
Politecnico di Milano

School of Industrial and Information Engineering
Master of Science in Computer Science and Engineering

Department of Electronics, Information and Bioengineering

Occluded Environment Maps Rendering

Relatore: Prof. Marco Gribaudo

Correlatore: Prof. Pietro Piazzolla

Master Thesis of:

Alessio Ambrosj Matr. 804792

Academic Year 2015–2016

�There is nothing noble in being superior to your fellow men.

True nobility lies in being superior to your former self.�

Hernest Hemingway

Ringraziamenti

I miei primi ringraziamenti vanno ai miei genitori: durante questi sette

anni non sempre tutto è andato come doveva andare, ma loro non hanno

mai smesso di credere in me e supportarmi, e se oggi posso emozionarmi

nello scrivere queste parole nella prefazione di questo testo, è solo merito

loro. Vorrei ringraziare zio Gufo, zia Mokia e nonna Pezzetti perché ci sono

sempre stati e sono stati per me, come dei genitori extra. Ringrazio i miei

fratellini Jacopo e Lorenza, perché ormai non sono pi ú cosí �ini� ma il loro

a�etto è sempre stato �one�. Un ringraziamento particolare va al professor

Gribaudo, per avermi seguito ed avermi rassicurato ogni volta che pensavo di

aver incontrato un ostacolo. A questo proposito, ringrazio Pietro Piazzolla,

senza il quale sarei ancora davanti ad uno schermo con una teiera disegnata

a metà. Un ringraziamento a Dorosroro, Jorge, Pieter, Anna, Gigi (grasso)

perché con loro ero davvero a Casa. Grazie ad Elisa, per aver condiviso con

me gran parte di questo cammino. Un ringraziamento agli amici di sempre

Gio,Cup, Francesco, Fabrizio, Attilio, Davide, Larry, Dodo per le serate, le

giornate, le avventure e tutto il tempo passato a ridere e, diciamoci la verità,

a bere! Grazie ad Arci, Ane, Beg, Billy, Cesa, Devo, Serena, mi scenderà una

lacrimuccia quando toglierò la Polibox. Grazie ai �big� dello Studio Albatros,

ad Alberto, Salvo, Matteo perché il lavoro è tanto, la nostra esperienza è

poca, e continuiamo ad andare avanti. Grazie alla Tigre Nera, a Sama,

Ricky, Gasper e Jessica per avermi fornito la grinta necessaria a rimanere

sano di mente in questi ultimi anni. Grazie a Cristiano (il Maestro), Andrea

(Barbeingel), Alban(ushi), Gino, Renisa, Claudia, Lara perché sono tanti i

ricordi che abbiamo insieme e spero non siano ancora abbastanza. Grazie

ad Arianna, Giulia e Roberta (gnih) per le risate, le mangiate e le giocate

di questi ultimi mesi, che mi hanno fatto sentire sette anni più giovane. Ed

in�ne grazie a tutti gli Zzipa che mi hanno sopportato: Davide, Nando, Ste,

Nicho, Rodry, Tommy, Claudia (Garrison), Fabia e Claudia.

4

Abstract

This master's thesis deals with the issue of real time Global Illumination

(GI) in Computer Graphics. The project focused on developing an open

source algorithm for real time rendering, based on a Image Based Lighting

(IBL) technique called Environment Mapping, and a very common real time

shadowing technique called Shadow Mapping. The goal of the algorithm is to

achieve photorealistic, interactive and dynamic ambient illumination, given a

surrounding represented as an equirectangular panorama high dynamic range

image (HDRI), namely an Environment Map (EM). The EM is preprocessed

to locate a certain number of light sources (embodied by sets of pixels and

a direction), and to generate a collection of new EMs which are used in the

rendering process by means of their projection on Spherical Harmonics (SH)

basis. For each light source a directional Shadow Map (SM) is computed and

used as discriminant in assessing if a given fragment (pixel) is lit by the

corresponding light source. The set of light sources that lights a fragment is

mapped to a generated EM which is employed to compute the pixel's �nal

color. The presented approach is well suited for outdoor EMs (where usually

there is only one natural light source) but it has been primarly designed

for indoor EMs (two or more arti�cial light sources) since it also o�ers a

mechanism to switch on and o� lights in real time.

6

Contents

1 Introduction 1

1.1 About Global Illumination . 1

1.2 Occluded EMs Rendering in a nutshell 3

1.3 Overview . 4

2 State of the Art 6

2.1 Environment Mapping for di�use component 6

2.1.1 Pre�ltering an EM . 7

2.1.2 The Spherical Harmonics Approach 8

2.2 Common Projections . 9

2.2.1 Sphere Mapping . 9

2.2.2 Cube Mapping . 10

2.2.3 Equirectangular Mapping 11

3 Technical Background 13

3.1 LDR and HDR . 13

3.2 Lambert Lighting Model . 14

3.3 Blinn Re�ection Model . 16

3.4 K-Means Clustering . 17

3.5 Spherical Harmonics . 18

3.5.1 Introduction to Spherical Harmonics 18

3.5.2 De�nition . 19

3.5.3 Properties . 20

3.5.4 SH Lighting . 22

3.6 Shadow Mapping . 25

i

CONTENTS

4 Occluded Environemnt Maps Rendering 29

4.1 Light Sources Location . 30

4.2 OEMs SH Projection . 33

4.3 Rendering cycle . 34

5 Complexity and Results 40

5.1 Complexity Evaluation . 40

5.1.1 Preprocessing Phase 40

5.1.2 Rendering Cycle . 41

5.2 Graphic Results . 42

5.2.1 A simple scene . 44

5.2.2 A comparison with Unity standard shader 45

5.2.3 A complex scene . 46

Conclusion 48

A List of the �rst 16 Spherical Harmonics 50

B OpenGL Graphic Pipeline 52

C Model Space, World Space, View Space and Screen Space 56

Bibliography 58

ii

List of Figures

1.1 Global Illumination: Cornell Box with sphere example 2

1.2 OpengGL's coordinates system 5

2.1 Comparison between Grace's Cathedral spherical EM and DIEM 7

2.2 Comparison between Grace's Cathedral regular spherical EM

the SH generated one . 8

2.3 Sphere mapping example . 9

2.4 Cubemap faces explanation . 10

2.5 Grace's Cathedral Equirectangular environment map 12

3.1 Comparison of re�ection mapping employing LDR vs. em-

ploying HDR . 14

3.2 Lambert's model visualization 15

3.3 Blinn's model visualization . 16

3.4 Standard coordinates system 18

3.5 Representation of the �rst 3 bands of real spherical harmonics 20

3.6 Shadow mapping visual explanation 25

3.7 Multiple fragments mapping on the same shadow map texel . . 26

3.8 Shadow Acne artifact . 26

3.9 Bias correction e�ect . 27

3.10 Peter Panning artifcat . 27

3.11 Front face culling visual explanation 28

4.1 Grace's Cathedrals OEMs for nLightSources = 2 33

5.1 Stanford bunny rendered with Grace's Chatedral environment

map in OER . 44

iii

LIST OF FIGURES

5.2 Stanford Bunny rendered in Unity with environment mapping

and two directional lights . 46

5.3 Composite scene rendered with Grace's Chatedral environment

map in OER . 47

B.1 Diagram of the Rendering Pipeline. The blue boxes are pro-

grammable shader stages. 53

C.1 Vertex of the Utah Teapot in position (1,1,1) 56

C.2 Utah Teapots with axis of Model Space, World Space and View

Space . 57

iv

List of Tables

2.1 OpenGL Cubemap layout . 11

5.1 Software adopted for the showcase 43

5.2 Hardware adopted for the showcase 43

v

List of Algorithms

1 Phase One: Light source location and OEM generation 32

2 Phase Two: OEMs SH Projections 34

3 Shadow Map Pass: Vertex Shader 35

4 Shadow Map Pass: Fragment Shader 36

5 Final Pass: Vertex Shader . 37

6 Final Pass: Fragment Shader 39

vi

Chapter 1

Introduction

1.1 About Global Illumination

Global illumination (GI) or indirect illumination is a general name for

a group of algorithms used in 3D computer graphics that are meant to add

more realistic lighting to 3D scenes. Such algorithms take into account not

only the light which comes directly from a light source (direct illumination),

but also subsequent cases in which light rays from the same source are re-

�ected by other surfaces in the scene, whether re�ective or not (indirect

illumination). GI e�ects include the soft darkening under an object and

near edges, color bleeding, etc. These e�ects are subtle, but important for

the realism of an image. For example, if you look at �gure 1.1 closely you'll

notice that the green color of the wall is being cast onto the sphere on the

right side of the image. That e�ect is referred to as indirect lighting because

the green light isn't being cast directly from a light but rather is the result

of a white light being cast in onto the green wall which is then bleeding onto

the nearby sphere.

1

1.1. About Global Illumination

Figure 1.1: Global Illumination: Cornell Box with sphere example

Radiosity, Ray Tracing, Beam Tracing, Cone Tracing, Path Tracing,

Metropolis Light Transport, Ambient Occlusion, Photon Mapping, and Im-

age Based Lighting are examples of algorithms used in global illumination,

some of which may be used together to yield results that are not fast, but

accurate. These algorithms model di�use inter-re�ection which is a very

important part of global illumination; however most of these (excluding ra-

diosity) also model specular re�ection, which makes them more accurate

algorithms to solve the lighting equation (a mathematical model introduced

by Kajiya in 1986) and provide a more realistically illuminated scene. The

algorithms used to calculate the distribution of light energy between surfaces

of a scene are closely related to heat transfer simulations performed using

�nite-element methods in engineering design.

Images rendered using global illumination algorithms often appear more

photorealistic than images rendered using only direct illumination algo-

rithms. However, such images are computationally more expensive and con-

sequently much slower to generate. Traditionally, video games and other

realtime graphics applications have been limited to direct lighting, while the

calculations required for indirect lighting were too slow so they could only

be used in non-realtime situations such as CG animated �lms. A way for

games to work around this limitation is to calculate indirect light only for

objects and surfaces that are known ahead of time to not move around (that

are static). That way the slow computation can be done ahead of time, but

2

1.2. Occluded EMs Rendering in a nutshell

since the objects don't move, the indirect light that is pre-calculated this

way will still be correct at runtime.One common approach is to compute the

global illumination of a scene and store that information with the geometry,

this method is called radiosity. That stored data can then be used to gener-

ate images from di�erent viewpoints for generating walkthroughs of a scene

without having to go through expensive lighting calculations repeatedly.

