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Sommario

In questa tesi proponiamo una tecnica di clustering funzionale multi-
variato basata su una distanza che generalizza la distanza di Mahalanobis
al caso di dati funzionali generati da processi stocastici. Questo nuovo
strumento matematico è ben definito in L2(I), con I intervallo compatto
di R, e considera tutte le infinite componenti in cui un processo può essere
proiettato, pur mantenendo le stesse idee sulle quali è basata la distanza di
Mahalanobis. Nella prima parte dell’elaborato, la distanza è stata adottata
in un contesto inferenziale per costruire test sulla media di processi gaus-
siani. Nella seconda parte, viene usata in una procedura di classificazione
basata su un k-means funzionale multivariato. Per valutare la robustezza
della procedura di clustering presentiamo dapprima qualche simulazione,
confrontando la distanza con altre distanze note e applicandola infine a un
dataset composto da segnali elettrocardiografici.

Parole chiave: Dati Funzionali, Distanze in L2, Processi Gaussiani,
Inferenza sulla media, k-means funzionale multivariato, Segnali elettrocar-
diografici
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Abstract

In this work we propose a multivariate functional clustering technique
based on a distance which is a generalization of Mahalanobis distance
that extends the usual multivariate one to functional data generated by
stochastic processes. This new mathematical tool is well defined in L2(I),
where I is a compact interval of R, and considers all the infinite components
of data basis expansion while keeping the same ideas on which is based
the Mahalanobis distance. In the first part of the work it is adopted in an
inferential context to construct tests on the mean of Gaussian processes.
In the second part, we use it for a k-means clustering procedure. To test
the robustness of our clustering procedure we first present some simula-
tions, comparing the distance with other known distances, and eventually
applying it to a dataset of reconstructed and registered ECGs.

Keywords: Functional Data, Distances in L2, Gaussian Processes, In-
ference on the mean, Functional k-means clustering, Electrocardiograph
signal
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Introduction

The aim of the cluster analysis is to build homogenous groups (clusters)
of observations representing realizations of some random process. Clus-
tering is often used as a preliminary step for data exploration, the goal
being to identify particular patterns in data that have some convenient
intepretation for the user. In particular, k-means algorithm is a clustering
procedure which is based on heuristic and geometric procedures.

Over the past few decades, in many scientific fields as economics,
medicine and many other domains, there has been an increasing interest
towards the study of data sets whose number p of features recorded for
each statistical unit is much greater than the number n of units themselves.
Each observed data can be seen as a random function generated by a
continuous time stochastic process X = {X(t), t ∈ I}, lying in a suitable
infinite dimensional Hilbert space, typically L2(I), with I compact interval
of R. Large p - small n problems is the term generally used to refer to
such situations.

Functional Data Analysis (FDA) represents the natural framework to
develop statistical models and tools which are useful for the study of this
kind of data (see Ramsay and Silverman (2002), Ramsay and Silverman
(2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012)). As high-
lighted in this literature, a central role in this context is carried out by
the Functional Principal Component Analysis (FPCA), which is based on
the Karhunen-Loève (KL) expansion, that decomposes a random function
X(t) in a sum of the mean m(t) and a series of orthonormal functions
ϑk(t), each one multiplied by zero-mean uncorrelated random variables√
λkZk, where (λk)k are the eigenvalues of the covariance operator V of

X while the orthonormal basis (ϑk)k is composed by the eigenfunctions.
As discussed in Benko et al. (2009), the analysis of the principal compo-
nents seems to be more important in the functional context than in the

1



2 Introduzione

multivariate framework. In fact, it is one of the feasible ways to reduce
data dimensionality. Moreover, in FPCA the principal components are
intepreteted as the modes of variation of X(t) along t, which is much more
interpretable than in multivariate PCA. When the goal of the analysis
consists in describing the shape of X(t), the first K principal components
ϑk, k = 1, . . . , K, usually contain all the information needed to represent
data. Nevertheless, when the goal consists in making inference on infinite
dimensional objects, as the mean function m(t) or classifying curves in
different groups, considering a fixed number of components may lead to lose
some information on the distribution of X(t) and to provide meaningless
results.

Despite of the great interest in the FPCA, many inferential procedures
adopted in the multivariate PCA have not been extended yet to the
functional case. For example, in the multivariate context the inference on
the mean is typically based on the Mahalanobis distance, since it is the best
way to measure the distance between elements because it takes into account
the correlation among the variables and their variability. However, when
data belongs to an infinite dimensional space, as L2(I), the Mahalanobis
distance is not generally well defined and the inference is usually realized
by considering only the first K principal components. This is an approach
which is pretty far from the idea of the Mahalanobis distance, which
weights the distances along all the components with the inverse of their
variability. In this work, we use a generalization of Mahalanobis distance
that extends the usual multivariate one to functional data generated by
stochastic processes. This new metric has been obtained after noticing a
quite unconventional way to derive the classical Mahalnobis distance.

Clustering functional data generally can be a difficult task because of
the infinite dimensional space that data belong to. The lack of a definition
for the probability density of a functional random variable, the definition
of distances or estimation from noisy data are some examples of such diffi-
culties. Different approaches have been proposed along years. The most
popular approach consists of reducing the infinite dimensional problem to
a finite one by approximating data with elements from some finite dimen-
sional space. Then, clustering algorithms for finite dimensional data can
be performed. On the other hand, there have been defined nonparametric
methods for clustering which consist generally in defining specific distances
or dissimilarities for functional data and then apply clustering algorithms.
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In this work, we perform a k-means algorithm clustering procedure by
using a generalization of Mahalanobis distance. There are many different
implementations of the functional k-means algorithm in the literature on
functional data analysis, among which some procedures integrate registra-
tion in the classification steps (e.g. the k-means alignment algorithm that
is described in Sangalli et al. (2010), the core shape modeling approach in
Boudaoud et al. (2010), the non-parametric time-synchronized iterative
mean updating technique in Liu and Müller (2003) or the simultaneously
aligning and cluster K-centres model in Liu and Yang (2009)). However,
in our real case study, the clustering procedure is performed on data that
have been already registered.

Outline

In the first chapter we present all the theoretical background of our
work, starting from Functional Data Analysis and all its related tools.
Then we present all the distances used in our work, with a particular
focus on the new distance named dp. We show that it is well defined
in L2(I) and achieves both the goals of considering all the infinite
components of data basis expansion and of keeping the same ideas
on which is based the Mahalanobis distance.

In the second chapter the new distance is adopted in an inferential
context to construct tests on the mean of Gaussian processes for
one and two populations. The tests are constructed assuming the
covariance structure to be either known or unknown. The distance
dp which we adopt is tuned by a parameter that smoothly determines
how to weight the contributions along all the fininite components
of L2(I). As we will see in the simulations in the last part of the
chapter, the parameter p plays a crucial role in the power of the
tests.

In the third chapter we perform the multivariate functional k-means
procedure based on the dp distance for some values of p and we
compare the results with the ones obtained using both the classical
L2-distance and a truncated version of the Mahalanobis distance.
We present some simulation studies both in the univariate and mul-
tivariate functional case, showing that the results mainly depend on
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the choice of the parameter p. In the last part of the chapter, the
clustering procedure is carried out on a real dataset composed by a
8-dimensional sample of electrocardiographic (ECG) traces; hence,
we discuss how the dp distance works in comparison with the others,
and proposing a new semi-automatic diagnostic procedure, based
only on the ECG morphology, which could help in an early detection
of heart failure.

All the analysis of our work have been carried out using the software R.



Chapter 1

Functional Data

This first chapter aims at introducing the theoretical background,
starting from Functional Data Analysis and all the related tools with
a particular focus on some distances which will be used to perform a
functional k-means clustering, particularly the Generalized Mahalanobis
Distance. We will introduce a new metric defined in the infinite dimensional
space of the square integrable and differentiable real functions, defined on
a compact interval of R, that generalizes the Mahalanobis distance used in
the multivariate context.

1.1 Functional Data Analysis

1.1.1 Functional Smoothing

One of the first steps in FDA consists in the functional smoothing, which
is used for turning raw discrete data into smooth functions. Functional
data are usually observed and recorded discretly as n pairs (tj, yj), where yj
is the value of the function x at time tj . This procedure is needed because
observed data are generally affected by the presence of observational
error or a noise superimposed on the underlying signal by aspects of the
measurement process. This assumption can be expressed formally as
follows:

yj = x(tj) + εj, j = 1, . . . , n (1.1)

where εj is the exogenous term which adds roughness to the raw data.
One of the tasks in representing the raw data as functions consists in

5



6 Chapter 1. Functional Data

the attempt of filtering out the noise as efficiently as possible. In this
procedure, it is important to obtain a function that is smooth, in the sense
of possessing a certain number of derivatives, that reproduces well the
details of the observations but without the use of interpolation procedures,
which would retain too much noise.

One of the main smoothing procedures is the representation by basis
functions. A basic function system is a set of known functions φk that
are mathematically independent of each other and that can approximate
arbitrarily well any function x by taking a linear combination of a suffi-
ciently large number of these functions. Basis function procedure represent
a function x by a linear expansion

x(t) =
K∑
k=1

ckφk(t).

in terms of a certain number K of known basis functions φk. The best
known basis expansion is perhaps provided by the Fourier series:

x̂(t) = c0 + c1sin(ωt) + c2cos(ωt) + c3sin(2ωt) + c4cos(2ωt) + . . .

defined by the basis φ0(t) = 1, φ2r−1(t) = sin(rωt), φ2r(t) = cos(rωt),
r = 1, 2, . . . This basis is periodic and the parameter ω determines the
period 2π/ω. If the values of tj are equally spaced on the interval I and the
period is equal to the length of interval I, then the basis is orthogonal. The
Fast Fourier transform (FFT) makes it possible to find all the coefficients
extremely efficiently when n is a power of 2 and the arguments are equally
spaced in O(nlogn) operations. For this reason, the Fourier series has been
the traditional basis of choice for long time series, but newer techniques
such as B-splines and wavelets can exceed this computational efficiency.

For what concerns the B-spline method, the first step in defining a spline
is to divide the interval over which a function is to be approximated into J
subintervals separated by values τj, j = 1, . . . , J − 1 that are called knots.
Over each interval, a spline is a polynomial of specified order m = n+ 1,
with n order of the B-spline. The B-spline is then a continuous functions
at the knots and its derivatives are also continuous up to the derivative of
degree n−1. The degrees of freedom can be defined as d.o.f.=m+J−1. To
construct a spline function, we have to specify a system of basis functions
φk(t) which is itself a spline function. The most popular B-spline basis
system has been developed by de Boor in 2001 and is of great importance
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for efficient computation, thanks to the compact support property according
to which an order m B-spline basis function is positive over no more than
m intervals. A spline function S(t) is then defined as

S(t) =
m+J−1∑
k=1

ckBk(t, τ)

where B(t, τ) is the value at t of the k− th B-spline basis function defined
by the knot sequence τ with its coefficient ck.
It is of great importance to know how to position the τj knots. As long
as the data are equally spaced, it is good to choose an equal spacing. If
they are not, it is maybe wiser to place a knot at every jth data point,
where j is a number fixed in advance, such that it is possible to catch more
characteristics of the function. Even though the two described smoothing
procedures are very used, for the data which will be studied in the last
chapter, in Indino (2015) it has been used the wavelet smoothing procedure,
since it has given the best results.

Before introducing the smoothing procedure based on wavelet functions,
we analyze the representation method of a function with orthonormal
wavelet basis (see Pigoli and Sangalli (2012), Donoho and Johnstone
(1995)). These basis are generated by dilations and translations of a single
scaling function ϕ(x) called father wavelet. We call V0 the reference space
generated by translations of the father wavelet ϕ0,h = ϕ(x− h), where h is
an integer. The dilations ϕ1,h =

√
2ϕ(2x− h) form an orthonormal basis

for the space V1 ⊃ V0. More generally, we have

· · · ⊃ V1 ⊃ V0 ⊃ V−1 ⊃ · · ·

where each Vj is spanned by ϕj,k = 2j/2ϕ(2jx− h). A function in Vj+1 can
be represented by a component in Vj plus the component in the orthogonal
complement Wj of Vj to Vj+1, written as Vj+1 = Vj ⊕Wj. The functions
ψ(x− h) generated by the mother wavelet ψ(x) = ϕ(2x)− ϕ(2x− 1) form
an orthonormal basis for W0. Likewise ψj,k = 2j/2ψ(2jx− h) form a basis
forWj . Now we can notice that Vj+1 = Vj⊕Wj = Vj−1⊕Wj−1⊕Wj , so we
can write VJ = V0⊕W0⊕W1 · · ·⊕WJ−1. Since these spaces are orthogonal,
all the basis functions are orthonormal. In fact, if the domain is discrete
with 2J time points, this is as far as we can go. At level j there are 2j
basis and adding up in WJ we have a total of 2J − 1 elements in Wj and
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one in V0. This structured orthonormal basis allows for a multiresolution
analysis.

The procedure described above defines the Discrete Wavelet Transform
(DWT) which is the first step of the smoothing procedure. The second
and last step consists in the thresholding of the wavelet coefficients, which
can be realized using several methods, as for example Universal threshold,
SURE (Stein Unbiased Risk Estimator), Cross-validation threshold,. . .

Let us recall the assumption (1.1), then we can write the wavelet
transform as follows:

d∗i = di + εi

where d∗ = Wy, d = Wx and ε = We, where W is the orthonormal wavelet
basis matrix evaluated at uniformly spaced observations. Thus, the greatest
coefficients d∗i represent the original signal with an added noise while the
coefficients close to 0 only represent the noise.

