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Abstract

The high variability of the internet traffic and the static

planning of the network resources, create overprovisioning

outside the peak hours that leads to revenue decrease and

network efficiency degradation. In this work we are focusing

on machine learning methods that allow to build analytical

models from particular inputs in order to make predictions

or decisions. Using algorithms that iteratively learn from

data and dynamic network operations, we are able to solve

these problems.

In this work we used three datasets. The first one is a set of

Call Detail Records (CDRs) in which are stored information

of voice/sms/data of mobile users for each squared cell of

the Milan area, measured during November and December

2013. The second dataset is a set of Base Station (BS)

locations information, as the type of the BS (GSM, UMTS,

LTE) and GPS position. The last dataset describes the land

usage of the entire Lombardy region.

Machine learning methods have been applied to the first

dataset to make predictions of CDRs and clustering, in

which typical patterns are detected and analized in order to

better manage the resources allocation of the metro network
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in Milan. Then, thanks to the second dataset, the network

topology and the bandwidth demand were estimated with

the purpose of implementing a dynamic bandwidth alloca-

tion. In the end, we used a descrete event simulator to get

optimal solutions of Routing and Wavelength Assignment

(RWA) by solving Integer Linear Programming (ILP) prob-

lems.

The project builds a predictor and a pattern detector given

the spatio-temporal fluctuations of the traffic in the mobile

network. The results have been used as an input for the sim-

ulator to reproduce a metro network and optimaze dynami-

cally the resource allocation. Thanks to the predictability of

traffic, all optimization problems can be solved offline, and

then the solutions found can be downloaded in the network

at reconfiguration time points.

Keywords: machine learning, prediction, clustering, pat-

tern recognition.
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Chapter 1

Introduction

1.1 General introduction to the work

The work mainly focuses on the implementation of machine learning meth-

ods applied to the mobile and metro network, in order to ensure and opti-

mize the resources allocation for Mobile Cloud Computing (MCC) services.

The volume of mobile data traffic is still smaller in comparison with

its fixed counterpart, but this trend is rapidly changing. The popularity of

smart-phones, the advent of HD-resolutions mobile-terminal screens, mobile

cloud services and the Internet of things are major contributions to the

expected mobile data traffic 1000-fold growth from 2015 to 2020 [1] [2].

In recent years, cloud computing enabled the outsourcing of computing

resources such as IT infrastructure, software and service platform, with

the wide application of ultra-fast 4G mobile networks and usage of highly

featured mobile devices [3][4]. MCC is the combination of cloud and mobile

computing, and wireless networks that could provide rich computational

resources to mobile users. A new platform combines the mobile devices and

cloud computing to create a new infrastructure, whereby cloud performs
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Chapter 1. Introduction

the heavy lifting of computing-intensive tasks and storing massive amounts

of data. In this new architecture, data processing and data storage are

provided outside of mobile devices [4]. Figure 1.1 shows a model of MCC.

Figure 1.1: MCC model

As result, MCC has the following advantages:

• Break through limitation of the hardware

• Flexibility in data storage

• Smart balance of loads

• Improvement of management cost

• Cost reduction by on-demand services.

The significant growth of MCC services will surely become reality very

soon. Applications targeted at mobile devices have started becoming abun-

dant with applications in various categories such as entertainment, health,

games, business, social networking, travel and news. For these reasons, it

2



Chapter 1. Introduction

is important to deal with network resource allocation problems related to

MCC services, by exploiting intelligent methods.

Machine learning is a subfield of computer science that evolved from the

study of pattern recognition and computational learning theory in artificial

intelligence. In 1959, Arthur Samuel defined machine learning as a Field

of study that gives computers the ability to learn without being explicitly

programmed. Machine learning explores algorithms that can learn from and

make predictions on data [5]. Such algorithms operate by building a model

in order to make data-driven predictions or decisions, rather than following

strictly static program instructions. Machine learning tasks are typically

classified into three different categories [6]:

• Supervised learning: computer is presented with inputs and their de-

sired outputs, and the goal is to learn a general rule that maps inputs

to outputs.

• Unsupervised learning: no outputs are given to the learning algorithm,

leaving it on its own to find structure in its input. Unsupervised

learning can be a goal in itself, as discovering hidden patterns in data.

• Reinforcement learning: a computer program interacts with a dynamic

environment in which it must perform a certain goal (such as driving

a vehicle), without being programmed to do so. Another example is

learning to play a game facing an opponent.

The goal of this thesis is to apply aforementioned methods in order to

build an intelligent network capable of selecting automatically the best re-

sources allocation, and to study the statistical properties of the traffic data

itself. By implementing learning algorithms for example in an SDN con-

troller of a network, we can analize the data recorded dayly at each base

3



Chapter 1. Introduction

station, and forecast the traffic load in the short and long term. Further-

more, we are able to look for hidden behaviours that are not easy to detect.

1.2 Thesis structure and purpose

The core of this thesis is the development and improvement of prediction

algorithms and clustering methods with the aim of extracting typical traffic

load patterns. The work pursued four steps:

1. Processing of the datasets to make them easy to use;

2. Implementation of three prediction algorithms;

3. Adoption of two clustering methods to define the social function of

the base stations;

4. Implementation of one method for the pattern extraction;

5. Planning experiment of the metro-core network of Milan, optimizing

the reources allocation;

The chapters are organized as following:

Chapter 2 describes the state of the art of prediction and clustering

methods. In literature there are interesting studies regarding time series

forecasting and clustering of large data-set, principally focused on speech

recognition, video processing, image detection and pattern recognition. What

we have done in this work is to apply and tailor these machine learning

methods in order to give the network the ability of configure itself.

Chapter 3 shows the input data-sets adopted for the project. The first

one comes from a challenge that Telecom Italia launched in 2014, called BIG

DATA CHALLENGE, that is a contest designed to stimulate the creation

4



Chapter 1. Introduction

and development of innovative technological ideas in the Big Data field. The

data-set is the result of a computation over the Call Detail Records (CDRs)

generated by the Telecom Italia cellular network over the city of Milan.

CDRs log the user activity for billing purposes and network management.

By aggregating the aforementioned records, the data-set was created provid-

ing SMSs, calls and Internet traffic activity during the months of November

and December 2013. It measures the level of interaction of the users through

the mobile phone network. For example, the greater is the number of SMS

sent, the higher is the activity of the users. The second data-set collects

information about the base stations of Milan. OpenCellID is the world’s

largest collaborative community project that collects GPS positions of cell

towers for a multitude of commercial and private purposes. The last data-

set is called DUSAF (Destinazione d’Uso dei Suoli Agricoli e forestali). In

2001, Lombardy region embarked on the creation of a tool for monitoring

the use of the soil through the creation of a homogeneous database of the

whole region. This database, which photographs the "function of the ter-

ritory", is commonly designated by its acronym DUSAF, and help us to

understand the social function of a single or group of base stations. All of

these data-sets are open source and useful for big data analysis.

In Chapter 4 are listed all the methods used in this thesis to make

predictions of internet traffic loads, hour by hour (short term) and 24 hours

(long term). First of all, we tried common methods, as Autoregressive

model and Artificial Neural Network, and later we built a machine learning

method by creating a prediction formula.

Then, chapter 5 shows the clustering models designed to define the social

function of the base stations. In literature there are plenty of methods,

Kmeans is the most famous. In this work we tried also another method

5



Chapter 1. Introduction

called Spectral Clustering (SP), describing three different algorithms.

Chapter 6 explains how to detect the traffic load patterns automatically,

by exploiting a famous tool in pattern recognition called Non Negative Ma-

trix Factorization (NNMF).

Chapter 7 is dedicated to the simulation of the Milan network and the

implementation of the prediction mentioned in chapter 4. In particular, a

discrete event simulator has been used to get optimal routing and wave-

length assignement in the optical metro network, showing the differences

between the presence or not of the prediction. The goal is to use the pre-

dicted traffic data and the pattern extraction to optimize dinamically the

network, reducing the blocking probability and the energy consumption.

We assume that all the dynamic bandwidth allocation mechanisms are sup-

ported by SDN technology, therefore the controller collects global network

informations.

Currently the project is in cooperation with the Pattern Recognition In-

telligent System (PRIS) Lab of the Beijing University of Posts and Telecom-

munications. The development of this thesis is part of the EU FP7 IRSES

Marie Curie MobileCloud project that has goal to foster research collabo-

rations between Chinese and European university in Mobile Cloud Com-

puting. The proposed joint exchange project aims to provide a stimulat-

ing and structured platform for the exchange of researchers and for the

joint development of innovative ideas in the emerging areas within mobile

cloud computing and beyond. To achieve this goal, a broad combination of

eight universities and research institutions in Europe and China collaborate

together and create a multidisciplinary and international environment for

an innovative research experience and knowledge exchange in mobile cloud

computing. The specific objectives of MobileCloud are to investigate inno-

6



Chapter 1. Introduction

vative methodologies and approaches to optimize mobile cloud computing

resources and satisfy service requirements including energy efficiency and

high resource utilization in the emerging cloud computing era.

7



Chapter 2

State of the art

The goal of this thesis is to investigate methods that allow us to make

predictions on data traffic, and clustering the network. The third step is

to evaluate a pattern extraction algorithm and then to simulate an optical

metro network in order to plan the resource allocation. With this aim, we

investigated the current status of the studies about machine learning meth-

ods that allow us to make learning algorithms on prediction and clustering.

