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Abstract in English

Recently, OpenCL standard reached much wider audiences due to the

increasing number of devices supporting it. At the same time, we have

observed increase of differences among devices that support OpenCL. This

situation offers to developers, who want to get high performance, a large

spectrum of platforms. Given the additional OpenCL platform param-

eters along side application specific parameters, design space for explo-

ration is seriously large. Furthermore, availability of more than one kind

of device allows distribution of computation on the heterogeneous plat-

form. Automatic design space exploration frameworks are one of the re-

cent approaches to address these problems and to reduce the burden of

programmers. In this Thesis, we propose more automatic and efficient

techniques to prune the design space before moving on to the exploration

phase. In addition, the Thesis proposes new methods for allocating the

computational tasks on the available resources. To assess the proposed

methodology, experiments have been carried out for two application case

studies mapped on two heterogeneous computing platforms. Experimen-

tal results report that the proposed pruning technique reduces the huge

exploration space to a feasible size while achieving 57% speed up utilizing

heterogeneity of the the platform for the two selected use cases.
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Abstract in Italian

Recentemente, lo standard OpenCL ha raggiunto una sempre più ampia

diffusione grazie all’incremento del numero di dispositivi che lo support-

ano. Allo stesso tempo, abbiamo osservato un incremento delle differenze

tra i dispositivi che supportano OpenCL. Questa situazione offre agli

sviluppatori, che desiderano ottenere alte prestazioni, un ampio spettro di

piattaforme. Dati i parametri addizionali relativi alla piattaforma offerti

da OpenCL e i parametri specifici applicativi, la dimensione dello spazio

di progettazione è enorme. Inoltre, la disponibilità di più di un tipo di

dispositivo consente la distribuzione della computazione su piattaforma

eterogenea. Framework automatici per l’esplorazione dello spazio di pro-

getto rappresentano uno dei recenti approcci per affrontare questi prob-

lemi e per ridurre l’onere dei programmatori. In questa tesi, proponiamo

tecniche automatiche ed efficienti per ridurre lo spazio di progettazione

prima di passare alla fase di esplorazione. Inoltre, questa Tesi propone

nuovi metodi di allocazione dei task computazionali sulle risorse disponi-

bili. Per valutare la metodologia proposta, sono stati effettuati degli esper-

imenti realtivi a due applicazioni usate come casi di studio mappati su due

piattaforme eterogenee. I risultati sperimentali mostrano che le tecniche

proposte riducono l’enorme dimensione dello spazio progettuale ad una

dimensione fattibile raggiungendo una velocizzazione del 57% sfruttando

l’eterogeneità della la piattaforma per i due casi di studio selezionati.
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Chapter 1

Introduction

The development of languages and tools have always been the keystone

for adoption of the new technologies and approaches in the field of soft-

ware development. With the presence of tools that are easy to use, well

established methods are developed and as a result of this, more and more

developers are attracted to the new ways of computing. One of the biggest

innovative approach to the computing has occurred by multicore CPU be-

coming widespread even in the consumer devices. Few years prevalent mul-

ticore processors, fixed-function video adapters grew into programmable

graphical processing units (GPUs).

These hardware developments helped processors to hit the power wall

in silicon technology, which forced hardware vendors to abondon the ten-

dency to increase in clock speeds and pursue innovative techniques such as

placing multiple cores in the same package. While this technically allowed

to multiply the processing power, it is necessary for developers to exploit

the potential of parallelism lies in the processor.



In the first years of multicore era, the lack of tools was the big prob-

lem since explicit parallel programming was both new and hard to get it

correct. Nevertheless, tools like OpenMP and Intel Threading Building

Blocks (TBB) have come into play and adoption of handling the under-

lying power of multicore CPUs started to become a norm. With the

understanding of computation power of future lies within parallelism of

software, multiple frameworks now classified as MapReduce programming

model emerged to handle this power in a more systematic way, especially

at server side enterprise development.

While these advancements were on the CPU frontier, more and more

demanding graphical applications like video games, real-time training sim-

ulations and CAD were pushing the edges of graphical power of GPUs.

These applications usually developed using standards that industry-leader

vendors agreed upon like OpenGL. While graphical applications dominate

the domain of GPU computing, a paradigm was approaching. Due to ris-

ing computing power of GPUs’ vertex and fragment shader processors

(later unified) they managed to get attraction from performance demand-

ing computational science and medical imaging workloads.

OpenGL is a framework for graphical applications. However devel-

oper in those fields managed to exploit the functionality provided by the

framework in order to run their programs parallel on GPUs. These trend

gave birth to what is known as General Purpose GPU computing (or

GPGPU), meaning that using GPUs for workloads other than graphical

purpose. Even though this paradigm seems emerged out of nowhere, the

motivation behind it is pretty clearly the longing for more computational

power. However as advanced as computing machines become, the need

for completing tasks in a shorter span of time shall never cease.
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Given this new way of utilizing computational power discovered, it is

not surprising that hardware vendors started to come up with new tools

and frameworks which lets developers to take advantage of underlying

parallel architecture GPUs. CUDA and OpenCL are among those frame-

works. While CUDA took the path of being proprietary and is only sup-

ported on NVIDIA GPUs officially, OpenCL has taken open-standard ap-

proach under Khronos Group which made possible any vendor to provide

OpenCL implementation of their own. The earliest adoption of OpenCL

standard outside of GPUs came from CPUs since accelerating programs

using parallelism on CPUs has been widespread practice.

What OpenCL brought to the table is extremely important since through-

out many experiments have shown that not all type of computational loads

are suitable for all computing hardware. In order to address this issue,

many manufacturers like AMD and Intel have introduced new generation

of CPU dies that include what is called integrated graphical processors

(iGPU although AMD specifically called the whole package APU). Hav-

ing this kind of hardware available opened new opportunities to offload

some of the workload of application which are especially computational

heavy parts.

1.1 Motivation

Given the availability of hardware and computer systems which are con-

sistent of CPUs and GPUs become prevalent every segment of the indus-

try not only from mobile computing devices to high-end desktops where

commercial multimedia applications dominate but also enterprise server-
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side computing to high performance computing (HPC). Leading to an

era of heterogeneous computing, along with new burden on developers

how to manually tune their programs and challenges of new programming

paradigms. In order to deal with these rough nature of heterogeneous pro-

gramming, various tools and techniques both compile-time and run-time

have been being developed by compiler engineers. It is crucial to lower

the barrier of development on this kind of platforms where heterogeneity

persists. Because silicon industry is facing problems like power wall and

dark silicon, the performance increase of each generation of CPUs due to

clock speeds is diminishing. Thus, having multiple computing units with

different degree of parallelism is a critically important aspect of today’s

computing systems.

Although embedded computing and mobile hand-hold devices are not

as powerful as conventional computers, they include heterogeneous com-

puting units likewise. Furthermore, their widespread availability due to

popularity among consumers and low power consumption makes them at-

tractive options for even computational heavy operations.

With all these diverse possibilities of hardware and importance of stay-

ing relevant in terms of application performance is vital for the industry.

This creates important problems to cope with like how to utilize hard-

ware and preserve possible performance benefits while migrating to an-

other hardware. Especially, in the case of frameworks like OpenCL which

supports different types of hardware (i.e. CPU, GPU), number of exposed

parameters and diversity of optimal parameters on various architectures

can easily be overwhelming for developers. Usually, developers hand-tune

the application for the most prominent target architecture and baked the

parameters inside the application, however this may create undesired sub-
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optimal solutions for potential future target hardware.

1.2 Proposed Approach

To address these problems, autotuning frameworks are recently been de-

veloped. There are two major kinds of application tuning:

• Static tuning, where autotuning is done at the design phase of the

application.

• Dynamic tuning, done at run-time while application is running.

Dynamic tuning may have additional information compared to stat-

ically autotuned application, however dynamic autotuning implies there

will be some run-time overhead and benefits of tuning must surpass in

order to be meaningful tuning. In this work we will focus on statically

autotuning.

In the work of [9] an external development tool-chain which statically

searches optimal parameters for OpenCL applications to help developers.

To be able to search meaningfully, there is phase before design space explo-

ration where design space is pruned based on rules from OpenCL standard

and application domain specific principles if they are provided. In its cur-

rent condition, all of those parameters are expected to be explicitly stated

by application developer using MiniZinc constraint modeling language.

The objective of this Thesis is to extend the functionalities of pruning

phase of this tool[9] and also improve its usability by automatizing some

parts of the tool. The first improvement to the existing DSE flow is

automatic gathering of OpenCL parameters as much as possible so the

7



developer needs to deal with minimum about of input to the DSE tool.

Therefore with the removal of parameter acquisition burden, not only

possibility of human error reduces but also the time to learn and use the

exploration flow is significantly shortened.

Second, a kernel splitting method will be introduced to exploit com-

putational resource on the occasion of heterogeneous platforms existence.

Currently, the workflow can handle heterogeneity given that there are

independent tasks that can be mapped to different hardware platforms.

With this technique, it will be possible to map portions of the data to

be processed on to available hardware resource and then, the results will

be merged. Thus, the need for multiple independent tasks in order to

leverage the power of heterogeneous architectures will not be necessary.

Furthermore, types of algorithms that are suitable for this kind of splitting

operation will be discussed.

1.3 Organization of the Thesis

The remainder of the Thesis is organized as follows:

• Chapter 2 introduces background information on OpenCL useful

to better understand the methodology described in the following

chapters along with case studies and target platforms which the

techniques are applied.

• Chapter 3 describes in detail the methodology and the development

approach proposed in this Thesis.

• Chapter 4 presents the experimental results in this Thesis with the
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discussions as well as how the experiments have been carried out.

