
Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria

Master Degree in:
Computer Science and Engineering

Hardware Accelerated Framework for
Spatio-Temporal Networks Analysis

Supervisor:
Prof. Marco D. Santambrogio

Master Thesis by:
Andrea Purgato

Student id:
836656

Academic Year 2015-2016



“Computer Science is no more about computers than
astronomy is about telescopes.”

Edsger W. Dijkstra, 1970



Acknowledgments

This work has been realized in collaboration with the University of Illinois at
Chicago, the first acknowledgments go to CompBio lab and EVL lab and all their
members, in which most of the work has been developed. Then I have to thank
my advisor Marco D. Santambriogio for the help given during these last months
during the development process. Thanks also toNECST lab at Politecnico di Mi-
lano, to have provided a great work place where conclude this thesis work.

A special thanksgiving goes to the Italian crew in Chicago with which I shared
many good memories during my permanence in the Windycity, thanks to An-
drea, Roberto, Vittorio, Davide, Benedetto, Federico, Arianna, Chiara, Marc and
Lorenzo for the amazing time in Chicago. I would also like to thank two special
friends that supported me day by day during this period, Mario and Anita.

Finally, I must express my very profound gratitude to all my Family members,
my father Roberto, my mother Luisa, my sister Elena and my grandmother Rosa,
that made all of this possible. Thanks to have supported me every single day.

AP

ii



Sommario

Questo lavoro focalizza il suo interesse sulla costruzione di un framework che
ha lo scopo di facilitare l’analisi delle Spatio-Temoral Networks. Il framework
sviluppato include una pipeline di operazioni in grado di elaborare i dati rac-
colti dai ricercatori, calcolare le networks e visualizzare i risultati interattivamente
grazie ad una piattaforma web. Uno dei più grossi problemi della definizione
delle Spatio-Temoral Networks è il tempo impiegato per la loro computazione,
problema dovuto alla grande quantità di dati da elaborare. Per gli scienziati che
vogliono effettuare studi su questo modello diventa quindi complicato svolgere
complesse analisi in tempi brevi sui dati, rallentando così l’avanzamento degli
studi. Grazie a dispositivi hardware come GPU siamo in grado di fornire una
soluzione al problemadella computazione. La primaparte di questo lavoromostra
come le GPU rappresentino una valida soluzione low-cost a questo tipo di prob-
lema. Mostriamo nei dettagli come approcciare il problema della computazione
su GPU, sfruttando la tecnologia CUDA, analizzando le performance ottenute
facendo diversi tests con dati reali raccolti dai ricercatori. Come anticipato, il
framework presentato in questa tesi crea un flow diretto dal dato raccolto sul
campo ad una rappresentazione visuale delle Spatio-Temoral Networks applicate
al campo di provenienza del dato. Per questo motivo la seconda parte del lavoro
si concentra sullo sviluppo di una piattaforma interattiva dove i ricercatori pos-
sono vedere ed analizzare le reti calcolate. In particolare, i questo lavoro di tesi,
ci concentriamo sull’applicazione del modello Spatio-Temoral Networks al campo
della neuroscienza, quindi al cervello.
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Summary

The thesis work focuses on the optimization of the similarity computation among
nodes for Spatio-Temporal Networks. The study case in this work is the compu-
tation of spatio-temporal networks on brain. The aim of this work is the creation
of a framework that going from the raw data collected by domain experts arriv-
ing to a results visualization allows an interactive analysis of the spatio-temporal
networks. The first part of the work focuses on the realization of an hardware
computation system able to speed up the networks definition. The second part
of the work includes an interactive tool to visualize the networks computed using
the system developed in this first part.

Nowadays, with the increase of computational analysis in sciences such as bi-
ology and neuroscience, the computational aspect is the most challenging one.
Scientists need tools able to process large amounts of data simultaneously. Pre-
viously, scientific computations were performed using clusters of computers, but
this type of infrastructure is very expensive and complex to build [2, 17]. The
work in this thesis is part of a greater project that has the aim to apply spatio-
temporal networks inference techniques to perform network analysis studies in
different fields.

One of the problems of spatio-temporal network applications is the computa-
tional time, and it becomes impractical to keep developing studies when it takes
a long time to analyze and compute the results. We aim to help the researchers to
get results in a reasonable amount of time, so they can be focused more on their
studies. There are many ways to speed up the computation process, one of these
is to exploit the paradigm of parallel computation using graphic processor units.
This kind of devices represent a low-cost solution to this problem since the level
of parallelization they have is really high and the hardware architecture they have
match exactly the requirements for the problem addressed. With the first part of
this thesis, besides the hardware solution we present a detailed evaluation of the
performance obtained during spatio-temporal networks definition.

The second part of the thesis uses the results computed in the first part to
propose an interactive visualization tool for the spatio-temporal networks com-
puted. With a decrease in computation time, it is easier to achieve a comparison

iv



v

between the results. The proposed visualization tool allows for the changing of
parameters at run-time and visualizing the differences in the resulting networks.
This process is made possible thanks to a great work of pre-computation of all the
data that must be visualized. This second part of the work goals to improve the
understanding of the results computed by the algorithm. In this study, we focus
on brain network computation and visualization.

Wementioned that this thesis is composed by twodifferent parts. One of them
is used to compute the similarity measure needed to define the spatio-temporal
networks (explained inChapter 5). While, the other aims to visualize interactively
the networks computed, leaving one degree of freedom to the final user (explained
in Chapter 7). As already stated, one of the goal of this work is the creation of a
pipeline that goes from the collected data to the visualization of the result, which
in our case are the networks computed previously. In fact the twopiece of software
developed are part of the pipeline that defines the framework we present (details
in Chapter 4). This framework wants to avoid the dependability problem given
by that the different software are not able to communicate among each others.
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CHAPTER 1
Introduction

Parallel computing is the new answer to time-consuming simulations and com-
putations. It is no longer an exotic thought, but a real possibility. The needs of
the computing world in the last years have changed radically, more and more dif-
ferent sciences now require high speed computation of massive amount of data,
from the classical physics and mechanics to new sciences like data science and
computational finance [6, 28].

This particular trend changes the way to think about computation in the com-
puter world. From the first computers (early 1980s) the big companies tried
to increase the computation power of computer Central Processor Unit (CPU).
This trend changes when the CPU producers were not able to increase the per-
formances in a way similar to the first years, fact derived from reaching of the
limitations imposed by the architecture and by the physical characteristics of the
processors. So the concept of high speed computation moved into a new direc-
tion: parallelize the computation using new architectures which are completely
different from the previous. In this change an important role has been played by
Graphic Processor Unit (GPU), which presents a different architecture concept
for the computation parallelization [20].

Social network analysis is an example of science field where the computa-
tional problem is the bottleneck in the studies that are performed to analyze in-
teraction among entities. One of the new models applied to social studies is
Spatio-Temporal Network (STN). This model adds the spatial embedding and
time aspect to normal graphs to represent the dynamics of the interaction over
the time. STNs could be applied to many different contexts which involve inter-
actions. Sociology is the science where this technique born, but other different
sciences like biology started to use in their studies this new model. Our work
presents an hardware accelerated approach to speed up the STNs inference pro-
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Introduction 2

cess. In particular, we focus our interests on GPU devices, presenting a program
that exploit the computational power of these. The acceleration provided by the
hardware aims to increase the level of the analysis performed on STNs. Moreover,
we also present a meaningful visualization of the networks inferred. This work
can be applied to any science that want to use STNs model. In fact, the network
computation is completely independent by the context of application.

STNs model adds spatial embedding and, especially, the time aspect as new
dimension of the problem. While the spatial embedding often simplifies network
visualizations (the nodes come with pre-defined coordinates), the time aspect
makes the creation of a meaningful visualization challenging, in fact the network
visualization should make clear the shape changes of the STNs over the time.
Therefore, researchers should be able to see more than one time consecutive in-
stant of the network. Shi et al. [22] discuss about three main aspects that makes
the dynamic network visualization challenging. The first is Visual Metaphor, the
adding of the time introduce a third dimension to the solutions space, and plot-
ting three dimensions data is not always easy. Then there is the Scalability prob-
lem, due to the third dimension the size of the graph grows significantly increas-
ing clutters of the layout computation. The last challenging aspect is the Suitabil-
ity for Analysis, which means that is difficult to provide an efficient tool with a
good visual assistance for human analysis.

Biology is one of the fields that in the last few years have expressed interest in
STNs. The application of STN model to the interactions among animals is used
to study animal behavior and how they create communities in the population,
Rubenstein et al. [19] applied STN model to zebras presenting a detailed social
study of the population. STNs fit perfectly the biologists problem but the com-
mon denominator of STN definition is the high execution time of algorithms.
Furthermore, one of the new fields where hardware computation is becoming
popular is neuroscience, science that focuses its research on the nervous system.
In particular, this interest is manifested by computational neuroscience, an in-
terdisciplinary research area that studies the brain functionalities in term of in-
formation processing. This type of research is done by looking at the interactions
that occurs in the brain. One possible way to analyze the interactions that occur
in the brain is to use the STNs computational model.

Our work focuses on the networks defined (implicitly) on neurons and their
interactions or correlations with each other. The project that involves this work
aims to find some patterns in these networks to understand, for example, the
aging process in individuals, comparing young brain activities with older brain
activities. Studies performed by neuroscientists involved in this project are done
applying the concept of STNs to brain. The spatial embedding of the nodes is
given by the neurons position in the brain, which does not change over the course
of the time. The dynamics of these networks are derived by the rapid change of
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the interactions among entities during the time.
Brain networks belong to the class of biological networks, there exist different

types of brain network based on the different type of data available. In particular,
in this context, an edge represents a functional connection between two brain
cells (neurons). This doesn’t mean that a physical connection between the cells
is present, these functional connections may or may not reflect the anatomical
connectivities present in the brain.

The main problem of STN analysis applied on brain is the requirement of a
massive data quantitative processing, whichmeans long computation time. Brain
activity is really dynamic and fast, which is very difficult to capture and analyze.
Typically, this kind of analysis is done by aggregating raw data over a fixed (slid-
ing) time window into a single network time step. However, the problem with
such an approach is that the dimension of the window is not well-defined and
the noise that is present in the data makes the analysis complex, as described by
Llano at al. [14]. The data used in this work come from fMRI exams taken on hu-
man beings and from experiments made on brain extracted from lab rat, which
thanks to the exploitation of the flavoprotein autofluorescence they were able to
catch the brain activity. The proposed idea is to use network analysis to under-
stand networks derived from pixel correlations over time in the resulting brain
image time series. The application of the work in this thesis to neuroscience aims
to help the domain experts to improve the level of their studies by decreasing the
computation time of the STN definition, adding powerful tools that can be used
to understand the results computed by exploiting the hardware acceleration.



