
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

A compiler-based technique for automated analysis and
protection against side-channel attacks

Relatore: Prof. Alessandro BARENGHI

Correlatore: Prof. Gerardo PELOSI

Tesi di Laurea di:

Stefano SANFILIPPO Matr. 815996

Anno Accademico 2015–2016

To the one person who got me through these dire years.

Author’s thanks

I would like to thank my advisor Gerardo Pelosi, and my coadvisor Alessandro

Barenghi for their invaluable help in understanding and researching the topic pre-

sented in this work. However, their support was definitely not limited to my thesis.

Over the last few years, they have guided me through the elaborate landscapes of

computer science. They made passionate about cryptography, compilers, and more

in general about scientific research. And for this, I am deeply grateful to them.

Michele Scandale, who in the meantime got his PhD from Politecnico di Mi-

lano, deserves the biggest thank you one could piece together, for putting up with

my incessant questions and issues while diving into the guts of LLVM, one of the

most fascinating and complex achievement of software and compiler engineering.

Finally, I would like to thank all the other people whose direct or indirect input

helped me navigate around all the theoretical and practical obstacles and, of course,

to those who made me smile during the inevitable bad days.

Prefazione

In questa tesi introduco un metodo per valutare la sicurezza di un’implemen-

tazione software di un cifrario simmetrico contro varie tipologie di attacchi a side-

channel e predisporre appropriate contromisure senza intervento umano.

Gli attacchi a side-channel sfruttano debolezze nella struttura interna e, più co-

munemente, nell’implementazione di un algoritmo di cifratura. Lo strumento di

analisi qui descritto è in grado di localizzare queste debolezze a livello di singole

istruzioni ed applicare contromisure laddove necessarie, consentendo di proteg-

gere l’implementazione in esame da una vasta gamma di attacchi. L’applicazio-

ne selettiva delle contromisure consente inoltre di contenere l’inevitabile calo di

performance senza compromettere la solidità del prodotto finale.

Lo strumento di analisi è altresì in grado di produrre visualizzazioni delle pro-

prietà di sicurezza a livello di singolo bit, offrendo dunque una accurata rappre-

sentazione delle caratteristiche dei vari algoritmi presi in considerazione. I grafici

prodotti hanno confermato alcune debolezze ben note, come nel caso di Misty1, e

messo in evidenza proprietà interessanti, come nel caso di Serpent.

Sono stati analizzati tutti gli algoritmi nel portfolio ISO/IEC 18033-3, inclusi

AES (Rjindael), DES/TDEA e Camellia, assieme ad altri meno noti ma comunque

interessanti come XTEA, Speck e Simon – tutti algoritmi che puntano alle piatta-

forme meno potenti, come quelle embedded che si stanno sempre più diffondendo

nelle applicazioni Internet of Things.

Assieme alla descrizione dello strumento di analisi e dei metodi di protezione

adottati, ho anche composto una vista generale sulle tipologie note di attacchi a

side-channel, sulla loro formalizzazione e sulle relative contromisure, valutando le

opzioni disponibili in ciascuno scenario considerato.

Preface

In thesis I introduce a method to analyse and improve the security of sym-

metric ciphers software implementations against various classes of side-channel

attacks. These are attacks that exploit weaknesses in the internal structure and,

more commonly, in the implementation of the algorithms. A large fraction of these

weaknesses can be revealed and automatically eliminated by my solution. The

analysis can locate the weak spots at single instruction level, and selectively apply

countermeasures, resulting in a minimum run time overhead while preserving the

soundness of the results.

The tool here presented is also able to produce heatmap visualisations of the

security properties at bit level, offering a solid insight into the properties of the ex-

amined algorithms. These visualisations confirmed some well-known flaws, such

as in the case of Misty1, and revealed interesting properties of others – like in

the case of Serpent, which has been found to have very good diffusion properties,

resulting in highly efficient protected implementations.

All the ciphers in the ISO/IEC 18033-3 portfolio have been implemented, in-

cluding AES (Rijndael), DES/TDEA and Camellia, and then some other less com-

mon choices that cater to low-capacity devices, e.g. in the realm of Internet of

Things, such as XTEA, Speck and Simon. Alongside with the description of the

analysis and countermeasure application algorithms and tools, I also provide a sur-

vey of the main side-channel attack strategies and relative countermeasures, evalu-

ating the best options in each scenario that was considered.

Contents

Introduction 1

1 State of the Art 5

1.1 Passive side-channel attacks . 5

1.1.1 Power analysis . 6

1.1.2 Countermeasures . 11

1.2 Active side-channel attacks . 12

1.2.1 Differential fault analysis (DFA) 13

1.2.2 Safe-error attacks . 14

1.2.3 Countermeasures . 15

1.3 Masking . 16

1.3.1 Boolean masking . 17

1.3.2 Arithmetic masking . 18

1.3.3 Masked operations . 18

1.3.4 Boolean masked operations 19

1.3.5 Conversions between masking schemes 27

1.4 The Ishai-Sahai-Wagner framework 30

1.4.1 The stateless transformer 31

1.4.2 Proof of privacy of the ISW stateless transformer 34

1.4.3 Extension to stateful circuits 36

1.5 Dataflow analysis . 37

1.5.1 The control flow graph (CFG) 38

1.5.2 Dataflow equations . 39

1.5.3 The dataflow solver . 42

i

CONTENTS

2 Vulnerability analysis 45
2.1 Notation . 46

2.2 Frontend . 48

2.2.1 Loop check and unrolling 48

2.2.2 Optimisation pipeline . 49

2.2.3 Source level markers . 49

2.3 Features recognition . 53

2.3.1 Dependency depth and loop checking 53

2.3.2 S-Boxes identification and dead bits calculation 56

2.3.3 Key bits assignment . 57

2.4 Selection . 58

2.4.1 Direct dependencies on the key 59

2.4.2 Attack points selection 59

2.5 Dependency propagation . 62

2.5.1 The vulnerability (dependency) matrices 62

2.5.2 Forward propagation . 63

2.5.3 Backwards propagation 68

2.6 Vulnerability index calculation 72

2.7 Instruction filtering and aggregation 73

2.8 Automatic countermeasures application 74

2.8.1 Loops and inlining in the transformed code 75

3 Experimental Evaluation 77
3.1 Block ciphers analysed . 77

3.2 Visualisations . 82

3.3 Benchmark . 94

3.3.1 128 bit ciphers . 96

3.3.2 192 bit and 256 bit ciphers 98

3.3.3 Overall results . 101

Conclusion 103

A Benchmark data 105

Bibliography 105

ii

List of Figures

1.1 Phases of a power side-channel attack 6

1.2 Circuit C and its ISW transformed C′, with transformers. 32

1.3 Example of expanded and collapsed CFG 38

2.1 LLVM passes implemented and information flow between them. . 47

2.2 Input pre-processing passes . 53

2.3 Selection passes . 58

2.4 Dependency propagation passes detail. 62

2.5 Forward propagation rules exemplified: arithmetic and boolean. . 64

2.6 Forward propagation rules exemplified: shifts, casts and memory. . 66

2.7 Backwards analysis naming conventions. 68

2.8 Backwards propagation rules exemplified: arithmetic and boolean. 69

2.9 Backwards propagation rules exemplified: shift, cast and memory. 70

2.10 Instruction filtering and aggregation passes detail. 73

3.1 Security margin of AES . 83

3.2 Security margin of MISTY1 . 84

3.3 Security margin of Camellia . 85

3.4 Security margin of Noekeon . 86

3.5 Security margin of CAST-128 . 86

3.6 Security margin of DES . 86

3.7 Security margin of TDEA . 87

3.8 Security margin of HIGHT . 88

3.9 Security margin of XTEA . 88

3.10 Forward key dependencies of the first four rounds of XTEA 89

3.11 Forward key dependencies of the first four rounds of DES 89

3.12 Security margin of Speck . 90

iii

LIST OF FIGURES

3.13 Security margin of Simon . 91

3.14 Security margin of Serpent . 92

3.15 Benchmark results for 128 bit ciphers 97

3.16 Benchmark results for 192 bit ciphers 99

3.17 Benchmark results for 256 bit ciphers 100

iv

List of Tables

1.1 Masked addition methods selected for the implementation. 27

2.1 Masking countermeasures used in the implementation. 74

3.1 Overview of the analysed block ciphers 78

3.2 IR instruction classes used by the implementations under exam . . 78

A.1 Benchmark for 128bit key ciphers on ARMv7 106

A.2 Benchmark for 192bit key ciphers on ARMv7 107

A.3 Benchmark for 256bit key ciphers on ARMv7 107

A.4 Masking overhead factor on ARMv7 108

A.5 Size of the .text section on ARMv7 109

A.6 Benchmark for key ciphers with other key sizes on ARMv7 110

A.7 Size of the .text section for other ciphers on ARMv7 110

A.8 Benchmark for 128bit key ciphers on MIPS32 111

A.9 Benchmark for 192bit key ciphers on MIPS32 112

A.10 Benchmark for 256bit key ciphers on MIPS32 112

A.11 Masking overhead factor on MIPS32 113

A.12 Size of the .text section on MIPS32 114

A.13 Benchmark for key ciphers with other key sizes on MIPS32 115

A.14 Size of the .text section for other ciphers on MIPS32 115

v

LIST OF TABLES

vi

List of Algorithms

1.3.1 Rivain-Prouff MASKREFRESH . 19

1.3.2 Coron masking of table lookups 21

1.3.3 AND-XOR-and-double addition 22

1.3.4 Kogge-Stone addition . 23

1.3.5 Coron’s higher order boolean masked ADD 23

1.3.6 Coron’s Kogge-Stone boolean masked ADD 24

1.3.7 Karroumi-Joye boolean masked ADD 25

1.3.8 Deriving secure subtraction from addition 27

1.3.9 Goubin boolean to arithmetic switching 29

1.3.10Coron higher-order boolean to arithmetic switching 29

1.4.1 ISW AND masking . 33

1.4.2 ISW simulation . 34

1.5.1 Round-robin forward dataflow solver 41

1.5.2 Round-robin forward dataflow solver with worklist 41

2.3.1 Input points identification routine 54

2.3.2 TRACKPLAIN as used in Algorithm 2.3.1 54

2.3.3 TRACKKEY as used in Algorithm 2.3.1 55

2.3.4 Dead bits detection algorithm . 57

2.4.1 Attack points selection algorithm 60

2.4.2 Subkey to key matrix construction 61

2.5.1 Forward propagation through ADD 65

2.5.2 Forward dependency propagation algorithm for MUL 65

2.5.3 Optimized forward propagation algorithm for MUL 66

2.8.1 Masking . 75

3.2.1 Interpolation algorithm used to colour heatmaps 84

vii

LIST OF ALGORITHMS

viii

Introduction

In the era of the Internet and global communications, embedded cryptographic

devices are pervasive in many aspects of our daily life, from electronic payments

and ticket cards, to all sorts of increasingly smarter devices, like gas meters or auto-

motive computers. However different and seemingly unrelated, all devices have a

common ground: they are designed to encrypt and authenticate communications

using a key stored in their internal memory, without ever revealing it.

This is the kind of application where an attacker may successfully imperson-

ate the device only by knowing the key, and if this key is well buried inside a

tamper-proof device, there is no hope of posing as the legitimate user. Embedded

cryptography surfaced in the 1990s, and since its inception it has greatly improved

the security and reliability of crucial technologies. The technology improvement

was for everybody, not only for some top-secret military project: thanks to it, phone

SIMs and chip-based credit cards are now (at least, should be) impossible to clone.

Unfortunately, as someone once said, attacks only get better. And never a

person was more correct: by the end of the century, an entirely new field was

born, side-channel attacks. This innovative family of techniques exploits pieces of

information involuntarily given away by a computing device, such as fluctuations

in the power consumption or electromagnetic emissions during the computation.

This secondary, unintended, flow of data was aptly named the side-channel.

Combining laboratory measurements with increasingly more refined statistical

tools allowed to recover the key in many practical instances, and even to reverse-

engineer hardware encryption devices whose internal structure was classified, as it

happened for NSA’s own Skipjack. This is a proof of how powerful the technique

is.

The introduction of side-channel attacks was so successful because it took an

entire discipline by surprise. Until that moment, the security of a cipher was eval-

1

Introduction

uated in a purely theoretical framework, which only considered the algorithm and

not the machine that implemented it. The fact that a piece of hardware was to

execute an implementation of the algorithm was seen as a practical detail. As we

found out, these seemingly boring implementation details soon became the source

of many issues. When side-channel attacks are involved, what is being calculated

is not everything: how a certain value is obtained becomes crucial. The order of the

instructions, their timing, the specific way an elementary operation is implemented,

all potentially leak information.

Countermeasures soon started to be developed. Those, paired with new design

criteria that finally took the implementation into account, together with the con-

stant improvements in the manufacturing technology, contributed to thwart the

most common attacks. At the beginning of the 2000s, a theoretical framework was

published that allowed to formally evaluate the soundness and privacy of a cer-

tain implementation against the most prominent class of attacks at the time. This

was a huge step forward, which allowed to establish formal security proofs for the

countermeasures, and to compare the various alternatives under a unified model.

Some of these countermeasures relied on specially designed logic styles to imple-

ment the digital circuit, while many others simply involved modifications to the

microarchitectural and architectural levels of the device. This last category proved

very successful because it allowed to reuse widely deployed implementation tech-

niques, and can be extended to software implementations. While some of these

countermeasures exploited the properties of a specific cipher, others contributed

generic building blocks, allowing to secure any encryption algorithm.

Until recently, these countermeasures had to be applied manually, by inspect-

ing either the circuit network or the software implementation and identifying the

weak points. The latter case meant reading the assembly code and replacing some

of them with secure transformations, taking into account the ordering of the op-

erations and data dependencies. Evidently this operation has to be repeated for

each single software implementation and platform. As the size of the design space

grows, both in terms of available ciphers and available platforms, the widespread

application of manual methods quickly become unpractical. In this scenario, the

analysis and transformation framework of modern optimising compilers can be

successfully employed to automate the analysis, identify vulnerable instructions

and apply appropriate countermeasures.

The field of automated analysis and protection is still very young, with the first

2

published studies dating back to the early 2010s, and my work aims to add an hope-

fully non-zero contribution to it. Automated solutions offers great flexibility when

it comes to progressive improvements of the code, since they eliminate most of the

burden that previously laid on the software author or auditor. In addition to that,

countermeasures may be handled with algorithms that guarantee the soundness of

the result, no matter what the complexity of the codebase is. The precision of

the analysis also allows to limit the countermeasures to where they are effectively

needed, reducing the performance hit inevitably introduced by the transformations.

The content of this thesis is articulated in three chapters, plus an appendix. In

the first one, I introduce and detail the specific family of attacks my work aims

at preventing, the underlying theoretical model and the countermeasures I have

adopted. The second chapter will instead discuss the inner workings of the solu-

tion I studied and the details of the tools I developed for this purpose. In order

to demonstrate the feasibility of the techniques I describe, I analysed and protec-

ted the implementations of several standardised and some novel symmetric block

ciphers. The third chapter presents and discuss the results of the time and code size

benchmarks I conducted under two popular embedded architectures, ARMv7 and

MIPS32, and different security parameters.

The analysis tool is also able to produce visualisations of the internal properties

of the various algorithms analysed, which proved valuable for exploring the design

space of symmetric ciphers and offered meaningful insights into the distinctive

features of different internal structures, giving further substance to interpret the

benchmark results.

3

Introduction

4

Chapter 1

State of the Art

This chapter contains a survey of the theoretical framework underlying my

work. The presentation is organised around five main topics, which cover the at-

tack model, its formalisation and one specific family of countermeasures whose

choice will be motivated further. An additional section will provide details about

the analysis technique which is at the core of my tool.

The first two sections examine side-channel attacks, a broad range of tech-

niques which comprises several attack vectors and analysis methods, that can nev-

ertheless be grouped into two high-level categories: passive -- when an attacker

limits himself to observe properties of the circuit or program execution, and active

-- where the attacker manipulates the computation and evaluates the effects. The

third section formalises said attacks using the theoretical framework introduced by

Ishai, Sahai and Wagner, in which a proof of security can be given for circuits and

software routines. The fourth section will provide insights about masking counter-

measure against side-channel attacks, a particularly flexible and well studied one.

The fifth and last section will detail the dataflow analysis framework.

1.1 Passive side-channel attacks

A symmetric cipher (or any cryptographic algorithm, for what matters) can be

seen as a black box, with some inputs, a plaintext and a key, and some outputs,

the ciphertext in our case. When operating the cipher, the information flows from

the input to the output, forming a channel that we will call the main channel. In

the last few decades, various design techniques have been introduced, making it

5

CHAPTER 1. State of the Art

Known
Input

Encryption
Device

Hypothesis
Formulation

Measure

Correlation

Correct
Guess

Figure 1.1: Phases of a power side-channel attack

impossible for the attacker to extract information about the input from the output,

i.e. by observing the main channel.

All these techniques are based on the assumption that this main channel is the

only path information flows through. In practice, though, ciphers have hardware

or software implementations which leak additional information about the compu-

tation being performed. For instance, the power consumption of a specific gate

could be correlated to a particular form of the operands, or the time a certain op-

eration takes might have a dependency on the input. This extra flow is called the

side channel. All the attacks described in this section process measurements taken

from the device, but do not interfere in any way with the computation, hence the

“passive” term. This is in contrast with “active” techniques, which disturb the

circuit and gather information from its reaction to the faults introduced. Most of

the attacks described in the following sections require physical access to the com-

puting device, although some remote side-channel attacks have been reported in

literature, e.g. timing attacks against web services implementing cryptographic

ciphers [13, 16, 20].

There is a long record in literature of attacks that exploit different side channels,

ranging from time, to power consumption [48,49], electromagnetic [4], photon [74]

and sound emissions [34]. Power analysis is a common one, since measurements

can be taken in a minimally invasive way with standard laboratory equipment.

1.1.1 Power analysis

At a macroscopic level, a microprocessor is composed of functional units, each

of them handling a specific task. The dispatch of a memory load instead of e.g. an

addition, will activate different units at different times, with an effect on the power

consumption of the device. At the microscopic level, each semiconductor logic

6

1.1. Passive side-channel attacks

gate in the microprocessor is built of transistors. Because of their physical struc-

ture, a current flows through them during each state transition, determining again

a variation in the power consumption of the device. A theoretical modelisation of

the power consumption of a computing device can be found in [19].

Although these variations are minimal and not directly observable, they are

detectable using statistical techniques. In both case, the power consumption of

the device over time can be linked to the operations being performed, and for this

reason it can be exploited as a side-channel. Even if these classes of attacks were

first targeted at power measurements and still retains the fact in their name, the

same methodologies described have been successfully applied to electric, mag-

netic, acoustic and thermal probes. The variants based on electro-magnetic emis-

sions are very common as well, and have been dubbed SEMA (simple electro-

magnetic analysis) and DEMA (differential electro-magnetic analysis) [4, 33, 70].

The power analysis attacks described in this section assume the implementa-

tion is a white box, as the internal structure of the circuit must be known to some

extent in order to formulate a prediction model for their power consumption un-

der given hypothesis. Two common models for power variations are the Hamming

weight of an intermediate result, which accounts for the energy needed to set the

wires carrying the value from an initial state all-up or all-down, and the Hamming

distance between two different values, which models the behaviour of a switching

memory element, e.g. a D-latch.

The logical phases of a power attack are shown in Figure 1.1. Starting from

a known input, the target device is attached to an oscilloscope or similar, which

records a power profile during the execution. In parallel, the attacker makes hy-

pothesis on the internal state and uses a theoretical model to produce the expected

value for the quantity under measure. The oscilloscope data is then compared with

this expected value, leading to either confirming or discarding the set of hypo-

thesis. By trial and error, the attacker gains knowledge about the internal state

of the device. The precise nature of the input values, hypothesis and comparison

methodology depends on the specific attack, as it will be detailed in the rest of this

section.

Collecting traces The first step in any power analysis is collecting one or more

traces from the device. A trace is a sequence of measurements over time, in this

case of power consumption while the cipher runs. These measurement could be

7

CHAPTER 1. State of the Art

taken, for instance, by placing a resistor on the ground line and measuring the

voltage drop at its terminals. To increase the precision of the measures, a stabilised

bench power supply might also be used in place of the one embedded in the circuit,

or the decoupling capacitors might be removed. A sinusoidal clock might also

be used to reduce the interference of high-frequency harmonics [49]. Sometimes,

having the device operate at the edge of its operational envelope might also be

useful to decrease the effectiveness of attack countermeasures, e.g. by a controlled

lowering of the input voltage, as described in [49].

Simple power analysis (SPA) Simple power analysis involves a direct interpret-

ation of the power consumption measurements collected during cryptographic op-

erations [48]. SPA techniques exploits major variations in the power consumption

that are apparent from the traces, and therefore are not able to work around noisy

captures. However, the problem of noise can be reduced by techniques as averaging

multiple traces instant by instant and performing SPA on the result.

The central point in SPA is making inferring aspects of the inner working of the

circuit being probed by looking at the trace. For instance, a circuit might perform

some memory read/write operations at the end of each round of a symmetric cipher

implementation, producing a pattern which is different from the one of the round

computation. The number of rounds could reveal the exact algorithm implemented

by the circuit. Sometimes, the pattern can directly reveal the secret input, for in-

stance if the computation flow depends on parts of it. This happens in the case of

naive square-and-multiply RSA implementations, where the encryption operation

loops over each bit in the private key (exponent), performing a different operation

in case of 0 and 1.

A more refined SPA technique is trace pair analysis [49], based on comparing

multiple traces to identify differences, which could identify the points where the

computation takes different paths, depending e.g. on the input. In general, the

source of SPA leaks are visible deviations in the computation, caused by condi-

tional branches and operations with variable timing depending on the input. Even

in the case of fixed-time operations and branch-less code, differences in a micro-

processor microcode might be revealed by the analysis. More high-level events

such as context switches and interrupts might be exploited as well, although they

tend to yield poorer results, because of their inconsistent timing.

Other SPA-based techniques include collision attacks, which involves determ-

8

1.1. Passive side-channel attacks

ining pairs of inputs which result in the same internal state, and algebraic attacks,

which may lower the number of bits required to perform a successful key extrac-

tion, such as the lattice-based attacks, such as the one against DSA [53, 63] de-

scribed by Howgrave-Graham et al. in [40].

Although fairly simple, SPA is practical only in the presence of significant

dependencies of the control flow on the input, which cause some instructions to

be skipped. This condition seldom occurs in real-world implementations of block

ciphers, and are often hidden by noise. In these cases, and when there is no ap-

parent way to interpret discrepancies in the traces, DPA techniques might be more

appealing, thanks to their noise-canceling properties and a more relaxed guessing

model. Other than stand alone, an SPA could also be used as a support for DPA,

by pinpointing the time instants in which the process of interest takes place, e.g.

marked by a sudden increase in power consumption, thus helping the attacker to

narrow the time window to be analysed.

Differential power analysis (DPA) DPA is a statistical method for analysing

sets of power measurements in order to identify data-dependent correlations, as

stated in [48]. The basic method involves splitting the set of samples for a given

instant in time into subsets, then computing the averages of the subsets. If the

partition is not correlated to the value being computed, then each subset is just a

random sampling from the full distribution, and the differences between averages

will tend to zero as the number of traces grows. Instead, if there is a correlation, the

differences will approach a non-zero value. DPA can expose even tiny correlations

when enough traces are collected, under the assumption that the noise and sampling

errors have zero-average distributions that cancel out. However, improvements in

the data collection can greatly reduce the time needed to recover the secret by

improving the input signal quality, i.e. making the signal-to-noise ratio better.

This analysis is supposed to be performed at a “point of greatest leakage” in

time. In practice, determining this point is difficult or impossible without prior

analysis. To remove this requirement, the classification and averaging process is

performed at various time offsets within the traces. In the case of a binary partition,

the DPA result can be plotted so that the X axis is the time offset in the traces, and Y

axis the difference in the averages of the two distributions at that point in time. The

graph will be mostly flat, but whenever a correlation with the data being processed

in that moment exists, a non-zero value will appear, i.e. a spike. More refined

9

CHAPTER 1. State of the Art

statistical tests can also be adopted instead of a difference-of-averages, leading to

good results with fewer traces, for instance in the case of CPA introduced by Brier

et al. [15], which exploits the Pearson correlation factor.

The function used to file a certain sample under one of the subsets is called a

selection function, and it determines the information revealed by a DPA. Typically,

a selection function is a binary function, thus determining a binary partition, based

on a guess about the value of an intermediate value in the computation. More

complex multi-bit hypothesis also enable non-binary selection functions, which

may speed up the process [49]. The guess can be as simple as the value single bit,

e.g. one output of a S-box, or any complex prediction. In any case, good selection

functions are crucial in performing a successful DPA, and constitute the “smart”

part of any DPA attack.

A DPA works by collecting traces over multiple executions of the same com-

putation. In order to synchronise these traces , the measuring equipment could be

triggered by a signal that happens at a well-known point in time, e.g. on the line

that gives a “start encrypt” command, if available. Based on the expected charac-

teristics of the traces, analog filters and special probes could be used to increase

the quality of the capture. Additionally, a post-processing may be implemented to

perform tasks like noise reduction, feature highlighting, or temporal realignment

of the collected traces to counterbalance device clock drifts. It could be as easy as

finding the time shift d that minimises the differences between T0 [t] e T1 [t +d] for

two traces T0 and T1. In particular, some DPA countermeasures work by misalign-

ing traces through non-uniform time skews in the form of random no-ops, clock

skips and non-synchronised clocks. In any case, it should be noted that perfect

alignment is not required, although it can significantly speed up the attack.