• Chapter 5 summarizes some concluding remarks on how the future

works can continue to improve upon this work.

9
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Chapter 2

Background

Some theoretical and technical topics in connection with the argument of

this Thesis dissertation will be investigated in order to increase the under-

standing of the work and the methodology. In Section 2.1, the technical

tools like OpenCL standard and constraint programming language MiniZ-

inc will be discussed. Following that, in Section 2.2, what kind of com-

puting architectures are relevant to the work that has been done and their

impactful properties will be examined. Later, state of art technologies and

some previous research works regarding the topic of this dissertation will

be reviewed in Section 2.3.



2.1 External Tools and Frameworks

2.1.1 OpenCL Programming Model

Open Computing Language (OpenCL) which is maintained by Khronos

consortium [5] is an open standard for developing parallel applications on

heterogeneous systems by abstracting the underlying compute machine.

Being a parallel framework, applications developed using OpenCL can take

advantage of power of the underlying hardware. Whether the architecture

of machine is GPU or CPU is not relevant as long as the manufacturer

of the computing processor provides the necessary run-time environment

and driver support. Since all conformant products can be targeted using

the standard, platform portability of applications between different hard-

ware products even if the products belong to different architectures and

vendors. Therefore switching between different types of accelerator plat-

forms like from multicore CPUs to GPGPUs becomes less of a problem for

application developers. This results in reducing the design cost of appli-

cations with compared to platform-specific solutions in case of porting the

application to another platform. Furthermore, by allowing accelerators

to be programmable using methods already established and well-known

by the software industry, OpenCL not only lowers the entry barrier for

inexperience individuals but also grants re-usability to the platforms on

wide range of fields, from multimedia to scientific computing and medical

imaging.

Even though OpenCL has been inspired heavily by CUDA, it didn’t

constraint itself to a specific vendor or product group rather come up with

an abstraction across different architectures. It adopted a computation of-
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floading programming paradigm such that while application running reg-

ularly on a conventional CPU, the computationally intensive parts of the

application are offloaded to the available accelerators. In this paradigm of

computing, CPU that is running the application code is called host and

accelerators are called OpenCL devices. Host is responsible for managing

execution of OpenCL devices by taking care of data transfers between

host and device, especially in the case of host and device not sharing the

memory address space.

This separation of host and device requires two different abstractions:

• An OpenCL host API where the management of device resources

such as buffers and kernel launching is abstracted.

• An OpenCL language derived from C that defines the parallel com-

putation that will take place inside computation intensive kernels.

In addition to these abstractions, there are extensions that can enable

to utilize certain characteristics of certain groups of hardware. These ex-

tensions often can be vendor-specific and deviate from portability which

OpenCL brings to the table. Hence, they will mainly be ignored through-

out this Thesis in order to maintain generalization of hardware platforms.

Using OpenCL, it is possible to develop applications that exploit either

data parallelism or task parallelism. In order to obtain task parallelism

using OpenCL, host API provides clEnqueueTask function. Using clEn-

queueTask, it is possible to launch single works that will be scheduled by

the OpenCL run-time environment. On the other hand, to achieve data

parallelism the developer has to use clEnqueueNDRange from the host

API of OpenCL standard.
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OpenCL adopts data parallelism approach by describing the parallel

computations as a group of work-items, called work-groups. This hierar-

chical parallelism has been realized by launching kernel functions with a

number of work-groups including a set of work-items. Kernel function de-

scribes how each work-item defines the operations that is to be carried out

on a single data. Therefore the collection of work-items under all work-

groups together expresses the data parallelism for an application. Due

to the nature of many algorithms (i.e. image processing) that adopted

parallelism, OpenCL provides a way to define multiple dimensions on how

the work-items and work-groups can form. This multi dimensional com-

position results in the iteration space with two nested grids: a global grid

where work-groups are arranged and a local grid which describes how the

work-items are structured.

Figure 2.1: Global and Local Grid

The Figure 2.1 illustrates how the iteration space of an two dimensional

work-items and work-groups is organized and in the context of OpenCL
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standard this space is called NDRange.

OpenCL Memory Model

In contrast to the modern CPUs, OpenCL uses hierarchical memory model

where the control of the intermediate levels of the memory is in the hands

of the application programmer. At each level of the hierarchy, different

types of memory with potentially different characteristic reside. In order

to leverage the benefits, application programmer has to explicitly specify

the usage. Although this gives important control over the memory hier-

archy leading to likely better utilization of memory, it is not as straight-

forward as conventional CPUs where the control mechanisms of memory

(cache) hierarchy is hidden and controlled by dedicated hardware solutions

like cache memory subsystem and memory management unit (MMU).

In OpenCL, the host program has conventional RAM for the applica-

tion logic running on the host side, while each OpenCL device has its own

global memory address space. The location and the type of the global

memory is abstracted away by OpenCL hence if OpenCL device and host

side have shared memory configuration. But that is not the necessarily

the case for all hardware configurations, for instance, systems with discrete

GPUs have their own memory, sometimes called VRAM (Video RAM),

which is located closer to the graphical processor and accessible through

connection bus between host device and the GPU (e.g. PCIe bus).

When we go down in the memory hierarchy, there is local memory

address space which supposedly maps to memory implementation located

inside the same die, thus may have much higher bandwidth compared

to global memory. Local memory is a special programmable cache that
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provides a standard way for work-items within the same work-group to

communicate. Although it allows work-items to write and read, local

memories are allocated per work-group. Therefore, data exchange between

different work-groups are not possible. Moreover, since amount of the

local memory is limited and device dependent, it can limit the practically

possible size of a work-group. This phenomena and why it is crucial will

be discussed in Chapter 3.

Figure 2.2: OpenCL Memory Model

Like shown in the Figure 2.2, there is one more type of memory which

is called private memory. As the name suggests, private memory is exclu-

sive to the individual work-items, consequently other work-items cannot

access this address space. Inside the kernel function all the variables not

declared with an address space will automatically defined in private mem-

ory address space [6].

Apart from these address spaces, there is constant memory address

space which is allocated inside global memory as a special region and val-
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ues inside constant memory are read-only from the perspective of program

running on the OpenCL device. Hence, even though being located inside

global memory, some architectures may take advantage of the read-only

property of this address space [3].

Figure 2.3: OpenCL Kernel Launching

As mentioned before, while OpenCL device runs the kernel code spec-

ified as iteration space NDRange, host side manages device and kernel

related resource like buffers, context. Most importantly, host side initi-

ates data transfer between host and device for buffers and launches the

kernel using what is called command queue. By adopting this approach,

OpenCL allows host to control device execution asynchronously. Thus, in

the mean time of device execution, host side is free to continue its routine

activities. Because of this ability of running programs on more than one

type of architecture simultaneously, OpenCL applications are considered

heterogeneous (Figure 2.3). Additionally, a hardware platform may con-
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tain more than one type of processor or accelerator with OpenCL run-time

support. In this case, it is possible to make use of the computation power

of the available OpenCL devices together to divide workload among them-

selves. Unless, it is necessary, this kind of approach often avoided due to

complexity it brings to the application development.

2.1.2 MiniZinc

MiniZinc is a medium-level constraint modeling language. It is high-level

enough to express most constraint problems easily [8]. It supports wide

range of constraint solvers.

Constraint programming is a form of declarative programming where

relationships between variables established with model described by the

arrangement of a set of constraints which specifies the properties of the

target solution. Contrary to imperative programming, constraints does

not define sequences of execution steps, but rather the set of constraints

is solved by giving value to each variable.MiniZinc, being a constraint

programming language, allows to define parameters, decision variables

and constraints in its own simple way.

Parameters and decision variables, similar to imperative languages, de-

scribe model variables , however the values of the parameters are single

values, therefore there can only be one assignment per parameter and they

determine fixed parameters for the whole solution. Differently than pa-

rameters, decision variables are associated with a set of possible that the

variable can take. This set of possibilities are called variable’s domain.

Decision variables take value only when MiniZinc model is executed such

that solving the system determines whether the variable can be assigned a
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value which is within the constraints, if so the decision variable takes that

value. The next component of the MiniZinc model are the constraints.

These statements that specify boolean expressions that the decision vari-

ables must satisfy within their domain to be a valid solution to the model.

There is more to the MiniZinc language and constraint programming,

however it is not a topic of this Thesis rather it is a tool that has been

taken advantage of.

2.2 Target Architectures

2.2.1 CPU Architectures

Central Processing Units (CPU) are general purpose processors and most

of the time they are required to run operating system which handles pre-

emptive scheduling of many processes. In order to handle the workloads

of multiple processes executing, CPUs evolved into multicore machines

where each core is big and complex with additional support for context

switching and special memory management techniques to improve inter-

process security like virtual memory address space mapping. While CPUs

grew rich with features, they also kept the priority over the single-threaded

performance. However, software development does not embrace the multi-

threaded application development immediately, therefore single-threaded

performance per process are still relevant today. In order to achieve per-

formance goals of the applications which mainly have sequential flow of

execution, the individual cores get more and more complex with each

iteration of generation especially on the commercial and high-end perfor-
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mance line of products by adopting advanced techniques like superscalar

with execution units that are 4 or 8 issues wide, out of order execution

and branch prediction. Additionally, almost all current generation CPU

architectures provide a set of extensions to their ISA classified as SIMD

instructions to exploit data level parallelism.