CHAPTER 2
Background

In this chapter we explain all the fundamental concepts required to understand
the thesis work developed. The first section is focused on the spatio-temporal
network model. Then we talk about the usage of GPUs for general purpose com-
putation and about their programming model.

2.1 Spatio-Temporal Networks

Networks, or graphs, are the most common tool used to represent interactions
among entities. In our world a great number of entities interacts, from animals
to nervous system. All the interactions among them could be modeled as a graph
where the interactions are represented by edges. However, in the real world the
connections could change during the time. In static networks, this characteristic
cannot be represented because when an edge is defined it cannot be removed. In
fact, in static networks the time aspect is not considered. STN introduces the time
variable in the problem, one precise interaction between two elements could be
limited in the time. This type of network introduces a new idea of networkmodel
to use for interactions analysis, so the tools used for analysis have to change with
them.

STN is a generic definition that can be applied to different sciences to study
the interaction that the entities have. Berger-Wolf et al. [4] apply STNs to animals
to understand the social behavior and extract dynamic communities created in-
side a population. Each individual represents a node that interact with the others
moving also spatially. Instead, Przytycka et al. [18] apply the study of STNs to
cellulars to study the reaction of cells to different stimulations and how they in-
teract.

4



2.1. Spatio-Temporal Networks 5

2.1.1 Spatio-Temporal Networks Definition
Beck et al. [3] define STNs as a sequence of graphs, one per each time instant of
the observation interval of the data, each graph is defined as:

G := (V ,E) (2.1)

Where, V represents the set of vertexes, or nodes, of graph G and E ⊆ V × V
is the set of edges defined for the graph G. Each vertex is represented in turn, by
a set of spatial coordinates that define the position of it in the spatial domain of
the network. These coordinates may be static or dynamic, with static coordinates
the vertexes does not change the position, networks with static coordinates are
known as: Dynamic Network (DN), which are a sub-model of STN. On the other
hand, with dynamic coordinates the vertexes change their position on the spatial
domain of the problem, this end in an increasing level of difficulty to the STN
definition.

In STNs, as stated before, each time instant has its own graph, let’s define T
as the number of time instants of the observation period and V , with cardinality
P , as the set of all the nodes present in the input dataset. Now we can define a
generic STN Γ as:

Γ := (G1,G2, ...,GT ) (2.2)

Gi : i ∈ [1,T ] is a graph as defined in 2.1 where the sets of vertexes and edges
change for every time instant i, and Vi ⊆ V since a vertex can be without edges.

To have a global view of the network we first assign a unique identifier to each
node in the input dataset V , then is possible to adopt a notation for the nodes like
nt,i, whichmeans that the node i− th exists at the time t of the timeline, the same
thing could be done for the edges et,i,j , where it means that the edge from node
i to node j exists at the time instant t (in both cases t ∈ [1,T ]). This notation
avoids confusion related to the time where each node or edge is present in the
network. In STNs applied to real study cases the nodes represent abstraction of
the subjects of the studies.

The kind of networks we are considering for this thesis have in common the
spatial domain space of the input data used to define the nodes of the network
sine all them are extracted from brain. Moreover, each element of the input data,
which represent the nodes of the network, present a time sequence of values com-
ing from the input dataset that represent the activity of the element.

An important aspect of STN is the definition of the edges for each time in-
stant graph. This process depends on a similarity measure computed among each
node pair using the values sequences associated to the nodes. In particular, an
edge is defined for a time instant t between node i and node j if the similarity
value between the two nodes at time t is greater than a threshold from now on
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0 T

Shifting Direction

TW0

TW1

TW2

Phase 1: Setting the TW size and
shifting of the TW over the observa-
tion period.

TW0

Simlarity Matrix

TW1

Simlarity Matrix

TW2

Simlarity Matrix

Phase 2: Computation of the corre-
lation matrix for each shift of the TW.

Figure 2.1: Shifting of the time window over the observation period. Each move-
ment, see Phase 1, requires the computation of a new correlation matrix, Phase 2,
since the values used to compute the similarity are different. Each similarity matrix
assumes the shape showed in Figure 2.2.

shorted as THR. THR represents the first degree of freedom of the problem ad-
dressed, its values is used to define edges in each STN graph. The meaning of the
similarity threshold change with the changing of the data domain used to com-
pute the STN. In brain networks the threshold represent how much the activity
of two brain cells has to be similar to define an edge between them, in this case,
moreover, brain cells does not move spatially, so we can consider this network
type as static. Another example is about individuals networks, where the thresh-
old value has to represent how long the individual remain closer to each other to
consider interaction among them, in particular individuals networks present dy-
namic spatial position since the subjects have the ability to move. For this reason
the value of the similarity threshold change based on the application domain and
based on the kind of data collected.

2.1.2 TimeWindow: Temporal Resolution and Temporal
Aggregation

The last important concept in STNs is the Time Window (TW). It represents
the dimension of the look ahead from the current time instant where we want to
look for interaction. TheTWhas a fixed sizeW (W < T ) decided before the start
of the computation, and it does not change during the STNs definition process.
The size of the TW represents the second degree of freedom of STN problem.
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St =


s1,1 s1,2 · · · s1,P
s2,1 s2,2 · · · s2,P
... ... . . . ...

sP ,1 sP ,2 · · · sP ,P


Figure 2.2: Shape of the similarity matrix for a generic time instant t ∈ [1,T ], si,j
represents the similarity value between node i and node j at time t.

Since the TW does not cover the whole observation period it is shifted by a fixed
number of time instances, which is another parameter. However, if we set it for a
shift of 1 then all the others are subsets (Figure 2.1 show an example of shifting).
Each movement changes the values inside the TW. The values inside the TW are
used to compute the similarity among the nodes of the network. The similarity
must be recomputed for each shifting, assigning to every initial time of each shift
a similarity matrix among each node involved in the network. An example of
similarity matrix for one time instant is provided in Figure 2.2, where P is the
number of nodes of the input data.

2.1.3 Spatio-Temporal Network Computation: a New
Challenge

One of the goal of this work is the creation of a parametrized visualization for the
results computed. To achieve this goal the results have to support the degree of
freedom left in the visualization. For this reason the computation cannot filter or
elaborate the data at run time, the similarity matrices have to be saved integrally.
Furthermore the computational aspect has always been a critic point in STN def-
inition because of the great mole of data to elaborate. In the problem addressed
we have seen that there are two degrees of freedom, the similarity threshold and
the TW size, in the next part we explain the computational aspects related to the
degrees of freedom.

• Similarity Threshold: It represents the spatial parameter of the problem
since it is used to defines the edges in the network. Elaborate the spatial as-
pect of the data is the easier aspect of the problem. This is due by the inclu-
sion property that the edges have: given similarity threshold X and the set
of edges defined using X,EX . We have that for every other set of edgesEY

defined with similarity threshold Y < X , the statement: EX ⊂ EY holds.
However, we can see from the edge definition process that it is only a filter-
ing process that takes only the node pairs that have threshold greater than
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the threshold given. So, this method could be performed at run time in the
parametrized visualization thanks to availability of all the integral similar-
ity matrices. The inclusion property simplify the edge definition when the
threshold is changed.

• Time Window Size: It represents the temporal parameter of the problem.
The temporal aspect of the similarity computation is the most challenging
one. This parameter have to be decided before the computation of the sim-
ilarity because the program has to know which values use to compute the
similarity. We decided to keep this value fixed for the computation because
the maths to apply at the results, if we want to change the time window size
at run time, is too complex for an interactive front end visualization like the
visualization tool that we propose in this work. We got to this conclusion
for different reasons, themost important is that the similarity could change
with the changing of the data domain, so all the maths operations applied
to update the similarity at runtime has to be modified. A possible solution
could be the creation of an ad hoc script to compute the similarity that is
launched in background by the front end framework that takes as input the
time window size, but the similarity computation would require too much
time for a real time and interactive visualization.
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2.2 Graphical Processor Units

2.2.1 GPU Evolution
GPU defines a computing architecture different from the usual well known pro-
cessors. These devices weremade to be used for graphics computation and elabo-
ration. GPUs born in the late 1980s and theywere thought to accelerate the graph-
ics computation and the images rendering on the display, avoiding the CPU to
make them. General users started to appreciate GPUs in the first 1990s, adding
these new units to their personal computers. The purpose of the GPU until a
decade ago was only the graphics elaboration for multimedia applications and
gaming. Especially gaming helped the growth of the GPUs development mak-
ing these devices affordable by the normal users. To improve the quality of their
products, videogame companies needed powerful devices able to compute high
quality images to render on the screens.

The history of the GPUs bring us to the recent past where, in 2006, NVidia
released a new architecture, able to support CUDA1 programming model, that
changed the idea of GPU. “CUDA is a parallel computing platform and program-
mingmodel invented by NVidia. It enables dramatic increases in computing per-
formance by harnessing the power of the graphics processing unit (GPU)” [1]. In
particular CUDA model added the possibility to perform general purpose com-
putations onGPUs exploiting themassive number of parallel floating-point com-
putational units. From that moment the computational world started to look at
GPUs as a new instrument to use for general purpose computation. The growing
of thismarket is also supported by the greater increase of theGPUs computational
power than the CPU trend [20].

In the last years the computational power of GPU devices has been increased
significantly, as reported by Owens et al. [16]. The key of this exponential growth
for GPUs computational power is derived by the new paradigm of parallelism be-
tween computation units, [20]. The growth of GPU-based computation system is
also related to the increase of the number of libraries and tools accessible that al-
lows this new programming paradigm, like Nvidia CUDA. By no longer needing
of external complex software to develop GPU-based programs, the development
process becomes simpler and more feasible, even if the programming paradigms
for these applications is completely new. Moreover, with the increase of the com-
putational power of GPUs, the devices is improving research in many field of
science. This thesis work uses the characteristics of these devices to increase the
computational performance for spatio-temporal network.

1https://developer.nvidia.com/cuda-zone
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GPUs applied to general purpose computation represent one of the new revo-
lution in the computational field. Graphic processors and normal processors have
completely different characteristics, the cooperation between the two achieve a
considerable speed up of the computation. CPUs are optimized for low-latency
access to cached data and for an out-of-order speculation execution of the pro-
gram instructions. Meanwhile, GPUs are thought to optimize the parallelism
computation among data at the expense of the latency in accessing data. How-
ever, this latency is covered by the presence of an high number of threads that
have to be executed. In particular, in GPU Programming, one of the most diffi-
cult aspects is write code to keep the processors on the board always active. This
fact hides the latency of the memory access, and it is achievable thanks to a lower
cost of switching the thread execution context, compared with the higher cost of
switching on CPU.

