
School of Industrial Engineering
Department of Mechanical Engineering

The Cardinality-Constrained
Approach applied to manufacturing

problems

Advisor: Andrea Matta
Co-advisor: Ettore Lanzarone

Student:
Giovanni Lugaresi

Student number 856645

Academic Year 2015-2016

不入虎穴, 焉得虎子
How can you catch tiger cubs without entering the tiger’s lair?

[Chinese idiom]

Acknowledgments

I am grateful towards all the people who made this work possi-
ble.

First of all, I would like to thank professor Andrea Matta,
who gave me the opportunity to join his research team in Shang-
hai, guided me throughout all the duration of this project, and
taught me the importance of properly present a work, the at-
tention to detail and team spirit.

I am thankful to Ph.D. Nicla Frigerio, with whom I shared
both work and leisure moments, and I am glad to call a great
friend of mine.

I am very grateful to professor Ettore Lanzarone, who was
always kind and patient to help me from wherever in the world.

This work would not have been possible without professor
Tullio Tolio, who gave me not only the possibility to do this
experience, but also inspired me through his lessons to love this
discipline.

I am obliged to all the ”Prof. Matta’s world”: Lin Ziwei,
Mengyi Zhang, Zhou Chunmeng, Su Huiting, Kan Li. They
have been of great help in several occasions, and they remain
my good friends in Shanghai.

3

I cannot forget to thank professor Jim McGregor Smith, who
encouraged me to be confident in my work and to never stop
looking for things that I love to do.

My experience in Shanghai was so enjoyable thanks to all the
great friends I met: it would be too long to mention all, but I
will never forget anyone of them. Among all, my gratitude goes
to Jacopo Bonechi, my partner in many adventures.

I am indebted to my girlfriend Vivian, for being so patient
with me being so far, never denying me her loving support.

Last but not least, I am grateful to my Family, for being
always besides me in my choices, and supporting me in every
moment.

Contents

Acknowledgments 3

Abstract 19

Sommario 23

1 Introduction 27

2 Optimization models under uncertainty of data:
literature review 33

2.1 Methods . 33

2.1.1 Stochastic Programming 34

2.1.2 Robust Optimization 36

2.2 A model for data uncertainty 38

2.3 Soyster’s approach 39

2.4 Ben-Tal and Nemirovsky approach 40

2.5 The Cardinality-Constrained approach 41

2.6 Applications of Robust Optimization 45

2.7 Applications of the Cardinality-Constrained ap-
proach . 46

3 Part Type Selection Problem 49

3.1 Problem Description 49

3.2 The model of Hwang and Shogan 52

3.2.1 Assumptions 52

7

3.2.2 Part Type Selection Model 53

3.3 Robust formulation 54

3.3.1 Model of data uncertainty 55

3.3.2 Protection function 55

3.4 Test cases . 58

3.4.1 Data and assumptions 59

3.4.2 Results . 61

3.5 Conclusion . 68

4 Case study: robust batching in a screws produc-
tion facility 69

4.1 Problem Description 69

4.2 Assumptions . 72

4.3 Model of data uncertainty 73

4.4 Data . 77

4.5 Results . 79

4.5.1 Case 1: time deviations DEV1, linear weights 79

4.5.2 Case 2: time deviations DEV1, constant
weights . 79

4.5.3 Case 3: time deviations DEV2, linear weights 82

4.5.4 Case 4: time deviations DEV2, constant
weights . 83

4.5.5 Case 5: dependent weights case 84

4.6 Conclusions . 88

5 Machine Loading Problem 91

5.1 Problem Description 91

5.2 The Machine Loading Model of Sodhi, Askin and
Sen . 93

5.2.1 Assumptions 93

5.2.2 Model . 93

5.3 Robust formulation 95

5.3.1 Model of data uncertainty 96

5.3.2 Protection function 96

5.4 Numerical results 98

5.4.1 Case 1: single period, multiple machines . 99

5.4.2 Case 2: multiperiod, single machine 99

5.4.3 Computational times 103

5.5 Single workpiece tracing 106

5.6 Conclusions . 110

6 Buffer Allocation Problem 111

6.1 The Buffer Allocation Problem 112

6.1.1 Problem Description 112

6.1.2 General solving procedure 114

6.2 Mathematical Programming for Simulation 116

6.2.1 Assumptions and performance measures . 118

6.2.2 MILP formulation 119

6.2.3 LP approximation 121

6.3 Robust formulation 123

6.3.1 Model of data uncertainty 123

6.3.2 Lower bound 125

6.3.3 Upper bound 126

6.4 Conclusions . 139

7 A matheuristic approach for the Buffer Allocation
Problem 141

7.1 The upper bound case with failures as input . . . 142

7.2 The proposed algorithm 144

7.3 Numerical results 149

7.3.1 Computational times 151

7.4 Conclusions and remarks 154

8 Conclusions 157

Bibliography 160

A Matheuristic code 167
A.1 Main . 167
A.2 Create function 169
A.3 Cardinality initialization function 169

B Gantt charts: failure-patterns found by the Tabu
Search algorithm 171
B.1 Upper bound . 172
B.2 Lower bound . 179

List of Figures

1.1 Uncertainty and the possible reactions of a system 29

2.1 Scenarios in Stochastic Programming: here, the
scenarios are represented as realizations of the 2
parameters a1 and a2, and the circles extension
represents their probability of taking place; the
numbers next to each circle represents the prob-
ability of each scenario’s realization. 35

2.2 Robust Optimization: the area in this graph rep-
resents the set of value the parameters a1 and a2

are assumed to belong to. The star identifies the
combination of those parameters that causes the
worst impact on the system performance. 37

3.1 Case 1: Objective function value over Γj, in the
case of constant weights, diverse order quantities . 64

4.1 The heading machines floor of 2 screws produc-
tion environments 70

4.2 Layout of the heading machines floor 71

4.3 Average efficiency of the heading machines in March,
2016 . 74

4.4 Machines downtime for March, 2016 75

4.5 Machines downtimes on May 4th 75

4.6 Machines downtimes on May 4th, 2016 76

4.7 Objective function with DEV1, deadline weights wi 80

11

4.8 Number of part types not included in the batch,
with DEV1 and deadline weights wi 80

4.9 Objective function with DEV1, weights wi = 1 . . 82

4.10 Number of part types not included in the batch,
with DEV1 and weights wi = 1 82

4.11 Case 3: Objective function value over the cardi-
nality Γj . 83

4.12 Case3: Number of part types not included in the
batch over the cardinality Γj 84

4.13 Case 4: Objective function value over the cardi-
nality Γj . 85

4.14 Case 4: Number of part types not included in the
batch over the cardinality Γj 85

4.15 Case 5: Comparison between objective functions
in the cases of independent Vs. dependent weights 87

4.16 Case 5: Comparison between number of excluded
items in the cases of independent Vs. dependent
weights . 88

5.1 The Machine Loading Problem 92

5.2 Case 1: Objective function 100

5.3 Case 1: Production level 101

5.4 Case 2: Objective function 104

5.5 Case 2: Production level 104

6.1 Solving procedure for BAP: generative and eval-
uative methods work in a iterative way 115

7.1 The proposed Tabu Search algorithm 146

7.2 The objective function solutions of the Tabu Search
algorithm in a test run with 1500 iterations . . . 148

7.3 The objective function solutions of the Tabu Search
algorithm in a test run with 1500 iterations . . . 149

7.4 The flow line considered for the test 150

7.5 Comparison between lower and upper bound with
respect to the cardinality of the failures of M3 . . 151

7.6 CPU time for the upper bound case, expressed in
hours . 155

B.1 Upper bound: failure-patter with Γ3 = 0 172

B.2 Upper bound: failure-patter with Γ3 = 1 172

B.3 Upper bound: failure-patter with Γ3 = 2 173

B.4 Upper bound: failure-patter with Γ3 = 3 173

B.5 Upper bound: failure-patter with Γ3 = 4 173

B.6 Upper bound: failure-patter with Γ3 = 5 174

B.7 Upper bound: failure-patter with Γ3 = 6 174

B.8 Upper bound: failure-patter with Γ3 = 7 174

B.9 Upper bound: failure-patter with Γ3 = 8 175

B.10 Upper bound: failure-patter with Γ3 = 9 175

B.11 Upper bound: failure-patter with Γ3 = 10 175

B.12 Upper bound: failure-patter with Γ3 = 11 176

B.13 Upper bound: failure-patter with Γ3 = 12 176

B.14 Upper bound: failure-patter with Γ3 = 13 176

B.15 Upper bound: failure-patter with Γ3 = 14 177

B.16 Upper bound: failure-patter with Γ3 = 15 177

B.17 Upper bound: failure-patter with Γ3 = 16 177

B.18 Upper bound: failure-patter with Γ3 = 17 178

B.19 Upper bound: failure-patter with Γ3 = 18 179

B.20 Upper bound: failure-patter with Γ3 = 19 179

B.21 Upper bound: failure-patter with Γ3 = 20 180

B.22 Upper bound: failure-patter with Γ3 = 21 180

B.23 Upper bound: failure-patter with Γ3 = 22 180

B.24 Upper bound: failure-patter with Γ3 = 23 181

B.25 Lower bound: failure-patter with Γ3 = 0 181

B.26 Lower bound: failure-patter with Γ3 = 1 181

B.27 Lower bound: failure-patter with Γ3 = 2 182

B.28 Lower bound: failure-patter with Γ3 = 3 182

B.29 Lower bound: failure-patter with Γ3 = 4 182
B.30 Lower bound: failure-patter with Γ3 = 5 183
B.31 Lower bound: failure-patter with Γ3 = 6 183
B.32 Lower bound: failure-patter with Γ3 = 7 183
B.33 Lower bound: failure-patter with Γ3 = 8 184
B.34 Lower bound: failure-patter with Γ3 = 9 184
B.35 Lower bound: failure-patter with Γ3 = 10 184
B.36 Lower bound: failure-patter with Γ3 = 11 185
B.37 Lower bound: failure-patter with Γ3 = 12 186
B.38 Lower bound: failure-patter with Γ3 = 13 186
B.39 Lower bound: failure-patter with Γ3 = 14 186
B.40 Lower bound: failure-patter with Γ3 = 15 187
B.41 Lower bound: failure-patter with Γ3 = 16 187
B.42 Lower bound: failure-patter with Γ3 = 17 187
B.43 Lower bound: failure-patter with Γ3 = 18 188
B.44 Lower bound: failure-patter with Γ3 = 19 188
B.45 Lower bound: failure-patter with Γ3 = 20 188
B.46 Lower bound: failure-patter with Γ3 = 21 189
B.47 Lower bound: failure-patter with Γ3 = 22 189
B.48 Lower bound: failure-patter with Γ3 = 23 189

List of Tables

2.1 Main Publications regarding applications of the
cardinality-constrained approach 48

3.1 Cardinality Values Γj that have been considered
for conducting the test case analysis 62

3.2 Weights wi that have been used in the test case . 62

3.3 Computational times for the application of the
robust counterpart of the Part Type Selection
model to test cases 63

3.4 Case 1: constant weights, diverse order quantities 63

3.5 Case 2: linear weights, diverse order quantities . . 64

3.6 Tool time τi for each part type 65

3.7 Case 3: quadratic weights, different order quantities 66

3.8 Case 4: random weights with two important or-
ders, different order quantities 67

3.9 Case 5: linear weights, constant order quantities . 67

4.1 Parts to be produced on the heading machine M1
and their corresponding weights 73

4.2 Case 1: Objective function and number of non-
included part types 79

4.3 Comparison of the results obtained with depen-
dent and independed weight referred to the the
batch for the product type coded 139 81

4.4 Case 2: Objective function and number of non-
included parts . 81

15

4.5 Case 3: Objective function and number of non-
included parts . 83

4.6 Case 4: Objective function and non-included part
types . 84

4.7 Case 5: Objective function in case of dependent
Vs. independent weights 86

4.8 Case 5: number of excluded parts in case of de-
pendent Vs. independent weights 87

4.9 Results of the application of the robust version
of the Part Type Selection model to a real case:
comparison between the cases with dependent and
independent weights (Linear weights case) 89

4.10 Results of the application of the robust version
of the Part Type Selection model to a real case:
comparison between the cases with dependent and
independent weights (Constant weights case) . . . 90

5.1 Case 1: Objective function and total production . 100

5.2 Case 1: Production levels for all the product types
over different cardinality levels 101

5.3 Case 2: Objective function and total production
values . 103

5.4 Case 2: Results with Γj = 0 105

5.5 Case 2: Results with Γj = 1 105

5.6 Case 2: Results with Γj = 2 106

5.7 Case 2: Results with Γj = 3 106

5.8 Case 2: Results with Γj = 4 107

5.9 Case 2: Results with Γj = 5 107

5.10 Case 2: Results with Γj = 6 108

5.11 Computational times in the deterministic cases . . 108

5.12 Computational times in the robust cases with the
maximum cardinality values adopted 108

7.1 Comparison of the results obtained in the lower
and upper bound cases 152

7.2 Lower bound case: computational times 153
7.3 Upper bound case: computational times 154

Abstract

Traditionally, several models in the manufacturing literature as-
sume that the main parameters which describe the systems’ be-
havior are deterministic. However, in many situations the un-
certainty affecting those parameters should not be neglected.
This thesis provides the robust version of three of the most
known problems in manufacturing: the Part Type Selection
Problem, the Machine Loading Problem, and Buffer Allocation
Problem (BAP). First, a literature review identifies the main
methodologies to address parameters’ uncertainty, and the core
issues regarding this field. The advantages of the Cardinality-
Constrained approach motivate its application throughout this
work. The robust counterpart of the Part Type Selection Prob-
lem has been applied both in test and real case studies, that
confirmed its applicability in the practice with very small com-
putational effort. The robust version of The Machine Loading
Problem has also been developed: again, results show that the
model can be applied with very short computational times to
real size cases. The robust version of the Buffer Allocation Prob-
lem has not been derived in its analytical form, since by integrat-
ing it with the Cardinality-Constrained formulation the linearity
of the Optimization Model would have been lost. Nevertheless,
the concept of cardinality has been used in the development of
a Matheuristic algorithm to calculate the bounds of the BAP. A
Matlab R© routine generates failure-patterns as they constitute
the inputs of the optimization model, respecting the cardinality

19

of the set. The algorithm is a Tabu Search Matheuristic, and
permits to seek the combinations of those failures which impact
the most on the objective function. The computational times
are promising for future developments aiming at the application
to real size problems.

Key Words: Robust Optimization; Machine Loading; Buffer
Allocation; Part Type Selection; Cardinality-Constrained ap-
proach; Tabu Search; Matheuristics.

Sommario

Tradizionalmente, molti modelli proposti nella letteratura del
manufacturing assumono che i principali parametri che descrivono
l’andamento di un sistema siano deterministici. Ad ogni modo,
in molte situazioni non si dovrebbe trascurare l’incertezza che
influenza questi parametri. Questa tesi fornisce la versione ro-
busta di tre dei piu noti problemi nel manufacturing: Part Type
Selection Problem, Machine Loading Problem, e Buffer Alloca-
tion Problem (BAP). Inizialmente, un’analisi bibliografica iden-
tifica le metodologie principali per affrontare l’incertezza dei
parametri e le principali questioni di questa disciplina. I van-
taggi dell’approccio Cardinality-Constrained ne motivano l’uso
in questo lavoro. La versione robusta del problema di Part Type
Selection e stata applicata sia in casi fittizi che reali, che hanno
cofermato la possibilita di applicarlo nella pratica con un basso
sforzo computazionale. E stata anche sviluppata la versione ro-
busta del problema di Machine Loading. Di nuovo, i risultati
mostrano che il modello puo essere applicato a casi di dimen-
sioni reali con brevi tempistiche computazionali. La versione
robusta del problema di Buffer Allocation non e stata svilup-
pata in versione analitica perche integrando il problema di BAP
con l’approccio Cardinality-Constrained viene persa la linearita
del modello di ottimizzazione. Ciononostante, il concetto di
cardinalita e stato usato nello sviluppo di un algoritmo ”ma-
teuristico” per calcolare i limiti della Buffer Allocation. Un pro-
gramma scritto in Matlab genera pattern di guasti che costitu-

23

iscono l’input del modello di ottimizzazione, sempre rispettando
la cardinalita del set di parametri incerti. L’algoritmo e una
”mateuristica” di tipo Tabu Search, e permette di cercare quelle
combinazioni di guasti che piu impattano sulla funzione obiet-
tivo. I tempi computazionali sono promettenti per lo sviluppo
futuro che punti all’applicazione su casi reali.

Parole chiave: ottimizzazione robusta; Machine Loading;
Buffer Allocation; Part Type Selection; approccio Cardinality-
Constrained; Tabu Search; Mateuristiche.

Chapter 1

Introduction

Uncertainty marks several aspects of our lives, and it affects ev-
ery decision we make, from the simplest ones such as deciding
what to wear in the morning to more complex ones like design-
ing a factory. There are no doubts that, with the increasing
complexity of nowadays systems, where the events we observe
can be the results of the combinations of numerous causes, un-
certain events have a much bigger playground than before and
the consequences of not considering it are not sustainable. The
popularity of the book ”The Black Swan” by Nassim Taleb re-
marks that the study of how to properly manage uncertainty
has become an issue. People are interested in knowing how to
cope with unexpected events, and most of the tools traditionally
used are often too complicated and not very effective.

In the manufacturing field, we deal with systems like facto-
ries, production lines, machines, as well as with people. De-
spite society commonly envisions factories as the quintessence
of clock-like accuracy, even the most meticulously planned pro-
duction line can get blind-sided by profit-devouring backups.
During their lifetime, these systems encounter different changes
in the product specifications or in the production plan, and they
face disruptive events, such as failures. Moreover, most of the
systems’ parameters are subject to natural uncertainty. For ex-

27

ample, if we imagine a production line during its lifetime, we
can expect it will incur in many different scenarios: there will
be common situations, like failures occurring regularly and not
having a big impact on the system performance, as well as ex-
ceptional situations, such as failures requiring longer than usual
to be repaired. Indeed, machine repair times can vary a lot and
idle time has a major impact on the system performance.

In 1993 Shapiro had already introduced stochastic models for
taking account of uncertainty in production planning [1]. Nev-
ertheless, at that time, he also discouraged the introduction of
stochastic models pointing out that production managers had
just begun to use deterministic models. After 2 decades, un-
certainty is often not taken into consideration by production
planners, as reminded by Graves in 2011 [2]:

”Most systems for production planning do not recognize or account for un-

certainty. Yet these systems are implemented in uncertain contexts.”

The reason for the models handling uncertainty have not yet
been broadly applied probably stands in the complexity of those
models: this may be the biggest obstacle to overcome before
seeing their application to solve real issues.

When a system faces an uncertain environment – due to un-
certainty coming from the outside or from the inside – there are
commonly two main ways to react: flexibility and robustness
(figure 1.1).

In the literature there is a small degree of misunderstanding
when discussing the differences between robustness and flexi-
bility. Often, this is due to the fact that several definitions of
flexibility have been proposed during the last two decades [3].
Moreover, some authors consider robustness as one of the several
forms of flexibility. In this thesis we will not consider aspects re-
lated to the flexibility of a system: therefore, let us just provide
the definition of robustness that fits our scope. In this work, we

28

Figure 1.1: Uncertainty and the possible reactions of a system

consider a system robust when it possesses the ability to with-
stand as many types of situations as possible during its lifetime,
maintaining a satisfactory output level even if some parameters
changed to an off-design condition.

The main contribution of this thesis is to provide robust mod-
els for dealing with some of the main problems in the manufac-
turing field: (1) the Part Type Selection Problem, (2) the Ma-
chine Loading Problem, and (3) the Buffer Allocation Problem
(BAP). Our goal is to cope with internal uncertainty (e.g. ma-
chine failures or uncertain processing times). In particular, we
integrate Mathematical Programming models with one of the
simplest, yet very effective, Robust Optimization methods that
has been proposed in the literature: the Cardinality-Constrained
approach. The choice of this method derives from the observa-
tion that most of the existing methods with the same scope
often lack in applicability. In particular, other methods often
require the knowledge of the probability distributions of the sys-
tem parameters when, unfortunately, they are either unknown
or require considerable time to be analysed. In other cases,
the methods are too conservative, since they provide robust so-
lutions that cover from the worst case scenarios, which are in
most occasions very unlikely to take place.

The Cardinality-Constraint approach, introduced in 2004 by

29

Bertsimas and Sim [4], differs from these previous contributions.
Their approach is very interesting because of its degree of ap-
plicability to real-life situations. Further, its basic idea can be
easily understood without a deep background in operations re-
search. In fact, it only requires one value as input: with the
latter, a decision maker is able to tune the level of robustness
he/she desires to achieve for the specific application. The ap-
proach takes advantage of the fact that the number of disruptive
events that affect a system is going to be available in most of
real cases, or at least it is easy to estimate. Moreover, a num-
ber is very easy to remember. For example, the approach can
be based on how many failures occurred in the last month, or
on how many work-pieces were off specifications, or, in gen-
eral, on all those events that jeopardize the production correct
behavior. Once chosen the cardinality (number) of unfortunate
events to be covered from, the method finds the optimal solution
when any possible combination of that number of events takes
place. Therefore, the solutions obtained with the Cardinality-
Constrained method are robust according to a certain cardinal-
ity. In other words, the method protects from the ”budget of
unluckiness” the decision maker decides to keep within.

The combined models proposed in this thesis are meant to
support people working in manufacturing in decision making and
system design. In this work, each model is presented together
with a discussion on its applicability to real situations, and this
is supported by numerical examples. The thesis is organized as
follows:

• Chapter 2 outlines the the main optimization models that
can be found in the literature to handle parameters un-
certainty: Stochastic Programming is briefly introduced,
whereas more attention is given to Robust Optimization
techniques, since the Cardinality-Constrained approach be-

30

longs to this field.