1.1.2 Functional Registration

The values of two or more observations xi(tj), i = 1, . . . , n and j =
1, . . . , p can in principle differ because of two types of variation. The
first one is the vertical variation, or amplitude variation, which is the
difference between the function values at time points, although they have
the same shape features at that time. However they may also exhibit phase
variation in the sense that the value functions should not be compared
at the same time t because they are not exhibiting the same behaviour.
The procedure which reduces the phase variation without considering
the amplitude variation is called functional registration. There are several
registration methods, but we will be interested in the landmark registration
since the dataset which will be used in this work naturally leads to this
choice. A landmark of a curve is some feature that can be associated with
a specific argument value t. These are typically maxima, minima or zero
crossings of curves. The landmark registration process requires for each
curve xi the identification of the argument values til, l = 1, ..., L, associated
with each of L landmarks. The goal is to construct a transformation hi for
each curve such that the registered curves with values

x∗(t) = xi[hi(t)]
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have more or less identical argument values for any given landmark. The
transformation hi is called time-warping function of the i-th curve and it
has to satisfy the following properties:

1. hi(0) = 0 ∀i = 1, . . . , n

2. hi(T ) = T ∀i = 1, . . . , n

3. hi(til) = t̄l, l = 1, ..., L ∀i (t̄l mean value of the landmarks over
all the statistical units)

4. hi strictly monotonic: s < t implies that hi(s) < hi(t).

1.1.3 Functional Principal Component Analysis
After the preliminary steps of smoothing, registering and displaying

the data, when we have functional data we want to explore them to see the
features characterizing typical functions. Some indications of complexity
of the data is also required, in the sense of how many types of curves and
characteristics are to be found. Functional principal component analysis
(FPCA) has proved to be a key technique for the study of functional data.
The basic tool which is used in the present work to perform the FPCA is
the Karhunen-Loève (KL) expansion.

Let us consider a process X, with mean function m(t) = E[X(t)] and
covariance operator V , i.e. V is a linear compact integral operator from
L2(I) to L2(I) such that (V a)(s) =

∫
I v(s, t)a(t)dt ∀a ∈ L2(I), where v

is the covariance function defined as v = E[(X(t)−m(t))(X(s)−m(s))].
Then, denote with {λk, k ≥ 1} and {ϑk, k ≥ 1} respectively the sequences
of eigenvalues and eigenfunctions of v. The Karhunen-Loève expansion
decomposes the process X(t) in a sum of its mean m(t) and the series of
orthonormal functions ϑk(t), each one multiplied by zero-mean uncorrelated
random variables

√
λkZk, (λk > 0,Var(Zk) = 1). Then we can write

X(t) = m(t) +
∞∑
k=1

Zk
√
λk · ϑk(t)

The orthonormal basis (ϑk)k is composed by the eigenfunctions of the
covariance operator V of X, while the coefficient variances (λk)k are its
eigenvalues. The dynamic of the random function (X(t)−m(t)) can be
fully described by the eigenstructure of V and the distribution of the
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sequence (Zk)k, which will be considered in this work as i.i.d. standard
normal variables.

1.2 Distances
In this section we present the main distances which are considered in

this work, along with some preliminary concepts.

Definition 1.1. A distance on a given set E is a function d : E × E →
[0,∞) such that for all x, y, z ∈ E the following conditions are satisfied:

1. d(x, y) ≥ 0 (non-negativity or separation axiom);

2. d(x, y) = 0⇔ x = y (identity of indiscernibles);

3. d(x, y) = d(y, x) (symmetry);

4. d(x, z) ≤ d(x, y) + d(y, z) (subadditivity or triangle inequality).

Definition 1.2. Let (I,M, µ) be a given measurable space. L2(I) is
the set of equivalence classes of measureable functions with respect to µ,
X : I → R, such that ∫

R
|X|2dµ <∞.

Definition 1.3. Given a compact interval I of R, the L2-distance between
X, Y ∈ L2(I) is defined by

dL2(X, Y ) =
√∫

I
(X(t)− Y (t))2dt

Our focus will be now on the usual Mahalanobis Distance in the
multivariate framework, before generalizing it in the functional framework.

1.2.1 Mahalanobis distance in the multivariate frame-
work

Let us consider a finite dimensional framework. Let X ∈ RK , K ∈ N,
be a random vector with mean m ∈ RK and covariance matrix V ∈ RK×K ,
with the eigenvectors ϑ1, ...,ϑK and the eigenvalues λ1, ..., λK such that
λ1 ≥ ... ≥ λK > 0. Given a couple of vectors (u,v) of elements of RK , the
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usual metric is the L2-distance dL2(u, v) =
√∑K

k=1((u− v)Tϑk)2, where
aTb = ∑K

k=1 aibi is the inner product in RK . However, when u and v are
realization of X, the Mahalanobis distance, i.e.

dM(u,v) =

√√√√ K∑
k=1

((u− v)Tϑk)2

λk
,

could be more useful since it considers the correlations and the variability
described by the covariance structure of X. Now we highlight an interest-
ing relation between these two distances. Let us introduce the function
f(·; u,v) : R+ → R+ defined as follows

f(c; u,v) =
K∑
k=1

fk(c; u,v) =
K∑
k=1

((u− v)Tϑk)2 · exp(−λkc).

For any fixed c ∈ R+,
√
f(c; u,v) is a distance; in fact, it can be seen as

the distance between the vectors ũ and ṽ which can be written as

ũ :=
K∑
k=1

((uTϑk exp(−λkc/2)) · ϑk

ṽ :=
K∑
k=1

((vTϑk exp(−λkc/2)) · ϑk.

Moreover, we can remark three properties for the function f :

1. f(c; u,v) is non increasing in c;

2. limc→∞ fk(c; u,v) = 0, ∀λk > 0;

3. f(0; u,v) = d2
L2(u,v).

Then for any fixed c ∈ R+,
√
f(c; u,v) represents a distance which is less

or equal to the L2-distance between u and v. In particular, fk(c; u,v) is
the contribution to this distance along the component ϑk. As c increases
the term fk(c; u,v) gets smaller. The decreasing rate of fk(c; u,v) is ruled
by λk: the greater it is, the faster fk(c; u,v) vanishes. The term exp(−λkc)
penalizes the contribution of the L2-distance along the k-th component
and this penalization is strong for high values of λk and irrelevant for low
values of λk.
In the Mahalanobis distance, a similar behaviour is obtained by rescaling
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with respect to λk; the components with low λk become stronger while the
components with high λk become weaker. Then, integrating the function
fk(c; u,v) over c, we can measure how fast it vanishes:

∫ ∞
0

fk(c; u,v)dc = ((u− v)Tϑk)2

λk

The Mahalanobis distance can be seen as the square root of the area below
the function f(c; u,v):

dM(u,v) =

√√√√ K∑
k=1

((u− v)Tϑk)2

λk
=
√∫ ∞

0
f(c; u,v)dc (1.2)

1.2.2 Generalized Mahalanobis Distance in the func-
tional framework

Now we want to extend these ideas to a functional framework. Specifi-
cally we present the generalized Mahalanobis distance in infinite dimen-
sional spaces as it has been proposed in Ghiglietti and Paganoni, (2014).
We consider now the realizations y and w of a stochastic process X ∈ L2(I),
where I is a compact interval of R. Let 〈a, b〉 =

∫
I a(t)b(t)dt be the usual

inner product in L2(I), so the natural generalization of the Mahalanobis
distance in the functional framework would be

dM(y, w) =
√√√√ ∞∑
k=1

(〈y − w, ϑk)2

λk
.

It is well known that, since it could be undefined because the series can
diverge for some y, w ∈ L2(I), dM is not a proper distance in L2(I).
For this reason, the Mahalanobis distance is usually considered in its
truncated version, fixing an integer K ∈ N and summing up only the first
K components, so that we can write:

dM(y, w) =

√√√√ 3∑
k=1

(〈y − w, ϑk)2

λk
.

However, when this approach is used to measure the entire space L2(I),
we can remark two main drawbacks:
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1. the contribution given by the projections in the space orthogonal to
ϑ1, ..., ϑK is not considered in the distance; then, for any choice of
K, we may have y, w ∈ L2(I) such that the truncated Mahalanobis
distance is arbitrarily small and the L2-distance is arbitrarily large,
which seems unresonable;

2. all the contributions of the L2(I) distance are basically multipled
by 1/λk · 1{λk≥λK} which is not decreasing in λk. This is incoherent
with the idea of penalizing the L2(I) distance with a term that is
inversely proportional to the size of the corresponding eigenvalue λk.

Now our goal is to solve these two problems, extending the representation
(1.2) of the Mahalanobis distance to the functional framework. For any
couple of elements of L2(I) (y, w) we can define the function f(·; y, w) as

f(c; y, w) =
∞∑
k=1

(〈y − w, ϑk〉)2 · exp(−λkc).

The series is finite for any choice of c ∈ R+. As explained before, the
Mahalanobis distance can be computed as

√∫∞
0 f(c; y, w)dc. However,

in the infinite dimensional case, when the Mahalanobis distance is not
defined the function f(c; y, w) is not integrable in R+. To deal with
this case, we introduce a function g(·; p), tuned by a parameter p > 0
such that

∫∞
0 g(c; p)dc < ∞. In this way, it is ensured that the function

f(c; y, w) · g(c; p) is integrable for any p > 0, in fact

∫ ∞
0

f(c; y, w) · g(c; p)dc =
∫ ∞

0

∞∑
k=1

(〈y − w, ϑk〉)2 · exp(−λkc) · g(c; p)dc

≤
∫ ∞

0

∞∑
k=1

(〈y − w, ϑk〉)2 · g(c; p)dc

=
( ∫ ∞

0
g(c; p)dc

)
·
∞∑
k=1

(〈y − w, ϑk〉)2

=
( ∫ ∞

0
g(c; p)dc

)
· d2

L2(y, w) <∞
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Without loss of generality we choose g such that
∫∞
0 g(c; p)dc = p. We are

now able to construct a distance defined as

dp(y, w) :=
√∫ ∞

0
f(c; y, w) · g(c; p)dc =

=
√√√√∫ ∞

0

∞∑
k=1

(〈y − w, ϑk〉)2 · exp(−λkc) · g(c; p)dc (1.3)

that is finite for any couple of functions y and w. We can prove that dp(y, w)
is a distance highlighting that dp(y, w) is the L2 - distance between the
following two elements:

ỹ =
∞∑
k=0
〈y, ϑk〉 ·

√∫ ∞
0

exp(−λkc) · g(c; p)dc · ϑk

w̃ =
∞∑
k=0
〈w, ϑk〉

√∫ ∞
0

exp(−λkc) · g(c; p)dc · ϑk

where ỹ and w̃ are elements of L2(I) since
∫∞

0 exp(−λkc) · g(c; p)dc ≤∫∞
0 g(c; p)dc <∞. If the function g is such that for any p > 0

• g(c; p) is a non increasing and non negative function in c,

• g(0; p) = 1,

the two functions f · g and f satisfy the same properties; then f(0; y, w) ·
g(0; p) = d2

L2(I)(y, w) and, for any fixed c ∈ R+,
√
f(c; y, w) · g(c; p) is a

distance between the elements y and w dominated by the L2-distance.
Moreover, for any fixed c ∈ R+, we assume that g satisfies the following
properties:

• g(c; p) is a non decreasing and non negative function of p;

• limp→∞ g(c; p) = 1.

As a consequence, the greater the value of p, the greater the distance
dp(y, w). Moreover, even if dp(y, w) is finite for any couple of functions y
and w, when p goes to infinity, dp(y, w) can diverge since it tends to the
Mahalanobis distance that can diverge in the infinite dimensional case. We
need now to write the distance dp(y, w) in a more suitable and useful way;
in order to do so, we define the function

hk(p) :=
∫ ∞

0
λk exp(−λkc) · g(c; p)dc
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and so we obtain

dp(y, w) =
√√√√ ∞∑
k=1

d2
M,k(y, w) · hk(p) (1.4)

where dM,k(y, w) =
√

(〈y − w, ϑk〉)2/λk is the term representing the contri-
bution of the Mahalanobis distance along the kth component.

Finally, we can prove the following results:

• limk→∞ hk(p) = 0;

• limp→∞ hk(p) = 1 for any k such that λk > 0.

In fact,

lim
k→∞

hk(p) = lim
k→∞

∫ ∞
0

λk exp(−λkc) · g(c; p)dc

=
(

lim
k→∞

λk

)
·
( ∫ ∞

0
lim
k→∞

exp(−λkc)
)
· g(c; p)dc

=
(

lim
k→∞

λk

)
·
( ∫ ∞

0
g(c; p)dc

)
= 0

and

lim
p→∞

hk(p) = lim
p→∞

∫ ∞
0

λk exp(−λkc) · g(c; p)dc

=
∫ ∞

0
λk exp(−λkc) ·

(
lim
p→∞

g(c; p)
)

=
∫ ∞

0
λk exp(−λkc)dc = 1

Moreover, the distance dp and the usual distance in L2 (dL2) are equivalent
since, for any y, w ∈ L2(I)(

h1(p)
λ1

)
dL2(y, w) ≤ dp(y, w) ≤ p · dL2(y, w)

Among the several ways to choose g, some meaningful examples are:

• g(c; p) = 1{c≤p}. In this case hk(p) = (1− exp(−λkp));

• g(c; p) = exp(−c/p). In this case hk(p) = λk/(λk + 1/p).
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Remark 1.4. It is worth noting that the generalized Mahalanobis distance
dp can be also written for multivariate random functionsX = (X1, .., Xh)T ,
with h ≥ 2, where Xi ∈ L2(I) for any i ∈ {1, .., h}, with I compact interval
of R. In that case, the meanm = E[X] is defined as a vector of functions in
L2(I) such that ml = E[Xl] for any l = {1, .., h}, and the covariance kernel
v(s, t) = Cov [X(s)⊗X(t)] is defined as a h × h matrix of functions
such that vl1l2(s, t) := Cov [Xl1(s), Xl2(t)] for any l1, l2 = {1, .., h}. The
scalar product between two elements y and w of L2(I) with values in Rh

is defined as follows

〈y, w〉 =
h∑
l=1

∫
T
yl(t)wl(t)dt.

The eigenvalues {λkl, k ≥ 1, l = 1, . . . , h} and the eigenfunctions {ϑkl, k ≥
1, l = 1, . . . , h} of v are the elements solving ∑h

l2〈vl1l2 , ϑkl2〉 = λkϑkl1 for
any l1 = {1, .., h}. The generalized Mahalanobis distance dp can be defined
as in (1.4) using these quantities and the contribution of the Mahalanobis
distance along the kth component is now the following:

dM,k(y, w) =

√√√√ h∑
l=1

∫
T (yl(t)− wl(t)) · ϑkl(t)dt

λkl
.

