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Abstract (Italian version)

I sistemi High Performance Computing (HPC) sono tipicamente caratterizzati
da un gran numero di risorse – CPU, GPU, ecc – implicando, di conseguen-
za, la necessità di affrontare il problema di una loro efficace utilizzazione.

In aggiunta a ciò, non è possibile ignorare le strategie di risparmio energetico e
dissipazione del calore essenziali in ambiente HPC. Questo quadro è reso ancora
più complesso dal fatto che i moderni sistemi sono caratterizzati da un livello
decrescente di affidabilità. Per tutte queste ragioni, meccanismi e politiche po-
co invasive di gestione delle risorse diventano essenziali al fine di risolvere i
problemi presentati.

Proprio a causa della loro natura distribuita, i sistemi HPC utilizzano paradig-
mi di programmazione parallela, tra i quali annoveriamo uno dei più utilizzati:
Message Passing Interface (MPI). Questa tesi presenta un’estensione dell’imple-
mentazione Open MPI, chiamata mig, al fine di supportare in modo trasparente
la migrazione di processi di un’applicazione.

Questo meccanismo è integrabile con un gestore delle risorse e in questo
lavoro ne viene proposto uno basato su Barbeque Run-Time Resource Manager.
Questo approccio ci consente di superare la limitazione di MPI che impedisce la
ridefinizione dell’assegnamento delle risorse computazionali a runtime una volta
che l’applicazione è stata lanciata. Ciò rappresenta anche una limitazione sia
per quanto concerne l’implementazione di strategie di resilienza ai guasti, sia nei
riguardi dell’uso efficace delle risorse.

L’estensione mig aumenta la flessibilità introducendo una granularità più fine
di allocazione del carico di lavoro, attraverso la possibilità di eseguire la migra-
zione dei processi. A tal proposito, in letteratura esistono già molte tecniche di

IX



i
i

“thesis” — 2016/9/16 — 9:27 — page X — #12 i
i

i
i

i
i

Abstract (Italian version)

migrazione, ma mancano principalmente di trasparenza rispetto all’applicazione.
In passato in Open MPI esisteva un supporto per la tolleranza ai guasti basato su
tecniche di Checkpoint/Restart, ma fu successivamente rimosso a causa della
difficile manutenibilità.

In questa tesi proponiamo il framework mig come un’estensione di Open
MPI per risolvere i problemi precedentemente descritti, in particolare in termini
di trasparenza e manutenibilità. L’implementazione di una politica di allocazione
delle risorse per BarbequeRTRM è proposta come un possibile caso d’uso del
framework.

X
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Abstract

THE High Performance Computing (HPC) systems typically include a large
number of computing resources – CPUs, GPUs, etc. As a consequence,
we must face with the problem of an effective utilization of them. In ad-

dition, we cannot avoid from taking into account power saving and thermal man-
agement strategies. The overall picture is made more complex by the fact that
modern systems are affected by decreasing level of reliability. For all these rea-
sons, we need effective and poorly invasive resource management mechanisms
and policies to address these issues.

Moreover, HPC systems need specific parallel programming paradigms,
among these one of the most widespread is Message Passing Interface (MPI).
This thesis presents an extension of the Open MPI implementation, called mig
to transparently support the migration of application processes. This mechanism
may be driven by a resource manager and in this work an example of exploitation
based on the Barbeque Run-Time Resource Manager is proposed. This approach
allows us also to overcome a limitation of the MPI paradigm. In fact, once the
application is launched it is no more possible to redefine the assignment of com-
puting resource at run-time. This represents also limitation from the point of
view of effective usage of the resources and implementation of fault-tolerance
strategies.

The mig extension introduces more flexibility by enabling a more fine grained
workload allocation, through the possibility of performing process migration. In
this regard, a lot of migration techniques are already available in literature, but
they suffer from the lack of transparency with respect to the application. In the
past, Open MPI had fault-tolerance support based on Checkpoint/Restart tech-
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Abstract

niques, but they were subsequently removed due to hard maintainability require-
ments.

In this thesis we propose the mig framework as an Open MPI extension that
overcomes the aforementioned issues in terms of transparency and poor main-
tainability. The implementation of a resource allocation policy for the Barbe-
queRTRM is also proposed as an example of exploitation of the framework.

XII
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CHAPTER1
Introduction

1.1 The evolution of HPC systems

High Performance Computing (HPC) term refers to computer technologies
used in advanced software applications requiring large computing power. The
applications are usually parallel in order to run on large clusters of machines,
called supercomputers.

HPC systems are currently considered one of the most important resources
both in research and in industry; the raising of performance-hungry scientific
applications lead European Union and other subjects to allocate huge amount
of funds to HPC development. HPC is considered strategic for Europe’s future
and essential for industry to innovate in products and services [1]. However, the
research is called to solve several technological limits to the performance scal-
ing, along with addressing the problem of providing guarantees in terms system
reliability too, as described in the subsequent paragraphs.

The increasing number of computing nodes, thus CPU cores, the end of Den-
nard’s scaling [2] and the moving towards Exascale computing1 indeed introduce
numerous challenges, in particular regarding thermal and energy optimizations,
dependability and resilience concerns, resource allocation scheduling, and par-

1see next section for the Exascale definition.
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Figure 1.1: Average number of cores and computing power of TOP-500 supercomputers
(TOP500.org data, retrieved 5 August 2016)

allel programming models [3].

Currently, the main component of HPC infrastructure variable costs is re-
lated to thermal and energy considerations. More power consumption means
more electricity costs and heat dissipation, more heat dissipation means higher
cooling needs and consequently again more electricity costs. Considering the
large numbers of servers in HPC clusters, introducing an optimization in a small
part of the system may lead to not negligible economical and environmental ad-
vantages. In fact, Exascale requires strong efforts in all related fields, from the
infrastructure to the software in the direction of increasing power efficiency and
programmability.

In last decades the rapid development of processing units maintained accept-
able levels of power consumption while increasing the performance delivered.
The computational units and computational power trends over past two decades
is shown in Figure 1.1 and Figure 1.2.

Unfortunately, the miniaturization of semiconductors cannot go on forever,
thus the End of the Moore’s Law is one of the big concern. In fact, the plateauing
of voltage levels and the increasing of leaking current is leading to a power wall

2
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Figure 1.2: Number of cores and computing power of the TOP-1 supercomputer
(TOP500.org data, retrieved 5 August 2016)

[4]. The reduction of the performance increasing trend, or even the reaching of
a performance plateau, would significantly slow down the scientific research [5].
In 2014, the Department of Energy of United States planned to achieve the too
ambitious goal of Exascale with 20 MW of power in 2018 [6], but later the
deadline was extended.

1.1.1 Exascale as a key goal to reach

Exascale computing refers to systems having a minimum computing power of
more than 1 exaFLOPS, i.e. 1018 FLOPS.

Research towards Exascale is not limited to the computer science domain,
but it strongly affects all the areas of science and engineering. The increasing
complexity of mathematical models and the growing size of Big Data requires a
growing amount of computing resources.

The Exascale goal is in fact of great interest for a wide range of applications.
We can mention several examples, like the study of astrophysical phenomena,
weather forecasting, product market simulations, the development of new drugs,
the analysis of health risks, etc. [7]. For all these applications, Exascale would

3
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Chapter 1. Introduction

Figure 1.3: The general architecture of one node in a HPC system.

enable the possibility of deploying more complex mathematical models, capable
of providing much more accurate and reliable results.

Vice versa, other non-computer scientists are studying to find alternative
technologies to the current one, in order to mitigate the today issues. Several
physicist are studying new types of semiconductors, for instance the very promis-
ing research on silicon photonics [8].

From the previous considerations we can state that HPC is still a very hot
topic of research and solving the related problematics is not just a matter of
computer science, but it will influence and it will be influenced by the research
activities in almost all fields.

1.1.2 HPC systems architecture

Since HPC systems require by definition high computational capabilities, the
computational resources are typically distributed across different high-end ma-
chines (nodes). They are connected via a high speed networks, typically 10Gi-
gabit Fiber Optics Ethernet or InfiniBand.

The storage is also provided through distribution solutions like Storage Area
Network (SAN) or Network Attached Storage (NAS). Both solutions have to
be designed for HPC environment. In particular, the storage performance and
capacity should possibly scale linearly with the numbers of nodes and disks.

The general architecture of a single node in a HPC cluster is shown in Figure
1.3. End-user applications run over a stack of software and, in particular, ex-
ploit the API provided by a specific parallel programming framework like MPI
or OpenMP. Since the application computational requirements are far behind

4
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the performance capabilities provided by a single CPU, the application must be
designed in order to run multiple threads or processes. Parallel frameworks sim-
plify the development of the applications, providing suitable API to manage the
execution of multiple tasks, the communication and the synchronization among
them.

Furthermore, the application may use other library providing specific func-
tionalities (e.g. math functions) or interact with other software frameworks, like
resource managers. The operating system as usual provides to all of software the
abstraction of the hardware (virtualized or not).

1.2 Dependability issues in HPC

In HPC, dependability – a broad term including reliability, resilience, fault toler-
ance, etc. – is another possible future wall in reaching Exascale computing [9].
To highlight the size of the problem is sufficient to say that the Mean Time To
Failure (MTTF) for current HPC systems is way below 100 hours [10].

The research community is therefore focusing its effort towards five key di-
rections [11]:

1. statistical and technical characterization of hardware faults;

2. development of a standard fault interface from hardware to software;

3. improving fault prediction, containment, detection, notification and recov-
ery;

4. the development of programming abstractions for resilience, especially
fault-tolerant algorithms;

5. proposing fault-tolerant approaches both in hardware and software design.

In this work, we focus on the item 4 proposing a tool that can be used in HPC
parallel applications in conjunction with a fault-detection mechanism to support
fault-tolerant executions on distributed systems.

1.2.1 Fault-Tolerance requirements and techniques

As already presented, one of the most important discussed theme in HPC is the
dependability concern. In particular, since the MTBF is very low compared to the
applications timespan, it is required fault-tolerance techniques able to guarantee
the termination of the application even if one or more faults occur. In fact, some
HPC applications take days or weeks to terminate and after a fault a restart from

5



i
i

“thesis” — 2016/9/16 — 9:27 — page 6 — #20 i
i

i
i

i
i

Chapter 1. Introduction

the beginning is not acceptable. Therefore, fault-tolerance is no longer a nice-to-
have feature, but it became a mandatory one in HPC systems.

To highlight the previous considerations, a simplification of the Mean Time
To Failure (MTTF) and Mean Time Between Failure calculus (MTBF) is pro-
posed, with the objective to provide a trivial qualitative analysis. Assuming
the system non repairable, thus MTTF = MTBF, let’s consider a cluster of
1.000 CPUs Intel Xeon processor of E7 Family that has MTTF = 100.000h

(~11y) [12]. The overall MTTF can be calculated as:

λi =
1

MTTFi

(1.1)

λoverall =
∑

λi
n (1.2)

MTTFoverall =
1

λoverall
(1.3)

Applying (1.1), (1.2), (1.3) to our scenario:

MTTFoverall =
1

1.000 · 1
100.000

= 100h

The overall MTTF was drastically reduced from 11 years to just few days.
Please also note that modern supercomputers have more than 30.000 physical
CPUs, leading to MTTF to be less than 4 hours. It is clear that most of the
HPC applications, that requires more than few hours to conclude, need a sort of
abstract of a fault-free system, in order to execute ideally without being affected
by hardware faults. Several approaches have been proposed in literature and
industry. The state of the art of this techniques will be discussed in the next
chapter.

1.2.2 Failures taxonomy and sources

Following the classification provided by Snir et al. [13], the HPC failures may
be grouped in three categories: detected and corrected by the hardware (DCE),
detected but not corrected by the hardware (DUE) and non-detected silent errors
(SE). We do not consider DCE, since they are transparent to the software; for
instance, the ECC memory correction is an example of DCE and it is usually
performed transparently to the software. We neither deal with SE: the correctness
of the result has to be checked by the application since the framework has no tool
to infer it.

In the example about the calculation of MTTF, the CPU fault rate was consid-
ered. However, other components like memory may be the source of the failure,

6
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further deteriorating the reliability. Regarding hardware faults, they can be di-
vided – following the Snir et al. classification – in compute soft, compute hard,
network, and I/O errors. Vice versa, software faults can be classified in: pure
software, hardware propagating up, and software propagating down errors. This
taxonomy is better presented in the subsequent Table 1.1.

Hardware faults

Compute soft errors

Errors caused by transient faults in
electronics, e.g. memory corruptions
caused by an electromagnetic interfer-
ence

Compute hard errors

Permanent fault of a computational
component (CPU, RAM, etc.) due to
a physical problem, e.g. electromigra-
tion.

Network errors

Total or partial loss of network connec-
tivity, often caused by external compo-
nent w.r.t. machine, e.g. network appa-
ratus failures.

I/O errors
Transient or systematic errors during
the reading or writing to disks or other
storage

Software faults

Pure software errors
The category containing the classical
programming issues: correctness er-
rors, concurrency errors, etc.

HW propagating to SW
A bug in the hardware that propagates
up to the software, typical an unman-
aged DUE.

SW propagating to HW
A bug in the software that damages the
hardware; it is typical of firmware in
embedded appliances.

Table 1.1: The fault taxonomy in a HPC system according to Snir et al. classification.

The number of possible faults that may lead to a failure in the system and/or
in the running HPC applications explains why the thematic of fault tolerance is
today not only bound to the embedded world, but it has a fundamental impor-
tance also for HPC environments.

1.2.3 Checkpoint/Restart

In response to these faults, most of long-run jobs require a Checkpoint/Restart
(C/R) mechanism. The C/R paradigm consists in performing periodic check-

7
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points, i.e. save the status of the system on non-volatile memory, in order to
restart the job if a fault occurs. The restart is triggered after the fault is detected
and corrected.

Provided the images are saved in a persistent storage2, this technique guaran-
tees the ability to recover from any type of fault. However, the cost of checkpoint
is extremely high and it has to be executed periodically. The overhead can easily
reach 50% of the total execution time, reducing considerably the impact on the
efficiency of the system [14].

