

Corso di Laurea Magistrale in Ingegneria Informatica
Dipartimento di Elettronica e Informazione

Power of time window in predicting hashtags
while typing a tweet

Supervisor: Prof. Emanuele Della Valle

Co-Supervisor: Prof. Davide Eynard

Master Thesis by: Farimah Fanaei
Student ID N.816079

A.Y. 2015/2016

I

Acknowledgement

First of all, I would like to thank Politecnico Di Milano for giving me this great
opportunity to study this master and live in this beautiful country.

Deeply, I would like to express my special thanks of gratitude to my supervisor Prof.
Emanuele Della Valle, for enthusiastic support, useful comments, remarks and
engagement through the learning process of this master thesis.

I am also very grateful to my co-supervisor Prof. Davide Eynard, who supported me
and provided very useful suggestions about this thesis. I am very much indebted to
him for the success of my thesis work.

Last but not least, I would like to thank my lovely family and my friends Maryam,
Atusa, Masoumeh , Sepehr, Reyhaneh, Armin, Elmira, Mahdi and Arash for their
kind support through my life.

II

Abstract:

Micro-blogging as a short text reports like tweets is widely used recently, processing and extracting the knowledge from this huge volume of information stream has attracted many attentions. In general Text Analysis and Text Processing is an essential task in Natural Language Processing and also a major application field in Machine Learning area, there has been wide range of approaches proposed both in NLP and ML. Central part of solutions in this regard is around finding data patterns and study the features of the data. Finding the accurate and proper form of features can be significantly important in data processing, for text processing previous works, usually exploit only human-designed features, such as dictionaries, knowledge bases and special tree kernels, although currently advanced approaches get involved with deeper semantical layers rather than only retrieving features from text, these approaches appear to have a great progress in boosting the Text Classification performance. The importance of social networks like twitter and their universal propagation in the last few
years represents one of the most pervasive phenomena of the recent computer and data
science society, keeping track of predictive behavior of hashtags in tweets have been an
interesting topic that can be reached by many approaches. Although applying Machine
Learning and Information Retrieval on short documents like tweets is not an easy task, due
to few numbers of features in each sample which can reduce accuracy of the final predictive
analysis. The solution can be using these numerable features efficiently by extracting latent
properties and processing semantical aspects of the features.
Although it is needless to mention that text processing on stream data can be even more
challenging, on one hand we usually do not have a fixed number of features, on the other
hand these features can have inconstant importance at different time windows so we need
to verify this fact at every stage by updating ML methods and fitting the model with recent
training set, this can boost degree of accuracy in pattern recognition and enhance the
precision in predicting the output values.
In this thesis we work on a dataset with more than 2 million of tweets collected in more than
4 months from Expo 2015 in Milan. The general goal is predicting second hash-tags
considering its relativeness with upcoming events and features at different time windows.
With the purpose of comparing different ML classification methods there was 2 main
hypotheses: 1. Effect of applying different time window lengths on the accuracy of the
classification on stream data. 2. Applying dimension reduction methods only on the
prediction values can boost the final score of classification result. As usual the data
processing task will start with Preprocessing of the data as the first step, eliminate all outliers
and irrelevant elements of data, and evoking useful and informative form of words then
converting them into standard feature vectors can be briefly consider as what we mean by
preprocessing. By Finishing the preprocessing steps and achieving the proper informative
vector form of the data acceptable for machine learning algorithms, next is to step into ML
world, here we compare 5 different Classification results with different time windows where
we applied a 2-layer feed-forward Neural Network algorithm to reduce the dimensionality
of the outputs. Finally, the result approved both hypothesis and face an interesting
conclusion about the effect of preprocessing to enhance the final result.

III

Acknowledgement .. I
Abstract: ... II
List of Figures ... V
List of Table .. VI
List of equations ... VII
Chapter 1... 8

1. Introduction .. 8
1.1- Problem Statement ... 9
1.2 Original Contribution .. 10
1.3 Structure of the thesis .. 12

Chapter 2... 13
2. State of Art .. 13

2.1Data Preprocessing .. 13
2.1.1 Text documents Preprocessing... 15
2.1.1 Co-occurrence .. 16

2.2 Feature Engineering ... 18
2.2.2 Features Selection .. 20

2.3 Machine Learning: ... 22
2.3.1 Classification .. 26
2.3.2 Text Classification ... 28

2.3.2.1 Short-text Classification .. 33
2.4 NLP .. 34

2.4.1 Word Embedding .. 35
2.5 Neural Networks ... 37

2.5.1 multilayer Neural Networks ... 38
2.6.1 Machine learning on stream data .. 40

Chapter 3... 42
3. Problem statement ... 42

3.1 Problem ... 42
3.2 Case study ... 44

Chapter 4... 47
4. Problem Solving ... 47

4.1 System Architecture ... 47
4.2 Dataset ... 50
4.3 Cleaning Data & Text Preprocessing ... 55

4.3.1 Stop Words .. 55
4.3.2 Bag-of-words .. 56
4.3.3 Transforming Text Documents into Vector Space 57

4.4 Word2Vec ... 59

IV

4.4.1 Word2vec Architecture .. 59
4.4.1.1 Continuous Bag-of-Words Model ... 61
4.4.1.2 Continuous Skip-gram Model ... 62

4.4.2 GloVe (Global Vectors for Word Representation) 63
chapter5 ... 64

5. Implementation Experience .. 64
5.1 Multi-language tweets preprocessing ... 64
5.2 Data to Vector ... 67
5.3 fastFM ... 68
5.4 Cross-Validation ... 70

5.4.1 Cross-validation on stream data .. 71
chapter 6 .. 73

6. Testing and Evaluation .. 73
6.1 Baseline.. 74

6.1.1 Co-occurrence .. 74
6.1.2 Results .. 77
6.1.3 Conclusion .. 80

6.2 Experimental Tests... 80
Chapter 7... 85

7. Conclusion ... 85
7.1 Problem and adopted solutions ... 85
7.2 limitations.. 87
7.3 Future Works ... 87

References .. 88
Appendix ... 91

V

List of Figures
Figure 1 d-dimentional feature space ... 8
Figure 2 rectengular matrix .. 17
Figure 3 square matrix ... 17
Figure 4 representation of an utterance .. 18
Figure 5 overview of fitting a model in ML .. 23
Figure 6 probability distribution estimation ... 25
Figure 7 Testing & Training in ML ... 30
Figure 8 KNN classification method.. 31
Figure 9 Naive Baysian Method .. 32
Figure 10 Support Vector Machine .. 33
Figure 11 Modular Network to determine validity of a 5-gram example 36
Figure 12 3-layer neural network ... 39
Figure 13 Frequency of number of terms in tweets ... 44
Figure 14 System architecture overview .. 49
Figure 15 Expo2015 Data Tables ... 50
Figure 16 Frequency of tweets ... 51
Figure 17 distribution of tweets for each user .. 53
Figure 18 hash-tag distribution in tweets ... 54
Figure 19 word2vec architecture overview .. 62
Figure 20 baseline(co-occurrence) prediction errors ... 77
Figure 21 Top-K prediction error rate .. 78
Figure 22 comparison among top-k and co-occurrence ... 79
Figure 23 Performance comparison among different methods in machine learning . 83
Figure 24 time window effect on the second hashtag prediction 84

VI

List of Table
Table 1 Expo2015 Dataset Overview .. 44
Table 2Most Frequent hashtags in Expo2015 .. 52
Table 3 effect of dimension-reduction on error rate .. 81
Table 4 effect of specialized preprocessing on error rate .. 81

VII

List of equations
Equation 1 feature normalizing .. 20
Equation 2 Linear function ... 27
Equation 3 logistic regression .. 27
Equation 4 log function .. 27
Equation 5 Maximum Liklihood .. 27
Equation 6 classification method ... 28
Equation 7neural network hypothesis .. 39
Equation 8 Compact NN activation formula .. 40
Equation 9 recursive activation NN formula ... 40
Equation 10 TFIDF/IDF formula .. 57
Equation 11 normalized TFIDF ... 58

8

Chapter 1
1. Introduction

Due to the high volume of incoming data in many available social networking services
bring attention to extract valuable knowledge and latent data features. So many
Machine Learning and Data Mining techniques have been proposed to draw data
patterns and subsequently retrieve useful information in text documents. However,
when we are facing a problem with stream data, efficiency of these methods strongly
depends proper application and updating of these patterns and features. This
problem is still an open research issue in the world of text classification (1).
Machine Learning and Information Retrieval has many important applications in
today world, these technologies can be applied in different types of data as well as
text data. However, they are not supposed to use pure textual data format directly
for their statistical analysis and processing. Actually mathematical and statistical
structure base techniques require numerical representation of features to be
received as input which called Feature Vectors, an n-dimensional numerical vector
form of input data samples. We can think of x as being a point in a d-dimensional
feature space1. By this process of feature measurement, we can represent an object
or event abstractly as a point in feature space. (2)

1 https://www.cs.princeton.edu/courses/archive/fall08/cos436/Duda/PR_model/f_vecs.htm

 Figure 1 d-dimentional feature space

9

So we are mapping our data points into these vector features although usually in text
format of the data we face high dimensional vectors including some irrelevant
features and the fact is that the data can also lie near a lower-dimensional. (Ghodsi
2006) So finding a small subset of most predictive features in a high dimensional
feature space is an interesting issue (3). Information Retrieval proposes that word
stems work well as representation units and doesn't concentrate on the words
ordering for many tasks. This leads to an attribute value representation of text. Every
single word ܹ ௜corresponds to a feature, and its value is equal to the number of times
word ௜ܹoccurs in the document. [5]
In text classification recently many approaches use information gain, information
about words correlation or L1 regularization in order to perform the feature
selection. Although currently different deep learning methods using multi-layer
neural network algorithms (Lai and Xu 2015) which can drive the syntactical relation
among features rather than only retrieving them from text and are acting more
efficiently in Text Classification tasks.

1.1- Problem Statement

In traditional text classification problems, the focus was generally on three topics:
feature extraction, feature selection and using different types of machine learning
algorithms (1). In feature extraction or feature engineering, the most widely used
extraction method feature is the bag-of-words. Feature selection aims at reducing
the feature space by throwing out some noisy features and improving the
classification performance. The most common feature selection method is deleting
the stop words (e.g., “of”). Advanced approaches use information gain, mutual
information (Cover and Thomas 2012), or L1 regularization (Ng 2004) in order to
select useful features. Finally, these features could be fed to Machine learning
algorithms often use classifiers such as logistic regression (LR), naive Bayes (NB), and
support vector machine (SVM). However, these methods have the data sparsity
problem.
As an example Bag-of-words is a very well-known representation approach in object
categorization area, widely used in text categorization also developed for image
objects. Nevertheless, this method does not consider word orders in corpus and so
cannot learn semantics of the words. However, these feature vectors are proper
format of input data for machine learning algorithms for further prediction proposes
but not the best case.
Recently rather than developing previous approaches, deep neural networks (Hinton
and Salakhutdinov 2006) and representation learning (Bengio, Courville, and Vincent
2013) have been widely studied in many recent researches and they have advanced
a new idea for solving the data sparsity problem. Also there have been many neural
models introduced for learning word representations (4) (Bengio et al. 2003; Mnih

10

and Hinton 2007; Mikolov 2012; Collobert et al. 2011; Huang et al. 2012; Mikolov et
al. 2013) and lately Convolutional Neural Networks (Lai and Xu 2015) with even
higher performance in text classification.
Consequently, by follow recent research's trends and wide propagation of Neural
Networks we realize the fact that by applying deeper multilayer Neural Networks one
can capture syntactic relativeness and learn deeply representation of the words.
Word Embedding is new neural representation of a word in text documents, so that
there is an equivalent numerical vector for representing each word. Word
embedding’s one of the few currently successful applications of unsupervised
learning. Naturally, every feed-forward neural network that takes words from a
vocabulary as input and embeds them as vectors into a lower dimensional space,
Embedding Layer usually refers to the weights of the first layer (5). This technique
enables us to compute relation among words by using the distance between two
embedding vectors. In this thesis we develop both former and new semantical
representation of tweets as feature vectors and study the predictive behavior of
second hashtags of tweets in time, by comparing different machine learning
methods.
Now a day demands on Stream Data processing has been increased, applying
machine learning methods on stream of contextual information, can be even more
complicated, regardless of its time performance, on the one hand we don't have a fix
number of features on the other hand features value may not stay constant in time.
High volume of data with time varying data distribution can be seen in this view that
subjects and features will not have identical importance and popularity for users all
the time and this can be an issue in feature representation tasks. To solve this
problem, we analyze the second hashtags time-varying patterns and prediction
status in different time frames.

1.2 Original Contribution

The main contribution of this thesis is to extract properly useful features of small
documents like tweets. The first phase starts with data cleaning and preprocessing
of the tweets included many steps and approaches, important fact that we should
consider in this step is meanwhile the elimination of redundant and useless terms in
tweets rather taking care of words which contain useful information for the next step
prediction tasks. For this purpose, many Information Retrieval and NLP techniques
like bag-of-words, NLTK, Gensim, Beutifulsoup have been used, after wards we use
approaches like TF-IDF and CountVectorizer in order to get the final numerical
feature vectors as standard representation of input data to be used in Machine
Learning.
Second phase of this thesis is related to Machine Learning trying to predict the
second hash-tags for any of these small documents (tweets). The main issues can be
the small number of features in each tweet which makes prediction task much more

11

difficult, also huge number of predicted values (second hashtags) which can
definitely reduce the precision of the final results, make low frequency in prediction.
As a remedy understanding the semantic and syntactic relation among these features
can be helpful bringing more useful information about features and reducing the
dimensionality of the output predicted values by finding similarities among second
hashtags. Dimension reduction techniques and Embedding methods can be very
helpful solving this issue (6), methods which use multilayer neural networks can
efficiently provide a solution by getting deep into semantical layers of terms in a
context and by representing them in higher dimension of the problem.
 Next is to apply Machine Learning algorithms and try to predict the second hash-
tags based on the standard procedure we followed in ML prediction tasks starting
from the training data to fit the model and learn how to estimate the prediction
values for unseen testing data. However, in this case with considering the fact that
we are facing incoming stream data and this way we might face with much time
precise predictive behavior in data, like the case where we have almost similar input
feature vector but different second hash-tags or output value in Machine Learning in
different time. So this thesis tries to show this fact and the solution is on selecting
different time windows and wants to show the effect of different window lengths on
the ML tasks accuracy on stream data.

12

1.3 Structure of the thesis

This thesis is organized as follows:
Our thesis starts with a dissertation on the state of the art (chapter 2) of the various
topics which are involved in our research, such as the importance of Preprocessing
and Data Cleaning and techniques to achieve this goal, introduction to the concepts
of text processing, Feature Engineering and its steps, Machine learning science and
several algorithms related to the work,

The next chapter 3,” Problem Setting”, will be devoted to an analysis of the context
of the problem and the ontology of the data at our disposal; it will explain in detail
the importance time precise prediction in our particular case study

In chapter 4” Problem Solving”. We will provide an overview of the architecture of
the system, of its requirements in terms of input data, and algorithms and
methodologies to follow and the logic behind our implementation choices.

The” Implementation experience” will be the central point of chapter 5, where we
will provide some examples regarding the steps of thesis and provide some codes to
get involve in implementation state

Results will be discussed in chapter 6” Testing and Evaluation”, which
will also include some description about a baseline and the comparisons between
the two methods

The concluding chapter 7 will then recap our experience in researching and creating
this application, meanwhile suggesting possible improvements, integrations or
future developments to be made on it in order to take advantage of its virtues or to
put remedy to some of its limitations.

13

Chapter 2

2. State of Art

Massive volume of data spread and stored in world wide web and different data
centers with high speed every moment, one can manage this stream of data in much
more intelligent way to be able to extract latent and valuable knowledge hidden in
this quantity of data. It cannot be an easy task many different approaches and
science should be involved to provide a method which is quick, accurate and
adequate to fulfill this goal which can be have wide range of applications in different
sciences. The very beginning issue is to how to deal with raw data and how to
efficiently prepare it for machine intelligence techniques to handle in more accurate
way. In the following we briefly explain about the theoretical and practical aspects
of a procedure to work on a stream on-line data and extract the desired knowledge.
First we need to explain about the importance of the preprocessing step on the given
data in this thesis. This step was done in 3 steps in this thesis Extraction: extracting
features from “raw” textual data by TF-IDF,Counter-Vectorizer methods,
Transformation: Scaling, converting features Tokenizer ,Stop-word Remover.
Selection: Selecting a subset from a larger set of features.

2.1Data Preprocessing
Usually raw data collections from real word have many annoying deficiencies and
noise to be processed in any further Machine Intelligence processes, they might have
inconsistency problems in names or to be incomplete, with lack of certain attribute
values or even noisy with outliers and errors! These are the very first problems we

14

will face in Machine Learning and Preprocessing is the initial technique to resolve
them (7).
Generally Preprocessing of text data is about changing the original text document
into a structure with the most meaningful features that enable distinguishing
different between text-categories, which is called data mining ready structure. In
other words, the process of preparing a document to step into an information
retrieval system, means that it should maintain good retrieval performance
(precision and recall) (8). It is a crucial step which requires completed process leading
to the representation of each document by a selected set of terms. Main goal in
Preprocessing is to gain the key words or key features from text and to boost
correlation between word and document and the correlation between word and
predicted values in Machine Learning. There are different tasks in data
Preprocessing, based on the data we have given one might skip or modify one or
more steps (9).
Cleaning: the main objective of the primary step is dealing with missing values and
noisy data, identify outliers, and resolve inconsistencies. Missing values in datasets
happens when no data value has been stored for a variable in data samples these
missing data can cause further problem in ML and statistical analysis of the data,
there can be many strategies how to fix them in data preprocessing as well as,

 Ignoring: for numerical features where class label is missed.
 Replace a mean value to missing values (or majority nominal value)
 Use the mean value for all cases belonging to the same class.
 Use ML methods to predict the missing value

sometimes there are several noisy data in the data set consist of different type of
errors and outliers in order to detect these anomalies and smooth or clean the data
the following methods are presented however sometimes we might use experts or
historical knowledge of data to resolve some conflicts.