The results which will be presented hold as well for multivariate random
functions.

We will now focus our work on using and comparing the distance dp in
a statistical inference framework.



Chapter 2

Inference on the mean of a
Gaussian process

Before showing the results obtained with the functional k-means, we
construct testing procedures on the means of Gaussian processes, discussing
their statistical properties. We will propose critical regions based on the
generalized Mahalanobis distance dp presented in Subsection 1.2.2.

2.1 Inference on the mean of a Gaussian
process with known covariance function

Let X1, . . . , XL be L ≥ 1 Gaussian processes with probability laws
PX1 , . . . , PXL

, and denote with m1, . . . ,mL ∈ L2(I) the corresponding
means. Assume that PX1 , . . . , PXL

have the same covariance function v,
and denote with (λk)k the sorted eigenvalues in ascending order of v, with
(ϑk)k the associated eigenfunctions. For any l = 1, . . . , L, let X1,l, . . . , Xnl,l

be nl i.i.d. realizations of PXl
, and denote with X̄l the pointwise sample

mean: (X1,l + . . .+Xnl, l)/nl. In this section we propose critical regions
associated to the following inferential problems:

1. testing the mean of a Gaussian process against an arbitrary function
in L2(I);

2. comparing the means of two Gaussian processes with the same
covariance function.

17
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For a deeper study of these problems, see Ghiglietti and Paganoni (2014).

Part 1:
Fix l = 1, . . . , L, m0 ∈ L2(I) and consider the following hypotesis test

H0 : ml = m0 vs H1 : ml 6= m0 (2.1)

We want to construct a critical region of level α for test (2.1), so we
consider the Karhunen-Loève decomposition of Xi,l, i = 1, . . . , nl:

Xi,l(t) = ml(t) +
∞∑
k=1

Zki,l
√
λkϑk(t),

where (Zki,l)∞k=1 is a sequence of independent standard normal variables,
since PXl

is Gaussian. We have that(
√
nl ·
〈X̄l −ml, ϑk〉√

λk

)
k

=
(

1
√
nl

nl∑
i=1

Zki,l

)
k

i.i.d.∼ N (0, 1).

Hence, the sequence (nl · d2
M,k(X̄l))k is composed by i.i.d. chi-squared

random variables with 1 degree of freedom, so that

nl · d2
p(X̄,ml) = nl ·

∞∑
k=1

d2
M,k(X̄l,ml)hk(p) ∼

∞∑
k=1

χ2
1,khk(p)

where (χ2
1,k)∞k=1 is a sequence of i.i.d. chi-squared variables with 1 degree

of freedom. We denote with ξ2
α,p the 1-α quantile of the distribution of∑∞

k=1 χ
2
1,khk(p). Then, we construct the following critical region of level α

R1
α = {nl · d2

p(X̄l,m0) > ξ2
α,p} (2.2)

for any p > 0 and nl ∈ N. The quantiles ξ2
α,p can be obtained from

the distribution of ∑∞k=1 χ
2
1,khk(p) computed in simulation, noting that

the probability law of ∑∞k=1 χ
2
1,khk(p) depends on the whole sequnce of

eigenvalues (λk)k, on the choice of g and on the parameter p.
We now investigate the power of test (2.1) based on the critical region
(2.2). First, we can note that under the alternative hypotesis H1 we can
write:

d2
M,k(X̄l,m0) =

(
〈X̄l −m0, ϑk〉√

λk

)

=
(
〈X̄l −ml, ϑk〉√

λk
+ 〈ml −m0, ϑk〉√

λk

)2

∼ χ2
1,k(νk)



2.1. Inference on the mean, known covariance function 19

where χ2
1,k(νk) is a non-central chi-squared with 1 degree of freedom and

νk = d2
M,k(ml,m0) is the non centrality parameter. Hence, we have that

nl · d2
p(X̄l,m0) ∼

∞∑
k=1

χ2
1,k(νk)hk(p), νk = nl · d2

M,k(ml,m0)

where (χ2
1,k(νk))∞k=1 are independent. Then, the power of (2.2) can be

obtained as

β1 = Pml 6=m0(R1
α)

= Pml 6=m0(nl · d2
p(X̄l,m0) > ξ2

α,p)

= Pml 6=m0

( ∞∑
k=1

χ2
1,k(νk)hk(p) > ξ2

α,p

)

with νk = nl · d2
M,k(ml,m0). We can note that the power β1 tends to one

as nl increases.

Remark 2.1. It is worth noting that this test does not have a low power
when ml and m0 are arbitrarily distant in L2(I). This problem occurs
when the inference is computed only with the first components. To see
this, consider the quantity d2

p(X̄l,m0) used to compute the power β1 of the
test (2.2). It is possible to show that

E[d2
p(X̄l,m0)] =

∞∑
k=1

[
1
nl

+
(
〈ml −m0, ϑk〉√

λk

)2]
hk(p) ≥ C1 · d2

L2(ml,m0),

Var(d2
p(X̄l,m0)) =

∞∑
k=1

[
2
n2
l

+ 4
nl

(
〈ml −m0, ϑk〉√

λk

)2]
hk(p)2

≤ C2 · (1 + p · d2
L2(ml,m0)),

where C1, C2 > 0 are constants independent of ml and m0. From this
result, we have that E[d2

p(X̄l,m0)]/
√
Var(d2

p(X̄l,m0)) goes to infinity as
d2
L2(ml,m0) diverges. Hence, the power β1 of the test (2.2) tends to one

when d2
L2(ml,m0) increases.

Part 2:
Fix l1, l2 = 1, . . . , L, (L ≥ 2), l1 6= l2 and consider the following hypotesis
test

H0 : ml1 = ml2 vs H1 : ml1 6= ml2 . (2.3)
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The assumption that Xl1 and Xl2 have the same covariance function can
be tested using various inferential procedures presented in literature (see
for example Benko et al. (2009), Fremdt et al. (2013), Pigoli et al. (2014)).
Under the null hypotesis, using the Karhunen-Loève decomposition of X̄l1

and X̄l2 we have that(
〈X̄l1 − X̄l2 , ϑk〉√

λk

)
k

i.i.d∼ N
(

0, 1
nl1

+ 1
nl2

)

and then (
1
nl1

+ 1
nl2

)−1

· d2
p(X̄l1 , X̄l2) ∼ χ2

1,khk(p)

where (χ2
1,k)∞k=1 are all independent. As a consequence, the following critical

region

R2
α =

{(
1
nl1

+ 1
nl2

)−1

· d2
p(X̄l1 , X̄l2) > ξ2

α,p

}
(2.4)

is of level α for any p > 0 and nl1 , nl2 ∈ N.
We finally want to investigate the power of test (2.3). Following similar
arguments used in case 1, we obtain that

(
1
nl1

+ 1
nl2

)−1

· d2
p(X̄l1 , X̄l2) ∼

∞∑
k=1

χ2
1,k(νk)hk(p)

νk =
(

1
nl1

+ 1
nl2

)−1

· d2
M,k(ml1 ,ml2)

where (χ2
1,k)∞k=1 are all independent. Then, the power of (2.3) can be

obtained as follows

β2 = Pml1 6=ml2
(R2

α)

= Pml1 6=ml2

((
1
nl1

+ 1
nl2

)−1

· d2
p(X̄l1 , X̄l2) > ξ2

α,p

)

= Pml1 6=ml2

( ∞∑
k=1

χ2
1,k(νk)hk(p) > ξ2

α,p

)

with νk =
(

1
nl1

+ 1
nl2

)−1

· d2
M,k(ml1 ,ml2). When nl1 and nl2 go to infinity,

the power β2 tends to one.
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2.2 Inference on the mean of a Gaussian
process with unknown covariance func-
tion

The inferential procedures presented in the previous section will now
be extended to the case in which the covariance structure is unknown. The
tests will be similar to (2.1) and (2.3) but the covariance operator with
the related eigenvalues and eigefunctions are estimated from data.

For any l = 1, . . . , L we introduce

v̂l,nl
:= 1

nl − 1

nl∑
i=1

(Xi,l(s)− X̄l(s))(Xi,l(t)− X̄l(t))

as the estimator of the covariance operator v, computed using the nl
realizations of PXl

: X1,l, . . . , Xnl,l. If we call N = n1 + . . .+ nl the total
number of realizations from X1, . . . , XL, we can define the pooled estimator
of v computed using all data as

v̂N := 1
N − L

L∑
l=1

(nl − 1)v̂l,nl
(2.5)

Let us denote with (λk)k the ordered eigenvalues of v̂N and (ϑ̂k)k the
associated eigenfunctions. Since λ̂k = 0 ∀k ≥ N , the eigenfunctions
(ϑ̂N , ϑ̂N+1, . . .) can be arbitrarily chosen such that (ϑ̂k)k is an orthonormal
basis of L2(I).

We must notice that the inferential procedures presented for the case of
unknown covariance function are asymptotic; the nominal level of the tests
is in fact achieved when the size of the sample used to estimate v is large.
This could be different from the number of data involved in the estimation
of the means to be test. All the asymptotic results hold for N →∞, which
does not imply the divergence of all the sample sizes n1, . . . , nL (when
L ≥ 1). Since N = n1 + . . .+ nL, at least one among n1, . . . , nL must go
to infinity if N → ∞, but this is not necessarily the size of the sample
drawn from the processes used to estimate the means considered in the
hypothesis test.

Since the covariance structure, which is required to compute the gener-
alized Mahalanobis distance dp, is supposed unknown, in this section the
critical regions will be constructed with statistics based on estimators of
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the distance d̂p,N . The estimator of dp based on the covariance structure
v̂N is defined as follows

d̂2
p,N(y, w) :=

N−1∑
k=1

d̂2
M,k(y, w) · ĥk(p) + p

∞∑
k=N

(
〈y − w, ϑ̂k〉

)2

, (2.6)

with y, w ∈ L2(I), where d̂2
M,k(·, ·) and ĥk(p) represent the quantities

d2
M,k(·, ·) and hk(p), with (λk)k and (ϑk)k replaced by (λ̂k)k and (ϑ̂k)k. If

we compare the definition of d̂p,N in (2.6) and dp in (1.4), we notice how the
first N − 1 terms are similar while the terms k ≥ N are different because
λ̂k = 0 ∀k ≥ N , so d̂M,k would be undefined for k ≥ N . For this reason,
in (2.6) it has been introduced a correction in order to make the estimate
of dp,N as close as possible to dp. In particular, since λ−1

k hk(p) → p as
λk → 0, in (2.6) it has been redefined d̂M,kĥk(p) := p ·

(
〈y − w, ϑ̂k〉

)2
for

any k ≥ N . Before constructing the tests based on the distance d̂p,N with
the same structure of (2.2) and (2.4), we need some auxiliar results.

Theorem 2.2. For any N, n0 ∈ N, let jN = (jN,1, . . . , jN,n0) be a vector of
integers (jN,1, . . . , jN,n0 ∈ N) and let (YjN ,WjN )N be a couple of stochastic
processes, independent of the sequence (v̂k)k and such that

sup
N≥1

E[||YjN −WjN ||2] <∞. (2.7)

Then, we have that

E
[
|d̂2
p,N(YjN ,WjN )− d2

p(YjN ,WjN )|
]

D→
N→∞

0. (2.8)

(2.8) is an important result proved through Slutsky’s Theorem that the
statistics based on d̂p,N and those based on dp converge to an asymptotic
distribution. We highlight this in the following result:

Corollary 2.3. For any l = 1, . . . , L and for any m0 ∈ L2(I) we have that

nl · d̂2
p,N(X̄l,m0) D→

N→∞

∞∑
k=1

χ2
1,k(νk)hk(p) (2.9)

where νk = nl · d2
M,k(ml,m0). Moreover, when L ≥ 2, for any l1, l2 =

1, . . . , L, we have that(
1
nl1

+ 1
nl2

)−1

· d̂2
p,N(X̄l1 , X̄l2) D→

N→∞

∞∑
k=1

χ2
1,k(νk)hk(p), (2.10)

where νk =
(

1
nl1

+ 1
nl2

)−1
· d2

M,k(ml1 ,ml2).
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Corollary 2.3 ensures that, for the hypothesis test (2.1) and (2.3),
the critical regions based on the covariance estimator have the same
structure of those in (2.2) and (2.4), respectively, where the covariance
function is assumed to be known. However, the asymptotic distribution∑∞
k=1 χ

2
1,k(νk)hk(p) depends on the eigenvalues of v, which are unknown

here. To compute the power function of the tests, we need this further
asymptotic result:

Theorem 2.4. Let (χ2
1,k)k be a sequence of i.i.d. chi-squared processes with

1 d.o.f., independent of v̂N . Let ξ̂2
α,p be the 1-α quantile of the conditional

distribution of ∑∞k=1 χ
2
1,kĥk(p) given (λ̂k)k. Then, we have that

ξ̂2
α,p →

N→+∞
ξ2
α,p (2.11)

Using now (2.3) and (2.4) we can construct the critical regions for
hypothesis tests (2.1) and (2.3) when the covariance operator is unknown.

Part 1:
Consider the hypothesis test (2.1). From Slutsky’s Theorem and equations
(2.9) and (2.11), we have that the following critical region is asymptotically
in N of level α:

R3
α =

{
nl · d̂2

p,N(X̄l,ml) > ξ̂2
α,p

}
. (2.12)

Following the same arguments of the previous section, the power of test
(2.12) can be written as follows:

β3 = Pml 6=m0(R3
α)

= Pml 6=m0

(
nl · d̂2

p(X̄l,m0) > ξ̂2
α,p

)
→

N→+∞
P

( ∞∑
k=1

χ2
1,k(νk)hk(p) > ξ2

α,p

)

with νk = nl · d2
M,k(ml,m0).

