
POLITECNICO DI MILANO
Master in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

Exploring Future DNUCA

Architectures by Bridging the

Application Behaviour and the

Coherence Protocol Support

Supervisor: Prof. William FORNACIARI

Assistant Supervisor: Dr. Davide ZONI

Master Thesis of:

Mauro BELLUSCHI

Student n. 819475

Academic Year 2015-2016

Estratto in Lingua Italiana

La rivoluzione portata dai multi-core evidenzia come l’ultimo livello di cache

(LLC) sia un componente chiave che influenza l’intero sistema. Una ges-

tione efficace dei dati, deve manterli vicini ai core, riducendo al minimo

i costosi accessi in memoria. Inoltre, il numero crescente di core insieme

all’introduzione delle NoC come interconnect standard rende le architetture

NUCA (Non Uniform Cache Access) una soluzione fondamentale al fine di

incrementare le performance e la capacità della cache. L’ultimo livello di

cache è solitamente fisicamente distribuito nei vari banchi ed è condiviso tra

tutti i core. Perciò, le politiche di mapping e di rimpiazzo dei dati rivestono

un ruolo determinante. Tuttavia, lo Static NUCA (SNUCA), soluzione di

base che solitamente utilizza un mapping statico per l’ultimo livello di cache,

ha dimostrato di avere forti limiti.

Le architetture DNUCA (Dynamic NUCA) consentono un posizionamento

adattivo dei blocchi in LLC, offrendo la possibilità di incrementare le prestazioni

dell’intero sistema. In tutte le soluzioni DNUCA sono necessari due meccan-

ismi. Il primo è quello di ricerca dei blocchi in LLC, data la possibilità di un

blocco di essere posizionato in diversi banchi. Il secondo è il meccanismo che

permette di allocare dinamicamente il blocco. Mentre sono state proposte

diverse architetture, un’analisi globale degli overhead dei meccanismi non è

stata ancora affrontata.

Questa tesi fornisce un’esplorazione e un’analisi completa di tali mecca-

nismi, in relazione anche al comportamento delle applicazioni. I meccanismi

sono stati valutati sia dal punto di vista delle performance, sia da quello del

traffico aggiuntivo introdotto nella NoC. Inoltre, un’architettura DNUCA

provvista di supporto per la migrazione dei blocchi è stata sviluppata e anal-

izzata. In particolare, il protocollo di coerenza MESI è stato esteso con i

meccanismi necessari per un sistema DNUCA. Inoltre, viene presentato un

nuovo meccanismo di ricerca in LLC. I risultati ottenuti evidenziano come

i

l’impatto delle applicazioni sulla gerarchia di cache e l’enorme costo dei mec-

canismi di ricerca non siano trascurabili e mettano in discussione le stesse

architetture DNUCA.

Abstract

The multi-core revolution highlights the Last Level Cache (LLC) as a key

component which affects the behaviour of the entire system. An efficient

LLC data management keeps data closer to the cores, thus minimizing the

expensive memory accesses with a net improvement on the overall system

performance.

Besides, the ever increasing core count in the chip coupled with the in-

troduction of the on-chip networks as the standard interconnect makes the

Non Uniform Cache Access (NUCA) architectures a viable solution to im-

prove the LLC capacity and performance. Considering huge multi-cores, the

LLC is usually physically split in banks that are spread across the chip, but

identifies a single shared address space between the cores. Therefore, the

data placement and replacement policies play a critical function in the over-

all system by deciding in which LLC bank each cache line has to be mapped.

However, the application phases and their parallel execution point out the

limitations of the baseline NUCA solution that usually exploits an LLC static

data mapping, i.e. Static NUCA (SNUCA).

The Dynamic NUCA (DNUCA) architectures allow a dynamic and adap-

tive placement of the LLC data to better fit the constantly changing run-time

conditions. The possibility to move a cache line among two LLC banks to

eventually reduce the distance between the data and the CPU that uses such

data can greatly improve the overall system performance while minimizing

the communication requirements. To this extent, the additional mechanisms

and policies that allow the data migration and dynamic data placement re-

quire a careful design stage not to void the benefits of the DNUCA solution

due to their overheads. Despite the variety of the existing DNUCA archi-

tectures, two mechanisms are common to all of them. The lookup mecha-

nism retrieves a cache line into the LLC, since the block placement is time-

dependant, i.e. the same block has not a fixed home bank in the LLC.

iii

Moreover, a dynamic data placement mechanism allows to optimally place

a block depending on the considered objective function. The data place-

ment can be placement-dynamic or fully-dynamic. The placement-dynamic

scheme freely maps a data in any LLC bank any time it is not present in

the LLC. However, no further moving actions are possible within the LLC

banks for the data block once placed. Conversely, a fully-dynamic scheme is

placement-dynamic and allows to migrate the data block between different

LLC banks.

Several DNUCA architectures have been proposed, while a comprehen-

sive analysis of the overheads due to the additional required mechanisms is

still missing. The thesis explores such mechanisms also providing a com-

plete analysis on the relationship between the application behaviour and the

DNUCA design stages. The lookup and the migration mechanisms are eval-

uated considering both the performance and the additional generated traffic

viewpoints. Moreover, a complete DNUCA architecture with the migration

support has been developed and analysed. In particular, the MESI coher-

ence protocol has been augmented and integrated to work with the DNUCA

mechanisms. Moreover, a novel broadcast mechanism is presented as part of

the lookup mechanism.

The complete architecture has been implemented into the GEM5 cycle ac-

curate simulator using a representative subset of the SPEC CPU 2006 bench-

marks for the analysis. The obtained results highlight the non-negligible im-

pact of the applications to the cache hierarchy as well as the huge overhead

introduced by the lookup schemes, thus imposing a careful evaluation of the

actual need for a DNUCA architecture.

Acknowledgments

To my parents and my brother, who have always supported and encouraged

me during my studies and in life.

To Susanna, for being my reason to smile.

To Luca, Fabio, Andrea and all my university mates; we have been a

strong team together in these years.

To Matteo, Alessandro and all my friends, who have always been there

for me.

To Davide, for his patient guidance and his priceless teachings.

To Professor Fornaciari and the HIPEAC Research Group, because they

show me how exciting can be to do research.

vii

Contents

1 Introduction 1

1.1 Tile-based Multi-Cores and Applications 2

1.2 Problem Overview . 3

1.3 Goals and Contributions . 7

1.4 Thesis Structure . 8

2 Background 11

2.1 The Network-on-Chip . 11

2.2 Cache Hierarchy . 12

2.3 Basics of Coherence and Coherence Protocols 14

2.4 LLC Mapping and Non Uniform Cache Access (NUCA) Ar-

chitectures . 19

3 State of the Art 23

3.1 Dynamic Non Uniform Cache Access 23

3.2 The DNUCA Power Perspective 30

4 The DNUCA design: Coherence Protocol Implications 33

4.1 The MESI protocol . 34

4.2 The Broadcast Mechanism . 36

4.2.1 Deadlock Avoidance Analysis 38

4.2.2 The Smart Broadcast 43

4.3 Data Migration for DNUCA Support 43

4.3.1 Migration Mechanism 44

4.3.2 Deadlock Avoidance Analysis 47

4.4 A Novel Migration Policy . 49

ix

5 Analysis: DNUCA and Application Behaviour 53

5.1 Simulation Setup . 53

5.2 Benchmark Analysis . 56

5.2.1 Applications Phases Analysis 57

5.3 Broadcast Analysis . 62

5.3.1 Performance Degradation 62

5.3.2 Injected Flits Increment 66

5.4 Smart Broadcast with Simple Policy 67

5.4.1 Additional Traffic Explanation 70

6 Conclusions and Future Works 77

6.1 Future Works . 78

Bibliography 79

List of Figures

1.1 Accesses Behaviour on a 4x4 Mesh NoC: SPEC2006 4

1.2 Accesses Behaviour on a 4x4 Mesh NoC: MiBench 6

1.3 Maximum Injected Flits Increment 7

4.1 MESI L1 cache implementation 34

4.2 Broadcast Mechanism . 37

4.3 Generic Deadlock . 39

4.4 Deadlock Free Scheme . 39

4.5 Virtual Networks Baseline . 40

4.6 Virtual Networks Broadcast Support 41

4.7 Virtual Networks Forward Example 42

4.8 Migration Sender Finite State Machine 45

4.9 Migration Receiver Finite State Machine 46

4.10 Migration Sender Finite State Machine Ownership 47

4.11 Migration Receiver Finite State Machine Ownership 48

5.1 Distribution in Time of Misses: GOBMK benchmark 58

5.2 Distribution in Time of Misses: LESLIE benchmark 60

5.3 Distribution in Time of Misses: MCF benchmark 61

5.4 Distribution in Time of Misses: GEMS benchmark 63

5.5 Distribution in Time of Misses: LBM benchmark 64

5.6 Broadcast Performance Degradation. 65

5.7 Broadcast Injected Flits Increment. 66

5.8 Smart Broadcast and Migration Results: Subset 1. 68

5.9 Smart Broadcast and Migration Results: Subset 2. 69

5.10 Additional Flits: Subset 1. 71

5.11 Additional Flits: Subset 2. 72

xi

List of Tables

5.1 Experimental Setup. 54

5.2 SPEC CPU2006 Benchmarks. 55

5.3 SPEC Characterization with LLC Misses. 56

5.4 SPEC Characterization with L1 Misses. 57

5.5 SPEC Characterization . 59

5.6 Broadcast Based Architecture Simulated Phases. 65

xiii

Acronyms

NoC = Network-on-Chip

LLC = Last Level Cache

MC = Memory Controller

MHSR = Miss Handling Status Register

FSM = Finite State Machine

NUMA = Non Uniform Memory Access

NUCA = Non Uniform Cache Access

SNUCA = Static Non Uniform Cache Access

DNUCA = Dynamic Non Uniform Cache Access

CMP = Chip Multi-Processor

VNET = Virtual Network

HPC = High Performance Computing

RAM = Random Access Memory

SRAM = Static Random Access Memory

DRAM = Dynamic Random Access Memory

SWMR = Single Writer Multiple Reader

IPC = Instructions Per Clock

FIFO = First In First Out

xv

Chapter 1

Introduction

Nowadays, the multi-core is the standard computing architecture to keep the

pace with the Moore’s Law. This is mainly due to the technology limitations

that prevent the increase of single-core performance without an exponential

increase of the power consumption. In this scenario, the cache hierarchy

is a subsystem of paramount importance, which greatly affects the perfor-

mance, the power consumption and the footprint of the entire multi-core.

In particular, the ability of the cache hierarchy to keep both data and in-

structions closer to the processing elements that use them and its smaller

access time compared to the main memory can significantly boost the overall

system performance. On the other hand, the cache footprint can reach 50%

of the total chip area in modern multiprocessor [21]. Finally, the cache hier-

archy power consumption has been reported to be around 40% of the entire

chip [35], thus highlighting the cache subsystem as a critical component in

all the multi-core design stages. This thesis investigates current cache archi-

tectures for NoC based multi-cores with particular emphasis on the required

hardware mechanisms to implement efficient Dynamic Non Uniform Memory

Access (DNUCA) architectures. In particular, the broadcast mechanism be-

tween Last Level Cache (LLC) banks as well as the data migration support

have been evaluated from both the performance and additional NoC traffic

viewpoints.

An analysis on a novel cache hierarchy made of three parts is presented.

A smart broadcast mechanism is designed to efficiently support DNUCA

architectures. An enhanced coherence protocol is provided with LLC to LLC

blocks migration support for dynamic line placement. Moreover, a migration

policy is designed and evaluated. Last, the application behaviour has been

1

1.1. Tile-based Multi-Cores and Applications

analysed and exploited to steer the design choices.

The developed and analysed architecture is tailored to general-purpose,

tiled-based multi-cores to support the development of the future generation

of HPC-like architectures. Moreover, it is totally transparent to the software

layer. The proposed analysis can also be combined with enhanced NoC archi-

tectures [37, 40] to further improve the overall energy-performance tradeoff.

The rest of this part overviews the computing platforms to which the

thesis aims to in Section 1.1. Section 1.2 details the open research aspects

and the optimization opportunities for the cache hierarchy of next-generation

multi-cores. The goals and contributions of the thesis are provided in Sec-

tion 1.3. Last, Section 1.4 describes the structure of the whole manuscript.

1.1 Tile-based Multi-Cores and Applications

The multi-core is a commodity due to its versatility, high performance and

fine grain control on the chip power envelop. It delivers a flexible architecture

where various applications can truly execute in parallel. Thus, the multi-

core architectures are exploited in several domains, ranging from embedded

to High Performance Computing (HPC) systems. The HPC solutions are

designed to support computationally demanding tasks, aiming to capacity

computing, i.e., ensuring the best performance while executing the maximum

number of applications.

Embedded multi-cores enforce strong low power requirements that influ-

ence their design. However, they are still general purpose solutions. On

the other side, specific task oriented architectures such as accelerators are

emerging to speed up specific tasks in bigger applications. Accelerators have

simpler CPUs and non coherent cache hierarchy than HPC and embedded

systems architectures.

This thesis targets High Performance Computing, general-purpose, cache

coherent multi-cores. These architectures are supposed to execute different

kinds of applications, with highly variable requirements and characteristics.

The thesis considers the SPEC CPU2006 [20] benchmark suite for the

analysis and the methodology assessment. This set of applications is charac-

terized by integer and floating point single-threaded benchmarks. SPEC can

be used to stress the cache hierarchy and the system main memory.

In this work, tiled multi-cores with split Last Level Cache are considered

[1]. The chip is designed by replicating the same basic module (the tile) to

2

1.2. Problem Overview

reduce the design and validation time. Usually a tile is made of a core, its

private caches, an LLC bank and a switch to connect the tile to the rest of

the system. In tiled multi-cores, LLC banks are usually shared but physically

split among the tiles.

Moreover, an efficient data mapping policy for large, shared LLC can

avoid expensive and slow memory accesses, saving power and increasing the

overall system performance.

1.2 Problem Overview

The on-chip cache is usually hierarchically organized, with small low-latency

caches at the higher level and larger, slower ones at the lower levels. This

ensures high on-chip capacity and fast data access.

Nowadays, the state of the art proposes Non Uniform Cache Access

(NUCA) architectures as promising solutions to access the memory with an

optimal cache latency.

Considering a physically split LLC cache hierarchy, the decision to make

it shared or private is crucial.