 Reorganizing the attribute values and partition them into bins
 Smoothing the noise by bin median, means or boundaries.
 Clustering: grouping attributes next detect and remove outliers
 Regression: By functions with different repressors smooth the

noise in data
Integration and Transformation: integrate different data files from several
databases then apply normalization and compression techniques.
Normalization means to check if all numeric attribute values are in their standard
range, it is possible to check their scale to be in specific range for example to
transform V in [min, max] to V' in [0,1] the following transformation should be
applying:

V'=(V-Min)/(Max-Min)

15

Also in case when min and Max are not known scaling is possible by use of Standard
Deviation and Mean:

V'=(V-Mean)/StDev

Then we need to Aggregate all numerical or quantitative attributes and Generalize
the qualitative attribute values and finally replacing reconstructed values by existed
attributes.
Reduction: removing irrelevant attributes, reducing number of samples and reducing
data mass into a lower dimensional space with considering the consistency of the
contexts to have the same analytical results. Many techniques have been proposed
like reducing the number of attributes by grouping them into intervals and clusters,
or replacing quantitative attributes with qualitative ones (Data Discretization) (6).

2.1.1 Text documents Preprocessing
Many of the frequent words in any languages are often considered irrelevant in
Information Retrieval (IR) and text mining. These words are called 'Stop words' (i.e.
pronouns, prepositions). Stop words in English language are about 400-500,
examples of such words include 'the', 'of’, ‘and', 'to'. Removing these non-
informative words from text can be considered as the first step in text preprocessing,
there are many functions providing list of Stop Words in different languages.
Stemming techniques are also used to find out the root/base form of a word.
Stemming turn words into their root form, which cover lots of language-dependent
linguistic knowledge (7).
Strong hypothesis behind Stemming is that same stem form of different words can
represent the same close concept in text so we can replace different word families
with their equivalent stem. For example, the words, user, users, used, using all can
be stemmed to the word 'USE'. There are many algorithms for stemming the most
popular one in English is Porter Stemmer algorithm. Working in this way that a
consonant will be denoted by c, a vowel by v. A set of consonant like ccc... of length
greater than 0 will be denoted by C, and a set vowels vvv... of length greater than 0
will be denoted by V. Following the basic rule in English language a word has one of
the four forms:
 CVCV ... C
 CVCV ... V
 VCVC ... C
 VCVC ... V

Document Indexing is another step in Text Preprocessing in order to enhance the
efficiency we can use a selected list of words from a document to be applied for
indexing the document. Document Indexing consists of choosing the efficient set of

16

terms based on the whole corpus of documents, and devoting numerical weights to
those terms for each particular document, thus transforming each document in to a
vector of keyword weights. The weight normally is related to the frequency of
occurrence of the term in the document and the number of documents that use that
term.

2.1.1 Co-occurrence
Co-occurrence analysis has been widely studied in many researches focusing mainly
on the domain of Text Analysis, Text Mining and Content Analysis in general. In fact,
it is coincidence or more generally the frequency of occurrence of two words from a
corpus considering their orders. Mainly it aims at pairwise meaning similarities
among words also clarify similarity of semantic within word patterns (10).
In fact, co-occurrence is a primary method to find out semantic correlation among
words. Based on the distribution theory similar words appear in similar documents
means that they co-occur with similar other words. Accordingly, rather than applying
co-occurrence of two words as the scale of their similarities one can have a
comparison with this technique among the words with all other words in the
document by defining Co-occurrence Distribution for each term as the distribution
of average weight of the term in all the documents where that word appears, this
concept opens more doors to the “semantic similarity” of two terms. The co-
occurrence distribution of a word can also be compared with the word distribution
of a text. This definition gives us a measure to determine the importance of a word
in a text and therefore can be helpful to include co-occurrence information to
identify relevance of keywords with a text (11).
In particular, with aim of statistical tools, the theory of meaning is a mandatory in
accounting for two main processes, the method to organize the terms and texts (raw
data) into matrix form and an approach in order to represent the outputs in any of
the table or graph shape. In other words, it is about the process of converting words
into numbers and tables and/or the graphs and vice versa.
At the beginning we need to get deep in representing raw data into matrix form as
vector-space modeling, so that each document as a data sample is in a vectorial form
of all terms co-occurrence within that context. Also each word here is represented
as a vector of all documents which it occurred there.
Subsequently to test terms behavior in “semantic space” we need to take into
account stemming and definition of words, if ܹ ܥ = ሾݓଵ, ,ଶݓ . . . , ௡ሿݓ ∈ denotes theܥ
co-occurrence (WC) of two or more words (௜ܹ) within the same context (C), an
operational approach need to know exact description of the terms as “word” and
“contest”. So that one should clarify how he represent the words. As an example if
there are different forms of an ordinary verb (e.g. “show”, “shows”, “showed”,
“showing”) whether these terms are encoded as four different terms or just as one
stem word of those (e.g. as the root term “show”)
Consider in an analysis problem we have a data matrix that each row-vector is a

17

document or context unit ሺܿଵ, ܿଶ, … , ܿ௡ሻand each column-vector represents a
different word ሺݓଵ, ,ଶݓ … , ௡ሻ Representation of data in each document is encodedݓ
in a binary format where (“1”) indicates word presence and the absence is
represented by (“0”) (12). We can obtain a representation as in Fig. 2

By a simple conversion equivalent Square Matrix is obtained which is transformation
of the primary data (Fig. 4) 4 here the words are row and column headings while each
cell contains the number of context units in which the word ௜ܹ co-occurs with the
word ௝ܹ; but, to illustrate the argument, we can refer to the representation in Fig. 3

2

2 www.soc.ucsb.edu

Figure 2 rectengular matrix

Figure 3 square matrix

18

The question is: using a similar representation, in which each word has a sole
attribute (i.e. it is, together with other words, an “element” of the same set), which
kind of meaning can we extract and analyze? Or rather: what kind of meaning can we
infer? Also given that, in order to “extract” meaningful patterns, co-occurrence
analysis requires comparison.

2.2 Feature Engineering
In machine Learning Features are measurable property of the input data, they are
usually numerical but we can also use qualitative or structural form of features such
as strings or graphs. It is crucial to select intuitive and informative features of data to
improve the efficiency and performance of Machine Learning. Usually to collect all
features of the input we might face a huge and redundant set of raw features which
need to be organized in many aspects so that be ready for ML and Pattern
Recognition applications and will aid in learning process. A set of numerical features
is called Feature Vector this numerical representation of objects will facilitate many
statistical and mathematical methods in ML (13).
Feature Engineering is a vital process to ML, which is about using knowledge of raw
data and transform it to the features that can represent data more efficiently to
predictive models so that the better preparation of features the better the model
result with unseen data.
Actually Machine Learning in general will learn the solution in the training phase and
with the sampling data (14). We need Feature Engineering to find the best
representation of sampling data to efficiently help ML algorithm learning the solution
in your problem case.
To clarify this approach, imagine a text categorization problem where the task is to
train a model for classifying a given document as spam and not spam. If we represent
a document as a bag of words (unigrams), the feature space consists of a vocabulary
of all unique words present in all the documents in the training set. For a collection
of 100,000 to 1,000,000 documents, we can easily expect hundreds of thousands of
features. If we further extend this document model to include all possible bigrams
and trigrams, we could easily get over a million feature which is not an ideal case
because high ratio of these features are not really useful and unnecessarily will
increase the complexity.
To track process of Feature Engineering one needs to follow the ML process as well.

Figure 4 representation of an utterance

19

A picture relevant to our discussion on feature engineering is the front-middle of this
process.

1. Data Collection: Integrate data, collect it together.
2. Data Preprocessing: give a Format to data, clean it from outliers.
3. Data Transformation: where Feature Engineer happens.
4. Model Evaluation: find a model and optimize it.

Feature engineering can be an iterative method until the time that these features are
suitably fits into the selected model the process can be seen as following:

Brainstorm features: based on the problem, search for all possible features
Devise features: apply feature extraction and construction
Select features: feature selection based on the scoring process
Evaluate models: Estimate model accuracy on unseen data using the chosen
features.

2.2.1 Features Extraction
In Machine Learning we cannot feed the algorithms with raw data. Data might consist
of different quantitative and qualitative features but Machine Learning algorithms
have mathematical or statistical background so a transformation is needed to create
an acceptable data format out of the original data. Usually data is consisting of fixed
number of features (input variable or attributes) with different types, binary,
continuous or categorical. So finding good data representation is important task this
representation format is called Feature Vector, a numerical representation of
features of each data sample (15).
Converting “raw” data into a set of informative and non-redundant features
sometimes need some human expertise, also its construction can be developed by
several automatic methods or sometimes it can be integrated during model
processing (e.g. the “hidden units” of artificial neural networks) (15). Sometimes
feature construction has been accomplished at Preprocessing phase. To explain the
steps first we need to introduce some notations. Let x be a pattern vector of
dimension n, ݔ = ሾݔଵ, ,ଶݔ … , ௜of this vector are the originalݔ௡ሿ. The componentsݔ
features. We call ݔ଴ a vector of transformed features of dimension ݊଴
For example, consider, a feature vector like ݔ = ሾݔଵ, ଵ is a height inݔ ଶሿ whereݔ
centimeters and ݔଶ is a width in meters. In order to enable these features for further
comparison and mathematical computations we need to normalize them by scaling
and centralizing the data as the following:

20

଴௜ݔ = ௜ݔ − μ௜
௜ߪ

 Where μ௜ and σi are the mean and the standard deviation of featureݔ௜over training
examples.
While constructing features different cases might show up. For example, to deal with
structured or ordinal data there are convolution methods which are trying to
manipulate or encode the data into an informative feature. Also high dimensional
data can be projected into lower dimension data by maintaining as much information
as possible. Well-known approaches are Principal Component Analysis (PCA) and
Multidimensional Scaling (MDS) (Kruskal and Wish, 1978).
Feature extraction requires elimination in the number of assets in data
representation this can be important because great number of features need huge
amount of memory storage and will slow down the computation speed, so while
working with completed huge datasets the key point is to prune inessential part of
data and find informative and key variables of data. Poor Feature Extraction can
cause further problems in classification tasks like “over fitting” and further inefficient
generalization problem with test data.
In particular, we should be careful about not losing information at the feature
construction stage while projecting and eliminating the features. It may be a good
idea to add the raw features to the preprocessed data or at least to compare the
performances obtained with either representation. It has been recommended that
missing on the side of being very comprehensive worth risking in useful information
elimination.

2.2.2 Features Selection
Feature selection is the process of selecting subset of features which are the most
relevant with the training and generalization tasks in ML. For example, in Text
Categorization, effect of feature set size on the performance is an early concern.
Finding optimal subset of variables is NP-hard, usually we need some basic ML
information and measurements on feature space Fi like correlation coefficient and
prediction accuracy to be examined on a validation set. Methods usually use a sub-
optimal greedy search algorithm (16).
However, Feature Selection is not exactly a Dimension Reduction problem. While in
dimensionality reduction the process is based on different projections to create new
combinations of features in a dataset, but in feature selection by adding and
removing existed variables in the data finalize the feature vectors without changing
them.

Equation 1 feature normalizing

21

Different methods are proposed so far; one can be filtering method. Base constraint
the univariate of the method which is based on independency of features. By
statistical computations, features selection is based on their corresponding scores to
be selected or to remove (17). Another method can be Embedding Methods; the
most well-known one is generalization methods. With this case only features with
greater effect on boosting the accuracy of ML models will be selected. This method
is also called Penalization base on the extra concentrations on the optimization of
predictive ML algorithms that can bias the model to less coefficients and therefore
lower complexity (e.g. LASSO).
Generally, with feature selection we should always consider several principles like,
constructing a proper and normalized 'ad hoc features' from the domain knowledge.
With independent features we need to develop sets by product of features and
constructing conjunctive features. Also based on the predictive methods are used
one should use different selection methods, like with linear predictors forward
selection with “prob” or zero norm embedding methods should be applied, if you
have enough data and computational resources then any backward selection,
correlation coefficient or embedding methods can be compared and any linear or
non-linear model can be combined with the best selection method.

22

2.3 Machine Learning:
Machine Learning has been considered as a novel knowledge which began almost
with the birth of computer science but if we look at past human efforts on make
machine learn to do some tasks automatically we will face a great historical
background related to this knowledge where at 1642 Blais Pascal designed the first
mechanical adding machine just able to add and subtract and mainly consists of
wheels and gears, later in 1890 Herman Hollerith create new version of mechanical
calculation with further functionalities for huge statistical computations which was
quit faster and worked with punch cards. Finally, the first calculation machine with
contribution of electronic was built at IBM in 1945 (Mark I), but the first fully
electronic computer (ENIAC) in 1946 was the turning point. So far people were trying
to build aromatic machines able to process high level computations much faster than
humans. But later they go further trying to make machine learn several
functionalities and train it for decision making problems.
In 1952 Arthur Samuel used the game of checkers to create the very first learning
program in IBM. The algorithm behind it was kind of 'Supervised learning' which
observed which acts were wining strategies and adapted its programing to merge
those strategies. In 1990's Machine Learning has wide range of applications in Text
Learning, Adaptive application, Data Mining, web applications and language learning
and further progress continued on Supervised, Unsupervised and Reinforced
Learning methods it also brought explosion in Adaptive programing which cause
advanced in optimization problems and enhancing the accuracy of process.
Machine learning apply different computer algorithms for learning from data to do
several tasks, these tasks can be making decisions, completing tasks, make prediction
based on available information or to behave intelligently. In fact, Machine Learning
(ML) is studding deeply some amount of data or observations and learn to act better
in the later with unseen data according to what was experienced before. These data
can be such as samples, instructions or direct experiences (18). The main goal and
overall emphasis of machine learning is to do the learning task automatically without
human intervention and we rely on computer abilities to learn the learning algorithm
by its own and only based on training process.
ML has a very close relation to statistics so that as like statistical learning methods. it
is trying to build a model from input data samples and in both cases the goal is to
learn from this model given data to find the predictive behavior of data, but the
difference is that in ML after building the model we have data-driven predicted
values rather than following a strictly statistical instruction to produce the output
(19). Therefore, they are both same consents but they are represented in two
different ways, with the same goal.
Building model out of data cannot be a clear consent in the first step however it is a
very important part in ML. Data model represents relationship between data
variables in order to predict the output, this model can as any type of parametric or
non-parametric function but in general there is a constant terminology in all problem
cases that the observed data are used to build the model and the output of this

23

model given the observed data is demanded predicted value:

3

Representing two main categorization of methods in ML can be useful for better
understanding the machine learning approach, the first categorization can be based
on given tasks which can be, Supervised Learning, Unsupervised Learning and
Reinforcement Learning (18).
Supervised learning methods are involved in building a model for predicting, or
estimating, an output based on one or more inputs. The input data is called training
data which is a pair of data and its corresponding known label, supervised learning
problem can be formulated as follows.
Let ሼሺݔ௜, ௜ሻሽ௜ୀଵேݕ be a set of N training examples. Each example can be considered as
a pair of ሺݔ௜, ௜ݔ ௜ሻ, whereݕ = ൻݔ௜,ଵ, ,௜,ଶݔ … , ௜ݕ ௜,்೔ൿ andݔ = ൻݕ௜,ଵ, ,௜,ଶݕ … , ௜,்೔ൿ. As anݕ
example in part-of-speech-tagging one pair in the form ofሺݔ௜, ௜ሻmight consist ofݕ
௜ݔ = ℎܽݐℎݐ݅ݓݏ݁݅ݎ݂ݐ݊ܽݓݑ݋ݕ݋݀ۦ ۧ and
௜ݕ = .ۧ݊ݑ݋݊݋ݎ݌݌݁ݎ݌݊ݑ݋ܾ݊ݎ݁ݒ݊ݑ݋݊݋ݎ݌ܾݎ݁ݒۦ
The aim is to construct a classified as h that can estimate the predicted value of a
new unseen label sequence ݕ = ℎሺݔሻ
Training pairs can be considered as cases when our input data xi is an email and the
corresponding label ݕ௜ is either spam or not-spam. The model further will be built
trough a training process, where we select a type of model among wide range of
available models and then by feeding the training data to the candidate model and
predicting the output using training data and the model we can tune the model and
correct the model when these predicted values are actually wrong. This iterative
training process continues until the candidate model achieves a desired level of
accuracy on the training data. Problems of this nature occur in fields as diverse as
business, medicine, astrophysics, and public policy.
For example, a Supervised learning with emails as input and two outputs or response