Part 2:
Assume L ≥ 2 and consider the hypothesis test (2.3). From Slutsky’s
Theorem, equations (2.10) and (2.11) , we have that the following critical
region is asymptotically in N of level α:

R4
α =

{(
1
nl1

+ 1
nl2

)−1

· d̂2
p,N(X̄l1 , X̄l2) > ξ̂2

α,p

}
(2.13)
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Following the same arguments of the previous section, the power of test
(2.12) can be written as follows:

β4 = Pml1 6=ml2
(R4

α)

= Pml1 6=ml2

((
1
nl1

+ 1
nl2

)−1

· d̂2
p(X̄l1 , X̄l2) > ξ2

α,p

)

→
N→+∞

Pml1 6=ml2

( ∞∑
k=1

χ2
1,k(νk)hk(p) > ξ2

α,p

)

with νk =
(

1
nl1

+ 1
nl2

)−1

· d2
M,k(ml1 ,ml2).

2.3 Simulation Studies
Starting from the tests presented in the previous sections, now we

discuss some inferential properties concerning them in a simulation setting,
focusing our attention on three main aspects:

1. general properties of the tests power function (Subsection 2.3.1);

2. dependence of the test power function on the choice of the parameter
p (Subsection 2.3.2 and Subsection 2.3.3);

3. properties of the tests with unknown covariance function for large
sample sizes (Subsection 2.3.4).

2.3.1 Simulations on the power function
In this first simulation study, our goal is to show some general properties

regarding the power function presented in the previous section. We wish
to test H0 : m1 = m0 vs H1 : m1 6= m0, with the critical region R1

α in (2.2).
We are considering a Gaussian process X1 in L2([0, 1]) with probability law
PX1 , mean supposedly unknown m1(t) and covariance function v(s, t). The
sample curves are generated through the Karhunen-Loève expansion, using
K = 100 components and a grid of 500 equispaced points in I = [0, 1] as
follows:

Xi,1(t) = mi,1(t) +
∞∑
k=1

Zki,1
√
λkϑk(t), t ∈ [0, 1], i ∈ {1, . . . , n}

where we set:
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• the sample size n = 10;

• the random variables {Zki,1; k ≥ 1, 1 ≤ i ≤ n} as i.i.d. Gaussian
processes with law PX1 ;

• {λk; k ≥ 1} is the sequence of eigenvalues of the covariance function
v defined as follows:

λk =


1

k+1 if k ∈ {1, 2, 3}
1

(k+1)4 if k ≥ 4
(2.14)

• {ϑk; k ≥ 1} is the sequence of eigenfunctions of the covariance
function v defined as follows:

ϑk =


1{t∈[0,1]} if k = 1
√

2sin(kπt)1{t∈[0,1]} if k ≥ 2, k even
√

2cos((k − 1)πt)1{t∈[0,1]} if k ≥ 3, k odd

We consider now the hypothesis test (2.1) with m0(t) = t(1 − t)1{t∈[0,1]}

as mean function in H0 and set α = 0.05 as significance level. To better
understand the power of R1

α in (2.2), we compute it for different mean
functions in H1, defined as m1k(t) = m0(t) + 0.03 · ϑk(t), for k = 1, . . . , 10.
We can notice that all the possible mean functions m1k have the same L2-
distance from the tested mean m0: dL2(m1k,m0) = 0.03 ∀k = 1, . . . , 10.
The generalized Mahalanobis distance dp used in R1

α has been computed
choosing hk(p) = (1−exp(−λkp)), which comes from the choice g(c; p) =
1{c≤p}. Since in this section we aren’t focusing on the role of p, we
fix p = 103. The empirical power is represented in Fig. 2.1 and has
been computed by realizing 103 times the test (2.2), using each time
n = 10 independent Gaussian processes generated from PX1 . We can
notice from Fig. 2.1 that the power is strictly increasing in k, even if
dL2(m1k,m0) = 0.03 ∀k = 1, . . . , 10. This is due to the fact that the test
statistics is constructed using the distance dp, which is able to distinguish
the differences of (m1k −m0) along the principal components ϑk and to
weight them according to the variability of X along the components λk,
which is the idea underlying the Mahalanobis distance. Naturally, since
the Mahalanobis distance obtained with p→∞ is not defined in infinite
dimensional spaces, it is needed to fix the parameter p which rules how
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Figure 2.1: The empirical power of test (2.2) for m1k(t) = m0(t) + 0.03 · ϑk(t),
for k = 1, . . . , 10, realized with 103 simulations, n = 10 and
p = 103.

much we can distinguish different low variances. However, the important
thing now is that for any choice of p > 0, the test really considers all the
components without any truncation.
We will show now that the parameter p plays an important statistical role
in the inferential properties of the tests and that setting p arbitrarily large
is not in general the right choice for the analysis.

2.3.2 Simulations on the test power as function of p

The next goal is to discuss how the choice of the parameter p affects
the tests presented in the previous sections. Withouth loss of generality,
we only consider the hypothesis test H0 : m1 = m0 vs H1 : m1 6= m0, with
the critical region R1

α expressed in (2.2), since the discussion on the role
of p for the other critical regions is analogous. In the first section of the
chapter, we derived the analytic expression of the function power for the
test (2.2) as

β1 = P

( ∞∑
k=1

χ2
1,k(νk)hk(p) > ξ2

α,p

)

with νk = n · d2
M,k(m1,m0).
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We compute now the power β1 for different choices of the parameter
p > 0, when the true mean m1(t) is one of the following:

1. m1(t) = m0(t), the true mean m1(t) coincides with the function in
the null hypothesis m0(t)⇒ dM,k(m1,m0) = 0 ∀k ≥ 1;

2. m1(t) = m0(t) +
√
λ1 · ϑ1(t), the true mean m1(t) and m0(t) only

differs in the first component ⇒ dM,1(m1,m0) = 1, dM,k(m1,m0) =
0 ∀k 6= 1;

3. m1(t) = m0(t) +
√
λ5 · ϑ5(t), the true mean m1(t) and m0(t) only

differs in the fifth component ⇒ dM,5(m1,m0) = 1, dM,k(m1,m0) =
0 ∀k 6= 5;

4. m1(t) = m0(t) +∑∞
k=10
√
λk · ϑk(t), the true mean m1(t) and m0(t)

differs in all the component but the first nine ⇒ dM,k(m1,m0) =
1 ∀k ≥ 10, dM,k(m1,m0) = 0 ∀k < 10.

For each one of the previous cases, the power β1 has been computed
by repeating 103 times the test (2.2), each time using n = 10 independent
Gaussian processes generated from the law PX1 . In Fig. 2.2 the four cases
are separetaly reported. We can see an example of the functional sample
X1, . . . , X10 (yellow lines), the real mean m1 (red line) and the tested
mean m0 (blue dotted line). On Fig. 2.3 we have instead the empirical
power of R1

α (2.2) (blue dots) for each of the value of the parameter
p ∈ {10−2, 10−1, . . . , 108}. We have also depicted the empirical power
of the test (2.1) when we use the truncated version of the Mahalanobis,
summing up only the first K = 3 components (blue line), which explained
the most of the variability. In this case, the critical region becomes:

R̃1
α = {n ·

3∑
k=1

d2
M,k(X̄n,m0) > ξ̃2

α}. (2.15)

where ξ̃2
α = ∑3

k=1 χ
2
1,k. There are also dotted curves which reprent the same

procedure realized with n = 20 (dotted orange curves) and with n = 50
(dotted yellow curves), showing that the power increases with the sample
size n, for any p > 0 and for any mean m1 ∈ H1.

In case (a) the null hypothesis is true, then the proportion of rejection
of both R1

α (2.2) and R̃1
α (2.15) is equal to the level of the test α = 0.05,

for any choice of p > 0.
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(a) m1(t) = m0(t)
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(b) m1(t) = m0(t) +
√
λ1 · ϑ1(t)
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(c) m1(t) = m0(t) +
√
λ5 · ϑ5(t)
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(d) m1(t) = m0(t) +
∑∞

k=10
√
λk · ϑk(t)

Figure 2.2: Functional sample X1, . . . , X10 (yellow lines) along with the real
mean m1(t) (red line) and the tested mean m0(t) (blue dotted
line).
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(a) m1(t) = m0(t)
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(b) m1(t) = m0(t) +
√
λ1 · ϑ1(t)
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(c) m1(t) = m0(t) +
√
λ5 · ϑ5(t)
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(d) m1(t) = m0(t) +
∑∞

k=10
√
λk · ϑk(t)

Figure 2.3: For each case (a) - (b) - (c) - (d) we have the empirical power of
R1
α (2.2) for the values of the parameter p ∈ {10−2, 10−1, . . . , 108}

realized with 103 simulations, with n = 10 (red line), n = 20
(orange line) and n = 50 (yellow line). It is also depicted the
empirical power of the test (2.1) when we use the truncated version
of the Mahalanobis distance (blue line) and the level of the test
α = 0.05 (green line).
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We consider now case (b), where the first component is the only
difference among m0(t) and m1(t). When p is small, the term h1(p)
is very relevant with respect to (hk(p), k ≥ 2); then, the non-centrality
quantity dM,1(m1,m0) = 1 multiplied by h1(p) makes the power higher.
In this case, the empirical power with small p of R1

α (2.2) is obviously
equal to the empirical power of R̃1

α (2.15). However, while the second
one does not change since it does not depend on p, the more p increases,
the more terms (hk(p), k = 1, 2, . . .) become close to one; thus, the test
statistics d2

p(X̄n,m0) is now influenced by more components and the first
one becomes less relevant. For this reason, since m0(t) and m1(t) only
differ in the first component, dM,k(m1,m0) = 0 ∀k ≥ 2 and the power
decreases as p increases.

In case (c), the fifth component is the only difference among m0(t) and
m1(t). In situations like this one, it is relevant why the dp distance gives
better results than the truncated one; in fact, the empirical power of the
test related to the truncated distance is equal to the level α = 0.05 since it
can’t detect the difference between m0(t) and m1(t). For what concerns
the dp distance, for small values of the parameter p we have h5(p) ' 0, so
the contribute of dM,5(m1,m0) = 1 is irrelevant and the power is low, as it
happens with the truncated distance. As p increases, h5(p) becomes closer
to one and the power grows. However, since dM,k(m1,m0) = 0 ∀k > 5,
when p increases a lot, there are too many irrelevant components influencing
the test statistics d2

p(X̄n,m0) and the power falls down.
In case (d), m0(t) and m1(t) have the same contributions in the first 9

components. For the same reason as the previous case, the empirical power
of the test (2.15) is equal to the level of the test α = 0.05. Regarding the
test (2.2), in this case when p is small we have that hk(p) ' 0, k ≥ 10,
so the test is unable to detect any difference and the power is low. As
p increases, some (hk(p), k ≥ 10) become close to one, the statistics
d2
p(X̄n,m0) is influenced by dM,k(m1,m0) = 1 for k ≥ 10 and the power

grows. When p→ +∞, almost all components of the statistics d2
p(X̄n,m0)

have a contribution dM,k(m1,m0) = 1, so that the power tends to one.

2.3.3 Discussion on the role of p

As we have just discussed, the choice of the parameter p > 0 determines
in which components the test R1

α performs well in detecting possible



2.3. Simulation Studies 31

differences among the supposed mean m0(t) and the true mean m1(t). As
we have seen, the test (2.1) can provide different results depending on the
value of the parameter p.

When we set a small p, we obtain a test whose power of detecting
differences beetween m0 and the true mean m1 does not discriminate
very well the different components with their own variability, but is more
suitable for looking at the shape of the function; the distance dp is closer to
the L2-distance than the Mahalanobis one. For this reason, this can be a
good choice when we are more interested in the general closeness between
the supposed mean m0 and the true man m1 than the micro-structure’s
features. For instance, in case (b) m0 is quite far from m1 and the test
with low p works well. At the contrary, in case (c) and (d), where the
macro-structure between m0 and m1 is very similar, the power of the test
with low p is low.

When we set a large value for the parameter p, the test explores a
greater number of components, taking into account their own variability,
since in the distance dp many weights hk(p)/λk are close to 1/λk. For
this reason, the distance dp between m1 and m0 acts much more like the
Mahalanobis distance than like the classical L2-distance. When we decide
to set a large value of p, there are two aspects that we should consider:

• each component is less relevant in the test statistics. For example, in
the cases (b) and (c), m0(t) and m1(t) differ for only one component;
then, when p is very large that component becomes negligible and
the power of the test decrases. The opposite case is (d), in which
the power tends to one for large p because the first nine components,
which are in favour of H0, become negligble;

• the test statistics less reflect the macro-structure of the function. For
instance, in case (b) the curves m0(t) and m1(t) concerns the first
component, which is the most relevant. However, for large values of
p the test is more interested in looking at the average behaviour of
many components and the distance easily visualized in the graphic is
forgotten. The opposite case is (d), in which m0(t) and m1(t) seems
very similar at first sight; in this case, the test does not care about
the visualization of the curves and it is more concentrated on the
average difference in many components, which leads to reject the
null hypothesis H0 with high probability.
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We can conclude that there is not an optimal choice for p: according to
the main interest associated with the test, we should properly set the
parameter p to detect differences related to a specific aim.

2.3.4 Simulations on tests with unknown covariance
function

We want to show now that the critical regions based on the estimated
covariance function present for large sample sizes the same power of
the critical regions with known covariance structure. Starting from the
hypothesis test H0 : m1 = m0 vs H1 : m1 6= m0, with the critical region
R3
α expressed in (2.12), we adopt the same framework presented for the

simulations when the covariance structure is known. In addition to the n1 =
10 processes from PX1 previously defined, we introduce n2 i.i.d. Gaussian
processes with probability law PX2 , having the same covariance function
v(s, t) of PX1 . These N = n1 +n2 processes provide the covariance estimate
v̂N as espressed in (2.5). For each n2 ∈ {100, 500, 1000} we compute the
power of R3

α as function of the parameter p ∈ {10−2, 10−1, . . . , 108}. This
procedure is repeated changing the true mean m1 of PX1 , as specified in
the cases (a)− (b)− (c)− (d). The power functions are represented in Fig.
2.4 with orange dotted lines. The blue dots indicate the power of test R1

α

adopted when the covariance operator v is known. As we can see from
Fig. 2.4, the power functions of R3

α tend to the power of R1
α as N goes to

infinity. Moreover, the convergence is faster when p is small and slower
when p is large. We can conclude saying that all the results obtained in
this chapter can be expanded for non-Gaussian processes, as it has been
done in Ghiglietti et al. (2016).
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(a) m1(t) = m0(t)
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(b) m1(t) = m0(t) +
√
λ1 · ϑ1(t)
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(c) m1(t) = m0(t) +
√
λ5 · ϑ5(t)

−2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log(p)

po
w

er

(d) m1(t) = m0(t) +
∑∞

k=10
√
λk · ϑk(t)

Figure 2.4: The empirical power of tests (2.2) (red line) and (2.12) (or-
ange lines) for each case (a) - (b) - (c) - (d) for p ∈
{10−2, 10−1, . . . , 108}, n1 = 10, n2 ∈ {100, 500, 1000}, realized
with 103 simulations.