A completely shared last level cache hierarchy ensures a larger space

where all the applications can share common data. Traditionally data are

statically mapped to the shared LLC by their address. However, it is possible

to observe high latencies caused by the distance between the requestor and

the accessed LLC bank, since the bank where the data is mapped is not

influenced by the position of the requesting core in the topology.

An alternative design makes each LLC bank private to the tile, such as

lower cache levels are usually designed. A private LLC hierarchy permits to

isolate data of different cores and to have the best performance in terms of

access latency. Each core accesses to the LLC inside its own tile, without

traversing the interconnect, thus ensuring low latency. However, this ap-

proach can be very inefficient due to the fact that applications can be more

or less data demanding and if all data do not fit in the tile cache, it is possi-

ble to observe performance degradation caused by a high replacements rate.

Moreover, private LLCs make the main memory the only synchronization

point.

These designs exploit the Static NUCA to statically map the data block

using its address. However, a shared SNUCA LLC architecture highlights an

unbalanced access distribution between the cache banks.

3

1.2. Problem Overview

(a) LLC accesses in NAMD benchmark

(b) LLC accesses in MCF benchmark

Figure 1.1: Distribution among the banks of accesses in LLC cache, considering

different mappings with SPEC2006 on a 4x4 Mesh NoC.

4

1.2. Problem Overview

Figure 1.1(a) and Figure 1.1(b) show the unbalanced accesses distribution

between L2 banks of a SNUCA LLC architecture running NAMD and MCF

benchmarks, respectively. A 5 milliseconds time window is used to sample

data and a 4x4 mesh NoC based architecture is considered.

Figure 1.2(a) and Figure 1.2(b) show the same behaviour considering few

representative MIBENCH benchmarks.

A different but related analysis has carried out to study the access dis-

tribution between sets inside the single bank. Results show an unbalanced

set access pattern within the same L2 bank. Such a behaviour is observed in

private LLC design too: accesses are equally distributed among the banks,

but considering the single bank they are unbalanced between sets.

Dynamic NUCA mechanisms emerged to face access latencies problem

and to efficiently manage the data allocation in the LLC. These promising

solutions could be very useful to fully exploit the cache hierarchy and optimize

the performance.

The DNUCA architecture allows to dynamically place blocks in last level

cache; the line allocation is time dependent. This can be done in several ways.

Some implementations group last-level-cache banks in a certain number of

banksets and every block is mapped to a bankset rather than to a single

bank. This new kind of approach aims to place data more freely in the last

level cache and potentially it is possible to place cache lines everywhere.

A look up mechanism to retrieve the blocks is required due to their dy-

namic placement in the LLC. Furthermore, some DNUCA solutions imple-

ment data migration.

So, before evaluating the possibilities and benefits that can be exploited

thanks to new dynamic approaches, these additional mechanisms have to be

evaluated. Block searching can be a source of performance degradation. In

particular, the block lookup process can be time consuming due to the need

to broadcast requests to the whole LLC. Moreover, the degradation grows

with the core count and with the system size. Some solutions [25] developed

dedicated hardware in order to manage broadcast in LLC.

It is easy to understand that these possible issues and disadvantages that

promising NUCA solutions involves can’t be ignored. Also irregularity in

banks accesses is a source of performance degradation that have to be con-

sidered.

Figure 1.3 shows the increase of the traffic volume in the NoC due to the

broadcast in an observation interval of 1 millisecond by an architecture which

5

1.2. Problem Overview

(a) LLC accesses in Djikstra benchmark

(b) LLC accesses in Basic Math benchmark

Figure 1.2: Distribution among the banks of accesses in LLC cache, considering

different mappings with MiBench.

6

1.3. Goals and Contributions

Figure 1.3: Peak of the increment of injected flits in a 4x4 Mesh NoC, due to the

broadcast mechanism, in a time interval of 1ms.

uses broadcast and the same without broadcast. Some of the applications of

the SPEC CPU2006 suite are analysed and the interval which maximizes the

ratio has been chosen on several milliseconds of execution.

A greater number of injected flits has a huge impact on the power con-

sumption of the overall system.

1.3 Goals and Contributions

The thesis provides a comprehensive analysis of the broadcast/multicast and

data migration mechanisms in last-level cache to support future DNUCA

strategies as also considered in the EU MANGO project [16]. Moreover the

application behaviour is also accounted as a key factor in the DNUCA design.

Last, a novel DNUCA-capable MESI coherence protocol has been proposed,

taking steps from the insights of the carried out analysis.

In a nutshell, the thesis presents the following contributions:

• An analysis of the broadcast/multicast overheads and LLC mapping

strategies in DNUCA systems, considering the performance and the ad-

ditional generated coherence traffic. The application phases and their

behaviour are considered as well.

• The baseline MESI protocol is extended with few additional states to

7

1.4. Thesis Structure

support the data migration mechanism at the LLC level. A simple mi-

gration policy has been designed to exploit application characteristics

and execution phases.

• A smart data search mechanism is proposed to limit the additional

coherence traffic.

A set of multi-core architectures considering 16 cores have been simu-

lated to assess the proposed architecture. Furthermore, synthetic and real

applications have been exploited to assess the benefit of the proposed scheme.

1.4 Thesis Structure

The rest of the thesis is organized in 6 chapters. Chapter 2 overviews the

background of the work. Chapter 3 describes the state of the art. Chapter 4

provides a detailed description of our architecture and its novel contributions.

Chapter 5 details the methodology validation providing results with synthetic

traffic and real applications. Chapter 6 points out conclusions and some

future works.

8

1.4. Thesis Structure

10

Chapter 2

Background

This chapter describes the background of the work, to lease the reading of

the following chapters.

2.1 The Network-on-Chip

The NoC is a scalable and reliable interconnect that allows its nodes to ex-

change data. A node can be both a CPU or a part of the memory subsystem.

The NoC is composed by routers, Network Interface Controllers (NICs)

and links. The first ones route data into the network. The second ones allow

the communication between a node and a router. Finally, links connect two

routers or eventually a router and a NIC.

Traditionally, the NoC splits each message from the memory subsystem

in multiple packets. Then each packet is eventually split in multiple flits to

better utilize the NoC resources.

The NoC is characterized by a topology, which defines the way routers

are interconnected to each others and how memory and CPU blocks are

attached to the NoC. The most common topologies used in NoC are mesh

[11], concentrated mesh [2], hybrid bus based [12] [33] and high radix [19].

Furthermore, another key aspect of a NoC is its routing algorithm. It

defines each source-destination path inside the NoC. Routing algorithms can

be deterministic [2] or adaptive [15][13] [14], based on their capacity to alter

the path taken for each packet. The most used deterministic routing scheme

in 2D-meshes is XY routing; packets first go in the X direction and then in

the Y one.

11

2.2. Cache Hierarchy

NoCs can implement the VNET mechanism to support coherence proto-

cols and this is done in order to prevent the traffic from a VNET to be routed

on a different one, possibly causing dependencies between different kind of

coherence messages and generating deadlocks.

2.2 Cache Hierarchy

Historically, the main memory became a bottleneck for computer systems.

The cache hierarchy emerged to fill the gap between the CPU and the

main memory performance.

Cache memories exploit temporal and spatial locality. These are charac-

teristics observed statistically in applications, according to which distribution

in time and in space of memory accesses is not homogeneous.

Spatial locality states that an application accesses with a greater proba-

bility to addresses near the last ones accessed. On the other side temporal

locality states that an application accesses more often to addresses accessed

recently in time.

The objective of cache memories is to exploit these characteristics in order

to keep most recently accessed data and allow CPU fast accesses, avoiding

latencies caused by accessing the main memory.

Caches, despite a very low access time, are characterized by high costs in

terms of area and power consumption. This is specially true considering costs

and access times of the main memory. The causes of these disparities are the

different technologies that are used to build the two types of memory. Cache

memories are based on Static RAM technology (SRAM). This one uses flip-

flops, like a register file, it has non-destructive read-out and it is very fast, but

expensive. The main memory is based on Dynamic RAM (DRAM) instead;

it uses a single transistor to store each bit, has a simpler structure, allows

larger capacity chips but it has destructive read-out, requires regular refresh

and is slower.

Thus, the cache hierarchy is usually designed considering these features

and aiming to get a trade off between costs and performance. Accordingly, it

is organized into several levels. The closer ones to the core have to be smaller

and as fast as possible. Farther ones are bigger and have to provide blocks

to the higher layers.

The L1 cache, the closest one to the core, is private and is usually split

into data cache and instructions one. After that, we find the bigger, a little

12

2.2. Cache Hierarchy

bit slower L2 cache; there is no distinction between data and instructions

starting from there.

The number of cache levels is going to grow in the future; nowadays is

very common to find up to three layers. However, in our description the L2

cache is the Last Level Cache. As explained in Section 1.2, the LLC can be

designed private to the core or shared between all the CPUs.

In order to exploit spatial locality, data are retrieved from memory and

stored in blocks (also called cache lines), which contain more contiguous

words. Traditionally a word can be sized to 32 or 64 bit, a block can be of

64 or 128 bytes, dependently on the processor architecture. When a word is

not found in the cache, it must be fetched from the memory and placed in

the cache before continuing and so its block is retrieved from memory. Each

cache line includes a tag; it identifies which address it corresponds to.

Depending on where a block can be placed, we can distinguish several

cache designs. Set associative caches define a set as a group of blocks in the

cache itself. A block is mapped onto a set by its address and then the block

can be placed anywhere in that set. The set of a line is usually computed

as the module of its address. If every set has n blocks, the cache placement

is called n-way set associative. The associativity of a set-associative cache is

the number of ways in a set and so it’s n itself.

Other types of cache designs can be explained starting from the definition

of set-associative one. In a direct-mapped cache every block is always mapped

to the same location, so it is like it has only one block per set. On the other

hand in a fully associative cache a block can be placed anywhere and so the

cache has only one huge set.

However, other categorizations are commonly used. Write-through caches

update main memory when data are updated in caches. A write-back cache

only updates the copy in the cache. When the block is about to be replaced,

it is copied back to memory.

One important measure that will be used in the analysis of the next

chapters is the miss rate; it is the ratio of the number of accesses which does

not find the requested block in cache divided by the total number of accesses.

The various miss types are now described. Compulsory misses are the

ones caused by the fact that the first block access can’t be successful; lines

have to be requested in order to be loaded in cache. Capacity misses are the

ones that occur due to the limited capacity of the cache; the block has been

previously discarded to free space for another line. Considering not fully

13

2.3. Basics of Coherence and Coherence Protocols

associative caches, conflict misses are caused by the fact that a line may be

replaced due to conflicting blocks that map to its set and later retrieved.

Given a block address, it is composed by different parts which have their

own meaning and that are used to determine if the line is in cache.

The block offset is usually identified by the least significant bits. It is

composed by n = log2N bits, where N is the size of the block. The set index

determines in which set the block is and it is composed by the m = log2M

higher bits, where M is the number of cache sets. The remaining bits are

used for the tag.

The set index is used to determine the cache set. For each block in the

set, the associated tag and the one from the memory address are compared.

If there is not a match, the line is not in cache. Otherwise, the valid bit is

analysed. If it is true, the block is in the cache, otherwise it is not.

If the line at that address is in the cache, then the block offset from that

address is used to find the data within the cache block.

If the requested address is not in the cache, then it will be retrieved from

memory. As already said, other addresses will be retrieved from memory

together with the requested one, in the same block. This is done to exploit

spatial locality. The starting address is the one obtained replacing with zeros

the block offset part of the address. For the ending address, we replace the

block offset with all 1s.

2.3 Basics of Coherence and Coherence Pro-

tocols

As previously said, in the tiled multi-cores scenario a shared Last Level Cache

is usually used. In this kind of systems, each of the processor cores may read

and write to a single shared address space. Before aiming to reach any other

key property such as high performance, low power consumption and low cost,

for example, we have to provide correctness. Generally this problem can be

split in two important sub-issues: consistency and coherence.

Consistency has to define memory correctness; its definitions provide rules

about loads and stores and how they act upon memory. It is required that the

execution of a thread transforms a given input state into a single well-defined

output state and consistency models have to manage multiple threads; they

are usually able to reach their scope allowing many correct executions (due

14

2.3. Basics of Coherence and Coherence Protocols

to the fact that the multi-core architecture allows the concurrent execution

of multiple threads) and disallowing many (more) incorrect ones. The great

number of correct executions makes the job of defining correctness hard.

Cache coherence aims to make the caches of a shared-memory system

functionally invisible as is for caches in a single-core system; it is not strictly

required, however it helps in providing consistency.

In order to define what coherence is, we can use some invariants. The

most used one is the Single-Writer-Multiple-Reader (SWMR) invariant: for

any given memory location, at any given moment in time, there is either

a single core that may write (and also read) it or a number of cores that

may read it. In addition to this invariant, it is required that the value of a

memory location is properly and correctly propagated. So we can say that,

according the Data-Value Invariant, the value of the memory location at the

start of an epoch is the same as the value of the memory location at the end

of its last read-write epoch.

There are two ways of managing write requests in cache coherence proto-

cols and so we have two types of protocols: invalidation-based and update-

base ones.

In Update-based protocols cores can write on shared blocks. Changes

must be propagated to the copies in the L1 caches of the sharers. This can

be a promising mechanism because the new block is immediately provided

to cores. However the update operation is difficult to implement and main-

taining coherence can be difficult too.

Invalidation-based protocols, in order to write on a shared block, inval-

idate all the shared copies of it in L1 caches. Any successive request for

that block will be managed as a new coherence request and the line will be

retrieved by lower caches in the hierarchy. Obviously this can lead to a per-

formance degradation caused by the fact that the sharers may still need the

block. This means that the core will send a request to the L1, which does

not have the line and have to send an additional request to the LLC. More-

over there are even more penalties caused by the invalidation mechanism: an

invalidate message is sent to every core and the LLC bank have to wait all

the acknowledgements.

Some hybrid solutions exist; however almost all current systems use invalidation-

based protocols. This is also assumed in the thesis.

Traditionally, the coherence protocols are implemented as Finite State

Machines to ensure the invariants. FSMs represent the evolution of the

15

2.3. Basics of Coherence and Coherence Protocols

block state in base of accesses and coherence actions performed to it. Each

state/event pair of the controller triggers a transition, that can lead to an-

other state and can imply some actions.

A coherence protocol is specified by its coherence controllers, i.e. cache

controllers.

A request and the successive messages exchanged to satisfy the request

are usually defined as a transaction.

