonomously take navigation decisions in order to complete
the exploration tasks in a most efficient manner.

The mobile robotic olfaction field of research was established as the combination
of navigation strategies in mobile robotics with gas sensing techniques in order to
autonomously perform tasks related to environments where certain gases are present.
This application finds great interest in cases where the types of gases are poisonous or
dangerous to human lives. In many industrial environments or landfill sites, gases such
as methane can be present. Although methane is not considered a toxic gas, it is
extremely flammable even in low concentrations. Because methane displaces oxygen it
is classified as an asphyxiant and is considered dangerous. In many cases the gases of
interest are odorless and colorless, so it is important that in case of industrial accidents
where there are gas leaks to localize them as soon as possible.

The purpose of this thesis is the development of an exploration strategy with the
intention of localizing the gas source by a single mobile robot equipped with in-situ gas
concentration sensors. By using additional information about wind flows in the
environment it is possible to estimate the distance to the gas source and explore
accordingly. The goal is to explore the environment trying to identify areas near the
source of the gas leak and pointing out the nearest reachable point to it.

Recently there have been some promising results in robotic olfaction on estimating
the distance to the gas source in the presence of a wind flow. It is possible to use in-situ
gas concentration sensors to compute this estimation in a wind tunnel. We introduce an

1

exploration method that tries to minimize this estimation of the distance to the gas
source. In order to solve the problem at hand as efficiently as possible, the exploration
method needs to include a model of the wind flows in the environment and how it affects
gas distribution.

In more detail, after the robot takes measures of gas concentration, wind speed
and direction, it estimates the distance to the gas source and identifies the direction to
follow in order to approach it. The direction to follow is chosen based on a trade-off
between two criteria: exploration of unknown areas in the environment and minimization
of the gas source distance. In the beginning of the execution the robot prefers
exploration and tries to go towards unknown areas. After each step that the robot
performs, the preference leans slightly towards exploitation, aiming to send the robot
towards areas near the estimated gas source by the end of the execution.

For the purpose of the exploration method with which we approached the problem,
we hypothesized that the location of the gas source could be estimated in open
environments and long distances by using the method devised to work in a wind tunnel
with short distances. Simulation and real world experiments have shown that the
method is not suitable for this scenario, therefore it was adapted to the needs of this
problem.

From the experiments that were held it was concluded that the approach is able to
identify the reachable areas near the gas source in the upwind direction whenever wind
conditions allow the distance estimation to give realistic results. Successful experiments
have identified the closest reachable point to the gas source as the final position. By
properly tuning the parameters it is possible to use this algorithm in environments of
different sizes.

The thesis is structured as follows: a presentation of the current state of the art
describing different gas source localization approaches, their benefits and limitations in
Chapter 2, the problem formalization in Chapter 3, the solution proposal in Chapter 4.
After a thorough description of the technical aspects of the system architecture in
Chapter 5 follows a presentation of the experimental setup and a discussion on the
results in Chapter 6. A summary of some important concepts and benefits, along with
possible future improvements concludes the thesis in Chapter 7.

2

Chapter 2

State of the art

The problem of gas source localization has been researched in the past two decades
and there are several methods to approach it. The algorithms have been categorized in
different ways: Kowadlo and Russell [10] present a classification of more than 25
algorithms in a Venn diagram, Lochmatter [9] categorizes them in ten categories.
Interesting approaches can be seen in algorithms that feature multiple robots [22, 28,
31, 32, 33] although not discussed further in this thesis which is intended to present a
single robot method.

In general, algorithms make use of wind flows (anemotaxis) and/or gas
concentration (chemotaxis) to find a direction for the robot to follow. Chemotaxis refers
to an approach in which the robot moves are defined by the gas distribution, usually gas
concentration gradient. Anemotaxis refers to mechanisms in which the robot determines
the movement according to the airflow.

A broad group of algorithms can be classified together considering the fact that
they try to mimic odor source localization by insects in nature [13, 14]. These algorithms
are very simplistic and usually make use of both anemotactic and chemotactic
principles.

Some more complex algorithms model the location of the gas source with a
probability distribution and then try to reduce its entropy [19, 20].

 2.1 Bio-inspired algorithms

This set of algorithms are inspired from the behaviour of insects such as dung beetles
and moths [13, 14] in tracking the odor plume to the source. Usually the tracking
algorithms are based on the well-studied behaviour of silkworm moths in following
pheromones [14] to find the partner. This behaviour mainly consists of: acquiring the
gas plume, upwind surge (moving upwind when in the plume), casting (swinging from

3

side to side increasing the step size trying to acquire the plume if lost), spiraling (circular
motion if the plume cannot be found) [10].

In order to acquire the plume a simple systematic algorithm called sweeping is
executed which consists in the following steps: collect gas concentration and wind
direction samples and average them over the measurement time. If the gas
concentration average is above a certain threshold then it is assumed that the robot has
acquired the plume. Otherwise, the robot makes a step towards the orthogonal direction
with respect to the wind.

After the gas plume has been acquired, the plume tracking part of the problem can
be approached in different ways:

 2.1.1 Surge-cast

This behavior is inspired from the silkworm moth and was presented by Lochmatter and
Martinoli [16]. The robot measures the wind direction and moves upwind while it is in the
gas plume. It can be assumed that the robot loses contact with the plume either when it
moves for a certain distance d_lost out of the plume or immediately when the gas
concentration measurement goes below a certain threshold. After it loses contact with
the gas plume it tries to reacquire the plume by measuring the wind direction and
performing a cross-wind movement for a distance d_cast [8].

4

Fig 2.1: Illustration of the surge-cast algorithm. The stars indicate the positions where the wind direction is
measured, whereas the gas concentration is measured continuously. The plume is traced by the gray
solid lines and the source is indicated by the red dot. The red arrow illustrates the main wind direction.

The figure was adopted from Neumann's dissertation [8]

 2.1.2 Surge-spiraling

Plume finding is performed by an initial outward spiral search pattern [28]. Plume
traversal is performed using a type of surge algorithm. When an odor packet is
encountered during spiraling, the robot samples the wind direction and moves upwind
for a set distance. If during the surge another odor packet is encountered, the robot
resets the surge distance but does not resample the wind direction. After the surge
distance has been reached, the robot begins a spiral casting behavior, looking for
another plume hit.

 2.1.3 Zig-zag

This behavior is typical of the dung beetle [15]. The robot performs a wind measurement
and follows the upwind direction at an angle alpha until it loses the gas plume. After the
plume is lost (at the edge of the plume), then the robot performs a movement at an
angle -alpha with respect to the upwind direction [8].

 2.1.4 Pseudo-Gradient

This algorithm requires two gas concentration sensors placed in each side of the robot.
The idea is to rotate the robot according to the gradient direction of the two sensors and
in proportion to the concentration difference [34]. Because it is a purely chemotactic

5

Fig 2.2: Illustration of the zigzag algorithm introduced by Ishida et al. [15]. The plume is traced by the gray
solid lines and the source is indicated by the red dot. The red arrow illustrates the main wind direction.

The stars indicate the positions where the wind direction is measured, whereas the gas concentration is
measured continuously. The figure was adopted from Neumann's dissertation [8].

approach, the robot cannot distinguish whether it is approaching the source or moving
away from it. In order to mitigate this problem, a good idea is to rotate the robot in
proportion to the concentration gradient in dependence of the upwind direction. The
algorithm is straightforward: The robot turns clockwise in the event of a positive
concentration difference and counterclockwise otherwise. The magnitude of the turn is
fixed. Afterwards it makes a step forwards and repeats from the beginning [8].

 2.1.5 Source declaration

In the bio-inspired algorithms, very often the source declaration problem has been
neglected. Usually a human observer would visually establish whether the robot has
reached a pre-defined proximity to the gas source. Among the first approaches that
didn't involve a human observer we can distinguish Li's approach [38] to send the robot
in cloverleaf trajectories in order to estimate the location of the source. His method uses
six most recent detection points to calculate a bounding box using three of the six most
upstream locations [8]. When the diameter of the box becomes small enough, the
source is assumed to have been found and the location is estimated at the center of the
box. However the results were accurate of a few dozen meters, mainly because of a
poor navigation system. A more accurate source declaration is presented can be done
using a particle filter-based gas source localization described in section 2.2.

In Lochmatter [9], the surge-cast algorithm slightly outperforms the surge-spiraling
algorithm. In the pure casting algorithm, by increasing alpha the robot has to turn more
and the performance decreases. From a comparison between Lochmatter and
Neumann the surge-cast algorithm performs better than pure-cast with alpha 75
degrees [8]. However, pure-casting is more robust. The pseudo-gradient tends to be at
least as efficient as the surge-cast algorithm.

 2.2 Probabilistic approach

In many outdoor experiments, it is difficult to intercept the odor because of the rapidly
changing gas plume. The robot needs to respond immediately after having acquired the
plume, but often the MOX gas sensors have long response and recovery times. Having
a fixed gas concentration threshold to indicate the presence of the plume can cause
events of non-detection [5]. If the threshold is too high, the plume could not be detected
because of the lag in response time of the sensor. If the threshold is too low, there can
be events of invalid detection. Therefore in [4] an adaptive threshold is introduced:

6

c̄=λ ¯c t−1+(1−λ)c t if t≥1

c̄ t=c t if t=0
(2.1)

where c t is the measured odor concentration at time step t and λ∈[0,1] . The

larger the value of λ , the slower c̄ t adapts to c t .
Li et al. used algorithms similar to the bio-inspired ones, namely the plume finding

strategy in [21] and the spiral-surge plume tracking algorithm in [22] in order to collect
measures more efficiently in the Particle Filter algorithm introduced in [5]. The Particle
Filter (PF), also known as Sequential Monte Carlo Method [8], is used to represent the
location of the gas source. The basic concept is that any probability density function
(pdf) can be represented by a set of N random state samples (particles) drawn from this
pdf to approximate the target's true world state (in this case the location of the gas
source) [8]. In [5], while the robot explores, the location of the gas source is estimated
iteratively. The distribution of the gas source is represented by a particle set

{Lk
i , i=1 ...N s} , each particle is accompanied by a weight w k

i at each time step k .