Chapter 3

Functional Clustering
Methods

In the last part of this work, we want to extend the use of the dp distance
previously presented, adapting it to functional clustering techniques. In
particular, the aim of the analysis is to develop a proper classification
procedure in the functional framework based on the dp distance. We first
want to show through simulations the validity of the procedure, eventually
applying it to a real case study.

3.1 Functional k-means

In Tarpey and Kinateder (2003) we can found a proper definition of
the functional k-means procedure and an introduction to its consistency
properties. The functional k-means clustering algorithm is an iterative
procedure, alternating a step of cluster assignement, where all curves are
assigned to a cluster, and a step of centroid calculation, where a relevant
functional representative (the centroid) for each cluster is identified. More
precisely, the algorithm is initialized by fixing the number of k clusters and
by randomly selecting between the curves in the data set a set of k initial
centroids {ϕ(0)

1 (t), . . . , ϕ(0)
k (t)}. As it is usually done in the multivaraite

k-means algorithm, to select the initial mean curves we initialize the means
by randomly selecting k different data. Given this initial choice, the
algorithm iteratively repeats two basic steps. At the mth iteration of the
algorithm, m > 0, the two following steps are performed:

35
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Step 1 (cluster assignment step): each curve is assigned to the clus-
ter whose centroid at the (m− 1)th iteration is the nearest according
to the chosen distance d. This means that the choice of the mth

cluster assignment of the ith statistical unit C(m)
i , for i = 1, . . . , n is

C
(m)
i = argmin

l=1,...,k
d{Fi(t), ψ(m−1)

l (t)}.

Step 2 (centroid calculation step): the identification of the centroids
{ϕ(m)

1 (t), . . . , ϕ(m)
k (t)} at the mth iteration is performed by solving

the optimization problem

ϕ
(m)
l (t) = argmin

ψ∈Ωd

∑
j:C(m)

i =l

d{Fi(t), ϕ(t)}2,

where C(m)
i is the cluster assignment of the ith statistical unit at the

current iteration, d is a distance and Ωd is the space where the chosen
distance d is natural.

The solution to the infinite dimensional optimization problem that is
expressed in the centroid calculation step obviously depends on the choice
of the distance.

The algorithm is stopped when the same cluster assignments are ob-
tained at two subsequent iterations, i.e. the set of cluster assignements
{C(m̄)

1 , . . . , C(m̄)
n } and the set of centroids {ϕ(m)

1 (t), . . . , ϕ(m)
k (t)} are con-

sidered final solutions of the algorithm if we obtain C(m̄+1)
i ≡ C

(m̄)
i for all

i = 1, . . . , n.
Obviously, the k-means clustering procedure depends not only on the

choice of the distance, but also on the number of clusters k. Since the
number of clusters is a priori unknown, we also consider a way to compute
the optimal number of clusters k∗ via silhouette values and a plot of the
final classification, see Struyf et al. (1997). In particular, the silhouette
plot of a classification consists of a bar plot of the silhouette values si,
obtained for each statistical unit i = 1, . . . , n as

si = bi − ai
max{ai, bi}

,

where ai is the average distance, according to one of the distances con-
sidered, of the ith statistical unit to all other ones assigned to the same
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cluster, whereas

bi := argmin
l=1,...,k;l 6=Ci

∑
j:Cj=l d{Fi(t),Fj(t)}

#{j : Cj = l}

is the minimum average distance of the ith statistical unit from another
cluster and d is one of the distances considered. Clearly si always lies
between -1 and 1, the former value indicating a misclassified statistical
unit while the latter indicates a well-classified one. Note that a statistical
unit who alone constitutes a cluster has silhouette value equal to 1 but is
not considered in the silhouette plot for choosing k∗.

3.2 Simulations

3.2.1 Simulations in univariate functional framework
The main goal of this simulation study is to consider two samples

of i.i.d. curves Xi(t) and Yi(t), i = 1, . . . , n, generated by independent
stochastic processes with different means such that Xi(t), Yi(t) ∈ L2(I),
where I is a compact interval of R. As we already did in Chapter 3, we
use the Karhunen-Loève decomposition to generate the sample curves in
the following way:

Xi(t) = m0(t) +
∞∑
k=1

Zki,1
√
λkϑk(t) i = 1, . . . , n1,

Yi(t) = m1(t) +
∞∑
k=1

Zki,2
√
λkϑk(t) i = 1, . . . , n2,

where we set:

1. the time grid of 1000 equispaced points in I = [0, 1];

2. truncation at K = 200 components;

3. the same sample sizes n1 = n2 = 50;

4. the mean of the first sample m0(t) = t(1− t) while we set different
values for the mean of the second sample;

5. the random variables (Zki,1)∞k=1 (Zki,2)∞k=1 are two sequences of inde-
pendent standard normal variables;
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6. {λk; k ≥ 1} is the sequence of eigenvalues of the covariance function
v defined as follows:

λk =


1

k+1 if k ∈ {1, 2, 3}
1

(k+1)2 if k ≥ 4
(3.1)

7. {ϑk; k ≥ 1} is the sequence of eigenfunctions of the covariance
function v defined as follows:

ϑk =


1{t∈[0,1]} if k = 1
√

2sin(kπt)1{t∈[0,1]} if k ≥ 2, k even
√

2cos((k − 1)πt)1{t∈[0,1]} if k ≥ 3, k odd

Starting from the eigenvalues (λk)k with the associated eigenfunctions
(ϑk)k, we generated the curves in three different cases:

(a) m1(t) = m0(t) +
√
λ1 · ϑ1

(b) m1(t) = m0(t) +
√
λ5 · ϑ5

(c) m1(t) = m0(t) +∑∞
k=10
√
λk · ϑk

For each case we then computed a k-means algorithm based on three
different distances between the two samples.

Starting from our two samples X and Y , we computed the empirical
eigenvalues (λ̂k)k with the associated eigenfunctions (ϑ̂k)K so that we could
compute the dp distance as follows:

dp(X, Y ) =
√√√√ ∞∑
k=1

d2
M,k(X, Y ) · hk(p)

where dM,k(X, Y ) =
√

(〈X − Y, ϑk〉)2/λk is the term representing the
contribution of the Mahalanobis distance along the kth component and
hk(p) = λk/(λk + 1/p). We considered other two competitors to compare
our distances with: a truncated version of the Mahalanobis distances (sum-
ming up K = 3 components, which described the most of the varaibility)
and the classical L2-distance which can be written as:

dM(X, Y ) =

√√√√ 3∑
k=1

d2
M,k(X, Y )
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Figure 3.1: (a) Functional samples X1, . . . , X50 (blue lines) and Y1, . . . , Y50
(red lines).
(b) Means of the two samples m0(t) (blue line) and m1(t) (red
line).
(c) Proportion of misclassified sample with the functional k-means
for case (a) using the L2-distance (yellow line), the truncated
version of the Mahalanobis distance (green line) and the dp distance
(black line).
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Figure 3.2: Real means of the functional sample (black lines) and centroids
obtained with the k-means clustering procedures (blue and red
lines) with different distances.
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(a) dL2

Cluster X Y

1 36 10
2 14 40

(b) dM

Cluster X Y

1 41 16
2 8 34

(c) dp, low p

Cluster X Y

1 42 17
2 8 33

(d) dp, high p

Cluster X Y

1 34 28
2 16 32

Table 3.1: Confusion matrices related to the functional k-means for the samples
X and Y for case (a).

dL2(X, Y ) =
√∫

I
(X(t)− Y (t))2dt

In Fig. 3.1(a) we can see the two samples X (blue lines) and Y (red
lines) in case (a) and their means in Fig. 3.1(b). In this simulation, the
two means differ only on the first component. Since it is just a traslation,
the classical L2-distance seems to work pretty well, assigning about the
70% of the data to the right group, as we can read in Table 3.1. For
what concerns the other two distances, both the truncated version of the
Mahalanobis distances and the generalized Mahalanobis distance with low
value of the parameter p give pretty good results, similar to the L2-distance.
But when we set a higher value for p, the clustering procedure begins to
explore a much greater number of components and many weights of the
distance dp become closer to 1/λk. For this reason, all the variability of
the other components adds noise to the variability of the first components
and the distance dp become closer to the Mahalanobis distance than the
L2-distance. As we can note in Fig. 3.1(c), the number of misclassified
curves increases very much, making the choice of setting a large value for
the parameter p very bad. In fact, looking at Fig. 3.2, we can see how the
centroids obtained by the k-means procedure and the real means differ a
lot when we use the dp distance with high p.

The next simulation concerns the case (b), where the means of the two
samples X and Y differs only on the fifth component. In Fig. 3.3(a) there



42 Chapter 3. Functional Clustering Methods

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

t

X
Y

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

t

m0
m1

(b)

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

log(p)

pr
op

or
tio

n 
of

 m
is

cl
as

si
fie

d 
sa

m
pl

es

L2
dM
dp

(c)

Figure 3.3: (a) Functional samples X1, . . . , X50 (blue lines) and Y1, . . . , Y50
(red lines).
(b) Means of the two samples m0(t) (blue line) and m1(t) (red
line).
(c) Proportion of misclassified samples with the functional k-means
for case (b) using the L2-distance (yellow line), the truncated
version of the Mahalanobis distance (green line) and the dp distance
(black line).
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Figure 3.4: Real means of the functional sample (black lines) and centroids
obtained with the k-means clustering procedures (blue and red
lines) with different distances.
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(a) dL2

Cluster X Y

1 36 29
2 14 21

(b) dM

Cluster X Y

1 35 29
2 15 21

(c) dp high p

Cluster X Y

1 27 24
2 23 26

(d) dp, medium p

Cluster X Y

1 37 27
2 13 23

Table 3.2: Confusion matrices related to the functional k-means for the samples
X and Y for case (b).

are the two samples X and Y along with their means in Fig. 3.3(b). In
this case, it is not just a translation, in fact the macro-structure of the
curve means is pretty similar. For this reason, the results obtained with
the classical L2-distance are not good at all, as it is shown in Table 3.2 and
in Fig. 3.5(c). For what concerns the truncated version of the Mahalanobis
distance, the result are similar to the L2-distance. This is because we have
considered only the fifth component, which cannot be seen from the dM
distance, since it is truncated up to the third component. Finally, we can
see that in this case the dp distance gives us some improvement. When
we consider a low value of the parameter p the result is pretty similar to
the dM distance, since we are just giving almost all the weight to the first
components, as the dM distance does. When we increase the number of
components considered, the dp distance begins taking into account other
components and the clustering procedure gives us better results. In fact,
Fig. 3.3 shows us that for log(p) ∈ [0, 4], the number of misclassified
curves decreases of about a 10%. At last, when the value of p is too large
and almost all the values of the function hk(p) tend to 1, the distance dp
considers too many components and the method gives us again very bad
results. Comparing the centroids obtained with the clustering procedure
and the real means in Fig. 3.4, we can see that we never obtain very good
results, but the dp distance when log(p) ' 1 definitely gives us the best
ones.
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Figure 3.5: (a) Functional samples X1, . . . , X50 (blue lines) and Y1, . . . , Y50
(red lines).
(b) Means of the two samples m0(t) (blue line) and m1(t) (red
line).
(c) Proportion of misclassified sample with the functional k-means
for case (c) using the L2-distance (yellow line), the truncated
version of the Mahalanobis distance (green line) and the dp distance
(black line).
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Figure 3.6: Real means of the functional sample (black lines) and centroids
obtained with the k-means clustering procedures (blue and red
lines) with different distances.
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(a) dL2

Cluster X Y

1 35 29
2 15 21

(b) dM

Cluster X Y

1 36 28
2 14 22

(c) dp, low p

Cluster X Y

1 35 29
2 15 21

(d) dp, high p

Cluster X Y

1 46 16
2 4 34

Table 3.3: Confusion matrices related to the functional k-means for the samples
X and Y for case (c).

The last simulation in the univariate framework is given by case (c),
where the two means differ for all the components except the first nine.
Fig. 3.5(a) shows the two samples X and Y along with their means in
Fig. 3.5(b). For the reasons that we have just explained, the L2-distance
and the truncated version of the Mahalanobis distance dM do not work,
because they cannot see the differences between the means; the same
happens for what concerns the dp distance with low p. When we set a
large value for the parameter p, the distance begins to take into account
all the components and it works pretty well, assigning about the 80% of
the curves to the right group, as we can see in Table 3.3 and in Fig. 3.5(c).
In fact, Fig. 3.6 shows us in this last case the centroids and the real means
are more similar, so the procedure can catch the small differences in the
micro-structure of the curves.

As we did in Chapter 2, we can conclude that also for what concerns
the clustering procedures the dp distance works in the same way and the
choice of p is determined by our analysis. In fact, if we are comparing
functional samples whose means have a very different macro-structure, it is
probably best to use a distance which is similar to the L2-distance and set
a low value of the parameter p. When instead we want to compare samples
whose means are very similar and with differences in the micro-structure,
the L2-distance begins not to work anymore and the choice of a high value
for p is probably the best one.
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3.2.2 Simulations in a multivariate framework
We want now to extend the results just presented in a multivariate

framework. Let us consider two bivariate samples of i.i.d. curves Xi(t) and
Yi(t), i = 1, . . . , n, generated by independent stochastic processes with
different means such that Xi(t),Yi(t) : L2(I)→ Rh, where I is a compact
interval of R and, without loss of generality, we choose h = 2.