1.2.4 Performance variation and degradation

Performance variation and degradation are increasing problems in semiconduc-
tors. The component aging has an important effect in these two problematics.

In HPC, not only faults have to be taken in account: the performance degra-
dation and fluctuation affect also the overall performance of the jobs. Then,
it makes important to preserve an acceptable level of aging of all components,
through periodical maintenances. Unfortunately, most of operations on machines
require to shutdown it; in this direction, migration allows a system administrator
to request the freeing of a machine without the necessity to wait the completion
of current tasks or freeze entirely the job via C/R.

1.3 Resource management in HPC

The resources management in supercomputers is a prominent challenge. Re-
source allocation in HPC is a problem studied since 1980s, trying to find a model
to allocate jobs in optimal distribution across supercomputers. Albeit the ques-
tion is old, the increasing of resources spread over several nodes and the diver-
sity of the software require specific policies to schedule and allocate jobs over
the cluster. In this regard, we may choose between applying static or dynamic
policies. Static policies are in most cases suboptimal or totally inadequate to
manage parallel workloads. While dynamic policies allows us to adapt resource
allocation decisions to the current workloads characteristics and system status.
Moreover, heterogeneous computing is considered by AMD one of the essential
capabilities to reach Exascale computing [15].

The goal of this policies may be vary, for instance obtain the maximum per-
formance for certain category of applications or reduce the resource underutiliza-
tion to minimum, in order to maintain an efficient system. Different applications
may have different priorities or they have to generate results (e.g. predictions)

2In this context persistent storage is intended as fault-free non-volatile memory.
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1.4. Message Passing Interface

within a given mandatory rate. In this case, it’s more important to satisfy the
strongest requirement than to have the maximum efficiency.

Most of the large clusters are utilized not only for HPC, but also for Cloud
Computing. This mixed environment requires to manage different types of work-
loads: resource-intensive long-run for HPC applications and a resource flexible
adjustment for Cloud. Resource management techniques capable of dealing with
mixed workload are consequently required [16] for large computing centers.

In 2016 Cela et al. provide an overview [17] of energy-related issues in new
exascale HPC applications. Resource management at MPI level is considered
essential in order to achieve high scalability. One of the main topics proposed for
future research is precisely the migration of MPI processes, that is the main topic
of this work. Migration opens up a wide range of possibilities. For instance the
resource manager can adapt the computing resource assignment to time varying
application performance requirements. Moreover, the application load can be
balanced among the system nodes, in order to level down the power consumption
and the temperature peaks.

This thesis presents a novel migration technique in MPI and its integration
and exploitation in Barbeque RunTime Resource Manager, a resource manager
part of the BOSP open source project.

1.4 Message Passing Interface

The Message-Passing Interface standard (abbreviated in MPI) is the de-facto
standard for parallel computing across different nodes. The MPI Forum – com-
posed by both academic and industrial people – released the first version of this
standard in 1994 and the last version (3.1) was released in 2015 [18].

The MPI standard describes the syntax and the semantics of function calls
in the Application Program Interface (API) provided by a MPI library to the
user software. This API allows the communication, the management and the
coordination between processes of a parallel application. MPI is mainly used
for distributed computing, despite in theory it can be used for the execution on
local machine only. In the latter case, OpenMP is usually preferred, since it is
optimized specifically for single node executions. To reach better performance,
most applications are implemented combining the usage of MPI and OpenMP
together.

The MPI standard is written through a language-independent specification,
in order to be implemented in any programming languages. The most common
languages are C, C++ and Fortran.
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Chapter 1. Introduction

Figure 1.4: A typical configuration of MPI systems: the user launches the mpirun
command on Node 1 that distributes the computation also over the Node 2 and Node
3. All nodes have access to a common network storage to get the program and the
data.

1.4.1 MPI Application Execution Flow

A MPI typical MPI execution is presented in Figure 1.4. The user launches the
job via the mpirun command, then the MPI framework spawns the processes
in the other available machines (how this is performed is implementation depen-
dent).

The application must be linked with the static or dynamic library of MPI, that
provides MPI_* function calls. Usually every program starts with MPI_Init
and ends with MPI_Finalize. Both functions are implementation-dependent,
but in general MPI_Init performs some setup required before any other MPI
routines and the MPI_Finalize coordinates the execution conclusion freeing
the allocated resources.

The communication between processes is divided in two categories: point-
to-point (direct communication between two processes) and collective (commu-
nication one-to-many or many-to-many). The latter is performed through the
coordination of the various MPI frameworks on all nodes. A typical example of
collective feature is the barrier: every program should synchronize at the same
point before continuing.

Having a common set of functions allows to perform easily and equivalently
benchmarks of the same application on different MPI frameworks or to port the
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1.5. Migration of MPI processes

program on another framework without refactoring the code.

1.4.2 MPI implementations

Today, several implementations of MPI are available, among which we cite the
two most commonly used: MPICH [19] and Open MPI [20]. They are both
open source and have reached a good level of stability even with a considerable
number of features, thanks to the very active communities and the large funding
of big companies and universities.

The history of MPICH can be split in two part: MPICH-1 and MPICH-2. The
development of the latter (at a later time called simply MPICH) starts in 2001 to
add the feature of MPI version 2 and subsequently version 3 to MPICH-1.

Open MPI represents the union of three previous implementations: LA-MPI,
FT-MPI and LAM/MPI. The third was extensively used in research literature. All
of which ceased their development shortly after the begin of Open MPI project
in 2003.

The two implementation mainly differs in the purpose of application: MPICH
is a very stable basis and standard reference for the development of special pur-
pose needs. Open MPI targets more general cases and it already offers several
pre-implemented features, e.g. different types of network communication chan-
nels and topology.

Since our framework is supposed to be a general tool that tries to address
the issues of the most of HPC applications, we selected the Open MPI imple-
mentation to develop the feature presented in next sections. Furthermore, the
extreme high modularity of Open MPI internal code was a big advantage in the
development of mig framework3.

1.5 Migration of MPI processes

This thesis presents a technique implemented in Open MPI able to allow the
migration of MPI processes among different nodes of the cluster. Moving a
process across different machines is not a straightforward task and it constitutes
a specific research topic. This work exploits existing process migration tools
applying them to Open MPI for HPC applications.

Migration of processes can be exploited to solve or mitigate some of the pre-
vious presented issues. Obviously, the migration is not for free and introduces an
overhead that must be taken in account, while being triggered by an appropriate
software, for instance by a fault detector or a resource manager.

3Note that the keyword ‘framework‘ may generate misunderstanding: as explained in Chapter 4, the
mig framework is a module of Open MPI, not a new MPI framework
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Migration is particularly interesting for resource management: current run-
time resource managers in HPC are limited to assign resources during the appli-
cation startup, therefore they are not usually able to reschedule the application
over different nodes. Migration adds the capability of rescheduling to resource
managers, that they have to take in account the significant overhead of moving
processes between two nodes.

In large clusters the topology and consequently the location of the processes
of the same job significantly impacts on overall performance; even if all nodes
are in the same network, the distant of two machines noticeable affects the net-
work performance. If the topology of the cluster changes – despite the applica-
tion is not involved – a rescheduling may be convenient to reach better perfor-
mance. Since C/R is too expensive in terms of time and required resources, this
scenario can be an interesting exploitation of migration techniques.

Regarding fault tolerance, the migration may in fact lead to a the reduction
of the number of C/R required: an appropriate pre-fault detection system would
trigger the migration if an imminent fault is detected, avoiding the long restart
required if the fault happens.

Certainly, a sudden unexpected undetectable fault is not manageable with a
migration technique. This is why C/R mechanisms cannot be fully replaced.
Instead, the frequency of the checkpoints can be effectively reduced, provided
an appropriate fault probability analysis.

The software architecture considered for this work does not provide a fault
detector, but assume the presence of an external one that signals the resource
manager in case of imminent fault. Subsequently, the resource manager and the
MPI framework will trigger the migration. With this setup, the resource manager
is the only interlocutor with the MPI framework and it can allocate and possibly
reallocate resources over available nodes.

1.6 Thesis structure and objectives

The main topic of this thesis is a novel approach to process migration imple-
mented in Open MPI. This technique was also presented at the EuroMPI 2016
conference [21]. In addition, the exploitation of this technique with the Bar-
beque Run-Time Resource Manager (from now simply BarbequeRTRM) is
presented in conjunction with a basic centralized resource management policy
for distributed systems.

In Chapter 2 the State of the art related to migration and C/R techniques is
discussed and the novelty of the proposed method is highlighted. The Open MPI
and CRIU frameworks are described in Chapter 3. Subsequently in Chapter 4
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and 5 the design, the implementation and the integration with BarbequeRTRM
are explained, detailing and arguing all design choices. The testing results are
discussed in Chapter 6, focusing on the introduced overheads. Eventually, in
Chapter 7 future research directions and developments are proposed. It is also
the thesis end containing the conclusions.
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CHAPTER2
State of the Art

This chapter presents the state of the art approaches for addressing the issues
presented in the previous chapter. The first part is characterized by the analysis
of Checkpoint/Restart techniques available in literature, with a particular focus
on HPC environments and MPI applications. The second part instead aims at
providing an overview of solutions to perform process migration, including the
migration of MPI processes. Finally the chapter is closed by a brief survey of
distributed resource management approaches.

2.1 Checkpoint/Restart approach

Checkpoint/Restart (C/R) – sometimes called Checkpoint/Restore – is a
widespread technique to enforce fault tolerance in computing systems. C/R are
essential for parallel and in particular HPC applications for the reason presented
in Chapter 1. C/R tools perform periodical checkpoints to save the state of the
processes in a persistent storage medium. This state is usually called image. Af-
ter a system fault, the image can be recovered in order to restart the execution
from the saved checkpoint state. The idea is depicted in Figure 2.1. C/R tools
usually adopt the following schema:

1. Synchronization of the application processes execution to reach a global
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Chapter 2. State of the Art

Figure 2.1: The Checkpoint/Restart approach.

consistent state;

2. Application execution state saving (checkpoint);

3. Application execution resuming (restart).

In case of fault of parallel applications, all the running processes are killed and
the application is restarted resuming the state from the last checkpoint. Fault-
tolerance approaches like C/R are called Rollback-recovery techniques [22].

2.1.1 Classification

At first glance, we can classify Checkpoint/Restart approaches on the basis of
the level at which they operate:

• Application-level: the C/R functionalities are provided by a specific li-
brary linked with the application. Usually the application is aware of C/R
and must provide barriers or similar synchronization point to reach a con-
sistent state of all processes and threads. Reaching a so called Global
Consistent State allows the library to perform a safe checkpoint and re-
store;

• System-level: the C/R is performed by the operating system or by the pro-
gramming framework (e.g. MPI). The application is usually unaware of
C/R and cannot therefore handle C/R events.

Alternatively, we can distinguish C/R approaches on the basis of the software
layer, or granularity, at which they act:

• Virtual Machine-level: the classic approach in Infrastracture-as-a-Service
virtualization. The application processes are distributed in several virtual
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2.1. Checkpoint/Restart approach

machines governed by a hypervisor. It provides the virtual machine re-
quirements (e.g. isolation) and also the capability of C/R (called snap-
shots). A virtual machine can be moved to another physical server or
stopped and resumed if needed;

• Container-level: the operating system-level virtualization provides con-
tainers on top of which the application processes run in a isolated environ-
ment. The approach is similar to the one based on virtual machines with
the exception that there is only one instance of guest OS running on the
host machine. Similarly to Virtual Machines, the C/R tools for containers
are usually available and easy to implement and use;

• Process-level: C/R saves and restores the execution of each single process.
This approach is more complex than moving a virtual machine or a con-
tainer because the process is not completely isolated, In fact, in order to
correctly save the execution status, all the input/output channels (file de-
scriptor, sockets, etc.) need to be closed. The restore stage also presents
several problems, for instance when the execution is resumed, the process
identification number (PID) must be guaranteed to be the same. However,
running natively the application on the system does not add the typical
overhead of virtual machines and containers.

As shown by the timeline in Figure 2.1, the cost of C/R is very high in terms
of wasted time, especially, due to the periodic checkpoints required. Conse-
quently, the overall overhead may reach over the 50% [14] of the total execution
time.

2.1.2 Libraries and frameworks

The scientific interest in Checkpoint/Restart started in early 1990s with some
application-level libraries. The first approaches to system-level checkpoints
started in the same years, however the system-level tools most used today were
created after 2005.

Regarding the application-level mechanism, one of the most known libraries
is libckpt developed in 1994 by University of Tennessee for UNIX systems
and later ported to Linux [23]. The user application has to be modified by adding
the libckpt function calls, in order to instruct the linked library to periodically
perform the checkpoints (default interval 10 minutes). This library implements
also incremental checkpoints, that instead of create and save a full image for
every checkpoint, it stores only the difference between the last and the current
state images. With incremental checkpoints the overall size of subsequent images
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Chapter 2. State of the Art

on disk is dramatically reduced and consequently it also limits the I/O overhead
due to the image storing.

In 2003 the Department of Computer Science of the Berkeley Laboratory
(US Department of Energy) developed the Berkeley Lab Checkpoint/Restart
(BLCR) software [24]. The approach is a process-level C/R for Linux, with
a hybrid kernel/user space implementation, designed with HPC applications in
mind. This open source tool was improved and maintained until 2013. BLCR
requires to load a custom kernel module, that is in charge of providing the access
to data usually neither visible nor modifiable from user-space. For instance, the
possibility to alter the PID sequence or to know the filename associated to one
file descriptor. The user-space BLCR software uses the API provided by the
kernel module to implement the checkpoint and the restart of the process.

Starting from Linux version 3.3 (released on March 18, 2012), it became
possible to produce full user-space C/R tool, thanks to the

CONFIG_CHECKPOINT_RESTORE

kernel option. This option enables the application to access to kernel parame-
ters, like modify the next PID in the PID sequence. To the best of our knowledge,
CRIU (Checkpoint/Restore in Userspace) [25] is currently the only available
tool that exploits that kernel option. Since an user-space tool presents several ad-
vantages (higher portability, security, maintainability, etc.) compared to a kernel-
space one, CRIU was selected as C/R tool for this thesis. In the next chapter, a
description of CRIU and the motivations of this choice will be extensively dis-
cussed.