For non static objects the problem is not easily solved. In real-time

3D graphics, the di�use inter-re�ection component of global illumination

is sometimes approximated by an "ambient" term in the lighting equation,

which is also called "ambient lighting" or "ambient color" in 3D software

packages. Though this method of approximation (also known as a "cheat"

because it's not really a global illumination method) is easy to perform com-

putationally, when used alone it does not provide an adequately realistic

e�ect. Ambient lighting is known to "�atten" shadows in 3D scenes, mak-

ing the overall visual e�ect more bland. However, used properly, ambient

lighting can be an e�cient way to make up for a lack of processing power.

Another common approach is to consider ambient light as in�nite distant

light that is, in jargon, a directional light. Following this reasoning, ambient

lighting information can be preocomputed and stored in a texture, called

Environment Map or Irradiance Map. The ambient component of the color

of a fragment is then computed with a texture look up using the fragment's

normal as texture coordinate. This is an e�cient Image Based Lighting

technique that goes under the name of Environment Mapping or Irradiance

Mapping.

1.2 Occluded EMs Rendering in a nutshell

In the following, a brief overview of the presented approach is given.

The Occluded EMs Rendering (OER) is an IBL technique derived from the

irradiance environment maps approach, hence its goal is to achieve real time

global illumination coherent with an Environment Map (EM). The procedure

is divided in three conceptual phases.

The �rst phase of the algorithm scans the EM image in order to locate a

user-speci�ed number nLightSources of light sources, embodied by a set of

pixels and a direction. Given the original EM, a collection of 2nLightSources

3

1.3. Overview

new EMs are generated in a fashion that is described thoroughly in chapter

4.

The second phase of the algorithm employs special functions de�ned

on the surface of a sphere (a unit sphere in our case), named Spherical

Harmonics (SH), as basis of a function space which the EMs are projected

onto. The projection is characterized by an "order", expansionOrder, that

determines which and how many SH functions are used in the process. Every

EM is then approximated by a set of real numbers, one per di�erent basis

function.

The third and last phase is rendering itself. The rendering cycle starts

performing a so-called "Shadow Map Pass" for every light source detected

in the �rst phase. The results of these passes are nLightSources depth

textures named "Shadow Maps" (SMs). Every fragment's depth is then

checked against these maps to obtain a set of light sources for which the

fragment is not in shadow. Depending on this set, an appropriate EM is

chosen. The �nal color of the fragment is then computed with a convolution

between a common lambertian cosine (see 3.2) and the chosen EM plus a

specular component derived by the light directions of every light hitting

the fragment. A convolution might seem an operation too expansive to be

evaluated per frame but, as it will be shown, thanks to SH properties it

results in a dot product or a matrix-vector multiplication.

1.3 Overview

This paperwork is structured so as to �rstly o�er to the reader a general

idea of the state of the art on Environment Mapping. It follows with a quick

and practical description of the mathematical tools and techniques which

OER relies on, and then a precise description of the algorithm.

In detail, chapters are organized in the following manner:

• Chapter 2 describes the current state of the art about Environment

Mapping, including how EM images are used, what kind of projections

are employed to store environments in 2D �at images and how EMs

are then e�ectively exploited in shading.

• Chapter 3 is intended to give to the reader an essential background

4

1.3. Overview

on high dynamic range images (HDRI), K-Means data clustering (em-

ployed in source localization), classic Lambert Lighting Model, Blinn

Re�ection Model, Spherical Harmonics (SH) and Shadow Mapping.

• Chapter 4 is a detailed explanation of the algorithm, in all its phases,

including its pseudo-code and some showcase result with simple fa-

mous 3D models (e.g. Stanford Bunny) and environments (e.g. Grace

Cathedral).

• Chapter 5 discusses about memory usage, achievable fps and other

test's results. Furthermore it includes comparisons between OER and

common IBL of some very well known and very in�uent modern graphic

engines.

• Chapter 6, as a �nal chapter, draws conclusions about the project

and proposes possible optimizations and future works.

In the following text, wherever coordinates are treated, unless clearly spec-

i�ed, the coordinates system of reference is always the OpenGL's one, as

showed in �gure 1.2:

Figure 1.2: OpengGL's coordinates system

5

Chapter 2

State of the Art

2.1 Environment Mapping for di�use component

Environment Mapping is an e�cient image based lighting technique for

approximating the appearance of a surface by means of a precomputed tex-

ture image. Environment Mapping assumes that an object's environment

(that is, everything surrounding it) is in�nitely distant from the object. The

reason for the assumption is that Environment Maps (EMs) are accessed

solely based on a 3D direction. Environment mapping has no allowance for

variations in position to a�ect the appearance of surfaces. If everything in the

environment is su�ciently far away from the surface, then this assumption

is approximately true.

Light re�ected by a surface is assumed to have a di�use component and

a specular component. The di�use component represents light scattered

equally in all directions; the specular component represents light re�ected at

or near the mirror direction. At the very beginning of Environment Mapping,

it was used (Blinn and Newell [8]) to e�ciently �nd re�ections (specular com-

ponents) of distant objects. Miller and Ho�man[3], and Greene [6] pre�ltered

environment maps, precomputing separate EMs for the specular and di�use

components of the BRDF (Bidirectional Re�ectance Distribution Function,

a function that models how a surface responds to light). OER stems from

this latter approach for what concerns the di�use component. No ambient

term is required, since the di�use illumination component accounts for all

illumination from the environment.

6

2.1. Environment Mapping for di�use component

2.1.1 Pre�ltering an EM

Pre�ltering is generally an o�ine, computationally expensive process.

After pre�ltering, rendering can usually be performed at interactive rates

with graphics hardware using texture-mapping. The idea comes from notic-

ing that all surfaces with normal direction n should have the same value

returned from the EM lookup. Furthermore, this value is dependent on just

the environment and the surface normal. What this means is that one can

compute the sum for a lot (e.g. 256 × 256) of normals in an o�ine pro-

cess executed once per environment map, and store the result in a second

environment map, indexed by the surface normal. This second environment

map is known as the Di�use Irradiance Environment Map (DIEM),or just

the Di�use Environment Map, and it allows to perform objects' illumination

with arbitrarily complex lighting environments with a single texture lookup.

In details, assuming that a EM has K texels, and there exists a mapping

between the texel coordinates (si, ti), i ∈ {0, ..,K}, and a world space di-

rection di, and similarly assuiming that the target DIEM is composed of N

texels and there exists a mapping between (sj , tj), j ∈ {0, .., N}, and nj , the
value to be stored in the j-th DIEM's texel can be computed as:

K∑
i=1

max(0, dot(di, nj))EM(i) (2.1)

being EM(i) the value stored in the EM in the i-th texel. Figure 2.1 shows

an example of a EM and its DIEM.

(a) Spherical environment map (b) Spherical Irradiance map

Figure 2.1: Comparison between Grace's Cathedral spherical EM and DIEM

7

2.1. Environment Mapping for di�use component

2.1.2 The Spherical Harmonics Approach

Since a DIEM has little high-frequency content, it can be computed and

stored at low resolution and accessed with bilinear interpolation. Thus,

pre�ltering the EM in this manner reduces the problem of �nding the dif-

fuse illumination at a surface point to a table lookup. The same reasoning,

brought developers in trying a new approach: projecting the EM on basis of

an appropriately chosen frequency-based space and employing in rendering a

low-frequency reconstruction of it. It is the case of Ramamoorthy and Han-

rahan[15], who adopted Spherical Harmonics (SH) basis.They showed that

one needs to compute and use only the �rst 9 SH basis, corresponding to the

lowest-frequency modes of the illumination, in order to achieve an average

approximation error of only 3% with respect to the DIEM method. In other

words, the irradiance is insensitive to high frequencies in the lighting, and

is well approximated using only 9 parameters. In fact, they show that the

irradiance can be procedurally represented simply as a quadratic polyno-

mial in the cartesian components of the surface normal. Furthermore they

showed that, once one computes the projection of a lambertian cosine lobe,

max(0, cos θ), thanks to SH properties, the �nal color can be computed with

a simple matrix vector multiplication and a dot product. Figure 2.2 shows

the same DIEM as before, compared with the one reconstructed computing

for every direction stored in the DIEM the corresponding value obtained

with the SH method.

(a) Regular Spherical Irradiance map (b) SH Spherical Irradiance map

Figure 2.2: Comparison between Grace's Cathedral regular spherical EM the

SH generated one

8

2.2. Common Projections

2.2 Common Projections

Several ways of mapping texel coordinates to 3D directions have been

used. The �rst technique was sphere mapping, in which a single texture

contains the image of the surroundings as re�ected on a mirror ball. It has

been almost entirely surpassed by cube mapping, in which the environment

is projected onto the six faces of a cube and stored as six square textures or

unfolded into six square regions of a single texture. Other projections that

have some superior mathematical or computational properties include the

HEALPix mapping and the equirectangular mapping.

2.2.1 Sphere Mapping

Sphere mapping considers the environment to be an in�nitely far-away

spherical wall. This environment is stored as a texture depicting what a

mirrored sphere would look like if it were placed into the environment, using

an orthographic projection. This texture contains re�ective data for the

entire environment, except for the spot directly behind the sphere.

Figure 2.3: Sphere mapping example

9

2.2. Common Projections

In the simplest case for generating texture coordinates, suppose:

• The texture coordinate of the center of the map is (0,0), and the

sphere's image has radius 1.

• We are rendering an image in the same exact situation as the sphere,

but the sphere has been replaced with a object.

• The image being created is orthographic, or the viewer is in�nitely far

away, so that the view direction does not change as one moves across

the image.

At texture coordinate (x, y), note that the depicted location on the sphere

is(x, y, z) (where z is
√

1− x2 − y2), and the normal at that location is also

< x, y, z >. However, we are given the reverse task (a normal for which

we need to produce a texture map coordinate). So the texture coordinate

corresponding to normal < x, y, z > is (x, y).

2.2.2 Cube Mapping

Figure 2.4: Cubemap faces ex-

planation

All recent GPUs support a type of tex-

ture known as a cube map. A cube map

consists of not one, but six square texture

images that �t together like the faces of a

cube. Together, these six images form an

omnidirectional image that are used to en-

code environment maps. Figure 2.4 shows

an example of a cube map that captures an

environment consisting of a cloudy sky and

foggy mountainous terrain. A 2D texture

maps a 2D texture coordinate set to a color

in a single texture image. In contrast, you

access a cube map texture with a three-component texture coordinate set

that represents a 3D direction vector, usually a fragment's normal. The

(s, t, r) texture coordinates are treated as a direction vector (rx, ry, rz) em-

anating from the center of a cube.The target column in the table below

explains how the major axis direction maps to the 2D image of a particular

10

2.2. Common Projections

cube map, in a right handed coordinates system, such as OpenGL's world

space.