The weight w k
i represents the posterior density of the source location at the Lk

i at

the time step k . If the particles converge in a small area, the location of the source
can be estimated as:

Pk=∑
i=1

N s

wk
i Lk

i (2.2)

The convergence of the particles is determined by:

σ k≤Rconv (2.3)

where σ k
2
=∑

i=1

N s

[|Lk
i
−Pk|

2wk
i
] and Rconv is the convergence radius.

The algorithm generates particles after the first odor-detection event happens. The
weights are updated in each iteration: the particles with small weights are deleted
according to a Russian roulette and new ones are generated around particles with high
weights. An observation window is defined as the area composed of all possible
locations at which the particle is likely being observed at a probability density above a
given threshold. If there are no particles in the current observation window, then new
particles are generated and spread out in the observation window as new hypotheses of
the gas source. The algorithm terminates when the particles and the estimated locations

7

of the gas source converge. The experiments were evaluated using three criteria: the
localization error defined as the distance between the declared position of the source by
the algorithm and the actual position, the success rate defined as the ratio of the
successful localizations to the total number of experiments, and the convergence steps.
The successful trials had mean values of 79% success rate, 40 convergence steps and
0.290m localization error[5].

 2.3 Other approaches

Recently different approaches were confronted that aim to determine the distance from
the sensor to the gas source. The source distance or an estimate of it is very useful in
order to treat the problem of gas source localization as an optimization problem.
Lilienthal et al. [23] discovered that a good indicator of the source location was the
variance of the measured samples. The variance was significantly high at the source
location. Schmucker et al. [7] introduced a novel approach to estimate the distance from
the sensor to the gas source in a wind tunnel by computing the number of bouts in the
pre-processed gas concentration signal.

Other approaches include Lilienthal and Duckett [17] that proposed a novel
method where the robot evades local concentration maximums, exploring areas with
low concentration. By leaving out the high concentration areas, this helps to infer the
location of the source by considering that the robot explores all areas except for the
source location.

In [24], an approach that combines vision, olfaction and airflow maps for gas
source localization is presented.

From the analysis of the state of the art, it was concluded that the majority of the
algorithms work by taking into consideration the gas concentration and/or the wind flows
in the environment. To our knowledge there are no approaches that face the problem of
gas source localization by considering a method to estimate the source distance. In [7]
it is suggested to combine the proposed bout count feature with robotic navigation as an
interesting remit for future studies.

Results show that the problem of gas source localization is still an open problem of
great interest.

8

Chapter 3

Problem definition

In this chapter, we address the problem of localizing the gas source by a mobile robot.
The robot estimates the distance to the gas source from samples of gas concentration
and uses information on the wind flows of the environment to perform this task.

It is assumed that the environment is known a priori and it is not subject of
changes in the shape and/or presence of obstacles. The environment is represented as
a Cartesian grid, thus obtaining a set X of N cells of identical size: X={x1, ... , xN} . The
set of all cells M is partitioned into subsets O and F, where O includes all the cells which
contain an obstacle and therefore are not traversable by the robot. F includes all the
cells which do not contain obstacles and are therefore traversable by the robot.

The robot is equipped with in-situ gas concentration sensors and a wind sensor.
Metal-Oxide sensors are the most common gas concentration sensors in robotic
olfaction. These sensors are available commercially, have a relatively low cost
compared to other sensor types and a life span of three to five years. The response and
recovery times are very acceptable which makes them very efficient for most
applications. The MOX sensor type belongs to the in-situ type of sensors, which means
that they need to be in direct contact with the gas in order to measure the concentration.

Usually these sensors consist of a heating element inside a ceramic tube coated
with a semiconductor. When the sensor is in direct contact with the gas molecules, the
semiconductor’s resistance drops. As the gas concentration is reduced, the resistance
increases. The relationship between the gas concentration and the sensor’s resistance
is nonlinear and can be approximated like this:

RS≃KC−α
(3.1)

where RS is the resistance of the sensor, K is a scaling constant, C is the
concentration of the gas and α is the sensitivity of the sensor.

9

The changes of the resistance value are manifested in the voltage signal which
increases when the gas concentration is high and decreases when it is low.

The robot is equipped with an array of six SGX Metal-Oxide sensors. The sensor
heater temperature can be configured by setting the voltage. In all tests the voltage was
set to the maximum (5V). The sensors were configured differently in order to have
different responses for the gas concentration. More specifically, it is possible to
manually set the resistor load on each sensor.

The gas in question moves in the environment according to the wind flows. In order
to obtain information about the wind flow in the environment, the robot has been
equipped with a WindSonic sensor manufactured by Gill Instruments Ltd. This sensor
gives in output the direction of the wind and its speed.

Among the available output formats, the polar representation was used. The wind
speed is measured in meters per second. The speed range of the sensor goes from 0 to
60 m/s with a resolution of 0.01 m/s and an accuracy of 2%. The direction is
represented according to the sensor’s reference frame in degrees from 0 to 359 o in
downwind format.

The wind sensor samples at a frequency of 4 Hz. This frequency is fixed and
cannot be configured. During the measurement operation of the robot, wind information
samples are recorded also. Then the average is computed to have a speed and
direction. In order to use the wind direction information from the sensor, first a proper
frame transformation needs to be performed. Because the robot is continuously moving
and rotating, the frame of the sensor cannot be used. Besides the angle value of the
wind direction increases in clock-wise direction which is contrary to the robot’s
orientation. Therefore in order to have the proper wind direction, the value calculated
from the sensor should be converted in radians and subtracted from the robot’s
orientation.

The robot records samples of the gas concentration, wind speed and direction from
the sensors for a certain amount of sampling time. After processing the gas
concentration signal, the source distance estimation is derived. We define a function

f :X→R+ to indicate the distance estimation computed in a cell x∈M .
In this scenario, it is important to move the robot in order to have an optimal

coverage of the environment according to this sensory function. The function f is
unknown a priori and is built from noisy measurements. Therefore it is expressed as
noisy data:

y=f (x)+ϵ where ϵ∼N (0,σn
2) (3.2)

The coverage and the estimation should be performed simultaneously, that is the
robot has to estimate values of the function in unknown areas of the environment from
the measurements that it does and based on these estimates decide how to navigate in
order to cover the environment in an efficient way.

10

Chapter 4

Solution approach

This chapter describes how to approach the problem of gas source localization by
considering the average bout amplitude as a sensory function and using Gaussian
Regression to optimally cover the environment. After a representation of the algorithm
by means of a flow chart, each step is described in detail. In particular, the source
distance estimation and how to model the problem with Gaussian Regression is
described in more detail.

 4.1 Algorithm overview

The goal of this algorithm is to explore the environment trying to identify areas near the
source of the gas leak and pointing out the nearest reachable point to it.

The approach discussed here broadly consists in the repetition of the following
steps: make a measurement operation which consists in recording gas concentration
and wind samples, compute the source distance estimation, average wind speed and
direction, estimate the source distance function in nearby positions, and finally move the
robot to the next position.

 It is possible to estimate the distance from the robot to the gas source by
appropriately processing the gas concentration signal to compute. By using MOX
sensors, it is possible to extract rapidly fluctuating features of gas plumes that strongly
correlate to the distance to the source [7]. After applying a series of filters to the signal,
it is possible to estimate the source distance by analyzing the rising portions of it. The
portions where the amplitude of the filtered signal of the MOX sensor was consistently
rising are defined as “bouts”. The extraction of the signal bouts is crucial to the
algorithm.

11

In order to estimate the source distance simultaneously while making
measurements, the problem is approached by the Gaussian Regression technique. By
properly defining the kernel function between positions in the environment it is possible
to include in the model information about the wind flows and make an informed
coverage.

The algorithm is defined as follows:
1. Record samples of gas concentration, wind speed and direction
2. Compute bouts from the gas concentration signal
3. Define the kernel function based on the wind speed and direction
4. Estimate the mean and variance in nearby cells
5. Move the robot to the next measuring position

 4.2 Source distance estimation

One of the crucial steps of the algorithm is the detection of the bouts of the signal, i.e.
portions of the filtered signal where the amplitude was rising. In [7] it was discovered
that the number of bouts in a signal is related to the source distance: the higher the bout
count, the closer the sensor is to the gas source. The method that was presented to
compute the bouts was designed to work inside a wind tunnel. It was tested on different
wind speeds and it was seen that reliable results lied in the range of 0.1 m/s to 0.34 m/s
and on distances from 0.25 m to 1.45 m. However, in the gas source localization
problems, the wind tunnel conditions are ideal and not realistic in the real world. Usually
wind flows are too chaotic and can change direction often over time.

In this project, the bout computation was tested in open environments.
Experiments showed that the bout count gives mixed results in this scenario and cannot
be used to estimate the source distance. On the other hand, the amplitude of the bouts

12

Fig 4.1: Algorithm flowchart

showed to be a good indicator of the distance to the gas source: the higher the
amplitude, the closer the sensor is to the gas source. Therefore we used the bout
amplitude to estimate the source distance. To detect the bouts it is necessary to use a
cascaded filtering approach to enhance fast transients in the signal.