2.1.3 Checkpoint/Restart in MPI

Since the early years of development of MPI implementations, C/R was one
of the most hot research topic. Several C/R tools have been proposed to be
integrated in MPI framework or designed to directly work with MPI, like the
previously cited BLCR.

One of the first C/R implementations for MPI was proposed in 1997 by Li et
al. [26]. This C/R consists of multicast daemons that assist the MPI runtime to
perform communications and checkpoints. The checkpoints are locally coordi-
nated at single node level, while the processes running on remote nodes are con-
sidered out of scope. Moreover, the multicast daemons replace the MPI library
communication module in order to provide a retransmission mechanism when
messages are lost due to an ongoing checkpoint. This C/R was implemented in
the LAM/MPI library.

18
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Hursey et al. [27] extended the Open MPI stack with additional layers provid-
ing C/R capabilities. The approach is based on a dedicated Checkpoint/Restart
Coordination Protocol (CRCP), to support the synchronization among the nodes
of the distributed systems. The coordination is split is three phases:
pre-checkpoint, continue and restart. The first phase has the duty to bring the
system to a checkpointable state, i.e. it has to ensure the synchronization of the
processes, the absence of in-flight messages, a safe state of all file descriptors,
etc. The continue phase is indeed the checkpoint: close all socket connections
and call the BLCR routines in order to save the image. Finally, the restart oc-
curs on demand (e.g. after a fault-recover) and restores the previously saved
image. A similar approach, still exploiting, BLCR was proposed in 2005 for
LAM/MPI [28].

One of the advantages of this technique is the ability to be network agnostic.
The application processes can be stopped and then restarted on a different set
of nodes, potentially characterized by a different network topology. The coordi-
nation protocol has to consider also the exchange of information about the new
topology over all nodes and their processes. However, this solution introduces
noticeable code dependencies between internal Open MPI modules. Moreover,
it induces significant overheads: copying the process state images onto an exter-
nal storage server becomes in fact a real bottleneck for the system. The previous
drawbacks, along with the poor maintainability of the software, led the Open
MPI developers to disable these additional layers since Open MPI version 1.7.
Nevertheless, this work is still the only working C/R available in the Open MPI
mainline code repository.

For the sake of completeness, C/R can be used also for purposes different
from fault-tolerant. For example, it can be used to efficiently debug parallel
applications [29]: if the programmer want to rewind the execution, he or she
does not necessarily restart the application from the begin, but only from the last
saved checkpoint.

2.1.4 Limitations

As already briefly discussed in Chapter 1, the common limitation of C/R based
approaches is the overhead introduced by performing periodical checkpoints,
which is done during the entire application lifespan. In some use cases this
overhead impacts dramatically, even doubling the execution time of the applica-
tions [30]. For example, to quantify this overhead, consider that in 2013 some
TOP500 HPC systems requires a checkpoint time between 40 to 60 minutes [10].
A further problem is that this side-effect increases exponentially with the system
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size, i.e. the number of computing nodes. Considering a large HPC system with
thousands of nodes and not negligible power supply costs, the overhead must be
evaluated not only in terms of time, but also in terms of energy consumption [31].

In systems based on Virtual Machines or Containers, implementing C/R mech-
anisms – even if in conjunction with MPI – is relatively easy. However, virtual
machines also have a significant impact on the application performance, espe-
cially for I/O intensive workloads in HPC systems [32]. The lack of shared
memory communication between processes on different virtual machines indeed
has been considered an important inefficiency since the beginning of virtualiza-
tion’s use in HPC environments [33]. Although many approaches have been
proposed to mitigate this problem, the significant overhead persists even today,
inducing an increment of latency by a factor up to 16x for communication inten-
sive operations [34].

2.2 Process migration in MPI

Process migration – or task migration – is a technique that can be used in
alternative or in support to C/R. When the allocation of nodes has to be changed
(e.g. due to a failure of one node), classic C/R techniques consist in checkpoint
the application a restart it over a different subset of nodes. This job can be
performed more efficiently with process migration, in order to involve only the
nodes that have to be moved.

In large cluster, process migration is useful to add reliability and to balance
the resource allocation across the cluster [35]. The migration request can be done
centralized (e.g. by a resource manager) or by the single node, that for instance
may request a migration if it’s overloaded or an imminent fault is going to occur.
While it has the potential benefits described, the entity that triggers the migration
must take in account the considerable migration cost.

In 1996, Stellner proposed the first migration technique in MPI: the Cocheck
environment [36]. This environment was built on top the MPI framework and
not inside (actually small modifications to MPI framework were applied). The
global consistent state is achieved by imposing no message in-flight over the
network. Then, checkpoint or a migration of a subset of processes is performed
according to what is required.

Process migration can be used also to supported classical C/R approaches, as
presented by Wang et al. [37]. Their work introduced a process-level migration
that allows us to potentially achieve a higher utilization of the system resources,
with respect to virtualization based approach. The basic idea of the authors is to
try to minimize the number of C/R by using a proactive approach: health moni-

20



i
i

“thesis” — 2016/9/16 — 9:27 — page 21 — #35 i
i

i
i

i
i

2.2. Process migration in MPI

toring of the computing node state and migration of all the running processes on
a different node, in case of imminent fault prediction. Their approach reduces
the number of performed C/R with respect to periodical checkpoint based tech-
niques. However this solution requires to synchronize all the running processes
into a global consistent state, before stopping and migrating them to a new node.
This can represent an issue in case of imminent faults that require short time to
act. The approach was implemented in LAM/MPI (predecessor of Open MPI)
using the BLCR tool.

According to the aforementioned works, we can argue that the main issues to
be tackled when dealing with processes migration in HPC systems are:

• Design an easy to maintain migration framework;

• Enable migration support without introducing changes in the application
code;

• Enable the possibility of migrating just part of the application, i.e. a subset
of processes;

• Do not bind the migration overhead to the synchronization of the processes
execution into a global consistent state;

• Provide interfaces to allow a resource manager to drive the processes mi-
gration according to smart policies.

The solution we propose addresses all the aforementioned issues:

1. It is a process-level migration mechanism whose granularity can be tuned
by the resource manager;

2. It does not require any change to the application code;

3. The migration is almost completely transparent with respect to the appli-
cation execution;

4. Migration can be triggered by a resource manager through a suitable API.

2.2.1 Heterogeneous process migration

Process migration is usually available in homogeneous clusters, since migration
in heterogeneity conditions is much more complex [35].

In 1998, Smith et al. presented the Tui System [38], an experimental frame-
work to perform process migration between heterogeneous machines. The arti-
cle was well received by the scientific community and it shows the several issues
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affecting the heterogeneous migration. The main problem is the conversion be-
tween different ISA, that may require different instructions, register numbers,
register size, etc. For this reason, the compiler is compulsory involved, because
it must produce a code that matches one-to-one between different architecture.
As a consequence, in order to simplify the problem, the Tui System has strong
constraints regarding the two architectures involved, that leads to a migration
much more quasi-homogeneous than heterogeneous.

Other few solutions were proposed, e.g. Cabello et al. [39] proposed an Open
MPI middleware to provide migration mechanism in heterogeneous systems. In
this case the process is not directly migrated but a new process is started in the
destination machine. Unfortunately, this middleware provides dedicated MPI
calls, violating the standard and requiring substantial rewrite of all MPI applica-
tions.

2.3 Distributed resource management

The academic interest in resource management significantly increased since 2005,
when the first multi-core processors became available. However, the resource
management of distributed systems goes back to 90s, when the resource schedul-
ing and allocation became a necessity for large data-centers.

Classical feature of a resource management systems is to provide an efficient
assignment of resources to jobs. This problem is called resource allocation or
resource scheduling [40].

For the first Grid systems1 resource management was essential and still plays
a crucial role in this type of distributed systems. The resource manager has to co-
operate to guarantee the properties of scalability, responsiveness, fault-tolerance,
stability – that are in common with Distributed Computing Environments – but
also security, heterogeneity, isolation, distributed ownership, and QoS [41]. In
this regard, a variant of MPICH – called MPICH-G – was proposed in 1998 to
enable MPI to work in Grid computing [42].

Nowadays, delivering high throughput and low latency in supercomputers
getting close to Exascale requires a resource management system sufficiently
scalable. Current centralized resource managers seem not a feasible solution to
guarantee the performance requirements in Exascale, so the current research is
oriented in distributed resource management [43].

Not all HPC environments require a perfect efficient scheduling of resources,
due to policy reasons. In distributively owned environments, the owner of a re-

1A Grid system is a large distributed Network Computing system with machines distributed over several
data-centers

22



i
i

“thesis” — 2016/9/16 — 9:27 — page 23 — #37 i
i

i
i

i
i

2.3. Distributed resource management

source defines the access policy for that specific resource, for instance setting
time constraints. These policies introduce more complexity in modeling the sys-
tem, and consequently in the resource management performance [40].

Furthermore, in last years, distributed resource management becomes not
only important for HPC applications, but also for energy-aware resource man-
agement in Cloud Computing infrastructures [44].

2.3.1 Resource Management and Open MPI

Name Developer Last stable release Reference

ALPS Cray User Group April, 2012 [45]

Grid Engine
Proprietary and open source
implementations available

January, 2014
(open source

version)
[46]

LoadLeveler IBM Corporation unknown N.A.

LSF IBM Corporation August, 2016 [47]

SLURM Open Source community July, 2016 [48]

Torque (ex PBS) Adaptive Computing August, 2016 [49]

Table 2.1: The supported resource managers in Open MPI.

At the time of writing Open MPI supports several resource managers, as sum-
marized in Table 2.1. Most of them statically assign the resource to the MPI ap-
plication at launch-time. Two different approaches are used in current resource
managers: interactive or wrapped. In the first case, the mpirun command is
invoked while Open MPI subsequently interrogates the resource manager asking
to which nodes dispatch the application processes. In the second case, a wrapper
script interrogates the resource manager and subsequently execute the mpirun
command. Then, Open MPI typically retrieves the information via environment
variables or similar mechanisms.

Even if some of the previous resource managers offers features like C/R and
migration (e.g. SLURM via BLCR), they are not integrated in Open MPI. The
first part of our work is to add the support of the BarbequeRTRM to Open MPI,
including the dynamic rescheduling of application during runtime. This feature
is implemented with process migration.
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CHAPTER3
Open MPI and CRIU internals

The goal of this chapter is to describe the current implementations of the Open
MPI and CRIU frameworks, in order to introduce the concepts necessary in
Chapter 4. The development of both frameworks is very active and the informa-
tion in this Chapter may be outdated in latest releases. The information reported
in this chapter refer to version 1.10 for Open MPI (November 2015) and version
2.1 for CRIU (April, 2016).

Open MPI works both on 32-bit and 64-bit architectures, running in POSIX-
like operating systems. Linux and OS X are fully supported, while Solaris only
partially. On Solaris Open MPI can therefore not work properly. Finally, Mi-
crosoft Windows compatibility was dropped since version 1.8 (March, 2014).

CRIU instead supports only Linux operating system, starting from kernel
version 3.11.

3.1 Open MPI architecture

3.1.1 Modular Component Architecture

Open MPI design is based on the Modular Component Architecture (MCA)
[20], which is composed by three entities:
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• MCA: the backbone, in charge of the correct instantiation of all other mod-
ules. It loads the run-time parameters and passes them to the correct frame-
works;

• Frameworks: the main functional parts in which Open MPI is structured.
Each framework is devoted to a specific task. For example, the process
lifetime management or the input/output forwarding services. For each
framework several implementations can be available, called components;

• Component: an implementation of a framework. Each functional part may
be implemented in several ways, for instance by relying on different pro-
tocols (e.g. TCP or InfiniBand). More concretely, a framework imple-
mentation can be made by more than one component: a base component
exposing the common functionalities functions to all the other components
in the framework, plus other optional components.

Frameworks are usually built all together, but according to the requirements it is
possible to disable the framework at compile-time. The components can be in-
stead selected at compile-time and even at run-time, via appropriate commands.
If more than one component is available at run-time, the MCA selects the one
with the highest priority. The priority is assigned by the components developers.

Furthermore, in order to maintain a logical separation between different func-
tional areas, the frameworks are grouped into three sections:

• OMPI: Open MPI, the application-level API. most of the frameworks in
this section are compiled into the shared library, that will be linked to the
user application.

• ORTE: Open Run-Time Environment, the underlying subsystem control-
ling the life-cycle of application processes, coordinating the execution and
providing for the MPI collective communications.

• OPAL: Open Portable Access Layer, an utility library that provides to
OMPI and ORTE a set of common frameworks, like event management,
memory allocation, etc.

The structure of Open MPI repository reflects the architecture design. The
code is split over several directories, whose filesystem path is structured as fol-
low:

/<section>/mca/<framework>/<component>

For instance, the component that provides the packet routing for coordination
messages in a de Bruijn network is located at:
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3.1. Open MPI architecture

Figure 3.1: The conceptual diagram of Modular Component Architecture implemented
in Open MPI

/orte/mca/routed/debruijn

The features provided by ORTE are exploited by a dedicated daemon, called
ORTE daemon or shorten orted. An instance of the daemon is spawned in
each node assigned to Open MPI. It is in charge of launching and managing the
local processes of the application. When mpirun is executed in one node, a
ORTE daemon is started1 getting the name of Head Node Process (HNP).

The overall software design is shown in Figure 3.1, while in the next subsec-
tions the functions provided by some frameworks are described.

3.1.2 Execution Flow and Communication Layers

After the execution of mpirun the HNP interrogates the Resource Allocator
Subsystems (ras) to get the list of available nodes. Depending on which RAS
component is active, it may contact a resource manager or perform other actions,
like reading the node list from the host file (default action if no resource manager
specified). How the interaction with resource managers works is described in the
next Section 3.2.