2.2.2 CUDA Programming Model
This section explains in details GPU architecture and logic behind this devices.
The twomain components thatwe can find inGPUs are theGlobalMemory (GM)
and the Streaming Multiprocessor (SM). GM is the memory accessible by all the
computational units where all the data are stored, this is the equivalent of the
RAM for CPUs. This memory is characterized by a high bandwidth to achieve a
fast exchange of data between the processors and the memory, it can be accessed
by the graphic processors of course, and by the central processor of the machine.
SM instead, represent the actual computational units of the device, each one has
its own control units, register, execution pipeline and cache. These aspects make
the SMs independent of each other.

The executionparadigm respected byGPU is Single InstructionMultipleThread
(SIMT). It means that the execution of the same function occurs on many differ-
ent threads that work on different data. Each stream, in CUDA architecture, or-
ganizes the execution of the threads in group, calledwarps. The threads that com-
pose a warps start the execution at the same time, but once started their are inde-
pendent each other, each thread has its own instruction counter and state register.
This allow each thread to execute also different branch of the program, avoiding
waiting time between threads that would decrease the performance. SIMT is sim-
ilar to Single InstructionMultiple Data (SIMD), the difference between these two
is that SIMD executes the same instruction on all the data, without the possibil-
ity to go across different branches of the program. Meanwhile SIMT allow the
programmers to write thread-level program, achieving the independence among
different threads.
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Kernel Grid

Blck(0, 0) Blck(1, 0) Blck(2, 0)

Blck(0, 1) Blck(1, 1) Blck(2, 1)

Block(1, 1)

Thread(0, 0) Thread(1, 0) Thread(2, 0) Thread(3, 0)

Thread(0, 1) Thread(1, 1) Thread(2, 1) Thread(3, 1)

Thread(0, 2) Thread(1, 2) Thread(2, 2) Thread(3, 2)

Figure 2.3: Kernel structure that must be defined for each GPU function.
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CUDA programming model is based on kernel functions, these are specific
structured methods that are executed on GPU. In particular when the processor
makes a kernel call, launch the execution of a kernel function on the graphic de-
vice, each thread created execute the whole function launched. Each call present
a well defined structure, showed in Figure 2.3. The grid showed is composed by
a set of blocks organized in matrix, these lasts contain the effective threads exe-
cuted by the graphic processors, always organized in a matrix. The matrix that
compose the grid of blocks could be have 1, 2 or 3 dimensions, and the size of each
dimension is set by the programmer, the same happens for the matrix of thread
in a block. The grid shape and the block shape change with the respect of many
aspects of the program, however they should be chosen in a way to maximize the
usage the graphic processors to hide the GM latency. The main constraints used
to built the structure are the ones imposed by the resources available on the device
(resisters, shared memory and global memory).

CUDA library defines some intrinsic variables for each thread. They are not
controlled or created by the programmer and they could be accessed during the
execution of a kernel function. They contain some useful thread information and
the most relevant are:

• threadIdx, variable that contains the position (x, y and z) of the thread
relative to the block of membership.

• blockIdx, variable that contains the position (x, y and z) of the block relative
to the kernel grid.

• blockDim, variable that contains the size per each dimension of the blocks.

• gridDim, variable that contains the size per each dimension of the kernel
grid.

Thanks to these intrinsic variables is possible to compute the absolute position
and a unique number for each thread, computed as:

threadPosition.x = blockIdx.x ∗ blockDim.x+ threadIdx.x (2.3)
threadPosition.y = blockIdx.y ∗ blockDim.y + threadIdx.y (2.4)
threadPosition.z = blockIdx.z ∗ blockDim.z + threadIdx.z (2.5)

uniqueThreadId =threadPosition.x+ (gridDim.y ∗ threadPosition.y)+
+(gridDim.x ∗ gridDim.y ∗ threadPosition.z)

(2.6)

The previous formulas show the computation of the thread position and the
thread unique id for a grid with three dimensions. A grid can use less than three
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Registers

Thread

1

(a)

Shared Mem.

Thread Block

1

(b)

Global Mem.

Grid

Block(0, 0) Block(1, 0)

Block(0, 1) Block(1, 1)

1

(c)

Figure 2.4: Kernel memory hierarchy defined for each kernel structure. (a): each
thread has some registers used to make the computation. (b): each block may have
a fixed amount of shared memory among the threads within the block. (c): at the
grid level the access is only on the global memory of the GPU.

dimension, in these cases the dimensions not used will be set automatically by the
CUDA library to 1, zero is not admitted since it’s not possible to have an empty
block or grid.

When the kernel function is called the GPU create a memory hierarchy based
on the structure of Figure 2.4. Each thread has its own local memory, which
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is represented by the registers, they are used for the execution of the function.
Each block, instead, can have some shared memory among all the threads in that
specific blocks. At the highest level the grid access to the GM of the device. The
shared memory of a block can be accessed only by the threads that are resident in
the blocks owner of the shared bytes. There are no way to create a sharedmemory
between threads of different blocks.



CHAPTER 3
RelatedWorks

Spatio-Temporal Network model born to represent better the dynamic aspect of
the interaction in a population of entities like animals, human or biological cells.
The best way to represent interaction is with graphs, they are simple to under-
stand and to study, they are well known by the scientific community, and they
are supported by a lot of math tools that make the studies easier. Many of them
allow to extract a dynamic aspect from static graphs to represent changing in the
interactions, as discussed by Holme et al. [11]. However, there is an important
aspect that the common static graphs are not able to show, the time factor.

3.1 Spatio-Temporal Network Applications and Extraction

During recent years the applications of STNs is growing, andmany different fields
are looking at this newmodel. Holme et al. [11, 10] discuss in details the potential
of this model and present a series of example contexts where STN model is used.
The authors focus their interests in showing the powerfulness of STN applied to
many different fields, they provide a very large overview of the kind of analysis
that may be performed on that model.

STNs are based on the fact that the interactions among the entities involved
in the nets change during the time, so they present a dynamic characteristic that
could be represented by the passing of the time. The extraction of temporal net-
works occurs in different ways according to the application field. Proximity net-
works for humans could be one of these, technologies like Wi-Fi or Bluetooth
sensors guarantees a high resolution data that could be used for the network ex-
traction. Toth et al. [24] present studies where the input data are extracted us-
ing these technologies, creating proximity networks used for the analysis. Data

15
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collected with this technique give a relative position of each single individual in-
volved in the experiments with the respect to the other. So the computation of
the network results different since we do not have a full perspective of the entities
positions. Chen and Valdano [9, 25] applied proximity sensors to built dynamic
networks. In particular, the first want to extract some information from the net-
works build about the behavior of domestic animal when in group. While the
authors of the second article try to predict the spreading od epidemics based on
the interactions occurred among the individuals subject of the study.

Different technologies, likeGPS tracers, could be used to get absolute position
of individuals in the domain space, Berger-Wolf et al. [4] present a specific appli-
cation of STNs to zebras where they aim to study the social interaction aspect of
the animals involved.

In brain networks the most common technology to extract data for the net-
work computation is the functional Magnetic Resonance Imaging (fMRI). It
measures the level of the oxygen in the different part of the brain, this level of
blood is strictly correlated by the activity level of the specific brain sections. The
interactions among brain sections is defined by the similarity measure adopted
computed between the blood level in different brain regions. Smith et al. [23]
show an interesting work that has the aim to extract meaningful networks from
fMRI brain data. One alternative technique used to extract data from the brain
is the exploitation of the fluorescence property of Flavoproteins, as preformed by
Llano et al. [14]. In this case thanks to this particular property, the stimulation of
brain slices increase the luminosity of the active brain cells. In this case, however,
the experiments require the cut in slices of the brain, so more difficult to perform
on living beings.

The novel concept of STN is introducing new kinds of possible analysis to
perform on them, one of the most interesting is the community analysis. It wants
to understand how the nodes create groups among each other, called commu-
nities, and how or when the subjects change community. Berger-Wolf et al. [4]
present a framework that using STN identifies the communities created by the
subjects and the interactions among them. A community is defined by a set of
entities that have a higher level of interaction among each other than with the
extra-community entities. All the entities in a community are considered closer
that with the other.

3.2 Spatio-Temporal Network Computation and Visualization

The fundamental aspect in STN definition is how to compute the interaction, this
aspect is strictly related to the context of application of the model. The level of
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interaction is defined by the computation of a similarity measure able to identify
when two subjects are related to each other. A common solution adopted in brain
networks is the usage of a correlation coefficient between the signals that repre-
sent the nodes during the observation time. Llano et al. [14] present a work that
uses the Pearson Correlation Coefficient. In other cases like proximity networks,
the euclidean distance among individuals and the time spent close each other is
a better measure for the similarity. In both cases the interaction occurs when a
fixed threshold value is exceeded in a precise time instant, this defines an edge
between the subjects that exceeded the threshold.

As already stated, the problem addressed in this work presents two degree of
freedom, the dimension of the time window and the threshold value over which
consider interaction. This aspect makes the analysis of temporal networks com-
plex since every change in one of the network parameters means a full recompu-
tation of the network. In fact, the computational aspect is nowadays the bottle-
neck of STNs analysis, since they take a long time to be computed. This aspect is
due to the high number of node to analyze and correlate each other, which is the
common denominator in every application of temporal network.

Previous work addressed this problem, Cattaneo et al. [7] perform the same
computation developed in this work, they compare the execution time of the
computation between different devices, precisely FPGA, GPU and CPU. The re-
sults presented show a performance increasing of 14× for GPU and 30× for the
FPGA with the respect to the serial CPU computation. However, the authors fo-
cus on the hardware acceleration provided by the devices tested. Our work also
shows the challenges addressed by the massive computation performed. We look
at the STNs from a different perspective, we generalize the computation of STN
independently from the context of application. Wang et al. [27] propose an hy-
brid framework that use the CPU-GPU computational power to define brain net-
works, the framework proposed can be used as first step of an execution pipeline
that analyze the brain networks computed. The authors of this article compute the
Pearson Correlation Coefficient on fMRI data to define STN with a really high
number of nodes. Another similar work that show how graphic processor can
be used to compute pairwise similarity on matrix is proposed by Kim et al. [12],
where different similarity measures are computed. The authors show a GPU pro-
gram developed with CUDA called by a Matlab environment that speed up the
similarity computation.

In addition, Chang et al. [8] show the decreasing of execution time for the
Pearson Correlation Coefficient computation and Manhattan distance computa-
tion using GPU devices. The results presented show a performance increment up
to 90× for the Manhattan distance computation and up to 38× for the correla-
tion computation with the respect of classical CPU execution. Our work aims
to confirm the importance of the acceleration provided by hardware devices ex-
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ploiting the high parallel computational power of the GPU to compute STNs.
However, massive computation on GPU introduces the problem of the resources
usage, Lee et al. [13] present a formulation that is used to balance the computa-
tion on graphical devices to prevent the running out of resources. We decided to
adopt this formulation in our work, all the details are presented in Chapter 5.