The difference between coherence protocols is in the differences between

their controllers characteristics. These include different sets of block states,

transitions, events and transactions.

A block can be in steady states or in transient ones. A transient state

identifies a block for whom an event is waited. Stable states are the ones

that are not currently in the mid of a coherence transaction. Steady and

transient states depends on the protocol implementation.

However, there are four cache block characteristics that should be encoded

in the state: validity, dirtiness, exclusivity, and ownership. A valid block has

the most up-to-date data value. A cache block is dirty if its value is the most

up-to-date value, which differs from the value in the LLC/memory. Thus the

cache controller is in charge to answer to all the requests for the block. A

cache block is exclusive if it is the only privately cached copy of that block

in the system. A cache controller is the owner of a block if it is responsible

for responding to coherence requests for that block. The block can be dirty.

Accordingly, one of the design choices of a coherence protocol is the num-

ber of steady states the block can have. In particular choosing L1 cache

states is very important. The properties of each cache block are encoded

in order to represent its characteristics, which are the ones described above.

Typically the states introduced by [31] are used. Considering L1 caches, the

five typical states are M ,O,E,S and I. The basic ones are M , S and I.

The other ones depend on the specific protocol. States O and E are two

optimizations which can be used to extend the MSI protocol, thus obtaining

MOSI, MESI and MOESI protocols.

• M(odified): The block is valid, exclusive, owned. It can be dirty and

the only valid copy of the block with read-write permissions. The cache

must respond to requests for the block. The copy of the block at the

LLC/memory is potentially stale.

• S(hared): This cache has a read-only valid copy of the block. Other

16

2.3. Basics of Coherence and Coherence Protocols

caches may have valid, read-only copies of the block.

• I(nvalid): The block is invalid. The cache either does not contain

the block or it contains a potentially stale copy that can’t be read

or written. These two situations can be distinguished as not. The

first case can be denoted as Not Present state. We are not going to

distinguish these two states.

O and E states are optimizations. In a typical MOESI protocol they have

the following meaning:

• O(wned): The cache has a read-only copy of the block and it is valid

and owned. It may be dirty. It is not exclusive. The cache must respond

to requests for the block. The copy of the block in the LLC/memory

may be stale. Other caches may have a read-only copy of the block,

but they are not owners.

• E(xclusive): The cache has a read-only copy of the block and it is

valid, exclusive, and clean. No other caches have a valid copy of the

block. The one in the LLC/memory is up-to-date. There are protocols

in which the Exclusive state is not an ownership state. Here, when it

is in this state, a block is considered owned by the cache.

Concerning a coherence protocol, it is possible to have different type of mes-

sages and different types of events that can interact in the system and which

can cause state transitions. There are two possible types of messages: coher-

ence requests and coherence responses. The cache can receive a request in

order to obtain write permissions (GetX) or read requests (GetS). By send-

ing responses caches can send data, ACKS or coherence responses in order

to manage properly received requests.

The protocols FSMs also include transient states which are required to

solve the race conditions due to accesses to the same block by different cores;

these additional states are further discussed.

After an L1 cache miss, a request is sent out to a specific node or can

be sent to all the caches in the system. Depending on this design choice,

the coherence protocol can be a directory protocol (first case) or a snoopy

protocol (the second case).

Snoopy protocols usually rely on a shared communication medium (typ-

ically a bus) which must have a total ordering of messages. Each cache con-

trollers FSM evolves depending on the block state. All the caches evolve to a

17

2.3. Basics of Coherence and Coherence Protocols

correct state and the protocol is designed to maintain the SWMR invariant.

The messages in the interconnect must be totally ordered. All the caches

must see the same message order. However this kind of shared interconnect

can heavily limit the architecture.

Directory protocol requests are sent to a single node and are managed

following the order of their reception at the node. Thus the interconnect is

not forced to provide the total message order property. Considering tiled

systems, the block is usually mapped in the same LLC bank and so to the

same tile. Requests for the block will be sent to that bank, which acts as a

home for the block. Thus, it is necessary to rely on a structure to keep track

of which cores are using specific blocks. This is the role of the directory, a

bit vector associated to each cache block; the size of the vector is equal to

the number of cores.

Directory protocols were ideated to overcome the Snoopy protocols lim-

its. However, their scalability is limited too. More cores the system has,

more area overhead is going to be introduced by the directory and this has

consequences on the power consumption too.

In tiled systems the directory structure is distributed in the LLC cache

banks. It is made of sharer vector, the steady and the transient states.

The vector of sharers, called sharing code, represents the bigger part of the

directory.

Several designs have been proposed to efficiently implement the sharing

code. It can be implemented as a a bit-vector having one bit for each private

cache in the system; if a private cache has a copy of a block, the corre-

sponding bit in the sharing code stored in the directory entry associated to

that block is set. This implementation, called full-map directory, provides

an exact representation of the private caches holding a copy of the block in

each moment, but its scalability is limited to tens of cores. We refer to this

protocols as directory-based protocols.

A solution for the limited scalability can be compressing the sharing code

and mapping more than one private cache to each bit; this reduces the accu-

racy of the directory information, since when a bit of the sharing code is set

it is not possible to determine which of the private caches mapped to that bit

actually have a copy of the block, so when the LLC has to communicate with

L1 caches to manage a request (i.e. it has to forward a request or send inval-

idation messages), it must send a message to all the caches mapped on that

bit. Thus, the more the sharing code is compressed, the more area overhead

18

2.4. LLC Mapping and Non Uniform Cache Access (NUCA) Architectures

is reduced. However, traffic increases, specially not useful traffic (messages

sent to nodes which are not sharers).

2.4 LLC Mapping and Non Uniform Cache

Access (NUCA) Architectures

Multi-core cache structures were usually designed to have uniform cache ac-

cess time regardless of the block being accessed. For those architectures, the

access time represented a significant bottleneck as the cache became larger,

due to the fact that it was sized to the worst access time in the system. Non-

Uniform Cache Access (NUCA) architectures split the cache into multiple

physical banks, in order to access the memory with an optimal cache latency

[23].

This idea has been developed through the years and there are different

ways in which NUCA architectures have been managed.

Static NUCA (SNUCA) architectures use static mapping policy to place

the blocks into the LLC: lines are mapped to their home bank depending

on their address. As already said, in split shared LLCs, the home bank is

the one that is in charge to host and manage the block. This policy should

evenly distribute blocks on the LLC banks; this is however not true in real

applications because memory accesses are never uniformly spread over the

memory address space. However, the position of the requesting core is not

taken into account by the mapping policy, thus it is possible to experience an

high latency due to the distance between home bank and the L1 requestor.

Dynamic NUCA (DNUCA) can dynamically place cache blocks between

the banks, thus the same line can be found in different banks over time.

This can be implemented dividing banks into banksets and introducing the

possibility of placing a block in any bank within a given bankset. However,

in these techniques the block has to be searched in the LLC before declaring

a cache miss. This implies that a search mechanism has to be implemented

in order to find a block. This is a key aspect due to the fact that a multicast

or eventually a broadcast can be very performance degrading.

The DNUCA approach was originally proposed for a single-core system

and then extended to multi-cores. Ping pong effects and race conditions can

make the design hard and the performance poor.

[23] and [6] show search policies are not trivial for NUCA caches. The

19

2.4. LLC Mapping and Non Uniform Cache Access (NUCA) Architectures

possibility of mapping data in more banks often implies the implementation

of block migration mechanisms in order to move data dynamically.

In DNUCA designs, many race conditions have to be solved in order to

guarantee correctness and prevent deadlocks. For example the False Miss

problem [17] has to be managed. As a consequence of the migration mech-

anism, there could be a time interval in which none of the banks involved

in the migration process is able to provide the requestor with the referred

block, thus resulting in a last-level-cache miss even if the block is actually on

chip.

Another common race condition that can occur is the Multiple Miss one.

When two or more processors simultaneously send a request for the same

block and it is not in cache, multiple LLC misses and multiple requests to

the main memory are sent for the same block. In this way, multiple copies

of the block are retrieved from the memory and this is a problem.

20

2.4. LLC Mapping and Non Uniform Cache Access (NUCA) Architectures

22

Chapter 3

State of the Art

This chapter summarizes the state of the art considering different aspects

and metrics in the LLC design, with particular attention on DNUCA ar-

chitectures. The SoA on DNUCA architectures is presented in Section 3.1

while Section 3.2 discusses the power consumption management aspects in

DNUCA caches.

3.1 Dynamic Non Uniform Cache Access

Shirshendu and Hemangee [29] show a DNUCA solution for Tiled CMP sys-

tems. Several specific problems of tiled-based architectures have been consid-

ered. T-DNUCA is proposed to optimally place each block as close as possible

to its requestor. It splits the LLC in banksets. In case of an L1 cache miss, the

requested block can be in any L2-bank (more generally LLC-bank) of the se-

lected bankset. TDNUCA implements a multicast search mechanism within

the bankset in case of miss in the Manhattan-Closest Homebank (MCH) to

the requestor. The MCH is the closest bank in the bankset to the requestor.

Moreover the block is initially placed in this bank when it is fetched from

memory. TDNUCA allows blocks migration (in the same bankset) to re-

duce the access latency due to the distance between the L1 requestor and

the LLC destination. Moreover, the migration policy tries to bring heavily

used blocks in the MCH. The cascading replacement is an additional sup-

ported feature; instead of removing a block from the cache, TDNUCA tries

to place it into another peer bank (another bank of the same bankset), using

the migration mechanism. This is achieved considering a certain cascading

23

3.1. Dynamic Non Uniform Cache Access

number. A replacement with a consequent migration can cause another re-

placement in the peer bank target. The cascading number is the maximum

quantity of replacements than can be consequentially caused. The cascaded

block policy ensures that a global victim will be removed instead of a local

one. TDNUCA improves access latency due to block migration and outper-

forms Tiled SNUCA, considering this metric. However TDUCA can increase

miss rate due to the migrated blocks that can cause LLC replacements. Cas-

cading do not show significant improvements with small size applications or

ones with low temporal locality. Differently from our solution blocks can be

mapped and migrated only in the specific bankset and the initial mapping

is done according the MCH. So the block can’t be migrated closer than to

the manhattan-closest homebank. Our solution manage differently the cache

and is able to place a block everywhere.

[17] presents SNUCA and DNUCA designs and an analysis of performance

dependencies in these kind of systems. Different scenarios are presented and

some typical DNUCA problems are managed at protocol level. Different

configurations of an 8 CPU architecture are considered for the assessment.

Moreover, two important well known DNUCA problems have been man-

aged: the false misses and the multiple misses ones. The FMA (False Miss

Avoidance) Protocol guarantees that during a migration at least one of the

two banks knows that the block is on chip. This technique allows the banks

to exchange messages to manage the eventuality that requests arrive while a

block is on-the-fly. On the other hand, Multiple Miss problem is solved by

allowing just one node in the system (called the Collector) to communicate

with the main memory for a block. There is one for every bankset of the

DNUCA cache.

The studies developed in this work highlight how mapping and topology

heavily influence performance and application behaviour.

[22] proposes a novel DNUCA design that exploits the thread information

to control the block migration.

This work aims to migrate blocks in order to boost the execution of critical

threads and to decrease the execution time of applications.

Thread prOgress aware block Migration (TOM) is an epoch-based mech-

anism. The length of an epoch is a predefined parameter, decided by the

user. A TCP (Thread Criticality Prediction) is carried out at the beginning

of each epoch to recognize critical threads. Then the threads are ranked

based on the collected critical information. These processes are done using

24

3.1. Dynamic Non Uniform Cache Access

the techniques presented in [7]. TOM periodically collects criticality values in

order to update the categorization. Moreover, all cores (one thread per core

is supposed) spread their values broadcasting messages to all the cache con-

trollers. After this first phase, whenever a request hit in the cache bank, the

corresponding cache controller checks to which group the requesting thread

belongs to. If the thread is a leading one and the block is not shared with

a critical one, the block is migrated to a central bank-cluster. If the thread

is the only critical thread that is accessing the block, it is migrated one step

closer to the requestor. Again, if the thread is a critical one and it is not the

only one, a saturation counter is used. Last, if it is different from zero the

block is migrated, otherwise the block is kept at its position.

Considering 8 cores, the hardware overhead of the TCP is 72 bytes and

each core has 64-bit criticality counters and one 64 bit interval bound register

is used for all cores. Moreover each cache controller has a vector which have

to store the criticality group of each core (N bits per vector, with N equal to

the number of the cores).

[28] exploits thread migration mechanism to have useful LLC data closer

to the requestors. This is done because remote accesses can result degrad-

ing for performance, due to messages that have to traverse the interconnect

several times (typically almost two times, supposing a request with a suc-

cessive response). Fine-grained hardware-level thread migration is proposed.

The thread context is saved and is migrated through the interconnect. This

work highlights how the mechanism is useful when the migration is followed

by a lot of consequent accesses to the block. So it is possible to avoid an

elevate number of remote accesses that would affect negatively performance.

A predictor is used to decide whether to migrate a thread.

[32] proposes a NoC reconfiguration mechanism to support NoC virtual-

ization in real scenarios. Dynamic network resources reassignment scheme

allows to dynamically adapt the NoC to applications needs. This is done ex-

ploiting the benefits of another precedent work, the Logic-Based Distribute

Routing (LBDR), which allows the NoC partitioning at the routing level. In

LBDR a static situation where many different applications are running at

the same time has been analyzed. It relies on two bits sets. One defines the

connection pattern of the region (one bit per port), the other one defines the

allowed turns according the applied routing algorithm (two bits per port).

The first set is actually represented by connectivity bits: each output port

has a connectivity bit Cx indicating whether a switch is connected through

25

3.1. Dynamic Non Uniform Cache Access

the x port; the second set indicates the allowed turns in the next switch.

When a new partition is enabled, those bits have to be reviewed and if

necessary updated. This is a static reconfiguration: it affects parts of the

network in which applications are terminated and new ones are enabled, so

no messages are travelling for those applications. These aspects are crucial

to avoid deadlocks.

[24] proposes a data search algorithm for DNUCA designs in CMP archi-

tectures, called HK-NUCA, to reduce both miss latency and on-chip network

contention. The LLC is organized in banksets, where each one logically con-

tains more banks. An L2 bank is part of a single bankset. When a block

is fetched from memory, it is mapped on the home bank, which is statically

predetermined by the lower bits of its address. However it can be mapped on

every bank within the bankset. The use of block migration can thus redis-

tribute blocks on banks which are not the static home bank for that specific

block to exploit both spatial and temporal locality.