The Process Lifetime Manager (plm) is subsequently in charge of spawning
the ORTE daemons on the other nodes specified by the list provided by the RAS.
The PLM maintains also the communication between the various instances of
ORTE daemons at high-level, i.e. it decodes the messages and dispatches them
to the framework in charge of handle it. The plm framework implementation
can delegate the process spawning the resource manager. The default selected
component – and the component used in this work – is the well known Secure
SHell (SSH). The orted commands are executed in the other nodes directly via

1To be precise, the mpirun command after the elaboration of command line parameters starts to act
as an orted. This means that in the system process list, we will see mpirun and not orted, even if it
actually executes the code of orted.
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Chapter 3. Open MPI and CRIU internals

Figure 3.2: Network diagram. The orange channels represent the inter-node
application-level communications, the cyan channels represent the intra-node
application-level communications, and the green one represents the orted-level
communications.

ssh calls.
Subsequently to the spawning of ORTE daemons, the coordination of the

execution takes place distributing a series of messages (having a semantic like
"start X processes on node Y") performed at high-level by the plm. The plm
entrust on two ORTE stacked layers, that are in charge of managing the low-level
communication: Run-Time Messaging Layer (rml) and Out Of Band (oob).
The latter manages the low-level byte exchanges that is usually performed via a
TCP/IP network.

Specularly, the application-level messaging is managed by OMPI subsys-
tems:

• P2P Management Layer (pml) catches MPI calls and manages fragmen-
tation/reassembly of high-level messages;

• BTL Management Layer (bml) provides the routing to the correct and
optimal network device;

• Byte Transfer Layer (btl) low-level layer in charge of perform system
calls (e.g. socket). The current available implementations are: Transmis-
sion Control Protocol (TCP), InfiniBand, Portals 4, User-Level Generic
Network Interface (uGNI), Ultra low latency Ethernet (usNIC). For intra-
machine communications there are also available shared memory, Intel
Symmetric Communications Interface, Vader.

The described communication architecture is summarized in Figure 3.2.
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3.1. Open MPI architecture

Input/Output

The standard input (stdin), standard output (stdout) and standard error
(stderr) of the application are exchanged via a framework called I/O For-
warding (iof). Particularly, each process of the application may send bytes
over stdout or stderr and may receive bytes on stdin. The iof frame-
work is in charge of distributing these streams across different nodes, usually
stdout/stderr towards HNP and stdin from HNP to remote daemons.
This framework, like plm, is on top of rml and oob layers.

When a ORTE daemon receives stdin data from iof, it dispatches the data
to its children via a previously opened pipe2. Vice versa, when the ORTE daemon
receives data on pipes dedicated to stdout and stderr it forwards the data to
HNP via iof.

3.1.3 Event Management

The internal Open MPI events are managed by the OPAL framework event.
This framework is in turn based on libevent [50], a cross-platform event notifica-
tion library. Every component may delegate to the event framework the check
for an event. When the event happens, the event framework executes the call-
back function provided. Open MPI by default executes on a single-thread, both
the ORTE and the OMPI subsystems. Therefore, all functions have to execute
their code and terminate quickly in order to give back the control to the event
manager routine.

By default Open MPI adopts an aggressive mode: the event manager does
not voluntarily yield the processor, but only if the operating system scheduler
preempts it. Instead, if it is waiting for a specific event (like a message coming
from a socket) it keeps spinning in order to check the event firing. This tech-
nique may help in order to reduce the reaction time, avoiding the context-switch
overheads.

3.1.4 Auxiliary Executables

Open MPI has several executables in addition to the commands required by the
MPI standard (mpicc, mpiexec, etc.). Each executable is linked with ORTE,
OMPI and/or OPAL depending on the needed functions and the commands usu-
ally communicate with the running instances of ORTE daemon in order to re-
trieve information or perform actions. The list and the description of available
commands is presented in Appendix A.

2A pipe is an unidirectional data channel used for inter-processes communication in Linux

29



i
i

“thesis” — 2016/9/16 — 9:27 — page 30 — #44 i
i

i
i

i
i

Chapter 3. Open MPI and CRIU internals

3.2 Open MPI resource management

The Open MPI framework that provides resource management is the Resource
Allocator Subsystem (ras). The implementations correspond to the supported
resource managers presented in Table 2.1 plus the implementation for reading
the node list from a file. Each ras component has to expose four functions (in
addition to the usual functions required by MCA):

• init: a procedure called during the startup to initialize the component;

• allocate: it receives the job and it has to fill a list of nodes. It is in
charge to contact the resource manager in order to request the node list and
how many resources available for each node;

• deallocate: it receives the job that will be deallocated from the nodes.
Currently, all ras components do not implement this function;

• finalize: a procedure called during the shutdown to clean the compo-
nent and other finalization actions.

The components are called only during the setup of MPI applications, if they
do not set other events. Multiple approaches are possible, e.g. Torque component
analyzes the environment variables or SLURM component tries to contact the
resource manager via socket.

3.3 CRIU architecture

Checkpoint/Restore in Userspace – abbreviated in CRIU – [25] is a software
that exploits the recent configuration entry CONFIG_CHECKPOINT_RESTORE
in Linux.

The open source software is developed by a community mostly made of Vir-
tuozzo developers – a company located in Russia born from a spin-off of Paral-
lels.

It provides several features, from the basic Checkpoint/Restart functionality
to live migration. The services are provided through three different interfaces:
Command Line Interface (via the criu command), Remote Procedure Call (us-
ing the Google Protocol Buffers), and the C Application Program Interface.

The CRIU checkpoint is invoked using the CLI interface with the following
command:

$ criu dump -D <directory> -t <pid>
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3.3. CRIU architecture

The -D <directory> parameter indicates the path where the image will
be saved. The -t <pid> parameter indicates the PID of the process to check-
point. CRIU checkpoints also all the children of the specified process. The image
is saved in the provided directory, in form of several files that can be categorized
as follows:

• Inventory files: they contain the general information about the image, e.g.
version number, system general information, etc.

• Image files: the regular files that represent the process status. The most
important are the memory dump files, that contain the pages correspond
to the memory content of the process, both private and shared. Other files
contain the open file descriptors, the address space information, time states,
the task credential, the mountpoints list, etc.

• Auxiliary files: they keep statistics and other non-essential information;
they do not include any process data.

Similarly, the CRIU restart is performed using the CLI interface with the
following command:

$ criu restore -D <directory>

3.3.1 Linux Kernel Configuration

The CONFIG_CHECKPOINT_RESTORE is a kernel configuration entry present
in Linux starting from version 3.11. This configuration enables additional kernel
features in order to enable Checkpoint/Restart actions in user-space. In particu-
lar, it introduces:

• Some additional flags for the prctl system call. This system call al-
lows the user to perform some actions on the process kernel descriptor.
For example it is possible to change the behavior after a floating point
exception and to request a signal send when the parent process terminates.
Checkpoint/Restart requires to modify certain kernel memory map descrip-
tor fields in order to restart correctly the process, e.g. the start address of
the stack and the data segment size.

• Additional /proc filesystem entries, again in order to ensure a correct
restore:

– /proc/[pid]/map_files/: this directory contains the memory-
mapped files, i.e. segments of virtual memory that have been as-
signed to particular file descriptors via mmap system call.
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Chapter 3. Open MPI and CRIU internals

Figure 3.3: The flow diagram of the Checkpoint (Dump) and Restart (Restore) phases
of CRIU. (Authors: CRIU Developer. Republishing permitted under GNU FDL 1.3)

– /proc/[pid]/timers: this file provides the list of POSIX timers
enabled for the process.

• The /proc/sys/kernel/ns_last_pid file: it enables a privileged
user to change the kernel internal counter used to select the next Process
IDentifier (PID).

3.3.2 The Execution Flow

The flow diagram of CRIU execution is depicted in Figure 3.3. The page server
is a CRIU component that enables the transfer of the image to a centralized server
or to another machine. It is not currently considered for this work and we omit
other details.

Initially, a parasite code – built in Position-independent code format (PIC)
– is injected into the victim application via the ptrace tool. The parasite code
starts a daemon that will receive CRIU internal commands, preparing the appli-
cation for the checkpoint. The most important purpose of this code is to save the
execution context of the victim (registers, etc.). Subsequently, the full images
of the victim process and its children are transfered into the disk, ready to be
restored.

However, since the parasite code is a very limited code – it cannot be linked
to any library due to the PIC nature – some actions are executed directly by
CRIU process. The corresponding restore phase is called Restorer context. The
data managed outside the parasite code is:

• the memory content
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3.3. CRIU architecture

• all the timers information

• the credentials (permissions, chroot, etc.)

• the threads information

Before restarting the processes, the /proc/sys/kernel/ns_last_pid
has to be set with the number immediately before the PID of the process we want
to restart, providing the file is locked exclusively. Obviously, that PID and the
PIDs of its children must be available in the system, otherwise the process restart
is not possible3.

It is possible to summarize the checkpoint phases in:

1. Inject code in the processes tree;

2. Collect processes resources and save it;

3. Cleanup: kill the application or remote the injected code to continue exe-
cution.

Specularly the restore phases perform the following actions:

1. Resolve shared resources in order to avoid to duplicate shared memory
region;

2. Change the PID kernel counter and fork the processes tree;

3. Restore the processes resources;

4. Restore the processes context;

5. Restore the last information (timers, threads, etc.).

3.3.3 Advantages over other C/R tools

The first advantage is the high number currently supported architectures com-
pared to other C/R tools:

• x86

• x86_64

• ARM

• AArch64

• PPC64le
3This is a strong limitation for migration, but it will be addressed in the next Chapter.
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Chapter 3. Open MPI and CRIU internals

Part of CRIU code – in particular the parasite code – is strongly architecture
dependent. Apart that code, CRIU relies on machine-independent Linux system
calls.

The second, but probably the most important advantage of CRIU compared
with other C/R tools, is the ability to run completely in user-space, even if it
requires the root user permissions. Removing the limitation of administrative
privileges is an on-going development. Running in user-space instead of kernel-
space presents several advantages, among which it is possible to find: better
maintainability and portability, less security vulnerabilities and safety risks.

The third main reason that leads us to select CRIU, is the very active develop-
ment community, that provides not only bug fixing, but also new features, with
monthly cadence releases. Some communities that developed other tools are no
more active, like BCLR.

34



i
i

“thesis” — 2016/9/16 — 9:27 — page 35 — #49 i
i

i
i

i
i

CHAPTER4
Enabling Process-Level Migration in Open MPI

The software implementation proposed in this thesis can be split in two parts.
The first one – subject of this chapter – is the implementation of the mig frame-
work and the related changes in Open MPI. The second one – presented in Chap-
ter 5 – is the integration of Open MPI with Barbeque Run-Time Resource Man-
ager, including a resource management policy that exploits the migration mech-
anism introduced.

4.1 Process migration flow design

The migration mechanism proposed is integrated in the Open MPI as a novel
framework, leaving to the resource manager the implementation of the logic ac-
cording to which is it worth to require a migration to Open MPI. The idea is to
relieve the MPI framework all the aspect of resource management, fault tolerance
and other tasks that would be better performed by an external manager. The re-
source manager may have a wider visibility on the overall distributed system (or
cluster) and may consider also non-MPI application in the resource accounting.

The core idea of the proposed migration technique is to be as much as possi-
ble transparent not only with respect to the applications, but also to other Open
MPI frameworks, consequently proposing a system-level and process-level mi-
gration. At the time of writing the number of frameworks is over 50, each of them
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Chapter 4. Enabling Process-Level Migration in Open MPI

Figure 4.1: Description of migration mechanism implemented through the mig frame-
work.

having between 1 to 10 components. The last consideration is the main reason
to guarantee the maximum transparency with respect to other frameworks and
it is one of the key differences with previous system-level approaches in C/R
and migration in Open MPI and it ensures simplicity and maintainability of the
proposed solution.

Our migration mechanism consists of migrating not the single MPI process,
but the overall ORTE daemon. This means that the migration involves batch of
Open MPI processes, in first approximation all processes in each node. Subsec-
tion 4.1.1 contains further discussions about the migration granularity.

Following the flow depicted in Figure 4.1, the designed sequence of migration
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4.1. Process migration flow design

is:

1. The resource manager asks a migration to the HNP;

2. The HNP informs all ORTE daemons and for extension all MPI processes;

3. The HNP issues the migration command to the ORTE daemon on node
requested to be migrated;

4. Simultaneously with the previous command, orted-restore is spawned
in the destination node (see Subsection 4.1.2 for details);

5. The migrating ORTE daemon issues the command to own processes to
isolate themselves with respect to remote MPI processes;

6. The checkpoint is performed;

7. The resulting image state is transfered to the destination node;

8. The orted-restore performs the restart;

9. The restarted orted informs the HNP of the successful migration;

10. The HNP notifies all other processes about successful migration. They
starts the restoring of the connections;

11. The HNP notifies the resource manager about successful migration.

To actually execute the steps 6 and 8 the Checkpoint/Restore In Userspace
(CRIU) tool is used, as described in next Subsections. The most important over-
head is the step 7, as subsequently confirmed by the benchmark presented in
Chapter 6.

4.1.1 Multiple ORTE daemons on the same node

The migration mechanism works at orted-level and this entails the limitation
of moving only the entire set of processes assigned to a node. Therefore, it is not
possible to move a single process.

In order to mitigate the previous limitation, we added to Open MPI the capa-
bility to spawn multiple ORTE daemons on the same node. This is not usually
desired since two processes in the different ORTE daemons cannot communi-
cate via shared memory, but they need to use TCP or other network protocol.
However, network protocols routed in local does not impact significantly. The
overhead introduces will be analyzed in Section 6.
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In HPC oriented systems, even a small local overhead may have a not negligi-
ble impact on the execution of parallel applications on multiple nodes. However,
migrating with the granularity of ORTE daemon presents several advantages for
process migration:

• The MPI processes does not need to change the active component used in
communication. If two processes are spawned by the same ORTE daemon
they communicate via shared memory and after migration they are still
able to communicate via shared memory. Vice versa, if two processes are
in different ORTE daemon groups, they communicate via network (e.g.
TCP) and they still use that network (e.g. TCP) after the migration of one
of ORTE daemon;

• It is not necessary to close and reopen the communication channels be-
tween ORTE daemon and its MPI processes, i.e. the POSIX pipes. The
CRIU framework guarantees that they will properly work also after the
restore;

• The Open MPI internal states have to be changed in a minimal part. Assum-
ing all nodes homogeneous, the most important parameter that will change
after migration is the IP address of that daemon and processes. Other in-
formation that will change are the hostname, the domain name, etc;

• Most of the Open MPI frameworks, as well as the applications, are com-
pletely un-aware of the migration. They notice only a long delay in the
communication network from and towards the migrating processes.