A low-pass filter is first used on the signal in order to smooth it. This is done by
applying a Gaussian convolution with σ smooth=0.3 s to remove high-frequency noise. In
the implementation this basically means that if the sampling frequency of the sensor
board is f then the standard deviation of the Gaussian should be such that
σ=f∗σ smooth .

y (n)=∑
m

x (m)G(n−m) (4.1)

where x (m) the initial signal, y (n) is the filtered signal, and G(i) is the
convolution kernel

G(i)=exp {
(i−k−1)2

σsmooth
2 } (4.2)

13

Fig 4.2: Example of a recorded gas concentration signal at a 3m distance from the source and 0.1m/s wind speed

On the smoothed signal, a differential convolution is applied by using the kernel
[−1 1] . This convolution shows the differences among pairs of samples, so it is

possible to see where the amplitude rises and where it decreases.

14

Fig 4.3: The smoothed signal after applying the low-pass filter

Fig 4.4: The signal after applying the differential convolution

signal := signal to be convoluted
SIGNAL_LEN := length of the signal
kernel := convolution kernel
kernelLen := length of the convolution kernel

procedure convolute(signal, kernel, kernelLen)
 halfKernelLen := kernelLen / 2
 n := 0

 while (n < SIGNAL_LEN)
 result[n] := 0

 if (n < halfKernelLen)
 then
 k_min := 0
 else
 k_min := n – halfKernelLen

 if (n < SIGNAL_LEN – halfKernelLen)
 then
 k_max := n + halfKernelLen
 else
 k_max := SIGNAL_LEN

 k := k_min

 while (k < k_max)
 result[n] := result[n] + signal[k] * kernel[halfKernelLen – n + k]
 k := k + 1

 n := n + 1

 return result

Listing 4.1: Pseudo-code to compute the convolution of the signal

Finally the signal undergoes an exponentially weighted moving average filter
(EWMA) with half life τhalf=0.4 s . The operation that yields the filtered time series y t
from the low-pass filtered x t can be expressed like in the following equation:

y t=(1−α)∗y t−1+α∗x t (4.3)

where α=1−exp
log(0.5)
τhalf∗Δ t

 and Δ t is the time step in the equation.

15

signal := signal to be convoluted
SIGNAL_LEN := length of the signal
HALF_LIFE := half life of the EWMA filter
DELTA_TIME := time step of the filtered series
y_t_old := 0
x_t := 0
alpha := 1 – exp(log(0.5) / HALF_LIFE * DELTA_TIME))

procedure ewma(signal)
 i := 0
 while (i < SIGNAL_LEN)
 x_t := signal[i]
 result[i] := (1 – alpha) * y_t_old + alpha * x_t

 y_t_old := result[i]
 i := i + 1

Listing 4.2: Pseudo-code of the EWMA filter computation

On the filtered signal, bouts of rising amplitude can be looked up on the differential
of the signal y t . Apply the differential convolution again:

y ' t= y t− y t−1 (4.4)

16

Fig 4.5: The signal after applying the Exponentially-Weighted Moving Average filter

The presence of a bout is characterized by y ' t being equal to or greater than

zero. Let’s define a boolean variable bt=1 if a bout is present at time t, and 0
otherwise.

bt=1 if y ' t≥0

bt=0 otherwise
(4.5)

The bout starts when bt flips from 0 to 1, and it last until it flips back to 0 again.
The bout amplitude is defined as:

about= y t2
− y t 1

(4.6)

where t1 is the starting time of the bout and t2 is the ending time.
In this scenario, bouts were considered as such if the amplitude is greater than

zero and no threshold was provided for the duration of the bout. It is assumed that bouts
of very short duration are filtered out by the low-pass filter.

 4.3 Exploration approach

The problem can be approached by the Gaussian Regression technique. We
model the average bout amplitude function f (x) as a Gaussian Process with
covariance function K :X×X→R .

Express the covariance function as cov (y p , yq)=k (xp , xq)+σn
2
δpq where δpq=1

if and only if p=q and 0 otherwise. The covariance between the outputs is expressed as
a function of the inputs.

Intuitively, the covariance function is an indicator of how two cells of the
environment are related to each other. If the covariance between two different positions
is close to 1, it means that those two positions are very similar to each other and the
average bout amplitude will be similar. If the covariance is low, then the bout amplitude
value will be very different which means that the two positions are not related to each
other.

The data collected from measurements is considered as training data and it
provides knowledge about the function. Based on this training data, and the covariance
function, it is possible to estimate the value of the function in unknown positions. The
covariance function should model the behavior of the function in the scenario by
indicating how different positions are related to each other, and the training data gives
information about the values of the function in the measured positions.

17

The joint distribution of the observed values and the function values in test
(unknown) positions can be written under the prior as:

[yf *
]=N (0,[K (X ,X)+σn

2 I K (X , X*)

K (X* , X) K (X* , X*)]) (4.7)

The posterior can be written as:

f *∣X , y , X*∼N (f * , cov (f *)) (4.8)

Where:

f̄ *=E[f *∣X , y , X*]=K (X* , X)[K (X ,X)+σn
2 I]−1 y

cov (f *)=K (X* , X*)−K (X *, X)[K (X , X)+σn
2 I]−1 y

(4.9)

However, in this scenario, the robot will evaluate each unknown cell individually to
estimate the value of the function. So instead of a vector of test positions, only one
position is considered. By denoting k*=K (x* , X) and K=K (X , X) the mean and
variance equations can then be simplified for the one test point scenario like this:

f̄ *=k⃗*
T
(K+σn

2 I)−1 y⃗

V [f *]=k (x* , x*)−k *
T(K+σn

2 I)−1k*

(4.10)

The mean f̄ * represents the expected value of the function in the position x* .

The variance V [f *] represents the level of uncertainty in the position x* . When the

variance is close to 1, then the position x* is considered unknown and the level of

uncertainty is high. This means that the position x* would be interesting to explore
and make a measurement there. On the other hand, if the variance is close to 0, it
means that the position x* is considered relatively known and the value of the
function can be estimated with a low level of uncertainty.

The gas in question moves in the environment according to the wind flows. In general,
insects in nature follow the gas plume against the wind in order to locate the gas
source. It is necessary to model this phenomenon in the Gaussian Regression model in

18

order for the estimation of the sensory function to be as realistic as possible. This is
done by properly defining the kernel function.

The kernel function describes how different positions are related to each other. In
general, positions that are near each other are more likely to have the same sensory
function value and therefore are highly related. After the robot performs a measurement
operation, it is likely that in the near vicinity of the measuring position, the value of the
sensory function is similar to the measurement value. Therefore the estimations in
positions near the measuring position are very reliable. On the other hand, a pair of
positions that are far away from each other are not related to each other in this case.

This simple kernel function, that is dependent on the distance between points only,
is called a radial kernel. However it is not very informative as it doesn’t give information
about the wind flow. The released gas spreads in accordance with the wind flows in the
environment. It is intuitive that the gas source would be located somewhere in the
upwind direction. Most of the state of the art anemotaxis algorithms make use of this
phenomenon. Therefore, the kernel function needs to model this preference of exploring
in the upwind direction, rather than making the robot go downwind. In order to include
the wind information, the radial kernel should be stretched according to the wind speed
and rotated according to the wind direction.

Denote with σ the spatial scale and with γ the wind scale. Then if we denote
with a the semimajor axis and with b the semiminor axis:

πσ
2
=π ab

a=σ+γu
b= σ

1+
γ|u|
σ

(4.11)

where u is the wind vector.

19

Fig 4.6: Influence of the wind speed and direction on the shape of the kernel

In this way, the axes of the stretched ellipse are computed by keeping the same
area of the radial kernel.

Use the two axes in the 2D covariance matrix of the Gaussian:

Σ0=(a 0
0 b) (4.12)

Rotate the covariance matrix so that the semimajor axis is aligned with the wind
direction :

ΣR=R(α)Σ0 R(α)
−1 (4.13)

where

R(α)=(cosα −sinα
sinα cosα) (4.14)

ΣR is the covariance matrix of the stretched ellipse shaped Gaussian kernel.
This kernel introduces the influence of wind speed and direction in the Gaussian
Regression, but it doesn’t distinguish between upwind and downwind directions. In
order to best model the wind influence on the problem at hand, the ellipse shaped
kernel should be stretched in the upwind direction and squeezed in the downwind
direction. In this way, the kernel represents the fact that positions in the upwind direction
are highly related to the measurement point. These positions are also interesting in
order to follow the gas plume. The same cannot be said for positions in the downwind
direction. For this purpose, let’s introduce two separate kernel functions, one for each
direction.

In the upwind direction, stretch the semimajor axis by multiplying it by a constant n:

Σ0upwind=(n∗a 0
0 b)

ΣR=R(α)Σ0upwindR (α)
−1

kupwind (x , x ')=exp−√(x−x ')TΣR
−1
(x−x ') if π /2≤β≤3π/2 and 0 otherwise

(4.15)

20

where is the angle between the vector and the direction of the wind.
In the downwind direction, shrink the semimajor axis accordingly:

Σ0downwind=(
a
n

0

0 b)
ΣR=R(α)Σ0downwind R(α)

−1

kdownwind(x , x ')=exp−√(x−x ')T ΣR
−1
(x−x ') if 3π/2≤β≤π/2 and 0 otherwise

(4.16)

The final kernel function can be obtained by summing up the two partial kernels:

k (x , x ')=kupwind (x , x ')+kdownwind (x , x ') (4.17)

 4.4 Selection of the next position

After computing the estimates and variances of unknown positions in the vicinity of the
measuring position of the robot according to the equations in (4.10), the robot chooses
the next position to go to before repeating the loop.

Although it is very likely that the gas source is located in the upwind direction, it is
not wise to send the robot in that direction consistently, especially when the gas plume
has not been acquired yet. So in this algorithm the best direction for the robot to follow
is computed from a trade-off between exploration of unknown areas in the environment
and exploitation of the best estimated positions according to the sensory function.