The data searching mechanism has to keep information about which other

banks have at least one of the data blocks that it manages. Thus, all banks

have a set of HK-NUCA pointers. Each of them has a single bit for each

bank in the bankset; if it is set, that bank is storing at least one of the data

blocks which are managed by (which are originally mapped in) the current

bank. In order to increase the accuracy, every cache-set in bank is equipped

with an HK-PTR.

The proposed solution has different stages. The first one is the fast access

one, in which the closest bank is accessed, supposing that migration should

have brought blocks near to requestors. The second one is the Call Home

one, in which the home bank is accessed and in case of miss, HK-PTRS are

used to access other banks. Last, the parallel access stage, using HK-PTRS,

in which if the block is still not found the request is sent to the memory.

However, this mechanism can be optimized in some specific cases. Obviously

pointers has to be updated in case of eviction, migration and fetch from

memory. Furthermore HK-NUCA has different stages in order to effectively

search in the bankset and reduce the time of the single search. Our work

aims to reduce the number of times in which it is required to search in the

last-level cache. We have implemented bits in L1 caches (not in LLC) to

keep information on migrations and on the effective position of blocks in

LLC; moreover our solution provides smart broadcast.

[34] extends HK-NUCA [24]. It duplicates the number of bits dedicated

26

3.1. Dynamic Non Uniform Cache Access

to HK-PTRS to represent if the block has been migrated or not (moved or

none state). Moreover it exploits these information splitting the Parallel

Access phase in two new stages. The first one, the Parallel Access to Moved

State stage, forwards the request only to caches with the ”migration” bit set

to 1, (between the ones with the presence bit set). If we have a miss in this

phase, the second one, the Parallel Access to None State will access to other

banks with presence bit set.

[9] proposes a novel approach in cache hierarchy. It adds a shared L1

cache bank for each core to split accesses between classic private (L1P) and

the new shared L1 cache (L1S). L1P cache stores only private and shared

read-only data and so actions are performed locally without the need to

communicate with other cores: this heavily simplifies coherence, because no

action is needed, due to the fact that there is only one copy of the data in

every cache level. This permits to not use directories and snooping requests.

Accessing shared data presents extra latencies, due to the fact that part of

the L1 is shared and distributed among the cores. It is necessary to transmit

data through the interconnect, which should be a low latency one, in order

to overcome this drawback.

However, the described mechanism needs an accesses classification at the

time of the execution of the instruction and this can be done in several ways.

An OS-based classification marks pages as private or shared, according to

the core ID which is accessing the page and the one that has accessed it

previously.

If the core is not the same, this is a shared access. So, the P/S bit for

private/shared information is introduced also in MHSR entries. This kind of

classification works at page level and this could be ineffective.

Another used kind of classification is the compiler-assisted one. It inspects

the code at compile time and conservatively classifies accesses considering the

nature of the target data or of the code regions initiating the access. How-

ever classifying data statically poses challenges because of statically unknown

events.

The proposed dedicated cache has been evaluated using the cycle-accurate

GEMS simulator, using a single level of private cache and two levels of on-chip

caches. Results are compared with the ones of a traditional MESI directory-

based coherence protocol. Latency due to the dependency on the intercon-

nect and the low accuracy of classification mechanisms represent relevant

limitations; however this approach can be useful as the number of cores in-

27

3.1. Dynamic Non Uniform Cache Access

creases and coherence protocol faces scalability issues. Differently from us,

this approach tries to simplify coherence, adding hardware.

[18] proposes a scheme that provides cache sharing by adapting migration,

insertion and promotion policies to the dynamic cache access behaviours

of the applications. This scheme is based on a previous work, the DSR

(Dynamic Spill-Receive) architectures, which provide low-overhead caching

between different partitions. Moreover in this work each running application

have been classified as ”Giver” or ”Taker”, if the application is less or more

cache-demanding. A dynamic migration policy is proposed to migrate a

line of a remote partition in the local one according to access ratios. This

possibility is managed to guarantee two policies: the no-migration one and

the migration one. Nevertheless it is necessary that a configuration remains

active for a certain amount of time, in order to avoid continuous policy

changes for a core, before converging on a good one. Dynamic insertion and

promotion policy is proposed too.

In order to avoid that the streaming applications load a great amount of

poorly used lines, causing replacement of more useful lines, the LRU replace-

ment policy has been modified and a promotion policy has been introduced.

When a streaming application receives a cache hit, the line is promoted of

a certain number of positions in the priority list, instead of becoming the

actual MRU. Similarly, when a line is loaded in cache it can be inserted in a

particular point of the priority list.

[25] proposes the Runtime Home Mapping (RHM). It is a new dynamic

approach where DNUCA is exploited to use all the LLC and to determine

the home bank at runtime. This is done with the purpose of mapping blocks

as close as possible to the requestor, in order to lower message latencies.

Moreover Runtime Home Mapping allows blocks migration and replication

mechanisms in the LLC.

In RHM each block can be mapped in all the LLC banks. If the block

is not found in the L2 bank target of the request, all the banks have to

be accessed to find the requested block. Moreover, the initial L2 mapping

is done by the Memory Controller considering an algorithm that maps the

blocks as close as possible to the L1 requestors.

In particular, for every L1 miss, a request is sent to the local L2 bank

(the one in the same tile). If the block is found, it is delivered to the L1

cache and it means that the L2 bank is the home for that particular block.

In case of miss, a broadcast mechanism is used to send a request to all other

28

3.1. Dynamic Non Uniform Cache Access

L2 banks. In case of hit in a remote bank, a signal is used to notify the

L2 bank that triggered the broadcast; moreover the line is sent to the L1

requestor. However, every remote bank has to send back an ACK. When all

the ACKs are collected by the L2 bank that triggered the broadcast, the hit

signal is checked. If the hit signal has not been received, the block is not in

the last level cache and the block has to be retrieved from the memory.

When the MC receives a request for a block, it fetches the line from the

main memory and computes the new home for the incoming block; after that

it notifies the new L2 home bank so it can start a replacement, if necessary.

In all the other cases, RHM mechanism follows the typical MESI coher-

ence protocol implementation.

The presented home search policy has very high network resources de-

mand due to the triggered broadcasts. In order to manage this problem, the

Gather Control Network (GCN) has been designed. It is a purely hardware

dedicated solution and it is crucial to make the RHM method effective and

efficient. It can be logically seen as 16 one-bit wide subnetworks, one per tile.

Each subnetwork is a tree of AND gates, connecting the destination tile with

other ones. Broadcast requests from the local LLC bank are sent through the

Network On Chip to all other banks. When this request is received, the bank

triggers the output signal of the GCN for that tile. The Gather Control Net-

work can be implemented as a very specific combinational block and ACKs

are seen as signals and not as messages. This avoids routing, flow control,

arbitration in the NoC and all latencies that are related to this mechanisms.

GCN has different implementations.

Regarding the Mapping algorithm performed by the Memory Controller,

it basically scans the banks starting from the local one in distance order and

maps blocks considering the cache utilization statistics. It aims to map the

block as close as possible to the requestor, without causing replacements. If

all the banks are full this mechanism tries to balance the number of alloca-

tions.

The initial mapping algorithm represents a sort of implicit migration of

blocks that are replaced. When a block is fetched from memory, it is placed in

its new home, which is the tile as close as possible to the requestor. However,

a true migration mechanism has been implemented and permits to move

blocks in all the last level cache.

After a broadcast request, a migration is triggered when the block is

found in a remote bank and, due to the access, one of its directional counters

29

3.2. The DNUCA Power Perspective

(one for each of the four directions) exceeds a fixed threshold. Thus, the

remote L2 bank notifies the bank which triggered the broadcast using the

MIGR signal of the GCN and upon receiving the signal, this one performs

an internal copy of the block from the L1 requestor cache. Successively the

remote L2 home bank deallocates the block.

Moreover, a LLC block replication mechanism is provided. The mesh is

divided into four parts and each of them can have a copy of the block. The

multiple copies have to be read-only ones. The home has to remain the same

and the replication is permitted only to decrease read accesses latencies. In

case of replacement the new home is chosen between these copies.

3.2 The DNUCA Power Perspective

[3] analyses the problem of conflict hits in a specific DNUCA architecture and

proposes a power efficient migration mechanism. In the work it is assumed

a DNUCA last level cache partitioned in a matrix of independent banks in

which blocks are distributed in a particular way. The entire address space is

spanned on each column of banks and each bank belonging to a row behaves

as a single way of a set-associative cache. A line can be found at the same

index in every bank of the same row. The considered block migration is a

mechanism that swaps cache lines between banks of the same rows in order

to promote one of them. The block promotion technique allows to make

lines closer to their requestor. In this scenario, the conflict hit is considered.

It occurs when the access pattern cause several migrations between blocks,

they are swapped several times and the considered cache lines haven’t been

effectively promoted. This work proposes a per block bit which is set when

the cache line is promoted and then demoted; if the bit is set, a successive

promotion will be avoided, solving the conflict hits issue. This bit will be

reset when an access to that block occurs in its bank. This solution aims to

reduce the additional accesses caused by conflict hits and so, to reduce the

energy consumption. Our work is based on a different DNUCA configuration

and LLC organization. The considered migration mechanism is different too.

In this work the SPEC CPU2000 benchmarks behaviour have been considered

and studied; we consider and analyse SPEC CPU2006 applications.

[5] presents the Way Adaptable DNUCA cache. It aims to shut down ways

in a set-associative last level cache, to improve DNUCA power efficiency. In

this work last level caches partitioned in a matrix of independent banks are

30

3.2. The DNUCA Power Perspective

considered. Banks belonging to the same column behave like different ways

of a set-associative cache. So, every column is a bankset and most accessed

blocks are promoted and migrated closer to the requestor, maintaining the

same column. It has been observed that hits in ways are unbalanced and the

behaviour changes, varying the considered application and the time phase of

the single application.

This is true as a consequence of the promotion and demotion mechanisms.

Thus, not all the cache ways are needed during the execution of an application

and they can be turned off to achieve a reduction of the cache static power

consumption. This can’t be done statically by using an architecture with

decreased associativity. Accordingly, the behaviours change dependently on

the application and on its time phase. The caches with high associativity

can easily contain all the working set of the application, but they can be a

waste of resources and a source of power consumption. Thus, this work opts

for using a large and high-associativity cache and provides a mechanism able

to switch off the unused ways dynamically. In order to achieve this purpose,

a predictor is needed. The number of hits in farther way and the hits in the

closest one are used as metrics. They are compared with defined thresholds to

turn off the farthest way, to maintain the current configuration or to turn on

the closest powered off way. This mechanisms show not relevant performance

degradation in terms of IPC, but a significant decreased average number of

used ways and so significant improvement in power efficiency. This work is

based on a different LLC organization compared to our solution and SPEC

CPU2000 suite is analysed. Differently from this work, in which a single core

with a large last level cache is considered, we analysed multi-cores.

[4] is strictly related to the ones presented by [5]. In particular the same

DNUCA configuration is considered and the mechanism proposed in [5] is de-

scribed again. In addition, metrics and thresholds used in the predictor are

detailed and motivated. Moreover, some results on multi-cores architectures

are shown. The elaborated algorithm to estimate parameters considers an

heuristic based on a reconfiguration event. Every K hits in LLC this event

is triggered and a metric is evaluated. In order to identify the best reconfig-

uration sequence for the given workload and from this state, the execution

is restarted in three different runs considering the same configuration kept,

a way switched on and a way switched off.

At each step the selected reconfiguration event places restrictions on the

values of thresholds and at the end a set of inequalities are obtained. If they

31

3.2. The DNUCA Power Perspective

are not solvable the set is restricted and the accuracy is reduced. Otherwise

thresholds are computed. The metric used to determine the optimal sequence

is miss rate However it is possible to use other metrics such as IPC. Results

of the works done on multi-cores is also shown. Two cores with their private

caches are attached through a bus to the banked last level cache. Several

applications of SPEC CPU2000 suite are classified and grouped, in order

to run simultaneously benchmarks with variable requirements in terms of

utilised ways. Results show how average associativity achieved in the multi-

core execution is lower than the sum of the average associativities achieved

in the single core execution. This is caused by the promotion mechanism and

means that the Way Adaptable technique can be adopted also in multi-cores.

32

Chapter 4

The DNUCA design:

Coherence Protocol

Implications

Compared to the SNUCA, the DNUCA infrastructure requires three com-

ponents to properly manage the LLC data. The broadcast mechanism is

responsible for searching data in the LLC, due to the fact that the same

block can be placed in different banks at different instants in time. Depend-

ing on how the system is designed, this mechanism can be a truly broadcast

[25] or a multi-cast [24], [29]. The data migration mechanism is another

important feature in order to fully exploit DNUCA architectures. It can be

used to place blocks in different banks depending on the objective function.

Last, the migration policy contains the logic to trigger both data migration

and broadcast to efficiently exploit the LLC cache.

The chapter presents the broadcast and migration mechanisms design

and the deadlock avoidance analysis. Moreover the migration policy and the

Smart Broadcast are discussed.

The rest of the chapter is organized as follows. Section 4.1 overviews

the MESI protocol, that is the baseline coherence protocol in this work.

Section 4.2 discusses the broadcast mechanism, its deadlock avoidance anal-

ysis and the smart broadcast mechanism. Section 4.3 details the migration

mechanism, as an extension to the MESI protocol and its deadlock avoidance

analysis. Last, the migration policy is described in Section 4.4.

33

4.1. The MESI protocol

Figure 4.1: Typical simplified implementation of the MESI protocol; L1 cache

FSM, including main transient states

4.1 The MESI protocol

The MESI protocol is composed of four steady states which give the name to

the protocol (see Section 2.3). Additional transient states are added to these

ones to complete the protocol Finite State Machine and to correctly manage

the different possible race conditions. However, this is the description of the

first cache level. Last Level Cache FSM is more complex and has to consider

what is happening in higher (closer to the CPU) cache levels.

Some of the L1 cache FSM transient states will be now detailed in order

to show how MESI protocol manages race conditions. Described states are

useful to later support the discussion on to the added migration support.

Figure 4.1 shows a typical implementation of the MESI protocol finite

state machine for the L1 cache. It is a simplification of the GEM5 simulator

implementation of MESI directory protocol, which considers two levels of

cache: the per core private L1 cache and shared L2 one.

This is a partial and simplified representation of the L1 cache finite state

machine. However, shown transient states are useful to understand what is

happening in the system and how the L2 cache FSM is implemented.