• Chapters 3 and 4 consider the Part Type Selection Model.
The problem focuses on the selection of which part types to
include in a batch, satisfying both capacity and tool avail-
ability constraints. In chapter 3 is presented a deterministic
version of the problem that has been chosen from the lit-
erature. Moreover, its robust counterpart is proposed, as
well as results of its application to small test cases. In this
analysis, we consider the uncertainty affecting the process-
ing times for machining the workpieces. Chapter 4 presents
the application of the robust counterpart of the Part Type
Selection Model to a real case, by showing how a robust
batch can be computed.

• Chapter 5 considers the Machine Loading Model and pro-
poses a robust formulation for a problem chosen from the
literature. Also in this case, both the deterministic and the
robust formulations are shown. The robust counterpart is
tested on some case studies, and results are available in this
chapter

• Chapters 6 and 7 deal with the Buffer Allocation Problem.
The BAP is a well-known problem that aims at configur-
ing the buffer space along a production line. In chapter
6 we give a short literature review of the problem. Then,
we attempt to keep within the analytical formulations of
the Cardinality-Constrained approach in order to build a
robust formulation of the BAP. The main limitations for
the application of the method are indicated. Chapter 7
proposes a Tabu Search algorithm to evaluate the bounds
of the BAP, in particular the upper bound. The proposed
matheuristic is applied to a test case, and the results are
presented.

31

• Conclusions are drawn in chapter 8 where we also discuss
about the future developments of this work.

32

Chapter 2

Optimization models under
uncertainty of data: literature
review

In this chapter the literature concerning optimization models
under uncertainty will be reviewed, with particular focus on ro-
bust optimization, which is the main topic of this work. Section
2.1 introduces the main methods for optimization under uncer-
tainty. In section 2.2 the model for data uncertainty that will
be taken as reference in this work is presented. Sections 2.3 and
2.4 give an overview over two of the main robust optimization
methods that have been proposed in the literature before the
publication of Bertsimas and Sim, whose method is presented
in section 2.5, and its applications are shown in section 2.7.

2.1 Methods

In many real-world optimization problem, uncertainty of data is
a delicate issue. Uncertainty causes model parameters to be sub-
ject to fluctuations, thus affecting the optimal solution. When
an optimization problem is solved under the uncertainty of data,
two main goals are typically pursued:

• Feasibility. To keep the solution feasible when it is applied

to the actual realizations of parameters. As data change,
the feasibility range of the problem may vary so much that
even former optimal solutions may be excluded. Thus, the
solution will have to change accordingly to the new feasi-
bility set.

• Optimality. To keep a good value of the objective func-
tion. A change in the parameters may result to force the
objective function to be lower than the maximal case: the
result is what is called an excessively conservative solu-
tion, and happens when the degree of protection against
uncertainty is excessive, or when the method is not effi-
cient enough. This reduction in the objective function must
therefore be minimized.

The ability to handle parameter uncertainty has been widely
studied in the literature. The main approaches that have been
proposed to face uncertain data in optimization problems belong
to two main groups: Stochastic Programming (SP) and Robust
Optimization (RO). In the rest of this section these two methods,
with their advantages and drawbacks, will be analysed, with
particular focus on robust optimization, which is the main topic
of this work.

2.1.1 Stochastic Programming

Stochastic Programming is based on the assumption that the
fluctuation of model parameters is governed by their probabil-
ity distribution. By identifying scenarios that correctly repre-
sent the outcome of the system, one can foresee the possible
realizations of the parameters. Each scenario is supposed to
have a probability of occurrence, assumed to be known, so all
together the scenarios would build a probability distribution.
We could graphically represent the Stochastic Programming ap-

34

proach with figure 2.1, where scenarios are combinations of pa-
rameters a1 and a2, and the circles’ area represent the probabil-
ity of each scenario’s realization.

Figure 2.1: Scenarios in Stochastic Programming: here, the scenarios are represented
as realizations of the 2 parameters a1 and a2, and the circles extension represents their
probability of taking place; the numbers next to each circle represents the probability
of each scenario’s realization.

One of the advantages of this method is that it permits to
model statistical dependency of parameters, which could be very
useful since dependence occurs very often in reality. In addi-
tion, Stochastic Programming is usually generating solutions
that are not over-conservative, as they protect against the most
likely realizations. However, it has some drawbacks. The main
disadvantage is probably that it assumes to have the correct
information regarding probability distributions, which in most
real applications is not available. Moreover, identifying the sce-
narios and their probabilities may prove to be a complex and
time-consuming task. If the knowledge about scenarios is not
a reliable description of the problem, the solutions may not be

35

robust. Hence, it may be necessary to model the system with
a great number of scenarios with the consequent requirement of
considerable computational effort. As far as this work is con-
cerned, this is the main reason why we did not decide to adopt
this approach. In our setting, in fact, we suppose that a reliable
estimate of the probability distribution is not available. Since
we want to use an approach that could be extended as much as
possible to real situations, we think that requiring the assump-
tions we have just mentioned could be a considerable obstacle
to our purpose. Since this work does not cope with Stochastic
Programming, we refer the reader to [5].

2.1.2 Robust Optimization

Robust optimization is a relatively recent technique with which
the decision-maker builds a solution that is feasible for any real-
ization of the uncertainty in a given set, thus thinking of model
parameters not as stochastic, but deterministic. In fact, it as-
sumes the uncertain parameters to belong to a given set of val-
ues, and all the region of their possible realizations is supposed
to be known. The goal is to construct a solution that is feasible
for any realization inside the considered set.

In contrast with figure 2.1, the graphical representation of
Robust Optimization is shown in figure 2.2: the scenarios are
now replaced by a search area, that represents the set of values
the parameters are assumed to belong. One of the points be-
longing to this area will consequently be the combination of the
parameters that causes the worst impact on the system.

Bertsimas et al. in [6] discuss about three main issues regard-
ing RO:

• Tractability. Many well known classes of optimization
problems may have a RO formulation that is tractable1;

1The authors define tractable those problems that can be reformulated into equivalent

36

Figure 2.2: Robust Optimization: the area in this graph represents the set of value the
parameters a1 and a2 are assumed to belong to. The star identifies the combination
of those parameters that causes the worst impact on the system performance.

nevertheless, in general the robust version of a tractable
optimization problem may not itself be tractable. The au-
thors warn that, in order to preserve tractability, care must
be taken in the choice of the uncertainty sets.

• Conservativeness. Robust Optimization produces solu-
tions that are deterministically immune to realizations of
the uncertain parameters in certain sets: the approach proves
to be reasonable when parameter uncertainty is not stochas-
tic, or when the distributional information is not avail-
able. Nevertheless, with a proper parameterization of dif-
ferent classes of uncertainty sets, the designer is able to
choose the tradeoff between robustness and performance,
and the level of probabilistic protection. What follows is
that even though Robust Optimization is inherently pro-
tecting against worst case scenarios, the solution it pro-

problems for which there are known solution algorithms with worst-case running time
polynomial in a properly defined input size

37

duces is not over conservative and in many cases is very
similar to those produced by stochastic methods.

• Flexibility. In [6] the authors show that robust optimiza-
tion can and has been applied to a wide variety of applica-
tions: a short recap of the applications fields is presented
in the next section.

2.2 A model for data uncertainty

Let us then start by defining the nominal formulation of a linear
problem.

max c’ x

s.t. Ax ≤ b (2.1)

l ≤ x ≤ u

where c’ is the vector containing the profits, A is the matrix of
the cost coefficients, b is the known terms vector. l and u are
vectors bounding the decision variables x. In this problem, it is
assumed that data uncertainty will only affect the elements of
matrix A. This does not influence the generality of the model,
since it is always possible to model the uncertainty of the ob-
jective function coefficients in the vector c by writing the same
problem in the equivalent form:

max z (2.2)

s.t z− c′x ≤ 0 (2.3)

and including the constraint (2.3) in Ax ≤ b. For each row i of

38

the matrix A we define Ji as the subset of coefficients {aij}j∈Ji
along the row that are subject to uncertainty. In general, robust
optimization models assume that systems’ parameters belong to
a generic uncertainty set. In most cases, this set is a range of
values in the form [alower, aupper]. Since all the models we present
in this work consider uncertainty sets as intervals of values, from
now on we will always refer to this case. Each coefficient aij is
modeled as a continuous, symmetric, random variable ãij that
takes values in the interval [āij − âij, āij + âij] where āij is the
nominal value and âij is the maximum variation from it. Each
realization of the parameter ai,j can be derived from:

ãij = āij + âijξij (2.4)

where the variables ξij are assumed to be simmetrically dis-
tributed in the interval [−1, 1].

2.3 Soyster’s approach

The first main contribution to Robust Optimization has been
given by Soyster [7]. The author proposed a linear optimization
model, the solution of which is feasible for all data that belong to
a convex set of values. According to Soyster’s formulation, the
robust counterpart of the nominal problem (2.1) is as follows:

max c’ x (2.5)

s.t.
∑
j∈Ji

aijxj +
∑
j∈Ji

âijyj ≤ bi ∀i (2.6)

−yj ≤ xj ≤ yj ∀j ∈ Ji (2.7)

l ≤ x ≤ u (2.8)

y ≥ 0 (2.9)

where the variables yj have been introduced since also a negative

39

variation of xj could have an impact on the system. Thus the
biggest variation due to the uncertain parameter aij is given
by âij |xj|. Even though this method successfully addresses the
uncertainty of the parameters by guaranteeing the feasibility
of the solution for any of their realizations (constraint (2.6)), it
excessively reduces the feasibility set of the nominal problem: as
a result, this approach is providing too conservative solutions.
Indeed, the produced solutions show a significant reduction in
the objective function.

2.4 Ben-Tal and Nemirovsky approach

Ben-Tal and Nemirovsky [8] have proposed a method that aims
to solve the conservatism found in Soyster’s solution. Their
method guarantees the feasability of the solution only if, for
each row i, the data {ãij}j∈Ji lie within an ellipsoidal set Ei.
The authors proposed the following robust linear optimization
problem:

max c’ x (2.10)

s.t.
∑
j

aijxj +
∑
j∈Ji

âijyij + Ωi

√∑
j∈Ji

â2
ijz

2
ij ≤ bi ∀i (2.11)

−yij ≤ xj − zij ≤ yij ∀i, j ∈ Ji (2.12)

l ≤ x ≤ u (2.13)

y ≥ 0

For each row i, the width of each ellipsoid Ei is defined by
the parameter Ωi which controls the feasibility region of the
nominal problem for the i-th constraint. These parameters can
– and must – be properly tuned in order to obtain the desired
level of robustness of the solution. The robust model of Ben-Tal

40

and Nemirovsky is less conservative than the Soyster approach,
because every feasible solution of the latter problem is a feasible
solution to the former. The authors prove that, under the model
of uncertainty they propose, the probability of violation of the
i-th constraint is at most

(
exp−Ω2

i/2
)
. Moreover, they show

possible applications of their approach to well-known problems.
However, this approach has the main disadvantage of directing
to conic quadratic problems, which even though convex are non-
linear [8]. Therefore, from a computational point of view, the
robust counterpart turns out to be much more demanding than
the nominal problem, and this makes the approach not very
suitable to large-size discrete optimization problems.

2.5 The Cardinality-Constrained approach

Bertsimas and Sim have developed an approach that is an essen-
tial contribution in the field of Robust Optimization. In [4] they
introduce a new model that is able to solve the over-conservatism
of Soyster’s formulation. Moreover, differently from the previous
robust approaches, they consider unlikely the scenario in which
all the parameters {ãij}j∈Ji on a generic row i take their worst
values at the same time as very unlikely to happen. Therefore,
they introduce the parameter Γi that is the number of entries
aij from the i-th row that are expected to go to their maxi-
mum values; Γi is set in the continuous range [Ji]. The goal of
their method is to find a solution that is feasible and covered
against all the possible outcomes in which up to bΓic parame-
ters change from their nominal values (where b c indicates the
lower integer of a real number), and one coefficient ãit changes
by (Γi − bΓic) âit.

Refering to the model presented in section 2.3, the robust
formulation is as follows:

41

max c′x (2.14)

s.t.
∑
j

aijxj + max
Ω

∑
j∈Si

âijyj + (Γi − bΓic)âityti

 ≤ bi ∀i

(2.15)

−yj ≤ xj ≤ yj ∀j ∈ Ji (2.16)

l ≤ x ≤ u (2.17)

y ≥ 0 (2.18)

where the subset Ω is defined as:

Ω = {Si ∪ {ti}; Si ⊆ Ji; |Si|= bΓic; ti ∈ Ji \ Si} (2.19)

Let us define the second term on the left side of equation
(2.15):

βi (x,Γi) = max
Ω

∑
j∈Si

âijyj + (Γi − bΓic)âityt

 (2.20)

as the protection function on the i-th constraint. It is straight-
forward that when Γi = 0, βi = 0, since in this case the set
Si is empty and the second term of the sum in equation (2.20)
is equal to 0: with no protection the problem coincides with
the nominal one (2.1). On the other hand, when Γi = |Ji|, we
have the maximum level of protection on the i-th row, so we
are in the Soyster’s framework. It is already possible to notice
that with the Cardinality-Constrained formulation the decision
maker is able to ”tune” the level of robustness by setting the
parameter Γi, depending on the number of parameters per row
which he/she expect to fluctuate.

42

It is now possible to show that problem (2.14)-(2.18) admits
an equivalent linear formulation. Given a vector |x∗| the pro-
tection function βi (x,Γi) of the i-th constraint is equal to the
objective function of the following problem:

βi(|x∗|,Γi) = max
∑
j∈Ji

âij|x∗|zij (2.21)

s.t.
∑
j∈Ji

zij ≤ Γi (2.22)

0 ≤ zij ≤ 1 ∀j ∈ Ji (2.23)

In fact, the solution of the problem above is made by bΓic
variables equal to 1 and one variable equal to Γi − bΓic . This
corresponds to selecting the subsets Si and {ti}. Consider now
the dual of the previous problem:

min
∑
j∈Ji

pij + Γizi (2.24)

s.t. zi + pij ≥ âij|x∗j | ∀j ∈ Ji (2.25)

zi ≥ 0 (2.26)

pij ≥ 0 ∀j ∈ Ji (2.27)

The robust approach of Bertsimas and Sim starts from notic-
ing that since the dual is a feasible and bounded linear problem,
the Strong Duality Theorem holds; so, at optimum, the objec-
tive function of the primal and the dual problem will coincide.
Let us notice again the equation (2.15), and write it in the form:∑

j

aijxj + βi ≤ bi ∀i (2.28)

Since we are considering a maximization problem, the term βi
will be implicitly minimized by satisfying the constraint (2.15).

43

Therefore, it is possible to substitute the dual problem in the
Master Problem formulation (2.14)-(2.18), thus obtaining:

max c’ x (2.29)

s.t.
∑
j

aijxj +
∑
j∈Ji

pij + Γizi ≤ bi ∀i (2.30)

zi + pij ≥ âijyj ∀i, j ∈ Ji (2.31)

zi ≥ 0 ∀i (2.32)

pij ≥ 0 ∀i, j ∈ Ji (2.33)

− yj ≤ xj ≤ yj ∀j ∈ Ji (2.34)

yj ≥ 0 ∀j ∈ J (2.35)

l ≤ x ≤ u (2.36)

In this way, the dual problem will be implicitly solved in
the Master Problem, thus finding the maximum value of the
protection function βi. Hence, the optimization is solved in the
worst case scenario constrained to the cardinality Γi: indeed,
it will be selected the combination of parameters going to their
maximum value that – respecting the cardinality – would cause
the worst impact on the system.

Bertsimas and Sim have developed an approach that stands
out among other robust models. We can identify the main rea-
sons for the success of the methods:

• The approach is able to preserve the linear form of the
problem.

• It models the uncertainty of the parameters in a very simple
way, in fact only 2 coefficients are required: the cardinality,
and the maximum variation of the parameters.

• It does not require a knowledge in the probability distribu-
tions of the parameters.

44

• It offers full control on the conservatism of the solution.

• It is intuitive: the designer is asked to estimate a very sim-
ple parameter. This is very important when the applicabil-
ity of this approach is concerned.

• It guarantees deterministic feasibility for any cardinality
value smaller than the considered one.

It is worth to notice that the assumption of symmetry on the
probability distribution of the uncertain parameters plays an
important role. Relying on this hypothesis, in [4] upper bounds
on the probability of violation of each i-th constraint are derived;
it is showed that a valid upper bound is:

exp

(
− Γ2

i

2|Ji|

)
(2.37)

and the authors also show that tighter bounds can be found:
intuitively, since the probability distribution is assumed to be
symmetric, each parameter has the same probability of assuming
the value āij − âijξij or āij + âijξij, where ξij ∈ [−1, 1]. There-
fore, the random deviations in the constraint matrix tend to
compensate each other when they are summed, especially when
the number of uncertain parameters grows.

2.6 Applications of Robust Optimization

In [6] the authors present a review of the applications approached
by Robust Optimization techniques:

Portfolio Optimization. It is well-known that a main issue in
finance is how to allocate monetary resources across risky assets.
Robust Optimization has been widely applied in this field, and
in the literature it is possible to find a considerable number of

45

models: among all, the authors pose particular attention to [9]
and [10].

Statistics, Learning and Estimation. Since the process of
analyzing data and describing the parameters of a system is
naturally uncertain, it is not surprising that those problems have
been approached from a Robust Optimization perspective. That
has been done by [11] and [12].

Supply chain management. Bertsimas and Thiele [13] con-
sider a robust model for inventory control, using a cardinality-
constrained uncertainty set, as shown in section 2.5. The au-
thors claim as advantage that the robust approach provides in-
ventory control policies that are structurally identical to the
stochastic case, with the added advantage that probability dis-
tributions need not to be assumed in the robust case.

Engineering. Several papers on robust engineering design prob-
lems include applications in:

• Structural design [14].

• Circuit design: see [15] and [16].

• Power control in wireless channels [17].

• Antenna design: [18]; [19].

• Control [20].

• Simulation-based optimization in engineering [21].

2.7 Applications of the Cardinality-Constrained

approach

Several applications of the Cardinality-Constrained approach
can be found in the literature: a few of them which regard prob-
lems in the manufacturing field will be shortly presented. The

46

main publications of robust approaches as applications of the
Cardinality-Constrained method can be found in table 2.1.

In [22], Moreira developed a robust Assembly Line Balancing
on the basis of the work of Borba and Ritt [23], who introduced
a formulation in which the number of stations is minimized by
minimizing the number of workers assigned to the assembly line.
The authors show that the proposed model, together with a
heuristic, can provide solutions considerably more robust to task
time variations with a relatively low increase in the number of
stations and workers needed: this can be an effective tool for
assembly line managers.

Alem and Morabito [24] developed Robust Optimization tools
for robust combined lot-sizing and cutting-stock models. The
authors aim at protecting against uncertainty in production
costs and product demand.

Hazir et al. [25] proposed a robust version of the discrete
time/cost trade-off problem (DTCTP),a well-known project schedul-
ing problem with practical relevance in which the total cost of
a project is minimized, constrained to the project deadline, or
viceversa. The authors address the deadline version of the prob-
lem and consider the uncertainty of the costs of the activities.

Lu et al. [26] introduced a robust single machine job schedul-
ing problem, in which they cover from uncertainty of processing
times.

Solyali et al. [27] developed a robust approach of the inven-
tory routing problem. The issue for the supplier is to determine
the delivery quantities of a single product as well as the times
and routes to the multiple customers facing uncertain demands
over a finite time horizon.

47

T
ab

le
2.1:

M
ain

P
u

b
lication

s
regard

in
g

ap
p

lication
s

of
th

e
card

in
ality-con

strain
ed

ap
proach

A
u
th

ors
T

op
ic

U
n
certain

ty
sets

R
eferen

ce

M
oreira

et
al.

A
ssem

b
ly

lin
e

b
alan

cin
g

W
orkers’

task
ex

ecu
tion

tim
es

[22]
A

lem
&

M
orab

ito
P

ro
d
u
ction

p
lan

n
in

g
P

ro
d
u
ction

costs,
D

em
an

d
[24]

B
ertsim

as
&

T
h
iele

S
u
p
p
ly

ch
ain

m
an

agem
en

t
P

ro
d
u
ct

d
em

an
d

[13]
H

azir
&

D
olgu

i
A

ssem
b
ly

lin
e

b
alan

cin
g

O
p

eration
tim

es
[28]

H
azir

et
al.

P
ro

ject
sch

ed
u
lin

g
C

ost
u
n
certain

ty
[25]

M
o
on

an
d

Y
ao

P
ortfolio

op
tim

ization
R

etu
rn

rate
of

assets
[29]

L
u

et
al.

M
ach

in
e

sch
ed

u
lin

g
P

ro
cessin

g
tim

es
[26]

S
olyali

et
al.

In
ven

tory
rou

tin
g

P
ro

d
u
ct

d
em

an
d

[27]

48

Chapter 3

Part Type Selection Problem

This chapter provides a robust formulation of a well-known prob-
lem in the manufacturing field. The intention is to show the
applicability of the robust counterpart of a Part Type Selection
model to the Production Planning, as well as its simplicity, since
a small number of input parameters are required. The robust
model has been tested on small case studies, which motivated its
successive application to a real case (chapter 4). Section 3.1 will
introduce the problem; in section 3.2 the deterministic model
proposed by Hwang and Shogan will be presented, and its ro-
bust version will be developed in section 3.3. The test studies
and the numerical results of the application of the robust model
will be shown in section 3.4.

3.1 Problem Description

One of the main issues in a Flexible Manufacturing Systems
environment is Production Planning: the selection of which tools
to load on the machines and which workpieces to produce. This
problem has been analysed by many researchers, and during
the last 30 years several papers regarding solution approaches
have been published: among them are simulation, mathematical
programming, queueing, as well as heuristics.

49

Flexible Manufacturing Systems

Flexible Manufacturing Systems are configurations of machines,
linked by automatic transportation systems, capable of unmanned
production shifts and automatic tool changing. FMSs are capital
intensive systems, meaning they require a consistent investment
(training, hardware, software, floor space), with the capability
of producing a variety of high quality workpieces in short lead
times. The flexibility of the system permits to change tools and
route workpieces in such a way so to maximize the utilization
of machines. FMSs played a central role in the development of
the 1980’s production systems and were indicated by many ex-
perts as one of the reasons for Japan’s manufacturing leadership
during that period [36].