21

Fig 4.7: Influence of the wind in the shape of the kernel, distinguishing upwind and downwind directions

windSpeed := speed of the wind in m/s
windDirection := direction of the wind in radians
S_SCALE := spatial scale parameter
W_SCALE := wind scale parameter
N := stretching parameter

procedure computeKernelFunction(windSpeed, windDirection)
 semiMajorAxis := S_SCALE + W_SCALE * windSpeed
 semiMinorAxis := S_SCALE / (1 + (W_SCALE) * windSpeed)) / S_SCALE)

 cos_alpha := cos(windDirection)
 sin_alpha := sin(windDirection)

 rotMatrix[0][0] := cos_alpha
 rotMatrix[0][1] := -sin_alpha
 rotMatrix[1][0] := sin_alpha
 rotMatrix[1][1] := cos_alpha

 sigma0Upwind[0][0] := semiMajorAxis * N
 sigma0Upwind[0][1] := 0
 sigma0Upwind[1][0] := 0
 sigma0Upwind[1][1] := semiMinorAxis

 sigma0Downwind[0][0] := semiMajorAxis / N
 sigma0Downwind[0][1] := 0
 sigma0Downwind[1][0] := 0
 sigma0Downwind[1][1] := semiMinorAxis

 sigmaUpwind := rotMatrix * sigma0Upwind * rotMatrix.inverse()
 sigmaDownwind := rotMatrix * sigma0Downwind * rotMatrix.inverse()

Listing 4.3: Pseudo-code for the stretching of the Gaussian kernel

The robot updates its position xk by adding uk according to the following
equations:

xk+1=xk+uk

uk=ρ e
jθ (4.18)

The size step ρ can be a fixed parameter. The direction θ is decided based
on two contributions: the direction to the highest mean estimate and the variance
gradient. The direction to follow is chosen according to the trade-off parameter a(k)
that is updated at every step k . This parameter will take into consideration both
exploration and exploitation. In the beginning, it is preferred to send the robot to
unknown locations in order to first explore the environment. The trade-off parameter is
high at the beginning of the execution, giving more weight to exploration. For each

22

iteration the trade-off parameter will decrease, slightly leaning more towards exploitation
at each step, until the a posteriori variance is low enough.

x, x_prime, y, y_prime := coordinates of the two points
windDirection := direction of the wind

procedure getK(x, y, x_prime, y_prime)
 diff_x := x – x_prime
 diff_y := y – y_prime

 diff_v := [diff_x, diff_y]

 if (isUpwind(diff_x, diff_y))
 then
 k := exp(-sqrt(diff_v.transpose() * sigmaUpwind.inverse() * diff_v))
 else
 k := exp(-sqrt(diff_v.transpose() * sigmaDownwind.inverse() * diff_v))

procedure isUpwind(diff_x, diff_y)
 angle := atan(diff_y / diff_x) – windDirection
 return !(angle < M_PI / 2 && angle > -M_PI / 2)

Listing 4.4: Computation of the covariance between two points x and x'

In order to choose whether to follow the direction of the highest mean estimate or
the variance gradient we can sample from a Bernoulli distribution where we assign the
probability of success according to the trade-off parameter.

By sampling from this distribution we can determine the main direction to follow
θm . We give a more probabilistic nature to the final direction by sampling from a

Gaussian distribution, centered in θm .

p(θ)=exp{
−(θ−θm(k))

2

σm
} (4.19)

Finally, after computing the direction to follow, the robot moves along it making a
step sized according to the ρ parameter. After completing the motion, the robot
repeats the loop of the algorithm from the beginning.

When the a posteriori variance is low enough (i.e. the trade-off parameter goes
under a certain threshold) the algorithm terminates by declaring the position where the
highest bout amplitude estimate was found as the final one.

23

24

Chapter 5

Experimental results

This chapter describes the results obtained by testing the bout detection algorithm in
different distances from the sensor in simulation and in the real world. Afterwards, the
results from the execution of the exploration algorithm follow, showing examples in
different scenarios of wind flows and concluding with a discussion on how the
parameters influence the execution.

 5.1 Bout detection results in simulation

To test the bout detection algorithm, a gas dispersion simulator was used. The simulator
is a filament-based algorithm: the concentration of the gas is determined by a number of
filaments released from the gas source. Gas dispersion is determined by a series of
files that are used to describe the spatio-temporal changes of the wind flow in the
environment. The wind flow pattern is generated by OpenFOAM [40], which is an
external tool. Given a predefined environment and the corresponding files that describe
the wind flow information , the gas dispersion simulator allows the user to simulate the
dispersion process of the filaments released from the source. As the filaments are
distributed in the environment according to the wind flow and gravity, the gas
concentration in the environment changes [39].

The bout detection algorithm was tested in environments of different size in order
to evaluate whether the number of bouts is related to the distance to the source. The
number of bouts is a good estimator of the source distance in wind tunnel applications
[7]. It was tested on different wind speeds and it was seen that reliable results lied in the
range of 0.1 m/s to 0.34 m/s and on distances from 0.25 m to 1.45 m. It is interesting to
see whether the bout count is related to the distance to the source in open
environments, higher wind speeds and longer distances. Wind tunnel conditions are not
very realistic in the real world because wind flows are too chaotic and can change

25

direction often over time. Therefore the algorithm needs to perform well in open
environments in order to be useful for mobile robotic olfaction applications.

The first experiment was run in a rectangle shaped environment, discretized in
voxels of 1 m each. The environment had an area of 11mx6m and was 5m high (see Fig
5.1). The gas source was placed at the position (2,2) and 3m high. The generated wind
files simulated a wind flow along the U direction that ranged from 1.7m/s to 2m/s. The
simulator ran for 300 snapshots, therefore 300 gas concentration samples were
available for the execution of the bout detection.

Fig 5.1: First environment (11x6) where the bout count was tested in
simulation.

5 5 6 9 9

4 4 8 8 9

5 6 8 8 9

5 4 8 5 5

1 20 3 21 20

32 1 30 19 22

2 1 21 22 5

31 28 25 22 2

0 32 27 29 18

Fig 5.2: First results of the bout count in cells around the source in the environment presented in Fig 5.1.
The green filled cell indicates the location of the source. The blue arrow represents the wind flow

direction.

26

By defining α=1−
1

2∗τhalf∗Δ t
 in the EWMA filter step of the bout detection

(equation 4.3) and computing the bouts in each cell it was seen that, contrary to
expectations, the bout count doesn’t decrease with distance but rather increases (see
Fig 5.2).

4 3 3 3 3

5 6 4 4 3

5 6 6 5 5

6 5 5 5 4

6 6 5 5 4

6 1 6 5 8

4 9 8 5 7

2 2 2 2 5

8 1 0 2 1

1 0 1 7 0

Fig 5.3: Results of the bout count in cells around the source in the environment presented in Fig 5.1. The
green filled cell indicates the location of the source. The blue arrow represents the wind flow direction.

On the other hand by defining α=1−exp{
log(0.5)
τhalf∗Δ t

} and using it in the EWMA

filter (equation 4.3), the bout count increased slightly for up to 4 meters from the source
(see Fig 5.3). However, the changes in the number of bouts are almost negligible. The
bout detection algorithm was designed to work on low wind speeds in the range of 0.1-
0.3m/s, so the high wind speed could be a factor for not detecting any notable changes.

In the second simulation experiment a bigger environment (see Fig 5.4) was used
(41mx16m). Because of the very long computation time, the concentration signal was
built out of 150 simulation snapshots. The wind flows according to the U axis direction.
The gas source was placed at the position (8, 10) and 3 meters above the ground.

27

Fig 5.4: Second environment (41x16) where the bout count
was tested in simulation.

The wider area of the environment allows this experiment to show a more
complete pattern of the number of bouts with respect to the distance from the source. It
can be noticed that the bout count increases when moving away from the source for up
to 6-7 meters before decreasing again gradually. After 12-13 meters the effect of the gas
plume on the bout count seems to vanish.

 5.2 Bout detection results in real world experiments

Several experiments were held in real world environments. The robot was equipped
with six SGX MOX sensors (described in Chapter 3) configured with the respective
approximate resistor loads:

S1 S2 S3 S4 S5 S6

R (kOhm) 10 1 1 4 12 1

Table 5.1: Respective resistor loads of the MOX sensors

28

6 6 7 8

8 6 7 6

8 9 8 7

9 28 26 9

12 12 5 23 23 12 23 7 8

11 14 10 27 30 24 10 9 9

12 11 12 27 25 26 23 12 8

13 14 22 33 30 28 29 9 12

12 24 12 27 30 28 20 7 12

14 19 10 33 28 30 10 7

13 13 14 30 27 27 22 12

14 13 14 27 27 24 7 10

11 11 21 22 25 27 11 9

12 8 10 25 21 26 3 10

13 29 29 16

22 19 18 9

7 11 0 9

7 5 4 4

4 4 3 5

4 4 2 4

Fig 5.5: Results of the bout count in some cells around the source in the environment presented in Fig
5.4. The green filled cell indicates the location of the source. The blue arrow represents the wind flow

direction.

29

The gas plume was generated through evaporation of propanol from a small
container. In order to generate the wind flow a fan was used that blew towards the
robot. The bout detection was tested on low wind speeds (0.1m/s and 0.3m/s). The
container was placed in between the robot and the fan in different distances from the
robot in the range from 2 to 4 meters. The sampling rate of the sensors was set to 74
Hz and the sensing time of the robot was 135 seconds, obtaining gas concentration
signal with a total of 10000 samples for the bout detection algorithm. The bout count
was computed individually for each sensor.