4.1.2 The orted-restore helper program

After the checkpoint of the source ORTE daemon the image has to be transfered
on the destination node. Subsequently, the orted has to be restarted via the
appropriate CRIU API calls.

Initially, we thought about using ssh: a connection from the source node
to the destination node is used to copy the image in the new node and another
connection from HNP to destination node would issue the command necessary
to the restart. However, this idea was put aside due to the large overhead of ssh
connection, both for the connection latency and for data encryption overhead. A
standard AES256-CTR chiper may easily halve the throughput [51].

Currently, the image transfer is performed in plain-text via TCP socket be-
tween the ORTE daemon and the program orted-restore spawned on the
destination node for this purpose. The orted-restore has also the task of
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4.2. Open MPI modifications

invoking the restart function of CRIU. Once the migrating orted and its pro-
cesses are successfully restarted, the orted-restore waits for their termina-
tion before exiting.

In order to spawn the orted-restore on the remote machine, the mig
framework relies on the plm framework functions. The plm spawns the
orted-restore using the same method used to spawn the ORTE daemons.
Currently, we implemented the functionality only for ssh component of plm -
the most used one -, anyway it’s easy to extend other components to support this
feature.

We decided to implement also the possibility of compressing the image be-
fore the transfer. The performance measures presented in the Chapter 6 reveal
that for the most HPC applications, compress the image does not give any ad-
vantage. The resource manager is in charge of choosing between compressing or
not the image.

4.1.3 The global consistent state

As previously discussed in Section 2.1, a Global Consistent State is typically
reached by the existing C/R tools before performing the Checkpoint of the appli-
cation.

In our implementation a Global Consistent State is simply never reached.
Since we are interested in achieving the maximum transparency with respect to
the application with the minimum migration overhead, reaching a safe-point by
all MPI processes is an avoidable feature. Furthermore, processes not involved
in migration are able to continue execution if they do not require to communicate
with migrating processes.

Even if a Global Consistent State is not reached, the correctness of the appli-
cation is guaranteed by the fact that no messages are lost during the migration.
This is enforced thanks to a careful coordination of the migration and the modi-
fications applied to btl described in next sections.

4.2 Open MPI modifications

4.2.1 The mig framework

The mig framework, shorten for migration, is the new framework added by this
work. It is the core of migration mechanism both in HNP and in processes. Part
of the framework is executed only in HNP and it has the role of coordinating all
the migration phases. Other functions are executed only in the ORTE daemon

39



i
i

“thesis” — 2016/9/16 — 9:27 — page 40 — #54 i
i

i
i

i
i

Chapter 4. Enabling Process-Level Migration in Open MPI

(e.g. the CRIU calls) and others only in the MPI processes (e.g. to perform the
IP address changes).

Components

The framework has several common functions in the base component while
other components provide the Checkpoint/Restore functionalities. Currently only
the criu component is present, since we selected CRIU to perform the C/R of
processes.

The functionalities provided by the base component may be overwritten by
the active component. At present, the functionalities of criu component are
complementary to the base, thus no overwrite is necessary. The base compo-
nents provides:

• The entry point function called by ras to start the migration procedure;

• The exported callback function that plm will use when a migration mes-
sage is incoming;

• A function called by the HNP, in order to refresh the data changed after
migration, e.g. the hostname of migrated ORTE daemon;

• The image transfer functions between the migrating orted and the
orted-restore on the destination node;

• The timing to perform benchmarks on the migration mechanism.

Instead, the criu component implements the API calls to CRIU, in order
to actually perform the Checkpoint and the Restore of MPI processes. These
functions are never executed in the MPI processes, but only in the migrating
orted and in the orted-restore executable.

4.2.2 Other frameworks

Besides the newly introduced mig framework, the migration mechanism re-
quired the modification of other already existing frameworks. These changes
are not very intrusive and usually they have been added in separated source files,
with the exception of the btl framework, that required several injected lines of
code. This separation guarantees a good level of maintainability.

Changes required for enabling the migration mechanism have been intro-
duced in:

• ras (part of ORTE): currently, Open MPI uses this framework only in the
application initialization, to get the full list of available nodes. We extended
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Figure 4.2: The migration phases.

the ras API to allow the resource manager to send migration requests
during the applications execution and to be notified about the status of the
requests.

• oob (part of ORTE): the “out-of-band” framework provides the low-level
API for the communication between HNP ⇔ orted, and orted ⇔ its
child processes. The current Open MPI implementation includes TCP as
the only transport layer for ORTE daemons inter-communication. This
framework contributes to the process migration by managing the opening
and closure of the pending TCP socket connections towards the migrating
ORTE daemon instance.

• plm (part of ORTE): high-level HNP ⇔ orted communication frame-
work. We implemented the protocol necessary to coordinate the ORTE
daemon instances in the base component. We also added the ssh call that
spawns the orted-restore daemon on the destination node. This dae-
mon is in charge of resuming the processes execution once the checkpoint
image transfer is completed.

• btl (part of OMPI): this is the application-level peer-to-peer communica-
tion framework. In our work we modified the TCP component to manage
the opening/closure of the TCP socket connections among migrating appli-
cation processes. See Section 4.4 for details.

4.3 The migration phases

This section describes in detail how the proposed migration mechanism is struc-
tured. We have divided the migration procedure in five phases:

• Coordination stage;

• CRIU dump;
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• Process state migration;

• CRIU restore;

• Finalization stage.

This schema is shown in Figure 4.2.

4.3.1 Coordination Stage

The coordination stage starts when the mig framework on the Head Node Pro-
cess receives from ras a migration request specifying a source and a destination
nodes.

The mig framework spawns an orted-restore daemon on the destina-
tion node, which is therefore able to receive the migrating ORTE daemon. Then,
via plm, the framework issues a MIGRATION_PREPARE command to all the
ORTE daemon instances running over the system, broadcasting the information
related to the migration request. When the ORTE daemon instances receive the
command, they notify the request to their children (the application processes)
using the signals provided by Linux-OS1.

The signal handler, implemented in the OMPI library, intercepts the
MIGRATION_PREPARE signal/command. The btl TCP component of the
processes that are not migrating performs the following actions:

1. Caching of any future send request towards the migrating processes;

2. Terminating any ongoing data transmission (send() system calls) to-
wards the migrating processes;

3. Flushing the transmission buffer;

4. Performing a shutdown system call on the transmission-side of the TCP
socket.

After that, the processes send back an acknowledgement to their own ORTE
daemon instances, ensuring that no further transmissions will be performed to-
wards the frozen processes. In turn, the ORTE daemons forward the acknowl-
edgement to the Head Node Process. This synchronization protocol, which is
depicted in Figure 4.3, is involved in all the subsequent phases.

1Open MPI developers have planned to release the pmix framework, which allows the ORTE daemon
to communicate via Unix sockets to its children. Our approach will be changed accordingly
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Figure 4.3: Sequence diagram migration messages exchange.

4.3.2 CRIU Dump (Checkpoint)

Once all the ORTE daemon instances are aware of the migration request, the
Head Node Process can issue the
MIGRATION_EXEC command and effectively start the migration procedure.
When an application process receives the MIGRATION_EXEC command, it waits
until all the in-flight packets have been received by the destination side. At this
point, all the TCP connections towards processes involved in the migration can
be safely closed, and an acknowledgment can be sent back to the ORTE daemon.

When the migrating ORTE daemon receives the acknowledgment, it uses the
API provided by the CRIU library to perform the checkpoint of its execution
status. The checkpoint outcome, i.e. the generated process dump, is stored in a
temporary directory. Following the Open MPI common practice, the temporary
directory is set to /tmp. However, a problem may arise if /tmp is mounted
in the main memory (most common case) and the amount of memory available
is not enough to store the dump. To address this issue, the user or the resource
manager can specify a different directory.

4.3.3 Process State Migration

As previously described, the outcome of the CRIU checkpoint (or dump), i.e. the
process dump, is a collection of files. To simplify the transfer of such files over
the network, the next step is to create an archive containing such files and op-
tionally compress them. For brevity we are going to call the checkpoint archive
‘’image”.
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Generally, the decision of compressing or not the archive requires the evalu-
ation of the trade-off between compression time and transfer time savings due to
compression. This task can be in charge of the resource manager, which should
consider several factors, e.g. network bandwidth, network traffic, image size,
shared memory occupation and disk performance.

The image is now ready to be moved to the destination node. CRIU has
a server functionality that allows the disk-less transfer the image. However, at
time of development this feature was not very mature and the C API relative to
the server is not complete. Therefore, we decided to do not use the integrated
CRIU server.

The transfer can be achieved according to two strategies:

1. using a TCP connection between source and destination nodes;

2. using a Network File System (NFS).

At the time of writing, we do not have a storage unit with NFS available for
testing, therefore we selected the TCP based option to transfer the image between
nodes.

4.3.4 CRIU Restore (Restart)

When the orted-restore daemon running on the destination node receives –
and possibly decompresses – the image coming from the source node, it restarts
the ORTE daemon and its children processes using the CRIU API. Since the C/R
approach of CRIU is totally transparent to the (frozen) processes, after the restart
we need to send a signal to the restored ORTE daemon to advise it that a node
migration has occurred. Accordingly, the ORTE daemon reopens the connection
to the Head Node Process and sends the MIGRATION_DONE message.

Finally, the Head Node Process broadcasts the MIGRATION_DONE message
to all the other ORTE daemons and processes using the same synchronization
protocol previously described.

4.3.5 Finalization Stage

When all the processes have received the MIGRATION_DONE message, the mi-
gration procedure enters the Finalization stage. In this phase, to minimize the
overhead, the migrated processes reopen the connections towards other processes
only if needed. This happens if there are packets waiting in the buffer or if the
application has new data to transmit.
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Once again, it is worth underlying that the entire migration procedure is per-
formed without the awareness of the application, which only experiences a net-
work delay in the communication towards migrating processes.

Moreover, the performance degradation is additionally mitigated by having
all the nodes not involved in the migration still communicating between each
other. In such a way, we avoid using complex algorithms to reach a global con-
sistent state. This is another key advantage of our solution, since in application-
level C/R schemes the coordination phase presents several problems on both user
and framework sides [52].

4.4 The btl TCP component

This section shows the details on how the coordination between MPI processes
is performed, when they are using the tcp component of btl framework. The
btl framework is used exclusively by the MPI processes to communicate with
other processes in the application universe.

The tcp component exposes several functions used by other Open MPI
frameworks to send/receive messages and to open/close the communication to-
wards processes. The functions are always non-blocking: a callback function is
provided by the caller and it is called when the requested operation terminates
successful.

4.4.1 The TCP endpoints

Each process is identified by one endpoint, i.e. a data structure containing sev-
eral information, like the socket file descriptor, the high-level reference of the
process, the connection status, etc. The endpoint contains also the data frag-
ments waiting to be processed in both directions. A process has only one valid
endpoint towards the same process. The endpoint may be in these status:

• Closed: the endpoint is closed and there is no active attempt to connect to
the process. Typically this is the case when no messages are sent towards
that process yet.

• Connecting: the connect system call is trying to contact the receiver.

• Connect Ack: the connect system call has successful established the
connection towards the process, however it’s waiting the confirmation ack
message. Open MPI implements a three-way handshake-like protocol.

• Connected: the node is connected and ready to send/receive messages.
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Chapter 4. Enabling Process-Level Migration in Open MPI

• Failed: an error has occurred and the socket is no more available. Usu-
ally this condition leads to an unstable condition that in turn leads to the
application crash.

In order to perform the migration, we add the Frozen to the possible end-
point statuses. This status is used to identify the endpoint condition towards the
migrating processes or, if it is the migrating process itself, the conditions of all
others endpoint not in the local ORTE Daemon.

The Frozen status is used to provide a sort of “lock“ on the endpoint. Next
calls to send, receive and similar functions stacks the outcoming messages to a
queue of fragments to be sent. This queue will be flushed only when the migra-
tion has occurred and the processes resumed. The send caller does not notice any
difference with respect to a normal send, but only a long delay on the execution
of the callback function.

4.4.2 Freezing the connections before migration

The base component of btl framework provides the interface with the ORTE
Daemon. At present, it uses a sequence of signals to coordinate with the daemon.
Then, it calls the mig_event functions exposed by the active btl components,
in our case the tcp component.

The tcp component will perform the freeze of all involved endpoints (end-
points of migrating processes if it is a non-migrating process, all endpoints of
non-migrating processes if it a migrating processes). Then it will send back to
the base component the confirmation, which will be forwarded to the ORTE
Daemon.

Freezing the endpoints entails also ensuring that no in-flight messages are
present. In order to ensure this, each process initially closes only the trasmission-
side of the socket. Subsequently, it waits that the other side closes its trasmission-
side, in this way the recv system call will fail. Then the recv system call fails,
the socket can be safely closed and the migration ack can be sent back to the
base component.

4.4.3 Restoring the connections after migration

When the migration ends, the base component calls again the mig_event

functions. The statuses of frozen endpoints are changed to Closed and the con-
nections are restarted only if there are fragments waiting in the queue. If the
queue associated to the endpoint is empty, the connection is not restored immedi-
ately, in order to limit the congestion due to the reconnection of other processes.
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The connection will be re-established only when the first message arrives via the
send call.

It may happen that two processes try to re-establish the connection simulta-
neously. In this case, the tcp component will recognize this scenario and close
one of the two connections, actually using only one connection in a full-duplex
mode.