Once the traces have been collected and prepared, the attack works in three

steps:

1. Prediction and selection function generation different selection functions

are prepared based on different guesses about the same variable, and the set

of samples partitioned accordingly.

2. Testing usually, the average of each subset is computed. A compression

function might be applied to isolate the meaningful points and reduce the

computational weight of this step, which already accounts for most of the

time spent in the process, together with the capture time.

10

1.1. Passive side-channel attacks

3. Evaluation the results of the previous step are composed and analysed to

determine the most likely guess. The process is usually done by visual in-

spection of an operator. Automated tools have been developed as well that

suggest the most likely candidates.

These steps may also be iterated, for instances in attacks against multi-round block

ciphers, where a successful key recovery requires attacking the first round and

recover the first subkey, then using the results to attack the second round and so on.

Correlation Power Attack (CPA) Correlation power attacks (CPA) are a variant

of the DPA, proposed by Brier et al. [15], that works by maximising the correlation

between the observed distribution of power consumption at a fixed time instants

over the collected traces, and the predicted distribution under a certain key hypo-

thesis. Usually, the Pearson correlation test is employed and the attack proceeds

by formulating hypothesis and checking which yields the maximum correlation

coefficient.

Higher-order DPA (HODPA) The attacks described above rely on the traces

collected from a single point in the circuit, for instance the ground line. It is entirely

possible to combine the traces collected from t different points in time or space

during the computation, using a generalisation of DPA known as higher order DPA

(HODPA). The order of a HODPA t is equal to the number of probes applied to the

circuit, and we speak of tth-order DPA.

A classic application of the HODPA is to bypass masking countermeasures,

where a value is split into a set of shares, such that individual probing of them

give no usable measurement, but the set of traces for probes A,B, . . . will show

correlation to their ⊕-sum. In general, the number of traces necessary to perform

a successful HODPA grows exponentially in the order of the attack, meaning that

those countermeasures that force an attacker to use higher orders are an effect-

ive way to hinder practical attacks by increasing the trace capture time over the

threshold of feasibility [75].

1.1.2 Countermeasures

SPA can be easily thwarted in most practical instances, as it suffices to avoid

conditional branches based on input-dependent variables and use constant-time op-

erations and algorithms. These conditions naturally occur for most if not all the

11

CHAPTER 1. State of the Art

modern symmetric ciphers which are treated in this discussion, and easily reduce

the source of SPA leakage to the point where it is overcome by noise. Preventing

a DPA is much more challenging because of its noise-cancelling properties, and a

lot of different countermeasures have been studied since the inception of this class

of attacks.

The first set of DPA countermeasures include hardware design techniques that

minimises data-dependent leakage or decreases the signal-to-noise ratio of the cir-

cuit to the point where collecting enough traces to reveal an actionable correla-

tion becomes unpractical [50]. Noise might be introduced in the measurements by

adding circuits that perform calculations non correlated with the values of interest

to an attacker, or by inserting random variations in timing and execution orders

with methods, such as drifting or jittery clock, random no-ops , dummy operations,

or random branching between different implementations as used in [60]. These

counter measures are not very effective, and signal processing can often eliminate

the noise, for instance by detecting a pattern in the injected dummy operations [19].

However, a combinations of them can help thwart most basic attacks by increasing

the time needed to collect traces, as demonstrated by Schramm et al. in [75], and

requiring (slow) human assistance in detecting potential noise patterns.

A more refined approach consists in splitting the inputs and combining them

with random values in a way that require challenging HODPA attacks, like blind-

ing, which introduces random values in computation exploiting known mathemat-

ical properties of the algorithm or masking, a countermeasure based on encoding

each input into multiple, randomised shares that are processed independently and

recombined only at the end.

1.2 Active side-channel attacks

Passive side channels attacks as described in Section 1.1 rely on simple obser-

vation (probing) of the circuit, followed by post-processing and analysis. Another

class of side-channel attacks exists, which is based on deliberately manipulating

a computing device, e.g. by flipping a bit in a register or cutting a wire, and ob-

serving the effects or lack of thereof. These are active side-channel attacks, also

known as fault attacks. Various methodologies of active attacks exist, which differ

heavily based on the functionality implemented by the circuit under attack, e.g.

for symmetric and asymmetric cipher implementations. In the following sections I

12

1.2. Active side-channel attacks

will privilege the discussion of attacks against symmetric ciphers.

Common fault injections techniques are variations in power supply at the bound-

aries of the operational envelopes, variations in the external clock to induce a de-

synchronisation with e.g. memory, variations in temperature to affect the operation,

use of light sources or ionising radiations to trigger photoelectric effects that result

in a bit flip, high-precision laboratory equipment to cut wires or insert new pads.

The resulting fault may be either transient or permanent. In the former case, usu-

ally a current is induced in the device that is falsely interpreted as an internal signal.

As the ionisation source is removed, the chip goes back to its normal behaviour.

On the contrary, a permanent fault introduces a non-reversible modification in the

structure of the circuit, such as the destruction of a gate, short-circuiting of two

wires or bypassing of a memory element.

Irradiation techniques require the silicon to be exposed, which makes the tam-

pering evident and reduces the chances to be able to reuse the device outside the

laboratory setup. This is even more true if the irradiation is used to produce per-

manent effects. The process reduction in the manufacturing of microchips means

that targeting a single gate is becoming harder and harder, and the laboratory equip-

ment is extremely expensive, ranging from thousands to millions of euros. How-

ever, such equipment offers very precise control over the faults being induced,

which might sensibly speed up an attack, or enable new ones.

Setup-time violations, which include clock and input voltage manipulations,

are much cheaper but less localised, as they target the chip as a whole. Their

effect on the computation varies from skipping instructions to preventing correct

loads and stores. These fluctuations can be triggered at specific instants during

the computation, but it should be noted that, with microprocessors becoming faster

and faster, the rise time of high-precision power supplies is usually not sufficient

to isolate single clock cycles. Thermal variations are also used, with the peculiar

ability to disable loads and stores separately. In fact, the operational envelope for

the two operations differ, therefore a range of temperatures can be found such that

one operation is malfunctioning with a certain probability, but the other is working

properly, as mentioned in [49].

1.2.1 Differential fault analysis (DFA)

A differential fault analysis attack against a symmetric cipher works by recon-

structing the internal status of a round by observing the differences between pairs

13

CHAPTER 1. State of the Art

of faulty-correct outputs from the same input. Once the relevant portion of the key

schedule has been discovered, the attack then moves up, by inverting the last round

(whose key is known) and targeting the last but one, up until the whole key has

been recovered or the first round has been broken. Because of the diffusion prop-

erties of modern ciphers, faults are typically induced close to or in the last round,

with the goal of minimising the complexity of the relation with the bits potentially

affected. Doing otherwise would diffuse the effect on all bits, providing no useful

information to the attacker.

A famous DFA attack is the Piret attack [66] against AES-128, which injects

single byte faults in the internal state and can cut down the bruteforcing effort

to 240 with a single faulty-correct pair. Additional pairs often narrow down the

candidates to few, if not a single one. The attack can be adapted to AES-192 and

AES-256, although it requires an additional guessing effort. Provided that faults

can be injected with the precision required, the attack is feasible in some minutes

of computation on a common desktop with around 200 or 300 faulty-correct pairs.

The Shamir attack against DES [12] is similar to the Piret attack, although he also

showed that it can be applied to a black-box cipher (as Skipjack was in 1996) to

reverse-engineer its internal structure.

1.2.2 Safe-error attacks

Safe-error attacks (SFA) [44] exploit the ability to inject errors that do not alter

the result of a computation, on the contrary of a DFA. Because of the inherent struc-

ture of block ciphers, any single-bit flip will rapidly diffuse to the entire ciphertext,

which means that safe-errors might only happen when a bit is forced to the value

it would already have in normal conditions. Therefore, an attacker proceeds by

forcing a certain value on a given bit, and observing variations in the output, or the

lack thereof. No change means that the bit was set to the correct value, anything

else means the guess was incorrect, which for a single bit reveals the value anyway,

as the complement of what was forced.

Depending on where the fault is injected, this class of attacks is divided in two

families: attacks to the computation (called C-SFA) [82], which target the ALU,

and attack to the memory (M-SFA) [81], targeted at memory or registers. The

latter is less common because of the higher degree of control needed over the fault

location and timing [47].

14

1.2. Active side-channel attacks

1.2.3 Countermeasures

Countermeasures against malicious faults are essentially the same employed

against accidental faults in high reliability equipment, as shown for instance in

[44, 47, 82].

The usual approach is based on redundancy, either spatial, temporal or encod-

ing redundancy. In the case of spatial redundancy, more circuits are employed to

compute the same operation multiple times, and a voting mechanism is used to

detect discrepancies, e.g. by accepting a result only if at least 2 out of 3 units

yield the same. Temporal redundancy works in a similar fashion, but multiple res-

ults are sequentially calculated by the same device. Finally, coding redundancy

employs error detection or correction codes, such as the Reed-Solomon [80] or

Manchester [32] encodings. Once a malfunction has been detected, the circuit can

emit random output to prevent the leakage, or enter an emergency mode.

Temporal redundancy is the cheapest, as it does not require special hardware,

it just accepts the overhead of re-executing the same computation, either hardware

or software. Fault injection is able to fault the majority of the values by inducing

multiple times the same failure in the same point in the case of 2-out-of-2 schemes,

while 2-out-of-3 and higher are usually more difficult to attack. Fault injection is

still possible, but increasingly challenging in that an higher and higher temporal

and spatial precision is required to inject a faulty majority, for instance 2 on 3

equally faulty values.

Besides temporal duplication, a symmetric cipher implementation might be

protected without additional hardware requirements by decrypting the ciphertext

and checking with the original plaintext. This is possible for a lot of ciphers that use

the same primitive for both operations, and quite difficult to overcome, as injecting

another fault in the decryption routine that results in a correct plaintext is extremely

challenging.

A low-impact hardware duplication technique involves Dual Data Rate (DDR)

logic [56], which perform an operation both on the rising and falling edges of the

clock, resulting in a doubling of the computation. The rising and falling results are

stored separately and then compared. This technique has been applied with success

to AES implementation, although no results are known on more complex routines,

such as asymmetric ciphers.

Error correction are usually optimised for hardware implementations, and the

15

CHAPTER 1. State of the Art

large amount of bitwise operations make software implementations slow, which

is why they are usually employed in special circuitry. In both cases, the main

challenge is preserving a valid encoding through the non-linear operations of a

symmetric cipher, with the usual approach involving a parity code whose value

is cached for each possible output of the S-box. Parity codes are not extremely

reliable, though, for instance they won’t detect an even number flip errors.

In addition to redundancy, hardware watchdogs can be used to detect sudden

variations in clock or input voltage, triggering a similar emergency mode. Capa-

citors and self-sustaining oscillators can also be embedded in the device to remove

the dependency on external devices which are very easy to tamper, as the quartz os-

cillator or the filtering capacitors. These hardware countermeasures prevent most

of the low-cost attacks, but imply an increase in the price, and therefore are usually

restricted to high security applications.

Finally, the circuit can be somewhat protected from irradiation by adding a

reflective coating over the chip, or packages whose opening irreparably breaks the

contained chip. An even more sophisticated countermeasure implies running a

thin mesh of conductors over the die and running a periodic signal through them.

FIBs are highly likely to break the mesh, interrupting the anti-tamper signal and

triggering again an emergency mode.

1.3 Masking

Masking is a form of secret-sharing and it is the at the core of the ISW secure

transformation discussed in Section 1.4.1. It consists in splitting each value into

a collection of n values, also called shares, such that at least m ≤ n of them are

required for reconstructing the original value, and no information (at all!) about the

original value can be gathered by observing less than m of them. Usually m = n,

i.e. all of the shares are required for reconstructing the masked value. A masking

scheme is said to be of order n if each value is split in n+1 shares.

Goubin and Patarin first mentioned this method in [37, 38], and it was almost

contemporarily analysed by Chari et al., who showed the soundness of first-order

masking and how it can be extended to higher-orders as in a secret-sharing scheme

in [19]. In particular they showed that in a realistic leakage model, the number

of acquisitions necessary to recover the key grows exponentially in the masking

order. Ishai et al. expanded the work of Chari by proposing the ISW framework

16

1.3. Masking

for provably secure masking. Rivain and Prouff extended the ISW analysis in

[73], proving that the information obtained by observing the entire leakage of an

execution can be made negligible in the masking order. All in all, the masking

order t can be considered a sound security parameter for the circuit under analysis.

Although masking is generally slower than other countermeasures, it carries a

formal proof of security and can be used to secure any algorithm, two properties

that make it very appealing. In particular, the ISW proof shows that a masking

of order m = 2t +1 is effective against any passive side-channel attack of order at

most t. The complexity of carrying on such an attack grows exponentially in its

order, and attacks above the third order are considered unfeasible.

In general, a masking scheme defines a way of transforming a value into a col-

lection of shares (encoding) and, conversely, how to compose shares to retrieve

the masked value (decoding). The masking scheme at the base of the ISW coun-

termeasure described in Section 1.4.1 is usually called boolean, as opposed to an-

other common scheme, arithmetic masking, which employs a modular sum (usu-

ally modulo the word size) to the same purpose, instead of a xor-sum. These two

schemes are described in Sections 1.3.1 and 1.3.2, and together cover all the mask-

ing applications I am aware of. The existence of two different encoding scheme is

motivated by efficiency, as it will be explained in the following sections.

These schemes have been first envisioned for hardware devices and will often

refer to hardware terminology, talking about e.g. gates or latches. However, the

same techniques have since been shown to be feasible in software as well, as first

described by Messerges et al. in [60] and Rivain and Prouff, who adapted the

ISW framework to software implementations in [73]. Additional considerations

might be necessary to avoid introducing new sources of leakage, e.g. consecutively

writing two shares of the same value in the same register leak sensitive information

about the Hamming distance, which could be used to reveal the unmasked value.

1.3.1 Boolean masking

A boolean mask of order n is a tuple of n+ 1 shares x0, x1 , . . . , xn such that

x =
⊕n

i=0 xi (boolean invariant), where ⊕ is the bitwise exclusive-or and x is the

masked value. Given a value to mask x, a n-th order boolean masking can be com-

posed by selecting n uniformly distributed independent random values x1, x2, . . . , xn

and imposing x0 = x⊕ (
⊕n

i=1 xi). This is exactly the masking transformation used

in the ISW stateless transformer. Masked operations have been developed in this

17

CHAPTER 1. State of the Art

scheme for most boolean linear and non-linear operations [42, 71], for table look-

ups [18, 19, 21, 60, 72, 73, 75] and more recently for modular addition and subtrac-

tions [23, 24, 35, 45].

1.3.2 Arithmetic masking

An arithmetic masking of order n is a tuple of n+1 shares xo, x1, . . . , xn such

that x = ∑n
i=0 xi mod 2k (arithmetic invariant), where k is usually the word size of

the machine being used and x is the masked value. We proceed in the same way of

boolean masking for producing a a n-th order arithmetic masking, by selecting n

uniformly distributed independent random values x1, x2, . . . , xn and imposing x0 =

x− (∑n
i=1 xi) mod 2k.

This scheme is convenient for masking arithmetic operations, such as mod-

ular additions/subtractions, and multiplications, because in those cases the arith-

metic invariant is more efficiently maintained than the boolean one. However,

most boolean masked operations don’t have equivalents in the arithmetic masking

scheme, and conversion algorithms are necessary to switch between the two, as de-

tailed in Section 1.3.5 and later in Section 6 . Because of this conversion overhead,

arithmetic masking is not advantageous, unless multiple arithmetic operations are

performed in a row. It is worth noticing that this is not the case for any of the

ciphers that will be considered in our contribution, with XTEA [78, 79] being the

closest to having two consecutive additions.

1.3.3 Masked operations

Masked operations manipulate groups of shares in a certain encoding, produ-

cing another tuple of shares in the same encoding, such that the resulting set of

shares can be decoded to the result of the non-masked operation applied to the de-

coded input shares. Masked operations on the same encoding can be chained, as

shown in the case of the ISW transformer, allowing the construction of arbitrarily

complex computations. In particular, all modern symmetric ciphers can be seen as

deterministic boolean functions of their inputs (key and plaintext), and therefore

can be protected in our attack model by chaining basic masked operations.

18

1.3. Masking

Algorithm 1.3.1: Rivain-Prouff MASKREFRESH

Input: x0, . . . ,xn k-bit shares s.t. x =
⊕n

i=0 xi

Output: y0, . . . ,yn such that y =
⊕n

i=0 yi

1 x0← y0
2 for i← 1 . . .n:
3 t←{0,1}k

4 y0← y0⊕ t
5 yi← xi⊕ t
6 return y0, . . . ,yn

1.3.4 Boolean masked operations

This section describes the known boolean masking schemes for all the opera-

tions employed in the symmetric ciphers I will consider in the next chapters. For

some of them, such as NOT and AND, an established solution exists. For others,

e.g. modular addition, various approaches have been devised over time, sometimes

proven insecure and then patched. In these cases there is no established solution,

and one has been devised based on various consideration of performance and prov-

able security.

Negation A masked NOT gate is obtained using the method shown in Section

1.4.1, by observing that ¬x = x⊕1, from which follows that:

x = x⊕1 = (x0⊕ x1⊕·· ·⊕ xn)⊕1 = (x0⊕1)⊕·· ·⊕ xn = ¬x0⊕·· ·⊕ xn

Therefore, it’s enough to negate only one of the shares. In the formula above

x0 is negated, but it could be any of the xi.

XOR and other⊕-affine operations A boolean masked XOR exploits the⊕-linearity

of the boolean masking by applying the operation to each pair of corresponding

shares, i.e. x⊕y = (x0⊕ y0, . . . ,xn⊕ yn). More in general, any ⊕-linear operation

can be masked by applying it to each pair of corresponding shares singularly. It

should be noted that this operation combines two sets of shares without introdu-

cing new randomness. Although not necessary, a refresh of the result might help

to increase the security in practical attacks, by avoiding long chains of operations

19

CHAPTER 1. State of the Art

which depend on few random bits. The mask refresh algorithm has been proposed

by Rivan and Prouff in [73] and is reported in Section 1.3.1. The random values t

used in the algorithm have the same bit size of the input shares xi.

Bitwise non-linear operations (AND and OR) OR is reduced to a AND using De

Morgan’s Law: x∨ y = ¬(¬x∧¬y), and the masked negation described in this

section. The masked AND is computed using the ISW construction shown in Section

10.

Shift, rotation, extension and truncation Shifts and rotations by a constant can

be performed by shifting each share of the input singularly. In the case of shifts

and rotations by a variable, the operation a≪ b essentially amounts to the multi-

plication a ·2b, and it is computed as such. There is no algorithm to my knowledge

that can perform this last operation more efficiently.

Extensions and truncations are assumed to be by a constant amount, since vari-

able length numeric types are usually not a thing, and certainly not one in hardware.

In the case of extensions are truncations by a constant, each share can be manipu-

lated singularly.

In both all cases, the resulting shares will maintain the same distribution of

values in the input, and no mask refresh needs to be be applied, as we are not

mixing multiple sets of shares.

Table lookups A first approach to masked table lookups has been the randomised

table (or, table recomputation) approach, proposed by Chari et al. in [19] and

adopted by Messerges in [60]. Given a first-order boolean masked index (x0,x1)

to be looked up in a table T and a random value r, a randomised table T ′ is built

in memory such that T ′ [a] = T [a⊕ x1]⊕ r for each possible input to the table T .

One can verify that the pair of shares (r,T ′ [x0]) is a sound and private boolean

masking of the looked-up value. The first share is a random value with all the

desired properties, by hypothesis. The second share is obtained as the ⊕-sum of a

value of the table T , on which no assumption can be made, and a perfectly random

value r, obtaining another perfectly random share. It should be stressed that the

whole table has to be calculated, not just the desired cell. Otherwise, an attacker

will see the unmasked value as the index of the lookup, since a⊕ x1|a=x0
= x0⊕

x1 = x.

20

1.3. Masking

The first higher-order masking scheme for which no attack has been devised

to the best of my knowledge was introduced by Rivain and Prouff in [73], who

exploited the fact that the Rijndael lookup table can be written as an exponentiation

over F28 and generalised the ISW masking of the AND operation, which can be seen

as a multiplication on F2. This scheme was later expanded to generic lookup tables

by Carlet et al. in [18] by using Lagrange interpolation over a field F2k , where k is

the size of the lookup index, (the input size for the S-box). They proposed various

optimised variants, with the best one requiring O
(
2k/2 ·n2

)
field multiplications

over F2k , where n is the number of shares.

A second-order randomised table scheme was introduced by Schramm and Parr

in [75], who generalised Chari’s algorithm. However, a third-order attack against

this method was shown by Coron et al. in [25], making it unsuitable for real-world

use beyond the second order. Another second-order table recomputation scheme

was introduced by Rivain et al. in [72], but no countermeasure existed for orders

higher than the second until the one introduced by Coron in [21]. This scheme

is essentially similar to the Schramm and Parr generalisation, but each row of the

randomised table is masked with a different set of random shares, thus thwarting

Coron’s attack [25]. Additionally, masks are refreshed between every successive

manipulation of the input, using the usual Rivain and Prouff procedure reported

in Algorithm 1.3.1. The algorithm is proven secure in the ISW framework for

stateless circuits, as introduced in Section 1.4.

Algorithm 1.3.2: Coron masking of table lookups

Input: x0, . . . ,xn : set of boolean k-bit shares
S : table with 2k entries

Output: y0, . . . ,yn : set of k′-bit shares s.t.
⊕

i yi = S [
⊕

i xi]
Data: T , T ′ : tables with 2k entries, each one a set of n+1 k′-bit shares

1 for each u ∈ {0,1}k:
2 T [u]← S [u] ,0, . . . ,0
3 for i← 0 . . .n:
4 for each u ∈ {0,1}k:
5 T ′ [u]← T [u⊕ xi]

6 for each u ∈ {0,1}k:
7 T [u]←MASKREFRESH (T ′ [u])
8 y0, . . . ,yn←MASKREFRESH (T [xn])
9 return y0, . . . ,yn

21

CHAPTER 1. State of the Art

Coron et al. presented two variants of their countermeasure, a first one with

time complexity O
(
2k ·n2

)
, shown in Algorithm 1.3.2, and an optimised version

having time complexity O
(
2k/2 ·n2

)
with k size of the input and n number of shares

-- the same of Carlet et al. approach. The spatial complexity is O (n) for both, thus

better than the Rivain and Prouff approach and Carlet’s generalization, which re-

quire O
(
n2
)

additional space. However, Coron et al. suggested that a re-ordering

of the operations can bring Carlet on par on space as well. They also showed that

a complete masking scheme which uses their randomised table approach and the

algorithms described in the previous sections for XOR, AND, OR, shifts and rota-

tions achieve perfect security against a t-limited adversary who can move probes

during the computation (i.e. in the full model), when using n≥ 2t +1 shares.

In practice, Coron’s scheme is less efficient than Schramm and Parr’s on Rijndael

S-Boxes, but it is very interesting since it can be applied to a generic lookup table,

with no assumption on the internal structure. Both of them have a significant com-

putational overhead (often 100x or more), which might still be acceptable for mask-

ing the implementation of a symmetric cipher, where few table lookups take place,

typically one per round. For my implementation, I chose Coron’s countermeasure

over Carlet’s because of its higher flexibility, being fully parametric in the size of

the input and output, while Carlet’s requires a multiplication routine on the appro-

priate field.