Table 2.1: OpenGL Cubemap layout

Major Axis Direction Target Face sc tc ma

+rx Right -rz -ry rx

-rx Left +rz -ry rx

+ry Up +rx +rz ry

-ry Down +rx -rz ry

+rz Back +rx -ry rz

-rz Front -rx -ry rz

Using the sc, tc, and ma determined by the major axis direction as

speci�ed in the table above 2.1, an updated (s, t) is calculated as follows:

s =

sc
‖ma‖ + 1

2
(2.2)

t =

tc
‖ma‖ + 1

2
(2.3)

2.2.3 Equirectangular Mapping

The equirectangular projection (also called the equidistant cylindrical

projection, geographic projection, or la carte parallélogrammatique projec-

tion, and which includes the special case of the plate carrée projection or

geographic projection) is a simple map projection attributed to Marinus

of Tyre, who Ptolemy claims invented the projection about AD 100. The

projection maps meridians to vertical straight lines of constant spacing (for

meridional intervals of constant spacing), and circles of latitude to horizontal

straight lines of constant spacing (for constant intervals of parallels). The

projection is neither equal area (each texel doesn't correspnd to the same

amount of area) nor conformal (circular areas are mostly distorted in ellip-

sis), but it's very popular in Computer Graphics because of the particularly

simple relationship between the position of an image pixel and its corre-

sponding 3D direction: the horizontal coordinate is the longitude and the

11

2.2. Common Projections

vertical coordinate is the latitude, so the standard parallel is taken as the

equator. So, given the same coordinates system described in the cube map-

ping section, a 3D direction can be computed from image coordinates with

the following formula:

θ = π * (
imageY + 0.5

imageHeight
) (2.4)

φ = 2π * (1− (
imageX + 0.5

imageWidth
)) (2.5)

y = cos θ (2.6)

x = sin θ cosφ (2.7)

z = sin θ sinφ (2.8)

where (imageX, imageY) , imageX ∈ {0, .., imageWidth}, imageY ∈
{0, .., imageHeight}. Figure 2.5 gives an example of a EM stored in equirect-

angular projection.

Figure 2.5: Grace's Cathedral Equirectangular environment map

12

Chapter 3

Technical Background

This chapter provides an essential description of the mathematical tools

and notions necessary to understand the OER.

3.1 LDR and HDR

HDR is abbreviation for High Dynamic Range. For a scene, dynamic

range refers to ratio between the brightest and darkest parts of the scene. The

Dynamic Range of real-world scenes can be quite high - ratios of 100000:1

are common in the natural world. A HDR image stores pixel values that

span the whole tonal range of real-world scenes. Dynamic range of JPEG

format image won't exceed 255:1, so it is considered as LDR (Low Dynamic

Range). Similarly, dynamic range of CRT monitor won't exceed 100:1. HDR

images show the dynamic range of real world (natural dynamic range is

generally considered to be 100000:1; the dynamic range human eyes can

identify is around 100000:1.), which is much higher than that of standard

display equipment and images shot with common camera. As a result, HDR

image cannot be displayed with this equipment. Several algorithms of tone

mapping have been developed to cope with this discrepancy between what

can be displayed and the real world's color information. Tone mapping is

the name of a family of techniques used to map one set of colors to another

to approximate the appearance of high-dynamic-range images in a medium

that has a more limited range. Figure 3.1 shows a comparison between an

environment mapping with re�ections performed adopting an LDR image

and another one rendered in HDR to a texture bu�er and then tone mapped,

13

3.2. Lambert Lighting Model

it's evident how real world details are more remarked in the second one.

Figure 3.1: Comparison of re�ection mapping employing LDR vs. employing

HDR

So from broad sense, image with dynamic range of higher than 255:1 (8

bit per cooler channel) is regarded as HDR image. Images with this range

are particularly useful in light sources location, since the actual Luminance

value (in lumens/steradian/sq.meter) of a pixel can be computed from the

following formula for the standard Radiance RGB primaries:

luminance = 179 * (0.265*R+ 0.670 *G+ 0.065 *B) (3.1)

The value of 179 lumens/watt is the standard luminous e�cacy of equalen-

ergy white light.

3.2 Lambert Lighting Model

A very common lighting model in computer graphics, is the one following

the Lambert's law. The apparent brightness of a Lambertian surface to

an observer is the same regardless of the observer's angle of view. More

technically, the surface's luminance is isotropic, and the luminous intensity

obeys Lambert's cosine law. Lambertian re�ectance is named after Johann

Heinrich Lambert, who introduced the concept of perfect di�usion in his

1760 book Photometria. The di�use color is calculated by taking the dot

product of the surface's normal vector, n , and a normalized light-direction

14

3.2. Lambert Lighting Model

Figure 3.2: Lambert's model visualization

vector, l , pointing from the surface to the light source.

This number is clamped between 0 and 1, then multiplied by the di�use

costant of the material (namely, the material di�use color) of the surface and

the intensity of the light hitting the surface, to output a displayable color:

diffuseColor = clamp(l ·n, 0, 1) *materialDiffuseColor * lightIntensity)

(3.2)

where

l · n = ‖n‖ * ‖l‖ * cos θ

where θ is the angle between the directions of the two vectors as shown

in �gure 3.2. The intensity will be the highest if the normal vector points

in the same direction as the light vector (cos (0) = 1, the surface will be

perpendicular to the direction of the light), and the lowest if the normal

vector is perpendicular to the light vector (cos π2) = 0, the surface runs

parallel with the direction of the light).

15

3.3. Blinn Re�ection Model

3.3 Blinn Re�ection Model

The Blinn Re�ection Model is an empirical model of the local illumina-

tion of a surface, so common that is has been used in �xed function pipelines

of OpenGL and DirectX. It considers the color of a fragment as a combina-

tion of di�use re�ection (like rough dim materials), specular re�ection (like

smooth shiny materials) and approximation of ambient lighting (lighting in

places which aren't lightened by direct light rays). The di�use component

is computed following Lambert's law 3.1, while the ambient component is

a constant term (remember 1.1?). Specular re�ection emerges when direct

light rays re�ect from the surface in direction to the camera. Specular re-

�ection creates highlights on the surface. A highlight is a bright spot, which

is visible only when light from a source re�ects directly to the camera. To

calculate specular re�ection in the Blinn re�ection model, one has �rst to

�nd the half vector H, which is the normalized average between direction to

the camera V and direction to the light L, as shown in �gure 3.3.

Figure 3.3: Blinn's model visualization

The intensity of specular re�ection is the cosine of the angle between

the fragment's normal N and the half vector H, raised to the power of α

which is the "shininess" of the object. When α is large, in the case of a

nearly mirror-like re�ection, the specular highlight will be small, because

16

3.4. K-Means Clustering

any viewpoint not aligned with the re�ection will have a cosine less than one

which rapidly approaches zero when raised to a high power. The specular

component of the color of the fragment is �nally computed multiplying the

computed intensity by the specular constant of the material (namely, the

material specular color). In formulas:

specularColor = materialSpecularColor * clamp((H ·N, 0, 1)α) (3.3)

where

H =
L+ V

‖L+ V ‖

3.4 K-Means Clustering

K-means is one of the simplest unsupervised learning algorithms that

solves the well known clustering problem. The procedure follows a simple

and easy way to classify a given data set through a certain number of clusters

(assume k clusters) �xed a priori. The most common algorithm uses an

iterative re�nement technique. It starts de�ning an initial set of k centroids

m
(1)
1 , ..,m

(1)
k . Centroids represents the mean of each cluster, so the �rst

ones shoud be placed in a cunning way because of di�erent location causes

di�erent result. The better choice is to place them as much as possible far

away from each other. The algorithm then proceeds by alternating between

two steps:

1. Assignment Step: Assign each observation to the cluster whose mean

yields the least value of a de�ned within-cluster distance (or error) mea-

sure. For example, assuming a squared Euclidean distance, this means

intuitively choosing the "nearest" mean. Formally, given a distance

measure D(x,m) between two observations, a generic point x is as-

signed to the cluster i such that D(x,mi) ≤ D(x,mj)∀j, 1 ≤ j ≤ k.

At each round, every observation is assigned to exactly one cluster.

2. Update Step: Calculate the new means to be the centroids of the

observations in the new clusters.

The algorithm has converged when the assignments no longer change or

(common in a lot of software packages) after a user speci�ed number of

iterations.

17

3.5. Spherical Harmonics

3.5 Spherical Harmonics

3.5.1 Introduction to Spherical Harmonics

Spherical harmonics (SH) are a frequency-space basis for representing

functions de�ned over the sphere. They are the spherical analogue of the 1D

Fourier series and the 2D cosine and sine functions. SH arise in many physical

problems ranging from the computation of atomic electron con�gurations to

the representation of gravitational and magnetic �elds of planetary bodies.

They also appear in the solutions of the Schrödinger equation in spherical

coordinates.Spherical harmonics also have direct applicability in computer

graphics. Light transport involves many quantities de�ned over the spherical

and hemispherical domains, making spherical harmonics a natural basis for

representing these functions. OpenGL's coordinates system is dropped in

this section and a standard right-handed coordinate system is adopted, as

showed in �gure 3.4.

Figure 3.4: Standard coordinates system

18

3.5. Spherical Harmonics

3.5.2 De�nition

A harmonic is a function that satis�es Laplace's equation:

∇2f = 0

As their name suggests, the spherical harmonics are an in�nite set of har-

monic functions de�ned on the sphere. They arise from solving the angular

portion of Laplace's equation in spherical coordinates using separation of

variables. The spherical harmonic basis functions derived in this fashion

take on complex values, but a complementary, strictly real-valued, set of

harmonics can also be de�ned. Since in computer graphics we typically

only encounter real-valued functions, this discussion is restricted only to

the real-valued basis. If we represent a direction vector using the standard

parametrization s = (sx, sy, sz) = (sin θ cosφ, sin θ sinφ, cos θ) then the real

spherical harmonic basis functions are de�ned as:

Y m
l (θ, φ) =


√

2Km
l cosmφPml (cos θ) ifm > 0

K0
l P

0
l (cos θ) ifm = 0

√
2Km

l sin−mφP−ml (cos θ) ifm < 0

where Km
l are the normalization constants:

Km
l =

√
2l + 1

4π

(l − ‖m‖)!
(l + ‖m‖)!

and Pml are the associated Legendre polynomials. Appendix A reports a list

of the �rst 16 real SH function. As you can see, a SH function is usually

written as Y m
l (s), where s is a point on the sphere and the index l represents

the �band�. Each band is equivalent to polynomials of that degree (so zero

is just a constant function, 1 is linear, etc.) and there are 2l+ 1 functions in

a given band, indexed by m which ranges between −l and l. While spher-

ical coordinates are convenient when computing integrals, they can also be

represented using polynomials, as is commonly done when evaluating them.