3 ISLR

Figure 5 overview of fitting a model in ML

24

to any input as Spam or Non-spam. First we are given bunch of email contents that
have been “tagged” for some feature, like spam/non-spam (classifiers). Use these
email documents as a training set that produces a statistical model. Apply this model
to new email. Retrain model on larger/better dataset to get improved results. This
sort of Machine Learning approach has several useful properties that make it possible
to easily measure the error (because we have known all possible predicted value)
enhance the accuracy of the model.
In contrast, Unsupervised learning describes the somewhat more challenging
situation in which for every observation i = 1, ..., n, we observe a vector of
measurements ݔ௜ but no associated label ݕ௜. In this setting, we are in some sense
working blind; the situation is referred to as unsupervised because we lack a
response variable that can supervise our analysis. The main challenge is that the
approach here tends to be more subjective, and there is no simple goal for the
analysis, such as prediction of a outputݕ௜. Unsupervised learning is often performed
as part of a heuristic data analysis. Also it is not easy or even possible to check the
outcomes obtained by this methods, since there is no general mechanism for
validating the results.
Imagine the case when we have N observations likeܺ = ሺݔଵ, ,ଶݔ … , ேሻand we wantݔ
to estimate correspondingݕ௜for eachݔ௜ in the observation data without any
supervisor or degree-of-error. In Unsupervised learning the dimension of X is usually
much higher than in supervised learning. The main difference is that here we have
no prior information about output in the training set so the output is estimated based
on similarities among several properties of the input data. This lack of knowledge
about exact features of the output or response value make further problem in
checking the correctness of the model.
Reinforcement Learning is the third task in this category in ML which is also a branch
of Artificial Intelligence, can be defined as learning how to map situations to decisions
or actions so as to maximize the rewards. In this case we have an agent who is
interacting with surroundings and has a goal, both the agent and the environment
have several states, according to the state which the agent can perceive, he will
choose an action the learning section is refers to the signal award dedicated to the
agent based on the selected action, agent can adapt his behavior by time based on
the feedback on his behavior this reward feedback is known as the reinforcement
signal. Reinforcement learning can be seen as a kind of problem for which there are
many different algorithms and solutions.
 To recall in machine learning we have set of input data ܺ = ሺݔଵ, ,ଶݔ … , ேሻwhereݔ
each xi can be a vector of features of its data sample, we have a model that its task
is to estimate the output corresponding to each ݔ௜ as ݕ௜ The other popular
categorization of machine learning methods can be seen from the view of output
type of the problem. We have 5 main classes; Classification, Clustering, Regression,
Density Estimation, Dimension Reduction.
 Classification is one of the most well-known techniques in machine learning that has
been widely used in different fields like semantic analysis, risk assessment, computer

25

vision and many other fields. The main goal or the main difference of classification
with other methods is that here the predicted value is a qualitative and discrete
which is called classy from some input x. this topic will be explained more in detail in
the next section.
Although if the predicted value is quantitative and continuous then the case is a
regression problem. Generally, we assume regression methods as a subset of
supervised Learning methods, because the standard regression models can be used
in the machine learning framework to learn from the training data and provide
outcome predictions based on the inputs. Several example of supervised learning
methods, that apply regression-based methods can be generalized linear models,
logic regression, and regularized regression and tree-based methods like decision
trees and random forests.
Density estimation is an unsupervised learning method in machine learning which is
trying to learn the correlation among features of a data. In fact, each data sample is
considered as a vector of corresponding features of that input data (20). These
attributes or features are random variables which can be any of types of continues
or discrete. When we talk about random variables, probability theory always takes a
part. So in order to learn from data we need to learn the probability density of the
features:

Data: ܦ = ሼܦଵ, ,ଶܦ … , ௜ܦ ௡ሽܦ = ௜a vector of attribute valuesݔ
Attributes:

 modeled by random variablesܺ = ሼ ଵܺ, ܺଶ, … ܺௗሽwith
continuous or discrete valued variables

Density estimation attempts to learn the underlying
probability distribution: ݌ሺܺሻ = ሺ݌ ଵܺ, ܺଶ, … , ܺௗሻ

With considering two important facts that these samples are from same distribution
but independent from each other, the goal actually is to compute the probability
distribution over variables ܺ௜ , P(X) using examples in D (18).

 Figure 6 probability distribution estimation

26

In many problems, we are facing high-dimensional data vectors but for many reasons
like computational complexity or achieving higher accuracy, we try to make the data
lie near a lower-dimensional manifold. In fact, high-dimensional data are multi fold,
complex evaluation of an underlying source, which cannot be directly computed.
Projecting the data into a lower dimension problem can aim on learning a suitable
low-dimensional manifold from high-dimensional data which is equivalent to learn
this underlying source.
Dimensionality reduction can be defined as the process of deriving a set of degrees
of freedom which can be used to reproduce most of the variability of a data set.
Consider a set of images produced by the rotation of a face through different angles.
Clearly only one degree of freedom is being altered, and thus the images lie along a
continuous one-dimensional curve through image space.
Regardless of different categorizations in ML we face several general difficulties in all
cases. Model in ML can be a mathematical or statistical function F(X) which is
supposed to receive the input data and estimate the output value Y. There are wide
ranges of functions from linear or non-linear, Parametric or non-parametric and etc.
Choosing proper model needs vast information on the distribution and behavior of
data. In fact, this function is helping us to model the data and to learn from the data,
so it is obvious that we cannot estimate these predicted values with no error!
Reducing this error and increasing the accuracy can be seen as another important
issue in this regards. However by concentration on the model and increasing some
factors like degree of freedom or reducing the training error one can increase the
accuracy on training data where new problem will be Bias-Variance trade-of which in
summary happens when you are trying to reduce the training error and learning the
data as much as possible by enhancing accuracy of the model on training data
(increasing degree of freedom and consequently increasing the bias of the model)
but on the other hand the final test error is not decreasing as well which means we
are not really acting well on the unseen data. Understanding and coping with such
tasks is not really easy and need enough knowledge and experience in this regard.

2.3.1 Classification
In Many cases, the output is qualitative. For example, eye color is qualitative or
categorical, taking on values like black, blue, brown, or green. In this chapter, we
study approaches for qualitative responses a process known as classification which
is generally the main ML method used in this thesis. Predicting a categorical output
for a observed data can be referred to as classifying that observation, since it involves
allocate the input data to a class (17). Strategy for methods in classification problems
is to first predict the probability of each of the classes for all of the output variables
as basis for making the classification, so far it is something similar to regression.

27

Also in classification setting we have a set of training dataሺݔଵ, ,ଶݔଵሻ,...,ሺݕ ଶሻthat areݕ
used to make a model which here is called a classifier. The main goal of the classifier
is performing perfectly both on the training data also on the test set which are not
applied in the train set.
In the following we would like to give a high level example of one of the classification
methods in a simple case. Instead of modeling directly the categorical outputs Y a
method name logistic regression can model the probability that Y belongs to a
specific class label. We need to model the relationship between P(X)=Pr(Y=1|X) and
X, in linear case we have the following:

ܲሺܺሻ = ଴ߚ + ଵܺߚ

we also have a function for modeling P(X) which is called logistic regression and is as
the following:

ሺܺሻ݌ = ݁ఉబ + ݁ఉభ௑
1 + ݁ఉబ + ݁ఉభ௑

by playing with this form and taking log of it the other form of logistic regression can
be the following:

݃݋݈ ቆ ሺܺሻ݌
1 − ሺܺሻቇ݌ = ଴ߚ + ଵܺߚ

in order to fit or learn this model we should first estimate the unknown parameters
,଴ߚ ଵ based on the training set. For linear coefficients east square approach can beߚ
used but in nonlinear models Maximum Likelihood is a very common approach for
learning the models. In fact, also least squares can be considered as a special case of
maximum likelihood, the formula is the following:

݈ሺߚ଴, ଵሻߚ = ෑ ݌
௜:௬೔ୀଵ

ሺݔ௜ሻ ෑ ൫1 − ௜ᇲሻ൯ݔሺ݌
௜ᇲ:௬೔ᇲୀ଴

Only those estimates of ߚ଴, .ଵ are chosen to maximize this likelihood functionߚ

Equation 2 Linear function

Equation 3 logistic regression

Equation 4 log function

Equation 5 Maximum Liklihood

28

2.3.2 Text Classification
The main subject area in classification here in this thesis is focused on text data, this
type of problems is usually known as Text Classification. Here we are given a
exposition of a document where X can be considered as a document space
which is a high dimensional space, plus a fixed set of human-defined categories or
classes. Each of the documents can be in multiple, only one or no class at all:

ܥ = ൛ܿଵ, ܿଶ, … , ௝ܿൟ
For instance, China and documents that talk about multi-core computer chips above.
We are given a training data observation set ܦso that in this set we have pair of each
document and corresponding label of it, w݀ۦ, ܿۧhere ݀ۦ, ܿۧ ∈ ܺ × :For example .ܥ

,݀ۦ ܿۧ = ,݊݋݅ݐܽݖ݅݊ܽ݃ݎܱ݁݀ܽݎ݈ܶ݀ݎ݋ℎܹ݁ݐݏ݊݅݋݆ݏ݅ݎܽܲۦ ۧ݁ܿ݊ܽݎܨ
for the one-sentence document Paris joins the World Trade Organization and the
class France.
As before the main goal is to learn from this method so we are seeking for a learning
process to learn the classifier or classification functionߛthat maps text documents to
categories:

:ߛ ܺ → ܥ
Obviously it is a supervised learning because a supervisor (the human-defined classes
and labels training documents) exits to address the learning process in order to
prevent categories overlap each of the classes are treated as a separated binary
classification. We denote supervised learning function byГand write Гሺܦሻ = .ߛ
As before this learning model Г receive an input training set asܦto estimate and to
learn the classification method ߛ, the first step in Text classification is to convert the
documents which are strings of characters into a suitable representation for the
learning algorithms (20). In text classification terms or words are taken as features,
these features are internal to the classification function and there are many
approaches to modify these features to a desired format or even to build new latent
features variable these methods and processes are referred to Feature Engineering,
so far feature engineering was mainly done by human rather than a process done by
Machine Learning but now a days different factorization methods are presented
which can wisely extract useful latent features from text (21). Acting good enough
on feature engineering will cause notable improvement in final Classification
performance.
Here words are brought together in sets and groups with similar effects on the
classification task. For example, dates, chemical formulas or Identification numbers
like ISBNs. Using these terms straightly in vocabulary set will increase greatly the size
of the set although they do not really convey any information or power in
classification function (22). So to reduce the size of features and maximize their

d ∈X

Equation 6 classification method

29

efficiency one should transform these terms in to an equivalent subset like regular
expressions rather than accuracy enhancement this way we can also speed up the
classification task.
From Information Retrieval research it has been cleared that words root (stems) can
work in advance for representing the document terms so that their order in the
document even not that important. Considering this important fact in IR we will find
an efficient feature representation for text. In this representation model we store
features in text which are words in the document asݓ௜, with the number of times
that the word appears in that document which is the value of each feature (word).
As explained before unnecessary features like “stop words” or infrequent terms will
be discard from the feature space. So even with this presentation we might have a
very high feature dimensional space with 10000 features or more so feature selection
is needed. Scaling the dimensions of the feature vectors has been affirmed by IR to
the inverse document frequency “IDF”.
One of the most endorsed representation methods for text classification is bag-of-
words (23). When we have a set of documents and by using bag-of-words (BoW) we
want to create the feature vectors, first model learns a vocabulary set from all the
documents, then models each document by the words frequency or counting the
number of times each word appears in that document. For example, consider the
following two sentences:

Sentence 1: "the green pot is on the table"
Sentence 2: "the table and the green pot are in the room"

From these two sentences, our vocabulary is as follows:

{the, green, pot, is, on, table, and, are, in, room}

To get our bags of words, we count the number of times each term appear in each
sentence. In Sentence 1, "the" appears twice, and ''green'', ''pot'', ''is'', ''on'', ''table''
each appear once, so the feature vector for Sentence 1 is {the, green, pot, is, on,
table, and, are, in, room} which by considering number of words occurrence in the
sentence we have features for each sentence as the following:
Sentence 1: {2, 1, 1, 1, 1, 1, 0, 0, 0, 0}
Sentence 2: {3, 1, 1, 0, 0, 1, 1, 1, 1, 1}

in many data sets we have a lot of data samples like sentences here, which will cause
a large vocabulary. To limit the size of the feature vectors, we should choose some
maximum vocabulary size. (remembering that stop words have already been
removed)

30

Last approaches on text classifiers is focused mainly on only a set of categorized
training samples that are classified manually and has lower cost to be produced. By
learning from a pre-classified training set a classifier can be designed. This means
that in supervised learning a classified set is needed in the training set which can
perceived as a disadvantage because the ML final precision is depends on the the
state efficiency of the data samples.
Totally there are two main type of text categorization proposed so far, ML based or
Rule based techniques, in rule based approaches the document is classified based on
already manually designed rules. Difference in ML approach is that these facts and
comparisons is mainly based on the classified documents which can build automatic
rules, here we have a lower precision than rule based approaches. Different
examples of these approaches are described in the following.

 K. Nearest Neighbor (KNN) is a non-parametric algorithm (does not make any
assumption on the distribution of the date) used for both classification and
regression. In many cases, it happens that the data is not submitting any scientific
hypothesis on its distribution like when we have Gaussian mixture for this cases non-
parametric methods like KNN can be useful this method does not need any
generalization from the training set which means that it doesn't need to have test
set all learning and testing processes are applied in one step and only on one training
input sample so in these type of method learning process and the final output or
decision is based on the training set(or subset of that) (24). KNN assumes data in a
metric feature space for this reason data can have the concept of distance in such
space (24). It works in a way that a label of data sample is set with regards to the
most common label among k nearest training data (with the smallest distance from
the data subject). This Method Perform well on multi-class text classification
assignments although from time-consumption point of view when we have a large
set of training documents it will take more time to be proceed with KNN.

Figure 7 Testing & Training in ML

31

4

Naïve Bayes classifier is a supervised approach using the fundamental concepts in
probabilistic theory and statistics, a very powerful method based on Baye's theory. It
can solve predictive problems and is able to measure uncertainty about the model
based on the probability distribution of the output values. Posterior Probability of
each input textual samples belonging to specific category is calculated based on prior
probability of that class labels and the likelihood of the data (measured data) so that
it assigns document to the class with the highest posterior probability. A very strong
assumption in this model is based on independence of features of the document.

4 www.ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4342786

Figure 8 KNN classification method

32

A Support Vector Machine is another supervised classification algorithm that has
been extensively and successfully used for text classification task. Method define
decision boundaries based on the concept of decision planes that. A decision plane
is one that separates between a set of objects having different class memberships.
As in text categorization we usually have a hight dimensional input space which
means that we have huge number of features which are corresponding informative
terms in the document, but learning from this complex data space is not easy and we
need to deal with it in order to find a proper hyperplane and be careful about bias-
variance trade-of to prevent over fitting. In SVM we need to build a hyperplane
between data samples from different classes, by mapping the problem into a higher
dimensional space we can find the even non-linear hyperplane between different
classes of data. Most text classification problems are linearly separable: All categories
are linearly separable and it declares that the SVM hyperplane should be linear in
text classification. In the Following image5 it clarifies how the method find a proper
hyperplane by mapping input data to a higher dimension feature space:

5 .http://www.kdnuggets.com/2016/07/support-vector-machines-simple-explanation.html

Figure 9 Naive Baysian Method

33

2.3.2.1 Short-text Classification
With the boom of e-commerce and social media, short texts, such as instant
messages, micro-blogs and product reviews, become more available in diverse forms
than before. These short forms of documents have become convenient
presentations of information (25). It is becoming more and more important to
understand those short text documents and to efficiently detect what users are
interested in. Unlike long documents such as news articles and blogs, it is hard to
measure similarities among these short texts since they do not share much in
common (Phan et al., 2008). This poses a great challenge to short text classification
(STC).
The task of short text classification can be described as follows: given a short text S,
the aim is to identify its target theme T. Several supervised learning approaches have
been proposed for short text classification. They have been shown to be effective
and yielded good performance. These approaches are effective because they
leverage a large body of linguistic knowledge and related corpora. However, the
supervised learning approaches depend heavily on manual annotation, which is labor
intensive and time consuming, and often suffer from data sparseness.
To tackle the above problems, we exploit word embedding. A word embedding W:
words→Rn is a distributed representation for a word which is usually learned from a
large corpus (26). Many researchers have found that the learned word vectors
capture linguistic regularities and collapse similar words into groups (Mikolov et al.,
2013b).
In micro-blogging services such as Twitter, the users may become overwhelmed by
the raw data. One solution to this problem is the classification of short text messages.
As short texts do not provide sufficient word occurrences.

Figure 10 Support Vector Machine

34

2.4 NLP
Natural Language Processing (NLP) is a research field or application in computer
science demanding to analyze the way a computer can learn and employ the text or
speech to accomplish further assignments and learning processes. By exploiting ML
and studding patterns in data NLP have been succeed to enhance many self-
understanding programs. In fact, by simulating the between human binges behavior
of using and understanding the language, NLP goals can be reached which means
that many different sciences fields like psychology, robotics, AI, computer
engineering and mathematics can be involved in this area of research.
As a matter of fact, natural language refers to the common languages like English,
French, Persian etc. which is hear or spoken by people all over the world for
communication, every language can be seen as a mechanism with a collection of laws
and tokens where tokens are synthesized and exploit to transfer information, but
rules are used to arrange and handle these tokens (8). Natural Language Processing
as a subfield of Artificial Intelligence gather all the tools and techniques to make
machines understand all textual elements and fundamental in human languages.
There are wide range of NLP applications like text processing, multilingual
information retrieval, speech recognition, machine translation and artificial
intelligence.