Production Planning

A general Production Planning problem is divided into two sub-
problems: Part Type Selection and Machine Loading. Some
constraints are present and must be satisfied in both of these
problems, since they are closely interrelated; those are:

• Given a selected set of parts, the set of tools required to
process them is determined through the part-tool incidence
matrix. Each tool requires a certain number of tool slots.
The total slots needed shall not exceed the tool magazine
capacity.

• Parts have their corresponding due dates: the production
must be completed in a certain amount of time.

• Sometimes, the workload balance of the machines has to be
taken into account too. In fact, an unbalanced Production
Plan would result in some machines being over-saturated,
while others under-utilized. The introduction of this con-
straint is not mandatory for guaranteeing the feasibility of

50

the solution, even though a smoother Production Plan is
desirable.

In this chapter we focus on the Part Type Selection Problem,
whereas we deal with the Machine Loading Problem in chapter
5.

Part Type Selection

The Part Type Selection Problem is the optimization problem
selecting the composition of the batch that maximizes an ob-
jective function (typically expressed in profit terms) over a con-
sidered amount of time. In particular, the problem deals with
the minimization of the setup time, that is the time required
to switch from a product type to another. Since setup time
is usually constant, minimizing it corresponds to minimize the
number of setups, or, equivalently, minimizing the number of
batches.

Hwang and Shogan [37] simplified the objective of the Part
Type Selection Problem by translating it into the maximization
of the number of part types included in successive batches: in-
deed, the more part types can fit in each batch, the less batches
will be required. Starting from a general order (a pool of items
demanded by the customer), the authors propose to select only a
first batch, the size of which will be maximized by the optimiza-
tion model. Consequently, the problem is solved again to select
a second batch from the remaining part of the order, and so on
until the order is completed. In this way, the model keeps flexible
enough to cope with incoming orders, with machine breakdowns
and with other dynamic conditions. Moreover, maximizing the
number of selected part types permits to achieve high utilization
of the tool storage capacity.

51

3.2 The model of Hwang and Shogan

The model of Hwang and Shogan [37] has been chosen for this
work because it is simple enough to take account of the main
properties of the results, and at the same time it does not lack
of significance and applicability to real problems. In their work,
the authors consider parts as tuples characterized by three at-
tributes:(1) part type, (2) order quantity, (3) due date. Tools
may perform one or more operations on each parts, and each of
them could occupy a different number of slots on the machines.

3.2.1 Assumptions

The set of the parts that can be included in the batch is the
production order: therefore, a batch is a subset of the order that
can be processed simultaneously by the system. The following
assumptions are considered:

1. Setups are done only once the batch has been completed.

2. The tool storage capacity is limited.

3. All the necessary tools for processing each part order are
assumed to be in the system before it starts operations.

4. Each part has one and only one corresponding set of tools.

5. The machines are general purpose, meaning they all can
be configured with the tools necessary to produce the parts
composing the batch. Hence, it is possible to treat the
whole system as a single machine. Notice that this assump-
tion does not properly represent the practice: indeed, there
will be a successive assignment of tools to the machines,
which is the solution to the Machine Loading models (see
chapter 5).

52

3.2.2 Part Type Selection Model

The following is the formulation of the Part Type Selection
model as in [37]:

max
∑
i

wiyi (3.1)

s.t.
∑
j

cjxj ≤ S (3.2)

ai,j yi ≤ xj ∀i, j (3.3)∑
i

(∑
j

ti,jqi

)
yi ≤M (3.4)

yi ∈ {0, 1} (3.5)

xj ∈ {0, 1} (3.6)

Decision variables. yi is 1 when part type i is inserted in
the batch, 0 otherwise; xj is 1 if tool type j is required by the
system, 0 otherwise.

Parameters. aij is 1 if part type i requires tool j; cj is the
number of tool magazine slots occupied by tool j; S is the total
number of tool slots in the system; wi is the weight of the i-th
part order (the authors propose a direct relationship with the
due date of the part order); tij is the processing time of tool
j required by the product type i in the order; qi is the order
quantity; M is the upper bound on the total machining time
for the batch, that reflects the time available for production (for
example, a shift).

Objective function. The objective function (3.1) aims at max-
imizing the number of items inserted in a batch. The authors of
[37] propose a relationship between the weights and the due date
of a part order such as wi = 1

di
, where di represents the time until

part order i is due to be delivered. Nevertheless, other factors

53

may be taken into consideration (profit, late delivery penalties,
importance of the customer, etc.).
Constraints. Constraint (3.2) ensures that the tool magazine
capacity is satisfied; constraint (3.3) guarantees that for each
part type selected, all the necessary tools to process it are se-
lected; constraint (3.4) ensures that the total processing time
needed does not exceed the total machining time available, and
consequently avoids the possibility of some orders not respecting
their due date. Constraints (3.5) and (3.6) are assignment con-
straints that state the boolean nature of the decision variables.

3.3 Robust formulation

In a production environment, any disruption causing an elonga-
tion of the operations to process a part could compromise the
possibility of meeting customers expectations in terms of lead
time. In fact, the model proposed by Hwang and Shogan ex-
plicitly considers the trade-off between large batches and order
urgency. For this reason, it is desirable to build a robust model
that covers from unexpected events that could happen during
the production: these events can be, for example, sudden tool
breaks, unplanned extra-ordinary maintenance, as well as incor-
rect positioning of work-pieces that could block the machines
for a considerable amount of time, and so on.

Building a robust Part Type Selection Model by means of the
Cardinality-Constrained approach has the scope to find how to
include part types in the batches of a production plan, the exe-
cution of which is supposed to be affected by a certain number of
disruptions. Among all the combinations of those unfortunate
events, the ones causing the worst impact will be selected, so
that any other combination of that number of events will guar-
antee the optimal solution (for example, over the production of
100 part types, we expect 2 of them will be affected by failures

54

as their process will require more time: among all the possible
combinations, the 2 part types causing the worst impact on the
system in case of failures will be selected for the solution of the
model).

3.3.1 Model of data uncertainty

Let us then consider the processing times tij. Following the same
considerations done in section 2.2, we can model the processing
times as random variables t̃ij, symmetrically distributed in the
interval

[
t̄ij − t̂ij, t̄ij + t̂ij

]
, where t̄ij is the expected value of

the operation time on order type i using tool j, and t̂ij is the
maximum deviation from it. This model of data uncertainty –
that has been presented in chapter 2 – permits to cover from any
type of disruptive events that forces the operations to require
more time.

It is worth to notice that despite in this formulation all the
realizations of t̃ij are referring to the time to process an item
belonging to the order type i, since constraint (3.10) includes
the total order quantity qi, by assigning a cardinality to the
uncertain event we are assuming they would impact the whole
batch. On the basis of the latter consideration, notice it is still
easy to reasonably estimate the time deviations: for example, if
we expect the batch of the i-th part type to require an additional
20% of time, then the corresponding time deviations will simply
be: t̂ij = 0.2 t̄ij.

3.3.2 Protection function

Let us then build a constraint on the production time budget, in
order to fit in the Cardinality-Constrained framework. Then, let
us split constraint (3.4) into constraints (3.9) and (3.10), thus
reformulating the model as follows:

55

max
∑
i

wiyi (3.7)

s.t.
∑
j

cjxj ≤ S (3.8)∑
j

Tj ≤M (3.9)∑
i

ti,jqiyi ≤ Tj ∀j (3.10)

ai,j yi ≤ xj ∀i, j (3.11)

yi ∈ {0, 1} (3.12)

xj ∈ {0, 1} (3.13)

Tj ∈ R (3.14)

where Tj is a continuous decision variable that represents a time
budget on the machining time spent on the j-th tool.

It is now possible to consider the constraint (3.10) and write
its robust formulation by inserting the protection function.

∑
i

t̄i,jqiyi+max
Ωj

{∑
i

t̂i,j qi yi + (Γi − bΓic)t̂uj ,j qi ytj

}
≤ Tj ∀j

(3.15)
where

Ωj = {Si ∪ {uj}; Si ⊆ Ji; |Si| = bΓic; uj ∈ Ji \ Si} (3.16)

is the subset of values subject to uncertainty that will go to their
maximum value, constrained to have cardinality Γj. This way,
the second term of the right side of equation (3.15) represents
the protection function in the event of disruptions that would
cause the processing times for workpiece i on tool j to rise up
to tij + t̂ij.

56

At this point, we can explicit the protection function and the
selection of the subset Sj in the following maximization problem.
Let y∗i be a particular solution of the batching problem, then:

βj = max
∑
i

t̂i,j qi y
∗
i zi,j (3.17)

s.t.
∑
i

zi,j ≤ Γj (3.18)

0 ≤ zi,j ≤ 1 ∀i (3.19)

zi,j ∈ R (3.20)

where zij are continuous variables in the interval [0, 1], Γj is the
cardinality parameter, representing the number of part orders i
expected to require more time to be processed on the j-th tool.
The dual form of this maximization problem is:

βj = min Γj zj +
∑
i

pi,j (3.21)

s.t. zj + pi,j ≥ t̂i,j qi y
∗
i ∀i (3.22)

zj ∈ R+ (3.23)

pi,j ∈ R+ (3.24)

At this point, the dual problem can be inserted in the master
one:

57

max
∑
i

wiyi (3.25)

s.t.
∑
j

cjxj ≤ S (3.26)∑
j

Tj ≤M (3.27)∑
i

ti,jqiyi + Γj zj +
∑
i

pi,j ≤ Tj ∀j (3.28)

zj + pi,j ≥ t̂i,j qi yi ∀i, j (3.29)

ai,j yi ≤ xj ∀i, j (3.30)

yi ∈ {0, 1} (3.31)

xj ∈ {0, 1} (3.32)

zj ∈ R+ (3.33)

pi,j ∈ R+ (3.34)

With this formulation, the dual problem will be implicitly
solved in the maximization problem, and the solution will be
the batch covering from the expected unfortunate events.

3.4 Test cases

In this section the application of the robust version of the Part
Type Selection Model to some test cases will be presented. The
aim is to show the general behavior of the model, in terms of ob-
jective function and batch patterns, when the main parameters
vary. This preliminary comprehension is useful for the conse-
quent application of the model to real case studies (Chapter 5).

58

3.4.1 Data and assumptions

• Let us consider a problem with 10 part types and 10 tool
types. This is a smaller problem than a real-life situation,
but not trivial.

• Each workpiece requires 2 to 5 tools to complete its pro-
duction. This corresponds to a common FMS production
environment. So, let the matrix of coefficients aij be:

A =

1 0 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 1 1 0
0 1 0 1 0 0 1 0 1 1
1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 1 1 0
0 1 0 1 0 0 0 0 0 0

(3.35)

• The processing time for each workpiece has been set to the
arbitrary value of 1min. This is to keep the formulation
simple, as well as the interpretation of the results. So, the
matrix of coefficients t̄ij will be:

59

T̄ =

1 0 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 1 1 0
0 1 0 1 0 0 1 0 1 1
1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 1 1 0
0 1 0 1 0 0 0 0 0 0

(3.36)

Notice that, numerically, tij = aij.

• Production time deviations t̂ij are chosen equal to the nomi-
nal production time t̄ij. Thus, a disruptive event causes the
operation time for a workpiece to double its value, since
t̄ij + t̂ij = 2 t̄ij. This choice is still arbitrary in a test case,
but in a real case this has to be carefully chosen by the
decision maker, in order to correctly represent the real sit-
uation. The time deviations have to be selected from rea-
sonably expected realizations of the processing times.

• One production week has been chosen as planning horizon.
This is mainly due to the small size of the problem, that
makes the choice of longer time horizon not very meaningful
in this case. Considering a 5-day week with one 8-hour shift
per day, then:

M = 5 days·8hours/day·60min/hour = 2400min (3.37)

• The number of slots required by each tool are chosen so to
resemble a real situation. Normally, tools require between
1 to 10 slots, so let the values cj be:

c =
[

1 1 2 2 2 2 5 5 7 10
]

(3.38)

60

• The value of the tool slot capacity S has initially been cho-
sen in order to not be the critical resource (S = 37).

This choice is mainly due to the fact that we are interested
in capturing the behavior of the model when affected by
uncertainty in the processing times: the lack of tool slots
is an issue that involves the deterministic version of the
problem, the solution of which is often trivial.

• Two different order quantity vectors have been considered
in the analysis. (1) diverse values for each part type de-

mand, q
(1)
i , and (2) constant order quantities q

(2)
i . So:

q(1) =
[

200 200 100 100 100 100 100 50 50 10
]

(3.39)

q(2) =
[

100 100 100 100 100 100 100 100 100 100
]

(3.40)

• The chosen cardinality values are meant to allow the identi-
fication of the behavior of the system. Given the small size
of this problem, reasonable values shall not exceed 3. The
cardinality values used in the experimentation are shown
in table 3.1.

• Weights are chosen so to represent different types of im-
portance of the part types: w

(1)
i constant, w

(2)
i linear, w

(3)
i

quadratic, w
(4)
i random, w

(5)
i random with 2 important work-

pieces. They are listed in table 3.2.

3.4.2 Results

The results obtained by applying the new robust Part Type
Selection Model to the test case proposed in section 3.3 will

61

Table 3.1: Cardinality Values Γj that have been considered for conducting the test
case analysis

Γ
(0)
j Γ

(1)
j Γ

(2)
j Γ

(3)
j Γ

(4)
j

0 1 2 3 2
0 1 2 3 2
0 1 2 3 1
0 1 2 3 1
0 1 2 3 1
0 1 2 3 1
0 1 2 3 1
0 1 2 3 1
0 1 2 3 1
0 1 2 3 1

Table 3.2: Weights wi that have been used in the test case

w
(1)
i w

(2)
i w

(3)
i w

(4)
i w

(5)
i

Constant Linear Quadratic Random 2 important types

0.1 0.02 0.00 0.11 0.27
0.1 0.04 0.00 0.01 0.02
0.1 0.05 0.00 0.16 0.04
0.1 0.07 0.01 0.16 0.10
0.1 0.09 0.02 0.05 0.14
0.1 0.11 0.03 0.05 0.29
0.1 0.13 0.06 0.03 0.01
0.1 0.15 0.13 0.17 0.01
0.1 0.16 0.25 0.14 0.03
0.1 0.18 0.50 0.12 0.08

be herewith listed and interpreted. All the instances described
below have been solved using IBM ILOG CPLEX R© v12.5 on
a notebook Dell XPS13 with a i7 Intel Core @2.5GHz and 8GB
RAM (WIN10). Table 3.3 shows the computational times for
the case studies that have been completed. In all cases, the
time to solve is between 5 and 6 seconds, so there is no big
difference among the cases.

62

Table 3.3: Computational times for the application of the robust counterpart of the
Part Type Selection model to test cases

CPU time [s]

Case Γ
(0)
j Γ

(1)
j Γ

(2)
j Γ

(3)
j Γ

(4)
j

CASE 1 5.91 5.22 5.45 5.34 5.20
CASE 2 5.43 5.38 5.02 5.16 5.43
CASE 3 5.47 5.53 5.31 5.15 5.54
CASE 4 5.64 5.46 5.33 5.42 5.16
CASE 5 5.14 5.47 5.28 5.26 5.13

Case 1: constant weights, diverse order quantities

In table 3.4 the batches resulting from the application of the
robust Part Type Selection model are shown, in the case of
part types with the same importance and with diverse order
quantities. It can be easily noticed that the number of items
included in the batch decreases as the cardinality Γj increases.
Consequently, the objective function value decreases following a
non-increasing pattern with Γj. The behavior of the objective
function can be contemplated in figure 3.1.

Table 3.4: Case 1: constant weights, diverse order quantities

Part Type wi Γ
(0)
j Γ

(1)
j Γ

(2)
j Γ

(3)
j Γ

(4)
j

1 0.10 0 0 0 0 0
2 0.10 1 0 0 0 0
3 0.10 1 1 0 1 1
4 0.10 1 1 1 0 1
5 0.10 1 0 0 0 0
6 0.10 1 1 1 1 1
7 0.10 1 1 1 1 1
8 0.10 1 1 1 1 1
9 0.10 1 1 1 1 1
10 0.10 1 1 1 1 1

Objective function: 0.9 0.7 0.6 0.6 0.7

63

Figure 3.1: Case 1: Objective function value over Γj , in the case of constant weights,
diverse order quantities

Case 2: linear weights, diverse order quantities

Table 3.5 shows the results obtained in the case where to part
types have been assigned linear weights. The similar behaviour
for the batching and for the objective function can be noticed.

Table 3.5: Case 2: linear weights, diverse order quantities

Part Type wi Γ
(0)
j Γ

(1)
j Γ

(2)
j Γ

(3)
j Γ

(4)
j

1 0.02 0 0 0 0 0
2 0.04 1 0 0 0 0
3 0.05 1 1 0 0 1
4 0.07 1 1 0 0 1
5 0.09 1 0 1 1 0
6 0.11 1 1 1 1 1
7 0.13 1 1 1 1 1
8 0.15 1 1 1 1 1
9 0.16 1 1 1 1 1
10 0.18 1 1 1 1 1

Objective function: 0.98 0.85 0.81 0.81 0.85

From the results, since part type 5 is not included in the cases
with Γ(1) and Γ(4), one could argument that the batching does

64

not respect the importance of the part types. Nevertheless, a
closer look at the data can show the reason for it. Table 3.6
reports, for each part type, its tool time τi: this quantity rep-
resents the total time a part type requires for the completion of
the production of its order quantity; it is calculated in equation
3.41.

τi =
∑
i

qi tij ∀i (3.41)

Table 3.6: Tool time τi for each part type

Part Type τi

1 600
2 600
3 300
4 300
5 500
6 200
7 100
8 200
9 150
10 20

From this it is possible to notice that the items that have not
been included in the batch are the ones requiring more time for
production. The occurrence of a disruptive event has lowered the
total available time, so the items that were more time consuming
have been removed from the batch.

Case 3: quadratic weights, diverse order quantities

As shown in table 3.7, the case of quadratic weights presents a
very similar behavior as the case with linear ones. Nevertheless,
from the batching results can be noticed that the least important
items have been already taken out from the batch with Γ

(1)
j

65

values; consequently, the time saved was such that it was not
necessary to eliminate any other items.

Table 3.7: Case 3: quadratic weights, different order quantities

Part Type wi Γ
(0)
j Γ

(1)
j Γ

(2)
j Γ

(3)
j Γ

(4)
j

1 0.001 0 0 0 0 0
2 0.002 1 0 0 0 0
3 0.004 1 0 0 0 0
4 0.008 1 0 0 0 0
5 0.016 1 1 1 1 1
6 0.031 1 1 1 1 1
7 0.063 1 1 1 1 1
8 0.125 1 1 1 1 1
9 0.250 1 1 1 1 1
10 0.500 1 1 1 1 1

Objective function: 0.99 0.98 0.98 0.98 0.98

Case 4: random weights with two important orders, different order
quantities

This case has been carried out with the intent to show that it
is possible to use weights to keep some important items in the
batch. Table 3.8 shows the results obtained in this case. It
is possible to notice that the 2 most important part types (e.g.
parts 1 and 2) are kept in the batch no matter what the cardinal-
ity values are. This is important because it proves the decision
maker is still able to control the batching results depending on
the requirements.

Case 5: linear weights, constant order quantities

The case of constant order quantities q
(2)
i shows the dependence

of the results from the tool time. In fact, we can notice in table
3.9 that the part types requiring the most time are not included
in the batch, and the results are not influenced by the cardinality

66

Table 3.8: Case 4: random weights with two important orders, different order quanti-
ties

Part Type wi Γ
(0)
j Γ

(1)
j Γ

(2)
j Γ

(3)
j Γ

(4)
j

1 0.27 1 1 1 1 1
2 0.02 0 0 0 0 0
3 0.04 1 0 0 0 0
4 0.10 1 0 1 1 1
5 0.14 1 1 0 0 0
6 0.29 1 1 1 1 1
7 0.01 1 0 0 0 1
8 0.01 1 0 0 0 0
9 0.03 1 0 0 0 0
10 0.08 1 1 1 1 1

Objective function: 0.97 0.78 0.73 0.73 0.75

after Γj = 1, since the time saved is enough to cover from the
additional disruptive events.

Table 3.9: Case 5: linear weights, constant order quantities

Part Type wi Γ
(0)
j Γ

(1)
j Γ

(2)
j Γ

(3)
j Γ

(4)
j

1 0.02 0 0 0 0 0
2 0.04 0 0 0 0 0
3 0.05 1 0 0 0 0
4 0.07 1 0 0 0 0
5 0.09 1 0 0 0 0
6 0.11 1 1 1 1 1
7 0.13 1 1 1 1 1
8 0.15 1 1 1 1 1
9 0.16 1 1 1 1 1
10 0.18 1 1 1 1 1

Objective function: 0.94 0.72 0.72 0.72 0.72

67

3.5 Conclusion

A robust model for the assessment of a Part Type Selection
has been developed and tested on some small cases. The re-
sults have proved to be aligned with the expected behavior of a
Cardinality-Constrained robust model, such as the decrease in
the objective function with an increase in the cardinality. There-
fore, this model can be applied to real cases (Chapter 4) and is fit
to become part of the Production Planning process. With this
tool, a decision maker can evaluate the cost of disruptive events
on the batch production campaign, and consequently quantify
how much he/she is willing to pay in order to be covered: that
is the trade-off between robustness and the price of it.

68

Chapter 4

Case study: robust batching in
a screws production facility

In this chapter the robust counterpart of the Part Type Selection
Model (Chapter 3) has been applied to a real situation. The case
study that has been considered is the Production Planning for
a small business of screws production located in the northern
part of Italy. The company has a year revenue of 10 million
e and it employs 50 people. The production facility is constantly
facing delays and it struggles to meet all the customers’ orders.
The aim is to provide a tool that the management can use in
the prioritization of the production in order to cover from the
disruptive events that cause delays.