Algorithm 1.3.3: AND-XOR-and-double addition

Input: x,y ∈ Z2k

Output: r = x+ y mod 2k

1 A← x, B← y
2 C← A∧B
3 A← A⊕B
4 B← 0
5 for i← 1 . . .k−1:
6 B← B∧A
7 B← B⊕C
8 B← B≪ 1
9 r← A⊕B

10 return r

22

1.3. Masking

Algorithm 1.3.4: Kogge-Stone addition

Input: x,y ∈ Z2k

Output: r = x+ y mod 2k

1 n←max(⌈log2 (k−1)⌉ ,1)
2 P← x⊕ y
3 G← x∧ y
4 for i← 1 . . .n−1:
5 G←

(
P∧
(
G≪ 2i−1

))
⊕G

6 P← P∧
(
P≪ 2i−1

)
7 G←

(
P∧
(
G≪ 2n−1

))
⊕G

8 r← x⊕ y⊕ (G≪ 1)
9 return r

Algorithm 1.3.5: Coron’s higher order boolean masked ADD

Input: x0, . . . ,xn and y0, . . . ,yn sets of k-bit boolean shares
Output: z = z0, . . . ,zn such that

⊕
i zi =

⊕
i xi +

⊕
i yi

1 w← SECUREAND (x,y)
2 u← 0
3 a← x0⊕ y0, . . . ,xn⊕ yn

4 for j← 1 . . .k−1:
5 ua← SECUREAND (u,a)
6 u← ua0⊕w0, . . . ,uan⊕wn

7 u← u0≪ 1, . . . ,un≪ 1
8 z← x0⊕ y0⊕u0, . . . ,xn⊕ yn⊕un

9 return z

23

CHAPTER 1. State of the Art

Algorithm 1.3.6: Coron’s Kogge-Stone boolean masked ADD

Input: x0,x1 and y0,y1 pairs of k-bit boolean shares
Output: z0,z1 s.t. z0⊕ z1 = (x0⊕ x1)+(y0⊕ y1)

1 n←max(⌈log2 (k−1)⌉ ,1)
2 t←{0,1}k

3 u←{0,1}k

4 P← x0⊕ y0 P← P⊕ y1 ▷ P⊕ x1 = (x0⊕ x1)⊕ (y0⊕ y1)

5 G← u⊕ (x0∧ y0) G← G⊕ (x0∧ y1) G← G⊕ (x1∧ y0)
G← G⊕ (x1∧ y1) ▷ G⊕u = (x0⊕ x1)∧ (y0⊕ y1)

6 G← G⊕ x1 G← G⊕u // G mask changes from u to x1

7 for i← 1 . . .n−1:
8 H← t⊕

(
G≪ 2i−1

)
H← H⊕

(
x1≪ 2i−1

)
▷ H⊕ t = (G⊕ x1)≪ 2i−1

9 U ← u⊕ (P∧H) U ←U⊕ (P∧ t) U ←U⊕ (x1∧H)
U ←U⊕ (x1∧ t) ▷ U⊕u = (P⊕ x1)∧ (H⊕ t)

10 G← G⊕U G← G⊕u ▷ G⊕ x1 = (G⊕ x1)⊕ (U⊕u)

11 H← t⊕
(
P≪ 2i−1

)
H← H⊕

(
x1≪ 2i−1

)
▷ H⊕ t = (P⊕ x1)≪ 2i−1

12 U ← u⊕ (P∧H) U ←U⊕ (P∧ t) U ←U⊕ (x1∧H)
U ←U⊕ (x1∧ t) ▷ U⊕u = (P⊕ x1)∧ (H⊕ t)

13 P← P⊕ x1 P← P⊕u // P mask changes from u to x1

14 H← t⊕
(
G≪ 2n−1

)
H← H⊕

(
x1≪ 2n−1

)
▷ H⊕ t = (G⊕ x1)≪ 2n−1

15 U ← u⊕ (P∧H) U ←U⊕ (P∧ t) U ←U⊕ (x1∧H)
U ←U⊕ (x1∧ t) ▷ U⊕u = (P⊕ x1)∧ (H⊕ t)

16 G← G⊕U G← G⊕u
17 z0← x0⊕ y0 z0← z0⊕ x1
18 z0← z0⊕ (G≪ 1) z0← z0⊕ (x1≪ 1)
19 z1← y1
20 return z0,z1

24

1.3. Masking

Algorithm 1.3.7: Karroumi-Joye boolean masked ADD

Input: x0,x1 and y0,y1 pairs of k-bit boolean shares
Output: z0,z1 s.t. z0⊕ z1 = (x0⊕ x1)+(y0⊕ y1)

1 C←{0,1}k

2 T ← x0∧ y0 Ω←C⊕T
3 T ← x0∧ y1 Ω←Ω⊕T
4 T ← x1∧ y0 Ω←Ω⊕T
5 T ← x1∧ y1 Ω←Ω⊕T
6 B←Ω≪ 1 C←C≪ 1
7 z0,z1← x0⊕ y0,x1⊕ y1
8 T ←C∧ z0 Ω←Ω⊕T
9 T ←C∧ z1 Ω←Ω⊕T

10 for i← 2 . . .k−1:
11 T ← B∧ z0 B← B∧ z1
12 B← B⊕Ω
13 B← B⊕T
14 B← B≪ 1
15 z0← z0⊕B
16 z0← z0⊕C
17 return z0,z1

Additions and subtractions (modulo 2k) Masked additions and subtraction are

straightforward operations under arithmetic masking of any order (cfr. Section

1.3.2), since they are linear in that scheme and thus behave as XOR under boolean

masking. Unfortunately, they pay the overhead of conversion from and to the

boolean masking, which is used for the majority of the other operations. Such

overhead could be amortised over the cost of many chained operations, but none

of the symmetric ciphers I considered exhibits two additions or subtractions in se-

quence. The one that goes closest is XTEA [78, 79], having two additions per

round, separated by a XOR.

It is therefore understandable that a “direct” approach that can operate on

boolean masked shares is very appealing. This idea was first mentioned in Golić

[35]. His solution was based on a masked ripple-carry adder, which gives good

results in hardware, but is unfortunately too slow for software.

The first feasible software approach was introduced by Karroumi, Joye et. al

in [45] and is essentially a first-order masking of the usual AND-XOR-and-double

procedure shown in Algorithm 1.3.3, with a fused Goubin’s arithmetic-to-boolean

25

CHAPTER 1. State of the Art

conversion inside (cfr. Section 1.3.5). The algorithms contains only boolean opera-

tions and the masking proceeds as shown in the previous sections for each operation

involved. An in-depth description of the algorithm can be found in the same paper.

A proof of soundness and privacy is provided by exhaustion, showing that each

value involved in the computation is either uniformly distributed and independent

of the unmasked inputs, or distributed as the AND of two independent and uni-

formly distributed random values. Karroumi’s algorithm requires 5k+8 element-

ary operations (AND, XOR and shifts), where k is the size in bits of the input

shares. The authors observe that a first-order addition under arithmetic masking,

would cost 5k+ 17 elementary operations, including switching from and back to

boolean masking using Goubin’s algorithms (cfr. Section 1.3.5). Both methods are

therefore in the O (k) class, although a direct addition on boolean shares offers a

visible speedup in practice.

Coron et al. improved over Karroumi in [24] by masking in a similar way the

Kogge-Stone adder [51] shown in Algorithm 1.3.4, which computes the carry in

O (logk) instead of the classical O (k) of a ripple carry adder. Again, I refer to

the paper for a description of the algorithm. Their practical results show a meas-

urable speedup of 14% and 23% on larger word sizes (k = 32 and k = 64, respect-

ively) when compared to an addition in the arithmetic scheme complemented with

Goubin’s conversions. The exact number of elementary operations is 28 · log2 k+4,

therefore having a much larger hidden constant than Karroumi’s method, and solv-

ing the inequality 5k + 8 > 28 · log2 k + 4 reveals that Coron’s method is more

advantageous for k ≥ 26 bit, i.e. for 32- and 64 bit operands, a fact confirmed by

their benchmarks on a 32bit AVR microcontroller.

The first higher order masked addition algorithm was proposed by Coron et

al. in [23]. Their approach is essentially the same used by Karroumi et al., a

higher-order boolean masking of an AND-XOR-and-double adder with a fused

conversion, and has time complexity in O
(
n2k
)
, n being the number of shares and

k the size of the operands. In the same paper in which Coron et al. presented

their masked Kogge-Stone, they also suggested that the same generalisation could

be applied to it reaching time complexity in O
(
n2 · logk

)
, although they didn’t

expand on this point.

All the three methods mentioned above have been adopted in my implement-

ation and selected based on which yields the best performance, using the criteria

summarised in Table 1.1. The algorithms implemented are reported in Algorithm

26

1.3. Masking

1.3.7 for Karroumi-Joye, Algorithm 1.3.6 for Coron’s Kogge-Stone and Algorithm

1.3.5 for Coron’s higher order method.

Algorithm 1.3.8: Deriving secure subtraction from addition

Input: x0,x1 and y0,y1 boolean masked shares.
Output: z0,z1 such that z0⊕ z1 = (x0⊕ x1)− (y0⊕ y1)

1 s0,s1← SECUREADDITION ((¬x0,x1) ,(y0,y1))
2 z0←¬s0
3 z1← s1
4 return z0,z1

Finally, it’s worth mentioning that the algorithms for adding boolean-masked

shares can be used to compute a subtraction as well, by exploiting the identities

¬x = x⊕1 and −x = ¬x+1 in the way shown in Algorithm 1.3.8. This technique

was first mentioned by Karroumi et al. in [45]

1.3.5 Conversions between masking schemes

As already mentioned, masked additions and subtractions are linear operations

in an arithmetic masking scheme (cfr. Section 1.3.2) and therefore easily computed

at any order, in the same way a XOR is in the boolean scheme (Section 6). Unfor-

tunately, most operations have a natural or more efficient boolean masking, making

a switching algorithm between the two a necessity.

As already discussed in Section 17, a few masked addition algorithms exist

that can directly operate on boolean shares, and they are usually more efficient

than addition in the arithmetic scheme in the context of symmetric ciphers, as it

will be discussed in the following sections. In fact, these “direct” algorithms fuse

together the operations of switching and adding, improving performance in most

practical instances.

Table 1.1: Masked addition methods selected for the implementation.

Masking order

n = 1 n≥ 2

O
p.

si
ze k = 8, 16 Karroumi

Coron’s higher order

k = 32, 64 Coron’s Kogge-Stone

27

CHAPTER 1. State of the Art

None of the algorithms discussed in the following sections has been imple-

mented in my solution, but they are mentioned anyway for completeness of this

discussion.

Arithmetic to boolean Goubin first introduced a first-order arithmetic to boolean

conversion with complexity O (k) in [36]. His algorithm is based on the following

theorem and its corollary, proven in the same paper:

Theorem 1. If we denote x′ = (A+ r)⊕ r, we also have x′ = A⊕uk−1, where k is

the size of the input and uk−1 is obtained from the following recursion formula:u0 = 0

ui+1 = 2 [ui∧ (A⊕ r)⊕ (A∧ r)]

Corollary 2. For any value γ , if we denote x′ = (A+ r)⊕ r, we also have x′ =

A⊕2γ⊕ tk−1, where tk−1 is obtained from the following recursion formula:t0 = 2γ

ti+1 = 2 [ti∧ (A⊕ r)⊕ω]

Both recurrences only contain XOR, AND and shifts, which can be easily

masked using the algorithms presented in Section 1.3. Goubin formula was later

improved by Joye in [45], who showed a rearrangement of the operations which

increases performance, still remaining in the O (k) class, though.

A different first-order approach based on precomputed tables was devised by

Coron and Tchulkine in [26], then improved by Neiße and Pulkus in [65]. Debra-

ize [29] worked on the Coron-Tchulkine scheme, correcting a bug and improving

performance for machines with small registers, again with complexity in O (k).

Coron et al. devised in [23] the first higher-order mask switching proven se-

cure in the ISW framework. Given a set of arithmetic shares A1, . . . ,An, their trans-

formation is based on splitting each Ai into n boolean shares xi,1, . . . ,xi,n such that

Ai =
⊕n

j=1 xi, j. These sets of shares are then summed using a secure addition al-

gorithm (cfr. Section 17), resulting in n− 1 operations at a cost in O
(
n2k
)

each,

thus an overall complexity of O
(
n3k
)

-- or O
(
n3 logk

)
if Coron’s Kogge-Stone

addition is used, as they later suggested in [24]. They also proposed an optimised

variant based on a recursive split of the set of shares that allows to save a number

28

1.3. Masking

of operations in O (n), bringing the complexity down to O
(
n2k
)

-- or O
(
n2 logk

)
in the Kogge-Stone case.

Given that this method employs a number of secure additions on boolean shares

internally, one can easily realise that the conversion overhead is repaid only if n or

more masked additions are chained, a condition that never happens in the case of

the symmetric ciphers examined.

Algorithm 1.3.9: Goubin boolean to arithmetic switching

Input: x,r k-bit boolean shares
Output: A,r such that x⊕ r = A+ r

1 Γ←{0,1}k

2 T ← x⊕Γ
3 T ← T −Γ
4 T ← T ⊕ x
5 Γ← Γ⊕ r
6 A← x⊕Γ
7 A← A−Γ
8 A← A⊕T

Algorithm 1.3.10: Coron higher-order boolean to arithmetic switching

Input: x1, . . . ,xn set of k-bit boolean shares
Output: A1, . . . ,An such that ∑i Ai =

⊕
i xi

1 for i← 1..n−1: Ai←{0,1}k

2 for i← 1..n−1: A′i←−Ai

3 A′n← 0
4 y1, . . . ,yn← ARITHMETICTOBOOLEAN (A′1, . . . ,A

′
n)

5 z1, . . . ,zn← SECUREADDITION ((x1, . . . ,xn) ,(y1, . . . ,yn))
6 An← XORFOLD (z1, . . . ,zn)

Boolean to arithmetic The first boolean to arithmetic conversion was proposed

by Messerges in [60] and was based on unmasking the pair of shares (x1,x2) either

to x or ¬x, based on a random bit, before applying a boolean mask. His reasoning

was that a first-order attacker is not able to distinguish whether x or its negation is

being processed, thus giving each bit a uniform distribution. However, a second-

order attack against this method is well feasible, as it was first described by Coron

and Goubin in [22], leaving this method broken.

29

CHAPTER 1. State of the Art

Goubin later devised another first-order boolean masking scheme conversion,

again in [36], based on the corollary of the following theorem:

Theorem 3. Given I =
{

0,1, . . . ,2k−1
}

and the function Φx : I → I defined as

Φx (r) = (x⊕ r)− r mod 2K , the following holds:

Φx (x) = x′⊕
k−1⊕
i=1

[(
i−1∧
j=1

(
2 j ∧¬x

))
∧
(
2i∧ x

)
∧
(
2i∧ r

)]

Corollary 4. Φx (r) = (x⊕ r)− r mod 2K is affine over F2.

His solution, shown in Algorithm 1.3.9, runs in constant time in the size of the

input and is proven secure by exhaustion.

Coron et al. proposed the first higher-order switching algorithm in [23], which

is shown in Algorithm 1.3.10, where XorFold is a ⊕-sum of the shares, preceded

by the RP mask refreshing procedure reported in Algorithm 1.3.1. Internally, it

exploits the transformation in the opposite sense which was presented in the same

paper and discussed in Section 1.3.5. This construction was proven secure in the

ISW framework against a t-limited attacker, where n≥ 2t +1. The same consider-

ations of the arithmetic to boolean transformation apply though, i.e. this construc-

tion is not advantageous over a direct addition on boolean shares, unless n or more

arithmetic operations are chained.

1.4 The Ishai-Sahai-Wagner framework

A paper by Ishai, Sahai and Wagner [42] first introduced a theoretical frame-

work for transforming generic circuits into circuits protected against a set of t

probes in a provably secure way. A a similar construction had been already re-

searched by Chari et al. [19] and Goubin and Patarin [37, 38]. However, the ISW

framework is outstanding because it introduces a practical transformation that has

been implemented with a reasonable performance overhead, albeit suffering from

some limitations that will be explained in this section. In addition to that, the ISW

framework is completely generic, as it does not exploit any specific property of the

circuit being protected.

Proving the security against a first-order passive attack is straightforward, as

it suffices to show that each internal variable has a uniform distribution. Such

process is extended to higher orders by considering each pair of internal variables,

30

1.4. The Ishai-Sahai-Wagner framework

by induction on the number. In alternative to exhaustive proof, the ISW framework

proposes a simulation-based approach, in which the security of a construction can

be proved by showing that any set of t of observations made by the attacker can be

perfectly simulated without knowing the input variables.

Besides the proof, they also showed a practical construction that can perfectly

secure any boolean circuit with |C| gates by transforming it into a circuit with

O
(
|C| · t2

)
gates. This construction is based on the fact that a boolean circuit

can always be expressed as a combination of AND and NOT gates (the so-called

NAND logic) and proceeds first by showing a provably secure transformation for

these two logic gates, and then how the transformations can be chained to cover the

entire input circuit. The construction is then extended to prove the same properties

for stateful circuits, i.e. circuits augmented with memory cells.

Two models of attack are introduced in the ISW framework. The restricted

model, in which the attacker can place at most t probes, but cannot move them dur-

ing the execution, and the full model, where the attacker can move the probes, e.g.

every few clock cycles. Security in the full model implies security in the restric-

ted model, and for this reason only the former will be discussed in the following

sections. It should be noted that security in the restricted model might be achieved

with a lower overhead, although it would be arguably less secure, as the full model

has been proven to be well feasible [52].

It is important to keep in mind that the computation must be secured in a way

such that no information is leaked in any intermediate step, since there is no re-

striction on where the adversary can place its t probes, with the only exceptions

detailed in Section 1.4.1. This means that not only the I/O function of each circuit

described must be implemented as described, but also that the exact order of the

operations matters. No simplifications should be attempted and most importantly,

unless the circuit is hand-coded, care must be placed to avoid that any optimisation

layer reorders gates in a way that thwarts the security of the transformation.

1.4.1 The stateless transformer

A deterministic, stateless circuit C can be seen as a directed acyclic graph

whose vertices are boolean gates and edges are wires that connect gates. The size

of the circuit |C| is defined as the number of gates (or nodes) in the circuit (graph).

We can also talk about width and depth of the circuit, referring to the usual concept

of width and depth of the associated graph. Based on this definition, Ishai et. al

31

CHAPTER 1. State of the Art

Input
Transformer

Output
transformer

C'C

Figure 1.2: Circuit C and its ISW transformed C′, with transformers.

introduced in [42] the randomised circuit as a deterministic stateless circuit, aug-

mented with random-bit gates, which assumes an uniformly distributed random

binary value for each invocation. Random-bit gates are nodes with no inputs and

exactly one output. This construction is summarised in Figure 1.2.

The existence of two randomised circuits I and O, respectively the randomised

input encoder and output decoder, is assumed. These special circuits cannot be

probed by an adversarial and do not depend on the function implemented by the

transformed circuit. Even if this hypothesis if very strong, Ishai et al. observe that

it might still possible to achieve a reasonable approximation in real-world applic-

ation by implementing them in tamper-proof logic that can be designed once and

incorporated in all secured circuits.

Definition 5. Given I and O, let T be an efficiently computable deterministic map-

ping from a stateless circuit C to another stateless circuit C′. (T, I,O) is a stateless

transformer if it has the following two properties:

soundness O◦C′ ◦ I and C are equivalent.

privacy any observation made by an adversary that can probe at most t wires of

O ◦C′ ◦ I can be perfectly simulated without knowledge of any wire in the

circuit.

Theorem 6. There exists a perfectly t-private stateless transformer (T, I,O) such

that T maps any stateless circuit C of size n and depth d to a randomised stateless

circuit of size O
(
nt2
)

and depth O (d log t).

32

1.4. The Ishai-Sahai-Wagner framework

The demonstration given is constructive, and proceeds by showing two circuits

Iand O and a transformation T which respects the aforementioned assumptions.

The strategy used is effectively a secret sharing scheme (see [76]), precisely a

m+1 out of m+1 scheme, where m = 2t and t is the number of probes the circuit

should be secured against.

Input encoder I The encoder maps a single binary input x into m+ 1 binary

outputs. The first m outputs are random bits r1, . . . ,rm, chosen using m random-bit

gates, while the last output is given as rm+1 = x⊕ (
⊕m

i=1 ri).

Output decoder O The output decoder is the symmetric of the input encoder I,

and produces a single output y out of m+1 inputs r1, . . . ,rm+1 as y =
⊕m+1

i=1 ri.

Transformer T Assuming without loss of generality that the circuit is composed

of NOT and AND gates only, the following transformations are applied:

NOT m+1 input shares x1, . . . ,xm+1 are transformed in m+1 output shares

y1, . . . ,ym+1 such that shares xi = yi for each i = 1 . . .m, and xm+1 = ¬ym+1.

Algorithm 1.4.1: ISW AND masking

Input: a0, . . . ,an and b0, . . . ,bn : sets of k-bit boolean shares.
Output: c0, . . . ,cn : boolean shares s.t.

⊕
i ci = (

⊕
i ai)∧ (

⊕
i bi)

1 for i← 0 . . .n:
2 for j← i+1 . . .n:
3 zi, j←{0,1}k

4 z j,i← (zi, j⊕aib j)⊕a jbi

5 for i← 0 . . .n:
6 ci← aibi

7 for j← 0 . . .s :
8 if i ̸= j:
9 ci← ci⊕ zi, j

10 return c0, . . . ,cs

AND Given two encoded inputs a1, . . . ,am+1 and b1, . . . ,bm+1, we observe

that a = ∑m+1
i=1 ai mod 2 and b = ∑m+1

i=1 bi mod 2. Therefore, c = a∧ b = a · b
mod 2 = ∑m+1

i=1 ai ·bi. This product must be computed in a way that no intermediate

33

CHAPTER 1. State of the Art

value reveals information to the adversary. For this purpose, random values zi, j are

calculated for each 1≤ i< j≤m+1. Then, z j,i = (zi, j⊕aib j)⊕a jbi are computed.

Finally, the output shares c1, . . . ,cm+1 are computed as ci = aibi⊕
(⊕

j ̸=i zi, j
)
. The

process is described in Algorithm 1.4.1 and can be visualised in form of a mat-

rix [zi, j], where the lower part is composed of random values, the upper part is

computed as just described, and the diagonal is left undefined.

Proving the property of soundness as given in Definition 5 is straightforward,

while proving the privacy of this construction requires some additional considera-

tions, which are explained in Section 1.4.2.

1.4.2 Proof of privacy of the ISW stateless transformer

Algorithm 1.4.2: ISW simulation

Input: qh wires queried by the attacker
Output: [zi, j] transformation matrix

// Step 1: build I set of the selected indices

1 I← Ø
2 for h← 1 . . . |I| :
3 if qh is ai, bi, aibi or zi, j (i ̸= j) or a ⊕-sum of those:
4 I← I∪{i}
5 else: // wh in form aib j or zi, j⊕aib j (for i ̸= j)

6 I← I∪{i, j}

// Step 2: build the
[
zi, j
]
matrix

7 for i← 1 . . .m+1, j← 1 . . .m+1:
8 if i /∈ I:
9 zi, j← undefined

10 elif i ∈ I and j /∈ I:
// If i < j this exactly what happens in C′

11 //

12 if j > i we exploit the fact that zi, j will never be
used in the computation for any qh

13 zi, j←{0,1}
14 else: //

15 if i ∈ I and j ∈ I
16 zi, j←{0,1}
17 zi, j← z j,i⊕aib j⊕a jbi //

18 We have ai, bi, a j and b j.
19 return [zi, j]

34

1.4. The Ishai-Sahai-Wagner framework

The proof of privacy of the ISW transformer (T, I,O) proceeds by showing that

the observations made by a t-limited adversary can be perfectly simulated without

knowing the input values of the C. A probing attack can be imagined as the process

of providing an answer to any t queries of the attacker, in the form “is this wire high

or low?” or any equivalent. When I say “simulation”, I refer to providing answers

to such queries without actually probing the circuit C′. A perfect simulation is

one such that that the (statistical) distribution of the answers is identical to what

the attacker would obtain by actually probing C′. If one can provide a perfect

simulation, it means that the attacker is not able to extract any information about

the inputs of the circuit, no matter which observation it may make.

Single NOT gate All the non-negated shares a1, . . . ,am keep the same distribu-

tion of the input, i.e. independent and uniformly distributed. The only negated

share am+1 is independent and uniformly distributed as well, since each of its bits

is flipped starting from a value which is independent and uniformly distributed.

Single AND gate Let C′ be the transformed circuit of a single AND gate, with in-

puts a1, . . . ,am+1, b1, . . . ,bm+1 and outputs c1, . . . ,cm+1. Given the set w1, . . . ,wm+1

of wires the attacker is probing, we will show that, fixed the inputs a and b to the

original circuit, the joint distribution of the values assigned to the wires wh can be

perfectly simulated with the only knowledge of at most m shares of ai and m of bi.

We call I the set of the indices i corresponding to the shares we need to perform

the simulation and denote the sets of selected shares as a|I and b|I .
In a true evaluation of C′, the inputs ai and bi have by construction the prop-

erty that any m shares have the distribution of uniform, independent random bits.

Therefore, the values of a|I and b|I can be perfectly simulated by picking uniformly

distributed, independent random values, if |I| ≤ m. Given that a|I ∪b|I is the only

input to our simulation, and that it can be perfectly simulated without probing C′,

showing a procedure to build I and a way to perform the simulation will prove the

privacy of the ISW stateless transformer. The ISW simulation algorithm works by

iteratively generating I, and it is shown in Algorithm 1.4.2. The algorithm is split

in two phases:

1. The set I is built out of the queries qh submitted by the attacker.

2. A matrix [zi, j] is built from I and qh

35

CHAPTER 1. State of the Art

The [zi, j] matrix is used as described in Section 10, and it has the property that all

the entries required for calculating the answer to the qh queries have been assigned,

for any set of qh. It useful to observe that since |I| ≤ m and each iteration of the

first step adds at most 2 indices, the cardinality of I can be at most m = 2t, with

torder of the attack. Hence, the m = 2t constant used throughout our description.

We are able to produce a perfect simulation for any m wire in C′ without know-

ledge of the inputs to C. �
Generalisation The same algorithm can be generalised by examining each trans-

formed gate and computing the respective set I. Since at most m wires can be

probed in the whole circuit, |I| is still bounded by m. Then, a simulation is run for

each gate, proceeding from the inputs to the outputs of the circuit. It can be ob-

served that all the intermediate inputs required for the simulation can be obtained

by running the simulation on the preceding gates.