30

Fig 5.8: Plot of the bout count results from
the first experiment with 0.3m/s wind
speed

Fig 5.6: Plot of the bout count results from
the first experiment with 0.1m/s wind
speed

Fig 5.7: Plot of the bout count results from
the second experiment with 0.1m/s wind
speed

Fig 5.9: Plot of the bout count results from
the second experiment with 0.3m/s wind
speed

From the different experiments that were held, in simulation and in the real world it
can be said that the bout count gives mixed results in open environments. In some
cases (such as from the signal of the S5 sensor in the first test at 0.1m/s wind), instead
of decreasing as we would expect, the bout count increases with distance. In other
cases, the bout count changes isn't related to the distance at all, giving mixed results
that would make it useless for the purpose of estimating the location of the gas source.
This can be typically seen in the response of the S2 and S3 sensors at 0.3m/s wind
conditions. Detailed results are presented in Appendix B.

From the analysis of the gas concentration signal, however, it could be noted that
there is another pattern in the bout detection that can potentially be used for estimating
the gas source distance. In general, the amplitude of the bouts tends to decrease with
distance, making it possible to estimate the distance to the source more accurately. In
the experiments in the real world, the bout amplitude was computed for each sensor as
the mean value of the amplitudes of all the bouts.

31

Fig 5.10: Plot of the bout amplitude results of the first experiment with 0.1m/s
wind speed

32

Fig 5.11: Plot of the bout amplitude results from the second experiment
with 0.1m/s wind speed

Fig 5.12: Plot of the bout amplitude results from the first experiment
with 0.3m/s wind speed

From the results it can be seen that, although not very robustly, the average bout
amplitude is a good indicator of the distance to the gas source. We can see that the
sensors with lowest resistor loads are more sensible to the distance than the other
ones. The average bout amplitude is not very accurate in estimating the source distance
within the range of 0.5m, meaning that in some sensors responses, when moving away
from the source the amplitude sometimes slightly increases. However in most cases,
the average bout amplitude decreases when moving away from the source for more
than 1m. This makes it useful to mobile robotic olfaction applications in open
environments.

The bout detection algorithm was tested in outdoor environments also, but with no
promising results. The wind flow conditions are not stable in outdoor environments
which results in the wind changing direction very often. Moreover, the wind speed is in
general much higher than in indoor environments. In the experiment that was held the
wind speed was in the range of 1 m/s which makes the bout detection algorithm
useless. The average bout amplitude was very low and practically indistinguishable
from the blank case.

33

Fig 5.13: Plot of the bout amplitude results from the second experiment with
0.3m/s wind speed

 5.3 Exploration results

The exploration algorithm was tested on the Husky A200 physical platform, produced by
Clearpath Robotics. Besides the six SGX MOX sensors on an Arduino board, the robot
was equipped with a Windsonic sensor produced by Gill Instruments Ltd. In order to
build the map of the environment and determine the obstacles' distance from the robot a
Light Detection and Ranging (LIDAR) sensor was mounted on the base platform.

The environment on which the robot performed the exploration was setup on the
Teknikhuset corridor at the Örebro University. The environment used was about 22
meters long and 4 meters wide.

To simulate gas leaks, a container filled with propanol was placed on a table and
the gas plume was created through evaporation. The fan placed on the table near the
gas source is used to simulate a wind flow. Different experiments were held by
positioning the fan in order to generate wind flows with different directions and different
wind speeds.

34

Fig 5.14: Husky A200 (Clearpath Robotics) equipped with a Windsonic sensor, MOX
sensors and the LIDAR scanner

Fig 5.15: Teknikhuset corridor at the Örebro University where
the experiments were held

In all experiments, the robot was placed on the start position on the west point as
indicated in the environment map. The obstacles introduced in the map represent the
location of the table where the gas source is placed and the presence of stairs in the
corridor. Although these obstacles are clearly marked in an occupancy grid, in order to
properly avoid them the robot keeps a certain distance from them. This is achieved by
inflating these obstacles in the occupancy grid according to the robot's size.

The sensory function for Gaussian Regression was derived from the bout
amplitudes of the signals of each sensor. As it can be seen from the results of the
source distance estimation, the bout amplitude indicator is not very robust. The
estimation of the source distance wouldn't always be accurate if it were to be derived
from a single sensor, especially in high wind speeds. The low resistance sensors are
highly sensitive and not very reliable. The bout amplitude from the high resistance

35

Fig 5.16: Sketch indicating the map layout, position of the source and starting point of the robot

sensors, on the other hand, shows slight changes with distance. Therefore, the distance
was estimated by a contribution of each sensor. More specifically, for each sensing
operation, the average bout amplitude for each sensor was calculated first and then the
six values are averaged together to have the final value. In this way, the effect of the
very sensitive sensors is attenuated by the others in order to give a good estimation.
The map for navigation purposes was discretized in cells of one meter per side because
of the robot’s size. On the other hand, the mean estimation and variance maps
computed from Gaussian Regression are discretized in cells of ten centimeters per side
each in order to have a finer grid of values.

a)

In Fig 5.17, the mean estimation and variance maps computed by Gaussian
Regression at the end of execution are represented, considering the average bout
amplitude as the sensory function. In this scenario, the fan placed on the table was
oriented towards the stairs in order to have a southeast direction for the wind. The
robot’s sensing time was set to 135 seconds, which correspond to 10000 samples of
gas concentration. In the mean map, the dark blue regions represent low values of the
mean estimate, the lighter regions indicate areas with higher estimate of the bout
amplitude. In this case, the robot identified the area immediately to the south of the
table as the nearest to the source. By considering the starting position of the robot as

36

b)

c)

Fig 5.17: Results from the first experiment. Wind flows towards the south-east direction. Sensing time is
135 seconds a) the mean map: light blue regions indicate a high mean value. b) the variance map: yellow

regions indicate low variance c) the red circle indicates the final position of the robot

the origin, then the final chosen position was in coordinates (9, 0) which is located
immediately south of the table. If we consider also the inflation of the obstacles for
navigation purposes, then this final position that was chosen is actually the closest
reachable position to the gas source. It is noteworthy to mention that at the beginning of
the execution, the robot made a broad exploration of the environment (on the west
side). By the end of the execution, the robot instead of exploring further in the east side,
it chose positions near the table, which are located in the upwind direction. As expected,
the robot tends to prefer exploration in the beginning of the execution and slightly move
towards exploitation by the end of it.

In Fig 5.18, the mean and variance maps represent the results of another
experiment in which the fan was oriented towards the starting position of the robot and
so the wind was flowing towards the south-west direction. In this experiment, the robot’s
sensing time was set to 67 seconds which correspond to 5000 samples of gas
concentration. The area in the west side of the map, where the gas was flowing, is
marked in light blue to indicate high bout amplitude values. Although the overall light
blue area is not very accurate in indicating the positions near the source, in the end the

37

Fig 5.18: Mean and variance map of the second experiment. Wind flows towards the south-east
direction. Sensing time is 67 seconds. a) the mean map: light blue regions indicate a high mean value.
b) the variance map: yellow regions indicate low variance c) the red circle indicates the final position

a)

b)

c)

robot chose the position (5, 1) as the nearest one to the source. This position is located
in fact immediately in the south-west direction of the source and is the location where
the highest bout amplitude was measured. By analyzing the variance map it can be
seen that the robot after making a broad exploration in the west side, by the end of the
algorithm decided to just go upwind (in the east direction).

In Fig 5.19, the mean map of the same scenario as in Fig 5.18 is represented, but
doubling the sensing time. With a longer sensing time, the robot was able to identify the
more accurately the areas near the gas source. However, in both cases, the robot in the
end chose the same cell as the final position nearest to the source.

Fig 5.19: Mean map of the third experiment. Wind flows towards the south-west
direction. Sensing time is 135 seconds.

In Fig 5.20, an experiment with higher wind speed is represented. In this scenario,
the wind speed was about 1 m/s. The wind was flowing towards the south-west
direction. Unfortunately, the bout detection algorithm is not reliable in high wind speeds.
The maximum speed of operation is in the range 0.3-0.4 m/s. As a result, although the
robot went near the source during the exploration, the highest bout amplitude was
measured near the starting position, thus failing to find the gas source.

Fig 5.20: Mean and variance maps of the fourth experiment. The wind flows
towards the south-west direction with a 1 m/s speed.

38

 5.4 Parameter tuning

The algorithm introduced in Chapter 4 makes use of a few parameters that need tuning.
The robot step size is a parameter that is used to calculate the distance the robot
should cross once the direction to follow has been determined.

The exploration vs exploitation trade-off parameter should be updated in every
algorithm iteration. This update should make the trade-off lean slightly towards the
exploitation in every iteration. This is modelled by setting the parameter equal to 1 in the
start of the execution and then multiplying it by a decay factor in each iteration. After the
trade-off parameter goes under a threshold (which means that the a posteriori variance
is low enough), then the robot goes for the position with the highest average bout
amplitude and the execution ends. This decay factor is a parameter that indicates how
fast the trade-off should go from a total preference of exploration towards exploitation.
In order for this preference to be as uniformly distributed as possible between
exploration and exploitation, the threshold should be as low as possible. In this way,
when the trade-off parameter goes near the threshold, the robot will almost exclusively
choose to go towards areas with high bout amplitude.

Because of the fine grid map representation of the variance and mean, it is
computationally very expensive to use Gaussian Regression to compute the estimates
in the whole environment in every iteration. Therefore, the mean and variance were
calculated in neighboring cells of the measuring position inside a window of a
heuristically fixed size.

In the exploration experiments mentioned above, the robot step size was fixed at
two meters. This is done because, as it can be seen from the bout detection results, the
amplitude of the bouts changes significantly when moving away from the source for a
distance longer than one meter. For some technical reason, the localization of the robot
didn’t always coincide with the odometry, resulting in the robot moving in steps shorter
than specified by the step size parameter. Therefore in order to cope with these errors,
a step size of two meters is reasonable.