General steps in NLP can be 5 as the followings, the first one is to split the text into
paragraphs, sentences and terms and determine or investigate all the terms and
expressions in that text and related to the language vocabulary, the lexicon is the
vocabulary of a language, this step is called Morphological and Lexical Analysis.
Second step is Syntactic Analysis which is mainly refer to the grammar of the
corresponding language which means by analyzing the words in a sentence from
grammatical point of view the machine can detect sentences which are
grammatically wrong in that language this can be done based on structure of the
terms in that sentence and their orders (27). Next can be Semantic Analysis where
we analyze the meaning of the context by mapping the syntactic structures extracted
from syntactic analyzer to the terms in the scope of task for example “brightless
room” which would not be accepted at this step by the analyzer because bright less
does not make any sense (4). Discourse Integration is the 4th step where for the
meaning investigation we should also consider the sequential sentences in a text
which clarifies that the meaning of the current sentence is related to the previous
sentences for example pronouns like “they” refers to several objects already pointed
in the former sentences. Finally, the last step which is Pragmatic Analysis which is
investigating the interpretation the concept of sentences rather than only the
meaning of each sentence this way we can drive the purpose of the language in
different situations.

35

2.4.1 Word Embedding

we have already explained about different data representation methods which has
been used in feature engineering or for text document representations but here after
a brief description of NLP we can propose a recent approach more specific in word
representation, as a collection of feature learning and language modeling
approaches. The process is to reduce the dimensionality of the document features
or terms by projecting them into a lower dimensional space then each term can be
represented with a scalar vector. Many methods can be used in this regard,
supervised or unsupervised approaches like probabilistic methods, neural networks
or dimension reduction techniques.
Word embedding is also called distributed word representation, word embedding is
dense, low dimensional, and real-valued vectors representing terms of a document.
consider an embedded feature space where each dimension is the latent features
trying to contain well-formed and syntactical linguistic attributes, in fact this kind of
representation is trying to cluster huge number of data and obtain a compact
representation of these features. Usually with neural network methods one can
obtain a sufficient predictive model (Bengio, 2008) but not so fast adequate to the
size of the vocabulary although many approaches presented recently to reduce this
linear dependency on vocabulary size and enable processing of very large documents
(Collobert & Weston, 2008; Mnih & Hinton, 2009)
as we are mainly involved with language terms or words in NLP so the way of words
representation can play an important role and based on what mentioned before
researchers get to this point that considering every single word or even selected ones
as features symbol is not really an efficient way and rather they understand that
considering the similarity and dissimilarity among words. Word embedding found on
Harris distribution hypothesis which has been widely used in NLP specially in the
word representation area and affirms that terms in similar context have the same
meaning. Based on this distributional assumption one can describe a matrix M to
represent word terms in different context so that each row i corresponds to a word,
each column j to a context in which the word appeared, so each matrix element
represents a measurement among a word and a context (28). This way the
dimensionality reduction operations can be applied on rows of this matrix were
words are placed. Even better representation can be when for every word in this
matrix we have a dense vector which can contain more useful syntactical and
semantical information of the corresponding word, this recent type of
representation can be achieved by models inspired from neural-network modeling
which has been perform well in a variety of NLP tasks and referred to as “neural
embeddings” or “word embeddings”.
So in fact it can be seen also as a deep learning field of research, a word embedding
W:words→Rn is a parametric method to map words in some language to high-

36

dimensional vectors. At first W is initialized with some random vectors for each word
but later it will learn to update its vectors and have a more meaningful vector for
further knowledge extraction tasks. While it is clear that the training objective
follows the distributional hypothesis – by trying to maximize the dot-product
between the vectors of frequently occurring word-context pairs, and minimize it for
random word-context pairs. For example, using this approach it is possible to
understand whether a sequence of n words (n-gram) is valid or not in the following
you can see a famous 5-gram example from Bottou (2011):
In this example we have a 5-gram sequence (“cat sat on the mat”) then break part of
it replacing one word with a random one like (“cat sat song the mat”), obviously this
sentence is no more meaningful.

6

 This model will run each word in the 5-gram through W to get a corresponding vector
representation of each word and feed those into another ‘module’ called R which
tries to predict if the 5-gram is ‘valid’ or ‘broken.’ Then, we’d like:

R(W(‘‘cat"), W(‘‘sat"), W(‘‘on"), W(‘‘the"), W(‘‘mat")) =1
R(W(‘‘cat"), W(‘‘sat"), W(‘‘song"), W(‘‘the"), W(‘‘mat")) =0

To enhance higher accuracy, we can play with parameters in W and R, however we
are more interested in learning W. Generally, this type of words mapping provides
lots of discriminative information to us, so that similar words in the word space are
close to each other. In other words, we can get to this concept also in the words
embedding space which also in that case similar words are closer to each other. It
seems natural for a network to make words with similar meanings have similar
vectors. If you switch a word for a synonym (eg. “a few people sing well” → “a couple
people sing well”), the validity of the sentence doesn’t change.

6 www.colah.github.io/posts/2014-07-NLP-RNNs-Representations/

Figure 11 Modular Network to determine validity
of a 5-gram example

37

2.5 Neural Networks
Neural network (NN) is a network of simple processing units called neurons which
are connected to each other and each processor is able to perform several simple
processing tasks. The first line or layer of neurons are exposed to the input data
which are received by sensors which are interacting with environment, neurons in
other layers receive the data trough weighted links among previously activated
neurons.
Artificial Neural Networks is known as a ML method which has been widely used and
overcome the close competition in several problems among different method of
pattern recognition and machine learning like speech recognition and computer
vision, which are not easy to solve with previous approaches. What we mean by the
learning process in this method is to search for the weights which can make NN to
represent the desired tasks which depends on the chains of the computational
phases or layers of neurons, an example for such tasks or behavior can be detecting
the useful edges in a picture (29). At each computational phase there might be
functions either linear or non-linear which have to transform the activation values of
the network.
There have been many convolutions in the history of NN so far but in 1960s and
1970s when different approaches with non-linear layers speared a challenging
competition started where Back Propagation (BP) as a model designed by means of
gradient descent methods for supervised earning on separated networks. Although
BP was not really applicable for deep learning so that in deep layers this method was
not really practical and smooth in training phase. Finlay deep learning was possible
in practice with Unsupervised learning. Afterward deep neural networks start a
serious competition with many other machine learning specially in 2009 supervised
neural networks overcome many other pattern recognition techniques like with
kernel methods which drew much more attention to this concept of knowledge.
Rather than many achievements from 2011 in computer vision, NN shows a high
performance in Reinforcement Learning by unsupervised learning.
To explain more in detail one of the NN models we can consider a simple feed
forward NN which has been widely used recently and in this thesis we used this
model in word embedding, in the following we also explore the learning process in
this NN type. A feed-forward neural network or acyclic NN is another classification
algorithm where every neuron in a layer is fully connected with all other neuron units
in the prior layer. Each interconnected links might have individual Wight, which make
different operation on the transmitted data in the network. Input data centers in the
network and transit the layers one by one which at every layer data will pass through
a process until it arrives to the output. This can be considered as the learning process
where the connection weights in feed-forward neural networks will change in order
to assign the highest output value to the right class. When it is performing a normal

38

classification task there is no feedback in between layers it is the reason why this
method is known as acyclic or feed-forward. So for learning you may have several
objects that you need to choose, like the patterns list as input, feed-forward neural
network as the classifier and the class which can be the correct output (30). The
pattern will move forward in layers to get to a specific output layer, each neuron or
unit in this last layer shows specific class or category which in fact is the output of
the network and will be compared to other ideal cases based on the classified
selected pattern (the output value of the other units in the last layer would be smaller
than the one with the right class)
Using deep learning for NLP applications has been investigated recently (inter alia
Bengio et al., 2003; Henderson, 2003; Collobert & Weston, 2008). In most cases, the
inputs to the neural networks are modified to be of equal size either via convolution
and max-pooling layers or looking only at a fixed size window around a specific word.
many methods which can deal with substance of recursive behavior in natural
language so that based on variables in a sentence they can learn the categories of
expressions and feature embedding which can obtain its semantical construction
more deeply based on RNNs.

2.5.1 multilayer Neural Networks
A more completed architecture in Artificial Neural Networks model can be the case
where we have one or more hidden layers, this approach can solve much more
complex learning problems in machine learning. This model consists of several layers
the first layer called input layer and they receive the input data the last which is called
output layer and produce the network output and the middle layers which call hidden
layers because their values is not discovered in the training data set.
In the following example you can see a 3-layer neural network, in every layer there
is also a bias unit which is related to an intercept term of each layer Note that bias
units don’t have inputs or connections going into them, since they always output the
value +1:

39

7

 We have number of layers as thus ݊ଵ = 3 and every layer have its corresponding
index so layer ܮଵ is the input layer, and layer ܮ௡௟ the output layer. Neural network is
a parametric model, mainly we have 2 set of parameters weights and bias in every
layer this can be shown as ሺܹ, ܾሻ = ൫ܹሺଵሻ, ܾሺଵሻ,ܹሺଶሻ, ܾሺଶሻ൯, where ௜ܹ௝ሺଵሻ denote the
parameter (or weight) corresponding to the links between unit j in layer l, and unit i
in layer l+1. And also ܾ௜ሺଵሻ as the bias associated with unit i in layer l+1. Thus, in our
example, we have ܹ ሺଵሻ ∈ ܴଷ×ଷ, and ܹ ሺଶሻ ∈ ܴଵ×ଷ. We also let ݏ௟ denote the number
of nodes in layer l (not counting the bias unit).
For every unit in each layer we have a mean output value which is called as activation
value and can be denoted as ܽ௜ሺ௟ሻwhich meant the output of unit i in layer l in the first
layer the activation values for all units is equal to their corresponding inputs ܽ௜ሺ௟ሻ ௜. In other layers the output values can be computed based on the activationݔ=
functions according to the inputs and parameters (weights and bias) ℎௐ, ܾሺ௫ሻ can be
defined as the hypothesis of this neural network that calculated as the following:

ܽଵሺଶሻ = ݂ቀ ଵܹଵሺଵሻݔଵ + ଵܹଶሺଵሻݔଶ + ଵܹଷሺଵሻݔଷ + ܾଵሺଵሻቁ
ܽଶሺଶሻ = ݂ቀ ଶܹଵሺଵሻݔଵ + ଶܹଶሺଵሻݔଶ + ଶܹଷሺଵሻݔଷ + ܾଶሺଵሻቁ
ܽଷሺଶሻ = ݂ቀ ଷܹଵሺଵሻݔଵ + ଷܹଶሺଵሻݔଶ + ଷܹଷሺଵሻݔଷ + ܾଷሺଵሻቁ

ℎௐ.௕ሺೣሻ = ܽଵሺଷሻ = ݂ቀ ଵܹଵሺଶሻܽଵሺଶଷሻ + ଵܹଶሺଶሻܽଶሺଶሻ + ଵܹଷሺଶሻܽଷሺଶሻ + ܾଵሺଶሻቁ

A compact representation of the above formula can be representing by defining as

7 www.cs.stanford.edu/courses/soco/projects/neural-networks/Architecture /feedforward.html

Figure 12 3-layer neural network

Equation 7neural network hypothesis

40

the total weighted sum of inputs to the ith unit in layer l:

௜ሺଶሻݖ = ෍ ௜ܹ௝ሺଵሻ
௡

௝ୀଵ
௝ܺ + ܾ

ܽ௜ሺ௟ሻ = ݂ቀݖ௜ሺ௟ሻቁ

this formula can be even in more compact representation, if we develop the
activation function f(⋅) to apply to vectors in an element-wise fashion (i.e.,
݂ሺሾݖଵ, ,ଶݖ ଷሿሻݖ = ሾ݂ሺݖଵሻ, ݂ሺݖଶሻ, ݂ሺݖଷሻሿ and if we consider ܽሺଵሻ = to denote the ݔ
values from the input layer then we can write the mentioned equations as:

ܼሺଶሻ = ܹሺଵሻݔ + ܾሺଵሻ
ܽሺଶሻ = ݂൫ݖሺଶሻ൯

ܼሺଷሻ = ܹሺଶሻܽሺଶሻ + ܾሺଶሻ
ℎௐ.௕ሺೣሻ = ܽሺଷሻ = ݂൫ݖሺଷሻ൯

Then we can write a recursive formula for activation so that given the (l)'s activation
we can calculate the (l+1)'s:

ܼሺ௟ାଵሻ = ܹሺ௟ሻܽሺ௟ሻ + ܾሺ௟ሻ
ܽሺ௟ାଵሻ = ݂൫ݖሺ௟ାଵሻ൯

This is called forward propagation as one type of architecture in neural networks by
changing the patterns of connections among neurons. Also by representing
parameters in matrix form one can benefit from high speed linear algebra operations
on computations in the networks.
2.6.1 Machine learning on stream data
In today’s world with the growth of world wide web and social networks data
generation and updating would become in the form of high speed stream in
sequential order. Examples of data streams include web searches, phone
conversations, ATM transactions and sensor data (31). Not enough to only perform
historical analysis and batch learning techniques which is trying to learn from the
entire training data at once to make a better prediction. But in cases where we have
on-line stream of data we can use this sequential form of data to update prediction
functions and features of data for incoming new data this can be called on-line
learning when we have a stream of incoming training data which makes it impossible
to learn from the whole training data set because it is updating every time. For cases
like when we need to dynamically adjust to the new patterns of the data or when

Equation 8 Compact NN activation formula

Equation 9 recursive activation NN formula

41

data generation is a function of time, we can not only rely on the historical statistical
information for prediction task but also we need to build a model with a predictive
capability in real time. This requires also the data (or data features) to be informative
and updated in order to be actionable immediately.
So extracting knowledge structure from these fast incoming data records can be also
important, this field of science is called Data Stream Mining, here data stream as an
arranged series of data samples would be processed only once or very few times by
using limited computing and limited storage (26). Data stream mining can be
considered a subfield of data mining, machine learning, and knowledge discovery. In
this type of problem, we usually do not consider very old information or features of
the data but we need up to dated features which can be helpful to discover predictive
behavior of the data in the present time. Actually the aim is to predict the category
labels (classes) or new values given the input data sample in the data stream
(regression)
 ML methods applied on stream on-line data to learn this prediction task from labeled
examples by taking into account the recent history in an automatic procedure. For
instance, in weather forecasting (31). Given the weather information from last few
days we can estimate the weather in the tomorrow's weather, like if it has been
sunny and 80 degrees the last two days, it is unlikely that it will be 20 and snowing
the next day. Another property of a model in this case of ML problem is that this
model should be update. Which means the model should be open to th data stream
changes and updates and in other words it should get evolved with the trend of data
change with time. A good example might be a retail sales model that remains
accurate as the business gets larger which means in this case the subjected business
is developing so our estimation on quantity of sales will not be the same as previous
years.
Obviously prediction in such cases is not irrelevant to the past historical data to the
process of using past training data for predicting values of unseen data is still partially
true, rather to increase the performance and accuracy of the prediction we need to
feed the model with last updated information on data (time series). The other
important point is that the model may need to be retrained or to be updated, one
solution can be exploiting incremental algorithms which learn gradually and regularly
over data so that each time new training sample appears the model will update.
incremental learning can be necessary when data privacy demands that instances be
discarded immediately after they are seen. As an example there are incremental
version of Bayesian Networks or SVM (22). Another option is to retraining the batch
algorithm periodically, which seems like more optimized and straight solution
because There’s no buffering and no explicit retraining of the model. Periodic
retraining requires more decisions and more complex implementation. However, all
power of any supervised classification algorithm, in this model retraining is done only
on relevant data and only when necessary.

42

Chapter 3

3. Problem statement

In this part of our work we present both general and specific or technical aspects of
the process focusing on predicting second hash-tags of tweet collected in a period of
time from Expo 2015. Start with huge number of tweets from the scratch and finding
and selecting the features based on predictive patterns and data behavior enhance
the performance of the final prediction, although it is not enough and getting deep
in semantical and syntactical parts of the language is also needed to increase the
accuracy. Also applying different proper time windows and updating the feature
space with regards to the upcoming events results in more precise prediction of the
hashtags.

3.1 Problem
Time-precise Prediction in Stream Micro-bloggers

Huge quantity of information is reported and transmitted every second or
millisecond in different social networks, extracting latent knowledge of this huge
volume of data attract many data scientists and machine intelligence expertise to
exploit these data for different analytical tasks. However recently Micro-blogging as
new form of transmission where a user can report a news or status in short posts
distributed by instant messages, mobile phones, email or the Web. Many people use

43

micro-blogging to talk about their daily events or to briefly discuss about their social
or political view point or even share information.
Twitter, a well-known social network has seen a lot of growth since it launched in
October 2006, provide the possibility of micro-blogging about wide range of topics
and news every moment in a limited number of characters has a universal user. On
average we have 6000 tweets reported on twitter every second8 it shows that there
is massive volume of raw information which can be exploited with Machine
Intelligence sciences and extract further knowledge out of that. Although surprisingly
in such micro-blogging services like twitter users may face some raw data, which
needs to be processed more accurately. For example, hash-tag auto-complete in
twitter will propose you several options as the suggested hash-tags, although we
have noticed that these suggestions are not always so relative in this point of view
that it will suggest you the top-n most popular hashtags based on recent reported
tweets but it is not really always the case and these hashtags need to be updated in
shorter time and in much more precise way. So by pointing to this problem, we can
step into the general subjected area of this thesis which is about predicting time-
precise hash-tags in short documents such as tweets with on-line stream data.
The first problem is that it can be seen as Short Text Classification not a general text
categorization where we have huge number of features (words) in every document,
in short text such as micro-blogs there is a strong fact that it is not easy to find the
similarities between the documents because they are short and therefore not sharing
enough information to clarify these similarities (Phan et al., 2008). Beside that usually
there is limited number of characters per tweet so we will not have a wide choices
of terms or features in every document, and this can be a great challenge to short
text classification (STC) because the more efficient features in every input document
(tweet) the more accurate the final output of the ML algorithm.