We subsequently investigated the studies in the field of pattern recognition

in order to derive an effective method for the traffic pattern’s extraction.

In the end, we focused on the current state of the mobile cloud architecture

and energy consumption of the underlying optical network components in

order to use the results of the prediction, clustering and pattern extraction,

and plan in advance the resource allocation and the power consumption.

Recent years have witnessed significant progress in machine learning

field. In this state of the art we aim to achive two goals: make a compari-

son of different methods and sketch a vision for future work that can help

motivate and guide readers that are interested in building a smart network.

Prediction is a core process for network optimization decisions and a

8
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foundamental branch of machine learning. One of the most famous algo-

rithms is described in [7] called Autoregressive Integrated Moving Average

(ARIMA) model. ARIMA models are generally applied to stationary time

series with no trends or seasonality informations making a regression on

previous samples. Performances of prediction algorithms are based on the

type of data input, so we can not know if a method is better than the other

until we do not try different kind of input data-sets. In general a good

approach is to mix different methods as in [8], where authors built a hybrid

model. They concluded that using ARIMA and Artificial Neural Network

(ANNs), for non-linear time series, is more efficient than using just one.

The motivation comes from the following perspectives. First, it is difficult

in practice to determine whether a time series is generated from a linear

or nonlinear underlying process or whether one particular method is more

effective than the other. Second, real-world time series are rarely pure linear

or nonlinear; they often contain both linear and nonlinear patterns. Using

three different datasets, the author concluded that a mixed approch to the

prediction can achive very good results.

Ref. [9] proposed another method called Fractional ARIMA. They are

time series models that generalize ARIMA by allowing non-integer values

of the differencing parameter. Those experiments showed that FARIMA is

a good traffic model and capable of capturing the property of actual traffic.

Artificial Neural Network (ANN) is inspired by biological neural net-

works, and try to emulate the conncetions that are typical of a brain. Ref.

[10], presents an ANN approach in order to forecast the electric load in a

period of 24 hours. The model is used to learn relationships among past,

current and future temperatures and loads. The results shows that the ANN

is suitable to interpolate the load and temperature pattern data of training

9
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set to provide the future load. Compared to other regression methods, the

ANN allows more flexible relationships and accuracy.

Ref. [11], describes a number of traffic predictors (such as ARIMA,

FARIMA, ANN and wavelet-based predictors) and analyzes their compu-

tational complexity. Results showed significant advantages for the ANN

technique. FARIMA could provide the accuracy prediction, but at the cost

of computational complexity. Compared to other predictors, ARIMA and

wavelet forecasting performed considerably worse.

The clustering problem has been studied for many years. The purpose

is to group a set of objects such that in the same group are more "similar"

to each other than to those in other groups. The main issue is to define

the similarity that must be exploited looking at the database being studied.

In [12] is treated a study on the K-means method, that is one of the most

famous clustering algorithm. Under statistical point of view, it concludes

that the results (sometimes strongly) depend on the order of the objects in

the input file. This method represents an important drawback, and can be

reduced running multiple times the algorithm with different inputs. Indeed,

Ref. [13] demonstrates how the popular k-means clustering algorithm can be

profitably modified to make use of particular informations of the dataset. In

experiments with artificial constraints on six data-sets, the authors observed

improvements in clustering accuracy. They also apply this method to the

real-world problem of automatically detecting road lanes from GPS data

and observe increases in performance. A study published on the journal of

the Royal Statistical Society [14], illustrates how a K-means algorithm uses

swops as well as transfers to try to overcome the problem of local optima,

and give another method to set up the initial centers of the clusters. Results

shows an improvement in time computation with a number of iterations

10
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usually less than ten.

A promising method is the Spectral Clustering (SP). Ref. [15] is a tuto-

rial of the method and shows different algorithms with similar performances.

SP is simple to implement and can be solved efficiently by standard linear

algebra software. In addition, outperforms traditional clustering algorithms

such as k-means. The main trick is to change the representation of the data

points and thanks to the properties of the graph Laplacians, this change of

representation tend to be useful.

In [16] a number of open issues in spectral clustering are analyzed, like

selecting the appropriate scale of analysis, handling multi-scale data, clus-

tering with irregular background clutter, and finding automatically the num-

ber of groups. This leads to a new algorithm in which the final randomly

initialized k-means stage is eliminated. The results of this new algorithm

are promising, improving automatic image segmentation.

One of the main issue of the SP model is the expensive time computation

in the derivation of eigenvectors. Ref. [17] introduces a new cost function

based on an error measure between a given partition and a solution of the

spectral relaxation of a minimum normalized cut problem. This leads to a

more robust method instead of the irrelevant features. Ref. [18] proposed an

efficient algorithm for reducing a large mixture of Gaussians into a smaller

mixture while still preserving the component structure of the original model.

This is achieved by clustering the components. The method minimizes a

new easily computed distance measure between two Gaussian mixtures that

can be motivated from a suitable stochastic model. The iterations of the

algorithm use only the model parameters, avoiding the need for explicit

resampling of datapoints. Results demonstrates the method by performing

hierarchical clustering of scenery images and handwritten digits. In order
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to evaluate the quality of the clustering in terms of correlation with the

category information, the authors computed the mutual information (MI)

between the clustering result (into k clusters) and the category affiliation

of the images in a test set. A high value of mutual information indicates

a strong resemblance between the content of the learned clusters and the

hand-picked image categories.

Performances calculation of a clustering method is a crucial problem,

mostly in unsupervised learning problem. Ref. [19] lists a lot of indeces

that describe the quality of clustering itself.

In the field of pattern recognition, the Non Negative Matrix Factoriza-

tion is one of the most used method, thanks to the ability to give basic

flows or patterns. In [20] [21] and [22] this method is widely studied. They

concluded that this kind of pattern extraction is usuful for a large group

of data, from image to speech recognition. Therefore, thanks to the matrix

decomposition, it is possible to detect hidden flows accentuating unknown

behaviors. Ref. [23] provides systematic analysis and extensions of NNMF

to the symmetric and the weighted matrices of spectral clustering. This

paper shows that NNMF can be equivalent to Kernel K-means clustering

and Laplacian-based spectral clustering.

The mobile carrier network (MCN) traffic can be adopted to figure out

the movements of human beings in a specific area. In [24], a human mobil-

ity analysis from a MCN illustrates that there is a high predictability (from

80% to 93%) on the user mobility due to the inherent regularity of human

behavior. A study from Google’s WiFi network [25], showed that human

mobility is powerfully related with time-dependent traffic fluctuations at

radio access network, neglecting its spatial variations. The energy efficiency

limits of networks that can adapt to traffic load variations in time was ana-
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lyzed in [26]. Most of the works on energy efficiency takes into account only

the temporal fluctuation of the traffic demand. Given that base stations are

the most power-hungry devices in MCN architectures, the energy efficiency

efforts in MCN focused mainly on the radio access segment [27] [28]. The

combined effect of temporal and spatial traffic was first proposed for energy

efficient operation of access networks. Starting from the radio access net-

works with a small cluster of MCN cell sites [29]. [30] proposed a energy

efficient management for passive optical network. Recently, tidal traffic ef-

fect was considered in [31] [2] to propose energy efficiency in metropolitan

networks. A limitation of this works, is that they assumed mainly two basic

tidal traffic patterns: residential and business. However, the social com-

position of metropolitan areas is more complex than just residential and

business, and multiple social functions or services can coexist in the same

location.

13
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Data-sets

In this chapter we introduce three different data-sets adopted to develop

this thesis. The first one is used to build prediction algorithms, clustering

and pattern extraction. Instead, the other two have been processed together

with the first data-set in order to obtain a suitable input for the network

simulator in chapter 7.

3.1 Telecom Italia data-set

The data-set refers to the traffic of voice/sms/data for each squared cell of

the Milan area, measured during November and December 2013. It pro-

vides information about telecommunication activities in the city. Squared

cells are numbered through ID, instead cell geometry is expressed as GEO-

JSON format and projected in WGS84 (EPSG:4326). Below, we can see

the coordinates of the four angles of a square:

’type’: ’Polygon’, ’coordinates’: [[[9.0114910478323, 45.35880131440966],

[9.014491488013135, 45.35880097314403], [9.0144909480813, 45.35668565341486],

[9.011490619692509, 45.356685994655464], [9.0114910478323, 45.35880131440966]]]

14



Chapter 3. Data-sets

The 5th coordinate is the same to the first one because of the old version

of the GEOJSON format. Figures ?? and ?? shows how cells are arranged

on the territory.

Figure 3.1: Milan grid

The data-set contains the following information:

• Square ID: the ID of the square that is part of the Milan GRID;

• Time interval: the beginning of the time interval expressed as the

number of millisecond elapsed from the Unix Epoch on January 1st,

1970 at UTC. The end of the time interval can be obtained by adding

600000 milliseconds (10 minutes) to this value;

• Country code: the phone country code of a nation.

15
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Figure 3.2: Milan map

• SMS-in activity: the activity in terms of SMS received inside the

Square ID, during the time interval and sent from the nation identified

by the country code;

• SMS-out activity: the activity in terms of SMS sent inside the

Square ID, during the time interval and received by the nation iden-

tified by the country code;

• Call-in activity: the activity in terms of received calls inside the

Square ID, during the time interval and issued from the nation iden-

16
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tified by the country code;

• Call-out activity: the activity in terms of issued calls inside the

Square ID, during the time interval and received by the nation iden-

tified by the country code;

• Internet traffic activity: the activity in terms of performed internet

traffic inside the Square ID, during the time interval and by the nation

of the users, performing the connection identified by the country code.