The trade-off decay factor can indirectly define the total number of iterations of the
algorithm execution. Because the trade-off parameter is updated at every iteration, it is
possible to calculate how many iterations it will take for it to go under the threshold. The
number of iterations should be chosen heuristically but in accordance with the
environment size and shape. In the experiments that were held in the Teknikhuset
corridor, the decay factor was set to 0.88 and the threshold at 0.1. In this way the robot
would make 18 iterations. The environment was about 22 meters long, and the robot
would move for one or two meters in every iteration, so 18 iterations are enough to
cover a good part of the environment.

From the bout detection experiments, it can be seen that the bout amplitude is
reliable for up to 4 meters distance from the source. The amplitude decreases a lot after
4 meters and it cannot be distinguished from the amplitude at the absence of gas.
Therefore, in the exploration experiments the mean estimate and variance was
computed in a window around the robot of 5 meters in each side. The reason for this is

39

that estimating outside that window would be irrelevant, as the bout amplitude cannot
be used to estimate source distances longer than 4 meters.

The bout computation accuracy increases with long sensing times. However, the
sensing time is a bottleneck for the total execution time. In order to reduce the execution
time of the algorithm, we need to reduce the sensing time, losing in accuracy. In the
experiments, two tests were run in the same scenario with sensing times respectively
67 seconds and 135 seconds. Although, using a shorter sensing time didn’t perform well
in indicating areas near the gas source, in the end of the exploration, the end result was
the same. However, the longer sensing time experiment was more accurate in
identifying areas of interest for the problem of gas source localization. Therefore
sensing time also should be used heuristically, trading off time of execution with the
accuracy of finding the gas source.

 5.5 Discussion about the results

From the experiments it can be seen that the bout count isn't useful to estimate the
source distance in open environments. The bout amplitude on the other hand is very
reliable to distinguish distances with a granularity of one meter or more. Results show
that the amplitude isn't very robust when moving away from the source for distances of
half a meter. The amplitude sometimes increases instead of decreasing, as it can be
noticed in distances of 2.5m and 3.5m from the source. In other cases the amplitude
generally decreases.

In order to measure the success rate of the exploration experiments, we consider
an experiment successful if the robot chooses as the final position the reachable cell
that is nearest to the table, where the gas source is placed, in the wind direction. From a
total of 12 complete runs of exploration, 8 were successful in identifying the proper final
position, giving this method a 67% success rate. Among the failed experiments,
possible reasons were high wind speed, misplacement of the sensor with respect to the
height of the gas source, and problems in the navigation system of the robot.

The bout computation isn't designed to work with high wind speeds, and it is
unusable above the level of 0.3m/s.

As described in section 5.3, the gas source was placed on a table which was
higher than the robot platform. The MOX sensors were placed on the robot platform.
When the gas source was placed near the edge of the table, it was seen that the robot
cannot perceive a high bout amplitude when going near it. This could be because the
wind fan placed immediately behind the source would force the gas to flow on top of the
sensor, without it being able to record samples of high concentration. This is an
important issue with in-situ gas sensors: the sensor needs to approximately match a
height such that it perceives being in the gas plume when it is located near the source.

In some experiments there were problems with the localization of the robot: the
position measured from the odometry sometimes is off by a few tens of centimeters with

40

respect to the goal position where the robot is sent to. The positions are rounded in cells
sized one meter on each side. So this error is mitigated most of the time by considering
both positions inside the same cell. However, if the error becomes greater than half a
meter, then the two positions are rounded to different neighboring cells. By design, the
measurement done by the robot is recorded on the position given by the odometry. This
might cause a failure in the experiment by declaring a wrong final position.

41

42

Chapter 6

Conclusions and Future Work

 6.1 Conclusions

In many dangerous or cumbersome tasks, human workers are being replaced by
robots. Mobile robotics is considered very useful in minimizing risks and increasing
efficiency in many applications. In the last years, research in robotic olfaction is growing
and finding many applications in industrial environments.

This thesis analyzes the problem of gas source localization, and introduces an
approach to solve it by a mobile robot equipped with in-situ gas concentration sensors
and a wind sensor.

The proposed solution adapts a general exploration strategy based on Gaussian
Regression for the purpose of localizing the source of the gas leak in an environment.
As a sensory function, the method uses the amplitude of bouts of the gas concentration
signal, trying to drive the robot towards areas where its value can be maximized. Bouts
are defined as portions of the concentration signal where the amplitude was consistently
rising. Their amplitude can be used to estimate the source distance. By taking into
consideration the wind flows in the environment, the algorithm builds a kernel function
for the Gaussian Regression that best models the characteristics of the bout amplitudes
around the measurement positions.

The exploration strategy implements a decision making for the navigation that
tends to drive the robot towards unknown areas in the beginning of the execution and
towards high bout amplitudes by the end of it. This is modelled by a trade-off between
exploration and exploitation that starts with a high preference for exploration and in
each iteration slightly leans towards exploitation.

By properly tuning the parameters and execution time, this approach can be
adapted to different kinds of environments and to different interests of the user.

Experimental results in the physical Husky A200 platform have shown that the
amplitude of the bouts of the gas concentration signal is a good estimator of the
distance to the source. The exploration strategy based on Gaussian Regression

43

performed with a success rate of 67% in indoor environments, identifying areas near the
gas source in wind flow conditions with relatively low speed and declaring the closest
reachable position to the gas source.

 6.2 Future works

The work done in this thesis can be extended in several aspects.
In the approach presented here it was assumed that the gas source is unique and

that it is present somewhere in the environment. It is localized in the position where the
bout amplitude is highest. However, the robot would declare the highest bout amplitude
position as the gas source even when there is no gas leakage. Therefore, a possible
improvement would be to consider scenarios where there is no gas leakage or where
there are more than one. The robot should be able to declare that the gas source is
missing or that there are more than one. A possible approach to do this would be to
study the bout amplitude response of different gases and try to establish thresholds in
order to distinguish the presence of a gas source or the lack of it. In that case a more
precise and robust method to declare the position of the gas source is needed.

A more interesting area of research would be to further study the signal processing
part and make it more robust, especially in scenarios with high wind speeds and
outdoors. In [7] it was described how to tune the parameters of the filters: if the filter is
tuned to higher frequencies, it will resolve distance best if it is close to the source. The
simple design of the method allows to use differently tuned instances simultaneously, so
it is possible to construct a filter bank that resolves a wide range of source distances
and wind speeds.

Finally, in order to increase efficiency, an area of interest would be to consider
using a multi-robot system. It could be more efficient to partition the environment with a
Voronoi diagram and adapt a strategy to assign the robots in each partition.

44

Bibliography

[1] www.ros.org

[2] Carl Edward Rasmussen, Christopher K. I. Williams, “Gaussian Processes for
Machine Learning”, MIT Press, 2006.

[3] Andrea Carron, Marco Todescato, Ruggero Carli, Luca Schenato, Gianluigi
Pillonetto, “Multi-agents adaptive estimation and coverage control using
Gaussian regression” in Proceedings of the 2015 European Control
Conference (ECC) July 15-17, 2015. Linz, Austria.

[4] Ji-Gong Li, Qing-Hao Meng, Fei Li, Ming Zeng, and Dorin Popescu,
“Mobile Robot based Odor Source Localization via Particle Filter” in
Proceedings of the Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference Shanghai, P.R. China, December 16-18,
2009.

[5] Ji-Gong Li, Qing-Hao Meng, Yang Wang, Ming Zeng, “Odor source
localization using a mobile robot in outdoor airflow environments with a
particle filter algorithm”, Auton. Robots, vol. 30, pp. 281–292, Apr. 2011.

[6] Matteo Reggente and Achim J. Lilienthal, “Using Local Wind Information
for Gas Distribution Mapping in Outdoor Environments with a Mobile Robot”
in Proceedings of IEEE Sensors, pp. 1715–1720, 2009.

[7] Michael Schmuker, Viktor Bahr, Ramón Huerta, “Exploiting plume
structure to decode gas source distance using metal-oxide gas sensors”,
Sensors and Actuators B: Chemical Volume 235, 1 November 2016, pp.
636–646.

45

[8] Patrick Neumann, “Gas Source Localization and Gas Distribution Mapping
with a Micro-Drone”, Ph.D. Thesis, Freien Universität Berlin, 2013.

[9] T. Lochmatter, “Bio-Inspired and Probabilistic Algorithms for Distributed
Odor Source Localization using Mobile Robots”, Ph.D. Thesis, EPFL,
Lausanne, Switzerland, February 2010.

[10] G. Kowadlo, “Robot Odor Localization: A Taxonomy and Survey”, Int. J.
Rob. Res., vol. 27, no. 8, pp. 869–894, 2008.

[11] M. Trincavelli, “Gas Discrimination for Mobile Robots”, Ph.D. Thesis,
Örebro University, 2010.

[12] A. Lilienthal, “Gas Distribution Mapping and Gas Source Localisation
with a Mobile Robot”, Ph.D. Thesis, Wilhelm-Schickard Institute, University of
Tübingen, 2004.

[13] Y. Kuwana, I. Shimoyama, and H. Miura, “Steering control of a mobile
robot using insect antennae,” in Proceedings of 1995 IEEE/RSJ International
Conference on Intelligent Robots and Systems 95. ”Human Robot Interaction
and Cooperative Robots” Volume 2, vol. 2, (Pittsburgh, PA, USA), pp. 530–
535, IEEE Computer Society, 1995.

[14] Y. Kuwana and I. Shimoyana, “Pheromone-guided mobile robot that
behaves like a silkworm moth with living antennae as pheromone sensors.,”
International Journal of Robotics Research, vol. 17, no. 9, pp. 924–933,
1998.

[15] H. Ishida, K. Suetsugu, T. Nakamoto, and T. Moriizumi, “Study of
autonomous mobile sensing system for localization of odor source using gas
sensors and anemometric sensors,” Sensors and Actuators A, vol. 45, pp.
153–157, 1994.