Figure 2.4: SIMD Instruction Execution

ISA extensions are quite abundant either in x86 or ARM architec-

tures. For x86, there are SSE (Streaming SIMD Extensions) and AVX

(Advanced Vector Extensions) extensions, while for ARM, there is NEON

instructions. Their main benefit is the increase the throughput by ex-

ecuting the same operation on multiple data in one clock cycle instead

of issuing individual instruction per each data. This type of processing

sometimes called vector processing. The number of data that is packed

together depends on the width of the SIMD operations and the size of a

single data. For instance, x86 SSE ISA extension is 256 bit wide hence, if

the data is composed of 32 bit single precision IEEE floating point, each

instruction can operate on 4 data points simultaneously (Figure 2.4). One

down side is that, programmer has to explicitly use these instruction to

fully benefit from them even though the compiler technologies provide a

way to vectorize the code to utilize SIMD, it is usually limited by the
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structure of application code. These SIMD instructions became popular

mainly due to heavy computational requirements of multimedia workloads

due to the fact that multimedia algorithms can be inherently data parallel

and set of data to be processed very often is large.

Another very important aspect of computing architecture is cache

memory subsystem since CPUs are a lot more faster compared to the

main memory. In CPUs even the cache memory is hierarchical within it-

self and each level is usually referred with a number signifying how distant

it is to the processor. For example, L1 cache represents the cache that is

closest therefore the fastest cache in the memory subsystem. The main

reason why cache exists is that there is an important trade of between

access latency of a memory cell and total capacity of the memory. Cache

system in CPUs are transparent meaning that software running on a core

has no information what so ever about the cache system or how it is han-

dling the memory request of the processor. This transparency results in

processor to implement caching algorithm and mechanisms as hardware

solution which consumes large areas on the processor die.

To summarize, CPUs typically contain a number of large and power

processor cores that includes highly sophisticated memory systems. All

these features requires processor die area, moreover these advance fea-

tures requires additional power which is an important restriction for pro-

cessors. Thus, CPU architectures trade power consumption and area for

high single-threaded performance. Even thought, the emphasis on indi-

vidual core is huge, modern CPUs includes reasonable amount of cores.

For instance, 4th generation (codename Haswell) Intel CPUs come with

core amount ranging from 4 to 18[7].
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2.2.2 GPU Architectures

In contrast to CPU architectures, modern GPUs take largely the opposite

approach where they accommodate large number of small and less capa-

ble cores. These cores issue instructions in order and have very simple

branch prediction logic. Therefore, GPUs dedicate much more die area to

arithmetic logic units compared to CPUs where there is also significant

area reserved for control logic considering same area dies as illustrated

in Figure 2.5. Furthermore, they include specialized hardware circuitry

to implement graphic application logic like rasterization operations and

texture fetching. Similar to CPU architectures, graphic processors adopts

SIMD like approaches to benefit from data parallel workload. In fact,

since graphical workloads are hugely data parallel and principals of GPU

architectures based on these workloads, whole architecture design is exist

to exploit data parallel workload characteristics. Because of these reasons,

GPU architectures considered a form of manycore architecture.

Figure 2.5: CPU vs GPU

Manycore architectures are multicore processors specifically designed

for highly parallelized workloads. In case of GPUs, they contain many
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weak cores with a high latency to memory to handle the arithmetic op-

erations. Despite the fact that CPU may also contain significant number

of cores, performance of individual cores between CPU and GPU signifi-

cantly differs. Furthermore, while in a CPU it can be convenient to use

single core, due to the configuration of core on the hardware it may not

even be possible to run single core alone.

GPUs implement the manycore architectures in a specific way on the

hardware. It groups the hardware cores into what is called compute units,

and each computing units contains resources to be used by core execut-

ing. Each core inside a computing unit requires various resource. These

resource can be number of registers, local cache and other potential plat-

form specific resources. The limited number of resources are managed by

the scheduler in order to distribute across running core. The local mem-

ory located inside each computing unit is a programmable cache that has

much faster bandwidth compared to the main memory of the GPU.

Underneath the GPU architectures’ seamless adoption of data par-

allelism there is the technique called SIMT. It is very similar to SIMD

extension employed in CPUs where a densely packed data can be pro-

cessed using the same instruction in one cycle. The difference in SIMT is

that there are a group of threads which are issued the same instructions

while having so called local resources like number of registers that are

dedicated to each thread. Terminological name for this group of threads

differs from vendor to vendor.

In Nvidia CUDA architecture this group of thread is named warp and

AMD calls it wavefront. This type of computing is very susceptible to

branches, because in the case of threads in the group take different paths
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(a) Nvidia Kepler Architecture
(b) Compute Unit

Figure 2.6

of the branch and started to execute different instructions, GPU scheduler

executes the threads that are in the same branch path together and then

moves to the other path to execute the rest of the threads. Hence, the

more there are conditional branches that the condition varies between the

threads in a the same warp/wavefront, the more instructions are needed

to be issued in multiple clock cycles. This phenomena is called thread

divergence, and could hurt the performance unless it is taken into consid-

eration.

The memory hierarchy and principals adopted by the memory con-

figurations are also different compared to CPUs. Even though there are

multiple levels of caches similar to CPU, the whole memory system is

tuned for high throughput rather than latency. As a result of this, a sin-

gle access to a memory cell of a single core requires hundreds of clock

cycles. In order to maintain the throughput and saturate the memory

bus, the scheduler tries to hide the memory transfer latency by switching
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to a different thread when threads required to access the memory.

SIMT technology plays a huge role for the high performance GPGPU.

Because single instruction fetching is sufficient to run all the threads in

a warp/wavefront, instruction fetching overhead is improved drastically.

Moreover, assuming the memory access pattern of the instructions exe-

cuting on the cores are adequate, the memory controller only issues single

memory access for the whole thread group and data that is fetched is

distributed to the threads. This is called coalesced memory access and

addresses that are accessed by the threads must be proximity to each

other in linear memory address space rather than accessing random loca-

tions. The exact number for how distant the access can be so that it is

considered coalesced access is architecture depended.

2.2.3 Heterogeneous Architectures

By dictionary, the meaning of the word heterogeneous is something com-

posed of parts or elements that have diverse characteristics and widely

dissimilar. Heterogeneous computer architectures are not differ from that

definition. In the context of computer architecture, heterogeneity means

that within the same platform, there are at least two different kinds of

processors. The differences can be how the cores of the processor execute

instructions, power and performance characteristic or can be configuration

of memory systems. The definition is broad, as long as there are two or

more architectures based on different principles at some point.

The platforms which have GPUs either discrete or iGPU, can be con-

sidered heterogeneous platforms since graphics processors and conven-

tional processors have quite different considerations for computing archi-

25



tectures as described above. The presence of diverse programmable hard-

ware on the same machine brings unique opportunities and approaches to

solve a computation problem. Along with these opportunities, it becomes

harder for the correct approach to be taken. Usually, ad-hoc solutions

that are specific to platforms employed. These solutions are usually ei-

ther inapplicable for other heterogeneous architectures or sensitive to the

differences between architectures. Throughout this dissertation, we will

focus on platforms where CPU and GPU reside together. However, most

of the technique will be applicable to other heterogeneous platforms. Oth-

erwise, it will be explicitly stated that the specific consideration may not

be applicable.

One of the major aspects of the heterogeneous architectures is how

the inter homogeneous processor communication has been implemented.

For the architectures in consideration for this Thesis, there are two major

examples. In order to benefit from heterogeneous workloads, hardware

vendors like AMD and Intel developed platforms with CPU and GPU

together as a SoC solutions. This kind of pairing and being in the same

silicon package as depicted in Figure 2.7 resulted in both processor to

share the main memory. Therefore, data sharing problem between the

processors become a less serious issue. It is clear form Figure 2.7 that

processor vendors are dedicate almost half of their die are to graphical

processing and hardware acceleration units.

In contrast to integrated GPU solution, discrete GPU platforms re-

quires separate communication bus that is generally PCI express bus to

talk to main processor. Consequently, data transfers necessary for data

that needs to be processed by GPU may pose problems depending on in-

tensity of the computation. Because of this narrow bandwidth problem,
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(a) Amd Llano die (2011)
(b) Intel Skylake die (2015)

Figure 2.7

certain algorithms which have more data to transfers than to compute on

discrete device may prove to be a futile effort to accelerate [4].

2.3 Related Works

Although OpenCL defines the execution of the application that is portable

between the devices conforming the OpenCL standard, it does not guar-

antee the performance to be optimal. Especially, moving applications to

different types of architectures like from CPU to GPU may result signifi-

cant loss of performance, this is the reason why OpenCL is not considered

performance portable.

Heterogeneous performance portability represents a challenging re-

search issue. Since there are many approaches to address the issues of

heterogeneity of hardware, choosing the right methods for the right prob-

lem proves to be a difficult problem, especially when the goal is not only

application-independent but also platform-independent. There are nu-

merous works that has been recently done, each one of them dealing with
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problems of application autotuning and problems of heterogeneous plat-

forms from certain angles. The work of this dissertation is based on some

of the work described below, and other scientific outputs are there either

due to being inspirational to the Thesis ideas or because of their relevancy.

In Glinda framework presented by [11], a specific application is ana-

lyzed and used to drive new techniques to implement load balancing and

autotuning. The application field was acoustic ray tracing from Aero-

nautics, and it may contain some imbalanced workload which depends

on application specific parameters. The author argues that this applica-

tion’s case is genuinely suitable for the heterogeneous computing, since

the imbalanced workloads fit naturally to heterogeneous platforms where

tasks can be divided according to not only architecture characteristics of

underlying hardware but also the tendencies of the separate tasks.