4.1 Problem Description

The production of screws is a quite simple process: iron wire
is inserted in a cold heading machine that aligns the steel wire
and cuts it so to shape the head of the screw. The headed parts
are then cleaned in a washing tank; a threading process follows,
where the desired thread is shaped on the products. The last
part of the process depends on the product requirements, and
it can include either a heat treatment or a carburizing process,

69

as well as no further processes in case of basic product types.

Figure 4.1: The heading machines floor of 2 screws production environments

It is worth to notice in advance that this production envi-
ronment does not involve FMS machines. The process in fact is
made by simple steps one after the other, but those steps do not
take place in the same workstation as in FMS systems. Never-
theless, this does not compromise the applicability of the model.
From the description of the facility layout as in figure 4.2, it can
be seen that the heading machines are disposed one next to the

70

Figure 4.2: Layout of the heading machines floor

other. The heading machine is the first part of the process for
any of the product type that will be done. Moreover, all the
machines are able to produce all the product types, so – in the
first planning phase of the production – the main decision that
the management will take is the prioritization of the product
types to be produced in a certain time horizon. In doing this,
the whole system can be considered as a single machine, since
all the production lines in the facility have the capability of han-
dling all the part orders. Thus, with the appropriate hypothesis
(see assumption number 5 in chapter 3), the model can be fit to
this case.

Our scope is to provide the company a simulated batch that
involves all the part type orders planned for March, 2016. In
particular, in that month the production facility was asked to
make 182 different product types. We have analysed the orders
and provided batches by using the robust version of the Part

71

Type Selection Model (chapter 3).

4.2 Assumptions

In the development of this real case test, the following assump-
tions have been made:

1. The whole system is considered as a single machine (as-
sumption number 5 in chapter 3).

2. Aggregate production will be considered: orders that in-
clude the same product code will be merged as if they were
the same order. In fact, once a machine is set to produce
one part type, the highest number of parts possible will be
produced, since setups prove to be quite costly to the facil-
ity (each demands around 45 minutes). Therefore, all the
orders including the same product specifications tend to be
produced one after the other on a specific machine.

3. Only one tool is considered to be mounted on each machine.
This represents the fact that each part order requires a
certain setup of the machine, but it never happens that
a part order requires tool changes during its production.
Therefore, in this case, no tool magazine capacity problems
will affect the production planning process.

4. Demand quantities are considered as the actual order that
the company management delivers to the production floor:
to the market demand is added between 5 and 10% of in-
crease. This is due to the inclusion of the expected pro-
duction scrap in the calculation of the quantities to be pro-
duced, which is normally done on the basis of historical
data.

72

5. Priorities are assigned to the workpieces based on their due
date, as proposed by Hwang [37]: products with the earlier
due date will be given a higher weight; when products have
the same due date, they will be given the same weight. For
example, the products to be processed on the first heading
machine with their relative weights are shown in table 4.1.

Table 4.1: Parts to be produced on the heading machine M1 and their corresponding
weights

Product Code ID Demand Weight wi Due date

92658 117 667675 1 01-apr
92658 117 5551 2 24-mar
93270 157 131770 2 18-mar
92699 119 174984 3 16-mar
92699 119 79454 4 15-mar
92985 140 42341 4 10-mar
92985 140 122539 4 14-mar
92985 140 64523 5 10-mar
93301 160 66679 5 09-mar
93331 161 205829 6 07-mar
93331 161 112500 7 04-mar
93290 159 63946 7 03-mar

6. Some products, even if they have the same product code,
due to their different dimensional specifications are set to
be produced on different machines operating at different
speeds: this is also due to the minimization of the setups.
In this case, they are considered as if they were two different
products.

4.3 Model of data uncertainty

The model for data uncertainty as presented in section 2.2 will
be used in this case. The robust model covers from a certain

73

number of disruptive events that are expected to force the pro-
cessing of the batch to be more time-demanding. In this case,
we are considering data uncertainty on the basis of observations
from the maintenance records and from the statistics regarding
disruptive events and extra-ordinary maintenance interventions.

Let us observe, in figure 4.3, the average efficiency of the
production floor. The graph shows the average efficiency of the

Figure 4.3: Average efficiency of the heading machines in March, 2016

heading machines, calculated over the whole month of March
2016. The efficiency is hereby defined as the effective working
time over the total shift time. The downtime details are shown
in graph 4.4.

It can be seen that the average working time is 81, 45% of
the total time available. In fact, the management uses the value
of 80% as reference to consider the effective time available for
production. Although on average it is possible to rely on these
aggregate data, it is helpful to look at more detailed statistics of
downtimes. Let us then examine the downtime statistics of one

74

Figure 4.4: Machines downtime for March, 2016

day of production. The day has been randomly selected from
the available database, and it is May 4th, 2016.

Figure 4.5: Machines downtimes on May 4th

75

Figure 4.5 shows the same data of figure 4.3, but referred to
one day of production: the variability of these data is visibly
higher than the one observed over the whole month. In fact, for
this day, the average working time happened to be 84, 18%.

Figure 4.6: Machines downtimes on May 4th, 2016

Maintenance is usually done to adjust the fixtures for the
production of a particular batch, to substitute the worn tools
at the end of their life, as well as to fill the lubricant levels
of the machines. Moreover, the management regularly includes
the setup time in the maintenance records. Each setup requires
around 45 minutes and is carried out in order to configure a
machine to produce a particular part type: both the machine
tools and the cycle time are set during this operation. In addi-
tion to this, extra-ordinary maintenance is seldom carried out,
although there are no obtainable data concerning it.

This statistics motivate the application of the robust formu-
lation of the Part Type Selection Model. A robust solution for
this case would provide a list of product types to be produced
that not only considers the priority of the orders, but is ready to
face a certain number of disruptive events that might happen in

76

the considered time horizon. The company asserts that this kind
of events are normally expected to happen once a year, and they
usually involve the loss of one or two orders. The Robust Part
Type Selection Model is supposed to be used the same way as
the original model of Hwang and Shogan. That is, batches will
be decided with a rolling horizon: each time a batch is gathered,
the left out items will be considered for the next one, together
with the new orders eventually received. Notice that all the
data, including the weights, can be changed at each calculation,
and this preserves the flexibility of the model.

4.4 Data

The robust Part Type Selection model has been applied for the
part orders that have been produced in the month of March
2016. The data used in this case is listed hereafter:

• The weights wi that have been inserted are: (1) linear,
proportional to the due date, and (2) constant.

• The demand and machine speed quantities have been al-
ways converted in thousands of workpieces. This simplifies
the formulation and makes the data easier to read.

• The demand over the month of March 2016 involves 182
different part types. Each product code has been given a
progressive number to be traced.

• The machine tool capacity has been considered so to be not
critical, as described in section 4.2. Moreover, one single
tool has been included, occupying kj = 1 slots, and the
machine tool capacity has been considered to provide S =
2 slots. Each workpiece would then require this tool, so
aij = 1 ∀i, j. Thus, this constraint of the model will never
be critical.

77

• Two cases for the deviation time t̂ij have been analyzed: (1)
the same amount of time as the operation time (that cor-
responds to the double time needed for production) DEV1,
and (2) a 10 times larger than the operation time, DEV2,
time.

• The total available processing time M has been calculated
referring to the working calendar of the facility. The facility
works on a 5-day week basis, 1 shift of 9 hours per day. In
March 2016 there have been 24 working days. In order
to consider overtimes and the fact that many production
orders have been completed in the first week of April, an
extra week has been added to the working time, for a total
of 30 working days. In the calculation of the total available
time, the 80% efficiency has been included as well. Thus,
we obtain:

M = 30 days ·9hours/day ·60min/hour ·0.8 = 388800min
(4.1)

• Different cardinality cases have been considered. First of
all let us notice that since the model is a one-tool scenario
one, only one cardinality value Γj is required, as stated in
assumption 3. As a consequence, all the disruptive events
will affect that specific tool. The tested scenarios are, in
order, the nominal case (1) Γj = 0, and the following: (2)
Γj = 1, (3) Γj = 2, (4) Γj = 3, (5) Γj = 4, (6) Γj = 5. It is
reasonable to think that, even though there are no specific
restrictions in the model, a higher number of unfortunate
events would not be representative of any particular situa-
tion. Moreover, it is not meaningful to plan a production
with such a high number of unfortunate events: in that
case, clearly, other types of corrections are of priority.

78

4.5 Results

Let us now analyse the results obtained applying the model to
the real case. The objective function obtained in each case will
be displayed, as well as the number of part types that, for each
run, have been left out from the batch (corresponding to the
number of times that yi equals 0).

4.5.1 Case 1: time deviations DEV1, linear weights

As it can be noticed from figure 4.7, the objective function is a
non-increasing function of Γj: this means that with an increas-
ing number of disruptive events, the total production time will
increase, thus forcing the exclusion of some part orders from the
batch. Similarly, the total number of part types included in the
batch is a non-increasing function of Γj, such as depicted in fig-
ure 4.8. This behavior causes the objective function to become
lower over Γ, as in figure 4.7.

Γj Objective function Non-included part types

0 941 3
1 940 3
2 939 4
3 938 5
4 937 6
5 937 6

Table 4.2: Case 1: Objective function and number of non-included part types

4.5.2 Case 2: time deviations DEV1, constant weights

As it can be seen in figure 4.10, the number of part types not
included in the batch is the same as in the case with deadline-
dependent weights.

79

Figure 4.7: Objective function with DEV1, deadline weights wi

Figure 4.8: Number of part types not included in the batch, with DEV1 and deadline
weights wi

Although the results might seem the same, a closer look to the
batch details shows that in the case with variable weights, it is
more frequent to see cases in which after the exclusion of a part
type in the batch, with an additional disruptive event the same
part type is included again in the batch. This phenomenon is
illustrated in table 4.3, were the batch result vector y∗ for one of

80

the product types is presented (1 means the product is included
in the batch, 0 otherwise).

Table 4.3: Comparison of the results obtained with dependent and independed weight
referred to the the batch for the product type coded 139

Cardinality Γ 0 1 2 3 4 5

y∗, with dependent weights 1 1 1 1 0 0
y∗, without dependent weights 1 1 1 1 0 1

This behaviour is due to the fact that each time a disrup-
tive event is considered, the remaining production time available
changes, and the maximization of the part types included in the
batch makes it feasible for some parts to be inserted again.

Γj Objective function Non-included part types

0 179 3
1 179 3
2 178 4
3 177 5
4 176 6
5 176 6

Table 4.4: Case 2: Objective function and number of non-included parts

Since the objective of the model is the prioritization of the
parts included in the batches, the latter phenomenon is not very
meaningful and could bring confusion in the prioritization pro-
cess. In fact, the model is meant to be used with a rolling hori-
zon. With an increase in the protection level (cardinality), a
decision maker would expect that a part that has been excluded
would keep being so for all the time periods the model will be
used over. However, this is valid if the set of parts we consider
does not change. We refer to section 4.5.5, where it is proposed a
way to prevent this problem by changing the objective function
of the model.

81

Figure 4.9: Objective function with DEV1, weights wi = 1

Figure 4.10: Number of part types not included in the batch, with DEV1 and weights
wi = 1

4.5.3 Case 3: time deviations DEV2, linear weights

Results of the case with time deviations DEV2 and linear weights
are shown in table 4.5, figure 4.11 and figure 4.12. The same
pattern obtained in previous cases can be appreciated in this
case: the only difference lays in the number of non-included

82

part types, that is visibly higher than the other cases. This is
clearly due to the fact that with longer disruptions, less produc-
tive time remains available, so less part types will be included.

Γj Objective function Non-included part types

0 941 3
1 928 10
2 916 15
3 907 23
4 895 22
5 882 25

Table 4.5: Case 3: Objective function and number of non-included parts

Figure 4.11: Case 3: Objective function value over the cardinality Γj

4.5.4 Case 4: time deviations DEV2, constant weights

The forth case has been done with deviations DEV2 and con-
stant weights: results are shown in table 4.6 and figures 4.11
and 4.14. Again we can acknowledge the pattern that has been

83

Figure 4.12: Case3: Number of part types not included in the batch over the cardinality
Γj

observed in previous cases, with the exception of the number of
non-included part types.

Γj Objective function Non-included part types

0 179 3
1 172 10
2 167 15
3 163 19
4 161 21
5 158 24

Table 4.6: Case 4: Objective function and non-included part types

4.5.5 Case 5: dependent weights case

Let us consider equation (3.25): the objective function of the
robust formulation. In order to prevent the problem described
in section 4.5.2, that is the insertion of part types previously
excluded, it is possible to modify the objective function in the
following way:

84

Figure 4.13: Case 4: Objective function value over the cardinality Γj

Figure 4.14: Case 4: Number of part types not included in the batch over the cardinality
Γj

max
∑
i

[
wi − vi(1− y

(Γj−1)
i)

]
yi (4.2)

85

where vi are weights that – in this case – have been set vi = wi,
and represent a penalty to the inclusion of a part types that has
been previously excluded in cases with lower cardinality values:

that are represented by y
(Γj−1)
i . Notice that since in this new

formulation the solution depends on the batches obtained with
the previous cardinality value, an initial vector y

(−1)
i is required

for the calculation in the nominal case Γj = 0; it is easy to

see that a initial vector y
(−1)
i = 1∀i will be fit for this scope,

since it would reduce the objective function to the previous one,∑
i

wi yi.

Let us then compute and compare the results with the ap-
plication of independent and dependent weights, respectively.
Table 4.7 shows the objective functions obtained in both cases
and the reduction in the objective function ∆OF calculated as:

∆OF = O.F.(dependent) −O.F.(independent) (4.3)

The same results are shown in figure 4.15. It can be seen that
the reduction in the objective function is not too dramatic, so
the model is still applicable with good results.

Γj O.F. O.F. ∆OF

(independent) (dependent)

0 941 941 0
1 940 939 -1
2 939 938 -1
3 938 937 -1
4 937 937 0
5 937 936 -1

Table 4.7: Case 5: Objective function in case of dependent Vs. independent weights

Similarly, the number of items left out from the batch in both
cases has been computed, and shown in table 4.8 and figure 4.16.
The quantity ∆parts is the difference in the number of parts that

86

Figure 4.15: Case 5: Comparison between objective functions in the cases of indepen-
dent Vs. dependent weights

have been excluded. We can assert that the difference is not
too big to constitute a burden in the application of the modified
model.

Γj Excluded parts Excluded parts ∆parts

(independent) (dependent)

0 3 3 0
1 3 4 1
2 4 5 1
3 5 6 1
4 6 6 0
5 6 7 1

Table 4.8: Case 5: number of excluded parts in case of dependent Vs. independent
weights

87

Figure 4.16: Case 5: Comparison between number of excluded items in the cases of
independent Vs. dependent weights

4.6 Conclusions

In this chapter, the application of the robust counterpart of the
Part Type Selection Model introduced in chapter 3 has been
performed and the numerical results have been analyzed. The
case of dependent weights has been proposed in order to ob-
tain batching results more applicable in a real situation and the
comparison between the two cases has been done. In section
4.5.5, with a slight modification to the objective function of the
model, we have shown how the robust model can fit better to
real situations; therefore, we believe it can be used as reference
for future applications.

88

T
ab

le
4.

9:
R

es
u

lt
s

of
th

e
ap

p
lic

at
io

n
of

th
e

ro
b

u
st

ve
rs

io
n

of
th

e
P

ar
t

T
yp

e
S

el
ec

ti
on

m
o

d
el

to
a

re
al

ca
se

:
co

m
p

ar
is

on
b

et
w

ee
n

th
e

ca
se

s
w

it
h

d
ep

en
d

en
t

an
d

in
d

ep
en

d
en

t
w

ei
gh

ts
(L

in
ea

r
w

ei
gh

ts
ca

se
)

D
E

V
1

D
E

V
2

In
d
ep

en
d
en

d
w

ei
gh

ts
D

ep
en

d
en

d
w

ei
gh

ts
In

d
ep

en
d
en

d
w

ei
gh

ts
D

ep
en

d
en

d
w

ei
gh

ts
C

ar
d
in

al
it

y
Γ

O
.F

.
n
on

in
cl

.
it

em
s

O
.F

.
n
on

in
cl

.
it

em
s

O
.F

.
n
on

in
cl

.
it

em
s

O
.F

.
n
on

in
cl

.
it

em
s

0
94

1
3

94
1

3
94

1
3

94
1

3
1

94
0

3
93

9
4

92
8

10
92

8
11

2
93

9
4

93
8

5
91

6
15

91
6

16
3

93
8

5
93

7
6

90
7

23
90

7
19

4
93

7
6

93
7

6
89

5
22

89
5

22
5

93
7

6
93

6
7

88
2

25
88

2
25

89

T
ab

le
4.10:

R
esu

lts
of

th
e

ap
p

lication
of

th
e

rob
u

st
version

of
th

e
P

art
T

yp
e

S
election

m
o

d
el

to
a

real
case:

com
p

arison
b

etw
een

th
e

cases
w

ith
d

ep
en

d
en

t
an

d
in

d
ep

en
d

en
t

w
eigh

ts
(C

on
stan

t
w

eigh
ts

case)

D
E

V
1

D
E

V
2

In
d
ep

en
d
en

d
w

eigh
ts

D
ep

en
d
en

d
w

eigh
ts

In
d
ep

en
d
en

d
w

eigh
ts

D
ep

en
d
en

d
w

eigh
ts

C
ard

in
ality

Γ
O

.F
.

n
on

in
cl.

item
s

O
.F

.
n
on

in
cl.

item
s

O
.F

.
n
on

in
cl.

item
s

O
.F

.
n
on

in
cl.

item
s

0
179

3
179

3
179

3
179

3
1

179
3

179
3

172
10

172
10

2
178

4
178

4
167

15
167

15
3

177
5

177
5

163
19

163
19

4
176

6
176

6
161

21
161

21
5

176
6

176
6

158
24

158
24

90

Chapter 5

Machine Loading Problem

This chapter deals with the Machine Loading Problem. The aim
is to build a robust counterpart of a well-known problem that
is applied in the Production Planning phase. In the first part
of the chapter we will describe the problem and a widely used
model for tooling the machines of a FMS. Consequently, we will
show how to develop the robust formulation of the problem, and
the results of its application to test cases. In particular, section
5.2 presents the model of Sodhi, Askin, and Sen; in section 5.3
the robust version of the model is developed, and the numerical
results of its test on two small cases is presented in section 5.4.
In section 5.5 a potential extension to the model is proposed.

5.1 Problem Description

The Machine Loading problem has been defined by Stecke (1983)
[38] as follows:

”Allocate the operations and the required tools of the selected part types among

the machine groups subject to technological and capacity constraints of the

FMS”

A detailed survey about loading models is available in [39],
where the authors group the elements that influence the defi-
nition of a loading problem in three main categories: (1) the

91

characteristics of the FMS, (2) the characteristics of the plant
where the FMS operates, and (3) the interface of the loading
module with the other levels of management.

Sodhi et al. [40] developed a Machine Loading problem that
aims to find the allocation of tools and production schedule
throughout a short time horizon, in order to satisfy the pro-
duction plan (see figure 5.1 for a graphical representation of the
problem). The latter is assumed to be done in a previous calcu-
lation, i.e. by a medium term Part Type Selection Model – see
chapter 3 – or by an MRP or any other aggregate Production
Planning model.

Figure 5.1: The Machine Loading Problem

92

5.2 The Machine Loading Model of Sodhi,

Askin and Sen

We have chosen to base our analysis on the Machine Loading
model proposed by Sodhi, Askin and Sen in 1994. The choice
of this model is mainly due to the fact that it is simple and it
includes constraints easy to understand, but at the same time
it is complete since it includes all the main parameters of the
problem and the core issues identified in [39].

5.2.1 Assumptions

Assume that a set of parts has already been selected for produc-
tion over the short term (notice this is the solution to the Part
Type Selection Problem). Moreover, it is assumed that no tool
transportation system is present, so static tool changes are con-
sidered: it is not possible to change the tools without having to
stop the system from its operations. This represents a situation
in which the system operates unattended for a certain length of
time and it is then retooled in order to run again for the next
time interval. Thus, a time period corresponds to the length
of time between planned tool-changeovers, and the number of
periods is defined a priori. Production quantities are assumed
to be continuous. This is an approximation of the problem:
however, it allows to plan a partial production for certain part
types. Tool storage capacity is assumed to be limited. The time
horizon of the model is the production planning period in which
requirements have been planned.

5.2.2 Model

Let us then display the Machine Loading model:

93

min
∑
i

SiCi +
∑
i

∑
t

xitRit (5.1)

s.t.
∑
j

Tjmt kj ≤ Km ∀m, t (5.2)∑
t

xit = Di − Si ∀i (5.3)∑
i

Oij xit ≤
∑
m

pjmt ∀j, t (5.4)

pjmt ≤ TjmtAmt ∀j,m, t (5.5)∑
j

pjmt ≤ Amt ∀m, t (5.6)

pjmt ≥ 0 ∀j,m, t (5.7)

xit ≥ 0 ∀i, t (5.8)

Si ≥ 0 ∀i (5.9)

Tjmt ∈ {0, 1} (5.10)

Decision variables. Si is the shortage of production of part
type i with respect to its demand. xit is the quantity of part
order i produced in time period t. Tjmt is a boolean variable
that assumes value 1 when tool j is loaded on machine m in the
time period t. The variable pjmt represents the time spent for
production on the j-th tool of machine m in the time period t.
Parameters. Ci is the penalty cost per unit of production for
not satisfying the demand: it could represent the sub-furniture
cost if outsourcing is allowed. Rit is the cost of holding one
product unit produced in period t until the end of the time
horizon. kj is the number of slots required by tool j. Km is
the total slots available in the slot magazine of machine m. Di

is the demand of product i in the time horizon that has been
considered. Amt is the available time for production on machine
m in time period t. Oij is the processing time of one unit of

94

product i on the j-th tool. It is also possible to consider the
maximum number of tool copies available with the addition of
the constraint: ∑

m

Tjmt ≤ αj ∀j, t (5.11)

where αj is the number of copies of tool j available. This is
a common situation in a production environment where some
operations require expensive tools, and only a limited number
of copies will be kept on site.