[16] T. Lochmatter and A. Martinoli, “Tracking Odor Plumes in a Laminar
Wind Field with Bio-Inspired Algorithms,” in 11th International Symposium
on Experimental Robotics 2008 (ISER 2008), vol. 54, pp. 473–482, Springer,
2009

[17] A. Lilienthal and T. Duckett, “Experimental Analysis of Smelling
Braitenberg Vehicles,” in Proceedings of the IEEE International Conference
on Advanced Robotics (ICAR 2003), pp. 375–380, 2003.

46

[18] T. Duckett, M. Axelsson, and A. Saffiotti, “Learning to Locate an Odour
Source with a Mobile Robot,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA 2001), Seoul, South Korea, pp.
21-26, 2001.

[19] Massimo Vergassola, Emmanuel Villermaux, Boris I. Shraiman,
“‘Infotaxis’ as a strategy for searching without gradients”, Nature, vol. 445,
pp. 406–409, January 2007.

[20] M. Vergassola, E. Villermaux, and B. I. Shraiman, “Supplementary
Materials for ”Infotaxis: searching without gradients”,” 2007.

[21] W. Li, J. A. Farrell, S. Pang, and R. M. Arrieta, “Moth-inspired chemical
plume tracing on an autonomous underwater vehicle,” IEEE Trans. on
Robotics and Automation, vol. 22, no. 2, pp. 292–307, 2006.

[22] A. T. Hayes, A. Martinoli, and R. M. Goodman, “Swarm robotic odor
localization: Off-line optimization and validation with real robots,” Robotica,
vol. 21, no. 4, pp. 427–441, 2003.

[23] A. J. Lilienthal, T. Duckett, F. Werner, and H. Ishida, “Indicators of Gas
Source Proximity using Metal Oxide Sensors in a Turbulent Environment,” in
Proceedings of the IEEE / RAS-EMBS International Conference on Biomedical
Robotics and Biomechatronics (Biorob), February 20 – 22 2006.

[24] G. Kowadlo, D. Rawlinson, R. A. Russell, and R. A. Jarvis, “Bi-modal
Search using Complementary Sensing (Olfaction/Vision) for Odour Source
Localisation,” in Proceedings of the 2006 IEEE International Conference on
Robotics and Automation, ICRA 2006, May 15-19, 2006, Orlando, Florida,
USA, pp. 2041–2046, 2006.

[25] G. Cabrita, P. Sousa, and L. Marques, “Odor guided exploration and
plume tracking - Particle Plume Explorer,” in Proceedings of the 5th European
Conference on Mobile Robots ECMR 2011, September 7-9, 2011, Örebro,
Sweden, 2011.

[26] Susan Phillips, “Earthquake Could Cause Gas Leaks,” August 2011.

47

[27] L. Marques, N. Almeida, and A. de Almeida, “Olfactory sensory system
for odour-plume tracking and localization.,” in Proceedings of IEEESensors,
vol. 1, pp. 418–423, 2003.

[28] A. Hayes, A. Martinoli, and R. Goodman, “Distributed Odor Source
Localization,” IEEE Sensors Journal, vol. 2, pp. 260–271, 2002.

[29] A. J. Lilienthal, M. Reggente, M. Trincavelli, J. L. Blanco, and J.
Gonzalez, “A Statistical Approach to Gas Distribution Modelling with Mobile
Robots - The Kernel DM+V Algorithm.,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
570–576, October 11 – October 15 2009.

[30] R. A. Russell, “Survey of Robotic Applications for Odor-Sensing
Technology,”The International Journal of Robotics Research, vol. 20, no. 2,
pp. 144–162, 2001.

[31] L. Marques, U. Nunes, and A. T. Almeida, “Particle swarm-based
olfactory guided search,” Auton. Robots, vol. 20, pp. 277–287, June 2006.

[32] W. Jatmiko, K. Sekiyama, and T. Fukuda, “A PSO-based mobile robot for
odor source localization in dynamic advection-diffusion with obstacles
environment: theory, simulation and measurement,” Computational
Intelligence Magazine, IEEE, vol. 2, no. 2, pp. 37–51, 2007.

[33] J.-B. Masson, M. B. Bechet, and M. Vergassola, “Chasing information to
search in random environments,” Journal of Physics A: Mathematical and
Theoretical, vol. 42, no. 43, p. 434009, 2009.

[34] V. Braitenberg, “Vehicles: Experiments in Synthetic Psychology”,
Cambridge, MA, USA: The MIT Press, February 1986.

[35] J. Saarinen, H. Andreasson, T. Stoyanov, and A. Lilienthal, “Normal
distributions transform monte-carlo localization (ndr-mcl)”, In EEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 382–
389, 2013.

[36] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization
for mobile robots”, In Proceedings of IEEE International Conference on
Robotics and Automation, pp. 1322 – 1328, 1999.

48

[37] P. Biber and W. Strasser, “The normal distributions transform: a new
approach to laser scan matching”, 2003.

[38] W. Li, “Moth plume-tracing derived algorithm for identifying chemical
source in near-shore ocean environments,” in 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, October 29 - November 2,
2007, Sheraton Hotel and Marina, San Diego, California, USA, pp. 2162–
2167, 2007.

[39] Ali Khaliq, Sepideh Pashami, Erik Schaffernicht, Achim Lilienthal and
Victor Hernandez Bennetts, “Bringing artificial olfaction and mobile robotics
closer together – An integrated 3D gas dispersion simulator in ROS”, in
Proceedings of the 16th International Symposium on Olfaction and Electronic
Noses (ISOEN 2015), Dijon, Burgundy, France, June 28-July 1, 2015

[40] www.openfoam.com

49

50

Appendix A

ROS Architecture

The algorithm was tested to run on the Husky A200 robot developed by Clearpath
Robotics. To this purpose, the code was implemented on the Robot Operating System
(ROS) framework. ROS is a very convenient framework for writing software designed
for robotics applications [1]. It is a collection of libraries, and tools that aim to provide a
middleware framework that obscures low-level control and facilitates communication
between different processes.

ROS provides a publisher-subscriber paradigm that allows different processes
organized in nodes to use a client library to communicate among them. Communication
happens through topics by sending ROS messages. Publisher and subscriber nodes
must respectively send and receive messages of the same type in order to
communicate. Besides the asynchronous publisher/subscriber message passing, ROS
provides a synchronous client-server paradigm for nodes to send requests and receive
responses.

This type of communication is very efficient in robotics applications. It can hide the
communication details between nodes and facilitate the development of interfaces
between nodes.

 A.1 Navigation

The ‘move_base’ package provides a ROS interface for running and interacting
with the navigation stack on a robot. The ‘move_base’ node and how it interacts with
other components is shown in Fig A.1. The white nodes are provided for every system
and are mandatory, the gray are optional but also provided while the blue components
are dependent of the robot platform.

51

Fig A.1: Navigation stack tf tree (wiki.ros.org)

For a successful run, the navigation stack requires the following requisites [1]:
● ROS: The navigation stack assumes that the robot is using ROS.
● Transform configuration: the robot should be publishing information about the

relationships between coordinate frames using tf.
● Sensor information: The navigation stack uses information from sensors to avoid

obstacles in the world, it assumes that these sensors are publishing either
‘sensor_msgs/LaserScan’ or ‘sensor_msgs/PointCloud’ messages over ROS.

● Odometry information: The navigation stack requires that odometry information
be published using tf and the nav_msgs/Odometry message.

● Base controller: The navigation stack assumes that it can send velocity
commands using a ‘geometry_msgs/Twist’ message assumed to be in the base
coordinate frame of the robot on the "cmd_vel" topic. This means there must be a
node subscribing to the "cmd_vel" topic that is capable of taking (vx, vy, vtheta)
<==> (cmd_vel.linear.x, cmd_vel.linear.y, cmd_vel.angular.z) velocities and
converting them into motor commands to send to a mobile base.

 A.2 Mapping

Before running the experiments, it was necessary to build the map of the environment
where the robot would run its tests. This can be made possible by using the
‘map_server’ ROS package. This package allows the user to build a map dynamically
and save it into a pair of files: the YAML file which describes the map’s metadata and

52

the image file which encodes the occupancy data [1]. The map is represented as an
occupancy grid. The image file describes the occupancy state of each cell of the 2D
map in the color value of the corresponding pixel. White pixels represent free cells,
black pixels indicate the presence of obstacles, and gray pixels are unknown. The
metadata YAML file stores thresholds used to divide the three categories; thresholding
is done inside the map_server. The occupancy grid is encoded in a ROS message as
an array representing each cell in row-major order, starting from (0, 0), with the
occupancy probability ranging in [0, 100]. An unknown cell is notated with -1.

image: testmap.png
resolution: 0.1
origin: [0.0, 0.0, 0.0]
occupied_thresh: 0.65
free_thresh: 0.196
negate: 0

Listing A.1: Example of a YAML file

The YAML metadata file includes the following parameters [1]:
● image: Path to the image file containing the occupancy data; can be absolute, or

relative to the location of the YAML file
● resolution: Resolution of the map, meters / pixel
● origin: The 2-D pose of the lower-left pixel in the map, as (x, y, yaw), with yaw as

counterclockwise rotation (yaw=0 means no rotation). Many parts of the system
currently ignore yaw.

● occupied_thresh: Pixels with occupancy probability greater than this threshold
are considered completely occupied.

● free_thresh: Pixels with occupancy probability less than this threshold are
considered completely free.

● negate: Whether the white/black free/occupied semantics should be reversed
(interpretation of thresholds is unaffected)

 A.3 Localization

The localization of the robot needs to be very robust in mobile robotics applications.
Associating sensor data with locations in a static map is paramount.