4.5 Solving system resource conflicts on restart

The restart stage is not straightforward if it occurs on a node different from
where the Checkpoint has been performed. Program executable, libraries and
data files must be in fact present and identical in the destination node. More-
over, remote file-systems must be mounted and the process identification num-
bers (PIDs) must be available because the processes cannot change their PIDs
after the restore. Given that, there is no guarantee about the fact that the PIDs of
the migrating processes have not been already assigned on the destination node.

CRIU does not allow to migrate processes having opened device files, estab-
lished network sockets with different machine, O_DIRECT pipes, etc. (the full
list can be found in the CRIU documentation).

In order to solve all the above mentioned issues the orted-restore per-
forms specific system calls in order to isolate the processes in different Linux
Namespaces. The Linux Namespaces allow an application to fork children in a
detached environment.

4.5.1 Linux Namespaces

Linux Namespaces is a Linux kernel feature that provides an abstraction of
system resources, such that processes within a namespace run in a isolated en-
vironment. The changes to the system resources inside a namespace are visible
only to other processes members of that namespace. They are described in the
Overview, conventions, and miscellaneous (Section 7) of the Linux Program-
mer’s Manual [53]. The available namespaces are:

• CGroup [54]: isolation of Control Groups, providing a different
/proc/self/cgroup file for each namespace;

• IPC: POSIX message queues and other inter-process communication;

• Network: network devices, TCP/UDP ports, etc.;

• Mount: the mount points;
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• PID: isolation of process identifiers;

• User: user and group identifier;

• UTS: UNIX Timesharing System, it isolates the hostname, domain name,
etc.

In this work both the PID and the Mount namespaces are used.
The PID namespace, as already discussed, is necessary in order to guaran-

tee that the Process Identifiers of checkpointed processes are available on the
destination node. Instead, the Mount namespace is needed for more than one
reason:

• Detaching the Mount namespace is a pre-condition for detaching the PID
namespace, since the /proc directory has to be remounted;

• Open MPI uses the Linux ttys present in /dev/ directory. These spe-
cial files are created mounting the devpts pseudo-filesystem. To avoid
conflicts with ttys already present in the system, the devpts has to be
remounted, not for the entire system, but only to migrated processes;

• Any other mountpoint, e.g. network filesystems, may require the remount
for the specific application.

4.5.2 Unsharing the context

To exploit the Linux Namespaces, the <sched.h> header provides the
unshare system call, that allows a process to detach part of its execution con-
text, associating it to other namespaces.

In our implementation, the orted-restore executes the following C call:

unshare(CLONE_NEWNS | CLONE_NEWPID)

where the CLONE_NEWNS flag detaches the mount namespace and the
CLONE_NEWPID flag detaches the PID namespace; hence, orted-restore
and its children share the new private namespaces.

The orted-restore daemon becomes then the init process (PID=1) in
the new empty PID namespace of the destination node and can restart the appli-
cation processes with the original PIDs from the source node. The isolated mount
namespace is necessary to remount the /proc directory in order to match the
new process identifier configuration. At this point, the ORTE daemon instance
and its children can be safely restarted.

The full stack of system calls required to restart the checkpointed ORTE dae-
mon is described in Figure 4.4.
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Figure 4.4: Flow diagram of orted-restore execution.
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CHAPTER5
Integration with the Barbeque Run-Time

Resource Manager

In this chapter we present the integration of the mig framework with the Bar-
beque Run-Time Resource Manager [55], shorten BarbequeRTRM. The Barbe-
queRTRM is a framework to manage the resources of both heterogeneous and
homogeneous systems at run-time. The extension of BarbequeRTRM that adds
the capability to manage distributed systems is described. Subsequently, an ex-
ample of exploitation of mig with a policy that takes into account resources
located into remote systems is presented.

5.1 The BarbequeRTRM - Open MPI interface

Following the implementation of other resource managers in Open MPI, we de-
cided to implement a socket client-server paradigm in order to interface the Bar-
bequeRTRM to the Open MPI runtime and vice versa.

5.1.1 The bbque-mpirun launcher

As a first step, we introduced in the BarbequeRTRM a custom MPI application
launcher, bbque-mpirun, acting as a wrapper of the well-known mpirun

command commonly available in every MPI implementation. This is order to
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Chapter 5. Integration with the Barbeque Run-Time Resource Manager

enable the possibility of controlling the execution flow of MPI processes, by the
BarbequeRTRM. The launcher exploits the already available BarbequeRTRM
Run-Time Library (RTLib) API to communicate with the BarbequeRTRM.

When invoked very first step of the bbque-mpirun launcher is to open a
socket listening onto a specific TCP port and the spawning an instance of un-
derlying mpirun launcher. When the ras component of BarbequeRTRM is
selected, recognizing a previously set environment variable and loaded, it con-
nects to the open socket of bbque-mpirun. At this point mpirun sends the
nodes request (specifically the number of slots, i.e. the total number of processes
to be spawned in each node). bbque-mpirun receives the request and it sends
through to the BarbequeRTRM. Subsequently, the resource manager can select
an available set of computing nodes, according to a policy, and send it to the
bbque-mpirun as reply, that in turn is forwarded to mpirun.

It is worth to specify that bbque-mpirun is multi-threaded piece of soft-
ware implemented in C++, which operates as shown in the UML Sequence Dia-
gram in Figure 5.1:

• The main thread follows the normal BarbequeRTRM applications execu-
tion, exchanging data like performance measurements and reconfiguration
(not yet implemented). In case the BarbequeRTRM changes the allocation,
it is in charge of notifying it to the mpirun instance;

• A second thread is waiting on the TCP socket connected with mpirun.
Currently only diagnostic messages for migration are sent over that chan-
nel. This thread is implemented in the CommandManager class.

• A third thread is in charge to check the abnormal termination of mpirun
process before the establishment of the socket connection. This thread is
implemented in the ProcessChecker class.

As already introduced, bbque-mpirun may be considered as a wrapper
of mpirun command, that establishes a link between BarbequeRTRM and the
Open MPI framework. This approach is similar to the one adopted by SLURM
resource manager.

5.2 Towards the BarbequeRTRM distributed version

BarbequeRTRM was designed to be a run-time resource manager targeting sin-
gle node systems. In parallel with mig development, this work is the first step
towards the development of a distributed version of the BarbequeRTRM.
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5.2. Towards the BarbequeRTRM distributed version

Figure 5.1: The UML Sequence Diagram of the bbque-mpirun tool.

In order to correctly manage MPI applications and to select an appropriate
allocation over the distributed nodes, the BarbequeRTRM has to know how many
nodes are in the systems and how they are characterized.

Calculate the optimal processes allocation over the nodes and future reschedul-
ing – thus the evaluation of a favorable migration – are duties of an appropriate
policy, which is introduced in the next section.

In BarbequeRTRM the available resource retrieval and the fulfillment of a
scheduling are a task of the PlatformProxy component. The
PlatformProxy interface was previously implemented by a system-specific
subclass, e.g. the Linux and OpenCL implementations. We have redesigned the
PlatformProxy in a more hierarchical fashion, adding a
LocalPlatformProxy and a RemotePlatformProxy component. The
former has the duty of providing a transparent layer to the resources, like local
CPU cores and OpenCL devices, while the latter is in charge of communicating
with available remote BarbequeRTRM instances, if any. The conceptual diagram
of the BarbequeRTRM components that allows to work in a distributed environ-
ment is shown in Figure 5.2. As shown

Since we are in the early stages of the design of a distributed version of
BarbequeRTRM, the described design may change in next months. Further-
more, the information needed by the scheduling policy – subsequently passed to
bbque-mpirun – is currently retrieved via RemotePlatformProxy that
in turn reads a static XML file, containing the information of remote nodes.

The platform manager is in charge of abstracting the resources to the upper-
level components. The PlatformProxy interface is implemented by the
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Local and Remote proxies, that in turn abstract the resource in the local ma-
chine and in the remote machines. The LocalPlatformProxy dispatches the
function call to the appropriate PlatformProxy depending on which type of
resource is involved. For example, in multi-GPU systems, the
OpenCLPlatformProxy that in turn wrap the OpenCL runtime, is called to
enforce the assignment of a specific GPU to the application. In Linux, the Con-
trol Groups (cgroups) framework is used to enforce the resource assignments
related to the CPU cores and memory [56].

On the other hand, the RemotePlatformProxy contacts the underlying
network components to communicate with remote BarbequeRTRM instances.
At present, this is an in progress development.

Finally, the DistributedManager is in charge of managing and coor-
dinating the cluster of BarbequeRTRM instances. Typical duties of this class
are:

• Manage the system topology and hierarchy;

• Discover new available systems in the network;

• Periodically retrieve the status and the runtime statistics of the Barbe-
queRTRM instances;

• React to nodes failures and network partitions with suitable fault-tolerant
mechanisms and protocols.

The PlatformManager class has been also added in order to abstract the
previously described underlying classes with respect to other BarbequeRTRM
components.

5.3 DistRib policy

The DistRib policy implemented in BarbequeRTRM is based on a Integer Lin-
ear Programming (ILP) solver. Since the main objective of this thesis is not to
find an advanced policy, but to implement a first exploitation of the mig frame-
work, a classical ILP is proposed. The proposed policy provides an optimal
solution, but it does not scale efficiently.

5.3.1 Optimization problem

The goal of the ILP problem is to find a performance-optimal mapping between
systems and applications. Please note that this mapping is not necessarily one-to-
one: a system may have more than one applications running and an application
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5.3. DistRib policy

Figure 5.2: The conceptual diagram of BarbequeRTRM distributed components.

may run on a different systems. The latter situation is more typical due to the
nature of HPC applications.

Mapping the application onto different systems introduce a significant over-
head due to the network communications between different nodes. Even if In-
finiBand is considered, the intra-host communication with shared memory is cer-
tainly faster [57]. In addition to this overhead, heterogeneous systems may have
different performance that must be taken in account.

Another cost contribution that we can consider in the resource allocation or
scheduling policy outcome is the oversubscription:

Definition 1. An oversubscribed system is a system where the number of as-
signed MPI processes is greater than the number of available processing cores
(or elements).

This cost may have a strong impact on performance and Open MPI must be
therefore aware of oversubscription.

According to Open MPI implementation, for each MPI process usually 100%
of CPU core is reserved, even if not really used, in order to speed-up the com-
munication performance. The idea is to avoid as much as possible the overhead
due to the context switches performed by the operating system. However, this
technique produces very bad effects in case of an oversubscribed system, espe-
cially if Open MPI is not aware of oversubscription. We do not delve deeper into
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the analysis of oversubscription, since our resource manager does never oversub-
scribe systems.

Therefore, the cost of oversubscription is proposed in subsequent optimiza-
tion problem for completeness, but at present not implemented in the policy.

The ILP formulation proposed is:

min
∑
a∈A

∑
s∈S

[
pa · (Csys(a, s) + Cdist(a, s) + Cos(a, s))

]
(5.1)

where A is the set of all applications to be scheduled and S is the set of all
available systems.

Let for each application a:

• π(a, s): an integer positive variable that identifies the number of processes
of application a assigned to system s;

• φ(a, s): a binary variable that values 1 if the application a is assigned to
system s, 0 otherwise;

• pa: the priority of the application a;

• rs: the penalty to use the system s (see later for details);

• Kd: a constant used as weight coefficient.

The variables are π and φ, the parameters are pa and rs and the only constant
is Kd.

Obviously, π and φ are related and φ can be written as:

φ(a, s) =

1, if π(a, s) > 0

0, else

Csys(a, s) = rs · π(a, s) (5.2)

Cdist(a, s) = Kd · φ(a, s) (5.3)

The rs penalty is useful when the systems are heterogeneous from the point
of view of the delivered performance: slower systems may have a high value of
bs, faster system a lower one. If the systems are homogeneous, rs can be set to 0

and consequently Csys = 0 ∀a, s.
In our implementation, the term Cos is not currently present. This limitation

is not really significant in HPC environments, since a system oversubscription
generally leads to a dramatically drop of performance.
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The formulation of the optimization problem in GNU MathProg is presented
in Appendix B.

5.3.2 The selection algorithm

The ILP problem may not be feasible, so the solver would not be able to find
a valid solution. The typical case is when the number of cores requested by all
applications is greater than the available ones. To overcome to this problem, this
algorithm is implemented:

1. Fill the system and the application vectors with all available resources and
ready applications;

2. Try to solve the ILP problem;

3. If OK, enforces the solution;

4. If FAIL, remove the application with less priority and return to (2).

Obviously, the starvation of applications with less priorities may occur. In
order to address this issue we implemented an aging scheduling. Every time that
an application is deselected from the scheduling vector its priority is increased.
Therefore, next time the policy runs the non-scheduled applications have higher
probability to be scheduled.
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CHAPTER6
Experimental Evaluation

This chapter presents the results of a set of experimental tests performed to eval-
uate the overheads introduced by the exploitation of the proposed process migra-
tion mechanism.

The overheads may be categorized in two types: performance loss due to the
execution of multiple ORTE daemons on the same node and the time required to
actually perform the process migration.

For each performance test, in this Chapter we provide the description of the
software used, the hardware setup, the methodology applied to perform the mea-
sures and finally the results obtained.

6.1 Introduction

As we have discussed in Subsection 4.1.1, the execution of multiple ORTE dae-
mons on the same node enables the migration of a subset of processes instead
of migrating the entire population of processes running on the same node. This
ensures higher flexibility both for the system resource management and the wide
range of use cases that can benefit from a task migration mechanism. The ad-
vantages have been previously described in Subsection 4.1.1. Unfortunately,
there are also drawbacks, in terms of overheads impact on the application execu-
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tion. Splitting the control of the application processes lifecycle under different
ORTE daemons in facts, implies that some processes cannot rely anymore on
shared memory to communicate with each other, even if they are running on the
same node. In such cases, we need to use TCP/IP connections for inter-process
communication, which have been shown to be less performing than shared mem-
ory [57].

In Section 6.3 instead, the migration overhead is presented. It represents the
time lost to complete all the migration procedure described in Chapter 4. There-
fore, opposite to the multiple ORTE daemons overhead, the migration overhead
is not a persistent overhead. It impacts on the application execution time only if
the migration is triggered.