Randomness economy The transformed gates described in Section 10 requires

Θ
(
t2
)

independent random values, which make the construction very demanding

in the case of large circuits. Ishai et al. leave open the problem whether the random-

ness could be reused under certain hypothesis, suggesting that it could be possible

to use the same approach to reducing the complexity in MPC protocols via limited

independence following the approach in [17].

1.4.3 Extension to stateful circuits

Once privacy has been achieved in the stateless model, the same construction

can be extended to the stateful case. For doing so, the existence of a stateless trans-

former (see Section 1.4.1) TC is assumed that satisfies the re-randomized outputs

property, i.e. the fact that the encoding of each bit in the output of the transformed

stateless circuit is t-independent from all other values, even given all the encodings

of the input bits. The said property may be proven for the construction discussed

in the previous sections.

A stateful transformer T = (TC,TS) is obtained by augmenting TC with a trans-

former TS for memory cells, as follows. Given Et (x) the encoding used in TC, each

cell of memory will be encoded with E2t (x). The doubling of the number of shares

is necessary because an attacker may place t probes on a memory cell, obtaining t

36

1.5. Dataflow analysis

measurements at the end of a clock cycle, and other t in the next one, effectively

observing 2t values from the internal state.

The simulation proceeds by transforming a stateful circuit C into a stateless

equivalent C′, composed by the concatenation of a circuit Qi for each step of the

computation, having the initial state of the memory as a hidden input, and the

final state as an output. An attacker is allowed to probe t wires in the stateful

circuit C, which means t wires for each of the Qi . However, by virtue of the

re-randomization property, a full simulation of the entire unwound circuit can be

provided by recovering only a bounded set of inputs for each Qi. The stateless

proof is then carried on C′, obtaining the following result:

Theorem 7. There exists a perfectly t-private stateful circuit transformer T which

maps any stateful circuit C of size n and depth d to a randomised stateful circuit of

size O
(
nt2
)

and depth O (d log t).

1.5 Dataflow analysis

The dataflow analysis is a framework of reasoning for deducing properties of

run time values in a computer program at compile time. It is the most common

tool used by optimising compilers to guide code transformation, but it also proves

useful in itself. In fact, the tool introduced in the following chapters is structured

as a sequence of dataflow analysis passes.

The analysis works by pairing each node of a graph-based representation of the

program with an initial value for the property to be computed, and then iteratively

solving a set of simultaneous equations over them, called the dataflow equations.

The graph in question is usually the CFG introduced in Section 1.5.1, although

applications to the call graph and other graph representations exist as well. To

account for the propagation of the property through loops in the graph, dataflow

equations are solved at fixed point, and various approaches have been devised. The

most common one is the iterative round-robin algorithm, which is introduced in

Section 1.5.3.

Dataflow analysis works well for scalar values, but is less suited to reasoning

about other familiar programming concepts. For instance, arrays must be either

represented as a whole. No way exists in the classical framework to treat this

concept with finer granularity, apart from breaking every index in a different vari-

able. Even more challenging are pointers, which suffer from severe issues, as they

37

CHAPTER 1. State of the Art

BEGIN

a = 2

b = a + 3

b > 1?

c = b - 1

T

read d

F

print c

a = d + 1

END

a > 0?

T

F

BEGIN

a = 2

b = a + 3
b>1?

c = b - 1
print c

T

read d
a = d + 1

a > 0?

F

END

T

F

Figure 1.3: Example of expanded and collapsed CFG

could be pointing to nothing valid, and introduce even more severe ones, such as

aliasing, i.e. the fact that two pointers might end up referring to the same memory

location even through completely independent calculations.

1.5.1 The control flow graph (CFG)

The control flow graph is a representation of a program in form of a graph

which was first introduced by Allen in [5], who based her work on the previous

use of boolean connectivity matrices for representing control flow made by Prosser

in [68]. The canonical definition is given in Ferrante et al. [31]:

Definition 8. A control flow graph is a directed graph G = (V,E), with the follow-

ing properties:

1. V contains at least two nodes, BEGIN and END.

2. Each node in V has at most two successors.

3. There is always at least one path from BEGIN to END.

Each node in the graph, excluding BEGIN and END, represents a single operation

from the instruction set of the underlying target, either a real machine or an inter-

38

1.5. Dataflow analysis

mediate representation. Of the two (pseudo) nodes, BEGIN represents the entry

point, and likewise END the exit point of the program. Nodes that have multiple

successors are called branch- or condition nodes and, as the name implies, repres-

ent those points in a program where different execution paths might be taken based

based on a condition. The classic definitions restrict the number of successors to

two, but this constraint is just for theoretical simplicity and it is not strictly re-

quired. In fact, many CFG-based analysis frameworks admit nodes with more than

two successors, for instance the one built into LLVM [54].

A set of nodes B ⊆ V is called a basic block if each node has exactly one

predecessor and exactly one successor, both belonging to B, with the exception

of two a,b ∈ B, such that a has exactly one successor a′ ∈ B, and b exactly one

predecessor b′ ∈ B.

It is easy to observe that the instructions in a basic block are always executed

in sequence, from the first (a) to the last (b). Exploiting this fact, the control

flow graph is often collapsed so that each node represents a basic block instead

of a single operation: “uninteresting” internal transitions are then hidden, clearly

outlining conditional arcs, those whose origin is a condition node. The collapsed

graph better outlines the control flow of the program i.e. the different paths that the

execution might take from BEGIN to END, as shown in Figure 1.3.

An important fact to keep in mind is that the a control flow graph offers a

conservative representation of the control flow, in that it can’t tell which paths from

BEGIN to END might eventually be taken and which cannot because of impossible

conditions. In fact, executable paths are not computable. Notwithstanding this

limitation, the CFG is at the heart of many optimising compilers, because it offers

a representation of the program which is very convenient for a broad range of code

analyses based on the dataflow framework.

1.5.2 Dataflow equations

A generic set of dataflow equations is written in one of the two following forms:

39

CHAPTER 1. State of the Art

Forward

Out [i] = Ti (In [i])

In [i] = Jp∈pred[i] (Out [p])

Backward

In [i] = Ti (Out [i])

Out [i] = Js∈succ[i] (In [s])

Where pred (x) is the set of nodes y such that an edge (y,x) exists in the CFG

and likewise is defined succ(x). Ti is the transfer function of an instruction i, J is

the join function (or operator), which combines the results of all the predecessors

for forward equations, or successors for backwards equations. Both Ti and J are

specific to the analysis.

Although not necessary, most instances of dataflow equations express the prop-

erty as a set attached to each node, and use either set union or set intersection as

the join operator. These two orthogonal properties allow to classify the set-based

dataflow analyses as follows:

Setbaseddataflowequation



Flowdirection

Forward

Backward

Setoperation

Union

Intersection

Since a CFG cannot always distinguish impossible paths from admissible ones,

dataflow applied to a CFG will give answers that assume all paths might eventually

be taken. This leads to a conservative solutions, which might overestimate some

effects, for instance telling that a definition will be used, although no computable

path to its use exists, but never leave out admissible cases. This fact is of particular

interest, as it means that dataflow solutions are conservative approximations of the

properties exhibited by the program.

40

1.5. Dataflow analysis

Algorithm 1.5.1: Round-robin forward dataflow solver

Input: The CFG of the function, to obtain pred (n) and Instructions
entry ∈ Instructions : the entry point of the function

Output: (Reachin,Reachout) : the reaching definitions property.

1 Reachout [entry]← Ø
2 for each i ∈ Instructions: // Initialisation

3 Reachout [i]= Ø

4 do: // Propagation

5 changed← f alse
6 for each i ∈ Instructions:
7 Reachin [i]←

∪
p∈pred[i] Reachout [p]

8 temp← Gen [i]∪ (Reachin [i]−Kill [i])
9 if Reachout [i] ̸= temp:

10 Reachout [i]← temp
11 changed← true
12 while changed

13 return Reachin,Reachout

Algorithm 1.5.2: Round-robin forward dataflow solver with worklist

Input: The CFG of the function, to obtain pred (n) and Instructions
entry ∈ Instructions : the entry point of the function

Output: (Reachin,Reachout) : the reaching definitions property.

1 Reachout [entry]← Ø
2 Worklist← Ø
3 for each i ∈ Instructions: // Initialisation

4 Reachout [i]= Ø
5 Worklist←Worklist∪{i}

6 while Worklist ̸= Ø: // Propagation

7 pick and remove any i from Worklist
8 Reachin [i]←

∪
p∈pred[i] Reachout [p]

9 temp← Gen [i]∪ (Reachin [i]−Kill [i])
10 if Reachout [i] ̸= temp:
11 Reachout [i]← temp
12 for s ∈ succ(i):
13 Worklist←Worklist∩{s}

14 return Reachin,Reachout

41

CHAPTER 1. State of the Art

1.5.3 The dataflow solver

An example of property that can be calculated through dataflow analysis is the

reaching definitions (Reachin,Reachout). Once defined a definition of a variable x

as an instruction that assigns, or may assign, a value to x, the reaching definitions

property is defined for each node i ∈ V as the set of definitions d for which a

path in the CFG exists from d to x such that d is not killed along that path. The

corresponding dataflow equations are following:

Initialisation Reachout [i]= Ø for each instruction i in the CFG.

Update equation

Reachin [i] =
∪

p∈pred[i] Reachout [p]

Reachout [i] = Gen [i]∪ (Reachin [i]−Kill [i])

Where Gen [i] is the set of definitions generated by the instruction i and Kill [i] is

the set of definitions killed by i. In general, most analyses define an initialisation

value for the sets, and one or more update equations which give the value of a set

at iteration i+1, based on the sets calculated at iteration i.

This set of equations is solved at fixed point, i.e. by iteratively recalculating

the property based on updated values, until the values of the properties affixed

to all the graph nodes converge to a fixed value. The simplest solver is the round-

robin procedure, shown in the forward variant in Algorithm 1.5.1, with the reaching

definitions plugged in. This algorithm works by exploring each node in the CFG

until no property set changes from the previous iteration.

An optimisation of this approach is achieved by observing that the only nodes

whose Reachin might change at the next iteration are the successors of those that

have changed at the current one. This improved variant works by keeping a work-

list, as shown in Algorithm 1.5.2, again for the reaching definitions. For backwards

analyses, the algorithm has to be slightly modified by populating the worklist with

the predecessors of the node whose property was updated in the current iteration.

Another interesting improvement is found in Ferrante et al. [31], who intro-

duced the incremental dataflow, allowing the dataflow solution to be updated incre-

mentally as the CFG changes, for instance under the effect of other optimisations

which require a recalculation of the same property.

So far no guarantee is given about the termination of the solving procedures.

Turns out, the equations as written above may either add new elements to the set

associated to a particular node or none at all, but they cannot remove an element.

42

1.5. Dataflow analysis

Each property set is a subset of V , which can be assumed to be finite in practice,

as V is the set of instructions in the program, which cannot be infinite in any real-

world instance. Therefore, at a given iteration a property set might either be left

untouched or enlarged, and this enlargement is bounded by the size of V . These two

conditions lead to the guarantee of a fixed point, either because the set attached to

a node stabilises, or because saturation is reached, i.e. the set is V itself and cannot

grow any larger.

Kildall introduced in [46] a theoretical formalisation of dataflow based on

semilattices, in which the correctness and termination properties can be formally

proven for all analyses, also those which have an underlying (bounded) infinite

semilattice. Correctness is especially relevant, since dataflow is often used by a

compiler to prove that a certain modification of the program will preserve the se-

mantic. Whenever the equations admit multiple solutions, these will be ordered

in the Kildall framework, allowing to identify which one will be calculated by a

certain solver algorithm.

While termination and correctness are guaranteed irrespective of the solver, the

speed at which the fixed point is reached is not guaranteed at all. In fact, it depends

heavily on the order in which the nodes are explored. Generally, forward analyses

are faster when the CFG is explored in forward post-order, BEGIN to END, and

backward analyses when the visit happens in reverse post-order on the reversed

graph, i.e. the one obtained by swapping the direction of the edges in E, END to

BEGIN. A “rapid condition” is given in the lattice-theoretic framework, allowing

to identify the fastest order of computation for a given analysis.

43

CHAPTER 1. State of the Art

44

Chapter 2

Vulnerability analysis

The contribution described in this thesis is an analysis tool which associates

a vulnerability index to each instruction based on the various side-channel attack

models described in the previous chapter, identifies the security critical instruc-

tions, produces meaningful visualisations and applies a masking countermeasure

as described in Section 1.3 at any specified order. The input is high-level source

code (e.g. C code) augmented with specific annotations, and the executable out-

put is produced in a fully automated way, enabling a selective protection which

is effective against attacks without needlessly hindering performance. In fact, the

countermeasures have a non negligible impact on the execution time, so it is es-

sential to apply them only when necessary, and this tool aims at providing a sound

way to determine where the necessity arises in the generated code.

The process happens in two distinct stages: first a vulnerability index is cal-

culated for each instruction and the instructions are marked as vulnerable (or not)

according to a predefined criterion. Then, a masking countermeasure is applied

to the instructions identified as vulnerable. Both stages are composed of multiple

compiler passes whose results build one on top of the others. Doing so allows to

test each component singularly, rather than the analysis as a whole, and helped

building a solid engineering foundation to the project.

The tool itself is implemented as a collection of analysis and optimisation mod-

ules for the LLVM compiler framework [54]. Each module, or pass in the LLVM

terminology, is a functor that visits the CFG (cfr. Section 1.5.1) built on the LLVM

Intermediate Representation, (IR) to calculate a property or apply a graph trans-

formation. The IR is high-level enough to retain the expressive power required to

45

CHAPTER 2. Vulnerability analysis

carry out the analysis, but operates with concepts at a low enough level to ensure

that the generated assembly will not significantly alter the results.

The name of the passes and the high-level information flow graph among them

is shown in Figure 2.1, and the inner working of each of them will be detailed

in the following of this chapter, proceeding from the source code to the masked

binary. Each group shown in the figure correspond to one high-level phase of the

analysis. During features recognition (Section 2.3), the source code is processed

to identify the features of the cipher implementation -- rounds, plaintext and key

inputs, ciphertext output and S-Boxes -- and calculate the properties of interest,

such as dead bits in S-Boxes and plaintext dependency depth. The, the selection

phase (Section 2.4) identifies the most likely candidates for a side-channel attack,

i.e. those where an attack may be mounted with the smallest complexity possible,

thus representing a lower bound for the security of the implementation. A set of

instructions is selected for attacks from top (forward), and another for attacks from

bottom (or backwards). The vulnerability information is propagated to all the in-

structions in the cipher during the propagation phase (Section 2.5), which happens

once for the forward set and once for the backwards, thus the apparent duplication.

Once the vulnerability information has been propagated, a vulnerability index is

calculated in the filtering and aggregation phase (Section 2.6) and vulnerable in-

structions are then identified and replaced with secure equivalents, as it will be

described in Chapter 2.8.

The implementation resulted in around 9000 lines of source code, organised

as a plugin for LLVM optimiser, plus the modifications to the Clang frontend ne-

cessary to support source level annotations of rounds, plaintext, key and S-Boxes.

Besides the algorithms, the implementation brought a few additional difficulties

which are explained in the following sections. As one might have realised, writing

any nontrivial piece of code entails a series of challenges for the author to produce

something which is both readable and reasonably performing. However, not all of

these decisions are worth being expanded into a discussion. Only the larger design

and implementation issues are presented in this section.

2.1 Notation

Throughout this chapter and the next one, I will adopt the following notation in

formulas and algorithms: let A be a n×m boolean matrix (n rows and m columns),

46

2.1. Notation

BackwardSubkeyInputPointsPass

BackwardSubkeyDepsPass

BackwardKeyDepsPass

BackwardKeyStatsPassForwardKeyStatsPass

ForwardSubkeyDepsPass

ForwardKeyDepsPass

ForwardSubkeyInputPointsPass

BackwardVulnerablePointsPassForwardVulnerablePointsPass

VulnerablePointsPass

MaskVulnerablePointsPass

InputDependenciesPass

DeadBitsPass KeyInputPointsPass

IdentifyRoundsPass
Features recognition

CtxDependencyDepthPass

Forward propagation Backwards propagation

Filtering and aggregation

SelectionDirectKeyDepsPass

AttackCandidatesPass

ForwardAttackSelectionPass BackwardAttackSelectionPass

Figure 2.1: LLVM passes implemented and information flow between them.

47

CHAPTER 2. Vulnerability analysis

(A)i will denote the i-th column of A, ai, j the element of A in row i and column

j, A≫ 1 the matrix obtained by shifting the columns of A by one towards larger

indices, discarding the one with the largest index and replacing the 0th with a

column of zeroes. Finally, cols(A) denotes the number of columns m of the matrix

A.

Assuming that A and B are either matrices or vectors, |A|1 denotes the number

of elements of A equal to 1 and A∨B is the cell-by-cell ∨-sum of A and B. Addi-

tionally, 0 denotes the zero matrix or vector, having the dimensions appropriate for

the context it is used in, and 1 similarly denotes the appropriately shaped matrix or

vector having a 1 in each cell. Finally, given a mapping M : K→V and two values

k ∈ K and v ∈V , M [k] will denote the value v associated with the key k by M, and

M [k]← v the association of k with v, possibly replacing the existing one.

2.2 Frontend

The first set of modifications have been done in the frontend and core of the

compiler, which comprise all the steps that lead from the source code to the input

of the analysis.

2.2.1 Loop check and unrolling

The first step of the analysis is to ensure that the procedure under analysis does

not contain any loop. Eliminating loops and testing the loop-free condition from

the very beginning allows the analysis to exit early in those cases that cannot be

processed and, more importantly, allows to make the hypothesis that the CFG is

loop-free in the following passes. Not only this removes further expensive checks,

it also simplify the storage and processing of the vulnerability properties, as each

instruction has a unique value attached, rather than possibly one for each iteration.

Since this pass dominates all the others and CFG is not modified throughout the

entire set of passes, this check will not have to be repeated.

Loops in the source code are allowed, as long as they can be eliminated by full

unrolling, a code transformation which replaces the loop with a sequence of copies

of the body, each with the loop inducing variables replaced by their respective

values at the iteration the copy corresponds to. This transformation is only possible

if the boundaries of the loop are known at compile time, i.e. if the compiler is able

to calculate the value of the loop inducing variables at each iteration. However,

48

2.2. Frontend

such a requirement is not restrictive, as all the modern ciphers are designed with a

known number of rounds and well defined round parameters. Full unrolling may

be achieved in source code by annotating all the loops in the cipher implementation

with a non-standard #pragma unroll or any language equivalent. In this case, the

unrolling is performed by the LLVM unroll pass, scheduled for execution before

the analysis.

2.2.2 Optimisation pipeline

One of the goals of the project is allowing the code to be compiled through an

almost unmodified toolchain until it comes to the vulnerability analysis itself. This

involves being able to support most of the normally scheduled optimisations. The

solution described in this thesis enables a set of passes very near to the -O3 switch

in Clang, with the exclusion of 3 which had to be disabled. These are the slp-

vectorizer, which tries to group multiple arithmetic operations with vectorial equi-

valents, loop idiom and memcpy, which both try to recognise patterns in memory

operations performed inside loops and replace them with intrinsics with potential

hardware support -- for instance replacing for (int i = 0; i < 5; ++i) b[i]

= a[i]; with a call to memcpy(b, a, 5*k) (assuming that a and b do not alias).

The first of the three introduces vector types in the intermediate, which the analysis

cannot handle in its current status, while the other two introduce opaque intrinsics

which would need special casing.

The output of the security analysis and masking is run through a final dead code

elimination pass to remove unneeded, and the IR is passed to the code generation

phase, which turns it into machine code. It is crucial that no other optimisation

pass is run after the analysis, as it could undo the transformations or simply hinder

the security of the code, which in many cases depends on the operations being

performed in redundant way or a very precise order.

2.2.3 Source level markers

The analysis relies on the user marking the input values, plaintext, key and

S-Boxes in the source code. In order to produce visualisations of the properties

calculated by the analysis, the user may also delimit the blocks of codes corres-

pondent to the rounds of the cipher.

The Clang C/C++/Objective C frontend to LLVM has been modified to process

49

CHAPTER 2. Vulnerability analysis

specific source code annotations and emit the information in the IR. Additionally,

the optimisation pipeline has been modified to remove those transformations that

might affect the precision of the analysis.

Cipher variables markers Key and plaintext annotations are handled using the

__attribute__ mechanism, which allows to attach pre-declared information to

variables and functions. Specifically, two boolean flags have been added:

__attribute__((key)) and __attribute__((plaintext)). The flags are retrieved

while lowering the parsed syntax tree to its intermediate representation and trans-

lated into decorator functions -- llvm.crypto.key and llvm.crypto.plain, taking

the annotated variable as single parameter.

The decorator functions are defined as opaque intrinsics, that is to say impli-

citly declared functions whose definition is not known to the optimiser and might

include side effects. The optimiser cannot prove that it would be safe to move or

drop the function call and this guarantees that the annotation will not be wiped

away by an optimisation pass, as it would happen if IR comments were abused as

markers. The marker intrinsics will be discarded in the core of the compiler, just

before code generation in the backend, and never appear in the executable.

S-Box markers Those S-Boxes represented in the source code as as arrays of

constant integers, similarly marked with a __attribute__((sbox)). The frontend

inserts a pointer to each array in a list, and this list is attached to the IR as a global

metadata entry named @llvm.crypto.sbox. The analysis passes will then retrieve

the list by name and keep track of the S-Boxes, and calculate the dead bits (see

Section 2.3.2) property, which will be used to identify the portions of the code

most vulnerable to the side-channel attack models considered.

Round markers The modifications to Clang also allow to annotate blocks of in-

structions in the source code to identify them as a rounds of the encryption routine.

For the languages supported by Clang, I chose to use code blocks ({} enclosed se-

quences of statements) decorated with an ad-hoc #pragma crypto loop. Pragma

directives are handled by Clang directly in the parser for performance reasons, and

this entailed a lot of modifications in order to add a new one. However, the clean

result in itself justified the effort.

The pragma directive is transformed into an flag which is attached to the as-

50

2.2. Frontend

sociated block to indicate that it constitutes the body of a loop. When lowering

the instructions contained in that block to their intermediate representation, two

synthetic loops are inserted right before and after it. These loops have an empty

body and a looping condition given by other two intrinsics, llvm.crypto.begin

and llvm.crypto.end. The optimiser is not able to eliminate or move these loops

because of potential side effects in the intrinsics, and they effectively serve as de-

limiters, or markers, of the round code.

These delimiters are entire basic blocks and not single instruction. At the mo-

ment, LLVM does not offer a facility to attach metadata to entire blocks, therefore

they need to be re-identified by the analysis. A round marker will be defined as the

inmost loop containing the aforementioned intrinsics. The inmost condition is ne-

cessary because a round might be part of the body of another loop, and the intrinsic

would be part of that loop as well, which is clearly not a marker. IR instructions

are attributed to a round by treating the markers as delimiters and collecting all the

instructions between a begin and its corresponding end in a list, then saving the list

and repeating.

The marker blocks serve no other purpose, and are eliminated once the instruc-

tions have been associated the respective rounds. In particular, the markers must be

removed before passing the code to the vulnerability analysis, because it requires

that the cryptographic routine is loop free, (cfr. Section 2.3.1). Eliminating the

markers and stitching the code in a single block is transparent to the analysis, and

saves the hassle of dealing with these special cases by hiding them during the CFG

exploration.

It should be noted that the identification of rounds is not perfect, although in

practice it performs well. It might happen that the last or last few instructions in a

round are attributed to the next one, because the optimiser proved that they could

be moved across a loop marker without changing the semantic of the program. This

happens when the first or last instructions of a round only perform pure, exception-

free computation over registers, with no access to memory or call to functions.

The solution would be to make the other code transformations performed by the

optimiser aware of the round delimiters, and instruct them to treat round markers

as non trespassable barriers, which at the current time has not been attempted. In

any case, loop identification is only used for visualisation and debugging purposes,

so any imprecision will not affect the soundness of the results.

51

CHAPTER 2. Vulnerability analysis

Listing 2.1: Annotated toy cipher
#include "stdint.h"

#define rot32(x,n) (((x) << (n)) | ((x) >> (32-(n))))

inline __attribute__((always_inline))
void keyschedule(uint32_t* subkeys, const uint32_t* key) {
subkeys[0] = key[1];
subkeys[1] = key[0];
subkeys[2] = key[0] ^ key[1];
subkeys[3] = key[1] << 10 ^ 0xFCEF;

}

void crypt(uint32_t __attribute__((key)) *key,
const uint32_t __attribute__((plain)) *input,
uint32_t *output) {

uint32_t subkeys[4];
uint32_t tmp = *input;

keyschedule(subkeys, key);

#pragma unroll
for (int n = 0; n < 4; ++n) {
#pragma cipher round
{
tmp ^= subkeys[n];
tmp = rot32(tmp, 2+n);

}
}

*output = tmp;
}

Example of an annotated cipher In order to demonstrate the minimal impact

of the modifications required to the source code for the analysis to run, this sec-

tion reports the complete and annotated implementation of the toy cipher used as

example by Agosta et al. in [3]. Besides the __attribute__ annotations, all sub-

routines need to be marked for inlining and all loops for unrolling. Optionally,

the round operations are enclosed in a lexical block decorated with a #pragma. No

structural modification is necessary, and any other compiler is able to process the

same, unchanged, piece of code. All the unrecognised annotations will be ignored

with no error.