For the purpose of localization, the environment was represented according to a
method called Normal Distribution Transform (NDT), presented by Biber and Strasser
[37]. Robot localization can be achieved by Monte Carlo Localization [36]. Saarinen et
al. [35] propose a map based localization method, called NDT-MCL, that is based on a
well established probabilistic framework. They use NDT as an underlying representation

53

for both map and sensor data and improve accuracy and repeatability by relaxing the
hard discretization assumption imposed by grid-map models and utilizing the piecewise
continuous NDT representation.

The implemented NDT-MCL ROS node publishes ‘nav_msgs/Odometry’ messages
in the topic ‘ndt_mcl’. The ‘nav_msgs/Odometry’ message type includes an estimate of
the position and orientation of the robot in the ‘geometry_msgs/PoseWithCovariance’
attribute along with a covariance that is used to represent the certainty of that estimate.
The velocity is also included in the ‘geometry_msgs/TwistWithCovariance’ attribute.

void GMap::init(unsigned int width,
unsigned int height,
double resolution,
double origin_x,
double origin_y,
int * data

)
{

this->width = width;
this->height = height;
this->resolution = resolution;
this->origin = Position(origin_x, origin_y);

occupancyGrid = (int **)malloc(width * sizeof(int *));

for (int i = 0; i < width; i++)
occupancyGrid[i] = (int *)malloc(height * sizeof(int));

for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)

occupancyGrid[i][j] = data[width * j + i];

this->_isInit = true;
}

Listing A.2: Initialization of the occupancy grid from published by ‘/move_base/global_costmap/costmap’

The pose of the robot is represented by a 3D coordinate for the position and a
quaternion for the orientation. Because in this project, the motion was two dimensional,
to get the localization of the robot it is sufficient to get the x and y coordinates. For the
orientation of the robot, we can use the z and w components of the quaternion where:

54

(A.1)

This represents an estimate of a position and velocity in free space.
The pose in this message should be specified in the coordinate frame given by
header.frame_id.
The twist in this message should be specified in the coordinate frame given by
the child_frame_id
Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose
geometry_msgs/TwistWithCovariance twist

Listing A.3: Message type of 'nav_msgs/Odometry'

void DataHandler::ndt_mcl_callback(const nav_msgs::OdometryConstPtr&
ndt_mcl_msg)
{

double x =(double)ndt_mcl_msg->pose.pose.position.x;
double y =(double)ndt_mcl_msg->pose.pose.position.y;
double sin_theta_half =(double)ndt_mcl_msg->pose.pose.orientation.z;
double cos_theta_half =(double)ndt_mcl_msg->pose.pose.orientation.w;

currentPosition = Position(x, y);
currentPosition.setOrientation(2 * atan2(sin_theta_half, cos_theta_half));

}

Listing A.4: Getting the position and orientation when localizing the robot

55

bool moveBase(Position position)
{

MoveBaseClient moveBaseClient("move_base", true);

while (!moveBaseClient.waitForServer(ros::Duration(5.0)))
ROS_INFO("Waiting for the move_base action server to come up");

move_base_msgs::MoveBaseGoal goal;

goal.target_pose.header.frame_id = "map";
goal.target_pose.header.stamp = ros::Time::now();

goal.target_pose.pose.position.x = position.getX();
goal.target_pose.pose.position.y = position.getY();
goal.target_pose.pose.orientation.z = sin(position.getOrientation() / 2);
goal.target_pose.pose.orientation.w = cos(position.getOrientation() / 2);

ROS_INFO("Sending goal");
moveBaseClient.sendGoal(goal);
moveBaseClient.waitForResult();

if (moveBaseClient.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
return true;

else
return false;

}

Listing A.5: Sending a MoveBaseGoal message to move the robot

56

Appendix B

Bout detection experimental results

S1 S2 S3 S4 S5 S6

R (kOhm) 10 1 1 4 12 1

Table B.1: Respective resistor loads of the MOX sensors

2m 2.5m 3m 3.5m 4m blank

S1 53 61 59 59 55 81

S2 53 60 65 63 68 68

S3 50 57 69 63 74 61

S4 65 72 96 81 85 86

S5 49 51 56 51 57 86

S6 93 86 89 93 90 86

Table B.2: Bout count results of the first experiment with 0.1m/s wind speed

57

2m 2.5m 3m 3.5m 4m blank

S1 53 56 57 55 61 83

S2 58 57 66 56 64 73

S3 57 56 63 52 62 54

S4 63 64 87 69 82 93

S5 58 52 52 52 53 88

S6 84 83 84 89 89 92

Table B.3: Bout count results of the second experiment with 0.1m/s wind speed

2m 2.5m 3m 3.5m 4m

S1 63 61 57 55 64

S2 61 63 71 53 72

S3 66 53 62 55 69

S4 74 80 83 75 90

S5 61 56 60 56 56

S6 87 89 88 90 82

Table B.4: Bout count results of the first experiment with 0.3m/s wind speed

2m 2.5m 3m 3.5m 4m

S1 59 58 62 53 65

S2 58 56 68 59 65

S3 56 52 62 59 70

S4 73 60 91 82 91

S5 64 56 61 52 61

S6 89 90 84 94 92

Table B.5: Bout count results of the second experiment with 0.3m/s wind speed

58

2m 2.5m 3m 3.5m 4m blank

S1 0.259031 0.242454 0.053002 0.088940 0.049044 0.002421

S2 0.28154 0.032801 0.009919 0.015037 0.009056 0.006197

S3 0.024555 0.027224 0.009043 0.012206 0.008914 0.008593

S4 0.004981 0.008725 0.002632 0.003874 0.004185 0.001750

S5 0.252173 0.236431 0.053594 0.095147 0.043552 0.002065

S6 0.001754 0.005360 0.002898 0.002664 0.004029 0.002176

Table B.6: Bout amplitude results of the first experiment with 0.1m/s wind speed

2m 2.5m 3m 3.5m 4m blank

S1 0.174989 0.201247 0.050532 0.089271 0.037915 0.002421

S2 0.019698 0.027655 0.009360 0.016511 0.009235 0.006197

S3 0.017368 0.022874 0.009544 0.014993 0.010086 0.008593

S4 0.004582 0.007214 0.002649 0.003012 0.002097 0.001750

S5 0.142774 0.196063 0.050088 0.090647 0.043734 0.002065

S6 0.002621 0.003794 0.002916 0.001581 0.001791 0.002176

Table B.7: Bout amplitude results of the second experiment with 0.1m/s wind speed

2m 2.5m 3m 3.5m 4m blank

S1 0.137733 0.145804 0.056458 0.147123 0.016579 0.002185

S2 0.020106 0.021713 0.010828 0.024278 0.007058 0.005620

S3 0.021626 0.025085 0.012955 0.019471 0.007825 0.010033

S4 0.003634 0.005554 0.004323 0.005098 0.002609 0.001440

S5 0.135975 0.168036 0.058110 0.125577 0.017929 0.001824

S6 0.002023 0.004073 0.004019 0.003672 0.003143 0.001817

Table B.8: Bout amplitude results of the first experiment with 0.3m/s wind speed

59

2m 2.5m 3m 3.5m 4m blank

S1 0.112104 0.194767 0.070264 0.148091 0.015392 0.002185

S2 0.018416 0.029040 0.012279 0.021198 0.007241 0.005620

S3 0.022945 0.030820 0.014979 0.018361 0.006701 0.010033

S4 0.003728 0.005511 0.004364 0.005411 0.001868 0.001440

S5 0.115748 0.182451 0.074441 0.137633 0.015500 0.001824

S6 0.001842 0.001889 0.003944 0.004186 0.001585 0.001817

Table B.9: Bout amplitude results of the second experiment with 0.3m/s wind speed

60

	Introduction
	State of the art
	2.1.3 Zig-zag
	2.1.4 Pseudo-Gradient
	2.1.5 Source declaration
	In the bio-inspired algorithms, very often the source declaration problem has been neglected. Usually a human observer would visually establish whether the robot has reached a pre-defined proximity to the gas source. Among the first approaches that didn't involve a human observer we can distinguish Li's approach [38] to send the robot in cloverleaf trajectories in order to estimate the location of the source. His method uses six most recent detection points to calculate a bounding box using three of the six most upstream locations [8]. When the diameter of the box becomes small enough, the source is assumed to have been found and the location is estimated at the center of the box. However the results were accurate of a few dozen meters, mainly because of a poor navigation system. A more accurate source declaration is presented can be done using a particle filter-based gas source localization described in section 2.2.
	In Lochmatter [9], the surge-cast algorithm slightly outperforms the surge-spiraling algorithm. In the pure casting algorithm, by increasing alpha the robot has to turn more and the performance decreases. From a comparison between Lochmatter and Neumann the surge-cast algorithm performs better than pure-cast with alpha 75 degrees [8]. However, pure-casting is more robust. The pseudo-gradient tends to be at least as efficient as the surge-cast algorithm.
	2.2 Probabilistic approach
	2.3 Other approaches
	Problem definition
	Solution approach
	4.2 Source distance estimation
	4.3 Exploration approach
	The mean represents the expected value of the function in the position . The variance represents the level of uncertainty in the position . When the variance is close to 1, then the position is considered unknown and the level of uncertainty is high. This means that the position would be interesting to explore and make a measurement there. On the other hand, if the variance is close to 0, it means that the position is considered relatively known and the value of the function can be estimated with a low level of uncertainty.
	4.4 Selection of the next position
	Experimental results
	Conclusions and Future Work
	ROS Architecture
	A.3 Localization
	Bout detection experimental results
	Table B.1: Respective resistor loads of the MOX sensors
	Table B.6: Bout amplitude results of the first experiment with 0.1m/s wind speed
	Table B.7: Bout amplitude results of the second experiment with 0.1m/s wind speed