Objective function. The objective function (5.1) aims at min-
imizing the total cost composed by stock and shortage costs.

Constraints. Constraint (5.2) limits the number of tools that
can be loaded on machines since the total number of slots avail-
able. Constraint (5.3) aims at satisfying the demand of product
i. Constraint (5.5) guarantees that production can be done only
if the necessary tool has been loaded. Constraint (5.4) limits the
total production time on the j-th tool in time period t. Con-
straint (5.6) guarantees that production time does not exceed
the availability of each machine m.

5.3 Robust formulation

Let us now build the robust counterpart of the Machine Loading
Problem. Firstly, it is desirable to keep a simple formulation and
to deal with a maximization problem. Therefore, let us modify
the objective function of the problem into:

max
∑
i

∑
t

wi xit −
∑
i

SiCi (5.12)

where we have substituted the product carrying costs Rit with
generic weights wi, representing the profit generated by the pro-

95

duction of a unit of product xi, and changed the sign of the sum
of shortage costs Si.

5.3.1 Model of data uncertainty

Similarly to the Part Type Selection Model, the respect of ma-
chine tool magazine constraints and machine time availability
constraints are the main issues in the Machine Loading Prob-
lem. Tool storage availability is usually decided by the machine
manufacturer and it is not easy to change afterwards. Similarly,
the slots required by each tool is usually a constant, standard
value. Also the time available for production is relatively hard
to modify, since it is related to the shift policy adopted by the
company. Let us consider the processing time Oij. Similarly
to the analysis done in chapter 3, we can model these times
as random variables Õij, symmetrically distributed in the in-

terval
[
Ōij − Ôij, Ōij + Ôij

]
, where Ōij is the expected value of

the processing time, and Ôij is the maximum variation from it.
In our formulation, this deviation represents a disruptive event
that can cause the processing time to rise, from which we desire
to cover.

5.3.2 Protection function

Let us then write constraint (5.4) so to highlight the problem:

∑
i

Oij xit+max
Ω

∑
i∈Sj

Ôij xit + (Γjt − bΓjtc)Ôuj ,j xj

 ≤∑
m

pjmt ∀j, t

(5.13)
where

Ω = {Sj ∪ {uj}; Sj ⊆ Jj; |Sj| = bΓjtc; uj ∈ Jj \ Sj} (5.14)

96

The inner maximization problem in the equation represents the
aim to be covered from the worst combination of disruptive
events: among the Γjt processing times expected to rise, the
ones having the worst impact on the problem will be selected.
This maximization problem can be written as:

βjt = max
∑
i

Ôij x
∗
it zijt (5.15)

s.t.
∑
j

zijt ≤ Γjt ∀j, t (5.16)

0 ≤ zij ≤ 1 ∀i, j (5.17)

where x∗it is a particular solution of the problem, zijt are con-
tinuous variables between 0 and 1, and Γjt is the cardinality of
the subset of values of Oij expected to assume their maximum
value. The dual problem thus becomes:

βjt = min Γjt zjt +
∑
i

qijt (5.18)

s.t. zjt + qijt ≥ Ôij x
∗
it ∀i, j, t (5.19)

zij ∈ R+ (5.20)

tijt ∈ R+ (5.21)

97

At this point, the dual can be inserted in the master optimiza-
tion problem, that becomes:

max
∑
i

∑
t

wi xit −
∑
i

SiCi (5.22)

s.t.
∑
j

Tjmt kj ≤ Km ∀m, t (5.23)∑
t

xit = Di − Si ∀i (5.24)

pjmt ≤ TjmtAmt ∀j,m, t (5.25)∑
i

Oij xit + Γjt zjt +
∑
i

qijt ≤
∑
m

pjmt ∀j, t (5.26)

zjt + qijt ≥ Ôij xit ∀i, j, t (5.27)∑
j

pjmt ≤ Amt ∀m, t (5.28)

Tjmt ∈ {0, 1} (5.29)

pjmt ∈ R+ (5.30)

xit ∈ R+ (5.31)

Si ∈ R+ (5.32)

zij ∈ R+ (5.33)

qijt ∈ R+ (5.34)

5.4 Numerical results

In this section some test cases will be presented. The robust
formulation has been tested on a couple of test cases: the prob-
lems are smaller than a real one, but not trivial. This preserves
the simplicity of the formulation and makes the behavior of the
model easy to understand.

98

5.4.1 Case 1: single period, multiple machines

The first instance regards the case in which one time period
is taken into consideration: the situation takes an eight-hour
production shift as reference. Three machines are assumed to
be processing this batch, so each machine will have the same
availability of Amt = 8hour/shift · 60min/hour = 480min.
Moreover, each machine is assumed to have a tool magazine ca-
pacity of Km = 10 tools. Three tools are assumed to be required
for each workpiece, and the processing time for each workpiece is
Oij = 5min. Each tool requires kj = 3 slots. This way, machine
slots capacity does not influence the solution of the problem. A
constant demand of Di = 10 pieces is assumed for all the work-
pieces. Production profits wi are assumed to be constant, equal
to 300$/workpiece. Shortage costs of Si = 600$/workpiece have
been considered. The production time deviations are assumed to
be equal to the processing time, thus representing the situation
in which a disruptive event doubles the processing time. The
cardinality values that have been selected are: (1) Γj = 0∀j,
(2) Γj = 1∀j, (3) Γj = 2∀j, (4) Γj = 3∀j, (5) Γj = 4∀j, (6)
Γj = 5∀j.

Table 5.1 shows the results obtained in this case: the ob-
jective function and the total production, obtained as XTOT =∑

i xi. From figures 5.2 and 5.3 we can appreciate the behavior
of the model in this case. The objective function and the to-
tal production are decreasing when the number of unfortunate
events increases. Table 5.2 shows the detailed results of case 1:
for each cardinality value, the product types production levels
are shown.

5.4.2 Case 2: multiperiod, single machine

The second test is the case where one machine and multiple time
periods have been considered. The data has been taken from

99

Table 5.1: Case 1: Objective function and total production

Γj O.F. XTOT

0 27200 96,0
1 21090 87,2
2 16000 80,0
3 11692 73,8
4 8000 68,6
5 4800 64,0

Figure 5.2: Case 1: Objective function

the real case that was analyzed by the authors of [41], where
they study a Machine Loading Problem with 12 workpieces and
12 machine tools. A shift of 9 hours has been considered, so
the machine availability is Amt = 9hour/shift · 60min/hour =
540min. A total of 5 time periods is considered, thus corre-
sponding to a week of production. Moreover, the machine is
assumed to have a tool slots capacity of Km = 30 slots. The
slots required from each tool kj are the values of vector k:

k =
[
4 2 2 2 2 1 1 1 1 1 3 3

]
(5.35)

100

Figure 5.3: Case 1: Production level

Table 5.2: Case 1: Production levels for all the product types over different cardinality
levels

Product Type Γj = 0 Γj = 1 Γj = 2 Γj = 3 Γj = 4 Γj = 5

1 10 8.73 8.00 7.38 6.86 6.40
2 10 8.73 8.00 7.38 6.86 6.40
3 10 8.73 8.00 7.38 6.86 6.40
4 10 8.73 8.00 7.38 6.86 6.40
5 10 8.73 8.00 7.38 6.86 6.40
6 10 8.73 8.00 7.38 6.86 6.40
7 10 8.73 8.00 7.38 6.86 6.40
8 10 8.73 8.00 7.38 6.86 6.40
9 10 8.73 8.00 7.38 6.86 6.40
10 6 8.73 8.00 7.38 6.86 6.40

and the processing times Oij of the tools are entries of the matrix
O. The vector of the workpieces demand values Di is D:

D =
[
160 4 8 8 40 4 4 20 20 8 8 4

]
(5.36)

The weights wi are assumed to be constant equal to 30 $/unit

101

O
=

4.61
2

2.74
4.73

0
0

0
0

0
0

0
0

2.46
2.51

0
4.19

2.7
0

0
0

0
0

0
0

4.4
0

0
2.86

4.62
0

0
0

0
0

0
0

0
0

0
0

0
3.12

1.95
2.64

0
0

0
0

0
0

0
0

0
0

0
0

4.29
3.68

0
0

0
0

0
0

0
0

0
0

3.15
5.39

2.18
4.14

0
0

0
0

0
0

0
0

0
2.7

2.44
6.18

0
0

1.92
2.59

3.3
0

0
0

0
0

0
0

0
0

3.04
5.28

0
0

0
0

0
0

0
0

4.45
2.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5.42
4

0
0

0
0

5.48
5.47

0
0

0
0

0
0

0
4.22

3.62
3.92

3.72
0

102

and the shortage costs to Si = 40 $/unit. The production times
deviations are assumed to be equal to the processing time, thus
representing the situation in which a disruptive event doubles
the processing time. The cardinality values that have been se-
lected are: (1) Γj = 0 ∀j, (2) Γj = 1 ∀j, (3) Γj = 2 ∀j, (4)
Γj = 3∀j, (5) Γj = 4∀j, (6) Γj = 5∀j, (7) Γj = 6∀j.

The results are shown in table 5.3, as well as in figures 5.4
and 5.5. It is straightforward to notice that the behavior of the
model is similar to Case 1. An increase in the cardinality of the
disruptive events causes the production levels to lower, together
with the objective function.

Table 5.3: Case 2: Objective function and total production values

Γj O.F. XTOT

0 7103.1 236.8
1 4851.4 161.7
2 4474.7 149.2
3 4279.4 142.6
4 4244.5 141.5
5 4226.7 140.9
6 4226.7 140.9

Tables 5.4 to 5.10 show the detailed results of Case 2. For
each cardinality value, the detailed production levels for the
product types is displayed.

5.4.3 Computational times

Tables 5.11 and 5.12 show the computational times of the case
studies. The tests have been performed on a notebook Dell
XPS13 with i7 Intel Core @2.5Ghz and 8GB RAM (WIN10).
Table 5.11 shows the results in the deterministic case, so when
Γ = 0; table 5.12 displays the CPU time in the robust case with
the maximum value for Γ, that is Γ = 5 for Case 1 and Γ = 6

103

Figure 5.4: Case 2: Objective function

Figure 5.5: Case 2: Production level

for Case 2. The computational times are visibly similar between
Case 1 and Case 2. Moreover, the robust version of the problem

104

Table 5.4: Case 2: Results with Γj = 0

Product Type Day 1 Day 2 Day 3 Day 4 Day 5

1 22.81 12.76 15.71 35.14 38.35
2 0.00 4.00 0.00 0.00 0.00
3 0.00 8.00 0.00 0.00 0.00
4 0.00 8.00 0.00 0.00 0.00
5 0.00 0.00 40.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 4.00 0.00
8 0.00 20.00 0.00 0.00 0.00
9 20.00 0.00 0.00 0.00 0.00
10 8.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00

Table 5.5: Case 2: Results with Γj = 1

Product Type Day 1 Day 2 Day 3 Day 4 Day 5

1 3.57 0.00 8.17 10.58 14.88
2 0.00 0.00 4.00 0.00 0.00
3 3.35 0.00 4.65 0.00 0.00
4 3.98 0.00 0.00 4.02 0.00
5 3.90 33.88 0.00 2.22 0.00
6 2.66 0.00 0.00 1.34 0.00
7 2.75 0.00 0.00 1.25 0.00
8 5.09 0.00 11.66 2.33 0.92
9 0.00 0.00 5.72 0.95 13.33
10 3.40 0.00 4.60 0.00 0.00
11 3.10 0.00 0.00 1.42 0.00
12 1.91 0.00 0.00 2.09 0.00

seems not to influence the time needed to solve the instance.

105

Table 5.6: Case 2: Results with Γj = 2

Product Type Day 1 Day 2 Day 3 Day 4 Day 5

1 6.27 8.82 1.30 10.49 0.50
2 4.00 0.00 0.00 0.00 0.00
3 6.04 0.09 1.36 0.00 0.51
4 0.00 0.00 0.00 8.00 0.00
5 0.24 0.28 12.47 0.00 27.01
6 0.25 0.19 2.83 0.00 0.73
7 0.33 0.17 2.52 0.00 0.97
8 5.18 12.26 1.85 0.00 0.71
9 3.27 7.90 1.17 7.22 0.45
10 5.97 0.09 1.35 0.09 0.50
11 0.15 0.08 1.12 0.00 0.43
12 0.22 0.26 2.88 0.00 0.64

Table 5.7: Case 2: Results with Γj = 3

Product Type Day 1 Day 2 Day 3 Day 4 Day 5

1 4.43 4.80 19.18 2.24 0.00
2 1.47 0.00 0.00 2.53 0.00
3 0.82 5.76 0.00 1.42 0.00
4 0.00 0.00 0.00 8.00 0.00
5 19.20 0.00 0.00 0.00 20.80
6 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 4.00 0.00
8 2.38 8.77 0.00 8.86 0.00
9 1.17 4.30 0.00 2.01 12.52
10 0.81 5.79 0.00 1.40 0.00
11 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00

5.5 Single workpiece tracing

It is worth to notice that, differently from the Part Type Selec-
tion model, in the Machine Loading model the detailed produc-
tion for each time period t is chosen. Consequently, considering
a disruptive event that affects the whole batch might not reach

106

Table 5.8: Case 2: Results with Γj = 4

Product Type Day 1 Day 2 Day 3 Day 4 Day 5

1 0.11 3.27 19.18 6.65 0.27
2 0.00 3.70 0.00 0.00 0.30
3 0.00 5.41 0.00 2.14 0.45
4 8.00 0.00 0.00 0.00 0.00
5 8.37 0.00 0.00 0.00 31.63
6 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 4.00 0.00
8 0.00 5.98 0.00 13.53 0.49
9 16.83 2.93 0.00 0.00 0.24
10 0.00 8.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00

Table 5.9: Case 2: Results with Γj = 5

Product Type Day 1 Day 2 Day 3 Day 4 Day 5

1 9.71 19.18 0.00 0.00 0.00
2 3.22 0.00 0.00 0.78 0.00
3 8.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 8.00
5 0.00 0.00 7.28 32.72 0.00
6 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.30 0.00 3.70
8 0.00 0.00 20.00 0.00 0.00
9 0.00 0.00 0.00 0.00 20.00
10 0.00 0.00 8.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00

a sufficient level of detail. A more desirable formulation would
consider the possibility of disruptive events affecting each sin-
gle workpiece. At this point, one could desire to have a robust
formulation able to cover from the possible disruptions he/she
expects to impact on a certain number of workpieces, by means
of an elongation of their machining time.This corresponds to the

107

Table 5.10: Case 2: Results with Γj = 6

Product Type Day 1 Day 2 Day 3 Day 4 Day 5

1 0.00 1.63 8.08 19.18 0.00
2 0.00 4.00 0.00 0.00 0.00
3 8.00 0.00 0.00 0.00 0.00
4 8.00 0.00 0.00 0.00 0.00
5 0.00 6.12 0.00 0.00 33.88
6 0.00 0.00 0.00 0.00 0.00
7 4.00 0.00 0.00 0.00 0.00
8 0.00 0.00 20.00 0.00 0.00
9 8.17 11.83 0.00 0.00 0.00
10 0.00 8.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00

Table 5.11: Computational times in the deterministic cases

Time periods Machines Cardinality Γ CPU time [s]

CASE 1 1 3 0 5,13
CASE 2 5 1 0 5,82

Table 5.12: Computational times in the robust cases with the maximum cardinality
values adopted

Time periods Machines Cardinality Γ CPU time [s]

CASE 1 1 3 5 5,17
CASE 2 5 1 6 5,38

assignment of a cardinality to the set of the single workpieces of
a specific type i, instead of to the number of part order types. In
order to reach this level of detail the model has to be modified,
so to include the single units of production, thus becoming:

108

max
∑
i

∑
t

∑
k

wit xitk −
∑
i

SiCi (5.37)

s.t.
∑
j

Tjmt kj ≤ Km ∀m, t (5.38)∑
t

∑
k

xitk = Di − Si ∀i (5.39)

pjmt ≤ TjmtAmt ∀j,m, t (5.40)∑
i

vijt ≤
∑
m

pjmt ∀j, t (5.41)∑
i

∑
k

Oij xitk + Γijt zijt +
∑
k

qijtk ≤ vijt ∀i, j, t

(5.42)

zijt + qijtk ≥ Ôij xitk ∀i, j, t, k (5.43)∑
j

pjmt ≤ Amt ∀m, t (5.44)

Tjmt; xitk ∈ {0, 1} ∀j,m, t (5.45)

Si; pjmt; zij; qijtk; vijt ∈ R+ (5.46)

In this new formulation, the decision variables xitk are boolean
variables assuming value 0 if workpiece k belonging to the or-
der type i is produced in the time period t, and 0 otherwise.
Unfortunately, the solution of this type of formulation requires
much more computational power, given the much higher num-
ber of 0-1 variables it includes. A test has been performed with
10 worpieces for each of 10 product types, with 1 machine and
1 time period. Using IBM ILOG CPLEX v12.5 on a notebook
Dell XPS13 @2.5GHz and 8GB RAM (WIN10), the computa-
tional time resulted to be 3 hours and 42 minutes. Therefore,
a model with such a formulation can be of no help for a real
size production environment, where much bigger dimensions are
common.

109

5.6 Conclusions

A robust version of the Machine Loading model has been de-
veloped and tested on some exemplar cases. The robust model
provides the production quantities to be produced in each con-
sidered time period, as well as the tools to be loaded on the
machines, in order to be robust against a certain number of un-
fortunate events that the production planner is expecting. At
this point, we can emphasize the advantage of the Cardinality-
Constrained approach: the method in fact only requires a simple
input parameter – the cardinality of the disruptions – that can
be easily estimated. In fact, white collars are likely able to tell
how many events occur in a week or in a month of production;
consequently, they can use this knowledge for making reason-
able estimations over which cardinality values to adopt when
applying the robust models. It has been also proposed a more
detailed model, that permits to track each single workpiece thus
giving the users one additional degree of freedom in the choice of
sets cardinality: unfortunately in this case computational times
become an issue, since they turn out to be of the same order of
magnitude longer of the time horizon themselves.

110

Chapter 6

Buffer Allocation Problem

Buffer Allocation is one of the most studied problems in man-
ufacturing: the selection of the proper buffer capacity to be
configured on a flow line is directly related to the failures occur-
ring during the service of the production line. Uncertainty on
the data regarding the failures of the machines will require the
application of a robust approach. In this chapter is proposed
how to find the bounds of the Buffer Allocation solution: given
a failures pattern scenario, the bounds represent the buffer con-
figurations that cover from the failures that impact the least
(lower bound) and from the failures that impact the most (up-
per bound). This has been done with the attempt to use the
Cardinality-Constrained approach following the framework of
Bertsimas and Sim.

An overview on the Buffer Allocation Problem and the re-
spective literature is provided in section 6.1. In section 6.2, we
present the models for solving the Buffer Allocation Problem
that we have taken as reference; in section 6.3, the development
of a robust formulation by means of the Cardinality-Constrained
framework is pursuited. Then, we give reasons why the method
proves to be ineffective in this case. Conclusions are drawn in
section 6.4.

111

6.1 The Buffer Allocation Problem

The Buffer Allocation Problem is a NP-hard optimization prob-
lem in the design of production flow lines. The problem concerns
finding the optimal buffer sizes to be allocated in predefined ar-
eas along the line, in order to meet a specific objective. Having
buffer storage allows machines to work independently one an-
other, meaning that blocking and starving phenomena happen
with a lower frequency, thus the line has less down-time and
the production rate is naturally increased. On the other hand,
introducing buffers along a line may prove to be very costly:
this is due to the cost of floor space itself, but also to the cap-
ital cost of work in progress, that increases together with the
buffer space. As a result, the Buffer Allocation is a well-known
trade-off that many manufacturing system designers face. Due
to its importance, the problem has been studied for more than
half century by many researchers, and numerous publications
are available in literature.

6.1.1 Problem Description

The problem concerns the allocation of a certain amount of
buffer, N , among the K − 1 intermediate buffer spaces in a
flow line with K machines, in order to achieve a specific ob-
jective. In the literature, the problem can be usually found in
three main forms, depending on which objective functions are
to be considered: (1) maximization of the throughput rate of
the line (also known as the Dual problem), (2) minimization of
the total buffer size (Primal problem), (3) minimization of the
average work-in-progress inventory. The objective functions can
be expressed in the form of costs or profits, which can also in-
volve monetary criteria since they are of major importance in
the production practice.

112

The most important widely studied problems are the primal
and the dual problem, that will be presented in the following
sections. In [30] is possible to find a comprehensive analysis of
the problems and the related literature.

Primal

The Primal problem deals with the minimization of the total
cost of the allocated buffer capacity, constrained by the goal of
reaching a minimum throughput of the line. It can be briefly
formulated as follows:

min aT C (6.1)

s.t E[T] ≥ P ∗ (6.2)

where P is the system throughput, P ∗ is the minimum through-
put value and a is a cost vector with the costs of allocating a
unitary buffer space; C is the allocated buffer capacity.

Dual

The Dual Buffer Allocation Problem maximises the average sys-
tem throughput constrained to a maximum budget available for
the buffer allocation, thus expressed as:

max E[P] (6.3)

s.t aT C ≤ a∗ (6.4)

where a∗ is the available budget.

As indicated by Chow [31], the buffer allocation is difficult
for two reasons:

113

• The lack of an algebraic relation between the throughput
of the line and the buffer sizes.

• The combinatorial optimization inherent with the problem:
for a production line with K machines and N total buffer
capacity, the number of possible buffer configurations for
the Dual Buffer Allocation Problem is:(

N +K − 2
K − 2

)
=

(N + 1)(N + 2) · · · (N +K − 2)

(K − 2)!
(6.5)

Equation (6.5) gives an idea of the computational difficulty
of even small problems, and justifies the use of numerical
approaches.

In order to overcome the computational effort issues, many
solution techniques have been employed and have been proposed
in the literature. A comprehensive survey on the matter has
been published by Demir et al. [32].