STNs introduces different challenges in the scientific world, one of the most
addressed in the last few years is the creation of a meaningful visualization of the
networks. Beck et al. [3] group all the temporal networks visualization. They
present a great overview of the main works released in the last years categorizing
them based on the kind of visualization performed. Based on the hierarchy pro-
posed, our work belongs to the ”Time-to-Time” problem where the networks are
precomputed off-line. The main reason why the visualization of STN is challeng-
ing is that is that they are a young tool for social iteration studies and only in the
last few years something interesting started to come out, confirmed by the fact
that during lasts years the number of publications regarding this problem grew
significantly. Ma et al. [15] proposes ”SwordPlots” a new visualization technique
used to explore brain networks with the focus on social communities visualiza-
tion., ”SwordPlots” shows different characteristics of the network visualized si-
multaneously so that the understandability of the results is increased. Instead,
Van et al. [26] show a new way of temporal network visualization, they consid-
ered snapshots of the networks as points of different domain space with two jux-
taposed views.

Previous works addressed the similarity computation on GPU and the STN
visualization, as seen before those are standalone works that don’t combine the
different steps. With our work we want to propose a full framework that doesn’t
exist in the scientific community, it aims to concatenate all the functions that be-
fore were done separately, creating an ad hoc solution for the STN elaboration
and analysis. Starting from the data preparation arriving to the results visualiza-
tion or results analysis, passing through the STN definitions. In fact our work
was born as an interdisciplinary among different branches of computer science,
since it aims to exploit the computational power of high-speed devices to compute
STNs for big data to create an interactive visualization. The context of applica-
tion presented is neuroscience, which is increasingly looking at GPU devices to
improve the level of the studies. The high speed computation of temporal net-
works is supported by a visualization tool that allows to play with the parameters
of the problem addressed, making the results computed understandable. This ap-
plication domain want to show the usefulness of this framework in the analysis
performed by domain experts.



CHAPTER 4
Hardware Accelerated Framework

With this thesiswe propose a full framework thatwant to create a complete pipeline
going from the raw data collected to a final visual solution that allows the analysis
of the STNs. The whole process is composed by different steps that are indepen-
dent each others, in this way it is simple keep the program flexible to any future
changes. Figure 4.3 shows all the steps that compose our pipeline. Below here we
anticipate some information about each step.

1. Data Preparation: step one of the pipeline composed by a script program
that aims to turn the raw data collected in a specific format that can be
read by the hardware accelerated program developed at step 2. The Raw
Data given as input of the pipeline are strictly related to the experiment
performed, so they can present different format. For this reason this step
is necessary to keep the hardware acceleration section independent from
the initial data. Moreover, since each input dataset can be different from
the others, this step requires a custom program to elaborate and prepare
the data collected. The independence of the various steps from each others
allows the substitution of the script based on the input dataset.

2. HW Acceleration: in this step of the pipeline are computed the similarity
matrices used for the STN definition using GPU devices that can guarantee
a high parallel computational power. This step is the most complex since
the mole of data to process makes the managing of the resources not easy.
The program computes all the similarity matrices saving them on storage
so they can be used by the visualization tool or by other program dedicated
to the results analysis.

19
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t0, v0, v1, ...... vP
t1, v0, v1, ...... vP
...
...
tN , v0, v1, ...... vP

Figure 4.1: Standard data format accepted by the core program as input. P rep-
resents the nodes number of the input data and N is the number of observation
instants of the input data. Each row represent a time instant (identified by ti) with
all the values for every node in that time instant (identified by vi).

3. STN Visualization: the last step of the pipeline is composed by an interac-
tive web-based application used to visualize the STN computed with the
GPUs. In particular this part of the work aims to help domain experts in
the understanding of the evolution of the STN over the time. Thanks to
the results format computed in the previous step the user has one degree of
freedom in the STNs definition and visualization.

Between each step of the pipeline proposed in Figure 4.3 we can see the pres-
ence of a dataset. Each dataset, except the input one, has a fixed format so the
different part of the framework can communicate easily and can be independent
each other, so the substitution of one of them does not result in a complex opera-
tion if the new version respect these standards. Figure 4.1 shows the data format
adopted between step one and two of the pipeline, in particular t is the observa-
tion time and v is the values that each node assumes over the time. The single
value vi : i ∈ [0,P ] is the value of the node i in the time instant associated to
the row. Figure 4.2, instead, shows the data format adopted between step 2 and
step 3, where each line is composed by: pi, pj , sij , which are respectively: the
identifiers of node i, the identifiers of node j and the similarity between node i
and node j.

4.1 Data Preparation

In this section we talk about the datasets used as test cases for this work and how
we elaborated them to make them usable by the hardware program. All the data
used are real and collected thanks to domain experts, which have provided them
kindly to help the development of our work. This part of the work represents Step
1 of the pipeline described previously (see Figure 4.3). The datasets adopted are
two, both come from neuroscience world but from complete different branches.
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p0, p0, s00
p0, p1, s01
...
pi, pj , sij
...
pP , pP , sPP

Figure 4.2: Standard data format accepted by the visualization tool program as in-
put. pi is the identifier for the first node of the pair, pj is the identifier for the second
node of the pair and sij is the similarity between the two nodes.

In both cases the purpose of apply STNs to the brain is to catch and study the
interaction among neurons to extract more useful information about the brain.
Following here we describe the two datasets, for convenience we gave them a
name so it will be easy to distinguish between them.

1. BioData: dataset composed by a series of images where each one represents
a different observation instant of the brain. Each image is a frame of a video
that records the stimulation process occurred during the experimentsmade
on a brain slice coming from a rat lab. The activity of the brain cells is
extracted stimulating the slice and looking at the luminescence of those. In
fact, thanks to a protein contained in the brain, the stimulation makes the
active cells fluorescent, increasing the level of luminosity. The video that
records the experiments is able to catch this luminosity change. For this
specific dataset the images present a dimension of 172 × 130 pixels, for a
total of 22360 pixels in each figure. The number of images, so the number
of time instants, is 1000.

2. HumData: the other dataset is extracted from fMRI exams taken on human
beings. The data coming from fMRI are composed by a series of files (gif
format files), each one representing one time instant of the resonance du-
ration. Each file, then, contains compressed within itself different images,
these shows the activity of one specific slices of the brain, each slice subdi-
vide the human brain on the z-axis as shown in Figure 4.4. The images of
one slice in this dataset present a dimension of 79× 79 pixels, for a total of
6241 pixels in each figure. The number of images, so the number of time
instants, is 250.

Figure 4.5 shows an example of images extracted from both the dataset used
in this work. We assume that each pixel of the images could potentially be a brain
cell. So the similarity matrix will contain the similarity computed among each
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Figure 4.3: Diagram of the pipeline implemented in this thesis work.
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Figure 4.4: In this image is shown how the fMRI exam taken on the human partition
the brain in different slices. Each red line represent one slice present in the fMRI
results.

pair of pixels in the images. An important remark to make is that the brain cells,
which are the nodes of the network, have a fixed position in space, so from now
on we can talk about DN instead of STN which is more general.

The signal representing the activity of each cell is taken using the level of the
gray color of each pixel. In Figure 4.6 is showed an example of sequence of images
from the input dataset, for each pixel of the images we extract the hue values of
the gray component of the pixel and we stored all of those in a text file. For the
BioData the extraction of these values resulted easier because the images were
already clean and not compressed, so we converted the images in ASCII saving
the hue value in numeric format (value from 0 to 255, where 0 is black and 255
is withe). On the other hand, for theHumData we first had to extract the images
from the file compressed containing all the brain slices, once the images had been
extracted we performed the same operation done on the other dataset to extract
the hue value of each pixel in each time instant. At this point, each node has
a vector of values that represent the hue value of it for each time instant of the
observation period that is used to compute the correlation between each pair of
brain cells.

4.2 Hardware Acceleration

In this section we explain our considerations about the implementation of the
program used to computes the similarity measure adopted for this problem, it
represents Step 2 of the pipeline of Figure 4.3.
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(a) (b)

Figure 4.5: These two images are extracted from the two datasets used to test the
framework. (a): image coming from the BioData dataset. (b): image coming from
the HumData dataset and it represent only one slice of the human brain among all
the slice that fMRI exam gives back in the results.
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t0, v0,P0 , . . . v0,Pi , . . . v0,Pj , . . .
t1, v1,P0 , . . . v1,Pi , . . . v1,Pj , . . .

...
...

...
...

...
...

tT , vT ,P0 , . . . vT ,Pi , . . . vT ,Pj , . . .

(c)

Figure 4.6: Example of input dataset transformation in input data taken from the
hardware accelerated program. In each image of the series, (a), each pixel is charac-
terized by a discrete function that represent the hue value of the pixel itself, (b). All
the pixels values are stored in a text file, (c), where on each row are stored the vales
of each pixel (vk,Pi

) in the observation instant of the row.
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4.2.1 Edge Definition: Node Similarity Measures
DNs are defined according to a similarity measure that shows how much two
nodes are related to each other. In this section we present different meaningful
similarity measures that could be used for DNs definition.

Pearson Correlation Coefficient

Pearson Correlation Coefficient (PCC), known also as ρ, measures the linear
correlation between two variables X and Y. Its values are limited to the inter-
val [−1,+1], where +1 means the highest positive correlation between the two
variables, -1 means the lowest negative correlation between the variables and 0
means no correlation between X and Y. PCC is computed as:

ρX ,Y =
Cov(X ,Y )

σXσY

(4.1)

Cov(X ,Y ) represents the covariance between X and Y , and is computed as:

Cov(X ,Y ) = E[X − X̄]E[Y − Ȳ ]

= E[XY −XE[Y ]− Y E[X] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ]

(4.2)

Instead σX is the variance of X , compute as:

σX = Cov(X ,X) = E[X − X̄]2

= E[X2]− E[X]2
(4.3)

Spearman’s rank Correlation Coefficient

Spearman rank Correlation Coefficient (SCC), known also as rs, measures the
level of correlation using a monotonic function. A correlation value of +1 or
−1 means that one of the variable is an exact monotonic function of the other,
and no values are repeated in the variables. SCC is defined only between Rank
Variables (RV). It is computed as:

rs = ρrgX ,rgY =
Cov(rgX , rgY )

σrgXσrgY

(4.4)

Cov(rgX , rgY ) is the covariance between the two RV rgX , rgY and σ is the vari-
ance of those.
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X

Y

Figure 4.7: Dynamic time warping example, the dashed lines represent the match
applied by the algorithm between the signals.

Kendall rank Correlation Coefficient

Kendall rank Correlation Coefficient (KCC), known also as τ , measures the ordi-
nal association between two different quantities. It is based on the tau test, which
is used to see the statistical independence thanks to the tau coefficient. It is de-
fined as:

τX ,Y =
(# of concordtant pairs)− (# of discordant pairs)

n(n−1)
2

(4.5)
A pair (xi, yi), where xi and yi are the i-th values of the variables X and Y re-
spectively, is concordant if given any other pairs (xj , yj)with i ̸= j one of the two
conditions, xi < xj ∧ yi < yj or xi > xj ∧ yi > yj , hold. When this condition
is not true the pair of values is discordant.