The data-set is the result of a computation over the Call Detail Records

(CDRs) generated by the Telecom Italia cellular network over the city of

Milan. CDRs log the user activity for billing purposes and network man-

agement every ten minutes, creating 144 records for each day. There are

many kind of CDRs; for the generation of this data-set we considered those

related to the following activities:

• Received SMS: a CDR is generated each time a user receives an

SMS;

• Sent SMS: a CDR is generated each time a user sends an SMS;

• Incoming Calls: a CDR is generated each time a user receives a call;

• Outgoing Calls: CDR is generated each time a user issues a call;

• Internet: a CDR is generated each time:

– a user starts an internet connection;

– a user ends an internet connection;

– during the same connection one of the following limits is reached:

15 minutes from the last generated CDR or 5 MB from the

last generated CDR;

17
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3.2 Social function data-set

To discover the social function of each squared cell of the first data-set, I

used the DUSAF (Destinazione d’Uso dei Suoli Agricoli e forestali) map.

It describes the land usage of the entire Lombardy to monitor the changes

that take place in all the region. We got the last version of 2012 [32]. The

database is in shape format, so I used the software QGIS to manipulate it,

extracting the city of Milan and periphery according to the network of the

first data-set. In figure 3.3 is shown the map of Lombardy.

Figure 3.3: Map of Lombardia

Assuming that the land usage did not change in one year, I merged

the Telecom Italia data-set with DUSAF in order to determine the social

function of each squared cell. I assigned the social ID label minimizing the

distance between the GPS coordinates of the two data-sets and associating

the social ID respectively. In figure 3.4 is shown the output of this process.

Each social ID represent a different function. For example: 124 (Air-
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Figure 3.4: Social functions

Figure 3.5: Description of the social functions
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port and Eliport), 1221 (roads), 1222 (rail networks), ecc.. In total are 53

different social functions.

3.3 Base Stations data-set

For the base stations location I used an open source data-set called Open-

CellID. It is a collaborative project to create a free worldwide database of

Cell IDs and their corresponding location area identity. The OpenCellID

project was primarily created to serve as a data source for GSM localiza-

tion in areas bereft of satellite navigation coverage. It contains the following

information for each BS:

• Type: GSM, UMTS, LTE;

• MCC: Mobile Country Code;

• Longitude: longitude coordinate;

• Latitude: latitude coordinate.

3.4 Data processing

Telecom Italia data-set is scaled by an unknown factor but, looking at the

first internet values, it seems to be proportional to 1′000′000 because the

CDRs are integer numbers.

0.00000233149762607 CDR

0.00000399999998990 CDR

0.00000499999987369 CDR
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0.00000600000021223 CDR

0.00000700000009601 CDR

Since we need to have the value of the internet field and the square ID

every hour, firstly, I merged the values by the country code because, for the

same moment, there are different measures depending on different users.

After that, I sampled the data-set taking the highest value among the six

ones for every hour. In figure 3.6 we can see the generated file after the

processing, where each number is expressed in CDR as mentioned before,

rows and columns represent the cells (from 1 to 10000) and the hours (from

00:00 am to 11:00 pm). In the end, we obtained 62 files one for each day

from November 1 2013 to January 1 2014.

Figure 3.6: Matrix of CDRs

Since the data-set contains information on the location and type of base

station of the entire Italian territory, I filtered by company (Telecom Italia)

and mobile country code, in order to extract just the Milan area. In this

way, we obtained a list of 2554 base stations mainly located at the center of

the city. Then, I clustered the Telecom Italia data-set using the GPS infor-

mation of the BS list, by grouping the squared cells based on the Euclidean
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distance between the coordinates of the BSs in the list and the coordinates

of the centers of the squared cells (figure 3.7 and 3.8), and summing the in-

ternet value respectively. In the end, we used the social functions data-set

to define a vector of social ID for each BS because there are different land

usages in an area covered by a single base staion.

As a result of this process, we obtained the following outputs:

• 62 matrices [2554 x 24] (one for each day), where the rows are the BSs

and the columns the hours of two months, November and December;

• A matrix [2554 x 3] containing the GPS locations, Longitudes and

Latitudes, and the type of BSs;

• A matrix containing the social and cell ID vectors, associated to each

BS.

We computed the mean value of the Pearson’s correlation among the

traffic loads inside each group with the purpose to see if the transformation

from 10000 to 2554 (figure 3.7 and 3.8) cells was correct. The histogram in

figure 3.9 shows that most of the squared cells, inside the clusters, had very

similar traffic load patterns.

3.5 Bandwidth estimation

In this work we used a network simulator which implement network resource

reconfigurations, based on bandwidth demands between all source and des-

tination node pairs. Then, bandwidth demands should be the basic input of

the system. Since we had integer numbers (CDRs), we needed to estimate

the bandwidth, without modifying the properties of the data-set. Assuming
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Figure 3.7: Squared cells of the TELECOM ITALIA dataset
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Figure 3.8: Base Stations of the OpenCellID dataset

23



Chapter 3. Data-sets

Figure 3.9: Histogram of percentage similarity of the BSs inside the clusters

a percentage of saturation in the network of 10 %, we can calculate the CDR

threshold in which we have the saturation.

saturation = 0.01

Y = f(CDRth)

Y counts the number of times in which the CDR threshold is exceeded.

The CDRth is chosen such that the total period of saturation over the two

months is less or equal to 10 %.

CDRth |
Y · 10min

(62 · 24 · 60)min
≤ saturation

62 are the days, 24 the hours and 60 the minutes. In this way, trying

different CDR threshold, the formula finds the one that makes the inequality

correct. Now, assuming the maximum bandwidth for each kind of BS [34]

[35] [36], the mean load for each 10 minutes [37] and the scaling factor (see

3.4), we derived a parameter, called saturation factor(A), for each type of
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base station:

BLTE = 300 Mbps

BUMTS = 14.4 Mbps

BGSM = 1.6 Mbps

mean load = 0.044 Mbps

scaling factor = 106

BLTE =
CDRth · ALTE ·mean load · scaling factor

10 · 60
[Mbps]

BUMTS =
CDRth · AUMTS ·mean load · scaling factor

10 · 60
[Mbps]

BGSM =
CDRth · AGSM ·mean load · scaling factor

10 · 60
[Mbps]

The traffic load (L) is calculated for each hour, changing the saturation factor

depending on the type of the BS and depending on the CDRth:

L =
CDRt·ALTE,UMTS,GSM ·mean load·scaling factor

10·60 [Mbps] CDRt < CDRth

L = BLTE,UMTS,GSM [Mbps] CDRt ≥ CDRth
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Figure 3.10: Example of a LTE Base Station.
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Figure 3.11: Example of a UMTS Base Station.
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Figure 3.12: Example of a GSM Base Station.
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Prediction

In this chapter we will talk about a subject required in many situations, i.e.

forecasting. Below some examples:

• Deciding whether to build another power generation plant in the next

five years, it needs forecasts of future demand;

• Scheduling staff in a call centre next week requires forecasts of call

volumes;

• Stocking an inventory demands forecasts of stock requirements.

Predictions can be necessary several years in advance (for the case of cap-

ital investments), or only a few minutes beforehand (for telecommunication

routing). Whatever the circumstances or time horizons involved, forecasting

is an important aid to effective and efficient planning. The predictability of

an event or a quantity depends on several factors including:

• How well we understand the factors that contribute to it;

• How much data are available;
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• Whether the forecasts can affect things we are trying to forecast.

Forecasting methods can be very simple such as using the most recent ob-

servation as a forecast (which is called the naive method), or highly complex

like neural networks and econometric systems of simultaneous equations.

In this work we started using the autoregressive model, moving on a

machine learning approch until implementing the Artificial Neural Network

(ANN) to make a long range prediction. The goal is to use the forecasted

traffic load in order to plan in advance the best resource allocation in the

underlying optical metro network, and reduce the power consumption of the

optical devices.

4.1 Autoregressive model

In an autoregression model, we forecast the variable of interest using a linear

combination of past values [7]. The term autoregression indicates a regres-

sion of the variable against itself. In this model the output variable depends

linearly on its own previous values and on a stochastic term. The notation

AR(p) indicates an autoregressive model of order p, and it is defined as:

yt = c+ θ1yt−1 + θ2yt−2 + ...+ θpyt−p + et

c is the mean value of the process Y (if the process is stationary c = 0),

et is the white noise.

An autoregressive model is normally restricted to stationary data, for

this reason, the process represented by the random variable Y should have

the mean value, variance and autocorrelation constant. Otherwise, the pro-

cess could be weak-sense stationary (WSS) because only requires the 1st

29



Chapter 4. Prediction

moment and autocorrelation constant over time. The model parameters can

be derived solving the Yule Walker equations, explained in section 4.1.1.