In the application which is evaluated by the author, not all the tasks

may contain the same workload and whole goal of the framework is to

detect this non uniform work distribution and understand where to cut

data set in order to benefit from heterogeneous platform. The method

employed is sampling the data space to detect peaks where data processing

time is much more varied due to application specific reasons. However, this

approach exposes sampling rate parameters that can effect the outcome

of the detection. Even tough, it is not explored different applications may

require different sampling rates. Hence, sampling rate of the data space

may dependent on application behavior.

Later, task layer part of the framework’s autotuning tries to balance

the workload between CPU and GPU using iterative methods rather than

analytically techniques without considering application dependent meth-
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ods. Therefore, the situation where one of the devices does not have

enough data while other is overwhelmed is avoided. In data layer of the

autotuning, the author discusses how the work-group size thus, the number

of work-groups effects the performance. The autotuner of the framework

very simply just tries values that are power of 2. This is a good estimate

since most of the hardware that supports OpenCL has compute units con-

taining multiple of 2n amount of resources such as register count and local

memory size.

In this work, we will also try to address the problems of heterogeneous

computing in Section 3.1, however, we will be looking at it from a different

perspective with marginally changed problem.

There is a work done by Alok Prakash et al. [10] which shares much

similar vision and goal with this dissertation compared to [11]. In this

work, the authors explored how to partition the data to execute OpenCL

kernel across CPU and GPU. An embedded platform called Exynos 5422

SoC has been used, moreover since the platform exposes not only a way

to measure energy consumption but also adjusting voltage and frequency

settings.

The platform is pretty unique in terms of heterogeneity and it is het-

erogeneous in two different ways, it contains two quad-core Arm processor

where one of them is A7 which is more suitable for power efficiency while

other one is A15 that is advertised as performance oriented architecture.

Along side with CPUs, there is also embedded GPU on the same package.

The reason why this configuration is interesting is the authors clas-

sify the heterogeneity of this platform in to two separate terminology.

They considered heterogeneity brought to table with two types of ARM
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cores as performance heterogeneity, while the CPU-GPU pairing is called

functional heterogeneity. If we need to compare, the previous work was

considering heavily on functional heterogeneity and rely on that to resolve

the imbalanced workloads[11].

Unlike the test case used in [11], the benchmark that authors have

chosen consists of uniform workloads rather than imbalanced workloads.

In their work, it is clear that utilization of both CPU and GPU brings

improvement over opting for one type of processor in terms of both ex-

ecution time and energy consumption. This shows the fact that, even if

the computation in question doesn’t have any asymmetric subtasks, the

additional processing power of any computing devices that is capable of

data parallel computing is a plus when utilized properly. This fact makes

heterogeneous platforms invaluable in the context of data parallel work-

loads.

A important remark about the work in [10] that is the techniques used

for partitioning the data into two sets so that two different devices can

processes these partitioned subsets. They devise an algebraic technique to

decide splitting point shown in Algorithm 1. In the pseudo-code, gw_size

is OpenCL global work size and wg_size is OpenCL work-group size.

Algorithm 1 Pseduo-code for data splitting [10]
1: splittingPoint← (gw_size ∗ split_fraction)/wg_size

2: globalWorkSizeCPU← splittingPoint ∗ wg_size

3: offsetCPU← 0

4: globalWorkSizeGPU← (gw_size/wg_size− splittingPoint) ∗ wg_size

5: offsetGPU← splittingPoint ∗ wg_size

The main concerning point about this approach is the same work-group
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size has been used for both CPU and GPU. As a result of this, global work

space will be divided into work-groups uniformly as represented in Figure

2.8. This may result in using sub optimal work-group size for one of the

devices. Because very often different devices does not prefer the same

work-group size mainly due to architectural differences. Therefore, this

will be one of the points that we will try to address and discussed in

Chapter 3.

Figure 2.8: Common work-group size, partitioning

Cummins et al. [2] discuss the same issue in their paper as mentioned

above about the work-group sizes. In the work, they presented a ma-

chine learning workflow to predict the appropriate work-group size for a

given kernel and architecture using classifiers and regression. The prob-

lem of feasible work-group sizes is addressed by using OpenCL querying

framework and setting the maximum allowed work-group size of the ar-

chitecture. The trained system is expected to return a close to optimal

The feature set is defined in terms of architectural and kernel code statis-
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tics gathered using LLVM compiler. Since both architecture and OpenCL

kernel is included for the feature set, the outcome of the prediction system

will find a suitable work-group for a given platform and application.

As a result of [2], the work-group sizes tuned by the trained machine

performed well for prediction performant sizes compared to a baseline ex-

cept with Logistic Regression there are some over-fitting to the features.

This is a good example of how autotuning assisted with machine intel-

ligence can improve performance. The whole tuning phase in the work

was statically done, therefore there is no run-time overhead besides ac-

quiring the right work-group size using trained model which is minuscule.

While the experiments are executed on wide range of platforms, the work

focused single class of applications. Thus, it is hard to say it is com-

pletely application-independent study, especially comparing to [10] where

Polybench is used as a more generic benchmark.

Another approach embraced by autotuning frameworks is using a cus-

tom Domain Specific Language (DSL) either embedded inside the original

program code or separate file that is fed into the tuning engine. OrCL[1],

uses the embedded DSL concept and is an OpenCL code generator back-

end implemented within Orio framework. It has its own syntax to specify

tunable parameters for a given computation that has loop-based imple-

mentation. Using these parameters that are defined by annotating the

source code, OrCL generates variant of the original source code as OpenCL

kernels and then assesses newly generated kernel functions. Furthermore,

framework generates the host side code skeleton in order to be able to asses

the generated kernels, again employing the information from OrCL’s an-

notations. In this way, for each OpenCL device, it is possible to have a

modified version of the original source code that is much more suitable to
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the specific hardware.

Figure 2.9: The DSE workflow for autotuning OpenCL application

While previously discussed works focuses on single OpenCL kernel as

a task, Edoardo Paone et al. [9] investigate inter-task parallelism on het-

erogeneous devices in their work. The main idea is applications that are

composed of multiple OpenCL kernels can be represented as a task graph

where each task represent an OpenCL kernel function. Moreover, the work

uses feed-forward cut-sets to create pipeline stages, then maps the different

stages to separate OpenCL devices in order to benefit from heterogeneity

of the platform.

Similar to previous approaches tuning of kernels is a crucial about get-

ting performance since sub optimal configuration can effect performance

greatly. In [9], profiling-based DSE is used after limiting the exploration

space using constraint programming (as shown Phase 1A in Figure 2.9).

Since the parameters and constraints are necessary inputs, it is expected

from programmer to come up with reasonable constraints therefore mak-

ing whole system a semiautomatic workflow. As reported by the authors,

the constraint solving helps to reduce total design space to a manageable

size. Thus, the whole tuning time has been shortened significantly .

All these previous works inspired and lead to the proposed methodol-

ogy of this Thesis. The Thesis contributions consist of partial automation
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of pruning processes described in [9] as an improvement and secondly, in-

troducing a new approach to split the computation work of a single task

to different OpenCL devices in the presence of heterogeneous platform.

Constrast to the work in [9] where multiple indivisible tasks are mapped

to different devices, in this work we will be considering spliting a single

task.
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Chapter 3

Proposed Approach

In this chapter, technical details about the methods and approaches that

are taken regarding to problems laid out in Chapter 2 will be introduced.

OpenCL applications are generally performance-oriented. At the end,

what is desired is mostly some degree of acceleration for the application’s

execution time. OpenCL allows to achieve speed up by parallelising the

application in a specific fashion where developer has to make some deci-

sions on the parameters that are provided by OpenCL. Even though, the

developer knows the best parameters and configurations for their appli-

cation and target platform, it may not be clearly defined in an OpenCL

project or it may very well be subject to change in the near future. There-

fore, autotuning techniques are common to address the problem of finding

either optimal or close to optimal configuration parameters. These pa-

rameters can belong to either OpenCL standard or application domain.

Full automatic tuning is pretty hard problem due to the lack of knowl-

edge of the parameters especially if parameters are deeply connected to



application domain, therefore the tuning framework needs ad-hoc knowl-

edge on the topic. Thus, semi-automatic tuning of application with limited

input from the domain expert or developer is the preferred approach.

3.1 Methodology

3.1.1 Kernel Autotuning

The procedure for autotuning of an OpenCL application in order to get

optimum performance without concerns of underlying architecture of the

platform requires a set of parameters that define characteristics of the

machine. In the case of OpenCL, these platform specific parameters are

stated by the OpenCL standard itself. Other than the platform parame-

ters, there are also parameters that are defined by the application domain.

But due to the number of parameters design exploration space can be huge

and become impractical to search optimal parameter configuration using

brute force methods. Therefore autotuning frameworks usually employ

machine learning methods to deal with the large exploration spaces such

as presented in [2].

However, most of the configurations are not feasible in the sense that

the kernel may not even launch or may fail during execution, due to im-

plausible configuration parameters like work-group sizes with local mem-

ory usage which exceeds maximum local memory available. These failed

attempts of kernel launches do not provide any information about the

sample that has been taken from design space. Hence effort and time are

wasted on these infeasible configurations.
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In the work of [9], the solution to large exploration space problem has

been given by the user provided parameters and constraints related to

both OpenCL platform and application domain. While OpenCL parame-

ters come from the definitions included in the standard itself, application

specific parameters are unique to each case of application.

This creates a problem in terms of building a workflow that is as au-

tomatic as possible since some inputs expected from the user. Further-

more, very often the application specific parameters are tightly related to

OpenCL platform parameters. Thus, complicating the pruning process

for an user of workflow (as shown in Figure 2.9).