Dynamic TimeWarping

Dynamic Time Warping (DTW) is an algorithm that want to compute the simi-
larity between two temporal sequences of values, what DTW do is find a match
between the two signals over the time following some constraints imposed be-
fore the algorithm starts. The similarity derives from how much the two signals
match in the time component, Figure 4.7 shows an example of how dynamic time
warping matching works applied to two different signals.
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Euclidean Distance

Euclidean Distance (ED) measures the distance between two points in a spatial
domain, it is computed as:

dp,q =

√√√√ n∑
i=1

(qi − pi)2 (4.6)

TheED is useful to see how far two entities are in the domain space, the network is
defined by the permanence of two entities close (under a threshold) for a certain
period of time fixed a priori.

4.2.2 Similarity Computational Model
We present now different computational models that can be used to compute the
similarity in the DNs definition problem, we also show the advantages and dis-
advantages of each one explaining also which one we adopted and why. In this
thesis work we decided to adopt the Pearson Correlation Coefficient (PCC) index
as similaritymeasure. Howevermany others version of this work can be easily de-
veloped implementing other similarity measures, comparing the results obtained
with the one obtained here.

Similarity Computational Considerations

As already stated previously the computation of the similarity must occur for ev-
ery pair of nodes present in the data collected. Two different ways could be used
to compute the similarity:

• Compute by Pair: In this case the atomic component of the data is the pair
of node. We compute the similarity of each pair independently time instant
by time instant, without mixing the computation of different temporal en-
tity.

• Compute by Node: In this case, instead, the atomic component of the data
is a single node. Given a node the similarity is computed for all the pairs
associated to that node at once. Composing only at the end the similarity
matrices.

In the implementation presented in this thesis we decided to adopt the Compute
by Pair model because it fits better the GPU structure that we have to define for
eachGPUcall we have to perform. We foundmore easier to transforma similarity
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matrix into a GPU structure where each cell represents a single pair instead of
creating an ad hoc structure with the nodes as atomic component.

Dynamic Programming Model

Another important consideration to make is about the possibility to use the Dy-
namic Programming (DP) to compute the similarity. The idea is to avoid the
complete recomputation of the similarity using the value of the previous time in-
stant. The usage of DP is strictly related to the similarity measure adopted in the
problem since the formula used to compute the similarity change with the respect
of the problem.

Simt(X ,Y ) = Simt−1(X ,Y ) + ∆t,t−1(X ,Y ) (4.7)

In Equation 4.7 we see an example of how the similarity has to be computed
adopting theDP paradigm. With this computationalmodel we need only to com-
pute the similarity for the first time instant (t = 0) with the similarity formula.
Then every other similarity value (t > 0) is computed adding the ∆t,t−1 to the
previous time instant similarity value. The most difficult aspect of DP is to find
the ∆t,t−1 component to be added (Equation 4.8). ∆t,t−1 ideally should be in
function of the values that are removed from the time window and the values
that are added to the time window.

∆t,t−1(X ,Y ) = Simt(X ,Y )− Simt−1(X ,Y ) (4.8)

However, the complexity of the ∆t,t−1 computation affect the time and space
complexity of the program and sometimes is not convenient as implementation
choice.

Regarding the PCC computation that we have to perform we tried to com-
pute the ∆t,t−1 needed to see if DP is convenient to this purpose. Since the PCC
is computed using the covariance we decided to compute the∆t,t−1 factor for the
covariance computation and then compute the PCC using Equation 4.1. We use
as example the ∆t,t−1 factor computed between time 0 and 1. Applying Equa-
tion 4.8 we have that ∆1,0 is equal to:

∆1,0 = Cov(X ,Y )1 − Cov(X ,Y )0 (4.9)

Substituting the Covariance definition (Equation 4.2) in the∆1,0 formula (Equa-
tion 4.9) we obtain:

∆1,0 = E[X1Y1]− E[X1]E[Y1]− E[X0Y0]− E[X0]E[Y0] (4.10)
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Where Xi and Yi are the two vectors of values with the time window that start at
the i− th time instant. After substituting the average definition in Equation 4.10
and making some maths simplifications we obtain:

∆1,0 =
1

(N + 1)2
·
[
N · xN+1 · yN+1 −N · x0 · y0−

−
N∑
i=1

xi ·
(
yN+1 − y0

)
−

N∑
i=1

yi ·
(
xN+1 − x0

)] (4.11)

Where xi and yi are the values of the vectors at the time instant i, andN is the size
of the time window. We can see from Equation 4.11 that the ∆1,0 factor needed
for the PCC computation is pretty complex. Moreover there are some component
that are needed for the computation like the summations values. These represent
ulterior data to keep during the computation. This increase the spatial complexity
of the program significantly, so, we decided to avoid the DP model for the PCC
computation that we have to perform.

4.2.3 Data Considerations
A DN is described first by nodes. A node is an entity that can interact with other
nodes. For this problem the input dataset is represented by a nodes collection
that are extracted from the data collected by the researchers, each one represents
a physical entity, which is the subject of the study. Each node must be repre-
sented by vectors of values that stand for the signal of the measure taken in each
observation instant.

One of the challenging aspects of the computation on GPU is represented by
the amount of data to process, and to store. The aim of the program is the com-
putation of the similarity measure adopted in the specific context. It calculates
a similarity matrix for each observation instant between each pair of nodes of
the input dataset. The computation of PCC (measure adopted to our problem)
requires the covariance between each node pairs for each time instant of the ob-
servation period. Correlation matrices and covariance matrices have the same
dimension.

With some quick calculations, shown here, is computed the amount of mem-
ory hypothetically needed to compute the PCC at once. To exploit the properties
of a dynamic network, the number of nodes should be significantly high, but this
value is strictly related to the field of application. Sciences like neuroscience need
to compute a huge amount of data, since in the brain the number of neurons is
very high. We take as example for the memory estimation 10000 different nodes
observed over 1000 time instants, which is a possible input dataset dimension.
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The computation of the correlation must be done for each pair of nodes. First
we need to load the data in the local memory, this takes nNodes × nTime ×
sizeof(float), where nNodes is the number of potential nodes and nTimes is
the number of time instants observed, so 10000 × 1000 × 4B ∼ 10 MB is the
amount of memory needed for the data. Then the covariance matrices (one per
time instant) must be computed and then stored on the memory, they have a
total dimension of nNodes× nNodes× nTime× sizeof(float), the third di-
mension (nTime) represents the time component of the problem, which means
10000 × 10000 × 1000 × 4B ∼ 372 GB. Since they have the same shape and
dimensions, the same amount of memory is also needed for the correlation ma-
trices. These quick calculations show that the processing of the whole data for the
sample problem described requires a self adaptive program that splits the com-
putation based on the resources available on the machine.

4.2.4 Implementation Details
We present in this section the implementations we decided to develop for the
hardware architecture adopted. As already stated we adopted as similarity mea-
sure the PCC index (Equation 4.1). With this work we propose two different
versions: one hybrid where the computation is partially executed on the hard-
ware device and partially on the CPU, on the other hand, the second version is
fully implemented and executed on the hardware device.

Hybrid Version

The hybrid implementation splits the computation between the GPU and the
CPU. We decided to implement this version to reduce the amount of data that
must be transferred between the central memory and the device and to have a
smaller device function so that a lower amount of resources is required. Starting
from the formula of the PCC (Equation 4.1) we can see that to compute it we
need the covariances between each pair of nodes. The covariance formula can be
written as:

Cov(X ,Y ) = E[X − X̄]E[Y − Ȳ ]

=
1

N

N−1∑
i=0

(xi − µx) ∗
1

N

N−1∑
i=0

(yi − µy)
(4.12)

After valuating what is convenient to compute on CPU we decided to keep on
CPU: the differences between the values and the average, and the standard devi-
ation. In this way we are avoiding the computation of the average on the device
so the function will be smaller and it will require less resources.



4.2. Hardware Acceleration 31

Algorithm 1 Function thats computes: the differences between the value and the
average and the standard deviation for each node. This function is executed on
CPU before the computation of the PCC on the hardware device.
Function HybridCpuFunction(data):

for n ∈ [0,nNodes) do
sum← 0
for f ∈ [0, timeWindow) do

sum← data[n * nNodes + f]
end
avg← sum / timeWindow
sum← 0
for f ∈ [0, timeWindow) do

diff[n * nNodes + f]← (data[n * nNodes + f] - avg)
sum← pow(diff[n * nNodes + f],2)

end
devstd← sum / timeWindow

end
end

Algorithm 1 shows the function used to compute the differences and the stan-
dard deviation on CPU. All the results computed are then moved on the device
so that the PCC can be calculated as shown in Algorithm 2. What is important
about Algorithm 2 is that it shows the computation for only one pair of node,
identified by x and y, the function is executed then for every pair of nodes of the
problem in parallel on the GPU processors.

Algorithm 2 Function that computes the correlation value for a pair of nodes, x
and y. The computation occurs using the values already computed on the CPU
previously (diff and devstd).
Function HybridDeviceFunction(diff, devstd, x, y):

sum_x← 0
sum_y← 0
for f ∈ [0, timeWindow) do

sum_x← diff[x * nNodes + f]
sum_y← diff[y * nNodes + f]

end
avg_x← sum_x / timeWindow
avg_y← sum_y / timeWindow
correlation← (avg_x * avg_y) / (sqrt(devstd[x]) * sqrt(devstd[y])

end
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Full Hardware Version

Theother version we present in this thesis work computes the PCC completely on
the hardware devices. This version of the program needs the whole input dataset
without any modifications loaded on the GPU memory. The first operation to
perform is the computation of the covariance, we decided to simplify the com-
putation of it as shown in Equation 4.13 so that we do not need to keep track of the
averages to compute the differences, but we can directly goes on the covariance
computation.

Cov(X ,Y ) = E[X − X̄]E[Y − Ȳ ]

= E[XY ]− E[X]E[Y ]
(4.13)

After the covariance computation the function implemented calculates the cor-
relation using the formula shown below:

ρX ,Y =
Cov(X ,Y )

Cov(X ,X) ∗ Cov(Y ,Y )
(4.14)

Algorithm 3 shows the computation of the correlation between two random
nodes, identified by x and y. The function is executed fully on the target hardware
device for every pair of nodes in the problem in parallel.