8 http://www.internetlivestats.com/twitter-statistics/

44

3.2 Case study
Power of time window in hashtag prediction in twitter

Generally, in this thesis the work is on a specific collection of tweets from “Expo 2015
Milan” collected in 4 months, the following table present a brief information on the
dataset:

 Table 1 Expo2015 Dataset Overview
 Entities Quantity

1. Number of Users 811615
2. Number of Tweets 2191905
3. Number of all Hashtags/Entities 364999
4. Number of Hashtags 267540
5. Max(tweets) Per Day (day 91) 27331
6. Max(tweets) for a User 75543
7. Number of Valid Tweets 1732978

The goal is to predict the second hashtags as the output value based on the given
input data which are words (features) before occurrence of the second hashtag. In
the following you can the trend of words numbers in each tweet, which represents
that in most of the cases there is less than 40 words per tweet in our dataset:

 Figure 13 Frequency of number of terms in tweets

45

It can clearly reflect the problem of finding informative data pattern and proper
features out of these limited number of word options in every tweet, so that they
can act sufficiently in predicting the second hashtags. However, this textual format
of words in each tweet is not the proper input format of the data for Machine
learning algorithms. As the foundation of ML is based on mathematical and statistical
techniques we need to feed these algorithms with numerical representation of the
input data, a proper textual representation can be to replace each word with its
frequency in the whole document and then transmit the whole document in the
vectorial feature space.
Now with this proper data representation of the document we can define the
problem in machine learning point of view. The main task can be predicting the
second hashtag of tweets so that all words appear before the second hashtag plus
the first hashtag has been considered as features in the test set. There were 2 main
issues we faced, the first one was to define a ML method coping with upcoming new
features which can update these features and parameters properly, the other
problem was to learn syntactical relationship among features in document and
understand the time-varying predictive behavior of the second hashtags. By focusing
on these two problems and finding appropriate solutions (will explain in detail in the
following sections) we reach a better and more accurate result with almost 40%
progress in the final prediction comparing other approaches already have been
tested on the same dataset.
There has been already another research done on the same dataset with two
methods the first one is the TOP-TAG which predict the second hashtag just based
on the popularity or occurrence of the second hashtags this is almost what twitter is
using to suggest hashtags, although it has a very low precision, and doesn't reflect
accurate result among all other methods has been tried on this set of tweets. The
other method has been tested is co-occurrence, feed by the first hashtag as its
feature and is supposed to predict the second hashtag of tweets. Although this
method has been used widely for several years in many text processing tasks and
also in this case it represents much better result with regarding to TOP-TAG
approach, but it is not considering any semantical or syntactical aspect of the words
in documents (tweets). Based on the final results in this thesis, it has been
demonstrated the process we followed has overcome the previous works on this
dataset, the key points in this achievement can be briefly explained as getting deeper
in semantical layers of the features using embedding techniques and properly update
the stream data to be flexible in predicting second hashtags based on new upcoming
events which can also have effect on the semantical relation of the words. It clearly
displays that there need to be a more updated approach which can consider trend of
the data stream and also be sensitive to the dynamic semantical relation among
similar words.
However it was not enough just to apply the ML algorithms on the prepared features
vectors to predict only one word as the second hashtag the output error rate has no
progress with respect to the previous approach (co-occurrence), although by

46

exploiting embedding techniques we touch the higher level semantic of data means
that we group-wise the output values with regards to the whole document words so
that rather than learning and predicting only one hashtag as the output our approach
is learning the similar words of the predicted value so that the output value is not a
single value but a vector of 10 similar words.
On the other hand, one important fact about this stream data can be its dynamic
time-varying behavior. Let’s clarify this with an example, imagine that in second
month of Expo2015 there was a famous wine festival in Italian pavilion only for one
week, so before date a feature like “#Wine_Festival” might not exist or it might have
very low frequency and efficiency among other features, so after the first periodic
update on the feature space this feature (plus any other new term or hashtag) will
be added (if not existed) to the feature spaces and the syntactical relation among
features will be updated or rebuilt based on the corresponding time window, this will
keep on top frequent hashtags and update their similarities based on the embedding
techniques.
Another fact that we should consider was the tweets from different languages, this
will make problem when we are in preprocessing step or more precisely when we
are involved with morphological aspects of the text which is language dependent in
some cases, for example we need to extract the stem of the terms there is different
modules for different languages that do such task in Python for different languages
but we need to clarify the language to use a proper approach. However, in many
cases tweets are multi-language where hashtags or words are from more than one
language. In this thesis we investigate 2 cases the first one when only English tweets
are considered and the other one when we identify both English and Italian tweets
and separately apply preprocessing methods on them but they were all in a unit
training set so that “#milano” and “#milan” were considered as similar words,
although the first case represent higher precision in the final result.

47

Chapter 4

4. Problem Solving
So far we try to have a brief overview of the thesis process and several problems we
faced with the nature of the data but to get more in detail and to get involved with
more technical and practical aspects of the process we can start by a higher level
aspect of the problem and the corresponding solution.

4.1 System Architecture
System architecture of the process can be seen as follows where the incoming tweets
first will get clean and converted into proper feature representation for machine
learning algorithms, during this steps different libraries, tools and techniques have
been used and the most accurate ones with regard to the results and the data
behavior have been used.
Preprocessing can be explained as a customized process in this thesis based on the
nature of the data and different outlier’s emoji’s, needless URLs... etc. each of these
cases were identified and removed or in some cases replaced with a standard value.
Although the most important issue of this dataset was to choose a policy about
tweets in different languages or even multi language tweets where we have tweets
with words or hashtags from more than one language this makes problem in stages
like applying stop words or extracting stemming of the words where we need to
specify the languages more specifically. Different methods like bag-of-words or
different libraries and modules of Python like NLTK, detectlanguage, Gensim have
been used.
In the embedding part based on the considered window length we update the
feature space and corresponding similarities and semantical relationships among

48

words and reproduce the corresponding vector for each feature term. Technically we
have compared 2 different modules in Python for this purpose, Word2vec and Glove.
Word2vec is released on 2013 by a team of researchers led by Tomas Mikolov at
Google, this module has been implemented in Python by Gensim modeling tool.
Glove is another embedding method which is more based on statistical methods
rather than neural networks, released in 2014 by Pennington et al. from Stanford. In
both methods the goals is to draw semantic and syntactic patterns among words
which can be reproduced using vector arithmetics and in this thesis we are mainly
training them based on the whole corpus to find the relationship among words and
then group-wise or cluster the output of the problem so that the output of the
problem is a vector of similar hashtags rather than only one single hashtag meaning
that rather than learning to predict the second hashtag the model is learning to
predict also similar words of the predicted value.

49

In the section related to ML we have 3 sets of data training set, validation set and
testing set which by using Cross-Validation of scikit-learn in Python we randomly split
data for these sets to tune parameters (with validation set) and prevent over-fitting
by holding out portion of available data as test set for evaluating the model with
unseen data. Also in machine learning section we apply time windows with different
lengths which were equal or greater than the time window applied on the embedding
part. Finally by comparing different methods such as Support Vector Machine (SVM),
Naive Baysian (Gaussian NB), K-Nearest Neighbor (KNN) and Linear Discriminant
Analysis (LDA)

 Figure 14 System architecture overview

50

4.2 Dataset
the data we have used in this thesis is a collection set from Expo2015 there are 4
main tables with information about authors, tweet contexts and time-stamps,
another table related to hashtags occurred in each tweet and finally the one which
is related to the hashtags and a Boolean attribute representing whether they are also
semantic web entities or not. In macro-events cases like this, tweets are consisting
of self-generated contents reporting many different small events centered around
specific themes, festivals, time or places. In order to apply several machine learning
tasks, it is important to have enough statistical knowledge about the data set which
can give a better view to explain the further predictive behavior of the data. In the
following several statistical information has been represented about the Expo2015
dataset, expo started from 1st of May for almost 6 months but the data has been
collected from 19th of June up to 30th of October.

From the following diagram you can see the frequency of the tweets reported from
day 53rd to 182nd which represent special trend in different days, rather than day 8
different days that the system has been down for several hours or almost for the
whole day in day 123rd but in general the figure explain that the number of tweets
per day is not always the same and doesn't have a steady trend all the time but also
it fluctuated a lot which might have different reasons like number of visitors or
holidays but it might represent that in special days because of important events
number of tweets will increase reporting this event in a specific time-stamp, and this
diagram shows that there is an upward trend in the number of tweets reported every
day.

 Figure 15 Expo2015 Data Tables

51

Figure 16 Frequency of tweets

Figure 17 hashtags daily frequency

52

Another important fact about the data which can be important statistical information
with regards to the thesis problem is the most popular hashtags used in the whole
tweets, this can be important to evaluate or interpret the final prediction results also
the embedding vectors. In the top 20 relevant hashtags similar words in different
languages exists like “#italy” and “#italia” from these we can claim that such words
should be appear in the same similarity vectors if we are supposed to consider Italian,
English and multi-language tweets. Although in this thesis after identifying tweets
languages only Italian and English tweets where selected to be examined and other
tweets where eliminated.

 Table 2Most Frequent hashtags in Expo2015

Quantity

Hashtags

1. 483938 "#expo2015"
2. 192940 "#expo"
3. 79707 "#milano"
4. 61965 "#expomilano2015"
5. 33881 "#milan"
6. 22294 "#news"
7. 19394 "#italy"
8. 18841 "#expomilano"
9. 17066 "#food"

10. 14665 "#인피니트"
11. 11651 "#art"
12. 11624 "#periscope"
13. 11383 "#italia"
14. 9560 "#nationalday"
15. 8994 "#mtvema"
16. 8860 "#alberodellavita"
17. 8437 "#nominothekolors"
18. 8388 "#foodporn"
19. 8071 "#vixx"
20. 7534 "#paris"

53

The following diagram which represent the distribution of tweets per user is also
representing an important fact that almost all of the users who tweeted in this
dataset were ordinary visitors who has reported the events of that day in Expo so the
trend of the predictive behavior in the data is not affected by these users’ tendency
but mostly by events and attractions focused on the Expo macro-event.

Figure 18 distribution of tweets for each user

54

Last diagram of the statistical information shows number of hashtags in every tweet
which shows that the majority of tweets have only one hashtag although we are
supposed to predict the second hashtags so we also eliminate all tweets containing
only one hashtag which are to the number of 784283, but it was not the only
restriction applied on the tweets, also length of tweets was checked to be in the
standard size of 140 characters.

Figure 19 hash-tag distribution in tweets

55

4.3 Cleaning Data & Text Preprocessing
Thesis process has several steps starting with cleaning data from redundant terms,
outliers or uninformative words in each tweet, this process is also known as
preprocessing of the data which needs to be done carefully because there are few
words in every tweet and it is important, not to eliminate the useful words, remaining
words will be used as features of machine learning algorithms. However, it is not
possible to use directly these terms as features. In order to use a textual data as input
data to a ML algorithm we need to convert it into a standard data representation
format for ML. we need to make a numerical representation out of each term
(feature) and project it in a huge scalar feature space so that each term in a document
(tweets) is represented as a sparse vector of features and the corresponding
numerical value of that feature is in fact the frequency of this word in the document.
Not enough yet we still have to work in the extraction and selection of these features
to make sure that they can act properly in enhancing the final performance in ML.
By cleaning data, we mean to deal with numbers, punctuations and stop-words for
these issues NLTK and different Regular Expressions have been used to solve these
problems, for many reasons and Unicode problems, it makes sense to remove
punctuations and emoji’s. On the other hand, in this case, we might need to cope
with a sentiment analysis problem, and it is possible that "!!?" or ":-\" could carry
sentiment, and should be treated as words. In this thesis, for simplicity, we remove
the punctuation altogether, but it can be an interesting topic for future work in this
regards. Also about numbers in this thesis they are treated as words. There were also
other strings which were not in ASCII format and using different regular expressions
they were replaced. To eliminate these emoji’s and useless strings, we will use a
package in python for dealing with regular expressions, called re.

4.3.1 Stop Words
After splitting and tokenization of words in every tweet we need to remove stop-
words. Stop-words are defined as words which occur frequently. In many cases stop-
words are critical because of the fact that, by eliminating words which are often used
in a language rather we can focus on the important words. Several groups of stop-
words exist which can have different level of importance and meaning in different
applications. For example, in some applications removing all stop words right from
determiners (e.g. the, a, an) to prepositions (e.g. above, across, before) to some
adjectives (e.g. good, nice) can be an appropriate stop word list. A minimal stop list
consisting of just determiners or determiners with prepositions or just coordinating
conjunctions depending on the needs of the application. Example of minimal stop-
word lists can be the following:

56

 Determiners- Determiners tend to mark nouns where a determiner usually
will be followed by a noun
examples: the, a, an, another

 Coordinating conjunctions– Coordinating conjunctions connect words,
phrases, and clauses
examples: for, an, nor, but, or, yet, so

 Prepositions- Prepositions express temporal or spatial relations
examples: in, under, towards, before

Also in general there are lists of stop-words already have been published
Snowball stop-word list: this stop word list is published with the Snowball Stemmer
Terrier stop-word list: this is a pretty comprehensive stop word list published with
the Terrier package.
Minimal stop word list: this is a stop word list that I compiled consisting of
determiners, coordinating conjunctions and prepositions
Construct your own stop word list: this article basically outlines an automatic
method for constructing a stop word list for your specific data set (e.g. tweets,
clinical texts, etc.)

4.3.2 Bag-of-words
By exploiting Information Retrieval (IR) and Natural Language Processing it is possible
to model the text (or image) into a multi-set (bag) of words. This model which widely
has been used in text categorization and computer vision is called bag-of-words (32).
It is a standard text representation that consists of representing each document (in
this thesis by document we mean every tweets) by words occurred in that document
in fact frequencies of occurrence of each word is used as the features of the data
samples (33). The steps of this method can be briefly explained as the following.

57

4.3.3 Transforming Text Documents into Vector Space
Text documents in their original form are not possible to learn from. They must be
transformed to match the learning algorithm's input format which is an attribute-
value representation; this means that we need to transform the documents into a
numerical vector space.
After pre-processing of the tweets which has already explained, containing stop-
word filtering for omitting frequent and meaningless words (e.g. a, an, this, that),
word stemming for reducing the number of distinct words, lowercase conversion etc.
after that transformation takes place. Each word or more precisely each feature will
correspond to one dimension, identical words to the same dimension. Let the word
wi correspond to the ith dimension of the vector space. The most commonly used
method is the so-called TF•IDF term-weighting method. Denote TFIDF (i,j) the ith
coordinate of the jth transformed document.

ሺ௜.௝ሻܨܦܫܨܶ = .ሺ௜.௝ሻܨܶ ሺ௜ሻܨܦܫ

ሺ௜ሻܨܦܫ = ݃݋݈ ܰ
 ሺ௜ሻܨܦ

Where TF(i,j) means how many times does the ith word occur in the jth document, N

Remove non-letters  Cleaning data by using regular expressions to do a

 find-and-replace

 Convert to lower case, split into individual words, apply
 stop-words  Convert to lower case  Split into words  Download text data sets(NLTK), including stop words  Import the stop word list  Remove stop words from "words"  Join the words back into one string separated by space

 Initialize the "CountVectorizer" object, which is
 scikit-learn's bag-of-words tool  Use fit_transform() feeding with a list of tweets as
 input values  fits the model and learns the vocabulary  transforms our training data into feature vectors  convert the result to an numpy array

Equation 10 TFIDF/IDF formula

58

is the number of documents, and DF(i) counts the documents containing the ith word
at least once.
The transformed documents together form the term-document matrix. It is desirable
that documents of different length have the same length in the vector space, which
is achieved with the so-called document normalization:

ሺ௜,௝ሻ′ܨܦܫܨܶ = ሺ௜,௝ሻܨܦܫܨܶ
ට∑ ሺ௜.௝ሻఉ௜ܨܦܫܨܶ
ഁ

The dimensionality of the vector space may be very high, which is disadvantageous
in machine learning (complexity problems, over-fitting), thus dimension reduction
techniques are called for. In this thesis we have a vocabulary of size 10000 words,
although main problem was to reduce the dimensionality of the class labels or second
hashtags where word embedding takes into account. Two possibilities exist, either
selecting a subset of the original features, or merging some features into new ones,
that is, computing new features as a function of the old ones.
Two embedding techniques Word2vec and Glove have been used and explained
more in detail in the followings, these techniques have been only applied to reduce
the dimensionality of the predicted values which enhance the accuracy and precision
of the final result up to 19%. comparing these two exploiting techniques they both
have a almost equally a good result, although Word2vec have a higher precision
(around 3%-4%) but Glove appear to be a bit faster and needless to say that Glove is
a kind of open-source approach which can be attractive in order to be used for free.
In the following embedding approaches explained more technically.

Equation 11 normalized TFIDF

59

4.4 Word2Vec
This approach has been used for learning word vectors in huge dataset where we
have very large number of words and massive vocabulary size. None of the previously
proposed architectures has been successfully trained on more than a few hundreds
of millions of words, with a modest dimensionality of the word vectors between 50
– 100. In this case not only similar words are close to each other in words space but
also they can different degree of similarity, a concept which has already been used
in the morphological languages, there can be several constant rules like the fact that
nouns can have different ending parts and searching for similarities in subspace of
the original vector space will end to words with same endings. It was found that
similarity of word representations goes beyond simple syntactic regularities and
surprisingly results have been achieved by using sing simple algebraic operations,
performed on the word vectors, it was shown for example that:
vector (”King”) – vector (”Man”) + vector (”Woman”) results in a vector that is closest
to the vector representation of the word Queen.
Word2vec by developing new model architectures that preserve the linear
regularities among words by measuring both syntactic and semantic regularities, this
method showed that many such regularities can be learned with high accuracy which
is depends on the dimensionality size of the word-vectors and the amount of training
data.