6.1.2 General solving procedure

Typically, solution approaches to solve the Buffer Allocation
Problem involve the application of a generative method and an
evaluative method in an iterative way. The evaluative method
is used to obtain the value of the objective function for a set of
input data, which is then passed to the generative method to
search for an optimal solution.

Evaluative methods

Evaluative methods provide the prediction of various perfor-
mance measures (e.g. the throughput rate and the mean queue
lengths). They are based on analytical methods and simulation.
The analytical methods can be classified as exact and approxi-
mate methods. Exact analytical results are difficult to obtain,

114

Figure 6.1: Solving procedure for BAP: generative and evaluative methods work in a
iterative way

and are only available for short production lines. For long lines,
approximate evaluative methods are employed: among them,
the most frequently used are the decomposition method, the
aggregation method, and the generalized expansion method.

The decomposition method [33] is the most widely used: the
idea is to decompose the analysis of the original model into the
study of a set of smaller sub-systems that are easier to deal
with. The main advantage of this method is its computational
efficiency and its accuracy to reach the solution.

The aggregation method has also been successfully employed
to evaluate the performance of buffer allocation decisions in un-
reliable lines. The idea is to replace a two-station-one-buffer line
with an equivalent station, which is subsequently combined with
another buffer and station, and the process is repeated until the
last station is reached [34].

Another approximation method is the generalized expansion
method [35]. Similarly to the decomposition method, which has
strict assumptions, the generalized expansion method can be
used for generally distributed service times and reliable machines
and it can be applied both to split and merge configurations and
serial configurations.

In comparison to analytical methods, Simulation can present
many advantages. The goal is to realistically model a large and
complex system. The main disadvantage of simulation is that is

115

very time consuming.

Generative methods

Generative methods focus on finding optimal buffer sizes to im-
prove the system performance. The simplest method is the com-
plete enumeration; however, since the number of feasible solu-
tions grows exponentially when the buffer size to be allocated
increase, in some cases it would be impossible to search through
the whole solution space. Therefore, the method is only appli-
cable for small systems.

There are search methods that aim to deal with the abun-
dance of alternative solutions by quickly shifting through many
alternative buffer vectors, in order to discover those which yield
close to optimal results. Traditional search methods have two
main disadvantages: they cannot jump over local optimal solu-
tions in search of global ones, and with these methods it is diffi-
cult to observe the effects of small changes in buffer sizes on the
system performance. Meta-heuristics are search methods which
use strategies that guide the search process and explore the
search space in order to find optimal or near-optimal solutions.
Usually these methods are approximate and non-deterministic in
the search. The main advantage of meta-heuristics is that they
can jump over local optimal solutions in search of the global op-
timal ones. The main disadvantage is that they are not problem
specific.

6.2 Mathematical Programming for Simula-

tion

Simulation is a wide-spread method that is used in a lot of en-
vironments and corporations in order to study the behavior of a
system. Commonly, it is applied in situations when is not pos-

116

sible to derive closed-form solution equations of the behavior
of the system. In fact, one of the main characteristics of sim-
ulation is the possibility of predicting the system performance
in an implicit way, without requiring the mathematical model
of the system. Discrete event simulation is commonly used to
analyze the behavior of manufacturing systems with the goal of
estimating their major performance measures, such as through-
put, resources utilizations, etc. A discrete event system can be
defined as a system where one can identify specific events that
occur in specific moments. Schruben [42] has proposed an al-
ternative way of modeling discrete event systems, in which the
system is mapped in a mathematical programming formulation
and the optimal solution represents the trajectory of the discrete
events: the behavior of the system is represented by an optimiza-
tion model in which the sum of finishing and starting events is
minimized constrained to the routing of parts – or customers –
flowing in the system. Within this framework, optimization and
performance evaluation are decoupled: simulation is computing
the system performance with a certain configuration; on top of
simulation is placed an optimization model that searches for the
best configuration of the system. Indeed, here we find the solv-
ing technique as depicted in figure 6.1. Simulation is in fact an
evaluative method, and the optimization model is a generative
method.

In [43], Alfieri and Matta proposed a mathematical program-
ming model of discrete event systems that has the advantage
of simultaneously evaluating the system performances and opti-
mizing its configuration. In their work, the authors study pro-
duction flow lines and propose a mathematical programming
formulation to solve the Buffer Allocation Problem.

In the next part of this section, the formulations of the primal
and dual Buffer Allocation Problem, as proposed by the authors,
will be presented, both in their mixed-integer form and in their

117

linear approximate form.

6.2.1 Assumptions and performance measures

Let us consider an open flow line composed by K machines sep-
arated one another by K − 1 inter-operational buffers. The
sequencing of parts is known a priori: the workpiece i arrives
at the system at his arrival time Ai and it is processed sequen-
tially from the first machine till the last one: the processing
time of workpiece i on machine j is ti,j. Transportation times
are assumed to be negligible or already included in the opera-
tions times. If a machine Mj is busy, the parts wait at the buffer
Bj−1. Each buffer Bj has a finite capacity Cj. The Blocking Be-
fore Service Control rule is assumed for the machines: a machine
will process a workpiece only if there is at least a free slot in the
downstream buffer. The first machine is never starved, and the
last one is never blocked.

118

6.2.2 MILP formulation

In this section, the primal and dual buffer allocation problem
proposed in [44] will be presented, referring to their mixed-
integer form (MILP).

Primal

The primal Buffer Allocation Problem can be formulated as fol-
lows:

min
K−1∑
j=1

aj

Uj∑
k=Lj

xj,kk (6.6)

s.t. Fi,1 ≥ A1 + ti,1 ∀i (6.7)

Fi+1,j − Fi,j ≥ ti+1,j ∀j, i = 1, ..., N − 1 (6.8)

Fi,j+1 − Fi,j ≥ ti,j+1 ∀i, j = 1, ..., K − 1 (6.9)

Fi+kj ,j − Fi,j+1 ≥ ti+kj ,jxj,k − (1− xj,k)M (6.10)

∀k, i = 1, ..., N − kj j = 1, ..., K − 1
Uj∑

k=Lj

xj,k = 1 ∀j (6.11)

FN,K ≤ T ∗ (6.12)

Fi,j ≥ 0 ∀i, j (6.13)

xj,k ∈ {0, 1} (6.14)

In this formulation, Fi,j are the finishing times of the i-th
part on the j-th machine, xj,k is a binary variable equal to one if
a capacity k (with k = (Lj, ..., Uj)) is selected for the buffer Bj.
Lj and Uj are the bounds defined by the analyst of the problem
for the j-th buffer. Constraints (6.7) impose that the service at
the first machine cannot finish before the arrival time of the part
plus its processing time. Contraint (6.8) impedes that a machine

119

can process 2 different parts at the same time. Constraint (6.9)
state that a part cannot be processed by two machines at the
same time. Constraint (6.10) imposes that a part cannot leave
a machine if the downstream buffer is full: the buffer allocation
is hereby performed thanks to the decision variable xj,k: indeed,
when xj,k = 1 all the constraints related to the j-th buffer with
an assigned capacity k are activated; otherwise a large value M
is subtracted from the right side, thus making the constraint
redundant. Constraint (6.11) imposes that only a capacity k
can be chosen for each buffer Bj. Constraint (6.12) imposes a
lower bound on the system throughput: this can be understood
by noticing that the throughput of the system can be expressed
as:

P =
N

FN,K
(6.15)

where N is the number of parts that the system is set to produce.
Thus, if the number of parts has been already fixed, imposing
a limit on the moment the last part will leave the system is
equivalent to limiting the throughput from below. Constraints
(6.13) and (6.14) impose the non-negativity of finishing time and
the boolean nature of the variables xj,k.

The model proposed by Alfieri and Matta provides both the
performance evaluation of the system, by estimating the maxi-
mum flowtime given a buffer space configuration, and the opti-
mization by choosing the right buffer space among machines. It
is important to notice that the model provides a solution that
is optimal only with respects to the particular sample path, and
not in general. Moreover the authors warn that, since the model
includes both continuous variables (Fi,j) and binary ones (xj,k),
computational times might be an issue.

120

Dual

The MILP formulation of the dual problem differs from the pri-
mal one in the following points:

• The objective function becomes

min FN,K (6.16)

that corresponds to the maximization of the expected pro-
duction rate, thus replacing the constraint (6.12) of the
primal.

• A main system constraint is to be added, that is:

K−1∑
j=1

aj

Uj∑
k=Lj

k · xj,k = a∗ (6.17)

where aj is the cost for the allocation of a unit of buffer
space in the j-th buffer. This constraint corresponds to the
budget constraint on buffer space.

6.2.3 LP approximation

The authors of [43] proposed an alternative way of deactivating
the constraints (6.10) by introducing a continuous variable s
that can make the constraints redundant when necessary: this
can consistently reduce the computational time. The variable is
called time buffer, and represents the time length a customer can
start its processing in advance on a server before the successive
one becomes available. The fact that a part can start in advance
means an item can begin its process at a stage even if the next
one has not freed a buffer slot because it has not yet finished a
part; hence, it represents the fact that the next stage has not

121

yet saturated its buffer. When the weighted sum of the surplus
variables is minimized, a fast approximate solution to the Buffer
Allocation Problem can be found.

Primal

min
K−1∑
j=1

aj

Uj∑
k=Lj

sj,kwk (6.18)

s.t. Fi,1 ≥ A1 + ti,1 ∀i (6.19)

Fi+1,j − Fi,j ≥ ti+1,j ∀j, i = 1, ..., N − 1 (6.20)

Fi,j+1 − Fi,j ≥ ti,j+1 ∀i, j = 1, ..., K − 1 (6.21)

Fi+kj ,j − Fi,j+1 ≥ ti+kj ,j − sj,k (6.22)

i = 1, ..., N − kj j = 1, ..., K − 1 ∀k (6.23)

FN,K ≤ T ∗ (6.24)

Fi,j ≥ 0 ∀i, j (6.25)

sj,k ≥ 0 ∀j, k (6.26)

The approximate primal problem is different from its mixed-
integer formulation in:

• the objective function: minimizing the time buffer corre-
sponds to minimize the total buffer space; wk are weights
that can be chosen so that a large buffer space is penalized.

• the constraint (6.10) becomes (6.22): the variable sj,k will
deactivate it when needed.

• constraint (6.11) is no longer required since in the new for-
mulation the decision variables sj,k are continuous.

In this new formulation, the constraint corresponding to the
buffer Bj with capacity k will be deactivated when sj,k are pos-
itive means that a buffer of capacity k is necessary. In order to

122

find the optimal buffer space, a simple heuristic rule is applied:
since the larger the sj,k the higher is the importance having a
buffer capacity of k, the selected buffer quantity for the j-th
buffer will then be the largest index k at which sj,k are positive.

Dual

The dual version of the Buffer Allocation Problem in the LP
approximate formulation can be solved with the same changes
to the primal as in the MILP formulation presented in section
6.2.2. In this case though, the sum of the time variables must be
limited to a threshold value α: the higher the α and the higher
the expected production rate will be. As a result, the objective
function of the LP approximate dual problem is the same as in
equation (6.16) and the following constraint will be added:

K−1∑
j=1

Uj∑
k=Lj

sj,k ≤ α (6.27)

As in the primal formulation, this approximation of the dual
problem, thanks to the introduction of continuous variables sj,k
can effectively reduce the computational effort to solve the prob-
lem.

6.3 Robust formulation

In this section the attempt to formulate the buffer allocation
problem as of section 6.2.2 in accordance to the framework of
Bertsimas and Sim will be presented.

6.3.1 Model of data uncertainty

In a flow line, buffer space is allocated in order to cover from
system disruptions deriving from failures in the machines com-

123

posing the line. In our case, the solution of the BAP by means
of the Cardinality-Constrained approach implies – given a car-
dinality Γ to the failures of the machines – finding the solution
when the failures we consider are distributed in such a way that
their impact on the solution of the problem is maximized. As
pointed out in [30], the more variability exist in the failures of
the machines in a flow line, the more buffer space is needed. It
is interesting to notice that this phenomenon can also be easily
verified with the models presented in section 6.2.2 : the more
variability is inserted in the technological matrix entries ti,j, the
more buffer space will be selected. In the integrated simulation-
optimization approach as in section 6.2.2, the main input pa-
rameter of this formulation of the Buffer Allocation Problem is
the processing times ti,j. It is now necessary to model the oc-
currence of failures: it is possible to include the failures of the
machines in the variability of the processing times tij. Thus, let
t̄i,j be the nominal duration of the operation on the i-th work-
piece on the j-th machine, and t̄i,j + t̂i,j be the operation time
when on the j-th machine the processing of the i-th piece has
required a longer duration, due to a failure or any sort of event
that causes the machine to remain idle for that amount of time
(i.e. incorrect positioning of workpieces, man errors, longer time
to repair, etc.).

124

6.3.2 Lower bound

The lower bound corresponds to the solution of the case in which
the lowest impact of the machine failures is considered. This can
be easily found by writing the primal problem in the following
way:

min
K−1∑
j=1

aj

Uj∑
k=Lj

sj,kwk (6.28)

s.t Fi,1 ≥ A1 + ti,1 ∀i (6.29)

Fi+1,j − Fi,j ≥ ti+1,j ∀j, i = 1, ..., N − 1 (6.30)

Fi,j+1 − Fi,j ≥ ti,j+1 ∀i, j = 1, ..., K − 1 (6.31)

Fi+kj ,j − Fi,j+1 ≥ ti+kj ,j − sj,k (6.32)

∀k, i = 1, ..., N − kj j = 1, ..., K − 1∑
j

zi,j = Γi ∀i (6.33)∑
i

zi,j = ζj ∀j (6.34)

FN ≤ T ∗ (6.35)

t̄i,j + zi,j t̂i,j = ti,j ∀i, j (6.36)

Fi,j ≥ 0 ∀i, j (6.37)

sj,k ≥ 0 ∀i, j (6.38)

ti,j ≥ 0 ∀i, j (6.39)

zi,j ∈ {0, 1} (6.40)

In this formulation ti,j are decision variables of the optimiza-
tion problem, t̄i,j and t̂i,j are the nominal processing times and
their maximum fluctuation due to failures, respectively. zi,j are
boolean decision variables that are set to select the failures in the
constraint (6.36). Constraints (6.33) bound the set of failures
that we expect a workpiece will encounter on the machines to

125

respect the cardinality Γi. This means the i-th workpiece during
all the time it spends in the system will encounter a maximum
number of Γi failures (or, if we want, general disruptive events).
Similarly, the number of failures that we expect can happen on
a generic machine can be bounded by ζj in constraint (6.34).
With this formulation, the lower bound solution of the Buffer
Allocation Problem will be implicitly solved. The reason is that
while finding a solution that minimizes the buffer space, the
solver will implicitly select the processing times that cause the
minimum impact on the solution. It is valuable to notice that
the lower bound formulation, differently from the upper bound
one, cannot be applied to the MILP formulation of section 6.2.2,
since it would result in a nonlinear formulation, for both ti,j and
xj,k would be decision variables of the problem. An important
remark is the fact that since the solution of the buffer alloca-
tion problem depends on the variability of the processing times,
this variability will be implicitly minimized in the choice of the
processing times in constraint (6.36).

6.3.3 Upper bound

The upper bound corresponds to the situation in which the fail-
ures constrained to the desired cardinality have the maximum
impact on the solution. Let us first formulate the primal version
of the Buffer Allocation Problem in the LP approximate form as
proposed in section 6.2.3, so that it can fit within the framework
of our robust approach. It is worth to notice that in this LP for-
mulation we are not modeling uncertainty the same way as in
section 2.2. In fact, the uncertainty is affecting a known term
of the model, and not a coefficient of a decision variable. In the
next part we can derive an equivalent formulation in order to fit
in the framework of the Cardinality-Constrained approach.

126

Nominal formulation

In the first step, we must express the problem in the nominal
form of a maximization problem, that is:

max c’ x

s.t. A x ≤ b (6.41)

l ≤ x ≤ u

Let us then re-write the problem as follows:

min
K−1∑
j=1

aj

Uj∑
k=Lj

sj,k · wk (6.42)

s.t. αi,1Fi,1 ≤ −1 ∀i (6.43)

αi+1,j(Fi+1,j − Fi,j) ≤ −1 ∀j, i = 1, ..., N − 1 (6.44)

αi,j+1(Fi,j+1 − Fi,j) ≤ −1 ∀i, j = 1, ..., K − 1 (6.45)

αi+k,j(Fi+kj ,j − Fi,j+1) + αi+k,jsj,k ≤ −1 (6.46)

∀k, i = 1, ..., N − kj j = 1, ..., K − 1

FN ≤ T ∗ (6.47)

Fi,j ≥ 0 ∀i, j (6.48)

sj,k ≥ 0 ∀j, k (6.49)

where the αi,j coefficients are defined as:

αi,j = − 1

ti,j
(6.50)

and have been derived by simply dividing each term of equa-
tions (6.19) - (6.24) by ti,j. Since the derived formulation is in
the nominal form of a Mathematical Programming model, it is
now possible to introduce the model of data uncertainty as in

127

section 2.2; uncertainty will impact on the coefficients αi,j: the
coefficients must be able to match the situation in which failures
occur. So, let ᾱi,j be the nominal value of the coefficient, defined
as:

ᾱi,j = − 1

t̄i,j
(6.51)

and let α̂i,j be the maximum fluctuation of the coefficient, oc-
curring in the event of a failure:

α̂i,j = − 1

t̄i,j + t̂i,j
+

1

t̄i,j
(6.52)

so that when αi,j goes to ᾱi,j + α̂i,j, it will assume the value
− 1
t̄i,j+t̂i,j

.

Case with 2 machines and 2 workpieces

In order to better appreciate the structure of the formulation,
the simplest problem will be displayed: this way the size of the
matrixes is still small enough to be easily read. In the case of
K = 2 ,N = 2, Lj = 1 and Uj = 2, the problem becomes:

x =

F1,1

F2,1

F1,2

F2,2

s1,1

s2,1

s1,2

s2,2

(6.53)

128

A =

α1,1 0 0 0 0 0 0 0
0 α2,1 0 0 0 0 0 0
−α2,1 α2,1 0 0 0 0 0 0

0 0 −α2,2 α2,2 0 0 0 0
−α1,2 0 α1,2 0 0 0 0 0

0 −α2,2 0 α2,2 0 0 0 0
0 −α2,1 α2,1 0 α2,1 0 0 0
0 0 0 1 0 0 0 0

(6.54)

b =

0
0
−1
−1
−1
−1
−1
T ∗

(6.55)

General case

The formulation for a general size of N pieces and K machines
will maintain the same form. where the decision variables vector
x is:

x =

F1
...

FK

SLj

...
SUj

(6.56)

where:

129

F1 =

F1,1
...

FN,1

 (6.57)

FK =

F1,K
...

FN,K

 (6.58)

SLj
=

s1,Lj

...
sN,Lj

 (6.59)

SUj
=

s1,Uj

...
sN,Uj

 (6.60)

The matrix A is:

A =

A1 B1 E1

A2(2) B2 E2
... B3 E3

A2(N − 1) B4 E4

A3(2) B5 E5
... B6 E6

A3(K − 1) B7 E7

F C E8

D 1 E9

(6.61)

where:

A1 =

α1,1

α2,1
. . .

αN,1

130

A2(2) =

−α2,1 α2,1

−α2,2 α2,2
.

−α2,K α2,K

A2(N − 1) =

−αN−1,1 αN−1,1

−αN−1,2 αN−1,2
.

−αN−1,K αN−1,K

A3(2) =

−α1,2 α1,2

−α2,2 α2,2
.

−αN,2 αN,2

A3(K − 1) =

−α1,K−1 α1,K−1

−α2,K−1 α2,K−1
.

−αN,K−1 αN,K−1

C =

−α2,1 α2,1 0 α2,1

−α3,2 α3,2 0 α3,2
.

−αN−Kj ,K−1 αN−Kj ,K−1 0 αN−Kj ,K−1

B1 = zeros[N,N(K + Uj − Lj − 1) + 3]

B2 = zeros[K,N(K + Uj − Lj)−K − 4]

B3 = zeros[K(N − 4), N(K + Uj − Lj)−K − 4]

131

B4 = zeros[K,N(K + Uj − Lj)−K − 4]

B5 = zeros[N,N(K + Uj − Lj − 1)− 4]

B6 = zeros[N(K − 4), N(K + Uj − Lj − 1)− 4]

B7 = zeros[N,N(K + Uj − Lj − 1)− 4]

F = zeros[K + 1, 1]

D7 = zeros[1, N(K + Uj − Lj)− 4]

E1 = zeros[N, 3]

E2 = zeros[K, 3]

E3 = zeros[K(N − 4), 3]

E4 = zeros[K, 3]

E5 = zeros[N, 3]

E6 = zeros[N(K − 4), 3]

E7 = zeros[N, 3]

E8 = zeros[K + 1, 3]

132

E9 = zeros[1, 3]

and the vector b is:

b =

0
0
−1
−1
−1
−1
...
−1
T ∗

(6.62)

For the sake of simplicity we refer from here on to the 2-
machine, 2-workpiece problem, since it does not compromise
the generality of our considerations.

At this point, it appears possible to apply the Cardinality-
Constrained approach to derive a robust solution that covers
from the occurrence of failures, which will be causing the α
coefficients to vary to α̂. The same steps shown in section 2.5
can be done:

∑
j

αij xj + max
Ω

∑
j∈Si

α̂ij xj + (Γi − bΓic)α̂i,tj xj

 ≤ bi ∀i

(6.63)
where

Ω = {Si ∪ {ti}; Si ⊆ Ji; |Si|= bΓic; ti ∈ Ji \ Si} (6.64)

represents the set of coefficients undertaking their maximum
value. It is now possible to notice a very important charac-
teristic of this formulation, which is also its main limitation.