4.3 Spatio-Temporal Network Visualization

In this section are described all the considerations we made while developing the
tool used to visualize the networks computed thanks to the GPU program. This
tool focuses its attention to the brain networks visualization problem. In the con-
text of brain networks, scientists were previously unable to interact with the data
because the problem parameters were hard-coded in the similarity computation.
This means that the similarity matrices were filtered before the visualization pro-
cesses. We propose a different approach to this problem: we leave one of the
two problem parameters free. In our case, the similarity threshold can be fixed
at run time by the user. We are able to achieve this aspect thanks to a consid-
erable speed-up of the similarity computation and thanks to the availability of
the whole similarity matrix for each observed instant. By having all of the results
computed, the process that generates the edges among nodes could be performed
at run time just before the visualization. The threshold value chosen can change
the shape of the network, which consequently affects the results derived by the
analysis applied to the networks computed.
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Algorithm3Function that computes the PCC for a single pair of nodes, identified
by x and y. It is executed on the targetHWdevice for every pair of node in parallel.
Function FullDeviceFunction(data, x, y):

sum_x← 0
sum_y← 0
sum_xy← 0
sum_xx← 0
sum_yy← 0
for f ∈ [0, timeWindow) do

sum_x← diff[x * nNodes + f]
sum_y← diff[y * nNodes + f]
sum_xy← diff[x * nNodes + f] * diff[y * nNodes + f]
sum_x← diff[x * nNodes + f] * diff[x * nNodes + f]
sum_y← diff[y * nNodes + f] * diff[y * nNodes + f]

end
avg_x← sum_x / timeWindow
avg_y← sum_y / timeWindow
avg_xy← sum_xy / timeWindow
avg_xx← sum_xx / timeWindow
avg_yy← sum_yy / timeWindow
correlation← avg_xy−avg_x∗avg_y

(avg_xx−avg_x∗avg_x)∗(avg_yy−avg_y∗avg_y)
end

Behind this tool there is a big database with all the data precomputed, all these
data aremade available to the user to be selected for the visualization process. The
interactivity of the tool we present allows the user to add and remove different
versions of the data in the database and keep track of different versions of the
networks.

4.3.1 Visualization Considerations
The visualization of DN presents different challenges:

• The amount of data to process makes the visualization challenging. This
great amount of data to precess requires a high performance system to have
a real time rendering of the information. For this reason, we decided to
make the computation of the similarity measure adopted to define the net-
work off-line and separately from the visualization system. The reason why
we divided computation and visualization is because computation time
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for the similarity, when the number of input nodes is considerably high,
doesn’t allow the creation af a real time rendering of the results.

• The visualization tool we are presenting want to be interactive, so the user
can playwith the parameters of the problem and see how the results change.
This aspect of the tool increase significantly the amount of data to compute.
This is a direct consequence of the similarity threshold as free parameter.
In fact, we have to save the whole similarity matrices without filtering the
results.

The two points just described show which are the main challenges that we had to
go through during the developing phase of the visualization tool.

4.3.2 Network Visualization Key Points
This tool aims to simplify DNs analysis. During the development process we tried
to understand the most important key-points that neuroscientists want to per-
form on the data computed.

• Dynamic Network Exploration: One of the main feature that neuroscien-
tists want to have is the ability to navigate through the network. With the
possibility to zoom and move through the network where they can receive
more details about nodes and edges. An important aspect is the possibility
to select a node and read all the information about it, including outgoing
edges with relative correlation value and node position in the brain. The
absolute node/edge position in the brain is important to neuroscientists to
see which brain regions are active during the experiments.

• Dynamic Threshold Update: Neuroscientists also want to interact with
the parameters of the problem. By updating the similarity threshold at run
time, the shape of the network changes and domain experts can immedi-
ately see the differences. This dynamic update means that the process of
edge definition occurs at run time after the threshold is fixed.

• Dynamic Networks Comparison: Due to the two degrees of freedom of
the problem addressed, the number of different networks that can be gener-
ated is considerably high. For this reason, domain experts want to compare
the different network versions.

• LocalAnalysis: Another important key-point is the ability to perform local
analysis of brain sections without considering interconnections with other
parts of the brains. This because the brain is divided into regions that have
specific functions and would be interesting analyze them separately.
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The visualization tool we present is a base work that could be expanded with any
new analysis performed by neuroscientists in the next years. The application of
DNs to brain is a new trend and for this reason much of this field as gone unex-
plored. Therefore, we want to keep the tool flexible to this kind of future addi-
tions.



CHAPTER 5
GPU Implementation Details

In this chapter we explain the details and the important aspects of the GPU pro-
gram implementation. One of the key point of GPU programming is the manag-
ing of the resources available on the device. The programhas to avoid the running
out of resources, and to do this it has to be able to balance the computation. We
propose now the solution adopted to balance the computation in both the version
described previously (hybrid and full hardware).

Themodel behind theGPU computation is that every thread in the grid struc-
ture defined has to compute the results for the atomic component of the data. For
the computational model adopted (compute by pair) the atomic component of
the result is a pair of nodes. So ideally each thread has to be associated to one
pair of nodes and it has to compute the results for that pair. So, we have to built
a grid structure that contains all the node pairs of the problem. Figure 5.1 shows
an example of matrix containing all the node pairs. Recalling Figure 2.3 of Chap-
ter 2, we see that for each GPU structure we have to define the dimensions of the
grid and the dimensions of the blocks. So we have to turn thematrix of Figure 5.1
into the structure of Figure 5.2 (example of 2D GPU structure). All the tests per-
formed are run considering the full datasets, so using all the pixels in the images
as potential nodes and all the time instants. In all the tests performed we fixed
the time window at 50 frames.

The number of threads present in each dimension in the structure of Fig-
ure 5.2 is given by the multiplication nBlocks ∗ nThreads and it must be equal
to the number of nodes of the input dataset (nNodes). An important assumption
made to build the structure described is that the number of nodes must be less
or equal than the maximum number of thread in a block dimension multiplied
by the maximum number of blocks in a grid dimension. The maximum number
of thread that we can define for each dimension is strictly dependent to the GPU

36
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Figure 5.1: Matrix that contains each nodes pairs of the input data. nNodes is the
number of nodes in the input data and pi,j represent the node pair composed by
nodes i and node j.

architecture. However, generally this number is really high compared with the
number of nodes in usual DNs, so the assumption that the number of nodes will
never be bigger is legit.

At this point we only exposed how GPU structure looks like. However we
didn’t consider the time component of the problem, since we have to compute a
result matrix for each sliding of the time window. The solution we adopted is the
introduction of the the third dimension in the structure showed in Figure 5.2 to
obtain a final design like the one in Figure 5.3, where the z−axis value represents
the observation instant.

5.1 Computation Balancing

The hardware of the local machine impose some limitations. In particular, we
focus on those imposed by GPU devices. Among those listed below we keep into
account only the first two since the kernel functions defined for this problem do
not require the usage of shared memory.

• Global memory, it is not possible allocate more than the available mem-
ory on the GPUs. The GM contains all the data structures needed for the
computation. When the number of input nodes is considerably high, the
memory is not enough to contains all the data at the same time.
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Figure 5.2: Kernel structure used for the kernel functions in the problem for one ob-
servation instant. nBlocks represent the number of blocks in each dimension in the
grid and nThreads represent the number of thread in a single block per each block
dimension. The structure used present a quadratic shape, the number of thread per
each grid dimension is equal to the nodes number of the input data, in this way we
can represent each node pairs.
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Figure 5.3: Kernel structure used for the kernel functions in the problem extend
with the time component. The time is represented by the z−axis andnTime is the
number of observation instants that compose the observation period in the input
data.

• Registers number, a thread to be executed needs a certain amount of reg-
isters that is defined by the kernel function. The number of registers usable
by a single block of the grid structure is limited by the hardware.

• Shared memory, the amount of bytes sharable within a block of threads is
limited.

To deal with the limitation imposed by the architecture of the GPU we first
have to query the devices available on themachine and read all the characteristics
of them. These will be used later to scale the computation avoiding the running
out of resources. The most interesting characteristics read on the GPU devices
are:

• name: name of the device.

• totalGlobMem: number of bytes available in the global memory of the de-
vice.

• sharedMemPerBlock: maximum number of bytes that a block can share
among threads.

• regsPerBlock: maximum number of registers that a block can use.
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Algorithm 4 It returns the number of steps that fit the resources available on
the devices on the local machine. Variable globalMemory contains the minimum
amount of memory available on a single GPU.
Function GetSplit():int

nSplit← 0
memoryUsed← EstimateMemoryUsage(split)
while globalMemory <memoryUsed do

nSplit← nSplit + 1
memoryUsed← EstimateMemoryUsage(split)

end
return nSplit

end

Algorithm 5 It returns an estimation of the memory bytes needed by the ker-
nel functions on the GPU memeory. nTime is the number of observations. In
the instant of highest memory usage there must be allocated: bytes for the data
(function line 2), the covariance matrix (function line 3) and the correlation ma-
trix (function line 4).
Function EstimateMemoryUsage(nSplit):int

obsToProcess = ⌈ nTime / nSplit ⌉
memory← nNodes * obsToProcess * sizeof(int) / 1204
memory←memory + nNodes * nNodes * obsToProcess * sizeof(float) / 1204
memory ← memory + nNodes * nNodes * obsToProcess * sizeof(float) /
(1204 * nGPUs)
return memory

end

• warpSize: maximum number of threads that can reside at the same time in
a SM.

• maxThreadsPerBlock: maximum number of threads that a block can have.

• maxThreadsDim[3]: maximum size that the block can have on the three
dimensions.

• maxGridSize[3]: maximum size that the grid can have on the three dimen-
sions.
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Figure 5.4: Example of computation split defined in phase 3 on a samplematrix, the
machine in this case has three GPU devices.

The Global Memory limitation make impossible the computation of the re-
sults matrices for all the observation instants in one GPU call, since the space to
be instantiated to contains the results is bigger that the memory space available
on graphical devices. So we decided to split the computation of the results over
the time component in more than one step (referring to Figure 5.3, we split over
the z− axis). The number of steps is computed by the function defined in Algo-
rithm 4, it returns the number of steps needed to perform the computation with-
out running out of memory. The computation of the steps number is supported
by Algorithm 5 that returns the amount of memory needed on a single GPU to
compute the results given a number of steps. However, if the local machine is a
multi-GPU machine we decided to spread the computation of the results matri-
ces over the different devices, dividing the matrices shown in Figure 5.3 on the
vertical axes. Each part of the matrix given by the division is computed on a dif-
ferent GPU. The decision to split the matrix vertically allows to have more time
instants in each step since the memory required for each step is lower. In case
of multi-GPU machine another possible implementation choice could be the ex-
ecution of different steps on different GPUs. We decided to avoid this solution
because the differences of the time instants computed by the different GPUs could
causate problem in the results writing in RAM since multiple thread could write
in the same data space causing conflicts. In the solution adopted (vertical split)
this problem cannot appear because the time instant computed are the same for
every GPU and when the computation is finished the results are merged before
the copy in the machine global memory. Figure 5.4 shows an example of compu-
tation balancing according to the solution adopted.