An important point is even though OpenCL parameters come from

platforms that application supposed to run on, the constraints regarding

to OpenCL standard are fixed. The assumptions and principles of be-

haviors established by standards apply without differentiating underlying

hardware architectures that are present. In this way, standard can enforce

its rules over all the conformant products. Therefore these constraints are

redundant for user to enter. Even worse, user may enter values incorrectly,

since it is well-known that reliability of humans are not the best.

Constraint solver in the Phase 1, Block A of 2.9 uses the following

OpenCL platform parameters:

• maximum work-group size for each dimensions of global work size.

• maximum total number of work-group a NDRange kernel launch can

contain.

• number of compute units on the OpenCL device.

• local memory size of the device.
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As an improvement upon previous work done in [9], just before the con-

straint solver stage we added an OpenCL platform parameter extractor

which collects the parameters specified above. Then, to provide a com-

mon set of constraints that matches the rules established by the OpenCL

standard. Hence, application developer needs to provide constraints that

are only related to application. The common constraints along with their

reasoning of inclusion are:

• Each dimension of the global work size must be divisible by the corre-

sponding work-group size. This restriction guarantees that number

of work-groups are integer and no work-group is covering partial of

global work grid.

globalx mod workgroupx == 0

globaly mod workgroupy == 0

globalz mod workgroupz == 0

(3.1)

• Total work-group size must be less than or equal to maximum work-

group size. Each OpenCL platform has a total work-group size limit

which is independent of maximum work-group size of any dimen-

sion.

total_wg_size = workgroupx ∗ workgroupy ∗ workgroupz

total_wg_size <=max_total_wg_size
(3.2)

• Number of work-group should be equal or greater than number of

compute units. Having fewer number of work-group than number of

compute units doesn’t break the functionality of the kernel, however

device will be under utilized due to not enough work-groups to be
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mapped to compute units as shown in Figure 3.1.

globalx/workgroupx+

globaly/workgroupy+

globalz/workgroupz >= num_compute_units

(3.3)

• Local memory usage of one work-group must be less than local mem-

ory size. Otherwise, work-group will certainly fail with OpenCL

error named CL_OUT_OF_RESOURCE, due to not being able to

allocate enough local memory for the kernel function.

local_mem_usage <= local_mem_size (3.4)

Figure 3.1: Mapping work-group to compute units

Lack of work-groups cause ineffective mapping to CPU with 4 compute units, due to

idling computing units.

For application specific parameters, it is possible to include C-style

definitions inside OpenCL kernel code and expose those definitions as pa-

rameters in MiniZinc either decision variables or plain parameters. This

allows application programmer to introduce parameters unique to the ap-

plication domain. Moreover, using constraint it is possible to form a re-

lationship between newly introduced parameters and OpenCL platform

parameters.
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After the pruning phase of the exploration space, the rest of the config-

uration points which satisfy all the constraints are executed in a brute force

fashion. In order to reduce the interference of other present processes in

the operating system, the same configuration has been run multiple times

and average of the best runtimes is calculated. Results of the run stored

in a table with their configuration.

3.1.2 Kernel Data Splitting for Heterogeneity

While tuning and running OpenCL kernels on OpenCL devices are fine,

multiple computation architecture is present most of today’s computing

platforms. Therefore, being able to handle this heterogeneity is crucial

for achieving higher performance systems. Therefore, like many previous

works [11][10][9], we investigate how to exploit heterogeneity. In contrast

to work done by [9], We will not focus on mapping of separate kernels

to different devices. Rather than that, the main focus of the work is

splitting huge OpenCL tasks into smaller chunks then map those partial

computations to different OpenCL devices running them simultaneously.

There are a number of problems to be addressed in order to achieve

this kind of splitting of OpenCL kernels to devices.

1. Finding the right split point for an heterogeneous platform requires

performance knowledge a prior.

2. After splitting, the work-group sizes can be not only inappropriate

for performance but also ill-advised, therefore kernel execution may

fail in one or more devices.
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Split Point Decision

In order to find split point, we used the exploration information collected

from tuning phase. The best runtime candidates are chosen according to

their execution times.

exe_speedi = 1/exe_timei i = 0, . . . , N − 1s (3.5)

First we convert the execution times into speed values with the Equa-

tion 3.5 where N is the number of devices present on the platform. In this

way it is easier to reason about the performance variation across different

devices since the greater the speed value is, the higher performance of the

device.

Then these individual device speeds for the OpenCL kernel are used

to calculate split factor for each device (equation 3.6). These split factors

define how much of the computation will take place on each OpenCL

device. Therefore, sum of all split factors must reach to 1.0, otherwise,

there would be residue computation that is missing for the output of the

task.

split_factori = exe_speedi/(
N−1∑
j=0

exe_speedj) i = 0, . . . , N − 1s (3.6)

It is easy to observe that
∑N−1

i=0 split_factori = 1.0 is satisfied by

substituting split_factori by the equation 3.6.
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Work-group Size Adjustments

Because split factor is computed using total number of data to be split, it

doesn’t consider any dimensionality of the global work size. However, this

doesn’t create problem as long as splitting cut has been applied to each

dimension separately as different option and measured the execution time

with each dimensional cut (Figure 3.2).

Figure 3.2: Global work space splitting illustration on two different dimensions

While split factor is calculated from performance measurements to give

good hint how to load balance between different devices in heterogeneous

environments, dividing global work size using split factor results in parti-

tions with fractional work sizes which is totally impractical to be used in

OpenCL’s context.

For example, let’s consider global work size is 512 work items and

split factors are 0.4 and 0.6 for two devices respectively in an CPU-GPU

heterogeneous platform. Using this scenario, CPU needs to handle 204.8

work-items and GPU has a share of 307.2 work-items.

This problem is only one-side of the coin, the more important problem
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is keeping the optimum work-group sizes found by autotuner for each

device. Moreover, since maximum performance work-group sizes can be

contrasting for different devices on the same platform, it is not possible

to use a single ’optimal ’ size as used in [10].

Addressing this problem requires adjusting split factors while taking

into account the optimal work-group sizes. But the more deviation from

the original splif factors there is, the further away splitting is from optimal

load balancing. Therefore it is desired to make minimum adjustments.

((workgroupi mod workgroupj) ∗ (workgroupj mod workgroupi)) = 0

∀i, j ∈ [0, . . . , N − 1] where i and j are integers

(3.7)

Additionally, if work-group sizes are not multiple of each other, hence

failing to hold following equation 3.7, would results incompatible work-

group sizes between different OpenCL devices. In order to deal with this

problem, we devise a method allowing devices to compute work-items

redundantly as minimum as possible, while preserving their desired work-

group sizes. This is achieved by overlapping the split partitions of each

device.

G = wg1 ∗ γ1 + wg2 ∗ γ2 + · · ·+ wgN−1 ∗ γN−1 (3.8)

Equation 3.8 shows how the global work size decomposes such that

multiple devices are contributing to computation. The G in the equation

is global work size and γ is number of work-groups. Each wgi ∗ γi compo-

nent represents work size mapped to a certain device. While the equation
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represents global work size, it only considers one dimension of the global

sizes and work-group sizes. As mentioned before, all the splitting opera-

tion is applied for each dimension separately in case of multi-dimensional

work space, then multiple heterogeneous configurations created for each

dimensional split to be executed and measured. Therefore, all the equa-

tions are based on one dimensional split cut.

wgi ∗ γi = G ∗ Si (3.9a)

γi =
G ∗ Si

wgi
(3.9b)

γ̂i = bγic (3.9c)

Ŝi =
wgi ∗ γ̂i
G

, for i = 0, . . . , N − 1 (3.9d)

SR =
N−1∑
i=0

Si −
N−1∑
j=0

Ŝj

where Ŝi and γ̂i are reduced split factor and number of groups

and SR is residue split factor

(3.9e)

Methodologically, number of work-groups need for each device is calcu-

lated using devices’ optimal work-group sizes (Eq. 3.9b). It is important

to note that at this stage numbers of work-groups are real values so they

are not fit to be used by OpenCL framework. In order to deal with this is-

sue, numbers of work-groups are reduced to an integer number (Eq. 3.9c).

Then, corresponding reduced split factors recalculated in order to find the
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residue (Eq. 3.9d and Eq. 3.9e).

γ̃i = d
G ∗ SR

wgi
e (3.10a)

S̃i =
wgi ∗ γ̃i
G

, for i = 0, . . . , N − 1 (3.10b)

This SR, residue split factor, represents how much work has been left

after adjusting for optimal work-groups. And since we want to this residue

work to be done with minimum redundant work effort, it is required to

choose the device that is best suited. To be able to assess which device is

more fitting our situation, equation 3.10b calculates for each device how

much work necessary to finish the residue. Then we choose the device with

minimum work which is represented with S̃i. Next, we add the residue

fraction of the workload to the chosen devices reduced split factor, ending

up with the device’s final split factor. For all the other devices, reduced

split factors are used.

Using this method, it is possible to preserve desired work-group sizes

while adjusting split factor minimally. We achieve this first reducing the

number of work-groups conservatively per device, then choosing appropri-

ate device for the residue work to be computed on.

Additional benefit of this technique is that if equation 3.7 holds, there

will be no overlap between the works of platform devices. Hence, no

redundant and wasted computation will be present. This type of outcome

is observed because when work-group sizes are multiple of each other hence

reduction on the larger size can perfectly be accommodated by smaller

work-group size.
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3.2 Novelty in the Approach

The previous works mentioned either focuses on autotuning extensively

or try to exploit heterogeneity except [9] where the authors suggest a full

workflow where efficient autotuning and heterogeneous computing come

together. While their DSE workflow takes heterogeneous platforms into

consideration, a task graph where multiple OpenCL kernels that are in-

dependent from each other is required to take advantage of heterogeneity.