34

4.1. The MESI protocol

They are very important in order to avoid race conditions and to manage

situations in which the cache is waiting for responses and/or data for a given

line.

For example, in shown MESI FSM:

• IS means that a read request (GETS) has been issued for a cache

block not present in cache and awaiting for response. The cache block

is neither readable nor writeable.

• IM means that a write request (GETX) has been issued for a cache

block not present in cache and awaiting for response. The cache block

is neither readable nor writeable.

• SM means that the cache block was originally in S state and then a

write request (UPGRADE) was issued to get exclusive permission for

the block and it is awaiting response. The cache block is readable.

• M I indicates that the cache is trying to replace a cache block in M

state and the write-back (PUTX) to the L2 cache’s directory has been

issued but awaiting write-back acknowledgement.

Considering the L2 cache controller the stable states only are detailed

below, since they are the starting point from which a migration action can

take place. The interested reader can find a complete description of the L2

cache controller in [30].

• NP means that the cache block is not present in LLC.

• SS indicates that the LLC block is valid and readable and that it

is present in potentially multiple private L1 caches, in only readable

mode. It is similar to the S of L1 cache finite state machine.

• M means that the cache line is not present in no L1 cache and so the

block has exclusive permission.

• MT means that the block is in one private L1 cache and it is the owner.

Any request from other L1 caches needs to be forwarded to the owner.

35

4.2. The Broadcast Mechanism

4.2 The Broadcast Mechanism

We are considering a cache hierarchy system made of a per tile private L1

cache and a shared last level L2 cache, distributed among the tiles. In this

kind of system a load or a store results in a request to the private L1 cache

to retrieve the block. If the request triggers an L1 miss, a subsequent request

is sent to the L2 cache bank in which the block is mapped. Last, the LLC

bank sends a request to the memory if an L2 miss occurs. The block from

the main memory is sent to the L2 requestor that is in charge of sending it

to the requesting L1 cache.

The proposed DNUCA design is endowed with a L2 to L2 broadcast

mechanism that is capable of searching for blocks in the last level cache.

Thus the LLC bank to bank communication is introduced, as an additional

layer in the coherence protocol to dynamically retrieve mapped cache blocks.

Figure 4.2 depicts a complete data request that involves the broadcast

mechanism. An L1 cache miss triggers a request to the LLC that is selected

using an SNUCA mapping from the required memory address. If an L2

cache miss occurs in the home bank, no request is immediately sent out to

the memory, in order to retrieve the block. A broadcast request is sent out to

all other L2 cache banks instead, due to the fact that a block can be placed

in several banks, in DNUCA systems.

After receiving a broadcast request, each bank must reply to the L2 home

bank which sent it. If the block has been found, it is sent to the requestor

L1 cache and an HIT message is sent back to the home bank. If the bank

does not have the block, it sends a NACK message back. If the home bank

gets all NACK messages from all the other banks, a request to the memory

controller is sent. This means that the block is not present in the LLC.

Obviously this mechanism has to be properly managed, to avoid race

conditions and coherence issues. In particular, multiple broadcast processes

for the same line can be active at the same time with a net effect of a recursive

broadcast that can lead to deadlock scenarios.

For example, supposing a tiled system, it is possible to map blocks directly

in the local LLC bank (the one belonging to the same tile of the requesting

L1 cache). This is a good way of decreasing access latencies. However, this

means that the block is mapped in the tile where it is requested, every time.

Considering a DNUCA based system in which broadcast (or multicast) is

used and where blocks in LLC can be migrated, we can have issues. It is

36

4.2. The Broadcast Mechanism

L1

L2S
L2

HOME

MEMORY

CORE

Miss

Miss

Hit

{Block}

{Block}

{Block}

Broadcast

Responses

Request

2

3

4

5

6

7a

7b

8

Figure 4.2: (1) request to L1; (2) miss in L1; (3) request to L2; (4) miss in L2;

(5) broadcast to all other L2 caches; (6) other L2 caches send back a NACK or

an HIT message; (7a) if a block is found a HIT message is set back and the block

is sent to the L1 requestor; (7b) if all other L2 caches have sent back all NACK

messages, a request to memory is sent; (8) the memory sends back the block; (9)

the block is sent to the L1 requestor.

37

4.2. The Broadcast Mechanism

possible that multiple L2 banks receive requests for the same block from their

local L1 caches. If the block is not present in the LLC, both the banks will

send broadcast messages for the same line and after collecting all the NACKs

both the banks will send a request to memory.

This situation can lead to have two L2 cache copies of the block. Con-

sidering classic inclusive coherence protocols, this situation actually breaks

coherence.

In order to face this scenario maintaining the LLC local mapping, tricky

and performance-affecting solutions are required. For example, it can be

necessary to privilege a broadcast process and abort all the other ones.

Our design attacks the race condition issue in a simple way. As will be

detailed in Section 4.3, for each private L1 cache bits have been implemented

in order to permit to L1 caches to know in which bank an LLC cache block

is situated. If the L2 block is replaced or migrated, these bits are reset and

updated. If a L1 cache does not have the block, it sends requests to the static

home bank for the block. When the line is received by the L1 requestor, the

bits are updated.

Thus, an LLC home bank where the block is mapped and that is queried

if the line is not present in L1 cache still exists. Moreover, if a broadcast

is active and a request for the same line is sent, it will be received by the

same bank that is managing the broadcast. So, it can make the new request

wait the end of the active broadcast process before managing it. However,

broadcasts for different blocks can coexist.

4.2.1 Deadlock Avoidance Analysis

The deadlock avoidance at protocol level is a key aspect to be considered

after a change in the coherence protocol. Traditionally, the resource depen-

dency graph is used to analyse possible deadlock sources. In particular, the

deadlock at protocol level occurs due to the finite buffers in the cache con-

trollers. Each incoming message is enqueued in the buffer of the receiving

controller before being processed. Some messages impose a strict process

order. However the FIFO nature of the controller input buffer coupled with

the out of order deliver imposed by the NoC can force to serve a message

that has a dependency on another message before its dependency. This leads

to deadlock situations. To this extent different input buffers and virtual

message classes are used to avoid such a scenario. Conversely, full FIFO

38

4.2. The Broadcast Mechanism

Figure 4.3: Typical example of deadlock caused by the use of the same resources.

Figure 4.4: Typical example of deadlock free scheme in which different messages

types use different resources.

queue cannot accept any message even those that should be processed before

with the message already stored in the buffer itself, thus highlighting another

deadlock scenario.

Figure 4.3 shows a simple example of deadlock. Two coherence controllers

are responding to each others requests. However the FIFO queues are already

full due to other requests and each controller stalls trying to send a response.

Responses cannot pass requests, because the queues are FIFOs, thus the

controller cannot switch to work on a subsequent request (or get to the

response) and the system deadlocks.

Figure 4.4 shows how the use of separate networks and input buffers

between different message classes can avoid deadlock situations. Two simple

message classes are considered: requests and responses. In this way, for

example, a response cannot be blocked by a request and the cyclic dependence

is avoided.

The considered MESI protocol usually uses three networks to avoid dead-

lock: requests, responses and forwards. A request can trigger a forward mes-

sage instead of a direct response, thus there are three message classes and

each of them requires its own network.

Figure 4.5 shows the use of the 3 VNETs in the baseline architecture.

The request for the LLC block is sent through the V NET0, the one

dedicated to requests. In case of hit the block is sent to the requestor L1

cache using the V NET1, which is dedicated to responses. In case of miss,

another request is sent to the memory on the V NET0. The data from

39

4.2. The Broadcast Mechanism

Figure 4.5: Virtual Networks management in MESI protocol implementation.

40

4.2. The Broadcast Mechanism

Figure 4.6: Virtual Network use in MESI protocol with broadcast support. 1) a

request is sent to home LLC bank, due to a L1 cache miss (such as baseline MESI

protocol); 2) L2 cache miss: broadcast process, using VNET0; every other L2 bank

responds on VNET1 with NACK or HIT message. If the home bank received a

HIT: 3) the block has been sent to the requestor (VNET1). If all NACKs were

received: 4) a request is sent to the memory on VNET0; 5) Directory sends the

block on VNET1; 6) the block is sent to the L1 cache requestor on VNET1.

41

4.2. The Broadcast Mechanism

Figure 4.7: Example of the VNET2 forward in considered MESI protocol.

memory to the LLC bank and from the LLC bank to the requestor L1 cache

is sent through V NET1.

The use of the three VNETs with the broadcast support is depicted in

Figure 4.6 considering two scenarios. The left figure shows a successful broad-

cast transaction, where the block line is retrieved in the LLC.

In addition to the baseline architecture, the LLC bank forward the request

to all other banks on the V NET0; these ones respond to the home bank on

the V NET1, dedicated to responses and the block is sent to the requestor

L1 on the same VNET.

Conversely, the image on the right side in Figure 4.6 shows a case where

the requested block is not present in the LLC, thus the L2 has to trigger

a memory transaction. Here, requests to and responses from memory are

managed as in the baseline architecture.

Figure 4.7 shows an example of a forwarded request which implies the

42

4.3. Data Migration for DNUCA Support

use of the third message class.

4.2.2 The Smart Broadcast

As already anticipated and how will be shown, the broadcast imposes a

non negligible, additional traffic to the NoC, thus effecting both the power

and performance metrics. Considering the DNUCA scheme proposed in this

chapter, each block is initially loaded from memory and mapped into the

Static NUCA home bank if not present in the LLC. Later on, it can be

migrated to another LLC bank. Thus, the broadcast is only necessary if

the block is migrated. Otherwise the block can be in its home bank or

not present il the LLC at all. The proposed smart broadcast implements a

counter for each set that is incremented every time a migration for that set is

triggered. If a request in the LLC home bank results in a miss, a broadcast

is generated only if the counter for the set of the requested block is greater

than 0; otherwise the home bank will retrieve the line directly from memory.

This adaptive solution is able to cut off the broadcast overheads when the

required block is not in the LLC.

If a block is invalidated or replaced and it is not in its home bank this

means that it has been previously migrated; every time this situation occurs,

a coherence message is sent to the static home to decrement the pending set

counter.

However, considering the destructing impact of the broadcast, a smarter

mechanism is considered. It stores the TAG address of each migrated block

to narrow the broadcast actions to the blocks that have been really migrated.

In particular, the static home bank for a specific block is notified back once

the migrated block has been replaced in another cache bank.

4.3 Data Migration for DNUCA Support

The block migration technique is exploited in DNUCA architectures to de-

crease the block access latency by reducing the distance between the L1 cache

requestor and the LLC bank where the block is stored. Moreover, it allows

the dynamic block placement. A migration policy is obviously necessary to

exploit the mechanism and to make the block closer to the requestor or to

better utilize the cache.

43

4.3. Data Migration for DNUCA Support

This section presents the proposed migration mechanism coupled with a

simple policy to steer it. The policy aims to keep useful blocks in the last

level cache to decrease the congestion in the most accessed sets of specific

banks.

4.3.1 Migration Mechanism

The migration mechanism complements the DNUCA scheme by allowing to

dynamically move an already mapped block from a bank to another. While

the DNUCA scheme can avoid data migration, such mechanism can greatly

increase the utilization of the cache hierarchy. This section describes the

data migration mechanism implemented on the top of the baseline proto-

col supporting a broadcast mechanism as the one described in Section 4.2.

In particular, the extension to the MESI coherence protocol as well as the

coherence states from where a migration process can start are discussed.

The key aspect that have to be considered managing block migration is

the coherence one.

For example, let’s consider a cache line IS (I to S) state in the L2 bank.

This means that a request to the memory has been sent and data is not in

the bank yet. The block can’t be migrated in a such transient state because

it is not physically present in the LLC cache.

The L2 finite states machines describing the coherence protocol have been

extended with specific migration states. Moreover additional messages have

been introduced to support the data migration without triggering races.

In the rest of this section two L2 banks are assumed to be the sender and

the receiver of a migration transaction, respectively, and both the sender and

the receiver coherence protocol extensions are discussed.

Figure 4.8 shows the extensions to support the sender side of the data

migration mechanism.

Sender States, Transactions and Events - The sender represents the

initiator of a migration transaction, that owns the data block. The migration

process can start when the block is in a steady state of the last level cache

FSM. The sender sends a migration request to the designated receiver to

start the migration process. Moreover the sender enters in a newly designed

transient state for the considered data block. This is the XmigD state; the

LLC bank has communicated that a migration is started to the receiver and

it is waiting an ACK in order to properly start the process.

44

4.3. Data Migration for DNUCA Support

Figure 4.8: Sender Finite State Machine

When the sender receives the response, it enters in a new transient state,

i.e. MigSh. In this state it sends a new type of message to all the L1

sharers of the block (or to the owner, dependently on the starting state

we are considering) to inform them about the location change of the block.

Now, it has to wait the ACK responses from all the sharers before physically

sending the line to the receiver.

The sender waits for all the ACK responses from the L1 caches before

moving to th the MigI state that represents the time when the sender re-

linquish the block ownership and sends it to the receiver. It is semantically

similar to typical transient replacement/invalidation states in traditional co-

herence protocols. The block is not valid in sender’s cache while it is stored

in the Miss Handling Status Register (MHSR) and the bank does not respond

any more for it. In this state the sender bank is waiting for the message from

the receiver which acknowledges the end of the migration. Once received

such message the sender switch the block state to Not Present (NP) and the

migration process is over.

Receiver States, Transactions and Events - Additional states to

represent the receiver behaviour are fewer and simpler than the ones added

for the sender.

When the migration request arrives to the receiver bank, the state of the

block in the receiver is not present (state NP). Only one copy of the line can

45

4.3. Data Migration for DNUCA Support

Figure 4.9: Receiver Finite State Machine

be found in the last level cache. The receiver can accept or not the request.

In particular, the proposed implementation can handle a single migration

per set at once, regardless if the bank is a sender or a receiver. An abort

message is sent back to the sender and the migration transaction ends if the

receiver is already involved in another migration process. Otherwise, the

receiver bank allocates the space for the block, i.e. replacement procedure,

and sends back an ACK message to the sender. Moreover the MigISD is set

in the allocated cache line. This state is semantically similar to the IS one,

in which the bank is waiting for data from memory. Similarly, the receiver

is waiting for the cache line from the sender bank.

When the block is received, the receiver sends a migration done message

to the sender. Now, the new state is the steady one in which the sender bank

had the block before the migration process.