Finally, in Section 6.4 we show the validation of the DistRib policy of the
BarbequeRTRM discussed in Section 5.3.

6.1.1 The NAS Parallel Benchmark Suite

The NAS Parallel Benchmark Suite (NPB) [58] is a benchmark suite developed
by the NASA Advanced Supercomputing Division since 90s. This set of applica-
tions is designed to evaluate the performance of supercomputers that exploits the
parallel computation. The benchmarks are implemented with several technolo-
gies, such as MPI, OpenMP, Java, HPF1, Globus. However, only the MPI and
OpenMP implementations are continuously developed and updated. They do not
depend on a particular implementation of MPI and OpenMP.

The NPB suite is widespread acknowledged in research, therefore we used it
for testing both the multiple ORTE daemons overhead and the migration over-
head. We selected the original eight benchmarks specified in NPB version 1,
composed of five kernels and three pseudo applications. NPB version 2 and 3
introduced also other special benchmarks:

• NPB-MZ: the multi-zone version of the original pseudo-applications;

• The unstructured computation benchmarks;

• The parallel I/O benchmarks for specific techniques;

• GridNPB to test the performance of computational grids.

Since these specific benchmarks are not significant for our migration mechanism,
we decided to use only a subset of the original benchmarks.

1High Performance Fortran is an extension of Fortran 90 for parallel applications.
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The original five kernels are focused on testing the performance on partic-
ular metrics, instead the pseudo-applications are common abstractions of real
problems solvable with MPI frameworks:

• Kernels

– Integer Sort (IS): parallel sort of uniform distributed integer keys.
It provides a balanced benchmark on integer computation, random
memory and network communication speeds.

– Embarrassingly Parallel (EP): generation of pairs of Gaussian devi-
ates. It provides an estimation of floating-point performance upper-
limit. The inter-process communication is minimal and non-significant.

– Conjugate Gradient (CG): application of the Inverse Power Method to
find the largest eigenvalue of a sparse randomized matrix. It tests the
performance of irregular memory accesses and irregular long-distance
communications.

– Multi-Grid (MG): an ad-hoc multigrid algorithm to solve the Poisson
Problem ∇2u = v. It is a good representation of the performance of
long- and short-distance communication and memory intensive oper-
ations.

– Fourier Transform (FT): solving a Partial Differential Equation using
forward and inverse Fast Fourier Transformations. It is a rigorous test
of long-distance all-to-all communication performance.

• Pseudo-Applications

– Block Tri-diagonal solver (BT)

– Scalar Penta-diagonal solver (SP)

– Lower-Upper Gauss-Seidel solver (LU)

Every kernels have integrated verification tests. These tests may be partial
verification – if they are conducted on partial results – or full verification – if
they are conducted after the combination of all partial results. As a consequence,
we can also verify if the migration procedure has corrupted the application exe-
cution.

The benchmarks use a dedicated Pseudorandom Number Generator in order
to generate uniform distributed pseudorandom numbers. This algorithm ensures
sufficient randomicity, independently on the system used for executing the suite,
provided some system constraints are met. However, most of the systems in use
today meet these requirements.
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Class
Bench. S W A B C D E
IS 512 KB 8 MB 64 MB 256 MB 1 GB 16.4 GB N.A.
EP 128 MB 256 MB 2 GB 8 GB 32 GB 512 GB 8 TB
CG 76.6 KB 437 KB 1.2 MB 7.4 MB 172 MB 240 MB 1.7 GB
MG 256 KB 16 MB 128 MB 128 MB 1 GB 8.1 GB 64 GB
FT 2 MB 4 MB 64 MB 256 MB 1 GB 16 GB 128 GB
BT 13.5 KB 108 KB 2 MB 8 MB 32 MB 518 MB 8 GB
LU 13.5 KB 280 KB 2 MB 8 MB 32 MB 518 MB 8 GB
SP 13.5 KB 364 KB 2 MB 8 MB 32 MB 518 MB 8 GB

Table 6.1: Problem data sizes for each class and benchmark in NPB suite [59].

Furthermore, each problem has multiple classes to be selected, where a class
represents the input data size, summarized in Table 6.1.

6.2 mig: ORTE daemons granularity overhead

Hardware setup

We used a computing node equipped with two Intel Xeon E5-2640 octa-core
hyper-threaded CPUs, with 128GB of RAM per CPU. The system is based on a
NUMA architecture.

As common in HPC environments, we disabled Hyper-Threading, remaining
with 16 cores at our disposal. The running operating system was CentOS 6.7
with updated Linux kernel version 3.18.

Methodology

We selected IS, MG kernels and BT, SP, LU pseudo-applications. We discarded
the other kernels since their execution would not be affected significantly by a
run-time migration of some processes:

• EP is not a good candidate for testing communication, since it does not
almost send anything.

• CG tests long distance communication and our overhead is present only in
short distance (even same machine).

• FT as for CG it tests only long distance and not short.

The kernels were executed specifying input classes B, C, D. For the pseudo-
applications, instead, we did not consider class D since the completion of the
execution would require too much time using the systems at our disposal. Finally,
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we excluded classes S, W, A because the problem size would have been too small,
leading to very short executions. Vice versa, E class would be too expensive in
terms of memory and execution time.

We executed the pairs (benchmark, class) spawning 16 processes for
each benchmark execution. We selected the number of ORTE daemons control-
ling the MPI processes according to different granularities: 1, 2, 4, 8, 16. Each
ORTE daemon instance had therefore to manage 16, 8, 4, 2 or 1 MPI processes
respectively. In particular, the case of single ORTE daemon instance is a stan-
dard execution of unmodified Open MPI and we took it as a reference result in
the overhead evaluation.

We measured the execution time of each tuple (benchmark, class,

granularity), starting after the MPI_Init call and stopping before the
MPI_Finalize call. The time needed to spawn the ORTE daemons and the
processes are therefore not considered. We repeated the test 20 times to obtain
a significant statistics. It turned out that we experienced an average standard
deviation below 1% of the total execution time.

Results

The overall results are shown in Figure 6.1. The global trend is that the overhead
increases sub-linearly with respect to the number of ORTE daemon instances,
while it decreases as the problem size increases. The sub-linear increase of the
overhead can be explained by the fact that, once there are at least two ORTE dae-
mon instances, the TCP/IP communication between MPI processes on different
instances becomes the bottleneck for communication latencies. Adding more
ORTE daemon instances to the existing ones does not tend to further degrade
performance.

Conversely, the decrease of the overhead in case of increasing problem size
is due to the fact that increasing problem size means that more time is spent on
computing data; therefore the time spent in communication – which is where the
overhead applies – decreases in percentage.

Looking at the data summarized in Table 6.2, we can state that the ORTE
daemons granularity poorly affects the application execution time. Considering
all the test cases, we can observe indeed that the percentage of time loss remains
in the 0− 5.x% range.

63



i
i

“thesis” — 2016/9/16 — 9:27 — page 64 — #78 i
i

i
i

i
i

Chapter 6. Experimental Evaluation

Figure 6.1: Execution time of each benchmark when running 16 processes using a num-
ber of ORTE daemons that ranges from 1 to 16.
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6.2. mig: ORTE daemons granularity overhead

Benchmark Class # orted Overhead %

IS

B

2 4.68
4 5.18
8 4.85
16 4.85

C

2 2.21
4 2.68
8 2.64
16 2.64

D

2 0.87
4 0.96
8 0.79
16 0.64

MG

B

2 1.28
4 4.36
8 1.73
16 3.24

C

2 2.25
4 0.62
8 0.88
16 1.57

D

2 1.13
4 1.25
8 1.79
16 1.50

BT

B

2 0.92
4 0.93
8 0.93
16 1.17

C

2 0.31
4 0.29
8 0.45
16 0.60

SP

B

2 1.90
4 2.83
8 3.72
16 4.12

C

2 0.31
4 0.40
8 0.52
16 0.79

LU

B

2 2.92
4 4.37
8 5.42
16 6.10

C

2 0.73
4 1.63
8 2.19
16 2.48

Table 6.2: Static overhead of IS, MG, BT, SP, and LU with increasing migration gran-
ularity, i.e. increasing number of ORTE daemons, compared with single ORTE dae-
mon case.
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Chapter 6. Experimental Evaluation

Figure 6.2: Process migration time composition with respect to the input problem size.
Top images: migrations without image compression. Bottom figures: migration with
image compression.
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6.3. mig: ORTE daemons migration overhead

6.3 mig: ORTE daemons migration overhead

Hardware setup

We characterized the migration overhead by running the benchmarks on two
nodes connected via Gigabit Ethernet, both equipped with two Intel Xeon E5-
2640 CPU, 128GB of RAM per CPU (NUMA) and keeping the Hyper-Threading
disabled.

Methodology

In the experimental migration scenario, we launched two ORTE daemon in-
stances per node, each one managing 4 out of the 16 application processes. The
resource manager triggered the migration requests after 25 seconds of execution.

To better observe the composition of the migration overhead, we divided the
migration time, isolating seven contributions. We considered the time required
by each of the five migration phases previously described in 4.3, plus two addi-
tional contributions:

1. Time required to encapsulate the CRIU process dump into the archive;

2. Time to extract the dump from the archive after the migration.

With the exception of the Coordination and the Finalization phases, the other
contributions are expected to be strongly dependent on the problem size, in par-
ticular on the image transfer time. In this regard, we evaluated the possibility
of introducing the compression of the image generated by the CRIU checkpoint
before proceeding with the transfer. In such a case, a decompression step is ob-
viously required on the destination node, before resuming the execution of the
processes. To this purpose, we used the GZIP compression algorithm [60].

Results

In Figure 6.3, we can see how the compression is effective in reducing the size
of the checkpoint image to transfer. This because of the shared memory imple-
mentation. Open MPI in facts allocates over 100MB of unused shared memory
as ghost files initialized as zeros. The consequence is that compression is very
effective in such cases, resulting in image sizes scaled down to 22 − 38% with
respect to the original sizes. In case of bigger datasets instead – like the C class
– this phenomenon is less evident, with compressed image sizes resulting the
45− 65% of the original sizes.
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Figure 6.3: Process checkpoint image after GZIP compression for each benchmark,
with respect to the input data class

The composition of the migration overhead is highlighted in Figure 6.2. If the
compression is not applied (top figures), the time required to transfer the process
image over the network dominates the whole migration process (80−90% of the
time) independently of the benchmark and of the class of input data. The con-
tributions due to the synchronization stages (Coordination and Finalization) and
the time needed for doing checkpoint/restore with CRIU are instead negligible.

Conversely, when the compression is applied (bottom figures), the transfer
time is reduced, but a new overhead contribution is introduced. The time spent
to perform image compression/decompression is not negligible. We can observe
indeed an overall percentage value comparable to the transfer time (40 − 50%)
for the compression, plus a 10− 15% for the decompression.

Figure 6.4 provides an overview of the measured migration times, comparing
the cases with image compression against cases where no compression is applied.
For the IS and MG benchmarks, where hundreds of MB of data must be moved,
the compression represents a penalty. Conversely, for BT, LU and SP, where data
size is a few MB, break-even points can be found. Generally, we can state that
resource manager should be in charge of choosing whether apply compression or
not, taking into account application properties, input data size, node capabilities
and network parameters (e.g., topology, bandwidth, etc. . . ). The mig framework
is then driven accordingly.
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6.3. mig: ORTE daemons migration overhead

Comments

Please note that these tests were performed on two computational nodes con-
nected via Gigabit Ethernet. Most recent HPC systems connect nodes using In-
finiBand, which is much faster than Ethernet. It follows that, in the average case,
we do not expect compression to be needed, because transfer time will usually
be in the range of seconds rather than of tens of seconds. In our experimental
set-up, as shown in the results, the time required to interrupt the execution of a
set of processes, to migrate them to another node and to resume their execution
is not negligible and may require tens of seconds.
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Chapter 6. Experimental Evaluation

Figure 6.4: IS, MG and BT, SP, LU migration overhead with respect to the input prob-
lem size. Migrations using image compression (dashed lines (C)) can be compared
to migrations without image compression.
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Figure 6.5: Performance results of ILP problem with homogeneous systems (no per-
system penalty).

6.4 DistRib validation

6.4.1 The GLPK solver

In order to solve the ILP problem the GNU Linear Programming Kit (GLPK)
[61] is used. GLPK implements Linear Programming (LP) and Mixed Integer
Programming (MIP) solvers. The latter is a generalized case of ILP, since it
allows the mix between integer and real variables. Since the textual formula-
tion presented in Appendix B is adequate only for the first prototype of the ILP
formulation, the actual code uses the API provided by GLPK itself, linking the
relative shared library.

The algorithms used

GLPK implements several algorithms for the resolution. The policy uses the
standard Simplex algorithm for solving the LP relaxation and then the branch-
and-cut method [62] to obtain the integer solutions. The branch-and-cut method
is a hybrid of classical branch-and-bound and cutting plane methods that assure
an optimal solution with a good probability. GLPK allows the production of a
sensitivity report in order to analyze the goodness of the solution, however at
present this is not used in our software.
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Figure 6.6: Performance results of ILP problem with heterogeneous systems (per-system
penalty presents).

6.4.2 Performance

Integer Linear Programming is proved to be NP-complete [63], thus no
polynomial-time algorithm is known.

We performed the tests timing GLPK solver. The instances are selected from
1 to 20 systems and from 1 to 20 applications, for a total of 400 instances. The
number of cores per system and the number of cores per application are uni-
formly randomized. Each instances are executed 20 times and the resulting ex-
ecution times have been averaged. A timeout at 20 seconds is placed, after that
the execution is killed.

The first batch of tests are executed with rs = 0 ∀s ∈ S (homogeneous
systems) and the results presented in Figure 6.5. The second batch of tests are
executed with rs as a random value from 1 to 10 uniformly distributed. This test
implements the case of heterogeneous systems and its results presented in Figure
6.6. The two cases do not show any significant difference adding the addend of
per-system penalty to the objective function.