This is due to mapping of computations to the platform is on the task

level in terms of granularity.

In this work, we take it one step further and introduce a technique

that will exploit multiple device platforms in the case of single task. Ad-

ditionally, we utilize the valuable information explored in the previous

autotuning phases of the workflow.

3.3 Development

All the management of the different parts of the workflow (Figure 3.3)

implemented by python 3.4.

3.3.1 Workflow, Pruning Phase

The first part of the workflow (Pruning phase of 3.3), has multiple com-

ponents that needed to be realized. OpenCL Standard Constraints which

has been discussed in Section 3.1.1 is implemented as MiniZinc constraint

model. Application Related parameters and constraints are expected from
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developer as MiniZinc file that contains both decision data and constraint

model. Then, using #include MiniZinc features, OpenCL constraints and

application parameters and constraints are merged together to form the

final constraint model needed for MiniZinc constraint solver.

The only information that is absent for the solver is the missing plat-

form parameters needed for the platform constraints in the constraint

model. And those parameters are gathered using OpenCL Querying API

provided by the standard. For each device present on the system, clGet-

DeviceInfo function is called to get desired device information to be used

as parameter. Later, these parameters processed to be compatible with

MiniZinc language, thus they can be used as decision variables for con-

straint model.

MiniZinc solver has multiple backends that is suited and optimized for

different constraint solving problems. In this work we are usingmzn-g12fd,

it is the backend for finite domain constraint solving. This backend is the

most suitable for us because the configuration space is composed of finite

numbers which define OpenCL parameters.

In constraint model, solve satisfy is used in order to find configura-

tion points that satisfy all the constraints. Then solver is launched via

command-line with –all-solutions argument. This argument flag forces

MiniZinc to return all solutions that satisfies constraints, otherwise MiniZ-

inc returns the first solution that it finds.
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Figure 3.3: Autotuning and heterogeneous run workflow

3.3.2 Workflow, Exploration Phase

OpenCL provides a host API that is not inherently taking heterogeneous

environments into consideration. But standard API provides enough flex-

ibility to implement splitting methods on top of OpenCL host API. Het-

erogeneous implementations of application may requires ad-hoc solutions

specific to each application, however the information needed for achieving

heterogeneity like split factors, global work size, desired work-group sizes

can be generalized and supplied to the benchmark applications.

A small library that will allow to communicate with the benchmark

application developed using C++. The library is show in the Figure 3.3

and named DSE_ConfigRunner. Its main purpose is to reading the config-

uration file, acquire necessary OpenCL platforms and devices and compile

required OpenCL kernels. In this way all the boilerplate code necessary

for OpenCL is abstracted away.
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To achieve heterogeneity each case is hand modified to use configura-

tion. clEnqueueNDRange with offset parameter is used to shift the second

or later devices if they are present. offset value is calculated by accommo-

dating the global work sizes of the previously scheduled devices using only

the dimension the split operation applied. In a similar manner, clReadBuf-

ferRect API has been used to copy a region only where the computation

output written to host memory.

The configuration file which is a json file, is generated by the python

code which handles the design space explorations. Explorer written in

python, picks a configuration and produces file in json format that will

be supplied to the benchmark application when executed from command-

line using argument as auto_cl=<config_file_name>. An example of this

configuration file is present in Appendix B.

Design space explorer first runs benchmarks as non-heterogeneously,

then uses the generated configuration file, performance characteristics pair

list to decide on the best possible splitting described in Methodology Sec-

tion with equations 3.5 and 3.6. In order to explore possibility of perfor-

mance gain on splitting different dimensions, in the explorer starting from

the first dimension splitting is applied all the dimensions present for the

OpenCL kernel. Later, all the results corresponding different dimensional

splits are compared and chosen based on execution time of heterogeneous

executions.

The theoretical best performance for heterogeneous executions is also

calculated using the split factors and best autotuned execution speeds.

These values supplied to the function (Algorithm 2). The function scales

all the execution times with respect split factors and takes the maximum
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Algorithm 2 Calculates the best theoretical performance estimate
1: function EstimateHeteroPerf(splitFactors, exeTimes)

2: devicePerfs ← empty list

3: i← 0

4: while i < number of devices present do

5: devicePerfs[i] ← splitFactors[i] * exeTimes[i]

6: return max(devicePerfs)

amount assuming all the devices running concurrently in a perfect way.

Split factors used here is before adjusting for work-group sizes. Therefore,

we can have numerical values to compare our results against a perfectly

scaled scenario.

For the best output configuration as shown in Figure 3.3, best results

from non-heterogeneous runs and heterogeneous execution on all of the

dimensions are compared and configuration with the minimum execution

time is chosen. The reason why not only the heterogeneous runs are

included is not all devices can run the OpenCL kernels asynchronously.

Therefore, it is possible that a synchronization happens due to device

limitations leading to launching kernels sequentially. This situation is

limited to very old generation devices or the lack of support from OpenCL

runtime even though the standard enforces asynchronous behaviour.
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Chapter 4

Experiment Results

In this chapter, experimental setup which the proposed methodology has

been implemented and assessed, will be explained in detail. In Section

4.1, first the hardware that is used for experiments and measuring will

be examined, then the case studies implemented will be explained. And

lastly, the experimental results where the proposed techniques applied on

the case studies will be introduced and discussed in Section 4.2.

4.1 Experimental Setup

4.1.1 Target Platform

Target case studies that are explained in Section 4.1.2 have been run on

two different platforms. Both of the platforms consist of a CPU and a

GPU, therefore they are considered heterogeneous platforms.

The followings are the specifications of the platforms:



1. Platform 1 (or PLT1) is a workstation machine with: Hardware:

• CPU: Intel(R) Xeon(R) CPU E5-1607 (Quad-core @ 3.0Ghz)

• GPU: Nvidia NVS 300 (16 CUDA cores)

OpenCL driver versions:

• CPU: Intel OpenCL driver for Ubuntu 1.2.0.25

• GPU: Nvidia Linux driver 340.96

2. Platform 2 (or PLT2) is a consumer grade laptop with: Hardware:

• CPU: Intel(R) Core(TM) i7-2630QM (Quad-core @ 2.0Ghz)

• GPU: Nvidia GeForce GT 550M (96 CUDA cores)

OpenCL driver versions:

• CPU: Intel OpenCL driver for Ubuntu 1.2.0.23

• GPU: Nvidia Linux driver 304.131

On both platforms, Ubuntu (Linux) 14.04 has been used as operating

system. On Platform 2, Intel CPU has an iGPU which doesn’t support

OpenCL standard. Thus, it was not possible to use that for experimental

runs. Another problem is since Platform 2 has two different GPUs, the

operating system was getting confused about which GPU to actively use.

If the integrated GPU is activated, no OpenCL runtime environment is

found for a GPU. In order to solve this issue, we installed on Platform 2

an open source project called Bumblebee. This provided us a command

name optirun which switches the Nvidia GPU on. Therefore, we had to

use this command for every benchmark run on Platform 2.

Another big difference between the platforms is CPU in Platform 2 has
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8 logical cores while Platform 1 has 4 logical cores. This is due to CPU

in Platform 2 has Intel Hyper-Threading support. In the end, OpenCL

runtime sees Platform 1 (CPU) as a 4 compute units device and Platform

2 (CPU) as a 8 compute units device.

4.1.2 Target Case Studies

Convolution

Convolution is a mathematical operation on two functions such that it ex-

presses the amount of overlap of one function as it is shifted over another

function. It is widely used in image and signal processing, differential

equations, computer vision and statistics. Especially in image and signal

processing, discrete form of this operation has been popular due to the ease

of implementation on digital systems. The discrete form of the mathemat-

ical operation is usually defined like Equation 4.1 and in many fields the

two functions are usually considered signal and mask respectively (f and

g in Eq. 4.1).

(f ∗ g)[n] =
M∑

m=−M

f [n−m]g[m] (4.1)

If we examine the Equation 4.1, it is possible to see that right hand

side of the equation needs to be calculated for each discrete point of (f ∗g)

independently. This property of convolution is crucial because it allows

to be computed using data parallelism techniques naturally. Therefore, it

is very suitable for OpenCL implementation, too.

In Figure 4.1, a simple OpenCL kernel implementation is shown. This
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__kernel void CONV( __global float* signal ,
__constant const float* mask ,
__global float* outSignal ,
int maskLength , int signalLength)

{
int idx = get_global_id (0);
float out = 0;
int start_point = idx - maskLength /2;
for(int i = 0; i < maskLength; ++i)
{

int mask_index = start_point + i;
if(mask_index >= 0 && mask_index < signalLength)
{

out += signal[mask_index] * mask[i];
}

}
outSignal[idx] = out;

}

Figure 4.1: Basic OpenCL convolution implementation

kernel definition is executed for each work-item in the global work grid.

The only difference between separate kernel instances is the outcome of

get_global_id. In this way, each work-item accesses different region of

the memory buffer. The address of the memory buffers are signal, mask,

outSignal and they are supplied as the arguments of the kernel function.

In this particular implementation, there is no exploitation of local memory

to take advantage of temporal locality.

One way of taking advantage of local memory is sharing some data

needed for computation of a work-item in the same work-group. In Figure

4.2, executions of two work-items are depicted. The buffer shown with

upper green array is the input buffer, the other array is the output buffer,

while the C1-C5 are the mask coefficients. It is clear that two consecutive

work-items share some overlapped region of the input buffer, therefore it

is meaningful to have allocated local memory.