Using the same framework of Subsection 3.2.1, we generate our samples
through the Karhunen-Loève decomposition in the following way:

Xi(t) = m0(t) +
∞∑
k=1

Zki,1

√
λkϑk(t) i = 1, . . . , n1.

Yi(t) = m1(t) +
∞∑
k=1

Zki,2

√
λkϑk(t) i = 1, . . . , n2.

where we set:

1. the time grid of 1000 equispaced points in I = [0, 1];

2. truncation at K = 200 components;

3. the same sample sizes n1 = n2 = 50;

4. the mean of the first sample

m0(t) =
(
t(1− t)

4t2(1− t)

)
(3.2)

while we set different values for the mean of the second sample;

5. the random variables (Zki,1)∞k=1 (Zki,2)∞k=1 are two sequences of bi-
variate standard normal variables with the same mean µ = (0 0)T
and covariance operator

Σ =
(

1 0.5
0.5 1

)

6. {λk; k ≥ 1} is the sequence of eigenvalues of the covariance function
v defined as follows:

λk =


1

k+1 if k ∈ {1, 2, 3}
1

(k+1)2 if k ≥ 4
(3.3)
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7. {ϑk; k ≥ 1} is the sequence of eigenfunctions of the covariance
function v defined as follows:

ϑk =


1{t∈[0,1]} if k = 1
√

2sin(kπt)1{t∈[0,1]} if k ≥ 2, k even
√

2cos((k − 1)πt)1{t∈[0,1]} if k ≥ 3, k odd

Starting from the eigenvalues (λk)k with the associated eigenfunctions
(ϑk)k, we generated the curves in three different cases:

(a)

m1(t) = m0(t) +
(√

λ1 · ϑ1(t)
4
√
λ1 · ϑ1(t)

)
(3.4)

(b)

m1(t) = m0(t) +
(√

λ5 · ϑ5(t)
4
√
λ5 · ϑ5(t)

)
(3.5)

(c)

m1(t) = m0(t) +
( ∑∞

k=10
√
λk · ϑk(t)

4∑∞k=10
√
λk · ϑk(t)

)
(3.6)

For each case we then computed a k-means algorithm based on the three
different distances between the two samples used before. Since we are
now in a bivariate framework, the distances will be different. Let us
consider our two samples X = (X1, X2)T and Y = (Y1, Y2)T . We used the
empirical eigenvalues for each component (λ̂(1)

k )k, (λ̂(2)
k )k with the associated

eigenfunctions (ϑ̂(1)
k )k, (ϑ̂(2)

k )k to compute the dp distance as follows:

dp(X,Y) =
√√√√ ∞∑
k=1

d2
M,k(X,Y) · hk(p)

where dM,k(X,Y) =
√∑2

h=1(〈Xh − Yh, ϑ̂(h)
k 〉)2/λ̂

(h)
k is the term repre-

senting the contribution of the Mahalanobis distance along the kth com-
ponent and hk(p) = λk/(λk + 1/p). As we did in the previous section,
we consider other two competitors to compare our distances with: the
truncated Mahalanobis distances (summing up K = 3 components, which
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Figure 3.7: (a) Functional samples X1, . . . ,X50 (blue and orange lines) and
Y1, . . . ,Y50 (red and green lines).
(b) Means of the two samples m0(t) (blue and orange lines) and
m1(t) (red and green lines).
(c) Proportion of misclassified sample with the functional k-means
for case (a) using the L2-distance (yellow line), the truncated
version of the Mahalanobis distance (green line) and the dp distance
(black line).
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(c) dp, high p
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(d) dp, medium p

Figure 3.8: Real means of the functional sample (black lines) and centroids
obtained with the k-means clustering procedures (blue and red
lines) with different distances.
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(a) dL2

Cluster X Y

1 48 5
2 2 45

(b) dM

Cluster X Y

1 48 6
2 2 44

(c) dp, low p

Cluster X Y

1 48 4
2 2 46

(d) dp, high p

Cluster X Y

1 27 24
2 23 26

Table 3.4: Confusion matrices related to the functional k-means for the samples
X and Y for case (a).

described the most of the varaibility) and the classical L2-distance, which
can be written as:

dM(X,Y) =

√√√√ 3∑
k=1

d2
M,k(X,Y)

dL2(X,Y) =
√∫

I
(X(t)−Y(t))2dt

In Fig. 3.7(a) there are the samples X (X1 with blue lines, X2 with
orange lines) and Y (Y1 with red lines, Y2 with green lines) which differ
only on the first component, along with their means in Fig. 3.7(b). In
Fig. 3.7(c) we depicted instead a comparison among the different results
obtained using the three distances. We can note that the results obtained
in the multivariate framework confirm and strenghten the ones obtained in
the univariate framework. In this case, the difference between the means is
just a translation and the classical L2-distance works very well, assigning
almost the 95% of the data to the right group, as we can see in Table 3.4.
For what concerns the other two distances, both the dM distance and the
dp distance with low p work as well as the dL2 distance. Setting a higher
value for p become now a worst choice than in the univariate framework,
since we are considering too many components and our algorithm can’t
distinguish the two samples at all. In Fig. 3.7, it is shown how the number
of misclassified curves increase a lot, almost reaching the 50% of the curve
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(a) dL2

Cluster X Y

1 31 20
2 19 30

(b) dM

Cluster X Y

1 34 26
2 16 24

(c) dp, high p

Cluster X Y

1 27 15
2 13 35

(d) dp, log(p) = 0

Cluster X Y

1 40 18
2 10 32

Table 3.5: Confusion matrices related to the functional k-means for the samples
X and Y for case (b).

samples. The centroids in Fig. 3.8 are in fact the ones that differ the most
from the real means of the samples.

The second simulation in the multivariate framework concerns the case
(b), where the means of the two samples X and Y differ only for the fifth
component. This difference cannot be seen by the dM distance, since it is
truncated up to the third one. In Fig. 3.9(a) we depicted the two samples
along with their means in Fig. 3.9(b), which look pretty similar. For this
reason, the results obtained for the dL2 and the dM distance are not very
good (see Table 3.5). Comparing the Fig. 3.3(c) with Fig. 3.9(c), we can
see that the proportion of misclassified samples when p becomes higher
has a similar trend but in the multivariate framework it is generally lower;
in fact, a higher number of curves is assigned to the right cluster. Even
though for low values of the parameter p the distance dp gives the same
results obtained with the dL2 and the dM distance, when log(p) ∈ [−1, 3]
the number of misclassified curves decreases, since the distance begins
taking into account more components. This is probably the case in which
the centroids are more similar to the real means, as it is shown in Fig.
3.10. However, as in the univariate framework, when p becomes higher,
too many components are considered and we obtain again bad results.

Finally, the last simulation concerns case (c), where the two means
differ for all the components except the first nine. In Fig. 3.11(a) there are
the two samples X and Y and their means in Fig. 3.11(b). For the same
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Figure 3.9: (a) Functional samples X1, . . . ,X50 (blue and orange lines) and
Y1, . . . ,Y50 (red and green lines).
(b) Means of the two samples m0(t) (blue and orange lines) and
m1(t) (red and green lines).
(c) Proportion of misclassified sample with the functional k-means
for case (b) using the L2-distance (yellow line), the truncated
version of the Mahalanobis distance (green line) and the dp distance
(black line).
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(d) dp, medium p

Figure 3.10: Real means of the functional sample (black lines) and centroids
obtained with the k-means clustering procedures (blue and red
lines) with different distances.
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(a) dL2

Cluster X Y

1 25 28
2 25 32

(b) dM

Cluster X Y

1 30 22
2 20 28

(c) dp, low p

Cluster X Y

1 28 21
2 22 29

(d) dp, high p

Cluster X Y

1 50 1
2 0 49

Table 3.6: Confusion matrices related to the functional k-means for the samples
X and Y for case (c).

reason already explained for the univariate framework, when the value of
p is low the clustering procedure do not work and the results are as bad as
for the dL2 and dM distances. When the value of p increases, the procedure
with the dp distance gives us almost perfect results (see Fig. 3.11(c) since
we are taking into account every component. In Fig. 3.12 we can see how
the centroids are almost the same as the real means, when we use the dp
distance setting a large value for the parameter p.

We have now showed that all the results obtained in the univariate
framework also apply in the multivariate framework. We can even say
that if we have multivariate functional data, the clustering procedure
improves but the choice of p is again determined by our analysis. As in
the univariate framework, if the functional samples have a very different
macro-structure it is better to choose a low value for p, since we want
a distance more similar to the classical L2-distance. If the curves have
instead pretty similar means but differences in the micro-structure, it is
better to choose a high value for p, since we want a distance which is more
similar to the Mahalanobis distance.

3.3 Applications on a real dataset
In this last section of the chapter we want to apply our functional

k-means to a real case study on ECGs. We give some background theory



3.3. Applications on a real dataset 57

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

t

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

t

(b)

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

log(p)

pr
op

or
tio

n 
of

 m
is

cl
as

si
fie

d 
sa

m
pl

es

(c)

Figure 3.11: (a) Functional samples X1, . . . ,X50 (blue and orange lines) and
Y1, . . . ,Y50 (red and green lines).
(b) Means of the two samples m0(t) (blue and orange lines) and
m1(t) (red and green lines).
(c) Proportion of misclassified sample with the functional k-means
for case (c) using the L2-distance (yellow line), the truncated
version of the Mahalanobis distance (green line) and the dp
distance (black line).
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Figure 3.12: Real means of the functional sample (black lines) and centroids
obtained with the k-means clustering procedures (blue and red
lines) with different distances.
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Figure 3.13: 12-lead ECG position

on ECG, before presenting the dataset and showing the obtained results.

3.3.1 Electrocardiography (ECG)

Electrocardiography is a transthoracic recording of the electrical activity
of the heart over a period of time as it is captured and externally recorded
through electrodes placed on the skin. These electrodes detect the tiny
electrical changes that arise from the depolarization of the heart muscle
during each heartbeat. The standard ECG registration is the 12-lead ECG
system, in which the overall magnitude of the heart’s electrical potential is
measured from 12 different angles and is recorded over a period of time,
see Einthoven (1908) and Einthoven et al. (1950). The first sets of leads
are the standard limb leads, also known as the bipolar leads, denoted by I,
II and III. There are then the augmented unipolar leads, denoted by aVR,
aVL and aVF. The last ones are the chest leads denoted by V1, V2, V3,
V4, V5 and V6. The placement of the electrodes for the leads can be seen
in Fig. 3.13.

The first two sets of leads are derived from the same three measurement
points, so we can omit the augmented unipolar leads. Furthermore, we
can consider only two bipolar leads since, for the Einthoven’s law, the
third one can be obtained as the sum of the other two. Then, the ECG
traces which are analyzed in the following chapters will consist of leads I,
II, V1, V2, V3, V4, V5 and V6 only. The stylized shape of a physiological
single beat is shown in Fig. 3.14. In the same figure, the main relevant
points, segments and waves are highlighted. In the stylized signal, the
deflections are listed alphabetically starting with letter P, which represents
atrial depolarization; it follows then the QRS-complex which is caused by
ventricular depolarization. At last, we have the ventricular repolarization
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Figure 3.14: Stylized shape of a physiological single beat, recorded on ECG
graph paper (the main relevant points, segments and waves are
highlighted).

which generates the T-wave and mask the atrial repolarization (for fur-
ther details, see Scher and Young (1957)). The direction of the wave of
depolarization is named the heart electrical axis.

Bundle Branch Blocks

The heartbeat is triggered by electrical impluses that travel down a
special pathway through the heart. The impulse starts in a small bundle of
specialized cells located in the upper right atrium, called the sinoatrial node
(which is the heart’s natural pacemaker, 1 in Fig. 3.15). The electrical
activity spreads through the walls of the left and right atria, summating at
the atrioventricular node (2 in Fig. 3.15). From here, the impulse travels
down the bundle of His (3 in Fig. 3.15) and divides itself into the right
and left bundle branches (4 and 10 in Fig. 3.15). The right bundle branch
contains one fascicle while the left bundle branch subdivides into two
fascicles: the left anterior fascicle and the left posterior fascicle (6 and 5 in
Fig. 3.15). Ultimately, the fascicles divide further into millions of fibers
which send impulses to the individual cardiac cells, allowing for rapid,
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Figure 3.15: Conduction system of the heart: 1, sinoatrial node; 2, atrioven-
tricular node; 3, bundle of His; 4, left bundle branch; 5, left
posterior fascicle; 6, left anterior fascicle; 7, left ventricle; 8,
ventricular septum; 9, right ventricle; 10, right bundle branch.

coordinated physiologic depolarization of the ventricles. Bundle branch
injuries result in altered pathways for ventricular depolarization. As a
result, there is a loss of ventricular synchrony, ventricular depolarization
is prolonged, and there may be a corresponding drop in cardiac output
(see Guyton and Hall (2006)). Depending on the anatomical location of
the defect which leads to a bundle branch block, the blocks are further
classified into right bundle branch block (RBBB) and left bundle branch
block (LBBB).
From a clinical perspective, a RBBB typically causes prolongation of the
last part of the QRS-complex, and may shift the heart’s electrical axis
slightly to the right. A LBBB widens the entire QRS-complex, and in most
cases shifts the heart’s electrical axis to the left. Another usual finding
with BBBs is an appropriate T-wave discordance: this means that the
T-wave will be deflected in the opposite direction to the terminal deflection
of the QRS-complex.
What it is in our interest is that, from a statistical point of view, there
are shape modifications that are induced on the ECG curves, and we shall
investigate them only from a statistical perspective, without using clinical
criteria.
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3.3.2 Smoothing and registration of the ECGs

The dataset provided by Mortara-Rangoni S.r.l. contains, among
others, the ECG signals of n = 2102 subjects, among which 1602 are
healthy while 500 are affected by BBBs (224 RBBBs and 276 LBBBs).
Every signal consists of 8 curves, one for each lead, so we have a multivariate
functional dataset. The electrocardiographic signals have been registered
without any processing, so they are just noisy and discrete observations
of the function describing the ECG trace of each patient. Moreover, each
patient has his own ’biological’ time, i.e. the same event of the heart
dynamics may occur at different times for different patients; that is why
the morphological change due to this difference in timings is misleading
from a statistical perspective. To address these two problems, which are
common in functional data analysis, it has been necessary to perform the
procedures presented in Chapter 1, the data smoothing and registration.