4.4.1 Word2vec Architecture
Different types of models including the famous Latent Semantic Analysis (LSA) and
Latent Dirichlet Allocation (LDA) were proposed for computing continuous
representations of terms in documents. word2vec focus on distributed
representations of terms in document learned by neural networks, it has been
already proved that other techniques perform significantly better than LSA for
preserving linear regularities among words; LDA moreover becomes computationally
very expensive on large data sets (34).
In the following the comparison between different architectures and to this purpose
with different model architectures first step is to define the complexity of a model as
the number of parameters that need to be accessed to fully train the model. Next
step is maximizing the accuracy, and at meanwhile minimizing the computational
complexity. For all the models we are investigating, the training complexity is
proportional to

O = E × T × Q,

Where E is number of the training epochs, T is the number of the words in the training
set and Q is defined further for each model architecture. Common choice is E = 3 −
50 and T up to one billion. All models are trained using stochastic gradient descent
and back propagation.

60

 Feed-forward Neural Net Language Model (NNLM)
The probabilistic feed-forward neural network language model consists of input,
projection, hidden and output layers. The process is in this way that at the input layer,
N previous words are encoded applying one of V coding, where V is size of the
vocabulary. The input layer is then projected to a projection layer P with the
dimensionality of N × D, using a shared projection matrix. As only N inputs are always
active, composition of the projection layer is a cheap operation.
Complexity of NNLM can be high for computation between the projection and the
hidden layer, as values in the projection layer are dense. Consider a typical example
with usual amount of N = 10, the size of the projection layer (P) might be 500 to 2000,
and the hidden layer size H is usually 500 to 1000. Moreover, the hidden layer is used
to compute probability distribution over all the words in the vocabulary, resulting in
an output layer with dimensionality V. Thus, the computational complexity per each
training example is

Q = N × D + N × D × H + H × V,

 Most of the complexity is caused by the term N × D × H. In these models, hierarchical
softmax have been used where the vocabulary is represented as a Huffman binary
tree. This is based on the previous studies where class estimation is according to the
words frequencies in neural net language models. Huffman trees dedicate small
binary codes to frequent words, and it later reduces the number of output units that
need to be evaluated: in comparison with Huffman tree method balanced binary tree
needs log 2 (V) outputs for evaluation part but the Huffman tree based requires only
log 2 (U nigram perplexity (V)). imagine a huge size of vocabulary like one million
words this method reduce the speed like two times faster but the bottleneck of time
consumption is in the N ×D ×H however in the following architectures by reducing
the hidden layer this problem will be solved and efficiency of softmax normalization
will be bold.

Recurrent Neural Net Language Model (RNNLM)
To cover come limitations in the feed-forward Neural Network Language Model
another architecture model has been proposed, constrains such defining the context
length (the order of the model N), and because of the fact that in theory RNNs can
efficiently represent more complex patterns than the neural networks with few
number of hidden or projection layers. The RNN model has no projection layer; only
input, hidden and output layer. Special characteristic point in this model is the
recurrent matrix that connects hidden layer to itself, exploiting time-delayed links,
which let this model to form some kind of short term memory, as information from
the past can be represented by the hidden layer state that gets updated based on
the present input and the state of the hidden layer in the former time step (35). The
complexity of the RNN model is

61

Q = H × H + H × V,

Where the word representations D have the same dimensionality as the hidden layer
H. Also in this case, the term H × V can be reduced to H × log 2 (V) by using hierarchical
softmax. What is clear again is that most of the complexity comes from H × H.

Parallel Training of Neural Networks
for the training phase of word2vec several models on top of a distributed framework
called DistBelief, including the feed-forward neural networks have been used.
Multiple copy of the same model can be executing in parallel with this framework
and each section synchronizes its gradient updates through a centralized server that
saves all the parameters (35). In fact, training phase is done in parallel processes (can
be hundreds or more) and mini-batch asynchronous gradient descent with an
adaptive learning rate procedure with the name of Adagrad has been exploit.

New Log-linear Models
 in general, 2 architectures are used in wor2vec which has been inspired from the
already explained architectures used in the learning process of distributed
representations of words trying to reduce the complexity. As already explained non-
linear hidden layers in the model are caused the majority of the complexity problem
in the model but these layers are the main reason to keep Neural Networks model
so active so the effort in word2vec is to simplifies the neural network representation
but enhance the overall performance of the training process.
Following the already explained architectures and the fact that neural network
language model can be successfully trained in two steps: first, continuous word
vectors are learned using simple model, and then the N-gram NNLM is trained on top
of these distributed representations of words. Two methods are the followings:

4.4.1.1 Continuous Bag-of-Words Model
The first proposed architecture is working almost the same as the feed-forward
neural networks, where the non-linear hidden layer is removed and not only the
projection matrix but also the projection layer is shared for all words; thus, all words
get projected into the same position (their vectors are averaged). This architecture is
called a bag-of-words model as the order of words in the history does not affect by
the projection. However, this method can be updated so that we also use words from
the future. Training complexity is then

Q = N × D + D × log 2 (V)
this model has also been denoted as CBOW, as unlike standard bag-of-words model,
it uses continuous distributed representation of the context. The model architecture
is shown at Figure 209. Note that the weight matrix between the input and the

9 www.deeplearning4j.org/word2vec

62

projection layer is shared for all word positions in the same way as in the NNLM.
4.4.1.2 Continuous Skip-gram Model
This architecture is working in a way that the goal is to maximize the classification of
a word based on the other terms in the same sentence and unlike CBOW it is not
supposed to estimate the current term based on the document or context. So that
the current term is considered as the input value and it will be feed to a linear
classifier with continues projection layer and predict words within a certain range
before and after the input term. We found that enhancing the range improves
performance of the resulting word vectors, although beside these benefits
computation complexity is also increased. Since words which are relatively in far
distance with regards to the input term are usually not so related to this word than
those who are closer to it and much more relevant, we give less weight to the distant
words by sampling less from those words in our training examples. The training
complexity of this architecture is proportional to

Q = C × (D + D × log 2 (V))
where C is the maximum distance of the words. Thus, if we choose C = 5, for each
training word we will select randomly a number R in range < 1; C >, and then use R
words from history and R words from the future of the current word as correct labels.
This will require us to do R × 2 word classifications, with the current word as input,
and each of the R + R words as output.

Figure 20 word2vec architecture overview

63

4.4.2 GloVe (Global Vectors for Word Representation)

Another embedding technique has been used in this thesis is Glove an open source academic
tool from Stanford which has been acting almost well in embedding tasks. GloVe is an
unsupervised learning algorithm for obtaining vector representations for words. The training
phase is exploit on aggregated global word to word co-occurrence statistics from a corpus
(36), the output of the problem is constructed from a linear substructure of the word vector
space.GloVe algorithm consists of following steps (37):

1. Collect word co-occurrence statistics in a form of word co-occurrence matrix X. Each

element Xij of such matrix represents measure of how often word i appear in context
of word j. usually we scan our corpus in the following manner: for each term we look
for context terms within some area, a window_size before and a window_size after.
Also we give less weight for more distant words, usually using the formula decay=1/offset

2. Define soft constraints for each word pair: wTiwj+bi+bj=log(Xij)
Here wi - vector for the main word, wj - vector for the context word, bi, bj are scalar
biases for the main and context words.

3. Define a cost function J=∑i=1V∑j=1Vf(Xij)(wTiwj+bi+bj−logXij)2
Here f is a weighting function which helps us to prevent learning only from extremely
common word pairs. The GloVe authors choose the following function: f(Xij)={(Xijxmax)α1if Xij<XMax otherwise}

64

chapter5

5. Implementation Experience

In this chapter we will get more in detail with the practical aspect of the work and
represent the result of work step by step to follow the process technically. This thesis
has been done with Python Language Programing, due to its popularity as a general
purpose programming language, as well as its adoption in both scientific computing
and machine learning. Different specific Packages in Python which are powerful
open-source libraries facilitating practical machine learning. Some of the main
libraries exploited in this thesis such as Numpy for handling N-dimensional and
sparse matrices, Pandas for data analysis tasks, including structures such as data-
fames, Scikit-learn with the machine learning algorithms used for data analysis and
data mining tasks and Matplotlib for 2D plotting, producing publication quality
figures.
There are many other libraries and modules used for different purposes in Python
like NLTK, Gensim, Langdetect and etc. Several of these libraries and their
functionality in this thesis will discuss in the following.

5.1 Multi-language tweets preprocessing
From the starting step preprocessing we were facing important issues about tweets
languages, the problem is that in text preprocessing there are different libraries in
Python which can help you in different steps like tokenization, stemming and
lemmatization, parsing and etc. but these functions which are related to lexical or
morphological aspects of the text have several sets and language specified rules,
which need to specify the language of the context first (38).
The goal of both stemming and lemmatization is to reduce grammatical and
morphological forms and sometimes derivation forms of a word to a common base
form. For instance:
 am, is, are →be
 art, arts, artistic, arts' →art

65

The result of this mapping of text will be something like:
 we are in #expo2015 beautiful #design #arts→
 we be #expo2015 beauty #design #art
Although these two functions are acting in different ways but following the same
goal. Stemming usually refers to a raw heuristic process that chops off the ends of
words to achieve this goal correctly most of the time, and often includes the removal
of derivational affixes. Lemmatization usually refers to tasks related to vocabulary
and morphological analysis of words, normally aiming to remove inflectional endings
only and to return the base or dictionary form of a word, this form of word is called
the lemma. If we face with the token saw, stemming might return just s, whereas
lemmatization return either see or saw depending on whether the use of the token
was as a verb or a noun. The two may also differ in that stemming most commonly
collapses derivationally related words, whereas lemmatization commonly only
collapses the different inflectional forms of a lemma. Anyway we need a deep
grammatical and morphological knowledge for each language to be able to produce
either lemma or stems out of the words in document, in fact in practice many
approaches can perform such tasks for English or several other languages context
although there are not such tools for all languages or not all of them may act perfectly
good because it needs strong dictionary source and precise information about
grammar rules of every specific language.
In Expo dataset with tweets reported by different languages like English, Italian,
Arabian and etc. so the issue is dealing with lemmas and stems replacement of words
in morphological and lexical steps of the preprocessing. So we need to set the
strategy how to deal with tweets in different languages, one problem is that there is
no already defined tools in python to perform the lemmatization and stemming, for
example NLTK which is known as the most powerful tool for this purpose can support
the following languages: Danish, Dutch, English, Finnish, French, German, Hungarian,
Italian, Norwegian, Portuguese, Romanian, Russian, Spanish and Swedish. So it is
obvious that in case we cannot find the proper tool in python for this case we need
to define a set of rules and stem words for every language by ourselves which is
beyond the scope of this thesis, beside there might be negligible number of tweets
in other languages rather than English or Italian which are the main languages of
tweets in this dataset. This little number of tweets cannot be enough to be included
in the training set and the ML approach cannot learn properly in this situation, so
error raise is irrefutable. So language setting in this thesis is about to keep the Italian
and English tweets and eliminate others, although we examine to keep the French
and German tweets but this cause the error increment so we only consider the major
languages of this dataset.
This procedure was impossible or less accurate without tools with strong language
specified datasets of vocabulary and grammar rules, so detecting the language of a
given context is a must, in this thesis we used an API with the name DetectLanguage

66

released by MIT which provides both free and premium service. They accept to
provide the best premium service for more than one month for free for this thesis.
This API now can detect 160 languages.
Detectlanguage API appears helpful specifying the language of tweets and applies a
proper localized morphological tool. Based on the explained strategy only Italian and
English tweets were selected we examine 3 different cases, first to only accept
English tweet and estimate the result based on this hypothesis, second to also accept
Italian tweets but treat them in 2 different training set and the last setting was to
apply proper preprocessing techniques on Italian and English tweets separately but
consider them as a unit training set. Based on the process we were following the
third setting seems to be more close to our goal because we could find words like
“#italy” and “#italia” in the same similarity groups at the embedding step.
For example, with the following code we can get the following results:

This way with a tweet like:

“Finally we agreed to visit #Japan #padiglione #Expo2015 #Milano #arts”

→“Final agre visit Japan pavilion padiglion Expo2015 Milano art”

67

5.2 Data to Vector
After normalizing the context by selecting the normalized form of words (stem or lemma)
which carry essential information and eliminate vain form of terms and stop-words from
tweets. Then it is time to convert each tweet represented as a list of tokens (stems),
into an appropriate numerical vector form suitable for machine learning algorithms.
This task can be done in three essential steps, in the bag-of-words model:

1. counting number of times, a word appears in each message (term
frequency)

2. weighting the counts, so that frequent tokens get lower weight (inverse
document frequency)

3. normalizing the vectors to unit length, to abstract from the original text
length (L2 norm)

Each vector has as many dimensions as there are unique words in the Expo2015
corpus:

The output result which is a sparse matrix can be represented as the following based
on the frequency of each word in the whole context the first 2 tweets represented,
every tweet is represented as a row in a sparse matrix which can be seen as a long
array to the length of the vocabulary size, so that only words of that tweet have non-
zero frequency, for example the first tweet has 8 words which has non-zero values
corresponding to their frequencies in the whole context:

 (0, 9385) 0.333212609335
 (0, 5045) 0.521059090768
 (0, 4184) 0.393867037204
 (0, 2108) 0.117261988326
 (0, 1419) 0.335122632708
 (0, 1396) 0.335122632708
 (0, 1374) 0.335122632708
 (0, 408) 0.334161079641
 (1, 8376) 0.449906112839
 (1,7065) 0.50331079035
 (1, 6336) 0.50331079035

68

 (1, 3241) 0.528867013672
 (1,2108) 0.106022017118
 (2, 8495) 0.247008510761
 (2, 8214) 0.380496851262
 (2, 7692) 0.379926609191
 (2, 6901) 0.382812276721
 (2,5213) 0.61263115134
 (2,2116) 0.319185899645
 (2, 2108) 0.161625827414
: :

There exist many different approaches or methods used in preprocessing and
vectorizing the textual data, these two steps, included in the process of "feature
engineering", they are typically the most time consuming parts of building a
predictive pipeline, but they are very important and require some experience
because they can improve the accuracy in finding the data patterns.

5.3 fastFM
fastFM is a library for factorization machines in Python, the core is in C and can be
used stand alone. It has a user interface in Python with the name of Factorization
Machines (FM) which are only used in a narrow range of applications and are not
part of the standard toolbox of machine learning models. (Bayer, 2015) FMs are
known as successful approaches for recommender systems they are a general model
to deal with sparse and high dimensional features. fastFM implementation provides
easy access to many solver methods for learning process and supports regression,
classification and ranking tasks. This implementation has the potential to improve
our understanding of the FM model and drive new development. Keywords: Matrix
Factorization, Recommender Systems, MCMC. At the beginning the goal of the thesis
was to use the fastFM for matrix factorization based machine learning models.
Factorization Machines are capable to express many different latent factor models
that are widely used for collaborative filtering tasks, mainly we wanted to extract the
latent features of the context. In this case it was supposed to have the features as
like the current case (all the words before the second hashtag and the first hashtag)
the output value of this factorization machine was expected to be the second
hashtags. Although there was a problem we face in this regard which was the fact
that this algorithm was implemented for the binary classification methods so in our
case where we have huge number of classes (second hashtags) it was impossible to
succeed, although many different methods were examined to solve this issue.

69

One of the methods we tried was to use sklearn. Multi-class module in python which
can decompose the multi-class classification problems into binary classifications.
There are two different strategies for this task, One-Vs-The-Rest and One-Vs-One.

Ons-Vs-The-Rest strategy, also known as one-vs-all, is implemented in
OneVsRestClassifier. In this method the policy is fitting one classifier per class. The
class is fitted among all the other classes for each classifier. In addition to its
computational efficiency (only n_classes classifiers are needed), one advantage of
this approach is its interpret ability. Because each class is represented by one and
one classifier only, it is possible to gain knowledge about the class by inspecting its
corresponding classifier. This is the most commonly used strategy and is a fair default
choice.

OneVsOneClassifier constructs one classifier for every pair of classes. At prediction
time, the class which received the most votes is selected. In cases of a tie (when there
are two classes with an equal number of votes), it selects the class with the maximum
aggregate classification confidence by summing over the pair-wise classification
confidence levels estimated with the based on the binary classifiers.
this method is usually slower than one-vs-the-rest, because it requires to fit
n_classes * (n_classes - 1) / 2 classifiers, and its complexity is estimated as
O(n_classes^2).
 However, this method may be advantageous for algorithms such as kernel
algorithms which don’t scale well with n_samples. This is because each individual
learning problem only involves a small subset of the data whereas, with one-vs-the-
rest, the complete dataset is used n_classes times.
Although we tried to apply one-vs-rest to convert the fastFM binary classifier to the
multi-class classification case:

but the following error at first stopped us for any further progress which has not fixed yet
and after contacting with Imanuel Bayer we put effort into solving the error for one about
one month and finally he reported this error as a bug for this module10:

RuntimeError: Cannot clone object FMClassification(init_stdev=0.1, l2_reg=None, l2_reg_V=0,
l2_reg_w=0.0,
n_iter=1000, random_state=123, rank=2, step_size=0.1), as the constructor does not seem to
set parameter l2_reg_V

10 .https://github.com/ibayer/fastFM/issues/49

70

So the decision was to change the method rather than factorization into much more
information retrieval point of view, and pure machine learning which will be
described in detail in the following.