Additional L1 Bits - Traditionally, SNUCA solutions force the L1

caches to statically request and map each LLC block. However, the mi-

gration allows a specific block to be mapped and remapped to different LLC

banks. Thus, the broadcast mechanism plays a central role to retrieve the

cache line in the LLC. However, the L1 has always to request a missing block

to the static home bank first, thus triggering a broadcast if the cache line is

not present in the home bank.

In order to avoid to query the home and to cause a broadcast every time,

the L1 cache line status bits are augmented to store the location of a line in

the LLC banks. The LLC sends the updated bits to the sharers L1s during a

migration to inform the L1s on the new cache line location. Moreover, they

are updated in the L1 every time the block is retrieved from the LLC. In this

way a L1 cache will cause a broadcast process only the first time it queries

the home, i.e. when the L1 cache does not have the block.

46

4.3. Data Migration for DNUCA Support

The Sender is the owner of the block

The Receiver is the

owner of the block

Figure 4.10: Sender Finite State Machine with Ownership details

The L1 bits are reset every time the L1 replaces the line or when an

invalidation message is received from the LLC.

Retry Mechanism - During the migration process both sender and

receiver can receive L1 requests for the migrating block. In particular, the

sharers continue to send requests to the sender for the specific block before

receiving the new data block location. Conversely, the some sharers that

have already received the location update for the migrated block can start

requesting to the receiver bank that is possibly still waiting for the block.

Thus, a RETRY mechanism has been designed to manage such scenarios.

Every time a request is received in a migration state, it is sent back to the L1

requestor, that will later resend the message. The requests that have been

sent back by the LLC will be sent it back to the right bank (the receiver)

sooner or later thanks to L1 bits that will be updated. So, the receiver with

the line in steady state will receive the request and will manage it.

4.3.2 Deadlock Avoidance Analysis

The data migration mechanism introduces several threats to the coherence

protocol design. While deadlock avoidance still represents a key required

property for the final scheme, data ownership, data duplication and starva-

tion are three other issues to be addressed.

Figure 4.10 shows how the sender remains the owner of the block until all

sharers have been informed of the migration and until they have responded

to the sender. Figure 4.11 highlights how the receiver becomes the owner of

the block only when the it is received and Migration Done message is sent

47

4.3. Data Migration for DNUCA Support

The Sender is

the owner of the block

The Receiver is the

owner of the block

Figure 4.11: Receiver Finite State Machine with Ownership details

to the sender.

This marks a specific point in time during the migration transaction to

avoid having multiple caches to answer to the L1 controller request for the

migrated block.

Moreover, two sets of requests that are sent during the block migration

are described below:

• requests sent by the sharers/owner;

• requests sent by other L1 caches which are not sharers or owner.

Considering the MigSh sender state, messages for the block sent by shar-

ers/the owner can be received either by the sender either by the receiver, due

to the fact that they are being informed of the migration and this process

can be not finished yet.

Moreover, these messages can arrive with different orders independently

on when they have been sent, if we consider a not ordered interconnect (i.e.

a NoC).

The previously explained RETRY mechanism together with L1 cache

bits forces these requests to be managed only by the Receiver, when the

migration is done.

The sharers/owner L1 caches will send requests to the bank where the

block is mapped. If it is one of the actors of the on the fly migration, the

Sender and the Receiver send RETRY messages to the L1 requestors. This

mechanism permits to change ownership, to inform sharers/the owner and to

complete migration, without the requests interference. They are sent back

again until they arrive to the receiver, in the steady state.

Considering requests sent by other L1 caches, they will be received by

the home bank. If it is one of the migration actors, again the RETRY

mechanism is used. At the end of the migration process, from there, if the

block has been migrated, it can be retrieved by using broadcast.

48

4.4. A Novel Migration Policy

4.4 A Novel Migration Policy

The migration policy embeds the logic to trigger the data migration by ex-

ploiting the hardware mechanisms described in Section 4.2 and 4.3. The

cache hierarchy in modern architectures fills the performance gap between

the CPU and the memory where the latter is usually slower. However the

multi-cores highlight the tile based architectures as a viable solution to in-

crease the core count in the chip. Thus, the L2, that usually represents

the LLC, is physically split in multiple banks even if it remains shared be-

tween the whole system. To this extent, the accesses to the LLC banks can

be far from uniformly distributed or a single cache line can be mapped far

from its requestor. In this scenario the migration policy allows to remap the

cache lines to better use the LLC from both the energy and the performance

viewpoint.

Moreover the reduced number of accesses to memory, due to the bet-

ter LLC utilization, improves the overall system performance. Thus, it is

important to guarantee that the heavily accessed blocks remain in the LLC.

Starting from a tiled multi-core with split shared last level cache and

static mapping, two different observations are the key pillars for the proposed

policy design. First, accesses are unbalanced between banks. This is due to

the address based static mapping: if applications access some blocks more

than others, eventually some banks are accessed more than others.

Second, accesses are very unbalanced between the sets of some banks.

Some sets are more accessed than others and this leads to additional conflict

misses and reduces the capacity ones. So, to avoid replacements and to

keep most accessed blocks in LLC, our policy migrates lines belonging to the

most accessed sets to tiles where these sets are less accessed. However, the

least recently used block is migrated in order to avoid to cause additional

broadcasts for most accessed blocks. This allows to keep data in the LLC,

without the need of paying massive memory access costs. Moreover it allows

to better exploit the capacity of the last level cache. The policy sits on the

set congestion metric that is defined as:

Mi,s = replacementsi,s/accessesi,s (4.1)

for tile i and set s.

Accordingly, a migration is triggered in the bank i, for the set s when :

Mi,s >= µi + L ∗ σi (4.2)

49

4.4. A Novel Migration Policy

where µi is the average value of the metric for tile i, considering all the

sets and σi is the standard deviation of the metric for tile i, considering all

the sets. Last, L is the level of migration which is desired, it can be equal to

1, 2 or 3 (high, medium, low).

This expression considers a Gaussian distribution of the Mi,s congestion

metric, due to the Central Limit Theorem [26], which states that considering

a large amount of samples, a unknown distribution can be considered ap-

proximatively as a Normal one of expected value equal to the sample average

and standard deviation equal to the one computed on samples.

This assumption is justified by the fact that every considered sample is the

value of the congestion metric for a specific set in a tile. Thus, the number of

samples corresponds to the number of sets and the considered architectures

present much more than 30 sets. This number is usually used to define a set

of samples big enough to be characterized as a Normal distribution [27].

Thus, a migration is triggered when the value of the metric Mi,s for the

tile i and the set s is greater than the expected value of the distribution µi

for the tile i plus L times its standard deviation. In a Normal distribution

only 0.15% of the data is greater than the expected value plus three times

the standard deviation. So the value of 3 is the one setted as the ”low level”

of migration. The level L can be setted to 2 as a ”medium level”: out of the

range µ− 2 ∗ σ, µ+ 2 ∗ σ there are the 5% of data. Finally the level L can

be setted to 1 as a ”high level” of migration due to the fact that out of the

range µ− σ, µ+ σ there are the 32% of data.

However, a migration can be ”refused” by the receiver. A migration is

accepted only if the value of the metric of the sender is greater than the one

of the receiver, as stated by the following equation:

Mi,s >= Mj,s (4.3)

i is the sender bank, j is the receiver one.

Another optional condition can be used in order to accept migrations

or not. The level of congestion of the set of the receiver can be taken in

consideration and it is defined as:

Mj,s < µj + σj (4.4)

In order to reach this scope the value of the metric of the receiver has

to be less than the expected value considering all the sets plus the standard

50

4.4. A Novel Migration Policy

deviation. This can be meter of not congestion for that set in the receiver.

51

4.4. A Novel Migration Policy

52

Chapter 5

Analysis: DNUCA and

Application Behaviour

This chapter delivers a comprehensive analysis encompassing different as-

pects of a DNUCA system. The classification of a representative subset of

SPEC 2006CPU benchmark suite is discussed focusing onto the application

phases and their impact to the DNUCA architecture. Moreover, the hard-

ware mechanisms to support the DNUCA solutions, i.e. broadcast and data

migration are explored. Last, a complete DNUCA system is considered.

To this extent, the rest of the chapter is organized as follows. Section 5.1

describes the simulation setup, the target architecture and the benchmarks.

Section 5.2 overviews the application behaviour analysis. Section 5.3 shows

the pure broadcast mechanism penalties. Section 5.4 details performance

and additional traffic results considering the baseline architecture and the

smart broadcast based one; moreover, the migration mechanism is evaluated

and additional observation on the conjuncted mechanisms are discussed.

5.1 Simulation Setup

Starting from the SNUCA architecture that will be referred as ”baseline”

in the rest of the chapter, different mechanisms and policies are added and

are analysed. First a broadcast mechanism is implemented on the top of

the baseline and the resulting architecture is referred as ”broadcast-base”.

Then, the smart broadcast solution presented in Chapter 4 is replaced to the

plain broadcast (smart-broadcast-base architecture). Last, a simple DNUCA

53

5.1. Simulation Setup

Processor Core 1GHz, In-Order Alpha Core, 1 cycle

per execution phase

L1I Cache 32kB 4-way Set Associative

L1D Cache 32kB 4-way Set Associative

L2 cache 256kB per bank, 8-way Set Associative

Coherence Prot. MESI (3 VNET protocols)

Main Memory Access Latency 200 cycles

Topology 2D-mesh 4x4 at 16 Cores

Technology 45nm at 1.0V

Real Traffic Subset of SPEC CPU2006 benchmarks.

Table 5.1: Experimental setup: processor and technology parameters common to

the considered architectures.

policy coupled with the coherence protocol extension discussed in Chapter 4

are introduced to deliver a complete DNUCA testing architecture.

The migration policy is executed at each time a cache request is received

by a LLC bank. We assume a MESI-based coherence protocol that enforces

3 Virtual Network to avoid protocol-level deadlock. The protocol changes to

avoid deadlocks, using broadcast and migration mechanisms are detailed in

Section 4.2.1 and in Section 4.3.2.

The SPEC CPU2006 suite provides integer and floating point single-

threaded benchmarks able to stress the cache hierarchy and the system main

memory [20].

Twelve applications are shown in Table 5.2 among the whole suite [20].

They belong to the High Performance Computing Domain.

The cache configuration is a 32KB L1I caches, a 32KB L1D caches and

a 256KB L2 caches per bank. The main considered NoC topology is a 4x4

2D-mesh with 16 cores and NoC routers with a 3 VC.

The architectures have been integrated in the GEM5 cycle accurate sim-

ulator [8]. Moreover, an enhanced version of the simulator [39, 36, 39, 38, 10]

has been used to extract data.

54

5.1. Simulation Setup

SPEC CPU2006 BENCHMARKS
Application Category Inputs Outputs

429.mcf Combinatorial optimiza-

tion. Integer benchmark.

Time-tables and dead-head

trips, times, costs.

Log information, checksum

and values.

456.hmmer Search a gene sequence

database. Integer bench-

mark.

A database and reference

workloads.

Four output files contain a

ranked list of matches.

450.soplex Simplex Linear Program

Solver. It solves a linear

program using the Simplex

Algorithm. Floating point

benchmark.

Test uses a 497x614 grid.

Train uses a 582x55515 grid.

Ref uses a 2586x920683 grid

and a 83060x270095 one.

The objective function or its

value.

445.gobmk Artificial Intelligence, game

playing. The program exe-

cutes Go and executes a set

of commands to analyse Go

positions. Integer bench-

mark.

”SmartGo Format” files. ASCII description of a se-

quence of Go moves.

444.namd Classical Molecular Dynam-

ics Simulation. It is derived

from NAMD, a parallel pro-

gram for the simulation of

large bio-molecular systems.

Floating point benchmark.

Input file created with

NAMD 2.5.

Checksums on the calcula-

tions.

464.h264ref Video compression. Integer

benchmark.

Files in uncompressed video

data format.

Encode logs.

435.gromacs Chemistry and Molecular

Dynamics. It performs

molecular dynamics and

simulations. Floating point

benchmark.

The file gromacs.tpr with

identical setup but different

number of steps.

Average potential energy,

system temperature and the

number of operations per-

formed.

471.omnetpp Discrete event simulator. It

provides a simulation of a

large Ethernet network. In-

teger benchmark.

The topology of the network

and the structure of hosts,

switches and hubs.

Extensive statistics.

473.astar Computer games, artificial

intelligence, path finding.

Implementation of different

path-finding algorithms. In-

teger benchmark.

The input file is a map in

binary format.

The number of existing

ways and the total way

lenght to validate correct-

ness.

437.leslie3d Computational Fluid Dy-

namics. Floating point

benchmark.

Three different stack sizes.

Grid size, flow parameters

and boundary conditions.

Analysis information.

470.lbm Computational Fluid Dy-

namics. It simulates incom-

pressible fluids. Floating

point benchmark.

Number of time steps and

choice between two simula-

tion setups.

The 3D velocity vector for

each cell.

459.gemsFDTD Computational Electromag-

netics. Floating point

benchmark.

The problem size, number

of time steps and several pa-

rameters.

ASCII file containing the re-

quested data.

Table 5.2: The used subset of the SPEC CPU2006 benchmarks.

55

5.2. Benchmark Analysis

LLC MISSES
LOW MEDIUM HIGH

MCF(<700ms) [<10 000] MCF(>700ms) [=50 000]

NAMD [18 000]

SOPLEX (<50 ms) [<<10 000] SOPLEX (>50 ms) [10 000 20 000]

ASTAR(150-200ms) [10 000] ASTAR(30-70, 120-150ms) [20 000] ASTAR(0-30ms, 70-120ms) [50 000]

OMNET[5 000]

GEMS[=0]

GOBMK(>380ms)[5 000] GOBMK(<380ms)[30 000-50 000]

GROMACS(<1400ms) [1 000] GROMACS(>1400ms) [10 000 - 30 000]

H264[<10 000]

HMMER[10 000 20 000]

LBM [50 000]

LESLIE [50 000 250000]

Table 5.3: Characterization of SPEC applications phases according to the first

described metric.

5.2 Benchmark Analysis

The benchmark analysis represents a key stage to be integrated in the DNUCA

system design. An accurate classification of the application behaviour and its

phases as well as the impact they have onto the cache hierarchy is crucial to

deliver a successful architecture. In this section the miss rate and the cache

accesses are used at both L1 and L2 to characterize the application behaviour

in the two cache levels. The LLC miss rate measures the proportion of the

activated broadcast actions, since a broadcast is triggered after an LLC miss,

before accessing the main memory in the worst case.