Among all the possible smoothing methods, the most suitable for the
data was the wavelet basis method with universal threshold, which was
able to capture strongly localized ECG features (peaks, oscillations,...).
Thus, starting from the vectorial raw signal, it was estimated the vectorial
function

fi(t) = (Ii(t), IIi(t), V 1i(t), V 2i(t), V 3i(t), V 4i(t), V 5i(t), V 6i(t)),

and its derivatives, for each patient i = 1, ..., n. As in most smoothing
methods based on wavelet expansion, the grid which has been used consists
of 2J points, J ∈ N. In this particular case, we have the time grid [0 ms,
550 ms] which consists of 210 = 1024 observation points.

As we have previously said, to face the second problem it has been
used a registration procedure based on landmarks, which are points of
the curve that can be associated with a specific biological time (see Ieva
et al. (2013), Indino (2015)). For each patient i = 1, ..., n there has
been the identification of the P-wave(P i

onset, P
i
offset), the QRS-complex

(QRSionset, QRSioffset), the peak for the T-wave (Tpeak) and the peak for
the R wave (Rpeak). These landmarks have been used to register all the
leads and for each patient i it has been looked for a warping function hi
obtained by cubic spline interpolation.
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3.3.3 k-means
Let us consider the time interval I=[0 ms, 550 ms] which consists of

210 = 1024 observation points and analyse the n patients according to a
functional k-means clustering procedure, where we consider

F(t) = {F r(t)}8
r=1 = {I(t), II(t), V 1(t), V 2(t), V 3(t), V 4(t), V 5(t), V 6(t)}

such that the eight leads Fi(t) : I → R8, for patients i = 1, . . . , n, are
simultaneously clustered. We assume that Fi(t) ∈ L2(I;R8). Since we
consider all the eight leads simultaneously in the analysis, this clustering
procedure can be called multivariate functional k-means.

For computational reasons, we focus our attention on a reduced number
of curves. We consider n = 700 subjects, where 400 of them are healthy,
150 are affected by LBBBs and 150 are affected by RBBBs. We then
compute the empirical eigenvalues for each lead (λ̂rk)k with the associated
eigenfunctions (ϑ̂rk)k, with k = 1, . . . , n and r = 1, . . . , 8. In this particular
case, we can define the generalized Mahalanobis distance between two
random ECG curves Fi(t) and Fj(t), with i 6= j, using the definition (1.4)
where the term the contribution of the Mahalanobis distance along the kth
component can be written as follows:

dM,k(F r
i (t), F r

j (t)) =
√

[
∫
I(F r

i (t)− F r
j (t)) · ϑk(t)]2
λk

and hk(p) = λk/(λk + 1/p). To perform comparisons and to test the ro-
bustness of our clustering procedure we have considered the same distances
used in the simulation between a pair of ECG traces, dM and dL2 , which
can be written in this case as follows:

dM(Fi(t),Fj(t)) =

√√√√ 8∑
r=1

3∑
k=1

d2
M,k(F r

i (t), F r
j (t))dt (3.7)

dL2(Fi(t),Fj(t)) =

√√√√ 8∑
r=1

∫
I
(F r

i (t)− F r
j (t))2dt (3.8)

The final silhouette plots obtained by clustering our sample of ECG
traces according to a multivariate functional k-means procedure with the
distance dp, where p = 104 and k = 2, 3, 4, 5, are shown in Fig. 3.16. As
we can see in the figure, the grouping structure that is obtained by setting
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Figure 3.16: Silhouette plots of the clustering result obtained via the multi-
variate functional k-means procedure, setting (a) k=2, (b) k=3,
(c) k=4 and (d) k=5 and with distance dp: the data are ordered
according to an increasing value of silhouette within each cluster
and are coloured according to the cluster assignment
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(a) L2 distance

Cluster Healthy LBBB RBBB

1 342 16 18
2 55 134 32
3 3 0 100

(b) dM distance

Cluster Healthy LBBB RBBB

1 336 20 10
2 61 130 36
3 3 0 104

(c) dp distance, low p

Cluster Healthy LBBB RBBB

1 343 16 17
2 54 134 33
3 3 0 100

(d) dp distance, high p

Cluster Healthy LBBB RBBB

1 357 19 14
2 40 131 28
3 3 0 108

Table 3.7: Confusion matrices related to the functional k-means for the ECG
traces.

k = 3 seems the best, both in terms of silhouette profile and in terms of
wrong assignments. A similar result is obtained by measuring the distance
between curves with the dM or the dL2 distances; however, the procedure
seems to detect the best grouping structure when we use the dp distance
and we set a high value of the parameter p. We thus set k∗ = 3.

Because of the high computational cost due to the computation of the dp
distance, which have to take into account a great number of components, the
code has been parallelized to greatly reduce the computational time, using
the R-packages doParallel and foreach (for further details for both packages,
see Revolution Analytics and Steve Weston (2015)). The obtained results
of our 3-means multivariate clustering procedure, using the three distances,
are showed in the confusion matrices in Table 3.7. We a posteriori identified
the cluster with the greater number of physiological ECG traces as the
one containing the healthy subjects. Subsequently, to distinguish the
clusters corresponding to the pathological traces, we first selected the
cluster containing the maximum number of pathological traces of the same
kind and at last the remaining cluster.

Looking at the four confusion matrices, we can immediately note that
we obtained pretty good results, which differ a little depending on the
distance tested. As obtained in simulation (c) of the previous section and
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Figure 3.17: Proportion of misclassified samples with the functional k-means
for the ECG dataset using the L2 distance (yellow line), the
truncated version of the Mahalanobis distance (green line) and
the dp distance (black line).
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dL2 dM dp, low p dp, high p

Mean costCV 0.1281 0.1357 0.1205 0.0985
Standard deviation costCV 0.1244 0.1316 0.1286 0.1145

Table 3.8: Mean misclassification costs and standard deviations computed over
20 repetitions of the cross-validation procedure.

as we can see in Fig. 3.17, when the value of the parameter p in the dp
distance goes over a certain value, there is a change in the number of
misclassified curves. In particular, in this case we go from about 81% of
well-classified subjects to about 86%, which is a good improvement. Then,
we can state that the generalized Mahalanobis distance with high value of
p is probably the best choice, even though we have a higher computational
cost. Remembering what we saw in the tests in the previous chapter
and in the clustering simulations of the previous section, this is probably
because of the difference in the micro-structure of the ECG curves, which
is better identified by the dp distance, as it is the best approximation of
the Mahalanobis distance in a functional framework.

In Fig. 3.18 the ECG curves of the considered subjects are shown, for
each one of the 8 leads, with a different color for each cluster (green for
the healthy subjects, red for the RBBBs, blue for the LBBBs). Looking at
the centroids in Fig. 3.19 we can highlight the main differences between
the healthy subjects and the ones affected by Bundle Branch Blocks. The
LBBBs have a larger QRS complex and a greater intensity of the R-peak.
Futhermore, we can clearly see how in the centroid related to lead I, V1
and V2, there is an inversion of the T wave. For what concerns the RBBBs
subjects, we can see in leads I, V1, V5 and V6 how the S wave is deeper
than in the healthy subjects; in these cases the centroids show a larger
QRS-complex.

We have now defined a semi-automatic diagnostic tool based on the
multivariate functional k-means algorithm; in fact, after our clustering
procedure we obtained a set of k centroids, representative of each cluster,
which can be used as reference signals to compare a new ECG trace. Using
these, we could have an immediate hint on a new patient’s diagnosis by
smoothing his ECG trace, registering it and finally assigning it to the
group that is characterized by the nearest centroid.
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Figure 3.18: ECG leads assigned to each cluster (green for the healthy subjects,
blue for the LBBBs, red for the RBBBs).
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Figure 3.19: ECG centroids of the three clusters for each lead (green for the
healthy subjects, blue for the LBBBs, red for the RBBBs).
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(a) L2 distance

Cluster Healthy LBBB RBBB

1 68.4 3.2 3.6
2 11 26.8 6.4
3 0.6 0 20

(b) dM distance

Cluster Healthy LBBB RBBB

1 67.2 4 2
2 12.2 26 7.2
3 0.6 0 20.8

(c) dp distance, low p

Cluster Healthy LBBB RBBB

1 68.6 3.2 3.4
2 10.8 26.8 6.6
3 0.6 0 20

(d) dp distance, high p

Cluster Healthy LBBB RBBB

1 71.4 3.8 2.8
2 8 26.2 5.6
3 0.6 0 21.6

Table 3.9: Cross Validation results obtained on a test set of 120 patients, by
application of the multivariate functional three-means clustering
algorithm, with different choices of the distance between ECGs.

For this reason, it is important to evaluate the misclassification cost for
this procedure, with the choice of the different functional distances. In order
to do this, we perform a cross-validation analysis by randomly choosing
among our n = 700 subjects, a training set of 320 healthy subjects, 120
RBBBs and 120 LBBBs, for a total of ntraining = 560 curves and perform a
multivariate functional three-means clustering on the training set selected.
At last, we consider the remaining ntest = 140 curves and we assign each
of them to the cluster whose centroid is the nearest, according to the three
distances dp, dM and dL2 . Given the patients’ disease classification, we
compute the misclassification cost by using the index

costCV = λ1miscN + λ2(miscRN + miscLN ) + λ3(miscRL + miscLR)
ntest

(3.9)

where we denote by miscN the number of healthy subjects assigned
to a pathological cluster, while miscRN and miscLN are the number of
patients respectively affected by RBBB and LBBB who are assigned to the
cluster of healthy patients. miscRL and miscLR represent the number of
patients whose ECGs are detected as pathological but are assigned to the
wrong pathology. Finally, the parameters λ1, λ2, λ3 are misclassification
weights, which are chosen according to the suggestion of the clinicians,
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who believe that assigning a BBB patient to the cluster of healthy patients
is approximately four times more serious than treating a healthy subject
as pathological, which is instead twice as serious as assigning a RBBB
patient to the LBBB cluster and vice versa. To determine the values of the
weights, it has introduced a further request: the costCV has to be equal to
1 in the worst case, when all healthy subjects are classified as BBB and all
BBB subjects are classified as healthy. This choice leads to the following
values: λ1 = 0.4270, λ2 = 1.7079, λ3 = 0.2135.

The procedure has been repeated 20 times, computing each time the
misclassification cost according to equation (3.9). Table 3.8 shows the
mean and standard deviation computed along the 20 cross-validation
repetitions. Once again, the distance dp with higher p seems to give best
results, confirming that is probably worth studying the micro-structures of
ECG curves, looking at all the components of the functional data. We also
show the average confusion matrices for each of the distances considered,
which have been obtained by taking the mean of the confusion matrices
along the cross-validation repetitions. The four average confusion matrices
obtained for the different distances are shown in Table 3.9. We can see that
the dp distance with higher value of p gives us the best results, confirming
the considerations that we have made while looking at the results shown
in Table 3.7. .





Conclusions

In the first part of this work, we showed some inferential procedures to
test difference between means of functional data. The inference is based
on a suitable generalization dp of the Mahalanobis distance to the Hilbert
space L2. We showed through simulations that the behaviour of dp distance
between a sample mean and a mean function m(t) ∈ L2(I) mostly depends
on a tuning parameter p, which must be chosen depending on the type of
analysis we want to perform.

In the second and main part of our work, we proposed a statistical
framework for the analysis and classification of functional data. To analyse
morphological information, we carried out several simulations using a
functional k-means procedure, both in the univariate and multivariate
framework, observing the same behaviour as in the testing procedures. We
performed some comparisons of our clustering procedure considering two
more distances and we can conclude that, depending on the value of the
tuning parameter p, the results are not always the same. If the clusters
have very different means, with a different macro-structure, it is convenient
to choose a low value for the parameter p, since in this case the dp distance
is much similar to the L2-distance. On the contrary, when the means differ
only for the micro-structure’s features, the dp distance setting a high value
of the parameter p gives the best results. In general, the parameter p must
be chosen according to the type of analysis we want to make.

At last, we applied our clustering procedure to a real case study on
ECGs. We first performed a measure of the goodness of the clustering
results and in all cases considered the optimal number of clusters is set equal
to 3. The confusion matrices resulting from our classification framework
showed effective results, especially when we use the dp distance and set
a high value of p; then, we can conclude that it is worth to study the
micro-structures of ECG curves, looking at all the components of the

73
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functional data. Thus, we proposed a classification procedure which uses
group centroids as reference signals; performing a cross-validation analysis
to evaluate the misclassification cost, the procedure using the dp distance
with high value of p gave us again the best results.

Even though we obtained very good results using a multivariate func-
tional k-means, it could be worth to implement other clustering techniques
using the dp distance. A more general way could be for instance to use an
EM algorithm for Gaussian Mixtures. Alternatively, it could be good to
try a different approach, using another clustering procedure as for example
the hierarchical clustering. Besides, our clustering procedure could be
adapted and applied to different types of functional data, as for example
the trajectories of càdlàg processes, on which the procedures based on the
classical L2 distance do not work.