Further the limitation discussed before there is the Registers Number con-
straint. This does not affect the balancing of the computation described before,
but it limits the number of threads in a block of the grid structure. This constraints
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is used to compute the blocks size and the gird size of the GPU structures. We
decided to adopt the formulation proposed by Lee et al. [13], they show how to
compute the kernel structure dimension, starting from the registers requirements
of the kernel functions.

The following equation represents the main constraint that must be respected:

Rblock ∗BlocksSM ≤MaxRegSM (5.1)

Rblock is the number of registers required by a single block in the grid. BlocksSM
is the number of blocks that can be executed by one SMat the same time. MaxRegSM
is the maximum number of registers allocable in one SM.

The number of registers needed by a block (Rblock) depends on the number of
threads executed at the same time and is computed as follow:

Rblock = ceil(ceil(Wblock,Wallocation) ∗ Twarp ∗Rkernel,Rallocation) (5.2)

We have that:

• Wblock: number of warps in a single block.

• Wallocation: value that represents the allocation factor of the warps. It is
possible allocate a number of warps multiple of Wallocation.

• Twarp: number of thread per warp.

• Rkernel: number of registers used by a kernel function.

• Rallocation: value that represent the allocation factor of the registers. It is
possible allocate a number of registers multiple of Rallocation.

Among all the parameters of Equation 5.1 the only two that depend on the imple-
mentation areWblock andRkernel. The first one is given by the number of threads
in a block (decided by the programmer) divided by the dimension of the warps,
while the second is strictly related to the kernel function implementation. All the
other parameters are fixed and defined by the device architecture. In our case for
NVidia devices they depends on the capability of the NVidia GPU.

The number of blocks executable in one SM at the same time (BlocksSM , from
Equation 5.1) is computed as follow:

BlockSM = min(Blocksw,Blocksr) (5.3)

BlockSM is the minimum between two values:
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• Blockw = MaxWrapsSM

Wblock
, number of wraps needed by a single block.

• Blocksr =
MaxRegisterSM

Rblock
, number of register needed by a single block.

MaxWrapsSM , MaxRegisterSM contain respectively the maximum amount
of warps that could be resident in a SM and the maximum amount of register
allocable by a block. All of these are defined by the capabilities of the NVidia
GPU.

From the previous formulas we see that the only free parameter we have isWblock.
In fact, it is used to compute Rblock (Equation 5.2).

Wblock = max
n
{n|Rblock ∗BlocksSM ≤MaxRegSM} (5.4)

After the evaluation of the steps number and the warps number of a single block
we compute the size of the grid and the block of the structure needed by the ker-
nel. The dimensions of the kernel components are computed following the next
operations:

1. Compute the number of observations instant to process in one step and its
offset from the first observation instant.
obsToProcess =

⌈
nTime

nSplit

⌉
2. Compute the division over the GPUs available of the nodes on the y axis,

and the offset for each division from the first node. The number of nodes
per each device is given by the division of the number of nodes by the num-
ber of devices. However if the machine has only one device this computa-
tion is irrelevant since it returns the total number of nodes.
nodePerDevice =

⌈
nNodes

nGPUs

⌉
3. Compute the dimensions of the block in functions of the number of warps

per block computed before. FromEquation 5.4 we get the number of warps
in a single block (Wblock), so the number of thread in a blockwill be: Wblock∗
Twarp. From this number we compute the dimension of the block.

• blockDim.x =

⌈√
Wblock ∗ Twarp

⌉
• blockDim.y =

⌈√
Wblock ∗ Twarp

⌉
• blockDim.z = 1
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4. Compute the dimensions of the grid in function of the number of thread
per block, it must have three dimensions:

• gridDim.x =

⌈
nNodes

blockDim.x

⌉
• gridDim.y =

⌈
nodePerDevice
blockDim.y

⌉
• gridDim.z = obsToProcess

All the formulation presented above results in the dimension of the GPU
structure created to support a generic GPU function. An important remark to
make is that each thread in a grid executes the same function, the computation
showed above are applied to any GPU function defined. In particular we de-
fined one GPU function for the hybrid version and one GPU function for the
full hardware version. Obviously, the two functions present different resource
requirements, in fact the shape of the GPU structure results different. The com-
mon denominator among the two implementations is that each thread compute
the similarity for one give node pair. The two nodes composing the pair are given
by the position of the thread in the structure, the x and y position set the node
number of the pair associated to the thread, computed using the formulas shown
in Equation 2.3.

5.2 Data Loading

The input data are loaded on the main memory of every GPU device present in
the local machine. One pointer for every device to the data loaded is kept for the
whole program life. The choice to maintain the data on the GPUs for the whole
execution is made to improve the performance avoiding frequent memory trans-
fers from machine global memory to GPU memory. The structure of the data
loaded is shown in Figure 5.5, where nTimes represents the number of observa-
tion instants and nNodes is the nodes number of the input dataset.

5.3 Results Saving

Theprogram stores the correlationmatrices at the end of the computation of each
one. The saving process creates one text file for eachmatrix. It is performed by an
independent thread so that the program can continue its execution. To reduce the
size of the output file and the saving time it is stored only half of the correlation
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Figure 5.5: Data format loaded on each GPU containing the program input data.

matrix (it is symmetric over the diagonal). As anticipated, the saving process is
executed by a fixed number of independent threads that run in parallel to the
GPU functions, when all the threads available are busy and the main program
has to write new results, it stops the execution waiting the end of one of them,
this avoid the overload of the BUS.



CHAPTER 6
Performance Evaluation

This chapter is dedicated to the tests performed to evaluate the performance of
the GPU program. The development of the GPU program has been performed
with Visual Studio 20131 with integrated NVidia Nsight2, which is an exten-
sion released by the NVidia company to support CUDA programming in Visual
Studio environment. This technology allows, besides the compilation of CUDA
code, the debugging of CUDA programs and the monitoring of the program ex-
ecution on GPU. The version of NVidia Nsight used contains the last CUDA
compiler released by NVidia, which is version 7.5, that support C++ version 11.

We now show the results obtained running the different versions presented
before (hybrid and full) on the devices compared with the same computation ex-
ecution on the CPU. We want to show how the hardware acceleration is a valid
solution for massive parallel computation. In details the comparison in term of
execution time occurs among different run, specifically we decided to run differ-
ent tests: one using only one GPU, one using three GPUs in parallel (all the same
model) and one using a general CPU. We are going o compare the execution time
among these looking for pros and cons of every execution. The system where all
the tests were run has installed Window 10 Enterprise Edition 64 bit as OS and
presents 12 GB of RAM Dual-Channel DDR3 @ 668 MHz (3× 4 GB). The local
storage used to save the results is a Samsung SSD 840 EVO 120 GB. Furthermore,
the devices used in the tests performed are:

• CPU: Intel i7 960 @ 3.20 GHz

• GPU: NVida GTX 770 4 GB @ 667 MHz
1https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx
2http://www.nvidia.com/object/nsight.html
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Table6.1: Execution timeof the runsperformedon theBioDatadataset. Full column
contains the execution time of the full HW version of the program implemented.
Hybrid HW column, instead, contains the execution time of the GPU function de-
veloped for the hybrid version of the program. Hybrid HW + CPU column contains
the time needed by the hybrid version (CPU + HW) to get the similarity computed.

Device Full [s] Hybrid HW [s] Hybrid HW + CPU [s]
Multi GPU 2.645 1.237 1.349
Single GPU 6.108 2.841 2.95

CPU 140.0 140.0 140.0

All the tests performed are run on the whole dataset, so all the similarity ma-
trices are computed and saved. In particular, BioData contains 250 different im-
ages andHumData contains 1000 images, so will be the number ofmatrices saved
by the program fro the two datasets. However, to make a direct comparison we
focus on the computation time of one image of the dataset. In fact all the time
shown in the results tables refer to the computation of only one similarity matrix.

Table 6.1 shows the execution time for the tests run on the BioData dataset,
extracted from the rat lab data. This present a great number of nodes to take into
account, so the execution results heavy to perform, due to the high amount of
data to process. The data, as we expected, highlight the advantage of the usage of
HW devices for this kind of computation, in particular the speed up obtained is:
∼ 53× on multi GPU and ∼ 23× on single GPU for the full HW version, while
∼ 113× on multi GPU and ∼ 49× on single GPU for the hybrid version. The
execution time of the hybrid hardware function is lower since the function itself
is smaller than the full hardware function implemented, to draw a conclusion
about which is better we have to consider with the hybrid execution time the
time needed by the CPU to compute the part executed on it. Comparing the Full
column and theHybridHW+CPU column we see that the hybrid version is still
convenient in term of execution time.

Table 6.2 shows the tests execution time performed on the other dataset avail-
able,HumData, in this case the amount of data to process is lowerwith the respect
of the other dataset used, in fact, in this case the managing of the resources had
been easier. Even in this case the execution time highlight the convenience of
GPU acceleration with the respect of the CPU execution. In particular we ob-
tained a speed up of∼ 41× on multi GPU and∼ 23× on single GPU for the full
HWversion, and a speed up of∼ 106× onmulti GPU and∼ 48× on single GPU
for the hybrid version. The same of BioData goes for HumData, the hybrid ver-
sion considered with the CPU time is still convinient in term of execution time.

As already anticipated, both the results presented in Table 6.1 and in Table 6.2
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Table 6.2: Execution time of the runs performed on the HumData dataset.Full col-
umn contains the execution time of the full HW version of the program imple-
mented. Hybrid HW column, instead, contains the execution time of the GPU func-
tion developed for the hybrid version of the program. Hybrid HW + CPU column
contains the time needed by the hybrid version (CPU + HW) to get the similarity
computed.

Device Full [s] Hybrid HW [s] Hybrid HW + CPU [s]
Multi GPU 0.267 0.103 0.123
Single GPU 0.463 0.23 0.249

CPU 11.0 11.0 11.0

show the computation time for only one frame or time instant of the dataset.
However, the computation of the full dataset is composed by multiple calls of
the same function, so the execution time of the program for the whole dataset
consist in the multiplication of the time needed to compute one time instant by
the number of the time instants in the data collected. But in this work we are
interested in showing which one among the solution implemented is the most
efficient in term of execution time, so we look exclusively at the velocity of the
algorithm based on a single element.

One last important consideration to make is that in the previous execution
time data there is no included the time needed to save the similarity matrices on
the hard disk. This phase is really important since the data computed are needed
for the visualization presented in Chapter 7 or they can be used in further analysis
to study the neurons interactions. However, this phase is the most expensive, due
to the high number of nodes that compose the similarity matrix and to the high
number of time stamp to save. The time needed to save one single similarity
matrix are: 1031s (17m and 11s) for the BioData dataset and 74s (1m and 14s)
for the HumData dataset. The time needed to save the similarity on file, which
is much greater than the time needed to compute the similarity, represent the
bottleneck of the pipeline presented in this thesis work, moreover if we think that
to perform analysis on the results we need all the similarity matrices so we have
to save them for each time instant of the dataset the final execution time of the
whole program grow significantly.