Assuming work-group consists of only two work-items as illustrated in
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Figure 4.2: Execution of two work-items

Figure 4.2, the required amount of local memory is equal to 6 input data

size since we work-items’ access pattern include I1-I6. In order to utilize

local memory, it is needed to be explicitly assigned values by work-items,

therefore the first work-item will load I1-I3 while second one will load

I4-I6. This leads to certain local memory usage depending on mask size

and work-group size which can be formalized as:

local_memory_usage = (workgroup_size+mask_length− 1)

This is shown in Figure 4.3, color of the arrows differentiate separate

work-items’ memory accesses. In this way, I2-I5 is shared between two

work-items and needed only one global memory access rather than two.

This may not be significant performance improvement with just two work-

items due to number of access to local memory not being few enough

compared to global memory accesses. However, with the increased number
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Figure 4.3: Execution of two work-items using local memory

of work-items in a work-group, the usage of local memory saves reasonable

amount of global memory bandwidth.

Matrix Multiplication

Matrix multiplication is the other case study that is used in this Thesis

to verify the methodology described in Chapter 3.1. It is one of the most

common operation in linear algebra and mathematics and engineering that

are using linear algebra. The operation has two matrices as inputs and an

output matrix where the elements of the output matrix are dot product

between rows of the first input matrix and columns of the seconds input

matrix. The simplest implementation is given in Algorithm 3.

In the OpenCL implementation of the Algorithm 3, each output el-
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Algorithm 3 Simple Matrix Multiplication
1: function MatrixMult(A, B)

2: nRows← height of A

3: nCols← width of B

4: dotWidth← width of A

5: C ← empty matrix nRows x nCols

6: for i from 1 to nRows do

7: for j from 1 to nCols do

8: sum← 0

9: for k from 1 to dotWidth do

10: sum← sum+ (Aik ×Bkj)

11: Cij ← sum

12: return C

ement of C matrix is computed by a single work-item. Since matrices

have columns and rows, our global work grid is two dimensional as well as

work-group sizes. This makes a work-group to calculate a rectangular area

of output matrix. In this work, we will focus on square matrix multipli-

cation because they are both common type of matrix multiplication and

easier to express and analyze. Therefore, in Algorithm 3, nRows, nCols

and dotWidth are equal to each other.

In Figure 4.4, it is possible to see a small example of how matrix

multiplication accesses memory. For each single output element of C, one

row of A and one column of B required to be accessed. For 4x4 matrix this

does not create any problem, since whole matrix can be stored inside the

last level cache of computing units easily. However, once the dimensions

of matrix increases and it starts to be a problem, especially for matrix B.
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Because the memory access pattern is not contiguous, it results in a lot

of cache misses.

Figure 4.4: Matrix multiplication of 4x4 square matrices

The solution to this problem is the well-known tiled matrix multipli-

cation. It is observable from Figure 4.4 that for output elements on the

same row share the same row of A for computation, for column this holds

trues as they share the same column n of B. This kind of characteristic can

be exploited using local memory and grouping output elements in a way

that output elements can share data that has been accessed by previous

elements rather than go for the global memory access.

As an example, let’s consider the situation in Figure 4.4 and assume

that 4x4 input matrices divided into 2x2 tiles hence, 4 tiles per matrix.

For each tile we will have one work-group with the same configuration. At

the end, there will be 4 work-groups with 2x2 work-items each covering

the whole output space of the matrix C. Each work-group will load 2x2
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elements from A and B, then do partial computation of its outputs. Then

slide the tile to load subsequent tile. The movement of tile is from left

to right for A while for B it is top to bottom. After that, work-group

will sum the partial computations. Since we store two 2x2 tiles for each

work-group, local memory usage in terms of number of elements can be

calculated with

local_memory_usage = 2× workgroup_sizex × workgroup_sizey

Step by step execution example for the first work-group is detailed

below:

1. Ci,j = 0, prepare output elements for partial results accumulation.

2. Load A0,0 A0,1 A1,0 A1,1 and B0,0 B0,1 B1,0 B1,1 from global

memory to local memory.

3. Compute partial results per element Ci,j = Ci,j+
∑tile_size

k=0 (Ai,k∗Bk,j)

using local memory address space.

4. Move the tile and load A0,2 A0,3 A1,2 A1,3 and B2,0 B2,1 B3,0

B3,1 from global memory to local memory. Then do the step 3

again.

The tiled version of the matrix multiplication is used as a case study

because local memory usage scenarios are more interesting for our pro-

posed methodology since local memory size of the OpenCL device is a

limiting factor on how large work-group can size be.
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4.2 Experimental Results & Discussion

4.2.1 Autotuning Space Pruning

In autotuning frameworks tuning time is very often required to be fast

even though the application is tuned at design-time rather than runtime.

Therefore design space exploration techniques are commonly employed to

reduced the time taken to tune the application. In this work, design space

is reduced before exploration take places.

In order to understand the impact, it is beneficial to understand the

size of the original design space. Since our main contribution in for pruning

phase in the workflow (Figure 3.3) comes from automatically collection

OpenCL parameters, it is important to discuss the impact of OpenCL

parameters to the design space. The main parameter knob presents in the

OpenCL standard is work-group size. The range of values that work-group

size can take depends on specific OpenCL device. For our target platform

described in Section 4.1.1 the work-group size limitations are as follows:

PLT1 PLT2

CPU GPU CPU GPU

Dim0 8192 512 8192 1024

Dim1 8192 512 8192 1024

Dim2 8192 64 8192 64

Table 4.1: Work-group size limits per OpenCL devices

The numbers in Table 4.1 are gathered from OpenCL device query-

ing using clGetDeviceInfo API. An important aspect of OpenCL is work-

groups that can form multi-dimensional (up to three) groups of work-
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items. This additional parameters lead to exponential increase of the

design space even if only work-group sizes are considered. Table 4.2 show

the full design space without considering the proposed techniques.

PLT1 PLT2

CPU 239 239

GPU 224 227

Table 4.2: Full design space per device

This huge design spaces are not feasible for exploration. Furthermore,

because most of the samples from this design space are ill-conditioned

meaning that they are failing either because of not complying to the

standard or due to lack of resource at runtime. These failed configura-

tion samples do not provide any information about exploration, therefore

their execution attempts are wasted effort and time. Using the method-

ology described in Section 3.1.1, it is possible to reduced to space semi-

automatically to a more reasonable size by eliminating the samples that

are out of standard.

Table 4.3: Pruned design space per device and case study

PLT1 PLT2

GPU CPU GPU CPU

Convolution: 17 24 19 24

MatrixMult: 5 7 6 7

In Table 4.3, it has been shown the design space size after pruning

exploration space. The application specific parameters and constraints

are in Appendix C. This huge reduction in number of configuration points

is the result of the constraints that are enforced by the standard. The
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largest contributor to this decrease is the fact that OpenCL standard

requires global work size to be divisible by work-group size for each di-

mension. Thus, the number of feasible work-group sizes depends on prime

factorization of the global work size.

For example, global work size of 1024 will only allow work-groups sizes

of power of 2, while global work size of 1000 will allow 2, 4, 5, 8, 10, 20,

25, 40, 50, 100, 200, 125, 250, 500, 1000 leading to 15 configurations. The

reason behind this is 1000 = 23 × 23 compared to 1024 = 210.

Full-Search Autotuning

Looking at the pruned results, it is observable that the numbers are small

enough to be fully explored. We used exhaustive searching methodology

without any machine intelligent approach since the exploration space left

after pruning is manageable. Hence, the applications are assessed for each

work-group sizes in order to find out the fastest one.

To verify the methodology, application described in Section 4.1.2 has

been used. Convolution application has been used with 625 width mask

and 655360 as a global size. Matrix Multiplication application has been

used with 1024x1024 matrices.

On both platforms, work-group sizes on CPU have reached only 4096

rather than the device limit of 8192. This is because local memory usage

exceeding the local memory size on the both of the CPUs (Figures 4.5 and

4.7).

Work-group sizes for matrix multiplications are total workgroup sizes.

Therefore 8x8 work-group size will result in 64 total work-group size. To-
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Figure 4.5: Platform 1, Convolution with CPU

Figure 4.6: Platform 1, Convolution with GPU
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Figure 4.7: Platform 2, Convolution with CPU

Figure 4.8: Platform 2, Convolution with GPU
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Figure 4.9: Platform 1, Matrix Multiplication with CPU

Figure 4.10: Platform 1, Matrix Multiplication with GPU
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Figure 4.11: Platform 2, Matrix Multiplication with CPU

Figure 4.12: Platform 2, Matrix Multiplication with GPU
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tal work-group size is crucial in terms of determining the maximum size

for each dimension of work-group size. Because of that number of config-

uration options on Figures 4.9, 4.10, 4.11 and 4.12 significantly lower than

convolution case study. Moreover in Figures 4.6, 4.10 and 4.12, work-group

sizes do not start from 1. This is because Nvidia has hardware limitation

on how many work-groups can be present in one kernel launch even though

OpenCL standard does not introduce such a limitations. Therefore those

execution runs are discard.

Other important remark is that all the devices on both platforms have

benefit from increased work-group size especially compared to really small

work-group sizes like 4 or 8. The reason is by increasing the number of

work-items in a work-group, OpenCL driver will have potentially higher

degree of parallelism and more options of work-items to schedule. On

GPUs, the penalty of not being able to utilize parallelism within work-

group is greater compared to the CPUs.

4.2.2 Heterogeneous Executions

There are some problems with heterogeneous execution in Platform 1. The

GPU on Platform 1 is an old generation (2010) processor. Even though, it

supports OpenCL 1.1, its hardware is not fully compliant. Therefore, ker-

nel launching is not asynchronous as required by the OpenCL standard.