Appendix A

Code

Listing A.1: Code to perform test simulations based on the dp distance.
1 i t e r <− 10^3
2 p <− 1000
3 Time <− 500
4 t <− seq ( 0 , 1 , l e n g t h=Time )
5 m0 <− t ∗(1− t )
6
7 i n t e g r a l e <− f u n c t i o n ( a s c i s s a , i n t e g r ) {
8 r e t u r n (sum ( ( i n t e g r [−1]+ i n t e g r [− l e n g t h ( i n t e g r ) ] ) ∗ d i f f ( a s c i s s a ) / 2) )
9 }

10
11 K <− 100
12 m1<−NULL
13 h <− rep ( 0 ,K)
14
15 f o r ( k i n 1 : 1 0 ) {
16 i f ( k%%2==0)
17 t h e t a <− s q r t ( 2 ) ∗ s i n ( k∗ p i ∗ t )
18 e l s e i f ( k%%2 !=0 && k !=1)
19 t h e t a <− s q r t ( 2 ) ∗ cos ( ( k−1)∗ p i ∗ t )
20 e l s e
21 t h e t a <− rep ( 1 , Time )
22 m1 <− rbind (m1, m0+0.03∗ t h e t a )
23 }
24
25 lambda <− rep ( 0 ,K)
26 t h e t a <− matrix ( 0 ,K, Time )
27 f o r ( k i n 1 :K) {
28 lambda [ k ] <− 1/ ( k+1) ^4
29 h [ k ]<− 1−exp(−lambda [ k ] ∗p )
30 i f ( k%%2==0)
31 t h e t a [ k , ] <− s q r t ( 2 ) ∗ s i n ( k∗ p i ∗ t )
32 e l s e i f ( k%%2 !=0 && k !=1)
33 t h e t a [ k , ] <− s q r t ( 2 ) ∗ cos ( ( k−1)∗ p i ∗ t )
34 e l s e
35 t h e t a [ k , ] <− rep ( 1 , Time )
36 }
37 chsq <− rep ( 0 ,K)
38 f o r ( i i n 1 :K) {
39 chsq [ i ] <− r c h i s q (K, 1 )%∗%h
40 }
41 q . x i_sq <− q u a n t i l e ( chsq , 0 . 9 5 )
42 q . x i_sq
43
44 power <− rep ( 0 , 1 0 )
45 cont <− rep ( 0 , 1 0 )
46 f o r ( l i n 1 : 1 0 ) {
47 d_p2 <− rep ( 0 , i t e r )
48 f o r ( j i n 1 : i t e r ) {
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49 u <− matrix ( 0 , n , Time )
50 f o r ( i i n 1 : n ) {
51 s <− rep ( 0 , Time )
52 f o r ( k i n 1 :K) {
53 s <− s + s q r t ( lambda [ k ] ) ∗ ( rnorm ( 1 ) ∗ t h e t a [ k , ] )
54 }
55 u [ i , ] <−s
56 }
57 x<−matrix ( 0 , n , Time )
58 f o r ( i i n 1 : n ) {
59 x [ i , ] <− u [ i , ] + m1 [ l , ]
60 }
61 x . mean <− colMeans ( x )
62 d_M <− rep ( 0 ,K)
63
64 f o r ( k i n 1 :K) {
65 d_M[ k ] = i n t e g r a l e ( t , ( x . mean − m0) ∗ t h e t a [ k , ] ) ^2 /lambda [ k ] ∗h [ k ]
66 }
67 d_p2 [ j ] <− sum( d_M)
68
69 i f ( n∗d_p2 [ j ]>q . x i_sq )
70 cont [ l ] = cont [ l ] + 1
71 }
72 }
73 power <− cont / 1000
74
75 # c a s e ( a )−(b )−(c )−(d )
76
77 m0 <− t ∗(1− t )
78 m1a <− m0 #c a s e ( a )
79 m1b <− m0 + s q r t ( lambda [ 1 ] ) ∗ t h e t a [ 1 , ] #c a s e ( b )
80 m1c <− m0 + s q r t ( lambda [ 5 ] ) ∗ t h e t a [ 5 , ] #c a s e ( c )
81
82 s <− 0
83 f o r ( k i n 1 0 :K) {
84 s <− s + s q r t ( lambda [ k ] ) ∗ t h e t a [ k , ]
85 }
86 m1d <− m0 + s #c a s e ( d )
87 cont <− rep ( 0 , 1 1 )
88 q . x i_sq <− rep ( 0 , 1 1 )
89 power <− rep ( 0 , 1 0 )
90 f o r ( l i n −2:8) {
91 p <− 10^ l
92 chsq <− rep ( 0 ,K)
93 chsqq <− rep ( 0 , 1 0 0 )
94 f o r ( i i n 1 :K) {
95 f o r ( k i n 1 :K) {
96 h [ k ] <− 1−exp(−lambda [ k ] ∗p )
97 chsq [ k ] <− r c h i s q ( 1 , 1 ) ∗h [ k ]
98 }
99 chsqq [ i ] <− sum( chsq )

100 }
101 q . x i_sq [ l +3] <− q u a n t i l e ( chsqq , 0 . 9 5 )
102 q . x i_sq [ l +3]
103
104 d_p2 <− rep ( 0 , i t e r )
105 f o r ( j i n 1 : i t e r ) {
106 u <− matrix ( 0 , n , Time )
107 f o r ( i i n 1 : n ) {
108 s <− rep ( 0 , 5 0 0 )
109 f o r ( k i n 1 :K) {
110 s <− s + s q r t ( lambda [ k ] ) ∗ ( rnorm ( 1 ) ∗ t h e t a [ k , ] )
111 }
112 u [ i , ] <− s
113 }
114
115 x<−matrix ( 0 , n , Time )
116 f o r ( i i n 1 : n ) {
117 x [ i , ] <− u [ i , ] + m1a #(m1b f o r c a s e ( b ) , m1c f o r c a s e ( c ) , m1d f o r c a s e ( d ) )
118 }
119 x . mean <− colMeans ( x )
120
121 d_M <− rep ( 0 ,K)
122 d_Mh <− rep ( 0 ,K)
123 f o r ( k i n 1 :K) {
124 d_M[ k ] = i n t e g r a l e ( t , ( x . mean − m0) ∗ t h e t a [ k , ] ) ^2 /lambda [ k ]
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125 d_Mh[ k ] <− d_M[ k ] ∗h [ k ]
126 }
127 d_p2 [ j ] <− sum( d_Mh)
128
129 i f ( n∗d_p2 [ j ]>q . x i_sq [ l +3])
130 cont [ l +3] = cont [ l +3] + 1
131 }
132 }
133 power <− cont / i t e r

Listing A.2: Code to perform functional k-means simulations with the dp
distance.

1 n1 <− 50
2 n2 <− 50
3 Time <− 1000
4 t <− seq ( 0 , 1 , l e n g t h=Time )
5 K <− 100
6 m1 <− NULL
7 h <− rep ( 0 ,K)
8
9 i n t e g r a l e <− f u n c t i o n ( a s c i s s a , i n t e g r ) {

10 r e t u r n (sum ( ( i n t e g r [−1]+ i n t e g r [− l e n g t h ( i n t e g r ) ] ) ∗ d i f f ( a s c i s s a ) / 2) )
11 }
12
13 lambda <− rep ( 0 ,K)
14 t h e t a <− matrix ( 0 ,K, Time )
15 f o r ( k i n 1 :K) {
16 lambda [ k ] <− 1/ ( k+1) ^2
17 i f ( k%%2==0)
18 t h e t a [ k , ] <− s q r t ( 2 ) ∗ s i n ( k∗ p i ∗ t )
19 e l s e i f ( k%%2 !=0 && k !=1)
20 t h e t a [ k , ] <− s q r t ( 2 ) ∗ cos ( ( k−1)∗ p i ∗ t )
21 e l s e
22 t h e t a [ k , ] <− rep ( 1 , Time )
23 }
24 lambda [ 1 ] <− 1/2
25 lambda [ 2 ] <− 1/3
26 lambda [ 3 ] <− 1/4
27
28 m0 <− rbind ( t ∗(1− t ) ,4 ∗ t ^2 ∗(1− t ) )
29 s <− 0
30 f o r ( k i n 1 0 :K) {
31 s <− s + s q r t ( lambda [ k ] ) ∗ t h e t a [ k , ]
32 }
33 m1 <− matrix ( 0 , 2 , Time )
34 m1 [ 1 , ] <− m0 [ 1 , ] + s
35 m1 [ 2 , ] <− m0 [ 2 , ] + 4∗ s
36
37 s e t . seed ( 5 4 5 4 )
38 u11 <− matrix ( 0 , n1 , Time )
39 u12 <− matrix ( 0 , n1 , Time )
40 u21 <− matrix ( 0 , n2 , Time )
41 u22 <− matrix ( 0 , n2 , Time )
42
43 f o r ( i i n 1 : n1 ) {
44 s11 <− rep ( 0 , Time )
45 s12 <− rep ( 0 , Time )
46 z1 <− mvrnorm (K, c ( 0 , 0 ) , matrix ( c ( 1 , 0 . 4 , 0 . 4 , 1 ) , nrow=2, n c o l =2) )
47 f o r ( k i n 1 :K) {
48 s11 <− s11 + s q r t ( lambda [ k ] ) ∗ ( z1 [ k , 1 ] ∗ t h e t a [ k , ] )
49 s12 <− s12 + s q r t ( lambda [ k ] ) ∗ ( z1 [ k , 2 ] ∗ t h e t a [ k , ] )
50 }
51 u11 [ i , ] <− s11
52 u12 [ i , ] <− s12
53 }
54
55 f o r ( i i n 1 : n2 ) {
56 s21 <− rep ( 0 , Time )
57 s22 <− rep ( 0 , Time )
58 z2 <− mvrnorm (K, c ( 0 , 0 ) , matrix ( c ( 1 , 0 . 4 , 0 . 4 , 1 ) , nrow=2, n c o l =2) )
59 f o r ( k i n 1 :K) {
60 s21 <− s21 + s q r t ( lambda [ k ] ) ∗ ( z2 [ k , 1 ] ∗ t h e t a [ k , ] )
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61 s22 <− s22 + s q r t ( lambda [ k ] ) ∗ ( z2 [ k , 2 ] ∗ t h e t a [ k , ] )
62 }
63 u21 [ i , ] <− s21
64 u22 [ i , ] <− s22
65 }
66
67 x11 <− matrix ( 0 , n1 , Time )
68 x12 <− matrix ( 0 , n1 , Time )
69 x21 <− matrix ( 0 , n2 , Time )
70 x22 <− matrix ( 0 , n2 , Time )
71 f o r ( i i n 1 : n1 ) {
72 x11 [ i , ] <− u11 [ i , ] + m0 [ 1 , ]
73 x12 [ i , ] <− u12 [ i , ] + m0 [ 2 , ]
74 }
75 f o r ( i i n 1 : n2 ) {
76 x21 [ i , ] <− u21 [ i , ] + m1 [ 1 , ]
77 x22 [ i , ] <− u22 [ i , ] + m1 [ 2 , ]
78 }
79
80 x11 . mean <− colMeans ( x11 )
81 x12 . mean <− colMeans ( x12 )
82 x21 . mean <− colMeans ( x21 )
83 x22 . mean <− colMeans ( x22 )
84
85 par ( mfrow=c ( 1 , 1 ) )
86 x1 <− rbind ( x11 , x12 )
87 x2 <− rbind ( x21 , x22 )
88
89 pca1 <− prcomp ( x1 )
90 pca2 <− prcomp ( x2 )
91 lambda_capp1 <− pca1 $ sdev
92 t h e t a_capp1 <− pca1 $ r o t a t i o n
93 lambda_capp2 <− pca2 $ sdev
94 t h e t a_capp2 <− pca2 $ r o t a t i o n
95
96 #K−MEANS d_p DISTANCE #
97 prop_p <− rep ( 0 , 1 1 )
98 h1 <− NULL
99 h2 <− NULL

100 f o r ( b i n −2:8) {
101 p <− 10^( b )
102 f o r ( k i n 1 :K)
103 h1 [ k ]<− lambda_capp1 [ k ] / (1 /p+lambda_capp1 [ k ] )
104 f o r ( k i n 1 :K)
105 h2 [ k ]<− lambda_capp2 [ k ] / (1 /p+lambda_capp2 [ k ] )
106 k <− 2
107 n <− dim ( x1 ) [ [ 1 ] ]
108 p <− sample ( n , k )
109 C1 <− x1 [ p , ]
110 C2 <− x2 [ p , ]
111 i t e r . max <− 9
112 c l u s t e r <− numeric ( n )
113 d_M1 <− rep ( 0 ,K)
114 d_M2 <− rep ( 0 ,K)
115 d_p1 <− rep ( 0 , n )
116 d_p2 <− rep ( 0 , n )
117
118 par ( mfrow = c ( 3 , 3 ) )
119
120 f o r ( i i n 1 : i t e r . max)
121 {
122 f o r ( l i n 1 : n ) {
123 f o r ( j i n 1 :K) {
124 d_M1[ j ] = ( i n t e g r a l e ( t , ( ( x1 [ l , ] − C1 [ 1 , ] ) ∗ t h e t a_capp1 [ , j ] ) ) ) ^2 /lambda_

capp1 [ j ] ∗ h1 [ j ] + ( i n t e g r a l e ( t , ( ( x2 [ l , ] − C2 [ 1 , ] ) ∗ t h e t a_capp2 [ , j ] ) ) )
^2 /lambda_capp2 [ j ] ∗ h2 [ j ]

125 d_M2[ j ] = ( i n t e g r a l e ( t , ( ( x1 [ l , ] − C1 [ 2 , ] ) ∗ t h e t a_capp1 [ , j ] ) ) ) ^2 /lambda_
capp1 [ j ] ∗ h1 [ j ] + ( i n t e g r a l e ( t , ( ( x2 [ l , ] − C2 [ 2 , ] ) ∗ t h e t a_capp2 [ , j ] ) ) )
^2 /lambda_capp2 [ j ] ∗ h2 [ j ]

126 }
127 d_p1 [ l ] <− s q r t (sum( d_M1) )
128 d_p2 [ l ] <− s q r t (sum( d_M2) )
129 }
130
131 f o r ( j i n 1 : n )
132 c l u s t e r [ j ] <− which . min ( c ( d_p1 [ j ] , d_p2 [ j ] ) )
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133
134 C1 <− NULL
135 C2 <− NULL
136 f o r ( l i n 1 : k ) {
137 C1 <− rbind (C1 , colMeans ( x1 [ c l u s t e r == l , ] ) )
138 C2 <− rbind (C2 , colMeans ( x2 [ c l u s t e r == l , ] ) )
139 }
140 }
141 p r i n t ( c l u s t e r )
142 }
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