52

2.3. Features recognition

InputDependenciesPass

DeadBitsPass KeyInputPointsPass

IdentifyRoundsPass

CtxDependencyDepthPass

Figure 2.2: Input pre-processing passes

2.3 Features recognition

The first set of passes in the diagram is dedicated to identifying the location and

the properties of the components of the encryption routine. First, IdentifyRoundsPass

exploits the annotations in the source code to detect the rounds of the cipher and

associate the instruction to the one they belong to, if any. This information is not

strictly required for the analysis, however it will greatly improve the layout of the

visualisations introduced in the next chapters. When the rounds have been identi-

fied, InputDependenciesPass (Section 2.3.1) retrieves the annotated plaintext and

key inputs and calculate the dependency depth for each of them, a property which

will be then used to select the attack points in Section 2.4.2. The same pass also

deduces the ciphertext output point and feed them to CtxDependencyDepthPass,

which calculates dependency depth in the reverse DFG, following a very similar

method. DeadBitsPass (Section 2.3.2) identifies the S-Boxes in the cipher, and for

each of them calculates the dead bits, another property which will be used both for

attack selection and dependency propagation, the latter described in Section 2.5.

Finally, KeyInputPointsPass (Section 2.3.3) assign the appropriate range of key

bits to each key loading point, in preparation for the dependency propagation.

2.3.1 Dependency depth and loop checking

Input points identification and dependency depth Input variables are annot-

ated in the code with special attributes that the frontend translates into intrinsics at

the IR level, as detailed in 2.2.3. There are two source code attributes, one for vari-

ables containing portions of the plaintext, and another for variables containing por-

tions of the key. In the same way, there are two correspondent intrinsics, denoted

as llvm.crypto.key and llvm.crypto.plain in the algorithms here presented.

This pass scans the IR of the encryption routine, searching for marked instruc-

53

CHAPTER 2. Vulnerability analysis

Algorithm 2.3.1: Input points identification routine

Input: F : routine, as sequence of IR instructions
(implicitly) the DFG of F , to get the users of each instruction

Output: PlaintextDependencyDepth : Instruction→ N map
KeyDependencyDepth : Instruction→ N map
PlaintextInputPoints : Instruction set
KeyInputPoints : Instruction set

1 PlaintextInputPoints← Ø
2 KeyInputPoints← Ø
3 for each i← instructions(F):
4 if i has form llvm.crypto.plain(o):
5 for each u ∈ users [o]:
6 PlaintextInputPoints← PlaintextInputPoints∪{u}
7 TRACKPLAIN (PlaintextDependencyDepth,u,0)
8 else if i has form llvm.crypto.key(o):
9 for each u ∈ users [o]:

10 KeyInputPoints← KeyInputPoints∪{u}
11 TRACKKEY (KeyDependencyDepth,u,0)
12 return PlaintextDependencyDepth, KeyDependencyDepth,
13 PlaintextInputPoints, KeyInputPoints

Algorithm 2.3.2: TRACKPLAIN as used in Algorithm 2.3.1

Input: PlaintextDependencyDepth : Instruction→ N map
u : Instruction
depth ∈ N

Output: PlaintextDependencyDepth : Instruction→ N map

1 if PlaintextDependencyDepth [i] ̸=⊥ :
2 return // Already seen

3 PlaintextDependencyDepth [i]← depth
4 for each u← users(i)
5 TRACKPLAIN (PlaintextDependencyDepth,u,depth+1)
6 return PlaintextDependencyDepth

54

2.3. Features recognition

Algorithm 2.3.3: TRACKKEY as used in Algorithm 2.3.1

Input: KeyDependencyDepth : Instruction→ N map
u : instruction
depth ∈ N

Output: KeyDependencyDepth : Instruction→ N map

1 if KeyDependencyDepth [i] ̸=⊥ :
2 return // Already seen

3 KeyDependencyDepth [i]← depth
4 if i has form store location,value: // Traverse memory bridges

5 for each u having form load location:
6 TRACKKEY (u,depth+1)
7 else
8 for each u← users(i)
9 TRACKKEY (KeyDependencyDepth,u,depth+1)

10 return KeyDependencyDepth

tions and collecting them in two sets, which will be referred to as PlaintextInputPoints

and KeyInputPoints. In parallel with the construction of the two sets, a recursive

exploration of the DFG is performed, starting from the nodes corresponding to the

input points and following the successors of each one in the def-use chain, taking

note of the depth at which each instruction is met, defined as the minimum distance

in the DFG between an input point and the instruction under exam. The minimum

depth is considered because it represents the best case scenario for an attacker.

The procedure that performs the exploration is shown in Algorithm 2.3.1, in

particular Algorithm 2.3.2 and Algorithm 2.3.3 show the procedures used to cal-

culate dependency depth. The DFG is walked breadth first and therefore each use

will be visited first at the shallowest depth. All the subsequent visits will happen

at a greater or equal depth, and therefore the search can be immediately stopped

when an already explored node is seen again.

Memory bridges Some uses of the key material or the plaintext may be mediated

by memory accesses, with an instruction storing its result in a memory location and

another instruction retrieving it. Most of the occurrences have been eliminated in

the intermediate by running a memory to register (mem2reg) transformation, which

turns this pattern into accesses to a virtual register in the IR. However, this optim-

isation might not be able to eliminate all memory operations. The surviving ones

were successfully handled under an extremely simplified model, which assumed

55

CHAPTER 2. Vulnerability analysis

that only one instruction might write to a given memory location and that the ad-

dress of this location is known at compile time. A mapping is kept between the

values and the memory locations they are written to, and each load from the cer-

tain location will be assigned the matrices of the correspondent store -- thus the

term “bridge”. No attempt was made at handling multiple write points or, worse,

pointer aliasing.

Output points deduction and dependency depth In the same way of the plain-

text and key input points we just examined, the set CiphertextOutputPoints of in-

structions that output fragments of the ciphertext is constructed, and the depend-

ency depth is calculated. Unlike input points, output points do not need explicit

markers and are identified as the instructions that transitively depend both on the

key and the plaintext and have no further uses in the routine. Although concep-

tually separate, the computation of CiphertextOutputPoints is performed together

with the construction of KeyDependencyDepth and PlaintextDependencyDepth

for performance reasons.

Once CiphertextOutputPoints is built, the map of dependency depths

CiphertextDependencyDepth is calculated by performing a recursive exploration

of the CFG, this time following the predecessors of each node. Also in this case

there might be multiple paths from a ciphertext output point to a given instruction,

and again the shallowest depth is recorded, since it represents the best case for

an attacker. The CFG is assumed to be loop-free, because the condition has been

already tested when calculating input dependencies.

2.3.2 S-Boxes identification and dead bits calculation

Dead bits are bits of the output fixed at either at zero or one throughout all

the entries of a table, that might be present in optimised S-Boxes for performance

reasons. These bits do not carry any useful information, hence why they are called

dead. Because no calculation is performed, a lookup in the S-Box table is an

opaque operation, and the analysis is not able to detect dead bits only by looking

at the input or output of any single operation. However, dead bits in a S-Box can

be identified by inspecting the whole table, under the assumption that it is encoded

as a pre-computed array of integers.

Each of integer is interpreted as a boolean vector having as size the bit width

of the declared cell type for the table, and each vector is filled with the base-2 rep-

56

2.3. Features recognition

Algorithm 2.3.4: Dead bits detection algorithm

Input: Table : array of boolean vectors of size n, each of them being the
binary representation of an n-bit sized S-Box entry.

Output: Mask : boolean vector representing dead bits in Table.
Data: A, B : boolean vectors of size n, as defined above.

1 A← 1
2 B← 0
3 for each v in Table:
4 A← A∧ v
5 B← B∨ v
6 Mask← A∨¬B
7 return Mask

resentation of the associated entry in the S-Box, one bit per element. The detection

algorithm operates on this transformed table and is presented in Algorithm 2.3.4. It

proceeds by initialising two vectors A and B of the same size of a transformed table

entry, one with all 1 and the other with all 0. The entries in the transformed table

are then ∧-accumulated in A and ∨-accumulated in B. At the end of the procedure,

any bit in A which is still at 1 signals a dead bit fixed at 1, as the ∧ of all the bits in

that position can be 1 only if all of them are 1. Following the a similar reasoning

for ∨, any bit in B at 0 signals a dead bit fixed at 0. The dead bit mask is computed

as Mask = A∧¬B, resulting in a 1 in each position corresponding to a dead bit, and

a 0 in each position associated with a live one. Masks for each S-Box are finally

stored in a Box→Mask hashmap called DeadBits for later use.

In those cases in which the function stored in the S-Box is computed at runtime,

be it precalculated in an actual table or not, the computation is enough for the

analysis to detect dead bits and it is not necessary to mark the storage array, if

any. Serpent [6] is the example of an encryption algorithm having computational

S-Boxes, which are transparently handled by this analysis, being just pieces of

computation.

2.3.3 Key bits assignment

For each instruction in the KeyInputPoints set calculated as shown in Algorithm

2.3.1, this pass assigns a subrange of the key bits, or slice, equal to the size of the

instruction result. If two variables load the same key fragment, they both get as-

signed the same slice, whereas two variables that load different fragments get as-

57

CHAPTER 2. Vulnerability analysis

DirectKeyDepsPass

AttackCandidatesPass

ForwardAttackSelectionPass BackwardAttackSelectionPass

Figure 2.3: Selection passes

signed two non-overlapping slices. In those cases where the key material is stored

in an array and each cell is loaded to a different variable, the index of the cell

loaded is used to determine which slice to assign (the size of the slices is already

given by the type of the array), otherwise the next available one is selected. At this

stage, no effort is made to handle overlapping ranges, and none of the algorithms

considered actually exhibits one. Nevertheless, a check has been put in place, for

future expansions.

This pass also records the total number of key bits assigned, which is used to

double check that all the key portions have been correctly identified and processed.

The granularity of the analysis is limited by the one of a load operation, which

happens at byte level. Therefore, those cases in which not all the bits in a byte are

used will result in a reported key size which is rounded up as if all the bits in the

byte were in use. For instance, many DES implementations take the 56bit key as an

array of 8 octets, of which seven are key material and one is discarded (technically

a parity bit). In those cases, the pass will report a key size of 64 bits, instead of 56.

2.4 Selection

The selection phase identifies in the code the best points to probe for mounting

a side-channel attack, starting either from the top (plaintext) or the bottom (cipher-

text) of the implementation. The assumption made in the analysis is that no attack

can be mounted at a lower cost than any one targeting the instructions identified in

this phase, meaning that any consideration on the security of this subset represent

a lower bound on the security of the whole implementation.

First, DirectKeyDepsPass (Section 2.4.1) propagates the key dependencies

from the input points to all the instructions in the code, obtaining a mapping

58

2.4. Selection

between instructions and single bits of the key they depend on. Then, AttackCandidatesPass

(Section 2.4.2) identifies all the instructions that meet the conditions to mount the

attack, and ForwardAttackSelectionPass and BackwardAttackSelectionPass (Sec-

tion 13) use the information produced by the other passes to identify the optimal

subset to attack in each direction.

2.4.1 Direct dependencies on the key

Starting from the direct key dependencies calculated in Section 2.3.3, the in-

structions in the cipher are associated to a pair of matrices exploiting the same

algorithm that will be used to propagate vulnerable (sub)key dependencies in Sec-

tion 2.5. The pair of matrices is then ∨-summed (elementwise), and the columns

of the resulting matrix are ∨-reduced themselves to obtain a single vector. This

vector has one element for each bit in the key, set either to 1 if the instruction

depends on the associated key bit, or 0 otherwise. These vectors are stored in

an Instruction→ Vector mapping called KeyDeps, that will be used for selecting

attack points, as explained in Section 2.4.2.

2.4.2 Attack points selection

Attack candidates In all symmetric block ciphers, a subkey (or round key) is

derived starting from the key material for each round and mixed with the data

being encrypted. In many instances, the calculation that produces the subkeys,

called the key schedule, can be inverted to recover the cryptographic key starting

from one or more round keys. In other cases, the key schedule is not invertible and

the key cannot be recovered, however recovering all the subkeys is enough to allow

a successful decryption of a ciphertext.

When performing a side-channel attack on a block cipher implementation, be

it active or passive, the simpler the relation is between the observed quantities (or

probes) and a subkey fragment, the easier the fragment can be recovered. For

this reason, the instructions that mix the round key with the cipher stream in the

outermost rounds are the most likely targets of a side-channel attack. In particular,

key mixing points in the first rounds will be the target of a forward attack (starting

from the plaintext), while the last few rounds will be considered in a backwards

attack (starting from the ciphertext). Which of the two directions is used depends

on the nature of the specific attack.

59

CHAPTER 2. Vulnerability analysis

Algorithm 2.4.1: Attack points selection algorithm

Input: AttackCandidates : set of the instructions identified as vulnerable
Depth [v] : either CandidateForwardDepth or
CandidateBackwardsDepth, depending on the direction
KeyDeps [v] : direct key dependencies as calculated in 2.4.1.
KeyBitsCount : number of key bits to be covered, as found in 2.4.1.

Output: AttackSet : set of the instructions containing the target subkey bits,
or ⊥ if there is no viable assignment

Data: assigned, toassign : boolean vectors of size KeyBitsCount
Global: FreePicks : initially empty set of triples (i, picked, le f t) where i is

an instruction of the DFG, picked, le f t are boolean vectors of
length KeyBitsCount representing the subkey bits assigned, and not
assigned to i as a result of an unconstrained choice

1 assigned← 0
2 AttackSet←∅
3 for d← 1 . . .max(d|(i,d) ∈ Depth):
4 toassign← 0
5 for each v ∈ AttackCandidates s.t. Depth [v] = d:
6 available← KeyDeps[v]∧¬assigned
7 Preferred← GREEDYOPTIMIZE(available,assigned)
8 if |available∨preferred|1 > 0:
9 toassign← toassign∨CAPASSIGNED(available,preferred,v)

10 AttackSet← AttackSet∪{v}
11 if |assigned|1 = KeyBitsCount:
12 return AttackSet
13 return ⊥

The set of subkey mixing points is called AttackCandidates and is more form-

ally defined as the set of the instructions that depend on a key fragment but not on

the plaintext, such that at least one of their uses transitively depends on a plaintext

fragment. Two mappings Instruction→N are attached to the set, CandidateForwardDepth

and CandidateBackwardsDepth, one carrying for each instruction in the set the

distance from the nearest plaintext fragment in the CFG as calculated in Section

10, and the other the distance from the nearest ciphertext fragment in the reverse

CFG as calculated in Section 10.

Attack points selection The ForwardAttackPoints (resp. BackwardsAttackPoints)

set is defined as the smallest subset of AttackCandidates from which the entire

key can be reconstructed, such that the instructions are located at the smallest

60

2.4. Selection

CandidateForwardDepth (resp. CandidateBackwardsDepth) possible, in order to

maximise the likelihood of a successful attack against them. The selection al-

gorithm was first introduced in [3] and is reported in Algorithm 2.4.1. It works by

identifying the key bits each v ∈ AttackCandidates depends on, and then selecting

the smallest subset such that covers all the key bits and such that each partial cov-

ering is performed at the shallowest depth possible. Each key bit might be covered

by more than one instruction, in which case the coverage is not optimal, but no key

bit should be left uncovered.

Algorithm 2.4.1 makes use of two auxiliary procedures. GREEDYOPTIMIZE

checks for the existence of an element i of FreePicks such that some of its left

subkey bits l cannot be assigned in the current available, and some of its taken

t can. If this condition is met, i is set to cover those l subkey bits, t is removed

from coverage, assigned and FreePicks are updated accordingly, and preferred is

recomputed considering those t bits. Instead, CAPASSIGNED compute the result as

a bit vector with all the assignments in preferred plus N−|pre f erred|1 bits from

available, where N is the size in bits of the result of the instruction v.

Algorithm 2.4.2: Subkey to key matrix construction

Input: KeyDeps [v] : direct key dependencies as calculated in 2.4.1
AttackPoints : set of selected attack points, as calculated in 2.4.2

Output: SubkeyToKey : matrix having one row for key bit, one column for
subkey bit.

1 base← 0
2 for v ∈ AttackPoints:
3 size← size(typeof v) // Size of the result of v in bits.

4 for i← base . . .base+ size-1:
5 (SubkeyToKey)i = (KeyDeps [v])i

Subkey to key matrix Finally, a subkey to key boolean correlation matrix is built

from the selected attack points using the algorithm presented in Algorithm 2.4.2.

Ranges of adjacent columns correspond to the respective bits of each selected at-

tack point -- which are subkey bits, and each row is associated to a key bit. A

cell contains 1 if the subkey bit associated with the column depends on the key

bit associated with the row, 0 otherwise. This matrix will be used to reconstruct

key dependencies and propagate throughout the all the instructions of interest, as

described in Section 2.5.

61

CHAPTER 2. Vulnerability analysis

BackwardSubkeyInputPointsPass

BackwardSubkeyDepsPass

BackwardKeyDepsPass

BackwardKeyStatsPassForwardKeyStatsPass

ForwardSubkeyDepsPass

ForwardKeyDepsPass

ForwardSubkeyInputPointsPass

Figure 2.4: Dependency propagation passes detail.

2.5 Dependency propagation

The attack points that have been selected in the previous phase are all points

where a subkey, derived from the key, is mixed to the cipher stream. In the attack

scenario considered, the key will be recovered from these subkey fragments, i.e.

assuming that the derivation function (or keyschedule) is invertible. If the cipher

has a non-invertible keyschedule, it will be necessary to recover all the subkeys and

the attack will necessarily be harder. For this reason, the invertible case represent

a lower bound on the cost of an attack.

First, ForwardSubkeyInputPointsPass assigns a pair of vulnerability matrices

(cfr. Section 2.5.1) to each key input point. This information is propagated to all the

instructions in the cipher in the ForwardSubkeyDepsPass. Once the propagation is

complete, ForwardKeyDepsPass calculates key dependency matrices from subkey

dependency matrices using the subkey-to-key matrix built in Section 5. Finally,

ForwardKeyStatsPass calculates various statistics about the matrices, including

the vulnerability indices that will be used to identify where to apply countermeas-

ures, as described in Section 2.6 and Section 2.8. The same flow is replicated for

the backwards propagation by the equivalent Backward passes.

2.5.1 The vulnerability (dependency) matrices

At the core of the vulnerability analysis sits a representation first introduced by

Agosta et al. in [3], the vulnerability matrix, or dependency matrix. Each variable

involved in the computation is associated to a pair of matrices n×m, with n number

of key/subkey bits the dependencies are referred to, and m bit width of the result of

the instruction. Each cell in the matrix will contain a 1 if the corresponding bit of

the result depends linearly (resp. non-linearly) on the key bit assigned to that row,

62

2.5. Dependency propagation

a 0 otherwise. The pair of matrices carry the linear and non-linear dependencies

from an encryption key or round key (subkey), and will be referred to as the linear

and non-linear matrices for brevity, or with the even more concise notation L and

NL.

The diagonal of the L matrix associated to an instruction which first meets a

piece of key material (or round key) as identified in Section 2.4.2, is initialised with

the correspondent vector of assigned key bits. Dependencies are then propagated

at fixed point, using the dataflow framework presented in Section 1.5 and the rules

introduced in the rest of this section. These rules depend on the operation being

considered and the direction in which the analysis proceeds, either forward (oper-

ands to results, plaintext to ciphertext), or backwards (results to operands, cipher-

text to plaintext). Each rule here described yields a pair of contribution matrices,

which are respectively ∨-summed to the pair associated to the result.

With the backward and forward subkey dependency matrices calculated, the

correspondent subkey-to-key matrix (cfr. Section 5) is used to reconstruct a pair of

key dependency matrices for each instruction analysed. This pair, called mediated

key dependency matrices, captures which key bits each bit in a variable depends

from, an information which is directly correlated to the vulnerability of each bit in

the associated variable to side-channel attacks.

2.5.2 Forward propagation

Forward dependencies are propagated from operands to results, and therefore

the matrices for each instruction are constructed by examining those of its oper-

ands. The calculation proceeds in the same direction of the computation, i.e. from

an instruction towards its uses, the propagation rules for the classes of instructions

are discussed in the following paragraphs and summarised in Figure 2.5 and Fig-

ure 2.6. These rules are the same ones used to propagate direct dependencies on

the key, which are needed by the attack points selection algorithm presented in

Algorithm 2.4.1.

Linear boolean operations: XOR (Figure 2.5) The linear matrix of a XOR is given

by the ∨-sum (elementwise) of the linear matrices of its operands, and likewise the

non-linear matrix from the ∨-sum of the non-linear matrices of its operands. Only

the operands that are instructions are considered, constants do not yield any effect.

In fact, the result of combining via XOR a variable bit with a constant bit is either

63

CHAPTER 2. Vulnerability analysis

⊕ =
∧
or

∨
=

+ = - =

∙ = ÷ =

Figure 2.5: Forward propagation rules exemplified: arithmetic and boolean.

the variable bit or its negation, and it both cases the result depends entirely on the

former.

Non-linear boolean operations: OR, AND (Figure 2.5) For both operations, the

non-linear matrix is given by the ∨-sum (elementwise) of both the linear and non-

linear matrices of their operands that are instructions themselves. The linear matrix

is null, as these two operations have a purely non-linear effect.

Constant operators to AND and OR produce a masking effect. In particular, the

result of an AND will have a zero in each bit in the same position of a zero in the

constant. Likewise for OR, all the 1 bits in the constant operand will produce a 1

in the same position of the result. In both cases, the bit in question has no relation

with the input variable, and therefore the respective column in the result matrices

is set to zero.

Arithmetic operations: ADD, SUB (Figure 2.5) Both ADD and SUB operations hap-

pen in two phases: first a linear sum of the input, then the propagation of carries

(resp. borrows). The first phase is exactly the XOR above, so the linear matrix

of the result is initialised to the ∨-sum of the linear matrices of the operands, and

likewise for the non-linear matrix of the result with the non-linear matrices of the

operands. Again, constant operands are not considered in this first step.

In the second phase, each column of the non-linear matrix of the result is ∨-

64

2.5. Dependency propagation

Algorithm 2.5.1: Forward propagation through ADD

Input: (AL,ANL) ,(BL,BNL) : dependency matrix pairs of A and B
Output: (CL,CNL) : dep. matrix pair of C = A+B mod 2w (w wordsize)

// Linear sum

1 CL← AL∨BL

2 CNL← ANL∨BNL

// Carry propagation

3 CNL←CNL∨ (CL≪ 1) // CL≫ 1 for SUB

4 temp← (CNL)0
5 for i← 1 . . .cols(CNL)−1:
6 (CNL)i← (CNL)i∨ temp
7 temp← (CNL)i
8 return CL,CNL

summed all the columns before it (towards the LSB) for ADD, or after it (towards the

MSB) for SUB. This reflect the ways carries and borrows propagate their non-linear

effect, i.e. from LSB to MSB in the case of an ADD, and from MSB to LSB in the

case of a SUB.

The pseudo-code for these two operations is presented in Algorithm 2.5.1.

Algorithm 2.5.2: Forward dependency propagation algorithm for MUL

Input: (AL,ANL) ,(BL,BNL) : dependency matrix pairs of A and B
Output: (CL,CNL) : dep. matrix pair of C = A ·B mod 2w (w wordsize)

1 ALNL← AL∨ANL

2 BLNL← BL∨BNL

3 for j← 1 . . .cols(CNL)-1:
4 for i← 1 . . . j-1:
5 (CNL) j← (CNL) j ∨ (ALNL)i∨ (BLNL) j−i

6 CL← 0
7 temp← (CNL)0
8 for i← 1 . . .cols(CNL)−1:
9 (CNL)i← (CNL)i∨ temp

10 temp← (CNL)i
11 return CL,CNL

Arithmetic operations: MUL, DIV (Figure 2.5) A multiplication is seen in binary

schoolbook form, which only involves ADDs and single-bit multiplications for di-

65

CHAPTER 2. Vulnerability analysis

Algorithm 2.5.3: Optimized forward propagation algorithm for MUL

Input: (AL,ANL) ,(BL,BNL) : dependency matrix pairs of A and B
Output: (CL,CNL) : dep. matrix pair of C = A ·B mod 2w (w wordsize)

1 CL← 0
2 CNL← AL∨ANL∨BL∨BNL

3 temp← (CNL)1
4 for i← 1 . . .cols(CNL)−1:
5 (CNL)i← (CNL)i∨ temp
6 temp← (CNL)i
7 return CL,CNL

GEP() = Load() =

Truncate(, 3) = Extend(, 5) =

≪ 2 = ⋙ 2 =≫ 1 =

Figure 2.6: Forward propagation rules exemplified: shifts, casts and memory.

gits, which effectively are AND operations. The propagation rules already defined

for these two operations are combined for the appropriate digits as shown Al-

gorithm 2.5.2. With a reordering of the operations, the procedure can be optimised,

obtaining Algorithm 2.5.3.

The effects of a division are propagated through a conservative approximation

by ∨-summing the columns of the linear and non-linear matrices of both operands,

and then using the result column to fill the non-linear matrix of the result, while

leaving the linear matrix empty. This assumes that the effect of a DIV is the total,

non-linear, diffusion of the input on the output.