4.1.1 Yule-Walker equations

The Yule-Walker equations, named for Udny Yule and Gilbert Walker, help

us to find the parameters θi. Starting from the general model AR(p):

yt = θ1yt−1 + θ2yt−2 + ...+ θpyt−p + et

Multipling both side for yt−m where m is the lag between samples:

yt ·yt−m = (θ1yt−1 + θ2yt−2 + ...+ θpyt−p+ et) ·yt−m =

p∑
j=1

θjytyt−m+ et ·yt−m

we compute the expected value:

E[yt ·yt−m] = E

[
p∑
j=1

θjytyt−m

]
+E[et ·yt−m] =

p∑
j=1

E[θjytyt−m]+E[et ·yt−m]

The first term E
[∑p

j=1 θjytyt−m

]
is the autocorrelation rm, and the

second one is equal to:

E[et · yt] = E

[
et ·

(
p∑
i=1

θiyt−i + et

)]
=

p∑
i=1

θiE[etyt−i] + E[e2t ] = 0 + σ2
et

Finally we obtain:

rm =

p∑
i=1

θirm−i + σ2
etδm

Rewriting all the equations together, it yields:
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r1 = θ1r0 + θ2r1 + θ3r2 + ...+ θp−1rp−2 + θprp−1

r2 = θ1r1 + θ2r0 + θ3r1 + ...+ θp−1rp−3 + θprp−2

...

rp−1 = θ1rp−2 + θ2rp−3 + θ3rp−4 + ...+ θp−1r0 + θpr1

rp = θ1rp−1 + θ2rp−2 + θ3rp−3 + ...+ θp−1r1 + θpr0

The equations can also be written as:



r1

r2

...

rp−1

rp


=



r0 r1 r2 ... rp−2 rp−1

r1 r0 r1 ... rp−3 rp−2

... ... ... ... ... ...

rp−2 rp−3 rp−4 ... r0 r1

rp−1 rp−2 rp−3 ... r1 r0


×



θ1

θ2

...

θp−1

θp


Recalling that r0 is equal to 1, the above equations are also written in

this way:



r1

r2

...

rp−1

rp


=



1 r1 r2 ... rp−2 rp−1

r1 1 r1 ... rp−3 rp−2

... ... ... ... ... ...

rp−2 rp−3 rp−4 ... 1 r1

rp−1 rp−2 rp−3 ... r1 1


×



θ1

θ2

...

θp−1

θp


or in a vectorial way:

~r = ~R~Θ
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Note that this system has the same number of ~R rows as the elements

θj of the unknown vector ~Θ. Further, ~R is a full-rank and symmetric, so

that invertability is guaranteed:

~̂Θ = ~R−1~r

~̂Θ is the estimated vector of parameters.

4.1.2 Stationary test

In order to apply the autoregressive model we need to make a stationarity

test on our data. We derived the mean value 4.1, the variance 4.2 and the

autocorrelation 4.6 day by day during the month of November.
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Figure 4.1: Mean value of CDRs

As we can see from the figures, the process is not stationary. For this

reason, I tried to transform it in a stationary one by differencing the samples.

If this process is stationary, or at least in weak sense, we can adapt the
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Figure 4.2: Variance of CDRs
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Figure 4.3: Autocorrelation of the process

autoregressive model to this one and forecast the differences.
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y′t = yt − yt−1

y′t is the sample at time t of the differentiated process.

Figures 4.4 and 4.5 shows respectively the mean value and the autocor-

relation.
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Figure 4.4: Mean of the differentiated process

Since the differentiated process seems to be stationary in weak-sense,

we can apply the AR model to forecast the differences between consecutive

samples. We can use MATLAB to run the ARIMA (Auto Regressive Inte-

grated Moving Average) model in order to get the parameters, solving the

Yule Walker equations, and taking into account even the error of previous

predictions.
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Figure 4.5: Autocorrelation of the differentiated process

4.1.3 ARIMA

In statistics and in particular in time series analysis, an AutoRegressive

Integrated Moving Average model is an important tool to make the predic-

tion. We saw that in an autoregression model, we forecast the variable of

interest using a linear combination of past values.

yt = c+ θ1yt−1 + θ2yt−2 + ...+ θpyt−p + et

For an AR(1) model:

• When θ1 = 0, yt is equivalent to the white noise.

• When θ1 = 1 and c = 0, yt is equivalent to a random walk.

• When θ1 = 1 and c 6= 0, yt is equivalent to a random walk with drift.

• When θ1 < 0, yt tends to oscillate between positive and negative

values.
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We normally restrict autoregressive models to stationary data, and then

some constraints on the values of the parameters are required.

• For an AR(1) model:−1 < θ1 < 1.

• For an AR(2) model:−1 < θ2 < 1, θ1 + θ2 < 1, θ2 − θ1 < 1.

Rather than using past values of the forecast variable in a regression, a

moving average model uses past forecast errors in a regression-like model:

yt = c+ et + φ1et−1 + φ2et−2 + ...+ φqet−q

et is the white noise.

We refer to this asMA(q) model. In real life we do not observe the value

of et, but we can note that each value of yt can be thought as a weighted

moving average of the past few forecast errors. If we combine differencing

with autoregression and a moving average model, we obtain ARIMA, where

the full equation can be written as follow:

ŷ′t = c+ θ1y′t−1 + θ2y′t−2 + ...+ θpyt−p + et + φ1et−1 + ...+ φqet−q

ŷ′t is the estimation of the defferentiated samples.

We call this an ARIMA(p, d, q) model, where:

• p = order of the autoregressive part;

• d = degree of first differencing involved;

• q = order of the moving average part.

Following models are a special case of ARIMA(p,d,q):
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White noise ARIMA(0,0,0)

Random walk ARIMA(0,1,0) with no costant

Random walk with drift ARIMA(0,1,0) with costant

Autoregression ARIMA(p,0,0)

Moving average ARIMA(0,0,q)

4.2 Machine Learning approch

Until now we introduced all the concepts we need in order to forecast the

internet traffic. In a machine learning approch we define the kind of learning

algorithm based on the dataset being studied. In our case a supervised

learning algorithm is more suitable than others because it is possible to get

some features from the data.

A first strategy is to consider the following formula:

ŷt = ŷ′t + yt−1

where ŷ′t is the prediction of the difference yt − yt−1, derived by which

ARIMA(3,1,0), and yt−1 is the previous value.

To decrease the error and improve the prediction, we can use other

feautures of the data. Recalling the autocorrelation function of the original

process, figure 4.6, we note the sample at a time t has a strong correlation

with:

1. The previous value;

2. The same value of the prevoius day;

3. The same of the prevoius week;
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After that, we introduced all these elements, weighing them to an alpha

factor, and made the following prediction formula:
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Figure 4.6: Autocorrelation

ŷt = α1ŷ′t + α2yt−1 + α3yt−h + α4yt−(h·d)

h = 24 are the hours and d = 7 are the days.

Section 4.2.1 showes the derivation of the αi parameters, minimizing a

cost function. This procedure is called training of the prediction model.

4.2.1 Training the model

The training part is the step where the model learn how to deal with differ-

ent inputs. Dividing the data in training and test set, a computer calculates

the αi parameters by the minimization of the following cost function.

J(α) =
1

2
· (yt − ŷt)2
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min
α
J(α)

yt is the real value and ŷt is the predicted one.

We will find a group of four parameter α1, α2, α3, α4 for each entry of the

training set that minimize the cost function J(α). We can use the Gradient

Descent algorithm [38] to do what we said previously.

Gradient Descent

One of the most popoular algorithm to perform optimizations is the Gradi-

ent descent [39]. It is used to minimize, or maximize, an objective function

parameterized by parameters αi, and updating them iteratively until reach-

ing the global or local minima. In this section, we are going to analyze

the algorithm with one training sample; later we will see it with m training

examples. Before starting, lets prepare the variables to understand easly

the algorithm.

x1 = ŷ′t

x2 = yt−1

x3 = yt−h

x4 = yt−(h·d)

hα(x) = α1x1 + α2x2 + α3x3 + α4x4 =
4∑
i=1

αixi

Now the cost function will be:

J(α) =
1

2
(hα(x)− y)2
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The 1
2
before the cost function is a trick to have a more convenient

gradient for the calculations.

min
α
J(α)

We set the initial vector of αi with random numbers, and obtain the

derivatives:

d

dαi
J(α) =

1

2
[2 · (hα(x)− y)] · d

dαi
[α1x1 + α2x2 + α3x3 + α4x4 − y]

The updating rule is the following:

αi := αi − γ ·
d

dαi
J(α) = αi − γ · (hα(x)− y) · xi

For example:

α1 := α1 − γ · (α1x1 + α2x2 + α3x3 + α4x4 − y) · x1

α2 := α2 − γ · (α1x1 + α2x2 + α3x3 + α4x4 − y) · x2

α3 := α3 − γ · (α1x1 + α2x2 + α3x3 + α4x4 − y) · x3

α4 := α4 − γ · (α1x1 + α2x2 + α3x3 + α4x4 − y) · x4

where γ is the learning parameter and controls the step in the direction of

the steepest descent. We repeat this procedure until convergence, obtaining

the parameters.

Taking into account m traning samples, the above equations change in

the following way:

x1[1, 2, ...,m] = [ŷ′t1 , ŷ′t2 , ..., ŷ′tm ]

x2[1, 2, ...,m] = [yt1−1, yt2−1, ..., ytm−1]
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x3[1, 2, ...,m] = [yt1−h, yt2−h, ..., ytm−h]

x4[1, 2, ...,m] = [yt1−(h·d), yt2−(h·d), ..., ytm−(h·d)]

hα(x) =
m∑
i=1

(α1x1(i) + α2x2(i) + α3x3(i) + α4x4(i))

Now the cost function will be:

J(α) =
1

2

m∑
i=1

(α1x1(i) + α2x2(i) + α3x3(i) + α4x4(i)− y(i))2

min
α
J(α)

The advantage of having more training examples is due to the fact that

the algorithm can achieve a more accurate value of each alpha. The tests

were made applying the algorithm with m training samples, where I derived

alpha1, alpha2, alpha3, alpha4, for each entry of the dataset. I chose

m = 10 training samples because it is a good compromise between time

computation and algorithm accuracy.