However, GLPK performs well with our ILP programming for number of ap-
plications less than 10, and it seems not very sensitive to the number of systems.
Isolated cases are very fast even with a high number of systems and applications.
For example, (15 applications, 17 systems) is very fast case, but (14 applica-
tions, 17 systems) and (16 applications, 17 systems) are very slow. This behavior
may be explained analyzing the optimization performed by GLPK, that can solve
rapidly some special cases.

In a real HPC scenario with thousands of nodes and several applications a
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6.4. DistRib validation

greedy policy or other non optimal algorithm is required. The policy has to be
sufficiently fast in order to do not introduce more overhead.
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CHAPTER7
Future Works and Conclusions

This final chapter provides an overview of the possible future works regarding
process migration in HPC systems. Then, possible future developments of the
mig framework are suggested, including the extension to iterative migration and
InfiniBand. Finally, the current limitations of the proposed approach are dis-
cussed along with the conclusions of the overall work presented in this thesis.

7.1 Enhancing process migration in HPC

As depicted in Figure 7.1 the research interest in Process Migration targeting
HPC systems is still high and it has a positive trend. This, in conjunction with
the problematics described in Chapter 1, leads us to suppose that in the next years
the process migration will become an hot research topic.

7.1.1 Next challenges

The CRIU project is rapidly evolving thanks to the very active development com-
munity. Since the project is relatively young, it is still unstable, especially for
what concerns the advanced features. In the next years we expect this project to
reach a good level of maturity, such it could be used also in production environ-
ments rather than only in research.
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Figure 7.1: Number of search results in Google Scholar with keyword "process migra-
tion"

In parallel, new research challenges may arise and old issues may be ad-
dressed. An example of such a case is the possibility managing process migra-
tion over heterogeneous processors. The explosion of several heterogeneous
architectures, from the Graphical Processing Units to specialized accelerators,
requires the adoption of dedicated techniques in resource management and ap-
plication frameworks. Therefore, low-level layer capable of transparently move
processes between processors or nodes with different architectures can become
an essential feature. Unfortunately, this type of migration is complex and imple-
menting a working solution requires the involvement of several computer engi-
neering branches, from operating systems to compilers. Previous research de-
scribed in Chapter 2 provided tools with strong limitations and that work only
for specific scenarios.

The first attempt that can be evaluated for an inclusion in CRIU is the migra-
tion between general purpose architectures with different ISA (Instruction Set
Architecture), for instance to migrate a process between x86_64 and AArch64
architectures. The Checkpoint/Restart is already supported by CRIU for both
architectures, but migrating processing between them is currently not possible.
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7.1. Enhancing process migration in HPC

This because, such a type of migration requires the translation of all the proces-
sors registers, the memory addresses and other machine-dependent information.
Moreover, since there is no one-to-one correspondence between instructions with
different ISA, some sort of checkpoint barriers must be implemented in the bi-
nary code. To understand the last problem consider the MNEG instruction of
ARMv8 (AArch64) having this semantic: Rd = −Rn · Rm. This sort of spe-
cialized instruction does not exist in x86_64 processors and must be split into
a multiplication and a subtraction. Consequently, a migration mechanism cannot
checkpoint the application between multiplication and subtraction, thus it should
consider an atomic operation both of them. Managing this atomicity for different
types of architecture seems not a straightforward task and it necessarily requires
additional support at compiler-level.

The previously described possible improvement in process migration may
solve also the problem of migrating processes between different Linux kernel
versions or different libraries, obviously provided that they expose the same
API. As already described in Chapter 4, CRIU requires perfectly identical en-
vironments.

7.1.2 Future developments

The mig framework is not currently ready for production environments. A suf-
ficiently stable version has to be developed and possibly integrated in the main-
line repository of Open MPI. The stabilization of the mig framework and related
components requires extensive tests over different environments and system se-
tups.

Iterative Migration

As we have seen, the transfer time dominates the migration time. This time be-
comes an overhead in the overall application execution time, since the processes
cannot progress during the image migration. However, CRIU allows the Iter-
ative Migration of processes: the processes are checkpointed without killing
them and, during the processes execution, the image is transfered. As a result,
the execution and image transfer time are overlapped, this operation is often
called Pre-Copy. Obviously, the transfered image represents the status of the
application at the checkpoint time. Therefore, it does not represent the current
status of the migrating process and it must be updated with the process memory
and the context changes (register, etc.).

In HPC environment, the iterative migration shows good performance re-
sults, significantly lowering the migration overhead [37]. Therefore it can be
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Chapter 7. Future Works and Conclusions

considered a possible application improvement to introduce in the mig frame-
work, in order to limit the impact on the wall-time.

InfiniBand

The InfiniBand support is the prioritized task to be accomplished in the devel-
opment of mig framework. In HPC the InfiniBand networks are very frequent,
because their advantages compared to Ethernet. InfiniBand presents lower over-
head over Ethernet, because the applications are able to directly communicate
with the network adapter without the necessity of operating system calls. Even
considering the 10Gbit and 40Gbit Ethernet, InfiniBand FDR presents higher
throughput and lower latency compared with Ethernet protocols [64]. Further-
more, in 2014 the new InfiniBand EDR doubles the theoretical throughput with
respect to FDR.

Implementing the InfiniBand support should be a relatively easy task thanks
to the high modularity of Open MPI. The functions offered by the TCP btl

component have to be replicated in the InfiniBand btl component. The features
provided by other modules – like mig – are independents from the network
protocol used.

Removing the ORTE daemon granularity

A further reduction of the ORTE daemon overhead could be obtained by moving
the migration granularity to process-level, directly migrating MPI application
processes, instead of the underlying ORTE daemon. This requires to change
the active BTL components of the migrating process. Whether process A and
process B are in the same node communicating via shared memory and process
B migrates towards another node, they have to change the active btl component
to a remote one (e.g. TCP or InfinBand) in order to resume the connection to the
other process. This change requires to address several synchronization issues.

7.1.3 Limitations

The major limits of the proposed process migration mechanism are in similar
to those of the other C/R based systems: the nodes of HPC systems must be
homogeneous, i.e. the operating system (with kernel version), libraries version
and application binaries must be perfectly identical. Therefore, currently the
mig framework is not exploitable in heterogeneous environments.

Performing the checkpoint with CRIU requires administration level permis-
sions (root user in Linux) in all the nodes. This limitation is a partial re-
quirement of CRIU that is in progress to be dropped by the CRIU development
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team. However, as previously described, process migration requires the use of
unshare system call, that in turn requires the CAP_SYS_ADMIN capability in
Linux. This permission is usually granted only to the root user. Grant this per-
mission to non-administrative users may introduce security problems that should
be carefully evaluated and addressed.

In fault tolerant exploitation one of the most important issue to be addressed
is the possibility of migrating also the ORTE daemon and consequently the MPI
processes from the HNP. Otherwise, the HNP becomes the bottleneck in terms
of fault-tolerance: the MTTF of the overall system is reduced to the MTTF of
the HNP. Since the mpirun command is actually an ORTE daemon, it would
not be difficult to implement the migration of HNP. We think the only needed
change is the adaption of the coordination protocol between ORTE daemons and
MPI processes.

7.2 Conclusion

In this thesis we introduced a novel approach to support process migration in
the Open MPI framework. The approach is based on handling the execution
of multiple ORTE daemon instances, which can be thought of as the smallest
migratable unit. This is performed transparently to the application and the non-
involved Open MPI frameworks and components.

Compared to other state-of-the-art solutions, one of the major advantages
of our approach is the maintainability. The extension introduced in the Open
MPI runtime in fact has a minimal impact on the other Open MPI frameworks.
Furthermore, on the application side the framework does not introduce any ad-
ditional API. Therefore its exploitation it does not require any change on the
applications code.

Moreover, the mig framework does not rely on any virtualization layer. This
constitutes a gain in terms of performance with respect to approaches based on
virtual machine allocation. In this regard, our proposal allows us to perform
fine-grained migrations, since the resource manager can decide between migrate
an entire application or a subset of its processes. This feature also increases the
controllability of the workload execution.

The integration with Barbeque Run-Time Resource Manager has been im-
plemented in order to exploit both Open MPI and the mig migration mechanism
in conjunction with a resource manager. In this regard, a simple policy that
solves an Integer Linear Programming problem has been implemented as a Bar-
bequeRTRM plugin. This policy provides an optimal solution in most cases but
it is usable only with a small number of systems and applications. Therefore, in
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Chapter 7. Future Works and Conclusions

the future a greedy policy must be implemented to work with large system, in
particular considering the Exascale computing horizon.

Through experimental tests, we shown how the overhead due to grouping the
application processes on top of several ORTE daemons can be considered neg-
ligible. Conversely, stopping and resuming the processes execution on different
nodes, introduce an overhead dependent on the specific application, its input data
size, the network and the node capabilities. As a consequence, a resource man-
ager can play a key role to evaluate when a migration is worth to be performed.

Overall, we can state that the work presented in this thesis is the first process-
level migration feature developed for Open MPI whose control is kept at system-
level (resource manager) and that does not require the code of applications to be
changed.

From the MPI communication standpoint, the lack of InfiniBand support is
currently the most important missing feature. However the development of this
component is currently ongoing.

In next years, we can expect an increasing interest in process migration and in
general in C/R techniques. Therefore, the next steps of this work is to sufficiently
debug the code in order to add it to the Open MPI mainline repository. In this
way the mig framework may follow the rapid developments of Open MPI and
CRIU and it can be available for other resource managers.
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APPENDIXA
Open MPI extra commands

This appendix summarizes the auxiliary commands of Open MPI not included
in the MPI standard. The list is updated with commands present in version 1.10
of Open MPI.

The list of available commands as presented in the documentation User Com-
mands (man page 1) are presented in Table A.1
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Appendix A. Open MPI extra commands

Command Description
ompi-clean
orte-clean

It cleans up old files and processes left by previous Open
MPI jobs in the local node. It kills the processes spawned
by a previous application and remove all temporary files.

ompi-ps
orte-ps

It shows the information about the active MPI jobs and pro-
cesses. It works universally, i.e. it displays the information
even if it is not the HNP.

ompi-server
orte-server

It activates a server that can be contacted via the MPI calls
Publish_name/Lookup_name.

ompi-top
orte-top

It displays the information similar to top Linux utility.

ompi-info
orte-info

It provides the information about the compilation and the
installation of Open MPI. This utility is very useful for both
Open MPI developers and users, in order to check how
Open MPI is configurated and which modules are avail-
able.

opal_wrapper Should not be called directly. A wrapper executable for
mpicc, mpic++, etc.

orte-dvm It starts an orted for each node before submit a job. The
jobs may be submitted next via the orte-submit com-
mand. It is useful for launching numerous short applica-
tions.

orte-submit It submits a job into distributed daemons spawned with
orte-dvm.

orted The daemon spawned on each node.

Table A.1: Open MPI User commands.
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APPENDIXB
DistRib ILP formulation

This appendix provides a formulation in GNU MathProg of the proposed Inte-
ger Linear Programming problem used in the DistRib policy.

GNU MathProg is a high-level language to write mathematical models, in
particular optimization problems. It is specific to GLPK, but compatible with
the well-known A Mathematical Programming Language (AMPL) [65]. To
be precise, the GNU MathProf contains a subset of instruction of the AMPL
language.

The proposed formulation is implemented in BarbequeRTRM using the GLPK
libraries even if less intuitive than the GNU MathProg language. However, the
overhead drastically reduces, since a syntax parser of the model is not required.

The GNU MathProg formulation is presented in Listing B.1.
The proposed ILP has two variables, the proc_assigned and the

is_assigned variables respectively correspond to the π and φ of the math-
ematical model presented in Chapter 5.

The parameters used in the formulation are:

• num_pe: the vector containing the number of available processor elements
per core.

• num_proc: the vector containing the number of processes requested per
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Appendix B. DistRib ILP formulation

application.

• priority: the vector parameter that represents pa, i.e. the priority for
each application.

• sys_penalty: the vector parameter that represents rs, i.e. an empirical
number for per-system penalty.

• K_dist: the constant weight to the cost related to distribution

• max_pe_per_system: an arbitrarily number sufficient big to guarantee
the constraints between π and φ (details later).

After the definition of the cost objective function, there are four constraints:

• full_assignment: it assures that all the processes request of each ap-
plication is respected;

• resource_availability: it assures that the number of processes as-
signed to each systems does not exceed the available processing elements;

• var_association: it bound the π and φ variables in sense that if φ = 1

then π ≥ 1.

• var_association_rev: the reverse bound between π and φ, if π ≥ 1

then φ = 1.
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set SYSTEMS;
set APPLICATIONS;

/*
* The only two necessary variables. The first one is not used in the

cost

* function but it’s required for proper resource assignment.

*/
var proc_assigned{i in APPLICATIONS, j in SYSTEMS}, >=0, integer;
var is_assigned {i in APPLICATIONS, j in SYSTEMS}, >=0, binary;

/*
* The various constant parameters.

*/
param num_pe {j in SYSTEMS};
param num_proc {i in APPLICATIONS};
param priority {i in APPLICATIONS};
param sys_penalty{j in SYSTEMS};

param K_dist;
param max_pe_per_system; /* required for the constaints of binary

variable,
it may be set to 1000000 or similar */

/*
* The minimization of the cost function.

*/
minimize cost: sum{i in APPLICATIONS} sum{j in SYSTEMS}

( priority[i] *
(
proc_assigned[i,j] * sys_penalty[j] +
K_dist * is_assigned[i,j]

));

/*
* Constraints.

*/
s.t. full_assignment{i in APPLICATIONS}:

sum{j in SYSTEMS} proc_assigned[i,j] >= num_proc[i,j];

s.t. resource_availability{j in SYSTEMS}:
sum{i in APPLICATIONS} proc_assigned[i,j] <= num_pe[j];

s.t. var_association{i in APPLICATIONS, j in SYSTEMS}:
is_assigned[i,j] <= proc_assigned[i,j];

s.t. var_association_rev{i in APPLICATIONS, j in SYSTEMS}:
max_pe_per_system * is_assigned[i,j] >= proc_assigned[i,j];

Listing B.1: The MathProg formulation of DistRib ILP solver.
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