One standard way to display SH is to distort a unit sphere, by scaling each

point radialy by the absolute value of the function and coloring it based on

the sign (green for positive, red for negative.) Below there are images of the

19

3.5. Spherical Harmonics

�rst three bands using this technique.

Figure 3.5: Representation of the �rst 3 bands of real spherical harmonics

3.5.3 Properties

Spherical Harmonics de�ne an orthonormal basis over the sphere S. This

means that the inner product of any two distinct basis functions is zero:

∫
S
Y m1
l1

(s)Y m2
l2 (s) =

{
0 if l1 6= l2 ∧m1 6= m2

1 if l1 = l2 ∧m1 = m2

(3.4)

Moreover, orthonormality ensures that the least squares projection of a scalar

function f de�ned over S is done by simply integrating the function to

project, f(s), against the basis functions over S:

fml =

∫
S
f(s)yml (s)ds (3.5)

These coe�cients can be used to reconstruct an approximation of the func-

tion f :

f̂(s) =
N−1∑
l=0

l∑
m=−l

fml Y
m
l (s) (3.6)

Which is increasingly accurate as the number of bands N increases. This is

called an �order N SH expansion� and uses all of the basis functions through

degree N − 1. Projections to Nth order generate N2 coe�cients. It is often

20

3.5. Spherical Harmonics

convenient to use a single index for both the projection coe�cients and the

basis function, via:

f̂(s) =
N2∑
i=0

fiYi(s) (3.7)

Where i = l * (l+1)+m . This formulation makes it clear that evaluating at

direction s of the approximate function is simply a dot product between the

N2 coe�cient vector composed of the fi and the vector of evaluated basis

functions Yi(s). That said, given any two functions a(s) and b(s) de�ned

over the sphere S, the integral of their product can be written as:

∫
S
a(s)b(s)ds ≈

∫
S

ˆa(s) ˆb(s)ds =

∫
S

N2∑
i=0

aiYi(s)

N2∑
j=0

bjYj(s)ds

For orthonormality, recalling equation 3.4, the products between basis with

di�erent index can be canceled, leading to:

∫
S
a(s)b(s)ds ≈

N2∑
i=0

aibi (3.8)

which is a very handy equation considering the gap in computation time

between an integral and a dot product.

The functions where l = ‖m‖ are called Sectorial Harmonics and the

zeros de�ne regions like apple slices. The functions identi�ed by l = 0 are

called Zonal Harmonics (ZH) and have rotational symmetry around the Z

axis and the zeros (locations where the function is zero) are contours on the

sphere parallel to the XY plane (circular symmetry). Since the SH basis

form e�ectively a Fourier domain basis de�ned over the sphere, it inherits

a similar frequency space convolution property. If h(z) is a circularly sym-

metric kernel, all its projection coe�cients hml such that l 6= m are 0 and

the convolution h ? f , with a generic function f(s) over S, is equivalent to a

weighted multiplication in the SH domain:

(h ? f)ml =

√
4π

2l + 1
h0
l f

m
l

The convolution property allows for e�cient computation of pre�ltered en-

vironment maps and irradiance environment maps since the lambertian co-

21

3.5. Spherical Harmonics

sine lobe (discussed in 3.2) is a kernel function symmetric with respect

to the standard z-axis. SH basis are closed under rotation. Given a func-

tion g(s), which represents a function f(s) rotated by a rotation matrix Q, so

g(s) = f(Q(s)) the projection of g is identical to rotating f and re-projecting

it. This rotational invariance is similar to the translational invariance in the

Fourier transform. This means that, for example, lighting will be stable un-

der rotations, so there won't be any aliasing artifacts or �wobbling� of the

light sources. Rotation can be performed directly on the coe�cients by mean

of a rotation matrix. SH rotation matrices are in a block structure, where

each band is rotationally independent and has a dense (2l + 1) × (2l + 1)

sub-matrix, nonetheless when the order of the expansion rises, their compu-

tation gets very cumbersome. Rotation of ZH is simpler than general SH,

it can be done with a diagonal matrix and only requires evaluating the SH

basis functions in the new direction ŝ. Given the ZH coe�cients of a function

(only the m = 0 terms from an SH projection) zl they can be rotated to a

new direction ŝ, obtaining new ẑml coe�cients (rotated ZH are not ensured

to be ZH anymore, in fact usually they are not) using this equation:

ẑml =

√
4π

2l + 1
zlY

m
l (ŝ) (3.9)

Note the similarity of this equation to the convolution. In e�ect, rotation

of a circularly symmetric function is the same as convolving a kernel with

a delta function at the desired rotation axis. This comes very useful when

dealing with products with a rotated kernel.

3.5.4 SH Lighting

The color intensity of a pixel can be computed by scaling the irradiance

E, incoming on a fragment with normal n, by the surface albedo ρ, to �nd

the radiosity B, which corresponds directly to the image intensity:

B(n) = ρE(n) (3.10)

22

3.5. Spherical Harmonics

The irradiance E hitting a surface is a function of the its normal n only and

is given by an integral over the upper hemisphere Ω(n):

E(n) =

∫
Ω(n)

L(s)(n · s)ds (3.11)

where L(s) is the radiance incoming from direction s, which in Environment

Mapping is a EM look-up in the texel coordinates corresponding to s. Noting

that, being θ the angle between the normal n and the incoming light direction

as in Lambert's model, A(s) = (n ·s) = max(cos θ, 0) is a function circularly

symmetric with respect to n, assuming n as the z-axis, one can project A(s)

in SH space, obtaining a reconstructed function of the form:

Â(s) =

N−1∑
l=0

AlY
0
l (s)

Projecting L(s) aswell and approximating it with ˆL(s) =∑N−1
l=0

∑l
m=−l L

m
l Y

m
l (s), the irradiance formula for a fragment with a

normal aligned with the z-axis can be expressed by:

Ê((0, 0, 1)) =

∫
Ω(0,0,1)

(

N−1∑
l=0

l∑
m=−l

Lml Y
m
l (s))(

N−1∑
l=0

AlY
0
l (s))ds

Thanks to 3.8 the formula can be simpli�ed in:

Ê((0, 0, 1)) =

N−1∑
l=0

l∑
m=−l

Lml Al (3.12)

This formula looks good but it is rather useless if it can't be used for ren-

dering surfaces with normals other than the z-axis. To compute the correct

value of irradiance for a generic n one should either rotate L(s) in direction

n̂, which is n re�ected with respect to the standard z-axis, or more easily ro-

tate the cosine lobe with equation 3.9 to point in direction n. Al coe�cients

can be rotated with the following:

Âl(n) =

√
4π

2l + 1
AlY

0
l (n)

23

3.5. Spherical Harmonics

We can rewrite 3.12 to accept a generic n instead of (0,0,1) in this fashion:

Ê(n) =

N−1∑
l=0

l∑
m=−l

Lml Âl(n) (3.13)

The �nal color intensity is then computed as:

B(n) = ρ
N−1∑
l=0

l∑
m=−l

Lml Âl(n) (3.14)

3.5.4.1 A practical approach

Ramamoorthi and Hanrahan ([15]) showed that an order 3 SH expansion

is enough to achieve a good approximation of a DIEM. Since they only use

l ≤ 2 bands, the irradiance formula is simply a quadratic polynomial of the

coordinates of the surface normal. Hence with nT = (x, y, z, 1), one can

write:

E(n) = nTMn (3.15)

where M is a symmetric 4x4 matrix. Each color has an independent matrix

M. Equation 3.15 is particularly useful for rendering, since only requires a

matrix-vector multiplication and a dot-product to compute E. The matrix

M is obtained by expanding equation 3.13:

M =


c1L

2
2 c1L

−2
2 c1L

1
2 c2L

1
1

c1L
−2
2 −c1L

2
2 c1L

−1
2 c2L

−1
1

c1L
1
2 c1L

−1
2 c3L

0
2 c2L

0
1

c2L
1
1 c2L

−1
1 c2L

0
1 c4L

0
0 − c5L

0
2


c1 = 0.429043 c2 = 0.511664 c3 = 0.743125 c4 = 0.886227 c5 = 0.247708

The entries of M depend on the 9 lighting coe�cientsLml and the expressions

for the SH. The constants come from the numerical values of the coe�cients

Al of the cosine lobe (n.b. Al and not Âl!). Ramamoorthi and Hanrahan

24

3.6. Shadow Mapping

showed that Al coe�cients are in the form:

l = 1 Al = 2π
3

l > 1odd Al = 0

l > 1 even Al = (−1)
l
2
−1 2π

(l+2)(l−1)

[
l!

2l(l
2

!)2

]
So the �rst seven terms are:

A0 = 3.141593A1 = 2.094395A2 = 0.785398

A3 = 0A4 = −0.130900A5 = 0A6 = 0.049087

3.6 Shadow Mapping

The basic Shadow Mapping algorithm consists in two passes. First, the

scene is rendered from the point of view of the light. Only the depth (distance

from the light) of each fragment is computed and stored in a texture called

Shadow Map (SM). Next, the scene is rendered as usual, but with an extra

test to see it the current fragment is in the shadow. The �being in the

shadow� test is actually quite simple. If the current sample is further from

the light than the SM at the same point, this means that the scene contains

an object that is closer to the light. In other words, the current fragment is

in the shadow.

Figure 3.6: Shadow mapping visual explanation

Despite it's conceptual simplicity, Shadow Mapping carries a lot of tricky

25

3.6. Shadow Mapping

pitfalls. First of all Shadow Acne.

Figure 3.7: Multiple fragments mapping on the same shadow map texel

Because the SM is limited by resolution, multiple fragments can sample

the same value from the depth map when they're relatively far away from the

light source. The image shows the �oor where each tilted panel represents a

single texel of the depth map. The problem is that several fragments sample

the same depth sample. While this is generally okay it becomes an issue

when the light source looks at an angle towards the surface as in that case

the depth map is also rendered from an angle. Several fragments then access

the same tilted depth texel while some are above and some below the �oor;

we get a shadow discrepancy. Because of this some fragments are deemed

in shadow and some are not, giving the striped pattern from the �gure 3.8

that is called Shadow Acne.

Figure 3.8: Shadow Acne artifact

This issue can be solved with a small little hack called a Shadow Bias

26

3.6. Shadow Mapping

that consists in simply o�setting the depth of the surface (or the SM) by a

small bias amount such that fragments are not incorrectly considered below

the surface. A solid approach is to change the amount of bias based on the

surface angle towards the light, as in this common formula:

bias = max(0.05*(1− (normal, ·lightDir)), 0.005)

Figure 3.9: Bias correction e�ect

A disadvantage of using a shadow bias is that you're applying an o�set to

the actual depth of objects. As a result the bias might become large enough

to see a visible o�set of shadows compared to the actual object locations as

you can see in �gure 3.10. This shadow artifact is called Peter Panning since

objects seem to slightly hover above the surface.