4.3 Artificial Neural Network

In machine learning, an artificial neural network (ANN) is a network in-

spired by the central nervous systems of animals, which are used to es-

timate or approximate functions that can depend on a large number of

inputs that are generally unknown. Neural networks are composed of sim-

ple elements operating in parallel. As in nature, the network function is

determined largely by the connections between elements. We can train a

neural network to perform a particular function by adjusting the values of

the connections (weights) between elements.
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Each time we describe a neural network algorithm we will typically spec-

ify three things.

• Architecture: the architecture specifies which variables are involved

in the network and their topological relationships. For example, the

variables involved in a neural network might be the weights of the

connections between the neurons;

• Activity rule: most neural network models have local rules and define

how the activities of the neurons change in response to each other.

Typically the activity rule depends on the weights (the parameters)

in the network;

• Learning rule: the learning rule specifies the way in which the neural

network’s weights change with time.

Activity rules and learning rules may be derived from carefully chosen

objective functions. Commonly neural networks are adjusted or trained, so

that a particular input leads to a specific target output. Such a situation is

shown below in figure 4.7. The network is adjusted, based on a comparison

of the output and the target, until the network output matches the target.

This kind of neural network is based on a supervised learning, where typi-

cally many input/target pairs are used to train a network. Neural networks

have been trained to perform complex functions in various fields of appli-

cation including pattern recognition, identification, classification, speech,

vision and control systems.

4.3.1 The single neuron

It is important to study how a single neuron works for two reasons [40].

First, many NN model are built out of single neurons, so that it is good
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Figure 4.7: ANN scheme

to understand them in detail. Secondly, a single neuron is itself capable of

learning, and this model will serve as a first example of a supervised neural

network.

As mentioned before we start defining the architecture and the activity

rule of a single neuron, and we will then derive a learning rule.

Figure 4.8: Single neuron scheme

• Architecture: A single neuron has got a number of inputs xi and

one output y (see figure 4.8). Associated with each input is a weight

wi(i = 1, ..., I). There may be an additional parameter w0 of the
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neuron called bias which we may view as being the weight associated

with an input x0 permanently set to 1.

• Activity rule: The activity rule supposes two steps.

– First, we compute the neuron activation,

a =
I∑
i=0

wixi,

– Second, the output y is set as a function f(a) of the activation.

There are several possible activation functions. They can be

linear and non-linear.

• Learning rule: typically a learning rule is an objective function that

measure how well the network with weights wi solves the task. The

training process is a function minimization, adjusting w in order to

minimize the objective function. Here we used a form of gradient

descent algorithm called Levenberg-Marquardt.

The activity and learning rules are repeated for each input/target pair

(x, t) presented.

4.3.2 ANN model

In this work I used and modified an ANN model for the electricity load

and price forecasting [41]. The model is calibrated to forecast hourly day-

ahead loads given temperature forecasts, holiday information and historical

loads. I added our case study changing the model and testing it on the

training set. The three steps to building the forecaster include creating a

matrix of predictors from the historical data, selecting and calibrating the
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Figure 4.9: ANN model for the electricity load and price forecasting

chosen model and then running the artificial network live in the MATLAB

interface.

In our case, since we do not have so many features of the data, I used

the load of the previous day, the average and the load of the previous week

to train the model. It came out that using about 50 neurons it was possible

to obtain a percentage of error between 15 and 20%.

4.4 Application to metro traffic and results

To sum up, we studied three different prediction methods with the purpose

of forecasting the traffic load of the metro network. The first one is the

autoregressive model; the second is based on a machine learning approch,

and the last is an application of an ANN model. For our purposes we used

the Telecom Italia dataset before and after the grouping procedure with

2554 BS, forecasting the CDRs. The performances have been evaluated by

obtaining the Mean Absolute Error (MAE) and the Mean Absolute Per-

centage Error (MAPE) overall the network, using the data-set before the

processing (dataset1 = [10000x1488]) and after (dataset2 = [2554x1488]).
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We split up each dataset in two part. The training set from 01/11/2013 to

15/12/2013, and the test set from 16/12/2013 to 01/01/2014.

MAE =
1

n

n∑
i=1

|ŷi − yi|

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣
where yi is the mean value.

4.4.1 Autoregressive model

I applied ARIMA(12,0,0) and obtained the following mean value of each

accuracy functions.

dataset1 :

MAE = 6.44

MAPE = 17.94%

dataset2 :

MAE = 128.58

MAPE = 23.71%
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Figure 4.10: Autoregressive model of a squared cell during 3 days of the test set.
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Figure 4.11: Autoregressive model of a base station during 3 days of the test set.
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4.4.2 Machine Learning approach

This method is scalable, we have the chance to add some other feature

and re-make the machine learning procedure. We note that we obtained

better results with the first data-set than with the second one. This happen

because the second data-set is not pure as the first one, but it has been

derived from a processing of two different data-sets.

dataset1 :

MAE = 6.53

MAPE = 15.97%

dataset2 :

MAE = 164.44

MAPE = 24.85%
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Figure 4.12: Machine learning approach of a squared cell during 3 days of the test

set.
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Figure 4.13: Machine learning approach of a base station during 3 days of the test

set.

4.4.3 Artificial Neural Network

ANN performances have been obtained considering 53 neurons.

dataset1 :

MAE = 44.79

MAPE = 17.73%

dataset2 :

MAE = 4.71

MAPE = 29.50%

As we have seen from the state of the art and in this chapter, there are

many methods that allow us to create a predictive model. In particular , the

approach to machine learning is scalable, which means we can add features

that make the value that we want to predict. This is the reason why we
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Figure 4.14: ANN 24h prediction of a squared cell of the dataset1 during 3 days.
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Figure 4.15: ANN 24h prediction of a base station of the dataset2 during 3 days.

applied clustering and pattern recognition techniques on datasets available

in this work.
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Clustering

Given a set of data that describe the internet traffic load of each base station,

it is possible to group these data sequences based on their similarity thanks

to the so called clustering methods. This could lead us to define the social

function of the base stations and recognize their typical pattern during

different days. In this chapter we studied two clustering methods in order to

find similarities among base stations and try to define their social function.

In section 5.1 we will see the presence of a similarity between cells located in

different places but with the same social ID. Unfortunatly, DUSAF database

is not updated and contains some errors about the type of buildings present

on the territory. For this reason, in this chapter we limit ourselves only

to apply two clustering algorithms, and use the output in chapter 6 as

input for a method with the aim to identify typical patterns. This kind

of information could be used during the planning of the telecommunication

networks or even for urbanistic purposes.
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5.1 Dynamic Time Warping

In order to see if there is a similarity between two different base stations,

even in different part of the city, I used a tool called Dynamic Time Warping

(DTW). It is a well-known algorithm which aims at comparing and align-

ing two sequences of data points [33], for example time series. Given two

sequences a and b in the time:

A(t) = a1, a2, a3, ..., an

B(t) = b1, b2, b3, ..., bm

DTW works by warping (hence the name) the time axis iteratively until

an optimal match between the two sequences is found. We can construct a

n x m distance matrix where each cell (i,j) represents the distance between

the i-th element of sequence A and the j-th element of sequence B. The

distance metric used depends on the application, but a common metric is

the Euclidean distance, figure 5.1.

Finding the best alignment between two sequences can be seen as finding

the shortest path to go from the bottom-left cell to the top-right of the

distance matrix. The length of a path is simply the sum of all the cells that

were visited along that path. Further away the optimal path wanders from

the diagonal, more the two sequences need to be warped to match together.

In our case, I chose four cells, far from each other, with the same social ID.

Figures 5.2 5.3 5.4 5.5 and 5.6 5.7 5.8 5.9, shows two different social ID,

1111 (residential), 12111 (Industrial places), in a period of 24 hours. As

we can see, there exist a similarity between them warping a little bit the

signals.
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Figure 5.1: Distance matrix

Figure 5.2: Cell 3534 - social ID 1111 (Residential)

5.2 K-means

K-means is one of the most popular and simplest unsupervised learning

algorithm that solves the well known clustering problem [12]. The procedure

classifies a given dataset through a certain number of clusters fixed a priori.
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Figure 5.3: Cell 7889 - social ID 1111 (Residential)
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Figure 5.4: Original signals - cells 3534, 7889

The main idea is to define k centroids, one for each cluster, but different

locations cause different results. So, the better choice is to place them as

much as possible far away from each other or randomly. The next step is to

take each point belonging to a given data-set and associate it to the nearest
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Figure 5.5: Warped signals - cells 3534, 7889

Figure 5.6: Cell 1298 - social ID 12111 (Industrial places)
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Figure 5.7: Cell 7943 - social ID 12111 (Industrial places)
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Figure 5.8: Original signals - cells 1298, 7943

centroid. After completing the first step, an early groupage is done. At this

point we need to re-calculate k new centroids as barycenters of the clusters
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Figure 5.9: Warped signals - cells 1298, 7943

resulting from the previous step. Then, a new association has to be done in

order to create new clusters. This procedure is repeated until k centroids

do not change their location any more. This algorithm plans at minimizing

an objective function, in this case a squared error function showed below:

J =
k∑
j=1

n∑
i=1

|x(j)i − cj|2

where |x(j)i − cj|2 is a chosen distance measure between a data point x(j)i
and cluster centre cj, and it is an indicator of the distance of the n data

points from their respective cluster centers.