133

When reformulating the problem in an outlook such as the one
in (6.41), it was necessary to split the decision variables of the
problem in the vector x. As a consequence, all the constraints
of the problem, which are referring to both indexes i and j, will
be expressed in the matrix A, one row at a time. This will cause
the matrix to assume such a structure that only one or two of
the α coefficients will be present in each row, and in the latter
case, the coefficients will be the same one to be found in 2 differ-
ent positions with the opposite sign. This represents an strong
limitation to the robust formulation of the problem. The reason
stands in the fact that the robust approach of Bertsimas and
Sim considers the cardinality of the set of coefficients in a row
of the problem that are subject to uncertainty, thus letting the
user choose the number of coefficients he/she expects to vary
for each row. In this case, each row will represents a particular
couple i, j, that is the location of a single workpiece on a specific
machine of the line. Giving a cardinality to the row will then
be limited to two choices only: whether we expect a failure to
occur at that particular location for a defined workpiece or not.
This not only forces the decision maker to choose a very high
number of Γ coefficients, but also loses its purpose of selecting
which failures causes the worst effect on the system, because
only one coefficient will be present to be chosen on each row.

An alternative constraint

In order to avoid the problem just mentioned, it is possible to
think a constraint of the kind:∑

i

ai,j Fi,j ≤ Tj ∀j (6.65)

where Tj represents a time budget on the j-th machine and ai,j
are coefficients which will need to vary properly representing the

134

occurrence of a failure at the i-th workpiece on the j-th machine.
It is possible to notice that in order to represent the occurrence
of a failure on the system, the decision variables Fi,j would need
to vary consequently the variation of the ai,j coefficients. In
order for this to happen, the coefficients shall be linked such as:

a1,j(F1,j)F1,j + . . .+ ai,j(F1,j, . . . Fi,j)Fi,j ≤ Tj ∀j (6.66)

This formulation is clearly non-linear, and it cannot even be
solved with a relaxation because of the explicit link between
coefficients and variables.

135

Splitting the variables

In order to solve the previously exposed situation, one option is
to split the decision variables in two parts: Fi,j that, as in the
nominal formulation, represent the finishing times of workpiece i
on machine j, and yi,j representing the increase of the finishing
time F due to a failure on the machine j while working on
workpiece i. This way the nominal formulation becomes:

min
K−1∑
j=1

aj

Uj∑
k=Lj

xj,kk (6.67)

s.t. Fi,1 + yi,1 ≥ A1 + ti,1 ∀i (6.68)

Fi+1,j + yi+1,j − (Fi,j + yi,j) ≥ ti+1,j ∀j, i = 1, ..., N − 1
(6.69)

Fi,j+1 + yi,j+1 − (Fi,j + yi,j) ≥ ti,j+1 ∀i, j = 1, ..., K − 1
(6.70)

Fi+kj ,j + yi+kj ,j − (Fi,j+1 + yi,j+1) ≥ ti+kj ,jxj,k − (1− xj,k)M
(6.71)

∀k, i = 1, ..., N − kj j = 1, ..., K − 1
Uj∑

k=Lj

xj,k = 1 ∀j (6.72)

FN ≤ T ∗ (6.73)

Fi,j ≥ 0 ∀i, j (6.74)

yi,j ≥ 0 ∀i, j (6.75)

xj,k ∈ {0, 1} (6.76)

In order to obtain a robust formulation, it is possible to add
the constraint:

136

∑
i

Fi,j + max
Ω

{∑
i

yi,j

}
≤ Tj ∀j (6.77)

where we can recognize the protection function:

βj = max
∑
i

yi,j zi,j (6.78)

s.t.
∑
i

zi,j ≤ Γj (6.79)

0 ≤ zi,j ≤ 1 ∀i (6.80)

This formulation is not enough to correctly express the oc-
currence of failures. In order to achieve it it is necessary to
modify the inner maximization problem so to express the fact
that, when a failure occurs it will have the duration of t̂i,j, and,
when it does not, no additional time is added to the formulation.

βj = max
∑
i

yi,j zi,j (6.81)

s.t.
∑
i

zi,j ≤ Γj (6.82)

t̂i,j zi,j ≤ yi,j ∀i (6.83)

−M zi,j ≤ yi,j ∀i (6.84)

0 ≤ zi,j ≤ 1 ∀i (6.85)

where equation (6.83) forces yi,j to take the value t̂i,j when zi,j =
1 and equation (6.84) constrains yi,j to 0 until zi,j = 0. M is a
very big number.

Let us now write the dual form of the j-th β-maximization
problem: at this point, it is useful to write it in explicit form,
with the corresponding dual variables π:

137

min Γj π1 + (π2 + · · ·+ πN) + (πN+1 y1 + · · ·+ π2N yN)+
(6.86)

+ (π2N+1 y1 + · · ·+ π3N yN)

s.t. π1 + π2 + t̂1,j πN+2 + · · · ≥ y∗1,j (6.87)

π1 + π3 + t̂2,j πN+2 + · · · ≥ y∗2,j (6.88)
... (6.89)

πi,j ≥ 0 ∀i (6.90)

where y∗ is a particular solution of the master problem. At this
point it is possible to see that the dual problem is non-linear.
This is due to the fact that in the primal problem there are
decision variables yi,j as right side terms, thus belonging to the
vector b of the formulation (6.41). It is possible to think of
linearising this problem by replacing:

γ ≤M y (6.91)

γ ≥ t̂iπi −M (t̂i − y∗) (6.92)

This substitution comes from observing that the y variables
can either take the value 0 or the value t̂. Unfortunately the sub-
stitution is not enough to obtain a dual problem that correctly
represents the inner maximization problem, that meaning the
solutions coinciding at the optimum. The reason stands in the
fact that by substituting the variables γ the dual problem has a
greater number of dual variables than it would have had with-
out the substitution, thus presenting more degrees of freedom
than its previous version. The result is that the Strong Duality
Theorem is no longer valid: the solution of the dual problem no
longer represents the inner optimization problem and the cor-
responding protection function. To the best of our knowledge,

138

it is not clear how to further bound the γ variables in a way so
to force the dual problem to take the same optimal value of the
primal.

6.4 Conclusions

Let us summarize the reasons why we have opted for not apply-
ing the Cardinality-Constrained approach in this case:

• The direct application of the approach in the mathematical
programming formulas for simulation could not give us the
advantage of being able to choose the cardinality for each
row of the problem. In fact, only one or two coefficients
are present in each row, forcing the decision maker to iden-
tify the workpiece and machine where he expects a failure
to happen: this is distant from the initial purpose for the
application of the approach.

• By writing a constraint to gather more coefficients on a
row, those coefficients would depend directly on the deci-
sion variables of the master problem: thus, we obtain a non
linear formulation.

• In order to solve the previously mentioned difficulties, an al-
ternative formulation would split the variables of the prob-
lem, and uses the increase in the processing times as a deci-
sion variable. This process however results in a non-linear
dual problem, where little can be done to further linearise.

These difficulties shall not discourage from the attempt of
finding the bounds of the Buffer Allocation Problem. The lim-
itations are mainly due to the application of the Cardinality-
Constrained problem in its analytical form. However, the study
was useful to practice the concept of cardinality applied to ma-
chine failures. In chapter 7 this will be used in the construction

139

of a heuristic algorithm to find the bounds that have not been
derived in this part.

140

Chapter 7

A matheuristic approach for
the Buffer Allocation Problem

In this chapter an alternative solution to the upper bound of
the Buffer Allocation Problem is proposed. The purpose is to
find the robust solution to the Buffer Allocation Problem which
was not derived for the reasons listed in section 6.4. The scope
remains unchanged: finding the failure-pattern – constrained
to a specific cardinality – that causes the worst impact on the
system, and the buffer space configuration that better covers
from it. The possibility of solving this problem derives from the
observation that it is possible to input failure patterns in the
optimization model (section 7.1). Therefore, it is conceivable to
evaluate the objective functions corresponding to each pattern,
and from there building the heuristic: a Tabu Search algorithm
has been developed, and permits to find an approximate solution
to the upper bound (section 7.2). Numerical results of a test case
are shown in section 7.3.

141

7.1 The upper bound case with failures as

input

Let us start from the formulation of the Buffer Allocation Prob-
lem - lower bound case, as described in section 6.3.2. From here
on the LP approximate case will be taken as reference. This is
due to the convenience of having results directly comparable to
the lower bound case derived in chapter 6. Let us re-write the
lower bound formulation:

min
K−1∑
j=1

aj

Uj∑
k=Lj

sj,kwk (7.1)

s.t Fi,1 ≥ A1 + ti,1 ∀i (7.2)

Fi+1,j − Fi,j ≥ ti+1,j ∀j, i = 1, ..., N − 1 (7.3)

Fi,j+1 − Fi,j ≥ ti,j+1 ∀i, j = 1, ..., K − 1 (7.4)

Fi+kj ,j − Fi,j+1 ≥ ti+kj ,j − sj,k
∀k, i = 1, ..., N − kj j = 1, ..., K − 1 (7.5)

FN ≤ T ∗ (7.6)∑
j

zi,j = Γi ∀i (7.7)∑
i

zi,j = ζj ∀j (7.8)

t̄i,j + zi,j t̂i,j = ti,j ∀i, j (7.9)

Fi,j ≥ 0 ∀i, j (7.10)

sj,k ≥ 0 ∀i, j (7.11)

ti,j ≥ 0 ∀i, j (7.12)

zi,j ∈ {0, 1} (7.13)

In this formulation, the decision variables zi,j are selecting the
failure-pattern of the system. In the lower bound formulation,
this is a decision variable of the problem. Then, we can think to

142

input a generic matrix ẑi,j with a predefined pattern of failures.
The model becomes:

min
K−1∑
j=1

aj

Uj∑
k=Lj

sj,kwk (7.14)

s.t Fi,1 ≥ A1 + ti,1 ∀i (7.15)

Fi+1,j − Fi,j ≥ ti+1,j ∀j, i = 1, ..., N − 1 (7.16)

Fi,j+1 − Fi,j ≥ ti,j+1 ∀i, j = 1, ..., K − 1 (7.17)

Fi+kj ,j − Fi,j+1 ≥ ti+kj ,j − sj,k
∀k, i = 1, ..., N − kj j = 1, ..., K − 1 (7.18)

FN ≤ T ∗ (7.19)

t̄i,j + ẑi,j t̂i,j = ti,j ∀i, j (7.20)

Fi,j ≥ 0 ∀i, j (7.21)

sj,k ≥ 0 ∀i, j (7.22)

ti,j ≥ 0 ∀i, j (7.23)

Notice that in this case equations (7.7) and (7.8) are not
present, since ẑi,j are now input parameters of the problem and
it is not necessary to impose constraints on them. However, the
cardinality of the failures has to be decided upfront to respect
the conditions: ∑

j

ẑi,j = Γi ∀i (7.24)∑
i

ẑi,j = ζj ∀j (7.25)

This way it is possible to find the Buffer Allocation solution
corresponding to a specific failures’ pattern in the line.

143

7.2 The proposed algorithm

We have shown that it is possible to derive the solution of a
Buffer Allocation Problem when the failure-pattern of the sys-
tem is known. Ergo, it is possible to conceive an algorithm
to find the failure-patterns that cause the worst impact on the
system: those are the failures arranged in such a way so that
the maximum buffer space is needed. Moreover, we can use the
concept of cardinality to bound the total number of failures to
a desired value. Notice that by doing so we let the decision
maker decide the level of protection he/she wants to adopt: in-
deed, when a higher number of failures is expected to take place
we aim at a higher level of robustness, and vice-versa. Let us
arrange the optimization problem in this way:

min W ∗(l) =
K−1∑
j=1

aj

Uj∑
k=Lj

sj,kwk (7.26)

s.t Fi,1 ≥ A1 + ti,1 ∀i (7.27)

Fi+1,j − Fi,j ≥ ti+1,j ∀j, i = 1, ..., N − 1 (7.28)

Fi,j+1 − Fi,j ≥ ti,j+1 ∀i, j = 1, ..., K − 1 (7.29)

Fi+kj ,j − Fi,j+1 ≥ ti+kj ,j − sj,k (7.30)

∀k, i = 1, ..., N − kj j = 1, ..., K − 1

FN ≤ T ∗ (7.31)

t̄i,j + ẑli,j t̂i,j = ti,j ∀i, j (7.32)

Fi,j ≥ 0 ∀i, j (7.33)

sj,k ≥ 0 ∀i, j (7.34)

ti,j ≥ 0 ∀i, j (7.35)

where W ∗(l) is the objective function of the l-th generic iteration
with a corresponding failure input matrix ẑli,j. At each iteration,
the solution is found the same way as in chapter 6: that is, for

144

each j-th buffer, the allocated space is defined as the index of
the last positive value of vector sj,k. Notice that for simplicity
we have omitted to write the iteration index l for the decision
variables of the problem. Formally, they should be F l

i,j, t
l
i,j and

slj,k since in each iteration a different optimization problem is
being solved.

Figure 7.1 shows a graphical overview of the algorithm, which
has been written in Matlab R© code (Appendix A). The algo-
rithm is structured in the following way:

Step 0

The algorithm starts with an initial matrix ẑ(0)of values ẑ
(0)
i,j . The

matrix is compiled with binary values that respect the cardinal-
ity constraints as in equations (7.7) and (7.8) (the initialization
function code is available in appendix A). At this step, all the
variables (buffer space and objective function) are initialized to
0. At the first iteration (l = 0), we skip from step 0 to step 2.

Step 1

Step 1 evaluates the objective function and the buffer space.
These results are obtained by solving the Mathematical Pro-
gramming problem (7.26): this is done by implementing the
equations in IBM CPLEX R© v12.5. It is interesting to notice
that we can recognize again the sub-division between evaluative
and generative methods. In our technique, the Matlab routine
interfaces with CPLEX by an input-output Excel file, where the
failure matrix ẑ(l) is written and serves as input for the solver.
The same file is used to save the results at each iteration: in-
deed, the objective function value eval(l) and the buffer space
are being read by the Matlab routine at each iteration. If the
calculations reported an increase in the objective function, the
routine goes to step 2: the improvement point is ”tagged” with

145

Figure 7.1: The proposed Tabu Search algorithm

146

lbest, and the counter h is set to 0. If no improvement is observed,
we procede with step 3.

Creation Function

The creation of the failures’ matrix for the next iteration is done
by the creation function (section A.2): given an input matrix

ẑ
(l)
i,j , this function switches between a 1 and a 0 along a ran-

domly chosen column of the matrix, thus returning ẑ
(l+1)
i,j , that

is the input matrix for the next iteration. Notice that in this
operation the cardinality constraint on a column (7.25) are al-
ways satisfied. In this case we do not bound the cardinality on
the rows, so we do not use constraint (7.24).

Step 2

Step 2 generates the failures matrix for the next iteration ẑ
(l+1)
i,j

with the creation function. As input, it uses ẑ
(lbest)
i,j , that is the

matrix with which the last improvement has been found. Sub-
sequently, it is checked whether the newly generated matrix is
already in the ”Tabu list”. The list contains all the matrixes
that returned objective function values worse than previous it-
erations. If the check is positive, a new generation is done.

Step 3

Step 3 saves the matrix ẑ
(l)
i,j in the ”Tabu list”, since no improve-

ment has been obtained with those input values. Moreover, the
counter h is raised by 1. The counter permits to avoid local
optimums. In particular, if h is less or equal a threshold value
α, the algorithm runs again over step 2. Otherwise, it procedes
with step 4.

147

Step 4

In step 4, a new failures matrix is created by means of the cre-
ation function. However, at this step the function uses as input
the matrix ẑ

(l)
i,j , that is the failures’ matrix relative to this specific

iteration.

Stop criteria

Figure 7.2 shows the objective function results in a test-run.
Over 1500 iterations, the algorithm was able to find better so-
lutions until the 206th iteration. In the following iterations, no
better solutions were found.

Figure 7.2: The objective function solutions of the Tabu Search algorithm in a test
run with 1500 iterations

From the observation of the behavior of the objective func-
tion we can think of adding a stop criteria to the algorithm. In
fact, since over 1500 iterations no improvement has been no-
ticed (other runs have confirmed this behavior as well), it is
conceivable to stop the algorithm after it has not found better
solutions for a certain number of iterations. In figure 7.3, Φ is a

148

parameter that indicates when the routine can be stopped. The
iteration at which we break the iteration loop is lstop. Notice
that lbest + Φ = lstop. It is important to remark that the stop
criteria depends on the dimensions of the problem: indeed, in a
bigger problem there are more possible combinations of failures,
making it appropriate to use higher values of Φ.

Figure 7.3: The objective function solutions of the Tabu Search algorithm in a test
run with 1500 iterations

7.3 Numerical results

A test has been done in the case of a flow line with 4 machines
and 3 buffers (figure 7.4) producing 1000 workpieces. The pro-
cessing times t̄i,j have been set to 1 min per workpiece, and
their deviations t̂i,j to 0.5 min per workpiece. The throughput
constraint has been set to T = 1015min , corresponding to a
desired throughput of 97.5%. For the sake of simplicity, the cost
of each buffer slot has been set to 1 $. Since it is the only cost
in the objective function, its value does not need to be specific.

149

Figure 7.4: The flow line considered for the test

The cardinality values represent how many failures will affect
the workpieces on the j-th machine; those are the Γj that satisfy∑
i

zi,j = Γj, and have been set to:

Γ =
[
10 10 Γ3 10

]
(7.36)

where Γ3 is kept as a parameter so to be able to evaluate dif-
ferent scenarios: this is due to the aim to obtain the behavior
of the solution when cardinality values vary, which is one of the
main purposes throughout this work. Therefore, the algorithm
has been run for different cardinality values of the failures on
machine M3. Figure 7.5 shows the total buffer space found for
each respective cardinality value. The lower bound total buffer
space remains unchanged in all cases, whereas the upper bound
solutions vary together with the increase of the failures’ cardi-
nality. The graph shows evidence about the fact that buffer
space in the upper bound case grows only after the cardinality
of the failures at machine M3 becomes greater than the ones
from the remaining machines, that is always kept at the con-
stant level of 10, as in (7.36). In fact, when cardinality becomes
greater than 10, M3 turns to be the bottleneck of the system,
since the total time of production on it is longer than all the
other machines’ production times. Therefore, in order to avoid
blockages, more buffer space is added over all the line, as it can
be seen from table 7.1. Notice that the buffer space found by
the algorithm does increase, but it does not follow a specific
pattern (notice for example the buffer space shape between car-
dinality values of 16 and 17): this is due to the approximate
nature of the Tabu Search heuristic, that is able to find a good

150

solution in reasonable times, although not guaranteeing that it
is a global optimum. Appendix B shows details about the fail-
ures’configurations found for each cardinality value by running
the algorithm.

Figure 7.5: Comparison between lower and upper bound with respect to the cardinality
of the failures of M3

7.3.1 Computational times

Table 7.2 lists the computational times for obtaining the lower
bound solution, together with the corresponding gap. The iter-
ations required in this case are always equal to 1 simply because
the lower bound only requires one, and the failure-pattern is ob-
tained by solving the optimization problem itself (section 7.1).
Table 7.3 shows the computational times related to the upper
bound case: several iterations are required, therefore the time to

151

Table 7.1: Comparison of the results obtained in the lower and upper bound cases

Lower Bound Upper Bound

Γ3 B1 B2 B3 Total B1 B2 B3 Total

0 1 1 1 3 2 2 2 6
1 1 1 1 3 2 2 2 6
2 1 1 1 3 2 2 2 6
3 1 1 1 3 2 2 2 6
4 1 1 1 3 2 2 2 6
5 1 1 1 3 2 2 2 6
6 1 1 1 3 2 2 2 6
7 1 1 1 3 2 2 2 6
8 1 1 1 3 2 2 2 6
9 1 1 1 3 2 2 2 6
10 1 1 1 3 2 2 2 6
11 1 1 1 3 2 2 2 6
12 1 1 1 3 2 2 2 6
13 1 1 1 3 2 2 2 6
14 1 1 1 3 2 2 2 6
15 1 1 1 3 2 3 2 7
16 1 1 1 3 3 2 3 8
17 1 1 1 3 2 3 3 8
18 1 1 1 3 2 3 3 8
19 1 1 1 3 2 3 3 8
20 1 1 1 3 2 4 3 9
21 1 1 1 3 4 4 3 11
22 1 1 1 3 2 4 5 11
23 1 1 1 3 3 5 5 13

solve the instance is higher. Figure 7.6 shows the CPU time ex-
pressed in hours for different cardinality values Γ3. As it can be
seen from the graph, the computational time required is longer
with higher cardinality values, as well as with a higher number
of iterations. Nevertheless, let us remind that this is also due
to different values of Φ that have been used. Moreover, since
the algorithm randomly permutes the matrix ẑi,j, a variability
in the computational times remains natural.

152

Despite the times are high, this does not discourage the ap-
plication of our simple heuristic. In fact, let us remind the fol-
lowing: (1) theoretically, once a protection level is chosen, only
one cardinality value has to be used, so the algorithm would run
only once, or anyway not an excessive number of times; (2) we
have not used techniques to reduce the CPU time, even though
there are many that proved to be successful, such as the use
of parallel cores; (3) the algorithm solves a Buffer Allocation
Problem, to which in general is dedicated a sufficient amount of
time, since it is part of the designing phase of a flow line.