CHAPTER 7
Networks Visualization Tool

In this chapter we present the outcome of the visualization tool development,
this tool aims to visualize the dynamic networks computed with the program pre-
sented in Chapter 5, this tool represents Step 3 of the pipeline shown in Figure 4.3
of Chapter 4.

7.1 Visualization Tool Prototype

The visualization tool we developed is a web-based application, so it can run on
every browser without particular dependences. The main technologies used are
the classical web languages: HTML, CSS and Javascript, including the visualiza-
tion library D31, which is JS based. The tool we present is a prototypewheremuch
work has to be done yet enriching it with new more complex features. However,
we want to show the usefulness of this kind of visualization in providing help to
domain experts. You can find the visualization tool here2.

7.1.1 D3 Library
Data Visualization is one of the new sciences that aims to communicate informa-
tion using graphs and draws. This new science needs powerful tools that must
be able to process data quickly and make them easily usable by the programmer,
achieving a good final visualization result. One of the new tool used in the data

1D3 examples and documentation can be found here: https://d3js.org/
2http://purgato.evl.uic.edu:3000/
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Figure 7.1: Tool interface, main page of the interactive visualization tool developed
to display dynamic brain networks.

visualizationworld is D3, it is a Javascript based library that allows to create vec-
torial components in a web page. Javascript is the most installed programming
language in the world, this help the growing of libraries like D3, moreover all the
modern browser nowadays are able to render Scalable Vectorial Graphics (SVG),
even mobile devices. The vectorial components allows the creation of complex
charts accessible by most of the Internet user. D3 born from the library Proto-
vis1, which is considered the predecessor of it, both are invented by Mike Bo-
stock as visualization tools to manipulate web pages component, like HTML or
SVG components, and web pages styles, like CSS. D3 is a powerful tool that stay
in the middle between the data manipulation and the data visualization, it sim-
plifies both the processes thanks to simple functions that could be used by the
programmers to load and render the data desired.

7.1.2 Visualization Organization
The tool is composed by a web page that is divided into three main sections. One
is used for network visualization, one for the timeline and the third for data fil-
tering. Figure 7.1 shows the main page of the web application. There is a header
with all the general information: a menu button and an info box containing all

1Protovis website: http://mbostock.github.io/protovis/
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Figure 7.2: Tool menu, used to manage the data sessions. It allows the creation,
deletion and load/unload of the data in the system.

the information related to the data loaded in the system. Each main section of
Figure 7.1 is used for:

• Part 1: space adopted for the network visualization. Inside this section the
nodes and edges will be drawn. The user can navigate through and see how
the DN is structured for the time instant selected.

• Part 2: space used to visualize a timeline representing the observation pe-
riod. The input data, as described previously, is characterized by an ob-
servation period where each instance is associated with a network. In this
section a time axis is shows to the user is order to select the time instance
to visualize.

• Part 3: feature used to select the correlation threshold used to define the
DN. The threshold can be changed at any time, and the filtering is applied
to any data version loaded in the system.

7.1.3 Session Manager
This tool keeps track of different versions of the data that are computed using the
algorithms presented in Chapter 5. For this reason, the concept of session is in-
troduced, which represents a version of the data that can be loaded and visualized
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in the system. The different sessions can bemanaged using themenu that appears
on the left side of the page.

Figure 7.2 shows how he system manage the sessions. It is possible create,
delete and reset the sessions in the system. The creation/deletion of a session
consists in add/remove an entry in an on-line database where all the sessions are
recorded. During the creation phase, the system ask the user for a folder name
where the session data will be uploaded manually in the web-server. This process
may seem tedious, but since the mole of data could be very high it is better to
leave the uploading to an external program which is optimized for this kind of
work. The reset function, instead, consists in the unload of all the data previously
loaded in the system. The sessions loaded are the ones selected by the user to be
visualized. The loading operation, in fact, is different from the creation, while the
first actually load and prepare the data for the visualization the creation is used
to add a new version of the DNs in the system database. To load a new session
is necessary to click on the name of the session, previously created, shown in the
menu.

The bottom part of the menu is composed of the sessions list created by the
user. By clicking on the name of the session the system will load the data of the
one selected. As stated before, the system is able tomanagemore than one session
at a time. In fact the user can compare two different data versions. The loaded
sessions are shown in themain page (Figure 7.1) on the top right corner. Each one
is represented by a color that will be used by the framework to visualize the data
associated to that session. When a session is loaded, all the correlation matrices
for each instance are loaded in the memory. In this way the filtering process will
be faster when the user changes the threshold.

7.1.4 Edge Definition and Network Visualization
The edge definition is performed only after the setting of the similarity thresh-
old. They are defined thanks to a filtering process that keeps the nodes pairs with
similarity greater than the threshold. Figure 7.3 shows how the tool appears after
the filtering of the data loaded in the system. On the timeline is plotted a graph
that represents the number of edges during each time instant of the observation
period. The red vertical line represents the mouse pointer that moves over the
timeline, the red number on top of the line is the time instant that the mouse is
pointing. Clicking with the mouse on the timeline the system will draw the net-
work for the time instant selected. Figure 7.4 shows an example of two networks
visualized with two different correlation thresholds.



7.1. Visualization Tool Prototype 53

Figure 7.3: Data filtering, process that take the data loaded in the system and filter
them using the threshold set by the user. It shows the time axis with the number of
sedges for each time instant.

Figure 7.4: Different threshold networks, examples of network displayed with dif-
ferent correlation threshold,the left image has a greater threshold so less edges are
present in the network, while the right image has a lower threshold andmore edges
are created for the network.

7.1.5 Network Exploration
Figure 7.5 shows an example of network visualization for one data session. The
circles represent the brain cells, and their position in the space represents the po-
sition they have in the brain with the respect to the other nodes. The visualization
shows only the part of the brain that contains edges, in fact the red rectangle in
the brain image on the left part (see Figure 7.6) represents the portion of the brain
visualized, this means that out of that rectangle there are no edges. The scale of
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Figure 7.5: Network visualization, rendering of the network created by the filtering
process, it is showed the network associated to the time instant selected in the time
axis.

the network is performed autonomously by the system, moreover the network
could be moved and zoomed by the user with the mouse pointer. The stroke and
the opacity of the edges are directly proportional to the correlation that two nodes
linked by the edge have, so the bigger and themore opaque the edge is, the greater
is the correlation among the two nodes.

When the network is visualized one of the main problems that could happen
is the presence of a high number of edges, so the visualization could result chaotic.
To give the edges a meaning we want to propose a visualization system that maps
the edge of the network on the brain image. This is very helpful to understand
the position in the brain and what we looking at. We decided to adopt a map-
ping to avoid the drawing of the network directly above the brain picture since
it can results confusional and difficult to understand. Figure 7.6 shows how we
implemented the map between the network and the brain. If the user goes over
a node with the mouse, the system draw the node and the edges related to the
node selected. This shows the exact position of what selected in the brain. More-
over some important information are shown when the user goes over a node, like
connections and correlation relative to the links, besides the nodes position in
the brain.
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Figure 7.6: Networkmapping, it shows the solutionwe adopted tomap thenetwork
drawn on the brain. This mapping allows the identification of the absolute position
of nodes in the brain.

7.1.6 Network Comparison
One of the main characteristics that our system has is the comparison between
different version of networks. When more than one session is loaded in the sys-
tem the behavior of the system is the same described in the previous sections,
but everything is performed for all the sessions loaded. So on the timeline it is
possible to see a number of graphs equal to the number of sessions loaded.

Figure 7.7 shows how the visualization tool appears when more than one ses-
sion is loaded, the networks are represented by different colors so that the users
can see the differences for the time instant selected on the timeline.
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Figure 7.7: Network comparison, it shows the comparison between two different
data session loaded in the system, each one is represented by a color in the network.



CHAPTER 8
Conclusions

We presented an interdisciplinary work able to compute DNs and visualize them
in a clear and easy way to make the results understandable. We focused our in-
terests especially on the development of different solutions adoptable for DNs
definition, evaluating then the execution results obtained running different tests
on different dataset. During the development process we encountered some bot-
tleneck that slowed what we expected at the beginning, in fact the high compu-
tational power of the GPUs adopted is limited by the slow writing speed of the
storage system used in the test environment. This doesn’t really affect the visual-
ization process since we presented an off-line tool that shows network, and all the
data are precomputed. The real bottlenecks occurs when external analysis have to
be performed on the data computed. This saving process can be very long because
all the data must be saved and only then analyzed. In fact, what is highlighted by
the results is that the similarity computation time per se (without saving time) is
really low which is what we were expecting.

8.1 FutureWorks

Taking advantage of the low computation time achieved for the similarity ma-
trices, the main future work that could be developed is the creation of a more
complex pipeline that make the results analysis on-line. This means that every
step of the pipeline is executed on the same context, so the results computed by
the program are already resident in the central memory and there is no need to
save them on local storage. However, the mole of data computed is really high
and sometimes the global memory of the machine is not sufficient to contain all
the data computed. In fact in these cases is necessary to filter the results, keeping
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only the most relevant for the analysis. In the programs developed we avoid the
filter of the data for one reason, give a clear idea of all the results computed, but
if the GPU computation results are used on-line by other functions that analyses
them it is possible keep in memory only the useful data necessary for the specific
operation.

One other possible further work is the implementation of different similari-
ties measures in the program so that the user can chose which one compute ex-
ploiting the hardware computational power. We have seen that the computation
on hardware devices is very powerful and the expansion in this direction can
increase the level on analysis of the results. Different similarities means also dif-
ferent version of results, in some field the application of DN is pretty new, and
scientists don’t still know which one is better for the context of application, so in
this way would be possible to compare and find the best measure to adopt.

Regarding the visualization tool used to show the networks defined, the most
interesting future work is to include more analysis results. Allow the domain
experts to select which results visualize and create an overlaid visualization that
shows it on the network. In this case the work depends on the kind of future
analysis will be performed on the results computed. A much more complex ex-
tension would be, instead, the generalization of the visualization from the context
of DNs application, making possible the visualization of DNs applied to human
being or animals in the same way we visualized the brain networks. This aspect
would made the visualization tool really powerful but the realization of it is really
complex since we have to find a way to bring all the data under the same format
and under the same spatial domain space.



Acronyms

GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphic Processor Unit

CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central Processor Unit

FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Field Programmable Gate Arrays

GPGPU . . . . . . . . . . . . . . General-Purpose Computing on Graphic Processor Units

SPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spatio-Temporal Network

DN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Network

TW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time Window

PCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pearson Correlation Coefficient

SIMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Instruction Multiple Thread

SIMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Instruction Multiple Data

GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global Memory

SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Streaming Multiprocessor

SVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scalable Vectorial Graphics

JS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Javascript
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