66

2.5. Dependency propagation

Shifts: SHL, LSHR, ASHR (Figure 2.6) In case of a shift by a constant, the matrices

of the result are the ones of the other operand, with the columns respectively shifted

by that constant. In case of an arithmetic (right) shift, the column corresponding to

the most significant bit still alive is used to fill all the other null columns towards

the new MSB.

If the shift amount is variable, a left shift A≪ B is treated as the multiplica-

tion A · 2B, and the right shift A≫ B as the division A/2B, and both are handled as

explained before.

Truncations and extensions (Figure 2.6) While never found in theoretical dis-

cussions, real world implementations often require the conversion between types

with different widths through a truncation or an extension. The former is treated by

dropping the columns associated with the truncated bits, and likewise zero exten-

sions by appending null columns. Signed extensions use the column corresponding

to the old MSB to pad the newly inserted columns, instead of a null vector.

Table lookups (Figure 2.6) The only applications of table lookups within the im-

plementation of a symmetric cipher are assumed to be the S-Boxes, which provide

the confusion step in a cipher round. Their effect is therefore approximated as

a non-linear diffusion of the linear and non-linear contributions of all the non-

constant indices, typically only one. In order to achieve this effect, the columns

of the L and NL matrices of the lookup indices are ∨-summed (elementwise), and

the resulting column vector is used to fill the non-linear matrix associated with the

instruction. The linear matrix of the result is left empty. Each column of the NL

matrix occupying the same position of a 1 in the the vector associated to the S-Box

by DeadBits (cfr. Section 2.3.2) is replaced by a column of zeroes.

In the case of LLVM IR, the address calculation and the transfer from memory

are two distinct operations. The first one is performed by the getelementptr in-

struction (or GEP for brevity), which, in the case of (possibly nested) arrays, takes

a base pointer and an ordered sequence of indices, and returns the address for

the indexed element. The second operation is carried out with a load instruction,

which takes an address (possibly calculated with a GEP), fetches the value from

memory and returns it. This split is handled in the analysis by associating the dif-

fused matrix to the result of the GEP and then copying the matrices of the GEP to

the load.

67

CHAPTER 2. Vulnerability analysis

target

user

other other

user

target target

user

Figure 2.7: Backwards analysis naming conventions.

Other operations It has been observed in the experimental phase that the com-

piler might optimise certain routines to use a byte swap intrinsic operation, which

consists in the reordering of the bits in the variable in groups of 8 (octets). This op-

eration is handled by mirroring the bit rearrangement on the columns of the input

matrices and assigning the transformed L and NL to the L and NL matrix of the

result.

2.5.3 Backwards propagation

Backwards dependencies are propagated from an instruction back to the oper-

ands, i.e. from users to uses, and this is the reason for the backwards bit in the

name. Calculating backwards dependencies effectively means inverting the effect

of an instruction, which not always possible. In fact, most of the instructions ex-

amined in the following sections will be treated with conservative approximations,

and for this reason the backwards analysis is less precise than the forward one. This

loss of precision due to non-invertible functions is not a defect of the analysis, be-

cause the same is experienced by an attacker, who will have to make more complex

hypothesis. The rules are summarised in Figure 2.8 and Figure 2.9.

Most of the examined instructions are binary operators, and both operands are

taken into account when calculating backwards dependencies. In order to avoid any

confusion when talking about a user and its operands, I will adopt the terminology

exemplified in Figure 2.7, where the target node (marked in black) is the instruction

whose vulnerability matrices are being calculated. If the user is a unary operation,

the target is the only operand and there is no other.

An instruction might and, in most cases, will have multiple users. For this

reason, each user gives a contribution to the matrices of the target rather than en-

tirely determining it, and these contributions are ∨-accumulated (elementwise) to

give the L and NL matrices of the target. The titles of the following sections refer

68

2.5. Dependency propagation

- =

⊕ =

Target

∧
or

∨
=

Target

+ =

Target Target

- =

Target

Figure 2.8: Backwards propagation rules exemplified: arithmetic and boolean.

to the type of the user, and not to the one of the target.

Linear boolean operations: XOR (Figure 2.8) In case of a XOR, we have user =

target⊕other, and this relation can be rewritten as target = user⊕other. The L and

NL contributions to the target are therefore calculated as in the case of a forward

XOR (cfr. Section 2.5.2) by ∨-summing the linear (resp. non-linear) matrices of the

user and the other to give the contribution to the linear (resp. non-linear) matrix of

the target. If other is a constant, the contributions are directly given by the linear

and non-linear matrices of the user.

Non-linear boolean operations: AND, OR (Figure 2.8) AND and OR are the first

examples of operations whose effects cannot be precisely inverted. This is due to

the fact that these are not bijective functions.

If other is an instruction, the L and NL dependencies of user and other, and the

existing L dependencies of the target are ∨-summed together to give the non-linear

contribution to the target and the linear contribution is left unmodified. Instead, if

other is a constant, the linear and non-linear matrices of the user are masked as

it happened in forward propagation (cfr. 2.5.2) to give the linear and non-linear

contributions.

69

CHAPTER 2. Vulnerability analysis

Target

Load() =

Target

GEP() =

Target

Truncate(, n) =

Target

Extend(, n) =

Target

≪ 2 =

Target

⋙ 1 =

Target

≫ 1 =

Figure 2.9: Backwards propagation rules exemplified: shift, cast and memory.

Arithmetic operations: ADD, SUB (Figure 2.8) Addition and subtractions can

be perfectly reversed by observing that if user = target + other, then target =

user− other. The dependencies matrices are then calculated using the same rules

of a forward subtraction, as explained in Section 8. The rules for a subtraction

are similar, however a distinction between two cases must be made, because this

operation is not commutative:

user = other− target⇒ target = other−user (2.1)

user = target−other⇒ target = user+other (2.2)

Case (1) is analogous to the backwards addition, while case (2) is handled as

a forward addition (cfr. again Section 8).

Shifts: SHL, ASHR, LSHR (Figure 2.9) If the target is the shift amount, then the

shift operation yield no backwards contribution, since the only effect of the target

on the user is a rearrangement of the contributions of the other operand, which are

otherwise left unmodified.

Instead, if the target is the shifted quantity, two cases are possible.

Shift by constant amount. The linear and non-linear contributions of a shift by

constant are respectively obtained by shifting the L and NL matrices of the user

70

2.5. Dependency propagation

of the same amount in the opposite direction. The bits that are discarded when

calculating the result of the user cannot be recovered in any way, so the newly

inserted columns are zero vectors regardless of the fact that the shift is logical or

arithmetic.

Shift by variable amount. The linear contributions of a shift by variable are

given by the L matrix of the user, while the calculation of the non-linear contri-

butions are more involved: first the columns of the L and NL matrices of other

operand are ∨-summed (cell by cell), and the result is used to fill a matrix of the

same size of the L and NL of the user. This matrix is then ∨-summed to the NL

matrix of the user, finally giving the non-linear contribution to the target.

Truncations and extensions (Figure 2.9) Other than removing or adding empty

columns, truncations and extensions preserve the bits of their only operand. The L

and NL contributions are directly obtained from the L and NL matrices of the user.

When reversing an extension, the matrices are first truncated to the size of

the target. Conversely, the matrices of a truncation user are extended to match

the size of the target. The columns added when reversing a truncation are always

empty, since the bits lost in the operation cannot be recovered, and consequently

a backwards dependency cannot exist. In the same way, no special consideration

is necessary for the columns eliminated when reversing an extension. In fact, the

dropped columns are either null for an unsigned extension, or equal to the column

of the MSB before the extension -- and in both cases have no effect on the target.

Table lookups (Figure 2.9) Table lookups are assumed to be used for S-Boxes

only, as it was the case with forward propagation. A load operation is reversed by

∨-summing (elementwise) the linear and non-linear matrices of the user, masking

away columns corresponding to dead bits (see Section 2.3.2) and finally∨-reducing

the columns and using the resulting vector to fill the NL matrix of the target, while

the L matrix is left untouched. Instead, getelementptr is reversed by copying the

L and NL matrices of the user back to the target.

Other operations Byte swap operations are handled in backwards propagation

by remembering that these are involutive, unary operations. Since user = byteswap(target),

we have that target = byteswap(user), and the L and NL contributions to the target

are obtained by rearranging the columns of the L and NL matrices of the user in

71

CHAPTER 2. Vulnerability analysis

the same order in which the corresponding bits of the user value are moved.

2.6 Vulnerability index calculation

At this point in the analysis, each instruction in the block cipher implementa-

tion has been associated with a forward and a backwards pair of matrices. From

these matrices, a vulnerability index is synthesised to quantify the weakness of an

instruction against side-channel attacks and decide where countermeasures need to

be applied, which will be the object of Section 2.8.

As explained in Section 1.1 and Section 1.2, the side-channel attacks that can

be thwarted by algorithmic methods involve making hypothesis on values, and

the verification of these hypothesis becomes exponentially more difficult in the

number of key bits each bit depends on. This fact allows us to define a vulnerability

index for each instruction as the smallest number of key bits a bit in that value

depends from. The analysis acts on a bit level, thus each bit in the variable has

a separate vulnerability index, but software implementations of masking schemes

act at a register level, so we associate a security margin to each variable, defined

as the minimum between the security margins of the individual bits. The lower the

index, the more vulnerable the instruction. 0 represents a special case, in which the

associated bit does not depend on the key at all, and therefore is not vulnerable.

Four vulnerability indices are calculated under different attack models, and the

overall vulnerability index is given by the minimum among them:

Classic passive attacks The L and NL matrices are ∨-combined (cell by cell),

and the minimum among the sums by column is taken. The same procedure is

repeated for the forward and the backward pairs, and the minimum between the

two is the final result.

Advanced passive attack The NL matrix is summed by column, and each result

is incremented by 1 if the sum of the corresponding column of ¬CNL∧CL is larger

than 1. The same procedure is repeated for the backward and forward pair also in

this case, and the minimum between the two is taken.

Differential fault analysis The backwards NL matrix is summed by column,

and the minimum of the sums is taken as index. Only the NL has to be considered

72

2.7. Instruction filtering and aggregation

BackwardVulnerablePointsPassForwardVulnerablePointsPass

VulnerablePointsPass

Figure 2.10: Instruction filtering and aggregation passes detail.

because the differential information on linear key contributions is not usable in this

attack model, and only the backwards one, because a DFA attack always starts

from the output of the cipher.

Safe error attacks Under the assumption that a single bit stuck-at fault is intro-

duced, a safe error attack reveals the value of that bit during the execution. The

vulnerability index is therefore the same of a passive attack.

2.7 Instruction filtering and aggregation

The last set of passes, shown in Figure 2.10, identifies the vulnerable instruc-

tions that will need to be protected. Once each instruction has been assigned a for-

ward and a backwards vulnerability index as shown in Section 2.6, the vulnerable

instructions in each direction are identified by ForwardVulnerablePointsPass and

BackwardVulnerablePointsPass. Instructions that are marked as either forward

or backwards vulnerable (or both) are then collected in a set by the last pass,

VulnerablePointsPass, ready for the countermeasure application phase.

Vulnerable instructions identification The identification of vulnerable instruc-

tions starts from the forward (resp. backwards) attack points identified in Section

13 and proceeds at fixed point according the respective rule:

Forward rule an instruction is forward vulnerable if its vulnerability index is be-

low the specified threshold, and one of its operands is already marked as

vulnerable or at least one operand is part of the keyschedule.

Backwards rule an instruction is backwards vulnerable if its vulnerability index

is below the threshold, and it is a direct user of a subkey fragment or one of

its uses depends on the plaintext and is marked as vulnerable.

73

CHAPTER 2. Vulnerability analysis

Table 2.1: Masking countermeasures used in the implementation.

Instruction
Masking order

1 ≥ 2

ADD, SUB Coron [24] (32, 64 bits)
Karroumi [45] (8, 16 bits)

Higher Order Coron [23]

NOT, XOR ISW [42]

AND, OR ISW (+ De Morgan rule) [42]

SHL, ASHR, LSHR
(by constant amount)

Shift each share singularly

Truncate, Extend Resize each share singularly

Table lookup Coron randomisation [21]

The vulnerability threshold might be set to KeySize+1, in which case all potentially

vulnerable instructions are masked, or to a lower threshold found as the result

of a trade-off. A threshold placed at KeySize is particularly interesting, in that it

selects only those instructions which depend on less than the entire key. Because

of the diffusion properties of well-engineered symmetric ciphers, such a security

threshold is reached after few iterations both from the top and the bottom, leaving

the innermost rounds unmarked. This allows for a low protection overhead while

retaining the same computational security margin against both side channel attacks

and classical cryptanalysis.

2.8 Automatic countermeasures application

The instructions marked as vulnerable at the end of the analysis (see Section

2.7) are protected using the masking countermeasures described in Section 1.3.

The chosen transformation(s) for each operation of interest are summarised in

Table 2.1. In some cases, there is a single algorithm and the choice is straight-

forward. For others, one or more algorithms have been chosen based on the per-

formance and memory impact considerations which can be found in Section 1.3.

I found no mention in literature of an efficient way to mask a shift by variable

74

2.8. Automatic countermeasures application

amount, and therefore this case is not handled. There is only one cipher which

appears to be using such operation, CAST5 [1], which cannot be protected but has

been analysed nevertheless. The rarity of this operation in block cipher implement-

ations might also explain the lack of exploration is this regard.

Vulnerable instructions are processed in program order, so that operands are

always protected before their uses. An associative table is kept between unmasked

instructions and their masked equivalents. Every time an unmasked instruction

appears as an operand to an instruction to be masked, the instruction is replaced

by the masked equivalent, and the masked operand is retrieved and directly wired

to it. If a non-masked use of a masked operation appear, an decoder is inserted

and the decoded value is wired to it. Conversely, an encoder is wired to masked

instructions having a unmasked operand. The encoders and decoders are kept in the

same lookup map of the transformed operations, so that they can be transparently

wired to other uses.

Algorithm 2.8.1: Masking

1 for each I ∈ VulnerableInstructions: // Sorted by dominance

2 Masked← CREATEMASKED (I,Masked)
3 for each I ∈ VulnerableInstructions: // Sorted by dominance

4 if Uses [I] ̸= Ø:
5 D← CREATEDECODER (I)
6 replace all unmasked uses of I with D
7 for each I ∈ VulnerableInstructions: // Sorted by reverse dominance

8 if Uses [I] = Ø∧Masked [I] ̸=⊥:
9 drop I from the CFG

10 else if I has not form store or return:
11 report failure

2.8.1 Loops and inlining in the transformed code

The ISW AND transformation and Coron’s table randomisation both tend to

produce large amounts of code, a fact which increases the register pressure and

inflates considerably the size of the protected binary. The choice I made was to

unroll the ISW AND loops and insert the code in place, since the two nested loops

(see Section 10 for the algorithm) are bounded by the masking order, which tend

to be small. In fact, attacks above the 3rd order are believed to be extremely chal-

75

CHAPTER 2. Vulnerability analysis

lenging, if possible at all. A double loop is likely to take up more time because of

the condition evaluation and branching, not to mention a function call.

On the other hand, Coron’s transformation entails a nested loop with Θ(|S|)
iterations in total, where |S| is the dimension of the lookup table being masked --

usually a large number. In addition to the large number of rounds, the body of the

loop is large in itself and includes some functions calls -- which generate additional

context save and restore operations. My decision was not to unroll the loops and to

generate a subroutine for each S-Box, replacing unmasked lookups with function

calls.

76

Chapter 3

Experimental Evaluation

The methods described in the previous chapters have been applied to a range of

block ciphers, either in active use or of historical relevance, in order to confirm the

feasibility of the approach on two popular embedded architectures, ARMv7 and

MIPS32. The internal structure, design considerations and main applications of

each cipher considered are presented in Section 3.1, while the visualisations pro-

duced by the analysis tool are reported in Section 3.2, together with a discussion of

the properties highlighted by each graph. Finally, Section 3.3 contains the plots of

the benchmark data and a commented overview of the main results. The complete

data set is contained in Appendix A, for reference.

3.1 Block ciphers analysed

The first set of block ciphers analysed is composed by the ISO/IEC 18033-

3:2010 [43] portfolio, which comprises:

DES/TDEA Former NSA-approved standard, developed at an IBM facility and

published as FIPS in 1977 [61], now superseded by AES. Its main peculiarity is the

bit-oriented design, which results in inefficient software implementations. It has a

Feistel network structure with 16 rounds and operates on a 64bit block, making it

potentially vulnerable to collision attacks. The original configuration has a 56bit

key and was successfully attacked by bruteforce in multiple instances, making it

unsuitable for real-world use. For this reason, two variants has been introduced in

77

CHAPTER 3. Experimental Evaluation

Table 3.1: Overview of the analysed block ciphers

Key size Block size Rounds Status Use Structure

CAST5

40

64

12 B –

Feistel80 16 A –

128 16 S G
DES 56

64

16 B –

Feistel2TDEA 112 (80) 2 ·16 A –

3TDEA 168 (112) 3 ·16 A E
HIGHT 128 64 32 S L Feistel

MISTY1 128 64 8 (4n) W [8] L Nested Feistel

SEED 128 64 16 S G Nested Feistel

AES (Rijndael) 128/192/256 128 10/12/14 S G SPN

Camellia 128/192/256 128 18/24/24 S G Feistel

XTEA 128 64 64 (n) A L Feistel

Noekeon 128 128 16 S L SPN

Serpent 128/192/256 128 32 S G SPN

Speck 128/192/256 128 32/33/34 S L ARX

Simon 128/192/256 128 68/69/72 S L Feistel

Security Strong (≥ 128 key bits), Acceptable (≥ 80), Weak (≥ 60), Broken (< 60)

Use Generic, Lightweight, LEgacy (superseded)

Table 3.2: IR instruction classes used by the implementations under exam

Operand sizes in bits

⊕, ¬ ∧, ∨ ⊞, ⊟ Lookups C. Sh/Rot V. Sh/Rot

AES (Rijndael) 8, 32 32 – 8 32 –

Camellia 8, 32, 64 32, 64 – 8 32, 64 –

Serpent 32 32 – – 32 –

Speck 64 – 64 – 64 –

Simon 64 64 – – 64 –

Noekeon 32 32 – 8 32 –

HIGHT 32, 64 – 32 8 8, 32, 64 –

XTEA 32 – 32 – 32 –

MISTY1 16, 32 16, 32 – 8, 16 32, 64 –

SEED 32, 64 32, 64 32 32 32, 64 –

DES

32 32 – 16, 32 32 –2TDEA

3TDEA

CAST5 32 32, 64 32 32 32, 64 32

78

3.1. Block ciphers analysed

1999 [62], 2TDEA and 3TDEA, which are internally structured as a sequence of 3

DES routines whose keys K1,K2,K3 compose the TDEA key. In particular, 2TDEA

has K1 =K3 and K2 independent, thus a key size of 2 ·56= 112bit and 3TDEA three

independent keys, resulting in a key size of 3 ·56 = 168bit. The effective security

margin of these two configurations is 80bit for 2TDEA and 112bit for 3TDEA

because of a meet-in-the-middle attack. 3TDEA thus offers an acceptable security

level, although the performance issues of DES, worsened by the triplication of the

routine, discourage its adoption outside legacy contexts.

AES (Rijndael) Designed as the replacement for DES, Rijndael was published

as the Advanced Encryption Standard in 2002 [28,64]. It operates on 128bit blocks,

has a substitution-permutation-network structure and a variable key size (128, 192

or 256 bit), which determines the number of rounds (10, 12 and 14, respectively).

The design allows for efficient implementations both in software and hardware.

Because of the large amount of scrutiny it has received over the years, AES is

considered a very secure option in all its configurations.

Camellia Designed by Mitsubishi Electric and NTT of Japan in 2000, it has

been approved for use by the European Union’s NESSIE program and the Japanese

CRYPTREC. It is currently covered by a patent, but a royalty-free license is avail-

able for all implementors and the design is discussed in RFC-3713 [57]. Camel-

lia has a Feistel network design with the addition of intermediate transformation

rounds, called FL functions, and input and output key whitening. It operates on a

128bit block and has 3 key sizes, 128, 192 and 256 bit, which in turn determine the

number of rounds -- 18 in the first case and 24 in the others. In particular, Camellia

192 expands the key to 256 bits and then uses the same algorithm of Camellia 256.

Both NESSIE and CRYPTREC regard the security level of this cipher to match the

one of the AES.

MISTY1 Designed for Mitsubishi Electric in 1995, it was included in the NESSIE

portfolio of the European Union in 2003 [67] and by Japan own CRYPTREC pro-

gram in the same year, from which it was dropped in 2013. It has a nested Feistel

network structure with a 128bit key, a 64bit block and a variable number of rounds

-- 8 recommended [58], or any multiple of 4. It also have a characteristic asymmet-

ric design with one 7-to-7bit and one 9-to-9bit S-Box. A successful attack against

79

CHAPTER 3. Experimental Evaluation

the full cipher was published in 2015 [8, 77], and while still outside the realm of

the feasible (264 chosen ciphertexts and 269.5 time in the fastest case), it is reas-

onable to assume that the algorithm will be practically broken in the near future.

The cipher is covered by a patent, although a non-profit license is available and the

algorithm is documented in RFC-2994 [58].

SEED Developed in 1998 by the Korea Information Security Agency (KISA)

for securing national Internet communications, since 40bit export ciphers were

deemed insufficient at the time. SEED, which is is rarely used outside South Korea,

has a 128bit block size and operates on a 128bit block with 16 rounds and a nes-

ted Feistel network structure. It is comparable to MISTY1, although it has a more

complex key schedule and two options for the round structure, one with 2 8-to-8bit

S-Boxes and another with a simpler round function but 4 8-to-32bit S-Boxes. The

algorithm is described in RFC-4269 [55].

CAST-128 Developed in 1996 as an application of the CAST structure described

in [2], CAST-128 (also known as CAST5) has been approved by the Government of

Canada for use by the Communications Security Establishment and was the default

choice in GnuPG until superseded by AES in version 2.1 in 2014. In addition to

its peculiar structure, it can be configured with a variable key length from 40 to

128bit in 8bit increments, and operates on a 64bit block in either 12 or 16 rounds.

The most common variant, CAST5 128bit, is deemed secure for all uses, although

the narrow block size opens the way to collision attacks. The cipher is covered

by a patent but available worldwide on a royalty-free basis for all applications, a

description is also available as RFC-2144 [1].

HIGHT HIGHT is a cipher designed for lightweight applications and for use on

low-end devices, first published in 2006 [39]. It has a generalised Feistel network

structure with 32 rounds, input and output whitening, a 64bit (narrow) block and a

128bit key. It has no S-Boxes and only uses byte level operations, allowing efficient

implementations also on 8bit CPUs.

In addition to the ISO suite, four other ciphers were included, to provide an

insight on the behaviour of less common internal structures:

80

3.1. Block ciphers analysed

Serpent Designed in 1998 and submitted as an AES candidate [6], it ranked

second after the current standard, Rinjndael, despite having a higher security mar-

gin. In fact, it was penalised in the selection process solely because of its poor per-

formance, due to the number of rounds being twice as much as what was deemed

sufficient, an conscious decision intended as a reassurance against future break-

throughs in cryptanalysis. Serpent has a substitution-permutation network struc-

ture, a 128, 192 or 256bit key and operates on a 128bit block in 32 rounds. The the

round functions have been designed to allow the parallelisation of all operations,

and its 8 4-to-4bit S-Boxes have efficient computational (bitslice) implementations.

This cipher has been placed in the public domain.

XTEA XTEA was introduced in 1997 as a lightweight cipher for embedded

applications, where it is still used because of its reasonable security margin and

extremely simple round function with no S-Boxes, which results both in a small

code size and high throughput. It has a Feistel network structure with a 128bit

key, 64bit block and a variable number of rounds -- 64 recommended. There is no

published specification, although a description and a reference implementation are

provided by the authors in [79] .

Speck/Simon Speck and Simon are two families of lightweight block ciphers

released by the NSA in 2013 [11] and intended for embedded applications, espe-

cially low security ones such as those found in printer cartridges. Both ciphers

have similar profiles, with a block size variable from 32 to 128bit, and a key size

that varies accordingly from 64 to 256 bits. Speck has an ARX (and, rotate and

xor) structure optimised for software implementations, and Simon a Feistel net-

work designed for hardware, with bit-oriented operations in the key schedule. The

only configurations considered in the analysis are 128, 192 and 256bit key with a

128bit block.

Noekeon Noekeon is lightweight cipher submitted to the NESSIE program of the

European Union in 2000 [27] in two variants, direct, which is more efficient but

vulnerable to related-key attacks when possible, and indirect, marginally slower

but not vulnerable. It has a 128bit key and operates on a 128bit block in 16 rounds.

Its bitslice structure has been explicitly designed with the protection against side-

channel attacks in mind, a fact that makes it unique among the ciphers considered.

81

CHAPTER 3. Experimental Evaluation

The selection of algorithms presented in this section virtually covers the entire

spectrum of real world applications and offers a comprehensive view on how the

analysis and masking methods behave in various situations, and thanks to their

different internal structures. The features of the ciphers are summarised in Table

3.1, in particular their status and intended usage.

Table 3.2 lists the IR instruction classes used by each implementation, out-

lining a few interesting points. All algorithms use boolean linear operations ⊕ and

¬, while non-linear boolean operations ∨ and ∧ are mostly seen in alternative to

modular arithmetic ⊞ and ⊟, with the exceptions of SEED and CAST-128, which

use both. Most ciphers also use table lookups for S-Boxes, excluded XTEA, which

has none, and Serpent, which adopts computational (bitslice) ones. To conclude,

constant shifts and rotations are widely used as the easiest way to achieve diffusion,

with CAST-128 being the only algorithm to adopt shifts by variable amount.