5.4 Cross-Validation
After the data collection, cleaning and preprocessing is done cross-validation is
applied to perform model selection. CV is primarily a method of estimating the
predictive performance and accuracy of a machine learning model. Simply one can
over-fit the data by adding too many degrees of freedom. For example, in a simple
polynomial regression by considering higher order terms it is possible to get better
and better fits to the data, although predictions on new data will get worse in many
cases as higher order terms are added. One fold of cross-validation inducts
partitioning a sample of data into complementary subsets, performing the analysis
on one subset (training set), and validating the analysis on the other subset
(validation set or testing set). To reduce variability, multiple rounds of cross-
validation are performed using different partitions, and the validation results are
averaged over the rounds
Cross-validation methods can be categorized mainly in 2 sets, leave-k-out cross-
validation (in which k observations are left out at each step) and k-fold cross-
validation (where the original sample is randomly partitioned into k subsamples and
one is left out in each iteration).
There are 3 main phases in every parametric Supervised ML method, training,
validation and testing in which there should provide different sets of data. This is also
an important step how we select these data specially when we have a stream data
were the predictive behavior of the hashtags is very sensitive to time. The best
method is to split these data randomly this way we make sure about the bias-
variance trade-of which can be a confusing issue in machine learning that we should
be carefully consider it in every step evaluation.
Important fact about this step is that the proportion of data dedicated to each set,
has a great effect in the accuracy and final output result, means that There is no fixed
rule about this proportion, it depends on the complexity of the situation (Application)
and how many independent parameters you have chosen. Also it can be depending
on the size of the data set in huge datasets like our case it is better to consider
enough portion to test and validation sets but in case of mall data sets it usually
happens that more than 80% of the data is considered as the training set. increasing
the training accuracy and reduce the training error but it doesn't mean that we have
successfully created a successful generalized model but also we should also try to
check if the model is relatively acting good with unseen testing data.
In this thesis we also have these 3 sets:

71

From the beginning we separate a validation set which is a very important set to
evaluate the model performance, in this thesis we intent to examine different ML
methods on this dataset and compare their performance, so it even makes the
efficiency of the validation set much more prominent. So from the beginning a subset
of the whole dataset will be discarded to be dedicated to the evaluation set, in our
case after trying 4 different portions among 25%, 20%, 15% and 10% the best one
was 15%, so by this 15% randomly split subset from the data we mainly focus on
selecting among collection of ML methods in candidates in this thesis also to tuning
the parameters of the selected algorithms. For example, based on this subset we
could select 3 or 4 methods among a set of algorithms such as {LDA, QDA,
DecisionTree, RandomForest, SVM (linear & non-linear kernel), KNN and Naive
Bayes} and also to tune their parameters.
Training set has the majority volume of the data, here we have a pairs of tweets
features and the corresponding outputs in all the evaluations we consider 75% of the
remaining data to be defined as the training sets. 2 other portions (80% and 90%)
were also tried but the best results both in training and generalization was achieved
by 75% portion to training and 25% to testing. This set is used to build up our
prediction algorithms. Each type of algorithm has its own parameter options (the
number of layers in a Neural Network, the number of trees in a Random Forest, etc),
algorithms will tune their selves to the mutations in training data sets.
Testing phase is included in parametric approaches in non-parametric approaches
we consider the validation step as the test step. So far we have found the preferred
prediction algorithms but we we would like to examine them on the completely
unseen real-world data. Then we check the performance if it was not satisfactory
then we should start from the training set and re-tune the models. This set also
represent if there occurred any over-fitting during the training set in that case the
training error would be incredibly low but while we try the testing set then we face
a huge amount of error that means we are not learning and modeling the data but
we are simulating one by one of the input sample data.

5.4.1 Cross-validation on stream data
The main concept of Cross-Validation already explained, the well-known algorithm
in the machine learning is to randomly select the samples out of the dataset and split
it into training, validation and testing sets, more precisely the steps can be described
as the following

72

1.Split randomly data in train and test set.
2.Focus on train set and split it again randomly in chunks (called folds).
3.In case of total 5 folds; training is on 4 of them, testing is applied on the 5th.
4.Redo third step for 5 times to get 5 accuracy measures on 5 districts folds.
5.Estimate the accuracy average of folds, represent the model performance

The problem is that this method (which can be easily implemented by usual built-in
Scikit functions) cannot be applied on the stream time-series data which is the main
consideration of this thesis. Because in the stream data cases like tweets, data cannot
be shuffled randomly, as we lose its natural order, which cause matters. So the
method we followed to apply proper cross-validation on Expo data set was to
consider the timestamps in this step.
One possible solution can be the following structures11:

1.Split data in train and test set given a Date (i.e. test set is tweets on 12 April
2015).
2.Split train set (i.e. tweets from one week before 12 April 2015) in for example
10 consecutive time folds.
3.Then, in order not to lose the time information, perform the following steps:
4.Train on fold 1 –> Test on fold 2
5.Train on fold 1+2 –> Test on fold 3
6.Train on fold 1+2+3 –> Test on fold 4
7.Train on fold 1+2+3+4 –> Test on fold 5
8.Train on fold 1+2+3+4+5 –> Test on fold 6
9.Train on fold 1+2+3+4+5+6 –> Test on fold 7
10.Train on fold 1+2+3+4+5+6+7 –> Test on fold 8
11.Train on fold 1+2+3+4+5+6+7+8 –> Test on fold 9
12.Train on fold 1+2+3+4+5+6+7+8+9 –> Test on fold 10
13.Compute the average of the accuracies of 9 test folds (number of folds – 1)

To know more in detail, the code of the above algorithm which we have also used
can be found in appendix.

11 .http://francescopochetti.com/pythonic-cross-validation-time-series-pandas-scikit-learn/

73

chapter 6

6. Testing and Evaluation

As already explained in detail this thesis is supposed to work on the dataset of tweets
reported in Expo2015 as an on-line stream data set, with the aim of predicting the
second hashtags in tweets. The problem is that at the moment twitter is not
suggesting a very time-precise hashtag with regard to the current top news and
events, so the main task in this thesis was to represent that by applying smaller time
windows and exploiting proper machine learning techniques it is possible to time-
precise hashtag prediction. For this purpose, there have been different methods used
in different steps of the work and after examining and evaluating the results, the best
one has been picked to represent the final output.
For example in preprocessing many different libraries and modules in Python have
been used like different libraries in stemming and lemmatization, for example after
comparisons among ordinary stemming function to extract the stem of a word in
python and the language specified ProterStemmer from gensim.parsing the second
method seems to be more adequate in our case, also two different libraries
implemented in Python (one from Google and the other one from MIT) we examined
on the data to detect the language of the tweets and finally the languagedetect API
appear to be more powerful in our application.
In this chapter we explain more in detail about different testing applied on this work,
rather a previously baseline which has been done on the same database and with the
same objective of predicting the second hashtags, but using different methods, this
work has successfully accomplished a task to show the effect of proper time windows
on prediction of the second hashtags of time stream of micro-bloggers like tweets.

74

The method which has been used is co-occurrence and the structure is mainly based
on the statistical knowledge of the data rather than deeper semantical aspects of the
context. But this research apparently is proving the effect of considering the time-
precise predictive behavior of the data and improve the final accuracy in the hashtags
predictions.

6.1 Baseline
This thesis rather than the main hypothesis to show the daily time window can be
previously on the same data collection (Expo2015), a project with the same goal of
predicting the second hashtags, has been done which we consider as the baseline
of this thesis, and try to improve the results and achieve higher precision and lower
error rate regarding to what has been successfully achieved. The previous work has
been represented a comparison among that co-occurrence method can the Top-K
method, currently approach used in twitter.

 6.1.1 Co-occurrence
A text document can be converted into the sequences of word/word co-occurrence
as well as their frequencies are kept. It has been one of the most frequently used
methods in text analysis. A good performance is achieved on the experimental data
set by using this system (11). This can be seen as sequence analysis system of context
used in text analysis and classification problems, which can automatically solve the
high dimensionality problem for large data set. This method can be seen as pure
statistical investigation and analysis of the textual data. co-occurrence of two words,
can be gained by context-vector, this approach is widely used in statistical NLP. To
create it we need a corpus.
For every word in the context we define this vector with a fixed length to the number
of words in the document, the context vector for each word represent number of
times other words have co-occurred with the current word and capture the
relationship among words (10), there is a concept called window of word, in fact in a
window of words, is possible to find other words occurred with the current word and
gain their corresponding value in the context vector. So the Co-occurrence matrix out
of these vectors is a matrix were N is the number of words in the document, the
correlation among 2 words in the document is represented with the co-occurrence
weight of these two words.

For example, imagine we have a very simple corpus as the following:
corpus: {A D C E A D F E B A C E D}
In case of window size 2 where we only want to check the correlation among two
words:

75

 A B C D E
A 0 1 3 2 3
B 1 0 2 2 3
C 3 1 0 2 2
D 2 0 2 0 4
E 3 1 2 4 0

This baseline is considering only the relation among the hashtags in the tweet, it
focusses on the order of occurrence of the hashtags precisely to predict the second
hashtags by different time-window length applied on the data. Afterward the result
has been compared to the other method, Top-K hashtag which is a predicting the
most occurring hashtag with regards to the first hashtag. The steps that have been
followed on this method have been the following:
Data processing
Creating a table by looking at the order of appearance of the hashtag in the twitter
text so that for each tweet we take its timestamp, the first and the second hashtags
in this base line there has not been any preprocessing of the data which can
significantly enhance the final performance of the ML model:

H =< ts, h1, h2 >
i.e. <timestamp, 1st hashtag, 2nd hashtag>

Experiment
after splitting the dataset into test and training data, for every hour t = 1, . . ., T in the
dataset first we start the training phase to properly fit the model the feature set is
only consist of the first hashtags and the output predicted value is the second
hashtag:
train dataset:
X = {h1 ∈ H : ts ∈ [t − w : t)}
y = {h2 ∈ H : ts ∈ [t − w : t)}
test dataset:
X = {h1 ∈ H : ts ∈ [t]}
y = {h2 ∈ H : ts ∈ [t]}
Where w is the train window size (e.g. hours).

Prediction mechanisms
In this baseline research there have been applied different time windows and
compared the output error rates of each method with regards to different window
lengths. In the following the length of the time windows and the used algorithms

76

Evaluate time windows:
w = 1 one hour;
w = 24 one day;
w = 24 ∗ 7 one week;
w = inf all data;

Let co-occurrence do:

given train data X , needs to predict h2
if h1 is in X : predict the most co-occurring h2
else: predict the most occurring h2.

Let top-tag do:

given train data X , needs to predict h2
predict the most occurring h2 regardless of h1
(can predict h2 == h1).

77

6.1.2 Results
In the following plots the X axis is the tweet count over time and the Y axis
represent the prediction error rate. In the first plot the data has been recorded
from 23rd June to September 1st. Moving average of 50000 tweets.

 Figure 21 baseline (co-occurrence) prediction errors

78

The second plot is the same experiment excluding the top-10 hashtag from the
evaluation (i.e. exclude tweets with h2 in the top-10).

Figure 22 Top-K prediction error rate

79

The last figure is putting all in one shell and make the comparison easier among these
2 methods, all hashtags are included (no removal of top 10). Note that top-tag-week
and top-tag-all overlap:

Figure 23 comparison among top-k and co-occurrence

80

6.1.3 Conclusion
Co-occurrence is outperforming top-tag baseline. The experiment was on a limited
scenario. The data was just containing the first two hashtags present in the tweets.
The co-occurrence simple approach performs generally better when trained on a
week period only.
In general, a good job was done in the mentioned baseline and it successfully
achieved better result with regards to the Top-K- hashtag method. It correctly
reduces the errors up to 25% which can be considered as a perfect result although
this method did not meet the main hypothesis of this thesis which said smaller time-
window lengths can enhance the precision of the second hashtags prediction.
Although from machine learning and data analysis point of view this pure statistical
method can be improved much more accurately by including vital preprocessing and
feature engineering steps and applying different ML approaches to get more deep in
the semantical layers of the data which enable us to act more intelligently and more
properly in different general applications. In this thesis we tried to meet the main
hypothesis which is the slower window length can increase the precision of the final
result in predicting the second hashtag, also the method which is represented has
been tried to exploit the latest techniques available in text-processing

6.2 Experimental Tests
Many different techniques in different steps of the thesis have been tested and the
best one has been selected by the best we mean the one that has appeared to be
efficient in enhancing the final result. From the very beginning we start on a small
subset of data with 50000 tweets, different preprocessing was applied on the data
and bag-of-words to numerically vectoring the features of the data, then we try to fit
different ML algorithms (SVM & KNN) and compare the results, at this step the error
was incredibly high because the number of features with regards to the number of
predicted values (second hashtags) where was not in standard form! But the idea to
apply dimension reduction on the second hashtags and applying Neural Networks to
involve in the deeper layers of the data helps to somehow cluster the huge number
of predicted values into a sets of similar words with the intended predicted hashtag,
in fact after this step rather than having only single words as the predicted values we
had an embedding vector corresponding to the output values. By this we claim that
the model was learning to predict intended hashtag and also the similar words to this
word. Considering only the top-10 similar words in the embedding vectors we had a
great progress in the output result accuracy. This has been represented briefly in the
following table. We test 2 different embedding approaches, Word2vec and Glove the
result was close as you can see in this table.

81

 Table 3 effect of dimension-reduction on error rate
 KNN SVM Bayesian
Primary Simple Case 0.88733 0.73149 0.71062
Word2vec Embedding applied 0.71861 0.53980 0.48228
GloVe Embedding applied 0.74652 0.55193 0.50941

So we can see that the better result is achieve by Word2vec and we consider it as the
default embedding technique, also Naive Bayesian seems to be a better approach
among other ML methods then also this method is selected as the default ML
algorithm for prediction task.
Next to eliminate the error rate and increase the precision of the final prediction we
put more effort on the preprocessing of the data although we already select the best
possible libraries for this purpose but the fact of having tweets in different languages
was remained with lower emphasis in preprocessing. we usually fix all steps of the
preprocessing, as an exception here things go on the other way around, but the result
once again yields the importance of the preprocessing on the data set. By applying
customized and language specified stop-words and stemming techniques we have
achieved even better result. The main approach which was the Languagedetect API
in Python had a premium service which provide for free for one month of academic
use for this thesis and I was significantly helpful. At this step we consider two main
cases the first one was to only consider the English tweets and eliminate the rest,
and the second scenario was to identify English and Italian Tweets by this API and
apply language specified preprocessing techniques. The following table is
representing the error rate with word2vec embedding method

 Table 4 effect of specialized preprocessing on error rate

 KNN SVM Bayesian
Considering Only English Tweets 0.53301 0.34376 0.27992
Separate English/Italian Tweets 0.61967 0.44701 0.40643

Although we can find a better result in the case where we are only considering the
English tweets and eliminate the rest, it is not the desired case with regards to the
nature of the data and the goal of the thesis. The main problem of this strategy is
that we are removing many part of the dataset which can convey huge amount of
information and it is a principle in cleaning data state. This way we consider the
second strategy as the default strategy which is detecting Italian and English tweets
and apply language-specific techniques on each set separately, but tweets from both
of these languages are involved in the dataset. There exist tweets in other languages

82

but their portion with regards to Italian/English tweets is really negligible which
makes problem in training step and fitting the ML model.
In the following figure which is plotting different ML method daily errors based on
the day on which that tweet has been reported we represent a general case where
the testing and training set has been selected from the whole dataset but only to
check the results we separate the testing data based on the timestamps day by day.
In this figure there exists fluctuations in all the methods, but one can also find some
peaks or widely fluctuations in some points, the reason for this problem can be seen
as the fact that in these days the system which recorded the tweets were temporarily
off for several hours on those days so there have been very few number of tweets
reported on that day which means that there have not been enough samples to be
examined. These points are also represented in the frequency of tweets plot in the
previous chapter. One of the days is the 153rd day of the Expo where there are only
128 tweets recorded and even these tweets are not all included in the intended valid
tweet set it was also seen in several other days like days 65,116,149 etc. but in these
days at least we had 1000 tweets recorded on those days which cause smoother
mutations. The main point is that there is almost a moderate behavior in all the
methods and among all the considered methods Naive Bayesian is outperforming
others, although SVM with non-linear kernel is also representing a moderately good
performance almost close to the NB method but among these 3 methods KNN is not
representing a good performance in predicting the second hashtags. In some days
we can also see the lower errors which can be defined as the cases where we had
great events which reduce the variation of reported second hashtags and so we have
been succeed to learn more efficiently the data pattern of that days.

83

As the main hypothesis of this thesis have been defined as applying daily time
window can enhance the accuracy of the prediction task because it can be closer to
the predictive pattern in the data (based on the daily events in Expo and relevant
tweets with specific hashtags and keywords). This fact motivates us to apply proper
window time lengths so that the model can be updated regularly in different periods.
In the bellow figure we can clearly notice the effect of having time window on the
final accuracy result. Rather than the effect of the windows it can be seen as the
effect of updating the semantical relations among words in the embedding step and
refitting the model based on the new data patterns of each segment. There is
another policy in updating the ML models with stream data can be to update the
system every moment that new feature appears. The second approach can be more
accurate but is not an optimal way in our case, the process we are following have 2
main section of preprocessing the data and ML/Dimension Reduction phase and
huge number of stream of tweets which at each time stamp there might be tweets
containing new feature (new topic or new event), it can be really time consuming to
rebuild all the previously done steps from the scratch every time. The following figure
represent the daily MSE error rate estimated in different time windows we consider
all the mentioned default cases (using word2vec embedding, Bayesian algorithm and
applying second language specified policy already explained), fluctuation behavior in
all the cases but it seems like fluctuations in smaller windows are little bit slightly and

Figure 24 Performance comparison among different methods in machine learning

84

moderate. It shows the daily lengths of the windows had successfully reduced the
error on average around 17% to 19% and weekly updating has achieved the reduction
of 11%-13% on average. Those sharp jumps still represent the poor collection of
tweets in those days, but it is not like we have the same fluctuating patterns in all the
cases rather we can see the points which can claim the importance of setting a proper
time window length by understanding how the nature of data is modifying by time.
For example, in day 116 we have the lowest jump in daily windows the reason can
be efficiency of proper window length in the learning process in our case.