Figure 3.10: Peter Panning artifcat

A trick to solve most of the peter panning issue is using Front Face

27

3.6. Shadow Mapping

Culling (FFC) when rendering the depth map. By default, graphic libraries

such as OpenGL and Direct3D, culls back faces when draw commands are

issued. By enabling FFC we're switching that order around. Because only

depth values are needed for the SM it shouldn't matter for solid objects

whether we take the depth of their front faces or their back faces. Using

their back face depths doesn't give wrong results as it doesn't matter if we

have shadows inside objects; �gure 3.11 gives a visual explanation.

Figure 3.11: Front face culling visual explanation

Bias and FFC can be used together for better results, as OER does.

28

Chapter 4

Occluded Environemnt Maps

Rendering

This chapter is intended to o�er an exhaustive description of the tech-

nique. Occluded Environment Maps Rendering (OER) consists in a prepro-

cessing phase and the rendering cycle itself. Moreover, the preprocessing

phase is divided in two: the location step and the projection step. For

what concerns the rendering, it's assumed an OpenGL-like or Direct3D-like

graphic pipeline, coarsely described in the following. For a better under-

standing, see Appendix B. The input to this pipeline are the object's vertices.

Every vertex is fed into a small program called Vertex Shader, which does

some preliminary processing like basic transformations (translation, scaling,

rotation) and can output attributes' value. At this point the vertices undergo

clipping (vertices outside the view frustrum are dropped) and rasterization

(decomposition in discrete points of the lines between vertices) resulting in

fragments. A second small program called Fragment or Pixel Shader can

then be run on each fragment before the �nal pixel values are output to a

frame bu�er for display or for being used as a texture in successive itera-

tions of the pipeline. This second shader usually takes in input the values of

the attributes computed per vertex by the �rst shader, linearly interpolated

between any two vertices with respect to the fragment's position on the line

connecting them.

29

4.1. Light Sources Location

4.1 Light Sources Location

An EM is e�ectively an image of size(imageWidth, imageHeight), that

is a set of imageWidth× imageHeight pixels holding color values. The EM
used by OER is an Equirectangular High Dynamic Range Image. If we de�ne

a mapping between a generic index i and the image coordinates (xpi , ypi) on

the EM of a pixel as:

xpi =

⌊
i

imageWidth

⌋
ypi = imod imageWidth

a pixel can be represented by pi = (pri , p
g
i , p

b
i), where p

r
i , p

g
i , p

b
i are, in turn,

the red, green and blue value of the pixel. The objective of this phase is

to locate a user-speci�ed number nLightSources of light sources. A generic

light source Lk, where k ∈ {0, . . . , nLightSources}, is embodied by a subset

of pixels of the EM, formally Lk ⊂ EM . Also, OER associates to every light

source a main direction and loss factor, that represents the percentage of

luminance loss when the pixel of a given light source are obscured.

Before any operation is performed, the EM is pre�ltered with a gaus-

sian blur �lter, to make sources individuation easier. Then the �rst op-

eration performed is the creation of a dataset D of pixel observations.

This dataset is formed by one observation oi for each pixel pi ∈ EM ,

in the form oi = (xoi , yoi , loi), where xoi = xpi , yoi = ypi and loi =

179 * (0.265 * pri + 0.670 * pgi + 0.065 * pbi) is the pixel luminance, as explained

in section 3.1. Two values are extrapolated from this dataset; the �rst one is

lightTreshold, the percentile value corresponding to lightPercentile, a sen-

sitivity parameter empirically set to 99%, the second one is haloTreshold,

the percentile value correspondig to HaloPercentile, empirically set to 96%.

Two new dataset are then generated from D: Dl composed of all those obser-

vation with luminance greater or equal than lightTreshold and Dh formed

by those observations with luminance greater or equal than haloTreshold.

Dl is considered to contain only pixels imputable to a light source or some

of its re�ections, but doesn't store any information of which pixel belongs

to which light source. In order to achieve that information, Dl is pro-

cessed by a K-Means algorithm employing a 2D Euclidean Distance ac-

counting only for the pixels' x and y coordinates (thus ignoring the lu-

30

4.1. Light Sources Location

minance attribute). The dataset is divided in nLightClusters clusters (

nLightClusters ≥ nLightSources), where nLightClusters is a parameter

that may di�er from EM to EM, but it's empiracally defaulted to a least 10

(if the number of light sources allows it).

Given a cluster Cq and its mean mq = (xmq , ymq , lmq , q ∈
{0, . . . , nLightClusters}, we de�ne its magnitude value as the luminance

intensity lmq of its mean . Clusters resulting from the K-Mean application,

are sorted by descending magnitude and the cluster with the greatest mag-

nitude is chosen and associated to a light source. The coordinates pair of its

mean is interpreted as the source's main direction, so it is converted in 3D

coordinates (as showed in 2.2.3) and stored for successive computations. In

addition, a parameter called luminanceLoss is computed for the source as

the ratio between the sum of the luminance components of every observation

in the cluster and the total sum of the luminance components over the EM:

luminanceLossCq =

∑
oi∈Cq

loi∑
pj∈EM lpj

The �nal set of pixels belonging to this �rst light source L0, are obtained

scanning Dh for those pixels that have as closest centroid, the one associated

to L0 and are �close enough� to it. To measure if a pixel is close enough to

a light centroid, OER computes naively a light radius with the x and y

components' standard deviations:

radius = 3 *max(σx, σy)

and ignores every pixel further than radius. In order to locate more light

sources, every pixel belonging to the just individuated one are deleted

from Dl and the same process is repeated decreasing nLightClusters of

1. This creates a loop that ends when the number of individuated sources

is equal to nLightSources. The last operation of this phase is the cre-

ation of a collection of Occluded Environment Maps (OEM). Consider the

set of all light sources L = {L0, . . . , LnLightSources−1}, and its powerset

P(L) = {∅, {L0}, . . . {L0, L1}, . . . }, then exists a mapping between each set

of P(L) and one, and only one, OEM. In particular, for each set S ∈ P(L),

the corresponding OEM is a copy of the original EM, except for all the pixels

31

4.1. Light Sources Location

of the set B = {pi | pi ∈ Lj ∧ Lj 6∈ S} which are blackened out.

To recap, the �rst phase of the algorithm is described in the following

pseudocode:

Algorithm 1: Phase One: Light source location and OEM generation

Input: EM, nLightSources, lightPercentile, haloPercentile,

nLightClusters

Output: OEMs, lightDirections, attenuationFactors

D ← {};
OEMs← {};
L ← {};
directions← {};
losses← {};
totalLuminance← 0;

foreach pi ∈ EM do

(xpi , ypi)← IndexToImageCoord(i);

lpi ← 179 * (0.265 * pri + 0.670 * pgi + 0.065 * pbi);

totalLuminance← totalLuminance+ lpi ;

D ← D ∪ {(xpi , ypi , lpi)};
lightTreshold← LuminancePercentile(lightPercentile);

haloTreshold← LuminancePercentile(haloPercentile);

Dh ← Prune(D,haloTreshold);

Dl ← Prune(D, lightTreshold);

while less than nLightSources located do

C ← K −Means(Dl, nLightClusters);

Sort(C);
chosenCluster ← First(C);
directions← directions ∪
EquirectangularMapping(MeanCoordinates(chosenCluster)) ;

losses←
losses ∪ SumOfLuminance(chosenCluster)/totalLuminace ;
L ← L ∪AssignPixels(C, chosenCluster,Dh);

Dl ← Remove(Dl, chosenCluster);

nLightClusters← nLightClusters− 1;

foreach S ∈ P(L) do

factor = 1;

tempOEM = EM ;

foreach L|(∈ L∧ 6∈ S) do

BlackenPixelsInImage(tempOEM,L);

factor = factor − CorrespondingLoss(L, losses);
OEMs← OEMs ∪ tempOEM ;

attenuationFactors← attenuationFactors ∪ factor;

32

4.2. OEMs SH Projection

A collection of OEMs generated by this code with nLightSources = 2,

lightPercentile = 99% and nLightClusters = 10 is showed in �gure 4.1.

Figure 4.1: Grace's Cathedrals OEMs for nLightSources = 2

4.2 OEMs SH Projection

In this section OpenGL's coordinates system is dropped again and the

standard right-handed coordinate system is adopted as previously done in

3.5.1. Before being processed in this phase, the EM is tonemapped and its

channels are normalized for the range [0, 1].

SH coe�cients for every OEM are generated by integrating them against

the spherical harmonic basis functions up to the SHExpansionOrder − 1

band (l). Each color channel is treated separately, so the coe�cients can be

thought of as RGB values. These coe�cients are used to build a matrix for

every color channel (3.5.4.1.

The general formula of a coe�cient is given by:

Eml =

∫ π

θ=0

∫ 2π

φ=0
OEM(θ, φ)Y m

l (θ, φ) sin θdφ dθ

The integrals are simply sums of the pixels in the environment map EM ,

weighted by the functions Y m
l and sin θ to account for the stretching intro-

duced by the equirectangular mapping (remember 2.2.3). The integrals can

also be viewed as moments of the lighting, or as inner-products of the func-

33

4.3. Rendering cycle

tions L(s) and Y m
l (s). In [15]] is showed that 9 coe�cients are su�cients to

approximate the environment map with an error less than the 1%. Since 9

coe�cients are to be computed, the projection step takes O(9‖OEM‖) time,

where ‖OEM‖ is the size (total number of pixels) of the environment map.

By comparison, the standard method of computing an irradiance environ-

ment map texture takes O(T‖OEM‖) time, where T is the number of texels

in the irradiance environment map. Projecting will therefore be approxi-

mately T
9 times faster, even if a conventional irradiance environment map is

computed at a very low resolution of 64× 64, corresponding to T = 4096.

For an OEM stored in a equirectangular fashion, the procedure is de-

scribed in the algorithm below:

Algorithm 2: Phase Two: OEMs SH Projections

Input: Tonemapped and normalized OEM, SHExpansionOrder
Output: Eml coefficients

pixelArea←
(

2π
imageWidth

)(
π

imageHeight

)
;

foreach (l,m) ∈ SHExpansion(SHExpansionOrder) do
Eml ← 0;

foreach pi ∈ OEM do
(xpi , ypi)← IndexToImageCoord(i);
(θ, φ)← ImageCoordToSphericalCoord((xpi , ypi)) ;
foreach (l,m) ∈ SHExpansion(SHExpansionOrder) do

Eml ← Eml +
Y m
l (θ, φ) * pixelArea * sin θ *GetColor(OEM, (xpi , ypi));

The code iterates for each pixel, over every basis in use, to �nd its con-

tribution to the every SH coe�cient. This way the OEM is scanned only

once and the SH basis are evaluated once per pixel.