3.2 Visualisations

The analysis tool may also be used to produce a visualisation of dependency

matrices and vulnerability indices in form of heatmaps. Before plotting, depend-

ency matrices are +-reduced by rows, yielding a vector of integers having in each

cell the number of key (or subkey) bits on which the corresponding bit of the vari-

able depends. This vector is plotted as a group of vertically stacked segments, each

corresponding to one bit, with the LSB on top and the MSB at the bottom. The

vulnerability index is already expressed in form of an integer, so it can be plotted

as a single segment with no transformation involved. Each group (for vulnerability

matrices) or segment (for vulnerability indices) is associated with an instruction in

the cipher, and these blocks are laid out in rows, one for each round identified dur-

ing the analysis (see Section 2.2.3). Each individual segment is in turn filled with

a solid colour from a red to blue palette obtained by HSV interpolation in the hue

range 0◦− 240◦, as shown in Algorithm 3.2.1, plus black for 0. All the heatmaps

included in this section have been directly generated by the analysis tool, with no

post-processing involved other than scaling and centering.

Figure 3.1 shows the vulnerability index of AES-128, -192 and -256. In all

three cases the diffusion is completed by the outermost three rounds, containing

the impact of a masking at keyize level. The large size of an AES round is well

visible, together with the relatively small number of rounds. The key input points

82

3.2. Visualisations

1 64 128

(a) AES-128

1 96 192

(b) AES-192

1 128 256

(c) AES-256

Figure 3.1: Security margin of AES

83

CHAPTER 3. Experimental Evaluation

Algorithm 3.2.1: Interpolation algorithm used to colour heatmaps

Input: i ∈ IndicesSet ⊆ N
m = max(IndicesSet)

Output: A colour corresponding to i, encoded as H,S,V

1 if i = 0:
2 return 0,0,0
3 else
4 return i

m ·240◦,1,0.5

1 64 128

Figure 3.2: Security margin of MISTY1

are also apparent in the second round (the small clusters of red bars), as well as the

diffusing effect of the S-Boxes, after which the vulnerability suddenly decreases.

In the case of Camellia-128 and -256, the S-Boxes in the key schedule, paired

with the pre- and post-whitening, guarantee a very fast diffusion of the key and

leave only a very small attack surface. The heatmap reported in Figure 3.3 confirms

this behaviour, showing in particular two instructions in correspondence with the

second FL layer (cfr. Section 3.1) with a very low security margin.

Figure 3.5 confirms the good properties of CAST-128, due to the combination

of modular arithmetic and shifts by key-dependent values. The diffusion is com-

pleted by the second round in both directions, save for one instruction in the fourth

from the bottom. The relatively small footprint of this cipher is also well visible,

especially when compared with other ciphers for generic use, such as AES.

TDEA2 and TDEA3 both use the same encryption algorithm, only with differ-

ent key schedules. In particular, the TDEA routine is composed of 3 DES chained,

and this fact is clearly visible in the heatmap in Figure 3.7. The central DES is well

diffused, on the contrary of the two external ones, which only depend on a part of

84

3.2. Visualisations

1 64 128

(a) Camellia 128

1 128 256

(b) Camellia 256

Figure 3.3: Security margin of Camellia

85

CHAPTER 3. Experimental Evaluation

1 64 128

(a) Direct

1 64 128

(b) Indirect

Figure 3.4: Security margin of Noekeon

1

64

128

Figure 3.5: Security margin of CAST-128

1

30

60

Figure 3.6: Security margin of DES

86

3.2. Visualisations

1 60 120

(a) 2TDEA

1 90 180

(b) 3TDEA

Figure 3.7: Security margin of TDEA

87

CHAPTER 3. Experimental Evaluation

1 64 128

Figure 3.8: Security margin of HIGHT

1

64

128

Figure 3.9: Security margin of XTEA

88

3.2. Visualisations

1 64 128

Figure 3.10: Forward key dependencies of the first four rounds of XTEA

1 30 60

Figure 3.11: Forward key dependencies of the first four rounds of DES

89

CHAPTER 3. Experimental Evaluation

1

64

128

(a) 128/128

1

96

192

(b) 128/192

1

128

256

(c) 128/256

Figure 3.12: Security margin of Speck

90

3.2. Visualisations

1

64

128

(a) 128/128

1

96

192

(b) 128/192

1

128

256

(c) 128/256

Figure 3.13: Security margin of Simon

91

CHAPTER 3. Experimental Evaluation

1 64 128

(a) Serpent 128

1 128 256

(b) Serpent 256

Figure 3.14: Security margin of Serpent

92

3.2. Visualisations

the key. A reordering of the instructions across the separation between the first two

DES can also be observed. For comparison, Figure 3.6 reports the security margin

of a simple DES, which achieves a reasonable diffusion, notwithstanding its small

key size. Figure 3.11 shows a detail of the (reconstructed) key dependencies of

the first 4 rounds of DES. The effect of the optimised S-Boxes with pre-calculated

shifts can be observed, where only few bits in a 32bit value have dependencies on

the key. The bit-oriented nature of DES is well visible too, especially at round 2,

with single bits of the same instruction having different vulnerability.

Figure 3.8 points out the slow diffusion of HIGHT, a fact that is partially ex-

plained by the small round function, paired with a large number of rounds (32),

which still guarantee a complete diffusion by the 8th round in both directions. The

blue columns in the first few rounds correspond to the points where well-mixed

portions of the key enter the cipher stream. On a different note, Figure 3.2 makes

it clear that almost no instruction in MISTY1 reaches a sufficient level of security,

due to the very poor diffusion properties of this cipher. In this case, keysize protec-

tion might even be detrimental, because of the costs associated with continuously

masking and unmasking the operands.

The results for Noekeon are presented in Figure 3.4, which confirms the equi-

valent security of the two key modes (cfr. Section 3.1) against side-channel attacks

and the very fast diffusion, which reaches completion by the second round of 16

in both directions. The cipher was designed with side-channel attack resistance

in mind, and the analysis confirms that the authors succeeded in this regard. Good

diffusion, together with great performances, place Noekeon among the best choices

for lightweight encryption applications.

Serpent is another cipher with very good properties. As shown in Figure 3.14,

the diffusion is complete by the second round for -128, and the third for -256

(and -192 too). Serpent admittedly has a higher security level of the AES, but

a very different internal structure, with a comparatively smaller round function

and computational (bitslice) S-Boxes. These two properties guarantee excellent

performances to the protected version, even if the cipher is penalised by the large

number of rounds.

Going back to lightweight ciphers, Figure 3.10 presents the reconstructed key

dependencies of the first few rounds of XTEA, where the typical “gradient” be-

haviour of modular additions is visible. Figure 3.9 reports the security margin, in

which the key input points are well visible as red bars inside each round. The vul-

93

CHAPTER 3. Experimental Evaluation

nerability index of Speck, another lightweight cipher based on modular additions,

is shown in Figure 3.12 and the very fast diffusion effect of modular sums can

again be appreciated, together with the extremely small size of the round function,

whose main components are two rotations by a constant and one modular addition.

Simon, the hardware-optimized companion to Speck, exhibits similar properties,

and completes diffusion by the fourth round, as visualised in Figure 3.13.

3.3 Benchmark

All the algorithms described in Section 3.1 have been implemented in C start-

ing from the respective reference document. The code has been optimised to the

fullest extent possible, but without making assumptions on the machine, such as

the availability of a certain instruction, or using specially crafted assembly code.

The intent is to obtain a comprehensive analysis of the performance obtainable

from “standard” source code compiled for two different but very popular architec-

tures: MIPS32 and ARMv7. Both are common sights in embedded devices, with

the latter being prevalent, and they have been chosen precisely for being represent-

ative of the class of devices that have cryptographic material on board and operate

as authentication or encryption mechanisms, in smart cards, security tokens, or en-

crypted device controllers. The crucial detail in these applications is that the key

is usually burned in ROM or otherwise embedded in the SoC, and therefore not

readily available, making them the most common target of side-channel attacks.

The first selected device is a ST Microelectronics STM32F407 board, featuring

a ARMv7 Cortex-M4 CPU operating at 120 MHz clock and endowed with 128kiB

of RAM, 1MiB of flash and a hardware random number generator, running bare

metal. The second board is an Imagination Creator CI20 board equipped with

a dual core MIPS32 processor clocked at 1.2GHz, 32k L1 instruction and data

cache, 512k L2 I&D cache, and 1GiB of DDR3 RAM, running Debian 7 with

Linux 3.0.8. In both cases the code has been compiled with the modified version

of Clang+LLVM based on 3.8.0 trunk.

The MIPS machine does not exactly conform to the specifications of an em-

bedded device, however the overhead measurements could still shed some light on

the behaviour of a different architecture in the same scenario.

An important distinction to make is that the ARMv7 code runs on bare metal,

with virtually zero overhead and small variance almost exclusively due to clock

94

3.3. Benchmark

skews. On the other hand, the MIPS board runs a stripped down version of a

Linux-based OS, which means that several concurrent processes might cause a

context switch or deplete the system-wide random pool, making the measurements

more fuzzy.

In case of MIPS, measurements where collected using the kernel timer CLOCK_-

PROCESS_CPUTIME_ID, which only accounts for cycles attributed to the current pro-

cess, at a reported precision of 1ns. For ARMv7, the board was programmed to

raise and lower an output using the high speed GPIO feature and the measure-

ments were taken using an oscilloscope to capture the temporal distance between

the rising and falling edges of the collected signal.

A last but very important detail is the generation of randomness. The ARMv7

SoC was endowed with a hardware RNG with an approximate refresh time of 4

clock cycles, meaning that fresh bits were readily available whenever requested

by the program. The MIPS board had no such facility, and therefore the psuedo-

RNG software implementation offered by the Linux kernel was used, which has

a significantly higher overhead and delivers randomness at a larger variance due

its to internal maintenance operations. In order to overcome this last issue, the

randomness was dispensed through a 256MiB buffer, filled from the system RNG

before the start of the benchmark.

The following sections present and discuss the results of the benchmarks on the

two platforms in exam, with the goal of finding the algorithms that exhibit the best

behaviour, as in performance, masking overhead and code footprint. For ARMv7s,

results are given by the average of 5 runs, while on MIPS the collection strategy

was “best 8 out of 10”, in order to account for the periodic bursts in execution time

caused by the maintenance routines of the system RNG. On both architectures the

single iteration of the benchmark consisted in the encryption of a single block of

an hard-coded random plaintext, or the test vector where available.

The size of the generated code is reported alongside times and overheads, as it

is of great concern for embedded platforms, those that might benefit the most from

the protected code. In this regard, STM32F204 is already at the higher end of the

spectrum with 1MiB of flash memory, other devices might be even more limited

(512kiB or less), and the masked algorithm would not terribly useful if it couldn’t

even fit in memory, not to mention that the encryption routine is supposed to be a

component of a larger application, which will necessarily increase the code size.

The reported figures include the benchmark hooks which signal the begin and end

95

CHAPTER 3. Experimental Evaluation

of the routine. For this reason, the reported values might be a few bytes larger than

the encryption code alone.

In all graphs, a solid lines represents data for the keysize-level masking (cfr.

Section 2.7), and the corresponding dashed line brings the data for full masking.

For reference, the complete data set is reported in Appendix A. Ciphers with unique

key sizes, namely DES/TDEA and CAST5-80, have been included in the tables, but

excluded from the analysis.

3.3.1 128 bit ciphers

Figure 3.15 reports the benchmark data for 128bit ciphers on ARMv7 and

MIPS32. A comparison of the time and overhead plots on ARMv7 shows that

AES has the worst performance, closely followed by MISTY1, although the latter

has a sensibly worse overhead. In both cases, the initial overhead is almost two

order of magnitudes, but then grows at a slow pace with the increase of the mask-

ing order. The large overhead of AES is justified by the computationally heavy

protection of S-Boxes and the large round function, while MISTY1 pays the price

of its weak diffusion properties, which result in most of the instructions requiring

masking, even in the inner rounds.

SEED and Camellia also exhibit a similar behaviour, although with better run-

ning times -- almost by half an order of magnitude. HIGHT performs better than

all the previous, but its curves are characterised by a steeper ascent, explained by

the higher cost of masked additions. The sudden change of slope at the second

order is explained by the different algorithms used.

Speck and XTEA have a similar profile to SEED, but an order of magnitude

faster, as they also use modular additions as part of their round functions. The in-

ternal structures of the two are very similar, with a tiny round function, 64 iterations

and diffusion achieved with modular sums. This explains the very similar curves,

both in time and overhead, although Speck appears to be slightly more efficient.

Despite the steep overhead curve, these two start with excellent performance, and

therefore maintain good figures even at higher orders.

Noekeon, Simon, and Serpent exhibit the best performance (in this order), with

a moderate initial masking cost, and a slow increase with the masking order. Ser-

pent in particular appears very interesting in this regard, since it starts with an

unmasked time close to AES and Camellia, but evolves at a much lower rate, with

an overhead consistently below 10× and better than those of Noekeon and Simon.

96

3.3. Benchmark

(a) Time on ARMv7 (b) Time on MIPS32

(c) Masking overhead on ARMv7 (d) Masking overhead on MIPS32

(e) .text size on ARMv7 (f) .text size on MIPS32

Figure 3.15: Benchmark results for 128 bit ciphers

97

CHAPTER 3. Experimental Evaluation

This fact is explained by the simultaneous lack of table lookups and additions,

whose protection constitute the bulk of the overhead in the other cases, and it is

even more interesting when considering that Serpent has not been engineered as a

lightweight cipher, on the contrary of the other two.

The behaviour on MIPS32 follows closely, although Camellia, SEED and Ser-

pent exhibit a sudden increase of the computation time around the first order, a

fact for which no reasonable explanation was found. The only notable difference

is in AES, which performs visibly better than SEED, a fact that might be explained

by the much slower RNG. The most interesting fact is that the MIPS machine is

clocked at almost an order of magnitude higher than the ARMv7, but performs

comparably. This is explained by the presence of a hardware random number gen-

erator on the latter architecture, which provides an essential boost, particularly at

higher orders and in those cipher that include lookups and modular additions.

Both architectures have comparable trends in code size, although MIPS32 code

tends to be larger. On ARMv7, AES has the largest footprint, with all the other

ciphers exhibiting similar behaviours and Noekeon and Speck having the smallest

size. On MIPS32 HIGHT has the largest footprint, followed by AES and all the

others. Particularly interesting are the curves of Serpent and Simon, which ex-

hibit the most moderate growth, again due to the lack of heavy table lookups and

additions.

To conclude, Noekeon in both variants (cfr. Section 3.1) has the best perform-

ance and the smallest footprint across all plaftforms, while Serpent exhibits the

smallest masking overhead. It is worth mentioning that the trend for this latter is

less clear on MIPS32 at the first order, but becomes apparent at higher ones.

3.3.2 192 bit and 256 bit ciphers

Benchmark data for 192bit and 256bit ciphers are respectively contained in

Figure 3.16 and Figure 3.17. In both cases AES exhibits the worst performance and

overhead, closely followed by Camellia in the same order of magnitude. Simon and

Serpent have a similar behaviour on ARMv7, while the latter appears to have an

advantage at higher orders on MIPS32, a fact possibly explained by their different

demand of random value, which becomes apparent on a platform with a sensibly

slower RNG. Speck has the best performance at low masking order, but is quickly

impeded by the overhead of protected modular additions and overrun by Serpent

and Simon. The crossing happens around the second order for a 192bit key on

98

3.3. Benchmark

(a) Time on ARMv7 (b) Time on MIPS32

(c) Masking overhead on ARMv7 (d) Masking overhead on MIPS32

(e) .text size on ARMv7 (f) .text size on MIPS32

Figure 3.16: Benchmark results for 192 bit ciphers

99

CHAPTER 3. Experimental Evaluation

(a) Time on ARMv7 (b) Time on MIPS32

(c) Masking overhead on ARMv7 (d) Masking overhead on MIPS32

(e) .text size on ARMv7 (f) .text size on MIPS32

Figure 3.17: Benchmark results for 256 bit ciphers

100

3.3. Benchmark

ARMv7, and the first in all the other cases.

All the ciphers have a very similar footprint, with the only exception of Speck,

which is consistently the most compact by half an order of magnitude or more,

thanks to the small round function combined with good diffusion properties that

limit masking to few outermost rounds. Also at these key sizes, Serpent has the

overall lowest overhead, on both platforms.

3.3.3 Overall results

From the results, Serpent emerges as a clear winner, thanks to its moderate

overhead in code size and time, and a security level significantly higher than AES

(Rijndael). AES itself exhibits worse results, with a running time consistently

higher by two orders of magnitude. In the range of lightweight ciphers, Noekeon

offers the best results, with an overhead which grows less than an order of mag-

nitude across three orders of masking. It is interesting to notice that unmasked

Speck has a run time similar to the one of Noekeon, but the masked code suf-

fers from the overhead of the protected 64 bit modular addition at the core of the

round function. In general, the most penalised algorithms are those employing

table-based S-Boxes as part of their round function, in which case masking over-

heads of 1000× are common, due to the inherent difficulties in masking lookups,

as described in Section 6.

In absence of a masking scheme for shifts by a variable quantity, I was not able

to protect CAST-128 – the only algorithm which makes use of this operation. Con-

sequently, this cipher could not be included in the benchmarks, although figures for

the unmasked version are reported in the tables in Appendix A for completeness.

101

CHAPTER 3. Experimental Evaluation

102

Conclusion

In thesis I have described an efficient method to evaluate the resistance of

software implementations of symmetric ciphers against different classes of side-

channel attacks and selectively apply countermeasures in a a fully automated way.

The visualisations obtained from the analysis tool I built have given interesting

insights into the security properties on many symmetric ciphers with a level of de-

tail as fine-grained as the single instruction. In some cases I could confirm what I

already knew, for instance that Misty1 is irreparably broken. In others instances I

obtained results that prompted further analysis and revealed interesting properties.

For instance, I obtained very promising results for Serpent and Noekeon character-

ised by very good diffusion properties, as revealed by the analysis, and the exclus-

ive use of primitive operations for which efficient masking schemes exist, making

them very good candidates to provide fast and secure symmetric encryption in em-

bedded applications.

The field of automated cipher analysis and side-channel countermeasures ap-

plication is very young, even though some significant research has been published

[3, 10], and I hope that my work will manage to provide a non-null addition – if

anything for the detailed analysis of a vast portfolio of cryptographic primitives I

produced, which I believe have no precedent in literature.

A lot of issues remain open, and I took great care in engineering the analysis

tool in a way that is flexible enough to enable hassle-free expansions to take into

account new attack models. Just to name a few possibilities, I did not investigate

protection against hamming-distance leakage [7], which is prevented at backend

level by making sure that no two shares of the same value are written to the same

register.

More in general, an intermediate representation does not necessarily reflect the

exact code produced by the backend. In my work I have assumed that the two rep-

Conclusion

resentation are close enough to allow conclusions drawn in one to be propagated

to other. This is generally true, however no formal guarantee is given in practice.

Architecture specific modifications to the compiler could be studied to prevent in-

struction rescheduling and optimising transformations which might undermine the

security guarantees of the applied transformation.

While the set of optimisations I could enable is very similar to the full optim-

ising selection that clang adopts in -O3 mode, a couple of passes were left behind.

These were problematic in that they introduced new (vectorial) operators and in-

trinsics. It is not impossible to expand the analysis to handle these cases as well,

and it would interesting to see if the previously excluded optimisations yield any

performance improvement over the current results.

In addition to that, the countermeasures rely on the ISW assumption that en-

coding and decoding routines are invulnerable to attacks targeting the implement-

ation (see 1.4.1), which is not necessarily the case. No hardware architecture am I

aware of offers a similar protected encoding/decoding facility, nevertheless it will

be interesting to revaluate the results when one will be available.

Finally, I could not find any efficient solution in literature for masking a shift

by variable amount, and therefore I was not able to protect the (only) user of it,

CAST-128. When a transformation will be published for this operation, it will be

nice to see how this cipher compares to the others, especially because it adopts a

unique machine operation.

The masking schemes for table lookups and modular additions is likely to have

room for improvement. Suffice to say that until the summer of 2014, no algorithm

existed in literature for higher order masking of additions, and that very different

approaches to lookup-tables have been explored. It would be interesting to update

the analysis, run the same tests in a few years and compare the results to see the

advancements in a field which is moving fast.

104

Appendix A

Benchmark data

105

Benchmark data

Table A.1: Benchmark for 128bit key ciphers on ARMv7

Cipher Unmasked
Fully masked / Keysize masked

Order 1 Order 2 Order 3

AES 76.3µ±3.2p
103.7m±0 299.6m±19.7µ 621.2m±0

39.3m±1.86µ 118.7m±3.85n 250.5m±14.98n

Camellia 69.6µs±3.2p
88.78m±3.745n 267.2m±11.02n 552.7m±0

10.66m±931p 29.88m±2.459µ 62.16m±2.29n

Serpent 89µs±4.41n
1.903m±67p 4.356m±268p 7.42m±547n

296µs±11.88p 560µ±82.3p 886µ±22p

Speck 128/ 23.78µ±0
1.076m±58p 19.13ms±1.278µs 37.2ms±1.429ns

221.5µ±7.78p 3.148ms±134ps 6.099ms±197ps

Simon 128/ 71.3µ±3.6p
1.455m±82p 3.486m±232p 6.204m±232p

407.5µ±235n 896.3µ±0 1.545m±82.3p

Noekeon D. 16.78µs±1p
914µ±41p 2.128m±235n 3.666m±134p

208.5µ±0 458.5µ±235n 767.8µ±0

Noekeon I. 16.78µs±1p
914µ±41.16p 2.128m±235n 3.666m±288n

208.5µ±0 458.3µ±0 767.8µ±47.52p

Hight 45.08µ±0
2.534m±124.5p 25.96m±0 49.63m±1.429n

1.431m±47.5p 14.44m±445p 27.6m±912p

XTEA 19.96µ±0
3.332m±116p 41.16m±1.461n 78.35m±3.49n

353µs±0 4.073m±268p 7.703m±208p

Misty1 28.12µs±1p
65.9m±0 194.1m±6.39n 411m±17.32n

27.79m±1.651n 80.79m±0 169.6m±7.561n

SEED 56.84µ±1.2p
117m±4.472n 374.4m±7n 737.4m±30.24n

12.48m±2.281n 38.78m±1.89n 77.59m±3.643n

CAST5 65.94µ±3.8p – – –

106

Table A.2: Benchmark for 192bit key ciphers on ARMv7

Cipher Unmasked
Fully masked / Keysize masked

Order 1 Order 2 Order 3

AES 88.88µ±2.4p
117m±3.419n 355.5m±15.59n 745.5m±0

50.66m±6.566µ 147.7m±3.6n 307.3m±12.23n

Camellia 96.38µ±2.4p
119m±8.207n 351.6m±9.669n 737.1m±0

19.94m±1.967µ 59.48m±3.449n 123.8m±3.058n

Serpent 89µ±0
1.907m±58p 4.35m±0 7.44m±208p

386µ±0 769µ±31p 1.245m±47p

Speck 128/ 28.52µs±1p
1.11m±58p 19.74m±771p 38.38m±890p

288.6µ±11p 288.6µ±11p 4.379m±0

Simon 128/ 74.64µ±3.9p
1.478m±82p 3.54m±134p 6.302m±0

446µ±164p 989.7µ±164p 1.713m±161n

Table A.3: Benchmark for 256bit key ciphers on ARMv7

Cipher Unmasked
Fully masked / Keysize masked

Order 1 Order 2 Order 3

AES 105.4µ±2.4p
145m±4.8n 413.5m±0 860.2m±0

50.73m±1.925µ 148.8m±5.1n 307.6m±7.49n

Camellia 95.84µ±3.8p
118.6m±3.745n 356.3m±14.34n 742.7m±0

19.82m±1.22µ 58.59m±2.42µ 123.7m±4.3µ

Serpent 89.2µ±0
1.905m±52p 4.354m±0 7.439m±255p

386µ±15p 769µ±29p 1.245m±58p

Speck 128/ 30.12µ±6.67n
1.146m±0 20.36m±658p 39.58m±890p

358µ±15.56p 5.599m±0 10.89m±510p

Simon 128/ 84.68µ±3.43p
1.542m±235n 3.695m±232p 6.578m±0

448µ±41.16p 976µ±82.8p 1.675m±235n

107

Benchmark data

Table A.4: Masking overhead factor on ARMv7

Fully masked / Keysize masked (1 = unmasked)

Keysize 128 192 256

Order 1 2 3 1 2 3 1 2 3

AES
1359 3927 8142 1316 4000 8388 1376 3923 8161

515 1556 3283 570 1662 3457 481 1412 2918

Camellia
1276 3839 7941 1235 3648 7648 1237 3718 7749

153 429 893 207 617 1284 207 611 1291

Serpent
21 49 83 21 49 84 21 49 83

3 6 10 4 9 14 4 9 14

Speck 128/
45 804 1564 39 692 1346 38 676 1314

9 132 256 10 10 154 12 186 362

Simon 128/
20 49 87 20 47 84 18 44 78

6 13 22 6 13 23 5 12 20

Noekeon D.
54 127 218

– – – – – –
12 27 46

Noekeon I.
54 127 218

– – – – – –
12 27 46

Hight
56 576 1101

– – – – – –
32 320 612

XTEA
167 2062 3925

– – – – – –
18 204 386

Misty1
2344 6903 14.6k

– – – – – –
988 2873 6031

SEED
2058 6587 13.0k

– – – – – –
220 682 1365

108

Table A.5: Size of the .text section on ARMv7

Unmasked / Keysize masked / Fully masked (KiB)