The algorithm can be consolidated by the following steps:

• Dispose K points into the space represented by the objects being clus-

tered. These points represent initial group of centroids.

• Assign each object to the closest centroid, generating a first clustering.
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• When all objects have been assigned, recalculate the positions of the

k centroids as the barycenter of each cluster.

• Repeat Steps 2 and 3 until the centroids no longer move. This pro-

duces a separation of the objects into groups called clusters.

This procedure will always terminate, but the k-means algorithm does

not necessarily find the most optimal configuration, corresponding to the

global minimum of the objective function. As we said before, the algorithm

is also significantly sensitive to the initial randomly centroids distribution.

The k-means algorithm can be run multiple times to reduce this effect.

5.3 Spectral clustering

Spectral clustering is one of the most popular clustering algorithm that

uses the eigenvectors of some matrices to find a partition of the data with

the aim to obtain groups with similar points. This simple and powerful

method requires less assamptions on the form of clusters and outperforms

the traditional approches, such as k-means clustering [15]. Before moving

on the algorithm we will introduce the mathematical background.

5.3.1 Similarity graphs

Given a set of points x1, x2, ..., xn and some notion of similarity sij ≥ 0

between all pairs of data points xi and xj, the goal of clustering is to divide

the data into several groups where points in different sets are distinct to

each other. However, we can represent the data by the similarity graph

G = (V,E) where each vertex vi represents a data point xi. Two vertices

are connected if the similarity sij between the corresponding data points xi
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and xj is positive or larger than a threshold, and the edge is weighted by

sij.

Clustering procedure can be reformulated using the similarity graph,

partitioning the graph such that the edges between different groups have

very low weights, which means that vertices (data points) within the same

cluster are similar to each other.

Lets introduce some basic graph notation:

• G = (V,E) is an undirected graph with vertex set V = v1, v2, ..., vn;

• W = (wij)i,j=1,2,3,...,n is the adiacency matrix of the graph G, the

matrix of the weights between each vertex, if wij = 0 there is no edge

between vi and vj;

• di =
∑n

j=1wij is the degree of a vertex vi ∈ V ;

• The degree matrix D is defined as the diagonal matrix with the degrees

d1, d2, ..., dn on the diagonal;

• Given a subset of vertices A ⊂ V , we denote its complement by A;

• We define the indicator vector 1 = (f1, f2, ..., fn)′ ∈ Rn as the vector

with entries fi = 1 if vi ∈ A and fi = 0 otherwise;

• For convenience we define a shorthand notation i ∈ A for the set of

indeces i|vi ∈ A, for example:
∑

i∈Awij;

• For two not necessarly disjoint sets A,B ⊂ V we define: W (A,B) =∑
i∈A,i∈B wij;

• For the mesaure of the size of a subset, we consider two method:

– |A| := the number of vertices in A;
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– vol(A) :=
∑

i∈A di;

• A subset A of a graph is connected if any two vertices in A can be

joined by a path such that all intermediate points also lie in A;

• A subset A is called a connected component if it is connected and if

there are no connections between vertices in A and A;

There are several popular way to transform a given set x1, x2, ..., xn of

data points with similarities sij or pairwise distances dij into a graph. When

constructing similarity graphs the goal is to model the local neighborhood

relationships between the data points. We will show three methods:

• The ε-neighborhood graph: Here we connect all points whose pair-

wise distances are smaller than ε. Weighting the edges would not in-

corporate more information about the data to the graph. Hence, the

ε-neighborhood is usually considered as an unweighted graph.

• k-nearest neighbor graphs: Here the goal is to connect vertex

vi with vertex vj if this last is among the k-nearest neighbors of vi.

However, this definition leads to a directed graph, so the neighborhood

relationship is not symmetric. There are two ways of making this

graph undirected. The first one is to simply ignore the directions of

the edges, connecting vi and vj with an undirected edge if vi is among

the k-nearest neighbors of vj or if vj is among the k-nearest neighbors

of vi. The resulting graph is what is usually called the k-nearest

neighbor graph. The second way is to connect vertices vi and vj if vi

is among the k-nearest neighbors of vj and vj is among the k-nearest

neighbors of vi. The resulting graph is called the mutual k-nearest

neighbor graph.

60



Chapter 5. Clustering

• The fully connected graph: Here we simply connect all points with

positive similarity with each other, and we weight all edges by sij.

As the graph should represent the local neighborhood relationships,

this construction is only useful if the similarity function itself models

local neighborhoods. An example for such a similarity function is the

Gaussian similarity:

s(xi, xj) = exp(−||xi − xj||2/(2σ2))

where the parameter σ controls the width of the neighborhoods. This

parameter plays a similar role as the parameter ε in case of the ε-

neighborhood graph.

All graphs mentioned above are regularly used in spectral clustering,

and the choice of the similarity graph influences the algorithm. Below an

example:

We use the Gaussian similarity to represent local neighborhood relation-

ships:

Wij = exp(−||xi − xj||2/(2σ2))(i 6= j)

where W is the adjacency matrix of similarity graph. D is the degree

matrix:

Dij =


∑

kWik i = j

0 i 6= j

For the following data points:

x1 = (6, 8); x2 = (3, 1); x3 = (7, 9); x4 = (3, 2); x5 = (9, 8); x6 = (2, 4);
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We have the adiacency matrix:

W =



0 0.04 0.89 0.08 0.61 0.17

0.04 0 0.01 0.95 0.01 0.57

0.89 0.01 0 0.03 0.76 0.06

0.08 0.95 0.03 0 0.02 0.76

0.61 0.01 0.76 0.02 0 0.03

0.17 0.57 0.06 0.76 0.03 0


σ = 3

5.3.2 Graph Laplacians and their basic properties

Once we obtain the similarity graph, we use the spectral graph theory [42]

as a tool to cluster, deriving the graph Laplacian matrix. It represents

an affinity matrix where the eigenvectors describe different group of data.

Finding the eigenvectors means discovering the clusters in the network.

Different methods use different Laplacian matrices. Following we assume G

as an undirected and weighted graph with matrix W , where wij = wji ≥ 0.

The unnormalized graph Laplacian

The unnormalized graph Laplacian is defined as:

L = D −W

where D is the degree matrix and W is the adiacency matrix of the graph

G. The matrix L satisfies the following properties [43] (that we will need

for the clustering):
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• For every vector f ∈ Rn we have:

f ′Lf =
1

2

n∑
i,j=1

wij(fi − fj)2

• L is symmetric and positive semi-definite;

• The smallest eigenvalue of L is 0, the corresponding eigenvector is the

constant one vector 1;

• L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn;

The unnormalized graph Laplacian and its eigenvalues and eigenvectors

can be used to describe many graph properties. One of these properties is

described as follow:

Proposition (Number of connected components and the spec-

trum of L)-Let G be an undirected graph with non-negative weights. Then

the multiplicity k of the eigenvalue 0 of L equals the number of connected

components A1, ..., Ak in the graph. The eigenspace of eigenvalue 0 is spanned

by the indicator vectors 1A1 , ..,1Ak
of those components.

Proof. We start with the case k = 1, that is the graph is connected.

Assume that f is an eigenvector with eigenvalue 0. Then we know that:

0 = f ′Lf =
n∑

i,j=1

wij(fi − fj)2

As the weights wij are non-negative, this sum can only vanish if all

terms wij(fi − fj)2 vanish. Thus, if two vertices vi and vj are connected,

i.e. wij > 0, then fi needs to be equal fj. With this argument we can see

that f neeeds to be constant for all vertices which can be connecetd by a

path in the graph. Moreover, as all vertices of a connected component in an

undirected graph can be connected by a path, f needs to be constant on the
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whole connected component. In a graph consisting of only one connected

component we thus only have the constant one vector 1 as eigenvector

with eigenvalue 0, which obviously is the indicator vector of the connected

component.

The normalized graph Laplacian

In addition to unormalized graphs there are two matrices called normalized

graph Laplacians. Both are closely related to each other and are defined as:

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw := D−1L = I −D−1W

We denote the first by Lsym as symmetric matrix, and the seconde by

Lrw because it is closely related to a random walk.

5.3.3 Spectral Clustering Algorithms

Now, we will define three spectral clustering algorithms assuming that our

data consists of n points x1, x2, ..., xn and we measure their pairwise simi-

larities sij = s(xi, xj) by a similarity function which is symmetric and non-

negative. We denote the corresponding similarity matrix by S = (sij)i,j=1...n.

Unnormalized spectral clustering

INPUT: Similarity matrix S ∈ Rnxn, number of k of clusters to construct.

• Construct the similarity graph by one of the ways described in section

5.3.1. Let W be its weighted adjacency matrix.

• Compute the unnormalized Laplacian L.
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• Compute the first k eigenvectors u1, ..., uk of L.

• Let U ∈ Rnxk be the matrix containing the vectors u1, ..., uk as columns.

• For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th

row of U .

• Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into

clusters C1, ..., Ck.

OUTPUT: Clusters A1, ..., Ak with Ai = j|yj ∈ Ci.

Normalized spectral clustering according to Shi and Malik (2000)

INPUT: Similarity matrix S ∈ Rnxn, number of k of clusters to construct.

• Construct the similarity graph by one of the ways described in section

5.3.1. Let W be its weighted adjacency matrix.

• Compute the unnormalized Laplacian L.

• Compute the first k generalized eigenvectors u1, ..., uk of the

generalized eigenproblem Lu = λDu.