Table 7.2: Lower bound case: computational times

Γ3 niter CPU time [s] GAP[%]

0 1 80 0,32
1 1 80 0.30
2 1 80 0.27
3 1 80 0.24
4 1 80 0.20
5 1 80 0.17
6 1 80 0.14
7 1 80 0.10
8 1 80 0.70
9 1 80 0.40
10 1 80 0.00
11 1 80 0.20
12 1 80 0.40
13 1 80 0.50
14 1 80 0.74
15 1 160 0.10
16 1 80 0.10
17 1 80 0.17
18 1 200 0.19
19 1 200 0.20
20 1 200 0.23
21 1 200 0.28
22 1 200 0.31
23 1 200 0.31

153

Table 7.3: Upper bound case: computational times

Γ3 niter lstop lbest CPU time [s] CPU time [h]

0 1500 559 97 4208 1.2
1 1500 476 225 12193 3.4
2 1500 290 39 2427 0.7
3 1500 452 201 11646 3.2
4 1500 462 211 3816 1.1
5 1500 547 296 14439 4.0
6 1500 646 395 7021 2.0
7 1500 420 169 10503 2.9
8 1500 570 319 6462 1.8
9 1500 487 236 14992 4.2
10 1500 423 172 5765 1.6
11 1500 384 133 13924 3.9
12 1500 425 174 6957 1.9
13 1500 345 94 13980 3.9
14 1500 378 127 11096 3.1
15 1500 398 147 18049 5.0
16 3000 3000 148 53091 14.7
17 1500 867 366 15309 4.3
18 1500 405 154 18932 5.3
19 1500 470 219 23925 6.6
20 1500 1500 1327 17697 4.9
21 3000 3000 748 30349 8.4
22 3000 3000 985 121602 33.8
23 3000 1719 716 89093 24.7

7.4 Conclusions and remarks

This chapter has introduced an algorithm that can be used to
derive the upper bound of the BAP. The computational times
are in the order of 80 to 200 seconds for the lower bound case,
in which only one run is required but of a MILP problem, and
between 5 to 7 hours for the upper bound case with 1500 it-
erations. Those times are high but not problematic, since the
application is a design problem that normally requires a long

154

Figure 7.6: CPU time for the upper bound case, expressed in hours

time anyway. Moreover, it is certainly possible to improve the
computational times. Different paths could be undertaken: par-
allelization seems to be the most promising, but in future devel-
opments other options could be considered as well, such as the
development of a ”smarter” creating function. For example,
since the failures are a relatively small number in comparison
with the workpieces flowing in the line, some patterns could
produce equivalent results. The corresponding input matrixes
could be excluded from the possible outcomes of the failure-
patterns creating function. Alternatively, the algorithm shall
recognize improvement directions. For these reasons we believe
the proposed heuristic represents a promising approach to derive
approximate bounds of the buffer configuration solution.

155

156

Chapter 8

Conclusions

The literature analysis done in this work shows that interest in
finding efficient methods to deal with uncertainty in the manu-
facturing area is high. Regarding this work, the robust versions
of the problems we have taken into account gave promising re-
sults both in terms of applicability and computational times.

In chapter 3, a robust model for the assessment of a Part
Type Selection has been developed, by means of its integra-
tion with the Cardinality-Constrained approach. The results of
tests on case studies proved to be aligned with the expected be-
havior of a Cardinality-Constrained robust model: the decrease
of the objective function value with an increase in the cardi-
nality. Once the relationship between objective function and
cardinality can be measured, a decision maker can evaluate the
cost of a certain number of disruptive events on the production
campaign. Therefore, the proposed approach is apposite for an
application in the manufacturing area. The application of the
robust Part Type Selection model to a real case and the cor-
responding results are shown in chapter 4. The analysis of the
results motivated the proposal of using alternative weights (i.e.
dependent on results obtained with lower cardinality values) in
order to obtain batching results more pertinent to a real situ-
ation. In particular, with the new formulation, the results are

easier to understand by inexperienced users.

The robust version of a Machine Loading model has been
proposed in chapter 5, with the scope of providing an effective
tool to help the Production Planning and tooling the machines
over a specific time horizon. A further detailed model, that
permits to track each single workpiece has also been suggested:
unfortunately, in this case computational times constitute an
issue.

The application of the Cardinality-Constrained method on
the Buffer Allocation Problem resulted in a non-linear formu-
lation when using the analytical expressions of the approach
(Chapter 6). Since linearity is one of the most relevant and
innovative advantage of the Cardinality-Constrained approach,
we did not further develop the formulation, and opted instead
to use the concept of cardinality in building a Tabu Search al-
gorithm (Chapter 7) that could find the approximate bounds of
the buffer configuration for a flow line in a test case. The com-
putational times are in the order of few minutes for the lower
bound case, in which only one run is required, and between 5 to
7 hours for the upper bound case with 1500 iterations. Those
times are high but not problematic, since the Buffer Allocation
is a problem to which is normally dedicated a reasonable amount
of time.

As to future work, the developments of this research shall aim
at reducing the computational effort in the cases we have indi-
cated it is an issue. The robust version of the Machine Loading
Problem, when tracing the single workpieces, proves to be too
much time-demanding. In this case, standard approaches to re-
duce computational effort in Mathematical Programming prob-
lems can be endeavored. Moreover, we are confident in the pos-
sibility to improve the computational times for the matheuristic
approach we developed for the BAP: parallelization seems to be
the most promising, but other options can be considered as well,

158

such as the development of a smarter failure-patterns creating
function. Bigger-sized problems shall be taken into considera-
tion, aiming at a broader applicability of the method. Further-
more, a deeper analysis is required in order to find the degree of
approximation of the bounds we have found. In order to do so,
we have to compute the solution for all the combinations, and
consequently compare the results with the approximate bounds
that we already possess. Our future efforts will go in this direc-
tion.

159

160

Bibliography

[1] J.F. Shapiro. Chapter 8 mathematical programming mod-
els and methods for production planning and scheduling.
Handbooks in Operations Research and Management Sci-
ence, 4(C):371–443, 1993.

[2] S.C. Graves. Uncertainty and production planning. Inter-
national Series in Operations Research and Management
Science, 151:83–101, 2011.

[3] A. Sethi and S.P. Sethi. Flexibility in manufacturing: A sur-
vey. International Journal of Flexible Manufacturing Sys-
tems, 2:289–328, 1990.

[4] D. Bertsimas and M. Sim. The price of robustness. Opera-
tions Research, 52(1):35–53, 2004. cited By 0.

[5] J. R. Birge and F. Louveaux. Introduction to stochastic
programming, 1997.

[6] D. Bertsimas, D.B. Brown, and C. Caramanis. Theory
and applications of robust optimization. SIAM Review,
53(3):464–501, 2011.

[7] A. L. Soyster. Convex programming with set-inclusive con-
straints and applications to inexact linear programming,
1973.

[8] A. Ben-Tal and A. Nemirovski. Robust solutions of linear

161

programming problems contaminated with uncertain data,
2000.

[9] O.L.V. Costa and A.C. Paiva. Robust portfolio selection
using linear-matrix inequalities. Journal of Economic Dy-
namics and Control, 26(6):889 – 909, 2002.

[10] R.H. Tutuncu and M. Koenig. Robust asset allocation. An-
nals of Operations Research, 132(1-4):157–187, 2004.

[11] G. Calafiore and L. El Ghaoui. Robust maximum likelihood
estimation in the linear model. Automatica, 37(4):573–580,
2001.

[12] Y.C. Eldar, A. Ben-Tal, and A. Nemirovski. Robust mean-
squared error estimation in the presence of model uncertain-
ties. IEEE Transactions on Signal Processing, 53(1):168–
181, 2005.

[13] D. Bertsimas and A. Thiele. A robust optimization ap-
proach to supply chain management. Lecture Notes in
Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics),
3064:86–100, 2004. cited By 24.

[14] A. Ben-Tal and A. Nemirovski. Robust truss topology de-
sign via semidefinite programming. SIAM Journal on Op-
timization, 7(4):991–1016, 1997.

[15] S.P. Boyd, S.-J. Kim, D.D. Patil, and M.A. Horowitz. Dig-
ital circuit optimization via geometric programming. Oper-
ations Research, 53(6):899–932, 2005.

[16] D. Patil, S. Yun, S.-J. Kim, A. Cheung, M. Horowitz, and
S. Boyd. A new method for design of robust digital circuits.
pages 676–681, 2005.

162

[17] K.-L. Hsiung, S.-J. Kim, and S. Boyd. Power control in
lognormal fading wireless channels with uptime probability
specifications via robust geometric programming. volume 6,
pages 3955–3959, 2005.

[18] R.G. Lorenz and S.P. Boyd. Robust minimum variance
beamforming. IEEE Transactions on Signal Processing,
53(5):1684–1696, 2005.

[19] A. Mutapcic, S.-J. Kim, and S. Boyd. Beamforming
with uncertain weights. IEEE Signal Processing Letters,
14(5):348–351, 2007.

[20] D. Bertsimas and D.B. Brown. Constrained stochastic lqc:
A tractable approach. IEEE Transactions on Automatic
Control, 52(10):1826–1841, 2007.

[21] D. Bertsimas, O. Nohadani, and M.T. Kwong. Robust op-
timization in electromagnetic scattering problems. Journal
of Applied Physics, 101(7), 2007.

[22] M.C.O. Moreira, J.-F. Cordeau, A.M. Costa, and G. La-
porte. Robust assembly line balancing with heterogeneous
workers. Computers and Industrial Engineering, 88:254–
263, 2015.

[23] L. Borba and M. Ritt. A heuristic and a branch-and-
bound algorithm for the assembly line worker assignment
and balancing problem. Computers and Operations Re-
search, 45:87–96, 2014. cited By 14.

[24] D. J. Alem and R. Morabito. Production planning in furni-
ture settings via robust optimization. Computers and Op-
erations Research, 39(2):139–150, 2012. cited By 21.

[25] O. Hazir, E. Erel, and Y. Gnalay. Robust optimization
models for the discrete time/cost trade-off problem. Inter-

163

national Journal of Production Economics, 130(1):87–95,
2011. cited By 14.

[26] C.-C. Lu, K.-C. Ying, and S.-W. Lin. Robust single machine
scheduling for minimizing total flow time in the presence
of uncertain processing times. Computers and Industrial
Engineering, 74(1):102–110, 2014. cited By 4.

[27] O. Solyali, J.-F. Cordeau, and G. Laporte. Robust inventory
routing under demand uncertainty. Transportation Science,
46(3):327–340, 2012. cited By 10.

[28] O. Hazir and A. Dolgui. Assembly line balancing under un-
certainty: Robust optimization models and exact solution
method. Computers and Industrial Engineering, 65(2):261–
267, 2013. cited By 17.

[29] Y. Moon and T. Yao. A robust mean absolute deviation
model for portfolio optimization. Computers and Opera-
tions Research, 38(9):1251–1258, 2011. cited By 12.

[30] S.B. Gershwin and J.E. Schor. Efficient algorithms for
buffer space allocation. Annals of Operations Research,
93(1-4):117–144, 2000. cited By 117.

[31] We-Min Chow. Buffer capacity analysis for sequential pro-
duction lines with variable process times. International
Journal of Production Research, 25(8):1183–1196, 1987.
cited By 49.

[32] L. Demir, S. Tunali, and D.T. Eliiyi. The state of the art on
buffer allocation problem: A comprehensive survey. Journal
of Intelligent Manufacturing, 25(3):371–392, 2014. cited By
6.

[33] Stanley B. Gershwin. Manufacturing Systems Engineering.
1993.

164

[34] A. Dolgui, A. Eremeev, A. Kolokolov, and V. Sigaev. A ge-
netic algorithm for the allocation of buffer storage capacities
in a production line with unreliable machines. Journal of
Mathematical Modelling and Algorithms, 1(2):89–104, 2002.

[35] D. Spinellis, C. Papadopoulos, and J.M. Smith. Large pro-
duction line optimization using simulated annealing. In-
ternational Journal of Production Research, 38(3):509–541,
2000.

[36] R. Jaikumar. Postindustrial manufacturing. Harvard Busi-
ness Review, 1986.

[37] S.S. Hwang and A.W. Shogan. Modelling and solving an fms
part selection problem. International Journal of Production
Research, 27(8):1349–1366, 1989.

[38] Kathryn E. Stecke. Formulation and solution of nonlinear
integer production planning problems for flexible manufac-
turing systems. Management Science, 29(3):273–288, 1983.

[39] A. Grieco, Q. Semeraro, and T. Tolio. A review of differ-
ent approaches to the fms loading problem. International
Journal of Flexible Manufacturing Systems, 13(4):361–384,
2001.

[40] M.S. Sodhi, R.G. Askin, and S. Sen. Multiperiod tool and
production assignment in flexible manufacturing systems.
International Journal of Production Research, 32(6):1281–
1294, 1994.

[41] K. Das, M.F. Baki, and X. Li. Optimization of operation
and changeover time for production planning and schedul-
ing in a flexible manufacturing system. Computers and In-
dustrial Engineering, 56(1), 2009.

165

[42] Lee W. Schruben. Mathematical programming models of
discrete event system dynamics. volume 1, pages 381–385,
2000.

[43] A. Alfieri and A. Matta. Mathematical programming for-
mulations for approximate simulation of multistage produc-
tion systems. European Journal of Operational Research,
219(3):773–783, 2012.

[44] A. Matta. Simulation optimization with mathematical pro-
gramming representation of discrete event systems. pages
1393–1400, 2008. cited By 17.

166

Appendix A

Matheuristic code

In this appendix is reported the Matlab R© code used for the im-
plementation of the Tabu Search algorithm described in chapter
5.

A.1 Main

c l o s e a l l
c l e a r v a r s

% input f i l e ex c e l f o r i n t e r f a c e
f i l ename = ’C:\ Users\Giovanni\ opl\LPhuge\mi l l e . x lsx ’ ;
shee t = 1 ;

% input c a r d i n a l i t y c on s t r a i n t s
gamma=[10 10 21 1 0] ;

% input i t e r a t i o n s
n i t e r =3000;

% input other data
nmach=4;
np i e c e s =1000;
T=1025;
T exce l pos=’M2’ ;
th r e sho ld =20;
l im i t =3000;
lowerbound=2.97;
o f e x c e l p o s =’E2 ’ ;
s e x c e l p o s =’G2 :AJ4 ’ ;
cp l ex path = ’ oplrun −p C:\ Users\Giovanni\ opl\LPhuge ’ ;

x l sw r i t e (f i l ename ,T, sheet , T exce l pos) ;

counter=0;
j b e t t e r =0;
indextabu=1;
de l t a e =0;
c=1;
ub=1;

c o l s t a r t=char (c+’A’−1);
c o l f i n i s h=char (nmach+’A’−1);
rowstart=num2str (2) ;
r ow f i n i sh=num2str (np i e c e s +1);
z e x c e l p o s =[c o l s t a r t , rowstart , ’ : ’ , c o l f i n i s h , r ow f i n i sh] ;

% i n s e r t c a r d i n a l i t y

z0=card (npieces , nmach ,gamma) ;

t=ze ro s (npieces , nmach) ;
o f=ze ro s (1 , n i t e r) ;
o f1=ze ro s (1 , n i t e r) ;
ofgood=ze ro s (1 , n i t e r) ;
z0 (: , : , 1)= z0 ;

ztabu=ze ro s (npieces , nmach , indextabu) ;
z upperbound=ze ro s (npieces , nmach , n i t e r) ;
bu f f e r=ze ro s (n i t e r , nmach−1);

f o r j =1: n i t e r

%wr i t e f a i l u r e matrix z on exc e l i n t e r f a c e f i l e
sheet = 2 ;
x l sw r i t e (f i l ename , z0 (: , : , j) , sheet , z e x c e l p o s) ;

% run cp lex code
s ta tu s = dos (cp l ex path) ;

%read r e s u l t s
sheet =3;
o f1 (j)= x l s r ead (f i l ename , sheet , o f e x c e l p o s) ;
s = x l s r ead (f i l ename , sheet , s e x c e l p o s) ;
bu f f e r (j , :)= bu f f e r spac e (s) ;

o f (j)=of1 (j)+10∗sum(bu f f e r (j , :)) ;

%check whether to cont inue (Tabu Search)
i f j==1

de l t a e=of (j)−de l t a e ;
e l s e

de l t a e=of (j)−o f ;
end

i f ˜any (de l tae <0)

counter=0;
j b e t t e r=j ;
ofgood (j)=o f (j) ;
z upperbound (: , : , ub)=z0 (: , : , j) ;
ub=ub+1;

i f indextabu==1
div=ones (1 , indextabu) ;

e l s e
div=ones (1 , indextabu −1);

end

whi le any (div)
z0 (: , : , j+1)=rep lace new (z0 (: , : , j)) ;

i f indextabu==1
f o r l =1: indextabu
div (l)= i s e qua l (z0 (: , : , j +1) , ztabu (: , : , l)) ;
end
e l s e

f o r l =1: indextabu−1
div (l)= i s e qua l (z0 (: , : , j +1) , ztabu (: , : , l)) ;
i f d iv (l)==1

break
end
end

end
end
e l s e

ofgood (j)=ofgood (j −1);
counter=counter+1;
ztabu (: , : , indextabu)=z0 (: , : , j) ;
div=ones (1 , indextabu) ;

whi le any (div)
i f j==1

z0 (: , : , j+1)=rep lace new (z0 (: , : , j)) ;
e l s e i f counter<th r e sho ld

z0 (: , : , j+1)=rep lace new (z0 (: , : , j b e t t e r)) ;
e l s e

z0 (: , : , j+1)=rep lace new (z0 (: , : , j −1)) ;
end

f o r l =1: indextabu
div (l)= i s e qua l (z0 (: , : , j +1) , ztabu (: , : , l)) ;

168

i f d iv (l)==1
break

end
end

end
indextabu=indextabu+1;
end

i f counter > l im i t
break

end

end

save (’ UB workspace .mat ’)

A.2 Create function

f unc t i on [z0]= rep lace new (z0)

%rep lace new i s a Matlab func t i on that
%randomly s e l e c t s a column of a 0 ,1 matrix
%and in that column operate s one
%switch between a 0 and a 1 .

[r , c]= s i z e (z0) ;
i =1;
whi le i==1

c rand = randi ([1 c] , 1) ;
c o l z=z0 (: , c rand) ;
pos ones= f ind (c o l z) ;
po s z e r o s= f i nd (˜ c o l z) ;
i=isempty (pos ones) | isempty (po s z e r o s) ;

end

[r ones , y]= s i z e (pos ones) ;
index one = pos ones (randi ([1 r one s] , 1)) ;

[r z e r o s , u]= s i z e (po s z e r o s) ;
i ndex ze ro = pos z e r o s (randi ([1 r z e r o s] , 1)) ;

c l e a r y
c l e a r u

z0 (index one , c rand)= 0 ;
z0 (index zero , c rand)= 1 ;

end

A.3 Cardinality initialization function

f unc t i on [z0]=card new (r , c , gamma)
%card new i s a matlab func t i on that gene ra t e s
%a matrix n∗m, with on i t s
%columns ones and ze ro s so to r e spe c t the c a r d i n a l i t y va lues .
z0=ze ro s (r , c) ;

f o r k=1: c
f o r i =1: s i z e (gamma(k))

index =1:2:2∗gamma(k)−1;
z0 (index , k)=1;

end
end

end

169

170

Appendix B

Gantt charts: failure-patterns
found by the Tabu Search
algorithm

In this appendix we show the graphical representation of the
results of the BAP test case outlined in chapter 7. The charts
show the machines failures for each cardinality value that has
been used. In each graph, the points represent which workpiece
was affected by a failure over which machine. Notice that for the
way we have constructed the test case, the failures over machines
M1, M2, M4 are always 10, whereas the failures over M3 respect
the cardinality constraint.

B.1 Upper bound

Figure B.1: Upper bound: failure-patter with Γ3 = 0

Figure B.2: Upper bound: failure-patter with Γ3 = 1

172

Figure B.3: Upper bound: failure-patter with Γ3 = 2

Figure B.4: Upper bound: failure-patter with Γ3 = 3

Figure B.5: Upper bound: failure-patter with Γ3 = 4

173

Figure B.6: Upper bound: failure-patter with Γ3 = 5

Figure B.7: Upper bound: failure-patter with Γ3 = 6

Figure B.8: Upper bound: failure-patter with Γ3 = 7

174

Figure B.9: Upper bound: failure-patter with Γ3 = 8

Figure B.10: Upper bound: failure-patter with Γ3 = 9

Figure B.11: Upper bound: failure-patter with Γ3 = 10

175

Figure B.12: Upper bound: failure-patter with Γ3 = 11

Figure B.13: Upper bound: failure-patter with Γ3 = 12

Figure B.14: Upper bound: failure-patter with Γ3 = 13

176

Figure B.15: Upper bound: failure-patter with Γ3 = 14

Figure B.16: Upper bound: failure-patter with Γ3 = 15

Figure B.17: Upper bound: failure-patter with Γ3 = 16

177

Figure B.18: Upper bound: failure-patter with Γ3 = 17

178

Figure B.19: Upper bound: failure-patter with Γ3 = 18

Figure B.20: Upper bound: failure-patter with Γ3 = 19

B.2 Lower bound

179

Figure B.21: Upper bound: failure-patter with Γ3 = 20

Figure B.22: Upper bound: failure-patter with Γ3 = 21

Figure B.23: Upper bound: failure-patter with Γ3 = 22

180

Figure B.24: Upper bound: failure-patter with Γ3 = 23

Figure B.25: Lower bound: failure-patter with Γ3 = 0

Figure B.26: Lower bound: failure-patter with Γ3 = 1

181

Figure B.27: Lower bound: failure-patter with Γ3 = 2

Figure B.28: Lower bound: failure-patter with Γ3 = 3

Figure B.29: Lower bound: failure-patter with Γ3 = 4

182

Figure B.30: Lower bound: failure-patter with Γ3 = 5

Figure B.31: Lower bound: failure-patter with Γ3 = 6

Figure B.32: Lower bound: failure-patter with Γ3 = 7

183

Figure B.33: Lower bound: failure-patter with Γ3 = 8

Figure B.34: Lower bound: failure-patter with Γ3 = 9

Figure B.35: Lower bound: failure-patter with Γ3 = 10

184

Figure B.36: Lower bound: failure-patter with Γ3 = 11

185

Figure B.37: Lower bound: failure-patter with Γ3 = 12

Figure B.38: Lower bound: failure-patter with Γ3 = 13

Figure B.39: Lower bound: failure-patter with Γ3 = 14

186

Figure B.40: Lower bound: failure-patter with Γ3 = 15

Figure B.41: Lower bound: failure-patter with Γ3 = 16

Figure B.42: Lower bound: failure-patter with Γ3 = 17

187

Figure B.43: Lower bound: failure-patter with Γ3 = 18

Figure B.44: Lower bound: failure-patter with Γ3 = 19

Figure B.45: Lower bound: failure-patter with Γ3 = 20

188

Figure B.46: Lower bound: failure-patter with Γ3 = 21

Figure B.47: Lower bound: failure-patter with Γ3 = 22

Figure B.48: Lower bound: failure-patter with Γ3 = 23

189