Keysize 128 192 256

Order 0 1 2 3 0 1 2 3 0 1 2 3

AES 7
28 67 118

8
33 80 142

9
36 84 148

57 144 267 69 174 321 81 205 377

Camellia 6
10 15 23

8
15 23 35

8
14 21 32

35 69 129 47 93 175 47 93 175

Serpent 9
13 18 24

9
14 20 28

9
14 20 28

40 79 127 40 79 127 40 79 127

Speck 128/ 3
6 8 12

3
8 11 16

3
10 13 20

25 34 56 26 35 58 27 36 60

Simon 128/ 8
14 22 32

8
14 23 35

9
15 24 35

31 67 109 31 68 111 33 72 116

Noekeon D. 2
5 8 13

– – – – – – – –
16 34 56

Noekeon I. 2
5 8 13

– – – – – – – –
16 34 56

Hight 6
38 69 120

– – – – – – – –
65 122 215

XTEA 4
7 12 19

– – – – – – – –
20 86 151

Misty1 2
13 28 46

– – – – – – – –
13 27 44

SEED 4
8 13 19

– – – – – – – –
27 69 107

CAST5 4 – – – – – – – – – – –

109

Benchmark data

Table A.6: Benchmark for key ciphers with other key sizes on ARMv7

Cipher Unmasked
Fully masked / Keysize masked

Order 1 Order 2 Order 3

DES 107.6µ±3.4p
21.93m±833n 63.07m±4.894µ 125.9m±9.785µ
7.94m±729n 19.21m±2.652µ 39.12m±4.58n

2TDEA 234.7µ±6.35p
63.79m±5.026µ 185.7m±3.058n 377.2m±12.23n

45.69m±1.57µ 129.7m±6.122n 262.7m±0

3TDEA 318.1µ±0
65.71m±4.44µ 187.4m±10.44n 374.7m±11.44n

65.72m±3.778n 184.5m±7.49n 367.3m±0

CAST5-80 51.28µ±0 – – –

Table A.7: Size of the .text section for other ciphers on ARMv7

Order DES 2TDEA 3TDEA CAST5-80

0 11 22 31 3

1 22 15 57 47 65 64 –

2 37 21 102 37 107 104 –

3 58 29 178 131 168 163 –

110

Table A.8: Benchmark for 128bit key ciphers on MIPS32

Cipher Unmasked
Fully masked / Keysize masked

Order 1 Order 2 Order 3

AES 7µ±855n
64m±165µ 248m±55µ 551m±991µ
26m±2m 98m±157µ 219m±331µ

Camellia 9µ±628n
6m±36µ 221m±48µ 485m±271µ
58m±154µ 24m±22µ 56m±2m

Serpent 9µ±650n
120µ±28µ 14m±9µ 23m±15µ
5m±54µ 222µ±29µ 4m±30µ

Speck 128/ 4µ±373n
164µ±38µ 51m±118µ 106m±1m

37µ±2µ 9m±8µ 17m±16µ

Simon 128/ 9µ±497n
93µ±21µ 13m±22µ 21m±32µ
4m±29µ 4m±37µ 4m±40µ

Noekeon D. 3µ±299n
4m±29µ 5m±66µ 12m±2m

77µ±9µ 177µ±33µ 2m±2m

Noekeon I. 4µ±299n
4m±34µ 5m±75µ 13m±1m

72µ±7µ 163µ±15µ 2m±2m

Hight 2µ±157n
5m±91µ 72m±22µ 139m±30µ
5m±99µ 68ms±218µs 135m±13µ

XTEA 6µ±458n
5m±27µ 112ms±20µs 219m±32µ
57µ±314n 9ms±34µs 22m±38µ

Misty1 2µ±124n
21m±53µ 259ms±84µs 583m±1m

66m±60µ 86ms±47µs 193m±101µ

SEED 8µ±737n
23m±8µ 889m±64µ 2±1m

221m±62µ 94m±42µ 207m±75µ

CAST5 8µ±1µ – – –

111

Benchmark data

Table A.9: Benchmark for 192bit key ciphers on MIPS32

Cipher Unmasked
Fully masked / Keysize masked

Order 1 Order 2 Order 3

AES 12µ±678n
77m±189µ 300m±1m 668m±82µ
34m±24µ 126m±53µ 275m±37µ

Camellia 6µ±891n
75m±20µ 292m±269µ 647m±565µ
12m±39µ 47m±86µ 109m±13µ

Serpent 10µ±416n
5m±43µ 13m±9µ 23m±29µ
129µ±22µ 264µ±27µ 4m±25µ

Speck 128/ 5µ±229n
178µ±41µ 55m±35µ 107m±168µ
51µ±16µ 13m±19µ 26m±38µ

Simon 128/ 9µ±745n
4m±26µ 13m±29µ 21m±9µ
99µ±19µ 4m±15µ 4m±97µ

Table A.10: Benchmark for 256bit key ciphers on MIPS32

Cipher Unmasked
Fully masked / Keysize masked

Order 1 Order 2 Order 3

AES 13µ±650n
92m±53µ 346m±481µ 770m±153µ
34m±35µ 126m±21µ 277m±49µ

Camellia 8µ±685n
76m±21µ 294m±310µ 651m±594µ
12m±34µ 47m±126µ 110m±133µ

Serpent 10µ±628n
5m±68µ 14m±26µ 23m±44µ
133µ±21µ 266µ±32µ 4m±29µ

Speck 128/ 5µ±488n
177µ±43µ 56m±114µ 111m±199µ
63µ±16µ 17m±25µ 30m±64µ

Simon 128/ 12µ±272n
4m±76µ 13m±18µ 21m±33µ
102µ±20µ 4m±32µ 4m±44µ

112

Table A.11: Masking overhead factor on MIPS32

Fully masked / Keysize masked (1 = unmasked)

Keysize 128 192 256

Order 1 2 3 1 2 3 1 2 3

AES
8.91k 22.5k 50.8k 9.1k 25.8k 78.5k 5.89k 24.4k 58.9k

2.24k 7.01k 19.3k 3.98k 8.37k 15.3k 1.71k 6.94k 16.7k

Camellia
7.41k 34.8k 67.6k 13.1k 50.4k 55.9k 7.99k 30.0k 82.5k

637 3.50k 9.09k 2.05k 8.42k 12.3k 1.08k 5.50k 19.4k

Serpent
393.1 1.23k 3.70k 538 1.22k 1.92k 537.23 2.17k 2.30k

13.78 24.94 420 13.46 20.74 517 13.17 42.82 730.17

Speck 128/
29.24 14.6k 23k 33.1 10.7k 30.1k 27.68 10.78k 21.07k

10.62 1.93k 3.58k 11.0 2.50k 5.04k 10.06 3.60k 6.0k

Simon 128/
381 1.35k 2.50k 499 2.06k 2.42k 356.8 1.07k 1.91k

10.46 499 295.2 7.64 394.6 503 8.23 293 368.1

Noekeon D.
959 1.12k 3.00k

– – – – – –
25.27 37.50 558.9

Noekeon I.
1.08k 1.19k 3.28k

– – – – – –
16.33 41.28 516.3

Hight
2.39k 35.84k 69.47k

– – – – – –
2.26k 32.89k 65.73k

XTEA
1.13k 35.97k 51.26k

– – – – – –
9.31 2.95k 7.35k

Misty1
32.97k 129k 283k

– – – – – –
10.71k 48.45k 93.7k

SEED
24.39k 110k 357k

– – – – – –
2.86k 10.52k 19.78k

113

Benchmark data

Table A.12: Size of the .text section on MIPS32

Unmasked / Keysize masked / Fully masked (KiB)

Keysize 128 192 256

Order 0 1 2 3 0 1 2 3 0 1 2 3

AES 14
48 92 161

17
56 110 192

20
61 117 202

92 198 352 111 238 425 130 280 498

Camellia 8
16 25 35

12
23 36 54

12
22 33 48

54 109 187 72 146 250 72 146 250

Serpent 13
24 32 43

13
26 35 48

13
26 35 48

65 128 214 65 128 214 65 128 214

Speck 128/ 6
12 17 25

6
15 21 31

6
17 25 38

42 64 109 43 66 112 45 69 116

Simon 128/ 13
23 39 57

13
25 43 62

14
25 43 62

55 125 195 55 127 197 58 133 207

Noekeon D. 5
10 15 23

– – – – – – – –
29 54 91

Noekeon I. 5
10 15 23

– – – – – – – –
29 54 91

Hight 9
101 205 370

– – – – – – – –
102 209 377

XTEA 9
18 22 35

– – – – – – – –
95 135 266

Misty1 4
23 46 79

– – – – – – – –
23 46 77

SEED 9
16 23 33

– – – – – – – –
54 97 171

CAST5 7 – – – – – – – – – – –

114

Table A.13: Benchmark for key ciphers with other key sizes on MIPS32

Cipher Unmasked
Fully masked / Keysize masked

Order 1 Order 2 Order 3

DES 12µ±590n
36m±78µ 148m±106µ 331m±47µ
13m±21µ 45m±51µ 103m±76µ

2TDEA 24µ±869n
113m±97µ 444m±34µ 991m±137µ
81m±28µ 310m±229µ 692m±47µ

3TDEA 34µ±536n
113m±193µ 445m±83µ 991m±500µ
113m±19µ 436m±113µ 971m±94µ

CAST5-80 4µ±572n – – –

Table A.14: Size of the .text section for other ciphers on MIPS32

Order DES 2TDEA 3TDEA CAST5-80

0 16 36 50 5

1 34 25 81 68 94 92 –

2 57 34 142 110 153 149 –

3 92 46 238 176 251 244 –

115

Benchmark data

116

Bibliography

[1] Carlisle Adams. The CAST-128 encryption algorithm. RFC-2144, https:

//www.ietf.org/rfc/rfc2144.txt, 1997. 2.8, 3.1

[2] Carlisle M Adams. Constructing symmetric ciphers using the CAST design

procedure. In Selected Areas in Cryptography, pages 71–104. Springer, 1997.

3.1

[3] Giovanni Agosta, Alessandro Barenghi, Massimo Maggi, and Gerardo Pelosi.

Compiler-based side channel vulnerability analysis and optimized counter-

measures application. In Design Automation Conference (DAC), 2013 50th

ACM/EDAC/IEEE, pages 1–6. IEEE, 2013. 2.2.3, 13, 2.5.1, 3.3.3

[4] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi.

The EM side–channel. In International Workshop on Cryptographic Hard-

ware and Embedded Systems, pages 29–45. Springer, 2002. 1.1, 1.1.1

[5] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5,

pages 1–19. ACM, 1970. 1.5.1

[6] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the

advanced encryption standard. NIST AES Proposal, 174, 1998. 7, 3.1

[7] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and

François-Xavier Standaert. On the cost of lazy engineering for masked soft-

ware implementations. In Smart Card Research and Advanced Applications,

pages 64–81. Springer, 2014. 3.3.3

[8] Achiya Bar-On. A 270 attack on the full MISTY1. Technical report, IACR

Cryptology ePrint Archive, 2015, 746. http://eprint.iacr.org, 2015.

3.1, 3.1

117

https://www.ietf.org/rfc/rfc2144.txt
https://www.ietf.org/rfc/rfc2144.txt
http://eprint.iacr.org

BIBLIOGRAPHY

[9] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache.

Fault injection attacks on cryptographic devices: Theory, practice, and coun-

termeasures. Proceedings of the IEEE, 100(11):3056–3076, 2012.

[10] Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-Xavier

Standaert, and Paolo Ienne. A first step towards automatic application of

power analysis countermeasures. In Proceedings of the 48th Design Automa-

tion Conference, pages 230–235. ACM, 2011. 3.3.3

[11] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan

Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight

block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013. 3.1

[12] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-

tems. In Advances in Cryptology–CRYPTO’97, pages 513–525. Springer,

1997. 1.2.1

[13] BlackHat 2015. Web Timing Attacks Made Practical, 2015. 1.1

[14] Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the ad-

vanced encryption standard (AES). In International Conference on Financial

Cryptography, pages 162–181. Springer, 2003.

[15] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power ana-

lysis with a leakage model. In International Workshop on Cryptographic

Hardware and Embedded Systems, pages 16–29. Springer, 2004. 1.1.1, 1.1.1

[16] David Brumley and Dan Boneh. Remote timing attacks are practical. Com-

puter Networks, 48(5):701–716, 2005. 1.1

[17] Ran Canetti, Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Randomness

vs. fault-tolerance. In Proceedings of the 16th annual ACM symposium on

Principles of distributed computing, pages 35–44. ACM, 1997. 19

[18] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and

Matthieu Rivain. Higher-order masking schemes for s-boxes. In Fast Soft-

ware Encryption, pages 366–384. Springer, 2012. 1.3.1, 6

[19] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. To-

wards sound approaches to counteract power-analysis attacks. In Advances

118

BIBLIOGRAPHY

in Cryptology–CRYPTO’99, pages 398–412. Springer, 1999. 1.1.1, 1.1.2, 1.3,

1.3.1, 6, 1.4

[20] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel

leaks in web applications: A reality today, a challenge tomorrow. In 2010

IEEE Symposium on Security and Privacy, pages 191–206. IEEE, 2010. 1.1

[21] Jean-Sébastien Coron. Higher order masking of look-up tables. In Advances

in Cryptology–EUROCRYPT 2014, pages 441–458. Springer, 2014. 1.3.1, 6,

2.1

[22] Jean-Sébastien Coron and Louis Goubin. On boolean and arithmetic masking

against differential power analysis. In Cryptographic Hardware and Embed-

ded Systems–CHES 2000, pages 231–237. Springer, 2000. 6

[23] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. Se-

cure conversion between boolean and arithmetic masking of any order. In

Cryptographic Hardware and Embedded Systems–CHES 2014, pages 188–

205. Springer, 2014. 1.3.1, 17, 1.3.5, 6, 2.1

[24] Jean-Sebastien Coron, Johann Groszschaedl, Praveen Kumar Vadnala, and

Mehdi Tibouchi. Conversion from arithmetic to boolean masking with log-

arithmic complexity. Technical report, Cryptology ePrint Archive, Report

2014/891, http://eprint.iacr.org, 2014. 1.3.1, 17, 1.3.5, 2.1

[25] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel

cryptanalysis of a higher order masking scheme. Springer, 2007. 6

[26] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switch-

ing from arithmetic to boolean masking. In Cryptographic Hardware and

Embedded Systems–CHES 2003, pages 89–97. Springer, 2003. 1.3.5

[27] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen.

Nessie proposal: NOEKEON. In First Open NESSIE Workshop, pages 213–

230, 2000. 3.1

[28] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The

Advanced Encryption Standard. Information Security and Cryptography.

Springer, 2002. 3.1

119

http://eprint.iacr.org

BIBLIOGRAPHY

[29] Blandine Debraize. Efficient and provably secure methods for switching from

arithmetic to boolean masking. In Cryptographic Hardware and Embedded

Systems–CHES 2012, pages 107–121. Springer, 2012. 1.3.5

[30] Horst Feistel. Cryptography and computer privacy. Scientific american,

228:15–23, 1973.

[31] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program depend-

ence graph and its use in optimization. ACM Transactions on Programming

Languages and Systems (TOPLAS), 9(3):319–349, 1987. 1.5.1, 14

[32] Roger Forster. Manchester encoding: opposing definitions resolved. Engin-

eering Science and Education Journal, 9(6):278–280, 2000. 1.2.3

[33] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic

analysis: Concrete results. In International Workshop on Cryptographic

Hardware and Embedded Systems, pages 251–261. Springer, 2001. 1.1.1

[34] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-

bandwidth acoustic cryptanalysis. In International Cryptology Conference,

pages 444–461. Springer, 2014. 1.1

[35] Jovan Dj Golić. Techniques for random masking in hardware. Circuits

and Systems I: Regular Papers, IEEE Transactions on, 54(2):291–300, 2007.

1.3.1, 17

[36] Louis Goubin. A sound method for switching between boolean and arithmetic

masking. In Cryptographic Hardware and Embedded Systems–CHES 2001,

pages 3–15. Springer, 2001. 1.3.5, 6

[37] Louis Goubin and Jacques Patarin. DES and differential power analysis the

"duplication" method. In Cryptographic Hardware and Embedded Systems,

pages 158–172. Springer, 1999. 1.3, 1.4

[38] Louis Goubin and Jacques Patarin. Procédé de sécurisation d’un ensemble

électronique de cryptographie a clé secrete contre les attaques par analyse

physique. European Patent, Schlumberger, 1999. 1.3, 1.4

[39] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-

Seok Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong,

120

BIBLIOGRAPHY

et al. HIGHT: A new block cipher suitable for low-resource device. In

Cryptographic Hardware and Embedded Systems-CHES 2006, pages 46–59.

Springer, 2006. 3.1

[40] NA Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital sig-

nature schemes. Designs, Codes and Cryptography, 23(3):283–290, 2001.

1.1.1

[41] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private

circuits II: Keeping secrets in tamperable circuits. In Advances in Cryptology-

EUROCRYPT 2006, pages 308–327. Springer, 2006.

[42] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-

ware against probing attacks. In Advances in Cryptology-CRYPTO 2003,

pages 463–481. Springer, 2003. 1.3.1, 1.4, 1.4.1, 2.1

[43] ISO/IEC 18033-3:2010 – Information technology – security techniques – en-

cryption algorithms – part 3: Block ciphers. http://www.iso.org/iso/

catalogue_detail.htm?csnumber=54531. 3.1

[44] Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In In-

ternational Workshop on Cryptographic Hardware and Embedded Systems,

pages 291–302. Springer, 2002. 1.2.2, 1.2.3

[45] Mohamed Karroumi, Benjamin Richard, and Marc Joye. Addition with

blinded operands. In Constructive Side-Channel Analysis and Secure Design,

pages 41–55. Springer, 2014. 1.3.1, 17, 4, 1.3.5, 2.1

[46] Gary A Kildall. A unified approach to global program optimization. In Pro-

ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 194–206. ACM, 1973. 14

[47] Chong Hee Kim, Jong Hoon Shin, Jean-Jacques Quisquater, and Pil Joong

Lee. Safe-error attack on SPA-FA resistant exponentiations using a hw mod-

ular multiplier. In International Conference on Information Security and

Cryptology, pages 273–281. Springer, 2007. 1.2.2, 1.2.3

[48] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In

Advances in Cryptology–CRYPTO’99, pages 388–397. Springer, 1999. 1.1,

1.1.1, 1.1.1

121

http://www.iso.org/iso/catalogue_detail.htm?csnumber=54531
http://www.iso.org/iso/catalogue_detail.htm?csnumber=54531

BIBLIOGRAPHY

[49] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction

to differential power analysis. Journal of Cryptographic Engineering, 1(1):5–

27, 2011. 1.1, 1.1.1, 1.1.1, 1.1.1, 1.2

[50] Paul C Kocher, Joshua M Jaffe, and Benjamin C Jun. Using unpredictable

information to minimize leakage from smartcards and other cryptosystems,

December 4 2001. US Patent 6,327,661. 1.1.2

[51] Peter M Kogge and Harold S Stone. A parallel algorithm for the efficient

solution of a general class of recurrence equations. Computers, IEEE Trans-

actions on, 100(8):786–793, 1973. 17

[52] Oliver Kömmerling and Markus G Kuhn. Design principles for tamper-

resistant smartcard processors. Smartcard, 99:9–20, 1999. 1.4

[53] David W Kravitz. Digital Signature Algorithm, July 27 1993. US Patent

5,231,668. 1.1.1

[54] Chris Lattner and Vikram Adve. LLVM: A compilation framework for

lifelong program analysis and transformation. In CGO, pages 75–88, San

Jose, CA, USA, Mar 2004. 1.5.1, 2

[55] Jaeil Lee, Jongwook Park, Sungjae Lee, and Jeeyeon Kim. The SEED en-

cryption algorithm, 2005. 3.1

[56] Paolo Maistri, Pierre Vanhauwaert, and Régis Leveugle. A novel double-data-

rate AES architecture resistant against fault injection. In Fault Diagnosis and

Tolerance in Cryptography, 2007. FDTC 2007. Workshop on, pages 54–61.

IEEE, 2007. 1.2.3

[57] Mitsuru Matsui, S Moriai, and J Nakajima. A description of the Camellia

encryption algorithm, 2004. 3.1

[58] Mitsuru Matsui and Hidenori Ohta. A description of the MISTY1 encryption

algorithm. RFC-2994, https://www.ietf.org/rfc/rfc2994.txt, 2000.

3.1

[59] Thomas Messerges. Using second-order power analysis to attack DPA res-

istant software. In Cryptographic Hardware and Embedded Systems–CHES

2000, pages 27–78. Springer, 2000.

122

https://www.ietf.org/rfc/rfc2994.txt

BIBLIOGRAPHY

[60] Thomas S Messerges. Securing the AES finalists against power analysis at-

tacks. In Fast Software Encryption, pages 150–164. Springer, 2001. 1.1.2,

1.3, 1.3.1, 6, 6

[61] U.S. Department of Commerce National Bureau of Standards. FIPS PUB-46,

Data Encryption Standard (DES), 1977. 3.1

[62] U.S. Department of Commerce National Bureau of Standards. Federal In-

formation Processing Standards Publication FIPS-46-3, 1999. 3.1

[63] U.S. Department of Commerce National Bureau of Standards. FIPS PUB-

186-4, Digital Signature Standard, (DSS), 2013. 1.1.1

[64] National Institute of Standards and US Department of Commerce (Novem-

ber 2001) Technology. FIPS PUB-197, Advanced Encryption Stand-

ard (AES). http://csrc.nist.gov/publications/fips/fips197/

fips-197.pdf. 3.1

[65] Olaf Neiße and Jürgen Pulkus. Switching blindings with a view towards

IDEA. In Cryptographic Hardware and Embedded Systems–CHES 2004,

pages 230–239. Springer, 2004. 1.3.5

[66] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack tech-

nique against SPN structures, with application to the AES and KHAZAD. In

International Workshop on Cryptographic Hardware and Embedded Systems,

pages 77–88. Springer, 2003. 1.2.1

[67] Bart Preneel. NESSIE portfolio of recommended cryptographic primitives.

http://www.nessie.org, 2003. 3.1

[68] Reese T Prosser. Applications of boolean matrices to the analysis of flow

diagrams. In Papers presented at the December 1-3, 1959, eastern joint IRE-

AIEE-ACM computer conference, pages 133–138. ACM, 1959. 1.5.1

[69] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel at-

tacks: A formal security proof. In Advances in Cryptology–EUROCRYPT

2013, pages 142–159. Springer, 2013.

[70] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis

(EMA): Measures and counter-measures for smart cards. In Smart Card Pro-

gramming and Security, pages 200–210. Springer, 2001. 1.1.1

123

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.nessie.org

BIBLIOGRAPHY

[71] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid

Verbauwhede. Consolidating masking schemes. In Advances in Cryptology–

CRYPTO 2015, pages 764–783. Springer, 2015. 1.3.1

[72] Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block ciphers

implementations provably secure against second order side channel analysis.

In Fast Software Encryption, pages 127–143. Springer, 2008. 1.3.1, 6

[73] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order mask-

ing of AES. In Cryptographic Hardware and Embedded Systems, CHES

2010, pages 413–427. Springer, 2010. 1.3, 1.3.1, 6, 6

[74] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic,

and Jean-Pierre Seifert. Simple photonic emission analysis of AES. In In-

ternational Workshop on Cryptographic Hardware and Embedded Systems,

pages 41–57. Springer, 2012. 1.1

[75] Kai Schramm and Christof Paar. Higher order masking of the AES. In Topics

in Cryptology–CT-RSA 2006, pages 208–225. Springer, 2006. 1.1.1, 1.1.2,

1.3.1, 6

[76] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–

613, 1979. 1.4.1

[77] Yosuke Todo. Integral cryptanalysis on full MISTY1. In Annual Cryptology

Conference, pages 413–432. Springer, 2015. 3.1

[78] David J Wheeler and Roger M Needham. TEA, a tiny encryption algorithm.

In Fast Software Encryption, pages 363–366. Springer, 1995. 1.3.2, 17

[79] David J Wheeler and Roger M Needham. Correction to XTEA. Unpublished

manuscript, Computer Laboratory, Cambridge University, England, 1998.

1.3.2, 17, 3.1

[80] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their

applications. John Wiley & Sons, 1999. 1.2.3

[81] Sung-Ming Yen and Marc Joye. Checking before output may not be

enough against fault-based cryptanalysis. IEEE Transactions on computers,

49(9):967–970, 2000. 1.2.2

124

BIBLIOGRAPHY

[82] Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-Jae Moon. RSA

speedup with Chinese remainder theorem immune against hardware fault

cryptanalysis. IEEE Transactions on computers, 52(4):461–472, 2003. 1.2.2,

1.2.3

125