• Let U ∈ Rnxk be the matrix containing the vectors u1, ..., uk as columns.

• For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th

row of U .

• Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into

clusters C1, ..., Ck.

OUTPUT: Clusters A1, ..., Ak with Ai = j|yj ∈ Ci.
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Normalized spectral clustering according to Ng, Jordan, andWeiss

(2002)

INPUT: Similarity matrix S ∈ Rnxn, number of k of clusters to construct.

• Construct the similarity graph by one of the ways described in section

5.3.1. Let W be its weighted adjacency matrix.

• Compute the normalized Laplacian Lsym.

• Compute the first k eigenvectors u1, ..., uk of Lsym.

• Let U ∈ Rnxk be the matrix containing the vectors u1, ..., uk as columns.

• Form the matrix T ∈ Rnxk from U by normalizing the rows to

norm 1, that is set tij = uij/ (
∑

k u
2
ik)

1/2.

• For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th

row of T .

• Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into

clusters C1, ..., Ck.

OUTPUT: Clusters A1, ..., Ak with Ai = j|yj ∈ Ci.

In all three algorithms, the main trick is to change the representation of

the abstract data points xi to points yi ∈ Rk. This is due to the properties

of the graph Laplacians that make this change of representation useful.

In particular, the simple k-means clustering algorithm has no difficulties

to detect clusters in this new representation. In this work, I derived the

similarty matrix by using the k-nearest method with k = 5 and σ = 1.

Then, I computed the Laplacian and performed the eigendecomposition in

order to apply the Jordan and Weiss algorithm.
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5.4 Clustering indeces

In this section, I will present three indeces to evauate the performances

to measure the quality of the clustering [19]: Calinski Harabasz, Davies

Bouldin and Dunn.

5.4.1 Calinski Harabasz (CH)

Calinski Harabasz (CH) called sometimes variance ratio criterion (VRC),

evaluates the cluster validity based on the average between and within clus-

ter sum of squares. Well-defined clusters have a large between-cluster vari-

ance (SSB) and a small within-cluster variance (SSW ):

SSW =
k∑
i=1

ni||mi −m||2

SSB =
k∑
i=1

∑
x∈ci

||x−mi||2

V RC =
SSB
SSW

· (N − k)

(k − 1)

where SSB is the overall between-cluster variance (ni= number of ele-

ments inside the cluster I,mi=centroid of the cluster I,m= the overall mean

of the sample data), SSW is the overall within-cluster variance (x=data

point), k is the number of clusters, and N is the number of observations.

5.4.2 Davies Bouldin (DB)

The Davies-Bouldin criterion is based on a ratio of within-cluster and between-

cluster distances. For each cluster C, the similarities between C and all the

other clusters are computed, and the highest value is assigned to C as its
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cluster similarity. The index is obtained by averaging all clusters similari-

ties. So, we are looking for the smallest index.

DB =
1

k

k∑
i=1

maxi 6=jDi,j

where Di,j is equal to:

Di,j =
(di + dj)

di,j

di is the average distance between each point in the i-th cluster and the

centroid of the i-th cluster. dj is the average distance between each point

in the j-th cluster and the centroid of the j-th cluster. di,j is the Euclidean

distance between the centroids of the i-th and j-th clusters. The maximum

value of Di,j represents the worst-case within-to-between cluster ratio for

cluster i. The optimal clustering solution has the smallest Davies-Bouldin

index value.

5.4.3 Dunn (DU)

It is an internal evaluation scheme, where the result is based on the clustered

data itself. The aim is to identify sets of clusters that are compact, with a

small variance between members of the cluster, and well separated. We are

looking for the maximum value :

∆i = maxx,y∈Ci
d(x, y)

Calculates the maximum distance.

1

|Ci||Ci − 1|
∑

x,y∈Ci,x 6=y

d(x, y)

Calculates the mean distance between all pairs.
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∆i =

∑
x∈Ci

d(x, µ)

|Ci|
, µ =

∑
x∈Ci

x

|Ci|
Calculates distance of all the points from the mean.

Let:

δ(Ci, Cj)

be the intercluster distance metric, between clusters Ci and Cj. With

the above notation, if there are m clusters, then the Dunn Index for the set

is defined as:

DIm =
min1≤i<j≤mδ(Ci, Cj)

max1≤k≤m∆k

5.5 Application to metro traffic and results

I used two different dataset to show the difference in choosing a correct

input. The first one is the dataset2 (defined in 4.4) as input for both of

the methods. The clustering will be based even on the spatial information,

in this way we are able to detect similar pattern of near BSs. We tried k

number of clusters from 200 to 1500 with a step of 50. Following the results

table:

Method with dataset2 max(CH) min(DB) max(DU) K

Kmeans 6.83 · 103 0.43 0.021 [1500; 1500; 1500]

Spectral Clustering 1.1269 1.43 4.31 · 10−9 [450; 550; 1200]

As we can see in figures 5.10 5.11 5.12, the indeces does not converge,

while in spectral clustering, figures 5.13 5.14 5.15 ,the first two indeces, such

as CH and DB, converge respectively in K=450 and K=550.
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The second dataset is composed by the value of α1, α2, α3, α4 generated

from the training of the prediction in section 4.2.1. The results in table and

in figures 5.16 5.17 5.18 5.19 5.20 5.21, showed different values of convergence

of the two methods.

Method with dataset of αi max(CH) min(DB) max(DU) K

Kmeans 2.76 · 103 0.32 0.07 [1500; 1500; 1500]

Spectral Clustering 236.18 1.08 0.0027 [200; 200; 350]

Clustering methods depend on the parameters of the model and on the

type of the dataset used as input. For example, a dataset whose values

depend on different features, reacts better to a grouping compared to the

case where a similar situation is not present. Therefore, identify the char-

acteristics that make the values you want to clustering is a fundamental

step.
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Figure 5.10: Calinski Harabasz for Kmeans
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Figure 5.11: Davies Bouldin for Kmeans
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Figure 5.12: Dunn for Kmeans
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Figure 5.13: Calinski Harabasz for Spectral Clustering
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Figure 5.14: Davies Bouldin for Spectral Clustering
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Figure 5.15: Dunn for Spectral Clustering
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Figure 5.16: Calinski Harabasz for Kmeans (dataset of αi)
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Figure 5.17: Davies Bouldin for Kmeans (dataset of αi)
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Figure 5.18: Dunn for Kmeans (dataset of αi)
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Figure 5.19: Calinski Harabasz for Spectral Clustering (dataset of αi)
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Figure 5.20: Davies Bouldin for Spectral Clustering (dataset of αi)
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Figure 5.21: Dunn for Spectral Clustering (dataset of αi)
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Pattern extraction

Due to the highly predictable daily movements of citizens in large urban

areas [44], mobile traffic exhibits repetitive patterns with spatio-temporal

variations. This behavior has been recently compared to the rise and fall of

the sea levels, known as tides. Thus it was called the tidal-traffic scenario

[45].

Recognizing and defining traffic patterns is a relevant information that

can lead us finding an important stone in building a smart network. Along

with the traffic prediction, it is possible to give the SDN controller the

ability of optimization, allocating resources in response to the tidal traffic

of the metro-core network.

Tidal traffic may create hot spots in a network moving in the spatio-

temporal space, and following a regular pattern given by the human com-

mutation from residential areas to working areas (academic, business, in-

dustrial, medical, governmental among others). Special events may change

the tidal traffic, as for instance, maintenance, disasters, and social events. It

has been shown that the daily variation of the number of users in a specific

area of the city is very periodic, so that the regular traffic daily pattern can
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be even used to identify the social function of the urban zone [46][47].

The goal of this chapter is to exploit a method in order to find hidden

behavior, and try to answer to the following three questions: why, where

and when a typical pattern is detected.

6.1 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NNMF) is a set of algorithms in multi-

variate analysis and linear algebra where a matrix V is factorized into two

matrices W and H, with non negative elements as hypothesis [21]. The

non-negativity is a useful constraint for matrix factorization that can learn

a partial representation of the data [48] [20]. The basic idea is to devide the

matrix of observations V in a product of two matricies:

V = W ·H

The factorization of a given nxm matrix V , where m is the number of

examples and n the dimension of the variable, is based on a parameter r,

chosen to be smaller than n or m, so that W [nxr] and H[rxm] are smaller

than the original matrix V . Each data vector v is approximated by a linear

combination of the columns ofW , weighted by the components of h. There-

fore, W can be considered as a basis matrix where each vector is used to

represent many original data vector. Following an easy example of NNMF:

V =


1 2 3 5

2 4 8 12

3 6 7 13


The rank of the matrix is 2, r = 2:
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W =


1 3

2 8

3 7


H =

1 2 0 2

0 0 1 1


As we said before, there is a set of algorithms able to generate a good

approximation of the two matrices. Some of them are based on iterative

updates of W and H. In section 6.1.1 we studied one of these algorithm.

6.1.1 NNMF algorithm

To find an approximate factorization V ≈ WH, we first need to define

a cost function that quantifies the quality of the approximation. Such a

cost function can be constructed using a measure of distance between two

non-negative matrices A and B. We can use the square of the Euclidean

distance:

||A−B||2 =
∑
ij

(Aij −Bij)
2

Another usuful measure is:

D(A||B) =
∑
ij

(
Aijlog

Aij
Bij

− Aij +Bij

)
This last measure cannot be called "distance", because it is not sym-

metric in A and B, so we will refer to it as the "divergence" of A from

B. It reduces to the Kullback-Leibler divergence, or relative entropy, when∑
ij Aij =

∑
ij Bij = 1, so that A and B can be regarded as normalized

probability distributions.
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Now we will consider two alternative formulations of NNMF as opti-

mization problems:

Problem 1 Minimize ||V −WH||2 with respect to W and H, subject to

the constraints W,H ≥ 0.