This operation yields to a set of coe�cients per color channel for every

OEM. From these sets matrix per color channel is built for every OEM. The

matrices are �nally multiplied by the OEM's attenuation factor, to be ready

for rendering purposes.

4.3 Rendering cycle

This section assumes that the reader is familiar with terms like �world

space�, �object space� and �homogeneous coordinates�. If this is not the case,

34

4.3. Rendering cycle

refer to Appendix C for an overview of the common coordinates systems in

Computer Graphics.

Once phase one and phase two of OER are over, the algorithm has suc-

cessfully computed and stored a collection of 2nLightSources sets of SH coef-

�cients and nLightSources 3D directions. The rendering cycle begins with

a Shadow Mapping pass per light source, meaning that the entire scene is

drawn from the point of view of the light source and a �oating point value

expressing a distance (or depth) is stored for every texel of the Shadow Map

(SM). OER only consider directional lights, which are lights so far away that

all the light rays can be considered parallel. As such, rendering the shadow

map is done with an orthographic projection matrix. An orthographic matrix

is just like a usual perspective projection matrix, except that no perspective

is taken into account ; an object will look the same whether it's far or near

the camera.

The Model-View-Projection (MVP) matrix used to render the scene from

the light's point of view is formed by matrix composition of:

• P: an orthographic projection matrix which encompasses everything in

a box of user-speci�ed dimensions. Special attention should be payed

not to exclude anything in the scene when dimensioning this box.

• V: a view matrix that rotates the world so that in camera space, the

light direction is -Z (assuming OpenGL coordinates system).

• M: a model matrix, which is proper of every object and stores infor-

mation about its position, scale and orientation.

Rendering a SM is usually more than twice as fast as the normal render,

because only depth is written, instead of both the depth and the color.

During these passes, front faces are culled instead of back faces, as seen in

3.6. The shaders employed are very simple, the vertex shader is a pass-

through shader which simply compute the vertex's position in homogeneus

coordinates C of the SM:

Algorithm 3: Shadow Map Pass: Vertex Shader

Input: MVP matrix of the light, vertexCoordinates in object space

Output: vertexShadowMapCoordinates

vertexShadoMapCoordinates = MVP * vertexCoordinates;

35

4.3. Rendering cycle

The fragment shader is just as simple, it just writes the depth of the frag-

ment on the SM, encoded in the interpolated z coordinate of the fragment:

Algorithm 4: Shadow Map Pass: Fragment Shader

Input: fragmentShadowMapCoordinates = interpolated

vertexShadowMapCoordinates

Output: fragmentShadowMapValue

fragmentShadowMapValue = fragmentShadowMapPosition.z;

The result of these Shadow Mapping passes are nLightSources SMs

holding a �oating point depth value in each texel.

In the subsequent rendering pass, the �nal color of each fragment is

computed with SH lighting. In particular, the SMs are used to estabilish

whether a fragment is lit or not by the corresponding light source. The set

S, of light sources that light up a certain fragment, is part of the powerset

P(L) of the set of light sources L. That being, S can be mapped to an OEM,

and so to set of matrices associated with the map. Hence the SMs testing is

e�ectively used to choose a set matrices which is employed to compute the

�nal color of the fragment (as seen in 3.5.4).

The vertex shader adopted in this pass, is more complicated than the

one used for the Shadow Mapping pass. Its inputs are:

• vPos: the vertex position in object space.

• vNorm: the normal (a 3D direction), in object space, of the surface

the vertex lies on.

• vTextCoord: the texture coordinates of the vertex.

• MVP: the model-view-projection matrix of the scene, used to trans-

form a position in object space into homogeneous coordinates of the

frame bu�er.

• N_M: the normal model matrix, used to transform a normal from

object space to world space.

• SM_MVPs: the array of model-view-projection matrices used to

transform a position in object space into homogeneous coordinates of

the corresponding SM, analogously as what is done in the Shadow

Mapping pass.

36

4.3. Rendering cycle

The shader computes, for each vertex, the homogeneous coordinates over

every SM besides computing the homogeneous coordinates of them over the

frame bu�er to display. Furthermore, it outputs a transformed 3D direction,

corresponding to the vertex's normal in world's space coordinates. In details,

the vertex shader outputs:

• vScreenCoordinates : the vertex's homogeneous coordinates over

the frame bu�er to display.

• vNormalWorldSpace: the surfaces normal in world's space coordi-

nates.

• vTextCoordinates: the texture coordinates of the vertex �as is�.

• shadowCoordinates: an array of homogeneous coordinates of the

vertex over every SM.

After rasterization, these values are interpolated between any two connected

vertices, for the generated fragments. The vertex shader's pseudo-code is

reassumed below:

Algorithm 5: Final Pass: Vertex Shader

Input: vPos, vNorm, MVP, N_M, SM_MVPs, vTextCoordinates

Output: vScreenCoordinates, vNormalWorldSpace,

shadowCoordinates, vTextCoordinates

vScreenCoordinates = MVP * vPos;

vNormalWorldSpace = Normalize(N_M * vNorm);

shadowCoordinates ← {};
foreach SM_MVP ∈ SM_MVPs do

sc ← SM_MVP * vPos;

shadowCoordinates ← shadowCoordinates ∪ {sc};

The fragment shader elaborates the �nal color of the screen pixel. The

program is fed in with the interpolated vertex shader's output, the SMs, the

SH matrices of every OEM and informations about the object's material, the

light sources and the camera. To be precise, fragment shader's input are:

• fNormalWorldSpace : the interpolated 3D direction the fragment is

orientated toward, in world's space coordinates.

• fShadowCoordinates: the interpolated fragment's shadow coordi-

nates on each SM.

37

4.3. Rendering cycle

• fTexCoordinates: the interpolated texture coordinates.

• SMs: an array of depth (single valued �oating point) textures.

• materialTexture: the texture of the material of the object.

• SHMatrices: a set triplets of matrices associated the OEMs.

• sourceDirections: the directions in world space of each light source.

• eyeDirection: the direction in world space pointing at the camera

position.

• shininess: the shininess parameter of the material of the object.

38

4.3. Rendering cycle

The fragment shader's pseudo-code is the following:

Algorithm 6: Final Pass: Fragment Shader

Input: fNormalWorldSpace, fShadowCoordinates, fTexCoordinates,

SMs, materialTexture, SHMatrices, sourceDirections,

eyeDirection, shininess

Output: color

specularComponent← 0 ;

specularColor ←
FetchSpecularColor(materialTexture, fTexCoordinates);

diffuseColor ←
FetchDiffuseColor(materialTexture, fTexCoordinates);

lightSet← {} ;
foreach SM ∈ SMs do

if ShadowMapTest(SM, fShadowCoordinates,

SMmapDirection(SM,sourceDirections)) then
specularComponent← specularComponent+

BlinnReflection(eyeDirection, shininess) ;

lightSet← lightSet ∪ SMmapLight(SM);

MatR← SelectMatR(SHMatrices, lightSet);

MatG← SelectMatG(SHMatrices, lightSet);

MatB ← SelectMatB(SHMatrices, lightSet);

nT ← (fNormalWorldSpace, 1) ;

shR← nTMatRn;

shG← nTMatGn;

shB ← nTMatB n;

ambientLight← (shR, shG, shB);

color ← ambientLight * diffuseColor +

specularComponent * specularColor;

39

Chapter 5

Complexity and Results

5.1 Complexity Evaluation

5.1.1 Preprocessing Phase

The two phases of preprocessing are performed sequentially, so the time

complexity of this �rst part of OER depends on the �slower� of the two. In

order to locate the bottleneck of preprocessing, a computational analysis of

the two phases is now given. For this purpose, an EM of width W , height

H, n = W ×H pixels and three color channels is adopted.

The main operations of the �rst phase are:

1. Gaussian Blur Filter.

2. Creation of the dataset D.

3. Creation of the datasets Dl and Dh.

4. K-Means loop.

5. Pixels Assignment.

Given a radius r, the Gaussian Blur has complexity O(nr), but since r is

usually a number lower than 5 (OER adopts a default radius of 4, but it's

not a �xed parameter) we can simplify the complexity of 1 in O(n). To

generate the dataset D, the algorithm has to compute a luminance value

for every pixel. This yields a O(n) for operation 2. The creation of Dl and

Dh both requires the calculation of a percentile that is usually implemented

40

5.1. Complexity Evaluation

with one sorting of the dataset plus a lookup per percentile. Assuming quick

sort for sorting algorithm, this operation takes O(n log n) time. K-Means

is repeated nLightSources times over Dl which decreases in dimensionality

after each iteration. That said, if we consider �xed the dimensionality of the

set after each iteration, we can obtain a good lower bound estimation. Let

m = ‖Dl‖ then the complexity of 4 is O((m2k+1 log n)nLightSources). For

every light source, pixels assignment is done by scanning Dh, which yields

to O(‖Dh‖nLightSources) complexity for 5. Since n � m > ‖Dh‖ we can
conclude that the complexity of the �rst phase is O(n log n).

The second phase is articulated in two operations:

1. OEM projections.

2. SH Matrices generation.

The complexity of the projection of a single EM depends on the number

of coe�cients to compute, 9 in this case. Since the number of OEMs is

nOEM = 2nLightSources and there are three channels the complexity of 1 is

O(nOEM 27n). As seen in 3.5.4.1 each one of the 4 × 4 matrices are built

performing 16 products, thus complexity of 3 is also constant O(16). Hence

the resulting complexity of phase two is O(nOEM n) and since n� nOEM ,

the complexity of the �rst phase is predominant.

5.1.2 Rendering Cycle

The time complexity of the rendering cycle depends on the number of

vertices to elaborate, the resolution of the employed SMs and the resolution

of the displayed frame bu�er. For the following discussion are assumed a

scene of v vertices, SM of s = sWidth × sHeight texels and a frame bu�er

of p = fWidth× fHeight pixels.
The rendering comprises nLightSources shadow mapping passes and one

color pass.

Every shadow mapping pass performs a matrix vector multiplication

((4 × 4) × (4 × 1)) per vertex, and a memory write per texel of each SM.

This translates into O(16v) for the vertex shader and O(s) for the fragment

shader. Since both v and s are usually very big numbers (think about a

1024 × 1024 SM and a scene of 1 million vertices), the bottom line is that

this �rst part of the rendering cycle takes O(nLightSources(v + s)).

41

5.2. Graphic Results

The color pass is slightly more complicated than the shadow mapping

one. The vertex shader has to compute the homogeneous coordinates of the

vertex for every SM, plus its screen coordinates and its normal in world space.

This results in O((16nLightSources + 16 + 9)v) → O(nLightSources v).