However, the miss rate is not enough to completely represent the applica-

tion behaviour. It does not consider the number of requests that have been

issued to the last level cache.

For example, an high miss rate is possible even with few total accesses.

A low number of accesses poorly affects the broadcast impact over the sys-

tem even if the miss rate is high. Accordingly, in order to characterize the

behaviour of the application in time, the number of misses is a good metric.

The second chosen metric pair is the number of L1 cache misses and the

relative miss rate.

First of all, it details the ability of the L1 cache of filter the CPU requests

and complement the system view on the number of L2 accesses, detailing

what is happening in L1 cache. Again, the L1 miss rate is not relevant alone.

Table 5.3 shows as SPEC CPU2006 benchmarks phases can be classified

using LLC misses and how much a single application can vary its behaviour

56

5.2. Benchmark Analysis

L1 CACHE MISSES
LOW MEDIUM HIGH

MCF(<700ms) [<5 000-10 000] MCF(>700ms) [80 000 100 000]

NAMD[1 000 - 2 000]

SOPLEX (<50ms) [5 000] SOPLEX(>50ms) [100 000]

ASTAR(150-200ms) [10 000] ASTAR(30 70ms, 120-150ms) [20 000] ASTAR(0-30ms, 70-120ms) [50 000]

OMNET (<100ms) [20 000 30 000] OMNET (>100ms) [70 000]

GEMS[2 000]

GOBMK(>380ms) [20 000 60 000] GOBMK(<300ms) [50 000 100 000]

GROMACS(<1400ms) [<<10 000] GROMACS(1400-1800ms) [15 000 40 000] GROMACS(>1800ms) [80 000]

H264 (0-1300ms, >1600ms) [20 000 - 50 000] H264 (1300 - 1600ms) [50 000 - 150 000]

HMMER [15 000]

LBM[50 000]

LESLIE[50 000 - 250 000]

Table 5.4: Characterization of SPEC applications phases according to the second

described metric.

in time. A time period of 2 seconds is considered.

Table 5.4 details the characterization of the benchmarks using the second

metric, L2 misses.

Table 5.5 shows a combined vision of the two proposed classifications.

5.2.1 Applications Phases Analysis

This section discusses the application phases by considering the above de-

fined cache hierarchy metrics. A single application can traverse multiple

phases during the execution. Thus the DNUCA architecture should take

such changes into account to better use the cache resources.

Applications with several phases are described; some of them highlight

no significant phases. Results are reported considering the initial 2 seconds

of the execution for each application with a sample rate of 1 ms.

GOBMK

Figure 5.1(a) and Figure 5.1(b) highlight 2 phases in the application and

the transition point is at sample 340. The first one is characterized by an

high number of LLC misses and high LLC miss rate. The second one presents

less LLC misses and a very low miss rate. The same two different phases

are visible also considering the second described metric. A first phase is

characterized by more L1 misses and higher L1 miss rate than a second one.

Taking the first phase apart due to the application setup, in the second phase

the LLC seems to supply the majority of the requested data. A low miss rate

in the LLC means a limited broadcast impact. However, L1 significantly

filters the CPU requests to the L2, thus positively limiting the broadcast

57

5.2. Benchmark Analysis

(a) LLC misses in GOBMK benchmark

(b) L1 misses in GOBMK benchmark

Figure 5.1: Number of misses during the execution of two seconds of the GOBMK

benchmark. We are considering the baseline architecture.

58

5.2. Benchmark Analysis

LLC MISSES

L1

M

I

S

S

E

S

LOW MEDIUM HIGH

LOW

MCF(<700ms)

SOPLEX(<50 ms)

ASTAR(150-200ms)

GEMS

GROMACS(<1400ms)

NAMD

GOBMK(>380ms)

MEDIUM

OMNET

(380ms)

H264

(0-1300ms, >1600ms)

HMMER

ASTAR(30, 70ms, 120-150ms)

GROMACS(1400-1800ms)

HIGH
OMNET(>100ms)

H264 (1300 -1600ms)

SOPLEX,(>50 ms)

GROMACS(>1800ms)

MCF(>700ms)

ASTAR(0-30ms,

70-120ms)

GOBMK(<380ms)

LBM

LESLIE

Table 5.5: Combined characterization of SPEC applications phases

actions.

LESLIE

Figure 5.2 shows that several phases can be detected, considering both the

described metrics. All the considered time window is characterized by high L1

and LLC misses. However, despite this observation, there are numerous peaks

characterized by an higher number of misses and the miss rates are variable.

It is very interesting noticing how not all LLC misses peaks corresponds

to peaks in L1 cache misses; this is related to the fact that nearly all (the

relatively few) blocks not present in private caches are not in LLC neither

in those phases. They are new blocks that application is retrieving from the

main memory. Considering the first metric, the broadcast mechanism will

affect negatively the entire execution of the application. Phases characterized

by more LLC misses will be affected even more heavily.

MCF

Figure 5.3 highlights 2 visible phases. The first one is characterized by a

low number of LLC misses and low LLC miss rate. The second one presents

much more LLC misses and a very high miss rate. The same two different

phases are visible also considering the second described metric. Moreover in

the first phase the L1 cache filters very well requests and presents a very low

miss rate. Only a part of the blocks not present in the L1 cache are not in

59

5.2. Benchmark Analysis

(a) LLC misses in LESLIE benchmark

(b) L1 misses in LESLIE benchmark

Figure 5.2: Number of misses during the execution of two seconds of the LESLIE

benchmark. We are considering the baseline architecture.

60

5.2. Benchmark Analysis

(a) LLC misses in MCF benchmark

(b) L1 misses in MCF benchmark

Figure 5.3: Number of misses during the execution of two seconds of the MCF

benchmark. We are considering the baseline architecture.

61

5.3. Broadcast Analysis

the L2 one. In the second phase the situation is completely different. The

L1 and the L2 caches present a very high number of misses.

Thus, the broadcast mechanism will affect negatively performance and

power consumption much more in the second phase than in the first one, due

to the high number of LLC and L1 misses.

GEMS - Low Broadcast Impact Counterexample

Figure 5.4 highlights that the entire observed period presents a very low

number of misses and low miss rate either considering the LLC either the L1

cache. The broadcast mechanism will not affect negatively performance and

power consumption during the observed period.

LBM - High Broadcast Impact Counterexample

Figure 5.5 shows a very high number of misses and high miss rate either

considering the LLC either the L1 cache. Considering the first (and the

second) metric, the broadcast mechanism will heavily affect performance and

power consumption during the observed period.

5.3 Broadcast Analysis

Starting from the analysed L1 and L2 metrics, this section explores the in-

duced broadcast transactions and the performance and traffic overheads. The

broadcast based architecture is considered with no migration mechanism to

fully highlight the pure broadcast penalties. Thus, every LLC miss triggers

a broadcast search to retrieve the block. However, no data will be find in the

other LLC banks, since no migration has been done. In particular the block

can only be found in the home bank or in the main memory. The considered

simulated phases are shown in Table 5.6. It is worth noticing that not all

the benchmarks simulated 2 seconds, due to the prohibitive simulation time

that they require due to the broadcast mechanism.

5.3.1 Performance Degradation

Results are reported in Figure 5.6. Twelve SPEC CPU2006 benchmarks

are reported on the x axis. One column representing the broadcast-base

architecture is shown for each application. The executed instructions for a

given execution time are reported on the y axis, normalized to the baseline

architecture. However, for the SOPLEX benchmark the complete execution

time on the y axis is reported, normalized to the baseline architecture. This

62

5.3. Broadcast Analysis

(a) LLC misses in GEMS benchmark

(b) L1 misses in GEMS benchmark

Figure 5.4: Number of misses during the execution of two seconds of the GEMS

benchmark. We are considering the baseline architecture.

63

5.3. Broadcast Analysis

(a) LLC misses in LBM benchmark

(b) L1 misses in LBM benchmark

Figure 5.5: Number of misses during the execution of two seconds of the LBM

benchmark. We are considering the baseline architecture.

64

5.3. Broadcast Analysis

ASTAR 170 ms

GEMS 2000 ms

GOBMK 2000 ms

GROMACS 352 ms

H264 2000 ms

HMMER 2000 ms

LBM 1615 ms

LESLIE 2000 ms

MCF 2000 ms

NAMD 1189 ms

OMNET 2000 ms

SOPLEX Run to completion:

237 ms [baseline] / 259 ms [broadcast]

Table 5.6: Simulated periods: time phases that are considered in the broadcast

results.

Figure 5.6: Performance penalties considering the broadcast based architecture.

65

5.3. Broadcast Analysis

Figure 5.7: Injected Flits Increment observed in the broadcast-based architecture.

benchmark is analysed in base of the execution time, due to the fact that all

the application execution is considered.

We are considering the broadcast-based architecture with no migration

mechanism, in order to highlight the pure broadcast penalties. Thus, this

architecture is outperformed by the baseline one by 6 % on average with a

peak of 23 % with ASTAR benchmark.

Moreover, it is possible to observe how the application phases and the pre-

viously described behaviours can heavily influence broadcast performances.

In particular, some applications are not heavily affected by broadcast. For

example, GEMS benchmark is not affected by broadcasts due to its low num-

ber of LLC misses (see Section 5.2.1). Conversely, HMMER and OMNET

show no performance degradation due to the broadcast. This is due to the

fact that the considered time period presents few L1 and L2 misses.

5.3.2 Injected Flits Increment

The broadcast mechanism based architecture is compared to the SNUCA

baseline one considering additional injected flits. Results are reported in

Figure 5.7. The SPEC CPU2006 benchmarks are reported on the x axis,

while the y shows the injected flits normalized to the baseline architecture.

The broadcast causes a 43 % additional flits on average with a peak of 108

% (see GROMACS). The number of injected flits heavily influences the in-

66

5.4. Smart Broadcast with Simple Policy

terconnect traffic and directly impacts power consumption.

While the broadcast strongly influences the additional injected flits for

the majority of the considered applications, GEMS, OMNET and HMMER

shows a limited impact due to the broadcast. This is caused by the absolute

low number of LLC misses (see Section 5.2.1 and Section 5.3.1).

Moreover, GROMACS, H264 and NAMD injected flits are negatively af-

fected by migration, despite the fact that their performance does not present

a clear degradation. The LLC misses are few enough to not influence the

performance. However, the additional traffic caused by broadcasts impacts

on the overall injected flits of the considered rime period.

5.4 Smart Broadcast with Simple Policy

This Section analyses a complete DNUCA architecture within a 4 by 4

2D mesh multicore. The smart broadcast and the migration mechanism

have been implemented considering the migration policy detailed in Sec-

tion 4.4. Figure 5.8 and Figure 5.9 reports the simulation results for 12

SPEC CPU2006 benchmarks. The execution time and the injected flits per

a million of instructions are reported on the y axis, normalized to the base-

line architecture. The number of the triggered migrations is reported on the

second y axis. Note that a migration can farther trigger several broadcast

actions if the same data is accessed from an L1 miss.

The smart broadcast based architecture cuts off the performance penalties

due to the standard broadcast. In particular the Smart Broadcast shows the

same performance of the baseline architecture when no migrations are active.

In every analysed application, results show how performance is very similar

to the baseline and how the ratio between Smart Broadcast and Baseline

presents a negligible degradation. The Smart Broadcast use its LLC block

search mechanism only if the required block has been migrated, avoiding use-

less and performance degrading broadcast actions. This mechanism nearly

completely overcomes the performance degradation of the standard broad-

cast.

The injected flits analysis is detailed below. The smart broadcast based

architecture measures an higher number of injected flits compared to the

baseline architecture, on average. However, the entity of this increment de-

pends on the considered benchmark and on the number of triggered migra-

tions.

67

5.4. Smart Broadcast with Simple Policy

(a) ASTAR Results (b) GEMS Results

(c) GOBMK Results (d) GROMACS Results

(e) H264 Results (f) HMMER Results

Figure 5.8: Performance and injected flits results. They are evaluated consider-

ing execution time and injected flits for every million of executed instructions,

normalized to the Baseline architecture. Blocks migrations are shown.

68

5.4. Smart Broadcast with Simple Policy

(a) LBM Results (b) LESLIE Results

(c) MCF Results (d) NAMD Results

(e) OMNET Results (f) SOPLEX Results

Figure 5.9: Performance and injected flits results. They are evaluated consider-

ing execution time and injected flits for every million of executed instructions,

normalized to the Baseline architecture. Blocks migrations are shown.

69

5.4. Smart Broadcast with Simple Policy

ASTAR, GOBMK, LBM, and LESLIE show limited broadcast penalty.

Moreover the peaks of injected flits are a direct consequence of the peaks of

the triggered migrations. However, considering these benchmarks, the smart

broadcast achieved the objective of limiting the broadcast penalties, even if

the migration benefits are still hidden. In these benchmark an high number

of migrations has been observed.

SOPLEX presents a decrement of the additional injected flits with re-

spect to the broadcast-base architecture and shows two migration phases:

the first one characterized by a low number of migrations and a second one

characterized by an high number of migrations. However, the first phase is

more affected by the additional traffic.

HMMER presents few differences from the baseline architecture. More-

over, few migrations have been done. However, these few migration make the

injected flits oscillate of the 10 % with respect of the baseline architecture.

OMNET presents a considerable increment of the injected flits when sev-

eral migrations are triggered.

GEMS, H264 and NAMD show a slow increment of the injected flits and

a negligible number of migrations. These results are notable because the con-

sidered benchmarks behaviours registered a low number of LLC miss. These

applications show a negligible broadcast impact considering the broadcast-

base architecture.

MCF and GROMACS show an important increase of the injected flits.

This trend is confirmed by considering the baseline architecture and the

broadcast-base one (see Section 5.3).

The increment in the injected flits is justified by the fact that the mi-

grations change the application behaviour. However, the observed overheads

are mostly caused by the additional broadcasts and not directly by migration

mechanism.

5.4.1 Additional Traffic Explanation

Considering the additional injected flit observed for the DNUCA solution

compared to the baseline architecture, this section details the possible traffic

sources.

Figure 5.10 and Figure 5.11 show the percentage of the additional in-

jected flits that are caused by additional broadcast searches, per million of

executed instructions. By comparing the results in Figure 5.8 and Figure 5.9,

70

5.4. Smart Broadcast with Simple Policy

(a) ASTAR Additional Flits (b) GEMS Additional Flits

(c) GOBMK Additional Flits (d) GROMACS Additional Flits

(e) H264 Additional Flits (f) HMMER Additional Flits

Figure 5.10: Ratio of the additional injected flits caused by broadcast searchs.