Figure 25 time window effect on the second hashtag prediction

85

Chapter 7

7. Conclusion

Summing up, we are now going to have an overview about problems faced, how we
solved them but above all we are going to focus on results, conclusions drawn and
possible future developments.

7.1 Problem and adopted solutions
The problem we tried to solve in this thesis work was to find a way for efficient
prediction in on-line micro-blogger. The dataset we work on was a set of tweets
collected in Expo2015 consist of 2 million of tweets, more specifically the goal was to
predict the time-precise second hashtags of the tweets given the words occurred
before the second hashtags. In particular, our work was consisting of 3 main
sections, first part is focused on preparing and cleaning data to be converted into
feature vectors and the second section is concentrated on prediction task using
machine learning algorithms and increasing the accuracy by dimensionality reduction
and ML techniques. The last section which is th answer to the main hypothesis of the
work, is to apply different time windows and compare the prediction result. The
expectation was to see a better result in smaller daily time window. We compare
weekly and daily time-windows together and the case with the total data with no
time-window at this step.
Already there have been a baseline done on these tweets with co-occurrence
method and represent the results comparing to Top-K method. It can be considered
as a purely statistical method which tries to predict the second hashtags based on its
co-occurrence with the first hashtag, although this method has been outperform the
Top-K method also after applying the time-windows but, it could not achieve the

86

main goal which was getting to better result in smaller time-window, rather the
result with this method claim that the weekly window length outperform smaller
window lengths, the reason can be seen in two points of view, first this method is
only considering the co-occur of 2 hashtags as the input features for the prediction
and does not have a huge number of degree of freedoms which means it is not a
flexible method with regards to the small variations in the data behavior so that is
why it act better on the bigger time windows which are not affected by small changes
in the data behavior happens for a short time. The other fact about this method is
that it does not consider other words in a tweet which can provide vital information
for predicting the second hashtag and this part of information is missed and this
affect the final prediction result.
So to find the answer to the main hypothesis we have followed other methods with
more emphasis on feature engineering and applying recent methods based on neural
networks to get deep in syntactical layers of features in tweets in order to provide
more detailed useful information for better prediction result. From the very
beginning after cleaning the data by several common methods and providing a
proper feature representation of tweets. We test different ML approaches by these
feature sets, but the result was not satisfactory! To solve this problem and to improve
the precisions in the result of these methods, we followed 2 remedies, the first
solution was mainly focused on improving the preprocessing step quality and
concentrate on feature engineering. For the first solution rather than common
approaches, in order to improve the quality of preprocessing by extracting
semantical information in deeper layers of the context (by applying a 2-layer feed-
forward Neural Networkin embedding techniques) or to find the language specific
stem of each tweet (language detect API and Gensim Stemmer module) and to use
more reliable methods with strong datasets in lexical and morphological steps (NLTK,
BeautifulSoap). After exploiting the first solution we had a great progress in the final
out put result we increase the average precision of the prediction up to 30% at this
step which guaranteed the importance of preprocessing and feature engineering
steps in machine learning techniques.
The second solution was to consider the fact that tweets topics might be in high
percentage related to the popular events of the day which can affect the predicted
hashtags in only short period of time(day) this means that the second hashtags
prediction behavior could be affected by time to make sure about it we needed to
apply different window lengths to investigate this fact on different time-precise
segments of the data, we consider day and week as the window lengths, after testing
the data once again the precision was improve this time we successfully meet the
goal and show that the best case in results was achieved by the daily window length.
At this step we had increase the precision up to 20%. We also have a great progress
in weekly window length which demonstrate that the hypothesis is correct.

87

7.2 limitations
The method we followed is represented almost good performance based on the goal
we set for this thesis, which was to prove that the daily time window can act more
accurate in predicting the second hashtags. Although the final result still can be
improved, among different machine learning methods examined on the dataset the
best result was achieved by Naive Bayesian, even t-in the best case the result was
not any better than 24% of errors in hashtag prediction. In Machine Learning amount
of the error is evaluating with respect to the applications or the nature of the dataset
or the problem we defined. But in this application work it seems to be possibly
improved by working more on the ML or Feature Engineering techniques.
Also in this thesis there has not been any considerations for other languages tweets
in general case while processing the micro-bloggers there might be tweets from
other languages which need to be processed in the same way that it has been done
in this thesis although there was two obstacles on this purpose in our case the first
one is that we had not enough number of tweets in other languages which could
make difficulties in training steps as we need enough number of samples to fit a
model in ML, the second problem is more general case which is we may not have an
abundant libraries and modules as we have in English for different NLP and
preprocessing tasks or in some cases that one can find some libraries they might be
usually act not as that strong that we expect, this can also affect the final
performance of any ML task.

7.3 Future Works
considering the current project work as a baseline we can define a future work
purpose to focus more on embedding or dimensionality reduction aspects of the
work in this thesis, we could reduce the great amount of the final error only by using
a 2-layer feed-forward neural networks too group-wise the output values. In case
one get deeper in the layer it is expected to have a better result in the final
performance, also it might be interesting if we apply this technique on input features
so that instead of only having a frequency as the value of each feature we can have
a vector instead. Although this might be just easy to say in theory and practically
there might be obstacles like how to deal with standard acceptable feature formats
in ML algorithm or even from optimization point of view it takes so much time to
convert the features in the desired format. It might be challenging but really
interesting.

88

References
1. A fast and simple algorithm for training neural probabilistic. Andriy Mnih, Yee
Whye Teh. s.l. : Appearing in Proceedings of the 29 th International Conference, 2012.
2. Tailoring Continuous Word Representations for Dependency Parsing. Mohit
Bansal, Kevin Gimpel, Karen Livescu. s.l. : 52nd Annual Meeting of the Association
for Computational Linguistic, 2014, pp. 810-823.
3. Natural Language Processing (Almost) from Scratch. Ronan Collobert, Jason
Weston, Leon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel Kuk ´ sa. 2011,
pp. 2493-2537.
4. A Neural Probabilistic Language Model. Yoshua Bengio, Réjean Ducharme, Pascal
Vincent, Christian Jauvin. s.l. : Journal of Machine Learning Research, 2003, pp.
1137-1350.
5. Label updating to avoid point-shaped obstacles in fixed model. F. Rostamabadi, M.
Ghodsi. s.l. : IEEE, 2006.
6. Reducing the Dimensionality of. Salakhutdinov, G. E. Hinton* R. R. 2006.
7. Dr. S. Vijayarani, J. Ilamathi. Preprocessing Techniques for Text Mining- An
Overview. 2014. 2249-5789.
8. Natural Language Processing (Almost) from Scratch. Collobert, Ronan, Weston,
Bttou. 2011.
9. Data preprocessing. www.cs.ccsu.edu. [Online] [Cited: 01 06, 2016.]
10. WORD CO-OCCURRENCE AND THEORY OF MEANING. Lancia, Franco.
2005.
11. chen, Guan-Bin and Hung Yu Kao. Word Co-Occurrence Augmented Topic Model
in Short Text. 2007. pp. 45-64.
12. co-occurence. [Online] 2015. www.soc.ucsb.edu.
13. Efficient Estimation of Word Representations in Vector Space. Mikolov, Tomas,
Kai Chen, Greg Corrado, and Jeffrey Dean. 2014.
14. —.Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. 2014.
15. An Introduction to Feature Extraction. Guyon, Isabelle, and André Elisseeff. 2004.
16. features-of-data-and-information. https://www.ukessays.com. [Online] [Cited: 10
24, 2015.]
17. Text Categorization with Support Vector Machines: Learning with Many Relevant
Features. Joachims, Thorsten.

89

18. Gareth James, Daniela Witten , Trevor Hastie. an introduction to statistical
learning. s.l. : Springer, 2013. 978-1-4614-7138-7.
19. Machine Learnin vs NLP . www.lexalitics.com. [Online] 02 08, 2012. [Cited: 01
19, 2016.]
20. A Comparison of Classifiers and Document Representations for the Routing
Problem. H. Schutze, D.A. Hull, and J.O. Pedersen. s.l. : Proc. 18th Int’l Conf, 1995.
21. Ghaffari, Parsa. Text Aalysis. www.kdnuggets.com. [Online] 01 2015. [Cited: 10
15, 2015.]
22. Khan, Safdar Sardar, and Divakar Singh. an Effective Supervised Steamed Text
Classification Approach for mining positive and negative examples. 2013. pp. 24-29.
23. text classification based on labled-LDA model. Li, W., Sun, L. and and Zhang, D.
s.l. : Chinese Jornal of Computer, pp. 620-627.
24. Brownlee, Jason. Implement K/Nearest Neibors in Python.
www.machinelearningmastery.com. [Online] 09 12, 2014. [Cited: 04 23, 2016.]
25. charecterizing microblogs with topic models. Ramage, D., Dumais, S. T., &
Liebling, D. J. s.l. : AAI conference on weblog and social media, 2010.
26. short and tweet: experiment on recomending content from information streams.
Chen, J., Nairn, R., Nelson, L., Bernstein, M., & Chi, E. s.l. : SIGCHI conference on
Human Factors in Computing Systems, 2010. pp. 1185-1194.
27. Natural Language Processing. A. Chopra, A. Prashar, C.Sain. s.l. : International
Journal of Technology Enhancement and Emerging Engineering Research, 2013.
28. Short Text Similarity with Word Embeddings. Kenter, Tom, and Maarten De Rijke.
2014.
29. Deep Learning in Neural Networks. Schmidhuber, Jurgen. s.l. : elsevier, 2015.
30. Parsing Natural Scenes and Natural Language with Recursive Neural Networks.
Socher, Richard, Cliff Chiung, -Yu Lin, Andrew Y Ng, and Christopher D Manning.
2014.
31. Active Learning from Data Stream. X. Zhu, P. Zhang, X. Lin, and S. Y. s.l. : ICDM
06, 2007.
32. Undrestanding Bag-of-Words Model: A statistical Framework. Y. Zhang, R. Jin,
Z. Zhou. 2008.
33. Sampling stategies for bag-of-features inmage classification. F. Jurie, B.Triggs.
2006. 9th European Confrence on Computer Vision. p. 490/503.
34. word2vec Parameter Learning Explained. Xin, Rong. 2013.
35. Lai, Siwei, Kang Liu, Jun Zhao. Recurrent Convolutional Neural Networks for
Text Classification. 1990.
36. J. Pennington, R.Socher, C. D. Manning. Glove: Global Vectors for Wrod
Representation. 2014.
37. —. Glove: Global Vectors for Word Representation. www.nlp.stanford.edu.
[Online] 2014. [Cited: 09 02, 2016.]
38. Pereira, Fernardo. Machine Learning in Natual Language Processing. [Online]
2002. www.web.stanford.edu.
39. fastFM: A Library for Factorization Machines. Bayer, Imanuel. 2015.
40. chopra, Abhimanyu and Sain. Natural Language processing. s.l. :
INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND
EMERGING ENGINEERING RESEARCH .

90

41. Learning Word Embeddings Efficiently with Noise-Contrastive Estimation. Mnih,
Andriy, and Koray Kavukcuoglu. 2013.
42. Word2vec: Neural Word Embeddings in Java. deeplesrning4j.org. [Online]
[Cited: 05 01, 2016.]
43. Xu, Weiqun, Peijia Li, Yonghong Yan, Content Understanding, and Haidian
District. Distributional representation of Eords for short Text Classification. 2015. pp.
33-38.
44. Text classification without negative. X. Jeffrey member. 2008.
45. One-class classification of text streams with concept drift. Yang, Z. Zhang. s.l. :
University of Queensland Australia, 2008.
46. M. Rajman, R.Besancon. Text Mining: Natural Language techniques and Text
Mining applications. 2008.

91

Appendix

Figure 26 plot-box of tweets per day

Figure 27 top5 hashtags frequencies

92

Initial values for outputs before dimension reduction, Y [0:100]:

 (0, 9385) 1.0
 (1, 7701) 1.0
 (2, 2108) 1.0
 (3, 2108) 1.0
 (4, 2108) 1.0
 (5, 2108) 1.0
 (6, 2108) 1.0
 (7, 2108) 1.0
 (8, 9385) 1.0
 (9, 2425) 1.0
 (10, 9952) 1.0
 (11, 7328) 1.0
 (12, 8469) 1.0
 (13, 8469) 1.0
 (14, 2103) 1.0
 (15, 9952) 1.0
 (16, 2108) 1.0
 (17, 1732) 1.0
 (18, 2195) 1.0
 (19, 2151) 1.0
 (20, 6236) 1.0
 : :

 Figure 28 distribution of tweets per hour

93

Yi sample in Word2vec:

[(u'expottimisti', 0.9997639656066895), (u'visita', 0.9997269511222839),
(u'padiglione', 0.9995076656341553), (u'tavoliexpo', 0.9994252324104309),
(u'expomilano', 0.9994238018989563), (u'rispondono', 0.9994091987609863),
(u'news', 0.999385416507721), (u'italy', 0.9993605017662048), (u'milioni',
0.9992889761924744), (u'giorno', 0.9992825388908386), (u'milan',
0.9992722868919373), (u'eventi', 0.9992614984512329), (u'food',
0.9992583394050598), (u'attrazion', 0.9992079138755798), (u'aiuta',
0.9992057085037231), (u'bio', 0.9992033243179321), (u'italia',
0.9991999864578247), (u'casacorriere', 0.9991902112960815), (u'piattaforma',
0.9991848468780518), (u'waiting', 0.999184787273407), (u'eu',
0.9991825819015503), (u'giulianopisapia', 0.999175488948822), (u'spesa',
0.9991652369499207), (u'expomilano2015', 0.9991472363471985), (u'expoidee',
0.9991464614868164) , (u'madeinitaly', 0.9991259574890137), (u'padiglioni',
0.9991120100021362), (u'ottobre', 0.9990994334220886), (u'poland',
0.9990965127944946), (u'viaggio', 0.9990962147712708), (u'innovazione',
0.9990894198417664), (u'fun', 0.999079167842865), (u'costa',
0.9990721344947815), (u'cibo', 0.9990658760070801), (u'domani',
0.9990643262863159), (u'colori', 0.9990605115890503, (u'exhibition',
0.9990570545196533), (u'2015', 0.9990461468696594), , (u'twitta',
0.9990352988243103), (u'', 0.9990339875221252)]

Yi sample in Glove:

[('eyesdomani', 0.95729623120052354) , ('turkey', 0.93607119387162541) ,
('bizexpo', 0.930557818742072), ('o', 0.92534776719213729), ('baristalife',
0.9145355915846658), ('mostra', 0.90904895924819062), ('bizgewissgroup',
0.90153132882883091), ('volunteersexpo2015', 0.89884831471419868),
('volunteer', 0.89699726356849208), ('sudan', 0.8952444580975466),
('zecchinodoro', 0.89405928213387276), ('swisspavilion', 0.89093092702765475),
('rosatilucait', 0.89077351758095091), ('salute', 0.88831503897192798),
('euexpo2015', 0.88801325002934617), ('bizmusica', 0.88154639108279464),
('unfao', 0.88010911161445493), ('serviziculturali', 0.88010329219622763),
('countdown', 0.87726366700097136), ('ciao', 0.87683778912777166), ('uk',
0.87670820702119945), ('cultura', 0.87608867070691132), ('azerbaijan',
0.87517886793801736), , ('usda', 0.86908100213571482), ('exp',
0.86519944320666842), ('cameglobal', 0.85924752977992735), ('gibuti',
0.85890510325905545), ('qatar', 0.85785719953029116), ('feed',
0.8553156123140726), ('orange', 0.85505505913109281), ('ospniguarda',
0.85451505286604645), ('russianpavilion', 0.85398178306195993), ('sera',
0.85236307631435027), ('w', 0.85216168903920586), ('italy',
0.85040123421743419)]

94

Cross Validation online stream:

Predicted Values in SVM Method:
["art'", "padiglionebrasile'", "expo2015'", "expo2015'", "milano", "expo2015'",
"expo2015'", "expo2015'", "todolist'", "foodsecurity'", "yogyakarta'", "naturalhair'",
"roma'", "roma'", "expo'", "yogyakarta'", "expo2015'", "digital'", "expottimisti'",
"expoidee'", "iot'", "expo2015'", "naturalhair'", "regioni'",
"semanadelemprendedor'", "piazzettaer'", "milano'", "expo2015'", "foodsecurity'",
"pavilion'", "expoidee'", "expoidee'", "expo2015'", "expo2015'", "roma'",
"expo2015'", "experia'", "italy'", "naturalhair'", "expoidee'", "expo'", "expo2015'",
"expomilano'", "china'", "expoidee'", "domani'", "expo2015'", "puebla'",
"expo2015'", "polonia'"]

95

First Result on a subset of data (No dimension reduction & no time window)

***********LDA**********
Linear Discriminant Analysis:
Accuracy Score:
0.0261682242991
*******Decision Tree*******
Decision Tree accuracy Score:
0.303738317757
***********Bayes*********
Naive Bayes accuracy Score:
0.309345794393
***********SVM**********
SVM Score:
0.241121495327
*********Sgd************
SGD Prediction:
[1579 408 2108 ..., 1103 561 2108]
Score:
0.214953271028
*********KNN*************
KNN Prediction:
[2108 2108 3579 ..., 2103 2151 2108]
Score:
0.172242990654