The fragment shader performs nLightSources textures lookup in the SMs

and Blinn model's calculations, a matrix vector multiplication plus a dot

product per color channel for the SH part, a texture lookup for the di�use

color and the specular color, and �nally two multiplications and a sum to

compute the �nal pixel color. SM lookups yields O(p nLightSources) com-

plexity. Blinn model's calculation can be considered O(1), which leads to

O(p nLightSources) for the computation of the specular components. Tex-

ture lookups for the material properties accounts for O(1) but are not re-

peated for each light source since the material is related to the object, so they

result in O(p). With three color channels, 4× 4 matrices and 4× 1 vectors,

the SH part takes O(3(16 + 4)p) → O(v). The �nal color computation re-

quires O((2+1)p) that is asyntotically O(p). We can then conclude that the

rendering cycle is dominated by a complexity of O(nLightSources(v+s+p)).

5.2 Graphic Results

The algorithm has been implemented in an ad hoc graphic engine to show

some result of the technique. Table 5.1 reports the software involved in the

implementation of this engine:

42

5.2. Graphic Results

Table 5.1: Software adopted for the showcase

Microsoft Visual Studio 2015

OpenTk.Next version 1.1.16

Accord version 3.2

Magick.NET-Q16-HDRI-AnyCPU version 7.0.3.1

AssimpNet version 3.3.1

In table 5.2 instead are speci�ed the speci�cations of the hardware used

to render the showcase scenes:

96 CUDA cores

Graphics Clock 800 MHz

Texture �ll rate up to 12.8 billion/sec

Memory Clock 900 MHz

Memory interface DDR3

Memory Size 2 GB

OpenGL 4.5

Table 5.2: Hardware adopted for the showcase

43

5.2. Graphic Results

5.2.1 A simple scene

The �rst showcase scene is a simple one. It is composed by the famous

model �Stanford Bunny� �oating on a �attened cylinder. The chosen en-

vironment is the equally famous Grace's Cathedral and it is rendered on a

skybox around the camera. The scene comprises 209538 vertices with posi-

tions and normals, and it is rendered on a 1366× 768 viewport. The chosen

di�use color is white both for the cylinder and the buddha. The prepro-

cessing phase returns exactly the same EM showed at the end of 4.1, so the

shadows of the two located light sources are being cast on the cylinder. The

result is showed in �gure 5.1:

(a) (b)

(c) (d)

Figure 5.1: Stanford bunny rendered with Grace's Chatedral environment

map in OER

5.2a shows the scene lit by both light sources. The subsequent �gures,

show instead the result of a mechanism of switching o� the light sources.

The trick is very simple: no SM depth test is performed for the switched

o� light source, instead any fragment is considered never lit by that source

and the SH matrices are chosen accordingly. 5.2b and 5.2c shows the case

where one light source at a time is switched o�, while 5.2d shows the case

where both light sources are turned on. All of the four settings showed an

44

5.2. Graphic Results

interactive refresh rate of 40fps (frames per second) circa.

5.2.2 A comparison with Unity standard shader

Unity is a cross-platform game engine developed by Unity Technologies

and used to develop video games for PC, consoles, mobile devices and web-

sites. With an emphasis on portability, the engine targets the following

APIs: Direct3D on Windows and Xbox 360; OpenGL on Mac, Linux, and

Windows; OpenGL ES on Android and iOS; and proprietary APIs on video

game consoles.

In order to render a scene comparable to the one showed in the last

section, an imitation of the OER technique employing classic environment

mapping for ambient light and two directional lights has been rendered in

Unity using the standard shader with specular setup. The �rst issue encoun-

tered has been the one of tuning the lights' intensities, colors and directions

instead of having them �baked� into the environment: a light too dim might

not reproduce the desired shadowing e�ect while one too bright might falsify

the e�ect coming from the environment lights. The scene is presented in

�gure 5.2 also in the same four light setups of the previous showcase and

it's rendered on a 1024 × 768 frame bu�er. It appears brighter than the

one rendered in the ad-hoc game engine but it depends on the fact that

ImageMagick and Unity don't adopt the same tone mapping algorithm.

45

5.2. Graphic Results

(a) (b)

(c) (d)

Figure 5.2: Stanford Bunny rendered in Unity with environment mapping

and two directional lights

The frame rate settles also around 40fps, but the memory consumption

is higher due to the fact that classic environment mapping loads the EM on

the GPU while OER encodes it with only 16 �oating points per channel.

5.2.3 A complex scene

The rendering of a more complex scene is showed in �gure 5.3. The scene

is composed by 5 object for a total of 3478892 vertices. The structure of a

vertex depends on the belonging object: the sword and the sad (very sad,

he lost his parents, don't laugh) mummy have, in addition to positions and

normals, a pair of texture coordinates for each vertex. To raise the bar, every

object is rotating about its local y-axis and the user is able to press a button

to make the whole structure of objects rotate of 90 degrees. Of course this

is not something one can represent with an image but it has to be kept in

consideration while evaluating the goodness of the frame rate. The OER

46

5.2. Graphic Results

setup is the same adopted in 5.1:

Figure 5.3: Composite scene rendered with Grace's Chatedral environment

map in OER

The achieved framerate is 32fps thus a loss of 20% against an increment

of the number of vertices of the 1500%.

47

Conclusions

OER is a technique whose goal is to extrapolate lighting information

from a surrounding mapped euqirectangularly on a image. The algorithm

has proven able to generate dynamic shadows and coherent lighting leading

to a realistic enough graphic result, while mantaining an interactive frame

rate on a GPU not really up to date with those currently on the market

(entry level gpu released in 2012). Furthermore it showed a good scalability

when tested against a heavy workload. The bottleneck of the technique lies

in the preprocessing phase of course, but it is an o�ine, una tantum opera-

tion. OER has been developed with a side purpose of a possible integration

in a �dressing room� application, an environment where users can visualize

products from a shop's wardrobe on a mannequin, but this doesn't limit the

range of OER's potential applications. The algorithm could be adopted in

solutions for virtual & interactive visits to museums or point of interests, as

well as in CAD programs, graphics engines and basically wherever a cheap,

image-based, real time GI algorithm can be employed. Furthermore, adopt-

ing a very simple model for specular re�ection, and being that the only viewer

dependent part of the illumination algorithm, OER could be well suited in

virtual and augmented reality environments.

The actual status of the technique is experimental, and a couple of im-

provements are being researched. The �rst one is related to the localization

phase. The attempt is to exploit the covariance matrix of the cluster asso-

ciated to a light source to generate a �panel�, a black ellipse with the right

dimensions and rotation, to cover the light source. This should get rid of the

necessity of computing the attenuation factors.

The second improvement is introducing HDR rendering in the tech-

nique.This modi�ed version of OER would project the original EM without

tonemap it �rst, and then render to a three channeled �oating point texture.

This texture is then processed by a proper shader, to �nd parameters to tune

a tonemapping algorithm, which is then performed on the texture in order

to make it displayable.

49

Appendix A

List of the �rst 16 Spherical

Harmonics

Considering a standard coordinate system, in increasing order of index

i = l * (l + 1) +m:

1. Y 0
0 = 1

2

√
1
π

2. Y −1
1 =

√
3

4π
y
r

3. Y 0
1 =

√
3

4π
z
r

4. Y 1
1 =

√
3

4π
x
r

5. Y −2
2 = 1

2

√
15
π
xy
r2

6. Y −1
2 = 1

2

√
15
π
yz
r2

7. Y 0
2 = 1

4

√
5
π
−x2−y2+2zs

r2

8. Y 1
2 = 1

2

√
15
π
zx
r2

9. Y 2
2 = 1

4

√
15
π
x2−y2
r2

10. Y −3
3 = 1

4

√
35
2π

(3x2−y2)y
r3

11. Y −2
3 = 1

2

√
105
π

xyz
r3

50

12. Y −1
3 = 1

4

√
21
2π

y(4z2−x2−y2)
r3

13. Y 0
3 = 1

4

√
7
π
z(2z2−3x2−3y2)

r3

14. Y 1
3 = 1

4

√
21
2π

x(4z2−x2−y2)
r3

15. Y 2
3 = 1

4

√
105
π

z(x2−y2)
r3

16. Y 3
3 = 1

4

√
35
2π

x(x2−3y2)
r3

51

Appendix B

OpenGL Graphic Pipeline

In 3D computer graphics, the graphics pipeline or rendering pipeline

refers to the sequence of steps used to create a 2D raster representation of a

3D scene. Plainly speaking, once a 3D model has been created, for instance

in a video game or any other 3D computer animation, the graphics pipeline

is the process of turning that 3D model into what the computer displays.

There is no unique graphic pipeline, every graphic library has its own. For

an example, let's have a look at OpenGL's pipeline (B.1). The OpenGL's

rendering pipeline works in the following order:

1. Prepare vertex array data, and then render it

2. Vertex Processing:

• Each vertex is acted upon by a Vertex Shader. Each vertex in the

stream is processed in turn into an output vertex.

• Optional primitive tessellation stages.

• Optional Geometry Shader primitive processing. The output is a

sequence of primitives.

3. Vertex Post-Processing, the outputs of the last stage are adjusted or

shipped to di�erent locations.

• Transform Feedback happens here.

• Primitive Clipping, the perspective divide, and the viewport

transform to window space.

52

Figure B.1: Diagram of the Rendering Pipeline. The blue boxes are pro-

grammable shader stages.

4. Primitive Assembly

5. Scan conversion and primitive parameter interpolation, which gener-

ates a number of Fragments.

6. A Fragment Shader processes each fragment. Each fragment generates

a number of outputs.

7. Per Sample Processing.

The process of vertex speci�cation is where the application sets up an

ordered list of vertices to send to the pipeline. These vertices de�ne the

boundaries of a primitive. Primitives are basic drawing shapes, like trian-

gles, lines, and points. Exactly how the list of vertices is interpreted as

primitives is handled via a later stage. A vertex is represented by a series

of attributes. Each attribute is a small set of data that the next stage will

do computations on. While a set of attributes do specify a vertex, there is

nothing that says that part of a vertex's attribute set needs to be a position

or normal.Attribute data is entirely arbitrary; the only meaning assigned to

53

any of it happens in the vertex processing stage. Once the vertex data is

properly speci�ed, it is then rendered as a primitive via a drawing command.

The call to the draw command marks the beginning of a processing stage

composed by almost all programmable operations. This allows user code to

customize the way vertices are processed.Firstly vertex shaders perform ba-

sic processing of each individual vertex. Vertex shaders receive the attribute

inputs from the vertex rendering and converts each incoming vertex into a

single outgoing vertex based on an arbitrary, user-de�ned program. Vertex

shaders can have user-de�ned outputs, but there is also a special output that

represents the �nal position of the vertex. If there are no subsequent vertex

processing stages, vertex shaders are expected to �ll in this position with

the clip-space position of the vertex, for rendering purposes. One limitation

on vertex processing is that each input vertex must map to a speci�c output

vertex. Subsequently, primitives can be tessellated using two shader stages

and a �xed-function tessellator between them, but this process is optional.