71

5.4. Smart Broadcast with Simple Policy

(a) LBM Additional Flits (b) LESLIE Additional Flits

(c) MCF Additional Flits (d) NAMD Additional Flits

(e) OMNET Additional Flits (f) SOPLEX Additional Flits

Figure 5.11: Ratio of the additional injected flits caused by broadcast searchs.

72

5.4. Smart Broadcast with Simple Policy

ASTAR, GOBMK, LBM and LESLIE present a limited overhead on the in-

jected flits, that is concentrated in some instructions periods. Figure 5.10(a)

and Figure 5.10(c) shows that this trend is also caused by the high number

of migrations and their coherence messages. The instruction periods which

present additional traffic are affected by both the broadcast and migration.

However, it is clear how the migration mechanism impact is evident only with

a huge number of migrations and it is much lower than the one caused by

the broadcasts. These benchmarks are the ones which present a significant

improvement on the broadcast-base architecture in terms of injected flits.

The rest of the analysed benchmarks present an high number of additional

injected flits, despite the much lower number of triggered migrations. The

additional flits are due to the additional broadcasts, that originates from an

L1 miss on a previously migrated block. The trend is shown in Figure 5.10

and Figure 5.11.

It’s very interesting considering how some applications, which weren’t

affected by the pure broadcast penalties shown in Section 5.3, present ad-

ditional injected flits with respect to the baseline. Clear examples of this

situation are GEMS, OMNET and NAMD.

Moreover, MCF and GROMACS present much more injected flits than

the broadcast-base architecture. However, Figure 5.11(c) and Figure 5.10(d)

show that they are caused nearly totally by additional broadcast searches.

Thus, the additional coherence traffic is mostly caused by the additional

broadcast caused by migrations. At this point, the causes of the additional

broadcasts need to be analysed.

The architecture considered in Section 5.3 does not provide a migration

mechanism since the broadcast penalties were under investigation. However,

the migration actions can modify the number of triggered broadcasts.Considering

the broadcast with no migration support, a block search is triggered every

time a request results in a LLC miss.

Considering precedent migrations, a request for a block can result in a

broadcast if it has been migrated. Thus, we have to pay in terms of injected

flits even if we have a hit (not in the home LLC bank) and it is an additional

scenario in which a search is triggered respect the considered pure broadcast

in Section 5.3.

Additional flits due to the broadcast are observed if an L1 relinquishes a

migrated data that will access in the future. L1 bits are reset every time the

block is replaced in L1 cache: if the benchmark is characterized by an high

73

5.4. Smart Broadcast with Simple Policy

number of L1 cache misses, blocks are replaced and the migration information

are lost, thus triggering a broadcast action as a consequence of an L1 miss.

These problems can affect injected flits specially if the block is heavily

accessed or if the application reuses data.

Let’s consider the observed smart broadcast results. MCF presents a

phase characterized by an high number of L1 (and L2) misses (see Sec-

tion 5.2.1). This phase is characterized by an increment of injected flits

(four times), despite a limited number of migrations. This is due to com-

bined action of the LLC and L1 misses which cause broadcasts for different

reasons.

GEMS presents a low number of L1 and LLC misses, instead (see Sec-

tion 5.2.1). Moreover, it is characterized by a very low number of migra-

tions. Nevertheless, it presents an increment of the injected flits with the

smart broadcast and the migration mechanism. This is due to the high data

reuse in GEMS. In particular, the few blocks which are not present in the

L1 cache are continuously retrieved in the LLC: if they have been migrated,

continuous broadcasts are triggered. Note that OMNET and NAMD share

a similar behaviour.

74

5.4. Smart Broadcast with Simple Policy

76

Chapter 6

Conclusions and Future Works

In NoC based DNUCA architectures several factors influence the system

performance and the broadcast/migration mechanisms efficiency.

The application behaviour is the most important one. First of all, de-

pending on the considered application, the number of LLC misses (and the

miss rate) can be very different. Moreover, considering the same application,

the distribution of the misses in time can change and several phases can be

observed. This heavily influence performance and in particular the number of

injected flits in the NoC. In fact every LLC miss triggers a broadcast action

to retrieve the block and in the worst case (the line is not in the LLC) this

brings pure penalties. Only considering this situation, with no active migra-

tion mechanism, the SNUCA architecture outperforms the broadcast-based

one by 6 % on average. Moreover, the broadcast causes a 43 % additional

flits on average with a peak of 108 %.

These overheads are cut off by the smart broadcast mechanism, that

avoids useless searches and triggers broadcast actions only if the block has

been migrated.

However, the number of LLC misses is not the only factor that negatively

affects the DNUCA system behaviour, causing additional broadcast searches.

The number of L1 cache misses and the application temporal locality, coupled

with the migration mechanism, can heavily affect the system. In fact, every

time a miss occurs in the L1 cache, the block has to be searched, if it has

been previously migrated. Moreover if the line is heavily accessed in LLC and

the L1 cache presents an high number of misses, the number of broadcasts

for the line explodes. This scenario causes more additional coherence traffic,

that means a negative impact over the power consumption.

77

6.1. Future Works

The results and the analysis carried out by the thesis can’t be ignored, de-

signing future DNUCA architectures. The search mechanism overheads are

important aspects to be considered, in order to achieve global performance

improvements on the SNUCA architectures. Otherwise, all the possible ben-

efits of the blocks dynamic placement are overcome by broadcast/multicast

costs.

6.1 Future Works

The presented work analyses application behaviour and required mechanisms

impact on the DNUCA architectures. The smart broadcast and the simple

migration policy partially limit the search mechanism overheads. However,

given the proposed analysis, a stronger connection between the dynamic block

placement benefits and mechanisms overheads is under investigation to pro-

vide a novel power-performance policy. In particular, additional ways of

limiting the search mechanism and placing LLC data will be considered to

design a policy that can dynamically move cache blocks to obtain perfor-

mance benefits, with an acceptable NoC traffic.

78

Bibliography

[1] Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Murali-

manohar. Multi-Core Cache Hierarchies. Morgan & Claypool, 2011.

[2] J. Balfour and W.J. Dally. Design tradeoffs for tiled cmp on-chip net-

works. In Proceedings of the 20th annual international conference on

Supercomputing, pages 187–198. ACM, 2006.

[3] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, and C. A. Prete. A

power-efficient migration mechanism for d-nuca caches. In 2009 Design,

Automation Test in Europe Conference Exhibition, pages 598–601, April

2009.

[4] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, C. A. Prete, and

P. Stenstrm. Leveraging data promotion for low power d-nuca caches.

In Digital System Design Architectures, Methods and Tools, 2008. DSD

’08. 11th EUROMICRO Conference on, pages 307–316, Sept 2008.

[5] A. Bardine, P. Foglia, G. Gabrielli, C. A. Prete, and P. Stenström.

Improving power efficiency of d-nuca caches. SIGARCH Comput. Archit.

News, 35(4):53–58, September 2007.

[6] B. M. Beckmann and D. A. Wood. Managing wire delay in large chip-

multiprocessor caches. In rocs. of the 37th International Symposium on

Microarchitecture, 2004.

[7] A. Bhattacharjee and M. Martonosi. Thread criticality predictors for

dynamic performance, power, and resource management in chip multi-

processors. pages 290–301, 2009.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,

79

BIBLIOGRAPHY BIBLIOGRAPHY

Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,

Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.

The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, Au-

gust 2011.

[9] J. Cebrin, R. Fernndez-Pascual, A. Jimborean, M. Acacio, and A. Ros.

A dedicated private-shared cache design for scalable multiprocessors.

2016.

[10] S. Corbetta, D. Zoni, and W. Fornaciari. A temperature and reliabil-

ity oriented simulation framework for multi-core architectures. In 2012

IEEE Computer Society Annual Symposium on VLSI, pages 51–56, Aug

2012.

[11] W.J. Dally and B.P. Towles. Principles and practices of interconnection

networks. Elsevier, 2004.

[12] R. Das, S. Eachempati, A.K. Mishra, V. Narayanan, and C.R. Das.

Design and evaluation of a hierarchical on-chip interconnect for next-

generation cmps. In High Performance Computer Architecture, 2009.

HPCA 2009. IEEE 15th International Symposium on, pages 175–186,

Feb 2009.

[13] J. Duato. A new theory of deadlock-free adaptive routing in worm-

hole networks. Parallel and Distributed Systems, IEEE Transactions

on, 4(12):1320–1331, Dec 1993.

[14] J. Duato. A necessary and sufficient condition for deadlock-free adaptive

routing in wormhole networks. Parallel and Distributed Systems, IEEE

Transactions on, 6(10):1055–1067, Oct 1995.

[15] J. Duato and T.M. Pinkston. A general theory for deadlock-free adaptive

routing using a mixed set of resources. Parallel and Distributed Systems,

IEEE Transactions on, 12(12):1219–1235, Dec 2001.

[16] J. Flich, G. Agosta, P. Ampletzer, D. A. Alonso, A. Cilardo, W. Forna-

ciari, M. Kovac, F. Roudet, and D. Zoni. The mango fet-hpc project:

An overview. In Computational Science and Engineering (CSE), 2015

IEEE 18th International Conference on, pages 351–354, Oct 2015.

80

BIBLIOGRAPHY BIBLIOGRAPHY

[17] P. Foglia, F. Panicucci, and M. Prete C. A. an Solinas. Analysis of

performance dependencies in nuca-based cmp systems. pages 49–55,

2009.

[18] Fazal Hameed, Lars Bauer, and Jorg Henkel. Dynamic cache manage-

ment in multi-core architectures through run-time adaptation. 2012.

[19] S.M. Hassan and S. Yalamanchili. Centralized buffer router: A low

latency, low power router for high radix nocs. In Networks on Chip

(NoCS), 2013 Seventh IEEE/ACM International Symposium on, pages

1–8, April 2013.

[20] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH

Comput. Archit. News, 34(4):1–17, September 2006.

[21] M. Huang, M. Mehalel, R. Arvapalli, and S. He. An energy efficient

32nm 20 mb l3 cache for intel xeon processor e5 family. In Proceedings

of the IEEE 2012 Custom Integrated Circuits Conference, pages 1–4,

Sept 2012.

[22] L. Jianhua, A. Xin, O. Yiming, and Wangwei. Thread progress aware

block migration for dynamic nuca. pages 422–426, 2016.

[23] C. Kim, D. Burger, and Keckler S. W. An adaptive, non-uniform cache

structure for wire-delay dominated on-chip caches. In SIGOPS Oper.

Syst. Rev., vol 36, pages 211–222, October 2002.

[24] J. Lira, C. Molina, and A. Gonzalez. Hk-nuca: Boosting data searches

in dynamic non-uniform cache architectures for chip multiprocessors. In

IEEE International Parallel Distributed Processing Symposium, pages

419–430, 2011.

[25] Mario Lodde and Jos Flich. Runtime home mapping for effective mem-

ory resource usage. 2014.

[26] M. Rosenblatt. Central limit theorem for stationary processes. In Pro-

ceedings of the Sixth Berkeley Symposium on Mathematical Statistics

and Probability, Volume 2: Probability Theory, pages 551–561, Berke-

ley, Calif., 1972. University of California Press.

81

BIBLIOGRAPHY BIBLIOGRAPHY

[27] Sheldon M. Ross. Introduction to probability and statistics for engineers

and scientists (2. ed.). Academic Press, 2000.

[28] Keun Sup Shim, Miezsko Lis, Omer Khan, and Srinivas Devadas. Thread

migration prediction for distributed shared caches. In IEEE Computer

Architecture Letters, Vol. 13, No. 1, pages 53–56, January-June 2014.

[29] D. Shirshendu and K. Hemangee. Exploration of migration and replace-

ment policies for dynamic nuca over tiled cmps. pages 1–6, 2015.

[30] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory

Consistency and Cache Coherence. Morgan & Claypool Publishers, 1st

edition, 2011.

[31] P. Sweazey and A. J. Smith. A class of compatible cache consistency

protocols and their support by the ieee futurebus. In Proceedings of the

13th Annual International Symposium on Computer Architecture, ISCA

’86, pages 414–423, Los Alamitos, CA, USA, 1986. IEEE Computer

Society Press.

[32] F. Trivino, F. Alfaro, J. Sanchez, and J. Flich. Noc reconfiguration for

cmp virtualization. pages 219–222, 2011.

[33] A.N. Udipi, N. Muralimanohar, and R. Balasubramonian. Towards scal-

able, energy-efficient, bus-based on-chip networks. In High Performance

Computer Architecture (HPCA), 2010 IEEE 16th International Sympo-

sium on, pages 1–12, Jan 2010.

[34] Kartheek Vanapalli, Hemagee K. Kapoor, and Shirshendu Das. An

efficient mechanism for dynamic nuca in chip multiprocessors. 2015.

[35] A. Varma, B. Bowhill, J. Crop, C. Gough, B. Griffith, D. Kingsley, and

K. Sistla. Power management in the intel xeon e5 v3. In Low Power

Electronics and Design (ISLPED), 2015 IEEE/ACM International Sym-

posium on, pages 371–376, July 2015.

[36] D. Zoni, S. Corbetta, and W. Fornaciari. Hands: Heterogeneous archi-

tectures and networks-on-chip design and simulation. In Proceedings of

the 2012 ACM/IEEE International Symposium on Low Power Electron-

ics and Design, ISLPED ’12, pages 261–266, New York, NY, USA, 2012.

ACM.

82

BIBLIOGRAPHY BIBLIOGRAPHY

[37] D. Zoni, J. Flich, and W. Fornaciari. Cutbuf: Buffer management and

router design for traffic mixing in vnet-based nocs. IEEE Transactions

on Parallel and Distributed Systems, 27(6):1603–1616, June 2016.

[38] D. Zoni and W. Fornaciari. Modeling dvfs and power gating actuators for

cycle accurate noc-based simulators. Journal of Emerging Technologies

in Computing Systems, pages 1–15, 2015.

[39] D. Zoni, F. Terraneo, and W. Fornaciari. A dvfs cycle accurate simu-

lation framework with asynchronous noc design for power-performance

optimizations. Journal of Signal Processing Systems, pages 1–15, 2015.

[40] Davide Zoni, Federico Terraneo, and William Fornaciari. A control-

based methodology for power-performance optimization in nocs exploit-

ing dvfs. Journal of Systems Architecture, pages 1–15, 2015.

83