This creates problem in heterogeneous runs because it prevents running

two kernels to each device simultaneously. In the end, the kernel launch-

ings happen in sequential order. The performance is between CPU and

GPU because some of the workload is shifted to the slower device while

the executions are not overlapped (Figure 4.13).
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Figure 4.13: Platform 1, Matrix Multiplication with GPU and CPU

The theoretical estimate of the perfect scenario shows that even if

the heterogeneous execution had been successful, the speed up would be

less than 20 percent. This is due to the fact that GPU of Platform 1 is

significantly slower than its CPU. Hence potential heterogeneous execution

has diminishing returns.

In the case of convolution application (Figure 4.14), situation is more

dire since the performance difference between the processors are even

larger. Theoretical estimate only suggests 10 percent improvement. While

the actual run suffers due to lack of asynchronous OpenCL kernel launch-

ing.

Under the Platform 2, convolution application fails to gain perfor-

mance benefits due to bug in the Bumblebee command-line tool. This

tool normally allows to switch on the discrete GPU, hence it is activated

for each application run. But in this case, using the tool to switch on forces
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Figure 4.14: Platform 1, Convolution with GPU and CPU

Figure 4.15: Platform 2, Convolution with GPU and CPU
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the CPU runtime to execute non-splited version. Because of this, even if

the GPU overlaps with CPU, due to long running time of Intel processor,

heterogeneity is bounded by CPU execution time (Figure 4.15).

Figure 4.16: Platform 2, Matrix Multiplication with GPU and CPU

Finally in Figure 4.16, we can see an improvement over both CPU and

GPU. According to multiple runs of the same matrix multiplication ap-

plication, CPU is 18 percent faster than GPU. Compared to the Platform

1 the difference between heterogeneous device is not big in terms of per-

formance. While theoretical estimate for heterogeneous run is 84 percent

faster than CPU, in real run we did get a 57 percent of speed up compared

to fastest of the both heterogeneous devices.

The speed up achieve is the result of two devices successfully running

in parallel, therefore their execution times are overlapped. Using our pro-

posed method, it is possible to achieve performance improvement that

is just 17 percent less than the theoretical best configuration. Theoreti-

cal speed up does not care about work-group sizes, it just uses the best
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performance values of the configurations which are explored already.

In the Figure 4.13 and Figure 4.16, there are two heterogeneous runs.

Since matrix multiplication uses two dimensional global work and work-

group sizes, we investigate splitting through different dimensions. As seen

on the 4.16, the result is not affected by splitting dimension.

Even though some experiments may fail to exploit heterogeneity, our

framework return the configuration that performs best even if it is not the

heterogeneous execution.

As mentioned before, time required for autotuning an application is

also important. Even though, our methodology relies on being statically

tune the application, the less time it takes, the better it is. The tuning

times for both applications and platforms are presented below:

PLT1 PLT2

Convolution 1289.4 s 1018.6 s

Matrix Multiplication 749 s 1172.5 s

Table 4.4: Autotuning elapsed time
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Chapter 5

Conclusions

In this Thesis, we have investigated existing approaches about efficient au-

totuning on heterogeneous platforms from [9] and improved upon this pre-

vious work. In order to increase the usability, an automatic OpenCL pa-

rameter collector has been integrated before the constraint solving phase.

Moreover, a default set of constraints that are enforced by OpenCL stan-

dard is added to the constraint solver. This allows application developers

to focus on their application parameters, if necessary to introduce new

constraints related to their application. Therefore, usability of the work-

flow is enhanced.

While the work in [9] focuses on multiple tasks that are represented

with acycling graph for data flow and then try to find efficient way to

map tasks of the graph to hardware devices, in this Thesis we proposed

an approach to split a single big task in order to be able to map it onto het-

erogeneous platforms. The method that we introduced takes advantage of

OpenCL kernels that are autotuned for different devices separately. The

configurations with optimal work-group sizes are chosen after the explo-
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ration and a workload balance point is estimated. With this estimation

split factor is decided while taking desired work-group sizes into consider-

ation.

The proposed approach has been assessed on two popular algorithms,

namely, convolution and matrix multiplication. In order to run the bench-

marks a small library to handle boiler-plate part of OpenCL host and json

configuration file.

Experimental results have shown that it is possible to reduce design

space and also gain some performance benefits in terms of usage of het-

erogeneity by using our proposed methodology.

5.1 Future Works

In the future, much more diverse algorithms are planned to be assessed

and more recent and HPC-oriented computing platforms will be the tar-

get platform to further verify the methodology. There are also places for

some methodological improvements. As a next step, it is possible to de-

vise an algorithm to calculate the split factors in a way that favors to

preservation of estimated split factor rather than preservation of optimal

work-group sizes. This can decrease the gap between theoretical execution

time estimate and measured run-time execution time.
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Appendix A

MiniZinc Constraint Models

Common OpenCL Constraints

The MiniZinc constraint model for OpenCL platform constarints:
% platform specific parameters
int: max_wg_size_x;
int: max_wg_size_y;
int: max_wg_size_z;
int: num_compute_units;
int: max_total_wg;
int: local_mem_size;

var 1.. max_wg_size_x: workgroup_1;
var 1.. max_wg_size_y: workgroup_2;
var 1.. max_wg_size_z: workgroup_3;

var int: total_num_wg = workgroup_1 * workgroup_2 * workgroup_3;

% global -work -size should be divisible by work -group -size
% (check opencl 2.0 specs might be changed)
constraint (global_1 mod workgroup_1 == 0);
constraint (global_2 mod workgroup_2 == 0);
constraint (global_3 mod workgroup_3 == 0);

% number of work -group should be equal
% or greater than compute_units
constraint (( global_1 div workgroup_1 +

global_2 div workgroup_2 +
global_3 div workgroup_3) >= num_compute_units );
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% total work -group size should be multiple of pref_wg_mult
% (warning needs testing , disabled)
% constraint (total_num_wg mod pref_wg_mult == 0);

% total work -group size should be less than max work -group size
constraint (total_num_wg <= max_total_wg );

% local memory usage must be less than local memory size
constraint (local_mem_usage <= local_mem_size );

% use --all -solutions -statistics flags
solve satisfy;

OpenCL Platform Parameters Examples

Example OpenCL platform parameters for a Intel CPU and Nvidia GPU:
% OpenCL device constraint parameters for: CPU
%device_name: Intel(R) Core(TM) i7 -2630QM CPU @ 2.00 GHz
%device_vendor: Intel(R) Corporation
%cl_version: OpenCL C 1.2

max_wg_size_x = 8192;
max_wg_size_y = 8192;
max_wg_size_z = 8192;

num_compute_units = 8;
max_total_wg = 8192;
local_mem_size = 32768;

% OpenCL device constraint parameters for: GPU
%device_name: GeForce GT 550M
%device_vendor: NVIDIA Corporation
%cl_version: OpenCL C 1.1

max_wg_size_x = 1024;
max_wg_size_y = 1024;
max_wg_size_z = 64;

num_compute_units = 2;
max_total_wg = 1024;
local_mem_size = 49152;
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Appendix B

Example Configuration Json

1 "configs": [{
2 "split_type": "overlap",
3 "kernel_name": "matmul",
4 "split_factors": [0.4375, 0.5625],
5 "kernel_file": "matmul.cl",
6 "task_configs": [{
7 "launch_config": {
8 "globalsize": [512, 224, 1],
9 "groupsize": [32, 32, 1]

10 },
11 "build_flags": ["TILE_SIZE=32"],
12 "hardware": {
13 "cl_version": 1.1,
14 "dev_type": "GPU",
15 "device": "GeForce GT 550M",
16 "vendor": "NVIDIA Corporation"
17 },
18 "priority": 0
19 }, {
20 "launch_config": {
21 "globalsize": [512, 288, 1],
22 "groupsize": [16, 16, 1]
23 },
24 "build_flags": ["TILE_SIZE=16"],
25 "hardware": {
26 "cl_version": 1.2,
27 "dev_type": "CPU",
28 "device": "Intel(R) Core(TM) i7-2630QM",
29 "vendor": "Intel(R) Corporation"
30 },
31 "priority": 1
32 }], "split_dim": 1 }]
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Appendix C

Case Study Sources

Convolution MiniZinc Sources

MiniZinc application specific constraints and parameters:

% 1D Convolution Example
int: global_1 = 655360;
int: global_2 = 1;
int: global_3 = 1;

int: mask_size = 625;

var int: local_mem_usage = (mask_size + workgroup_1 - 1) * 4;

include "ocl_common.mzn";

% Output database point
output [
"wg_1:"++show( workgroup_1 )++",",
"wg_2:"++show( workgroup_2 )++",",
"wg_3:"++show( workgroup_3 )++",",
"lmem:"++show( local_mem_usage ),
"\n"
];
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Matrix Multiplication MiniZinc Sources

MiniZinc application specific constraints and parameters:
% Matrix Multiplication Example
int: global_1 = 1024;
int: global_2 = 1024;
int: global_3 = 1;

var 1..256 : tile_size;

% application specific , local memory usage in bytes
% for tiled matrix multiplication:
var int: local_mem_usage = (tile_size * tile_size) * 4 * 2;

constraint (workgroup_1 == workgroup_2 );
constraint (tile_size == workgroup_1 );

include "ocl_common.mzn";

% Output database point
output [
"wg_1:"++show( workgroup_1 )++",",
"wg_2:"++show( workgroup_2 )++",",
"wg_3:"++show( workgroup_3 )++",",
"lmem:"++show( local_mem_usage ),
",tile_size:"++show(tile_size),
"\n"
];
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