The successive operation named Geometry Shading is also optional. Geome-

try shaders are user-de�ned programs that process each incoming primitive,

returning zero or more output primitives. The shader is able to remove prim-

itives, or tessellate them by outputting many primitives for a single input.

Geometry shaders can also tinker with the vertex values themselves, either

doing some of the work for the vertex shader, or just to interpolate the val-

ues when tessellating them. Geometry shaders can even convert primitives

to di�erent types; input point primitives can become triangles, or lines can

become points. The outputs of the geometry shader or primitive assembly

are written to a series of bu�er objects that have been setup for this purpose.

This is called transform feedback mode; it allows the user to do transform

data via vertex and geometry shaders, then hold on to that data for use

later.The primitives are then clipped. Clipping means that primitives that

lie on the boundary between the inside of the viewing volume and the outside

are split into several primitives, such that the entire primitive lies in the vol-

ume. The vertex positions are transformed from clip-space to window space

via the perspective divide and the viewport transform. Primitive assembly is

the process of collecting a run of vertex data output from the prior stages and

composing it into a sequence of primitives. The type of primitive the user

rendered with determines how this process works.The output of this process

54

is an ordered sequence of simple primitives (lines, points, or triangles). If

the input is a triangle strip primitive containing 12 vertices, for example, the

output of this process will be 10 triangles. The rendering pipeline can also

be aborted at this stage. This allows the use of Transform Feedback opera-

tions, without having to actually render something. Triangle primitives can

be culled (ie: discarded without rendering) based on the triangle's facing in

window space. This allows you to avoid rendering triangles facing away from

the viewer. Primitives that passes all the described stages are then rasterized

in the order in which they were given. The result of rasterizing a primitive is

a sequence of fragments. A fragment is a set of state that is used to compute

the �nal data for a pixel (or sample if multisampling is enabled) in the output

framebu�er. The state for a fragment includes its position in screen-space,

the sample coverage if multisampling is enabled, and a list of arbitrary data

that was output from the previous vertex or geometry shader.This last set

of data is computed by interpolating between the data values in the vertices

for the fragment. The style of interpolation is de�ned by the shader that

outputed those values. The data for each fragment from the rasterization

stage is processed by a fragment shader. The output from a fragment shader

is a list of colors for each of the color bu�ers being written to, a depth value,

and a stencil value. Fragment shaders are not able to set the stencil data for

a fragment, but they do have control over the color and depth values.The

fragment data output from the fragment processor is then passed through

a sequence of steps. The �rst step is a sequence of culling tests; if a test is

active and the fragment fails the test, the underlying pixels/samples are not

updated (usually). Many of these tests are only active if the user activates

them. After this, color blending happens. For each fragment color value,

there is a speci�c blending operation between it and the color already in

the framebu�er at that location. Logical Operations may also take place

in lieu of blending, which perform bitwise operations between the fragment

colors and framebu�er colors. Lastly, the fragment data is written to the

framebu�er.

55

Appendix C

Model Space, World Space,

View Space and Screen Space

When an artist authors a 3D model he creates all the vertices

and faces relatively to the 3D coordinate system of the tool he is

working in, which is the Model Space. All the vertices are rela-

tive to the origin of the Model Space, so if we have a point at co-

ordinates (1,1,1) in Model Space, we know exactly where it is C.1.

Figure C.1: Vertex of the Utah
Teapot in position (1,1,1)

Every model in the game lives in its own

Model Space and if you want them to be in

any spatial relation (like if you want to put

a teapot over a table) you need to transform

them into a common space (which is what

is often called World Space). With all the

objects at the right place the next operation

is to project them to the screen. This is

usually done in two steps. The �rst step

moves all the object in another space called

the View Space.

56

Figure C.2: Utah Teapots with axis of Model Space, World Space and View

Space

The second step performs the actual projection using the projection ma-

trix. This last step is a bit di�erent from the others and we will see it in

detail in a moment. The View Space is an auxiliary space that we use to

simplify the math and keep everything elegant and encoded into matrices.

The idea is that we need to render to a camera, which implies projecting all

the vertices onto the camera screen that can be arbitrarily oriented in space.

The math simpli�es a lot if we could have the camera centered in the origin

and watching down one of the three axis, let's say the Z axis to stick to the

convention. So it's convenient to create a space that remaps the World Space

coordinates so that the camera is in the origin and looks down along the Z

axis.The scene is now in the most friendly space possible for a projection,

the View Space. Before �attening the image, the coordinates are projected

in Screen Space. This space is a cuboid which dimensions are between -1 and

1 for every axis and whose coordinates are called homogeneous coordinates.

This space is very handy for clipping (anything outside the [−1, 1] range is

outside the camera view area) and simpli�es the �attening operation (we

just need to drop the z value to get a �at image).

57

Bibliography

[1] Paul Debevec. �Image-Based Lighting�. In: (). url: http://ict.usc.

edu/pubs/Image-Based%20Lighting.pdf.

[2] Equirectangular Projection. url: https://en.wikipedia.org/wiki/

Equirectangular_projection.

[3] Robert Ho�man Gene Miller. �Illumination and re�ection maps: Sim-

ulated objects in simulated and real environments.� In: (). url: http:

//www.pauldebevec.com/ReflectionMapping/illumap.pdf.

[4] Global Illumination. url: https://en.wikipedia.org/wiki/Global_

illumination.

[5] Robin Green. �Spherical Harmonic Lighting: The Gritty Details�. In:

(). url: http : / / silviojemma . com / public / papers / lighting /

spherical-harmonic-lighting.pdf.

[6] Ned Greene. �Environment mapping and other applications of world

projections.� In: ().

[7] High-dynamic-range imaging. url: https : / / en . wikipedia . org /

wiki/High-dynamic-range_imaging.

[8] Martin Newell James Blinn. �Texture and Re�ection in Computer Gen-

erated Images�. In: (). url: http://cumincad.architexturez.net/

system/files/pdf/186e.content.pdf.

[9] Jim Blinn Model for Specular Re�ection. url: https : / / www .

siggraph . org / education / materials / HyperGraph / illumin /

specular_highlights/blinn_model_for_specular_reflect_1.htm.

[10] Lambert's cosine law. url: https : / / en . wikipedia . org / wiki /

Lambert%27s_cosine_law.

58

http://ict.usc.edu/pubs/Image-Based%20Lighting.pdf
http://ict.usc.edu/pubs/Image-Based%20Lighting.pdf
https://en.wikipedia.org/wiki/Equirectangular_projection
https://en.wikipedia.org/wiki/Equirectangular_projection
http://www.pauldebevec.com/ReflectionMapping/illumap.pdf
http://www.pauldebevec.com/ReflectionMapping/illumap.pdf
https://en.wikipedia.org/wiki/Global_illumination
https://en.wikipedia.org/wiki/Global_illumination
http://silviojemma.com/public/papers/lighting/spherical-harmonic-lighting.pdf
http://silviojemma.com/public/papers/lighting/spherical-harmonic-lighting.pdf
https://en.wikipedia.org/wiki/High-dynamic-range_imaging
https://en.wikipedia.org/wiki/High-dynamic-range_imaging
http://cumincad.architexturez.net/system/files/pdf/186e.content.pdf
http://cumincad.architexturez.net/system/files/pdf/186e.content.pdf
https://www.siggraph.org/education/materials/HyperGraph/illumin/specular_highlights/blinn_model_for_specular_reflect_1.htm
https://www.siggraph.org/education/materials/HyperGraph/illumin/specular_highlights/blinn_model_for_specular_reflect_1.htm
https://www.siggraph.org/education/materials/HyperGraph/illumin/specular_highlights/blinn_model_for_specular_reflect_1.htm
https://en.wikipedia.org/wiki/Lambert%27s_cosine_law
https://en.wikipedia.org/wiki/Lambert%27s_cosine_law

BIBLIOGRAPHY

[11] Learn OpenGL: Shadow Mapping. url: http://learnopengl.com/#!

Advanced-Lighting/Shadows/Shadow-Mapping.

[12] Matteo Matteucci. �A tutorial on clustering algorithms�. In: (). url:

http://home.deib.polimi.it/matteucc/Clustering/tutorial_

html/kmeans.html.

[13] OpenTK GitHub's pages. url: https://opentk.github.io/.

[14] Mark J. Kilgard Randima Fernando. �The CG Tutorial�. In: Addison-

Wesley Longman Publishing Co., 2003. Chap. 7.

[15] Pat Hanrahan Ravi Ramamoorthi. �An E�cient Representation for

Irradiance Environment Maps�. In: (). url: http : / / graphics .

stanford.edu/papers/envmap/envmap.pdf.

[16] Peter-Pike Sloan. �Stupid Spherical Harmonics (SH) Tricks�. In: ().

url: http://www.ppsloan.org/publications/StupidSH36.pdf.

[17] OpenGL Tutorial. Tutorial 16: Shadow mapping. url: http://www.

opengl- tutorial.org/intermediate- tutorials/tutorial- 16-

shadow-mapping/.

[18] Greg Ward. �Radiance (.hdr) �le format speci�cation�. In: (). url:

http://radsite.lbl.gov/radiance/refer/filefmts.pdf.

59

http://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
http://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html
https://opentk.github.io/
http://graphics.stanford.edu/papers/envmap/envmap.pdf
http://graphics.stanford.edu/papers/envmap/envmap.pdf
http://www.ppsloan.org/publications/StupidSH36.pdf
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://radsite.lbl.gov/radiance/refer/filefmts.pdf

	Introduction
	About Global Illumination
	Occluded EMs Rendering in a nutshell
	Overview

	State of the Art
	 Environment Mapping for diffuse component
	Prefiltering an EM
	The Spherical Harmonics Approach

	Common Projections
	Sphere Mapping
	Cube Mapping
	Equirectangular Mapping

	Technical Background
	LDR and HDR
	Lambert Lighting Model
	Blinn Reflection Model
	K-Means Clustering
	Spherical Harmonics
	Introduction to Spherical Harmonics
	Definition
	Properties
	SH Lighting
	A practical approach

	Shadow Mapping

	Occluded Environemnt Maps Rendering
	Light Sources Location
	OEMs SH Projection
	Rendering cycle

	Complexity and Results
	Complexity Evaluation
	Preprocessing Phase
	Rendering Cycle

	Graphic Results
	A simple scene
	A comparison with Unity standard shader
	A complex scene

	Conclusion
	List of the first 16 Spherical Harmonics
	OpenGL Graphic Pipeline
	Model Space, World Space, View Space and Screen Space
	Bibliography