Problem 2 Minimize D(V ||WH) with respect to W and H, subject to

the constraints W,H ≥ 0.

There are plenty of techniques from numerical optimization that can

be applied to find local minima. One of these is the gradient descent, but

convergence can be slow. Other methods such as conjugate gradient have

faster convergence, at least in the vicinity of local minima, but are more

complicated to implement rather than gradient descent. The convergence of

gradient based methods also have the disadvantage of being very sensitive to

the choice of step size, which can be very inconvenient for large applications.

6.2 Application and results

I applied this method using two different input matrices. The first one is the

dataset2, and the second is the output of the clustering processing. Since

NNMF needs to know the parameter r in advance, we tried r ∈ [2, 30].

Increasing the number of r we obtained more basic flows, but some of them

are not useful because they belong just to few base stations. I wrote a code

in MATLAB that extract the basic flows in an automatic way. The steps

are the following:

1. Given the input dataset, apply the NNMF with a given number of r;

2. For each r I made the comparison of each basic flow with the original

input by using the Pearson’s correlation;
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3. When the correlation was greater or equal to 90%, I stored the ID of

the BS that matched the basic pattern;

4. In the end, I filtered the number of basic flows by the number of BS

that matched in the previous step, and I set up this number to 5;

6.2.1 First input matrix

Figure 6.2 shows 8 basic flows with different percentage of presence in the

network. The histogram in 6.1 shows the percentage of presence of each

pattern.

Figure 6.1: Histogram representing the percentage of presence of the patterns gen-

erated from the dataset2 in the network

As we can see, pattern 1 and 8 are more present in the network than

the others. This result is rather common, because most of the base station

show a trend below the saturation point, and a bell-shaped trend during

the hours of greater activity in the Internet network.
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Figure 6.2: Basic flows from dataset2
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A direct example is the BS with ID = 1982 and ID = 429, they have

the typical pattern in figure 6.2(e) and 6.2(c). Both figures present a peak

detected during the night because of the nightlife that takes place in these

particular areas of Milan.

Figure 6.3: Area covered by the BS with a typical pattern showed in 6.2(e)

Figure 6.4: Area covered by the BS with a typical pattern showed in 6.2(c)
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6.2.2 Second input matrix

Figure 6.6 shows 8 basic flows with different percentage of presence in the

network, almost similar to the previous case. The histogram in 6.5 shows

the percentage of presence of each pattern.

Figure 6.5: Histogram representing the percentage of presence of the patterns gen-

erated from the clustering matrix in the network

In this case, patter 1 and 7 are the most popular in the network. The

two series of basic flows just found are very similar. What we did with the

matrix obtained by clustering is a pattern research on the mean traffic load

vector representative of each cluster. If the clustering is accurate we get

clear patterns. With both methods we obtain the most famous pattern,

with the difference that with the first one we can also see some particular

case as in figure 6.2(b), 6.2(d) and 6.2(e).
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Figure 6.6: Basic flows from the clustering matrix
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Chapter 7

Mobile metro-core network

design and simulation

The high predictability in human mobility patterns is a valuable information

to optimize resources allocation and increase energy efficiency by effectively

adapting to expected traffic load variations [49]. In this chapter, we address

the impact of the prediction in a metro area over the aggregated tidal traf-

fic offered to the mobile metro-core networks. Tidal traffic affects todays

networks, but predictable trends can be recognized even at the aggregated

traffic level. We will see what dows off-line optimization means and on-

line matheuristic to reduce the energy consumption in the optical layer of

metrocore networks.

7.1 Overview

Detection of tidal trends in the traffic load of the mobile-network cells is a

valuable knowledge that allows to improve the network resources manage-

ment. The traffic prediction for every cell was used to activate and deacti-
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vate or wake-up and sleep the network’s cells to increase energy efficiency

[50] [51]. Ref.[49] proposes two optimization methods to reduce the energy

consumption in the optical layer of the metro-core network, by exploiting

the predictable trends in aggregated traffic. Ref.[49] presents an on-line

matheuristic that reuse the off-line results of regular tidal traffic patterns

to improve optimality. The results show that energy savings of up to 47.5%

can be achieved when comparing to a network statically dimensioned by

considering traffic demand at peak hours. The role of the core network is

to connect CNs to the SGW (see figure 7.1). Therefore, each aggregation

ring set up a list of (bidirectional) connections with the SGW. The number

of connections must be sufficient to transport at the SWG all the traffic

received by the CN from aggregation ring (as well as all traffic from the

SWG destined to the ring). Thus, the mobile metro-core network has to

satisfy all up-link (UL) and down-link (DL) demands between aggregation

rings and SGW. We assumed all these connections are provisioned with 1+1

protection scheme.

Figure 7.1: Reference mobile carrier network (MCN) architecture.
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The common practice in MCNs is to perform a static resource alloca-

tion to meet the peak-hour demand. This method leads to poor energy

efficiency, as outside the peak hour resources will be over-provisioned. By

exploiting tidal traffic predictability, an operator can use optimization pro-

cedures to dynamically adapt the used resources to the actual hourly need,

thus reducing energy consumption. Two mixed integer linear programming

(MILP) models are proposed to minimize the energy consumption of the

mobile metro core network (as depicted in figure 7.1) by activating and de-

activating resources every hour based on the predicted component of the

traffic demand.

Thanks to the traffic predictability, all optimization problems can be

solved offline, and then the solutions found can be downloaded in the net-

work at reconfiguration time points. The off-line planning problem consists

in finding the set of paths that satisfy the spatio-temporal-dependent de-

mand matrix of a specific time period t using 1+1 protection, with the

objective of minimizing the energy consumption of the optical layer of the

mobile metro-core network. In online dynamic bandwidth allocation, de-

mand is represented by number of wavelengths. Each one of them is a

request which should be assigned with a route and wavelengths along the

path. Online operations are based on real time data which are not pre-

dictable. Each hour routing and wavelength assignement solution should

be calculated for all requests. Solving ILP problems to get optimal solution

is very time consuming. In fact, there is a tradeoff between optimality and

time consumption by using heuristic algorithm to give suboptimal solution;

Althought it gives suboptimal solutions but reduces the time consumption.

Dealing with online issues using results of offline ILP model to guide real

time RWA is the basic idea of this part. The simulator uses RWA results of
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offline ILP model to calculate weights for network links of each request.

In this thesis we will show the results of the offline procedure applying

the output of the forecasting. In [49] was assumed a perfect prediction and

the off-line optimization was made by using the average traffic data over

24 hours. Here we will use respectively the prediction algorithms and the

topology generated in chapter 4 and 3.

7.1.1 Offline bandwidth allocation

Offline bandwidth allocation can be designed beforehand because the input

data are estimated 24 hour in advance. Solutions can be pre-calculated

and just 24 times of calculations are needed. Optimal RWA solution for

reconfiguration in each hour can be calculated by CPLEX with acceptable

consumption of computation resource and time. In this way, ILP model

should be built 24 times, one for each hour.

We applied the model using two path formulations for optimal resource

allocation. A set of k candidate path pairs with 1+1 protection is pre-

calculated for every demand in the network. Firstly, we computed the virtual

wavelength path (VWP) model that uses full wavelength conversion at every

node; Secondly, we assessed the wavelength path (WP) model which takes

advantage of the small distances, because regeneration is normally needed

after 1500 km for non-coherent wavelength channels at 10 Gbit/s [52]. We

assume fully transparent lightpaths with optical bypass to avoid optical-

to-electrical conversions in transit nodes (without wavelength conversion).

To cope with unforeseen traffic increase (e.g., due to flash-crowd events),

both formulations reserve 10% of the wavelength channels (ε = 0.1) in each

active fiber to allow flexibility upon unexpected traffic demand increases.
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7.1.2 Mobile network topology

The overview of network topology is introduced by the figure 7.1. The

MCN is composed by RAN (Radio Access Network), back-haul and back-

bone networks, in addition the backbone network consists of aggregation

network and core network. RAN is a set of BSs connecting the mobile users

to backbone network with back-haul links. Neighboring BSs connect to the

same Aggregation Node (AN), and similarly neighboring ANs are connected

with each other with ring topology. In aggregation ring, two ANs are se-

lected as INs connecting to CNs. The core network is modeled by mesh

topology containing CNs and SGW.

In the project, 2554 cells are considered, 10-12 neighboring cells connect

to same AN, in order to have 8 rings. In core network, 17 nodes are placed

with 16 CNs connecting to 8 aggreagtion rings and 1 SGW. We considered

the gateway as the MIX in Milan to have a more realistic network. The

topologies of back-haul network and aggregation network are generated un-

der the cooperation with PRIS lab (BUPT), they provided the aggregation

algorithm for grouping neighboring nodes. In figure 7.2 is showed the plot

of the topology.

7.2 Results

We applied the offline procedure with the prediction obtained in 4.4.3, on

the network topology in figure 7.2. The results are compared with the

original dataset2. Dynamic bandwidth allocation scheme minimizes the

amount of active resources for network operations. Thus it optmizes power

consumption of the network with respect to static scheme. To calculate the

power consumption of network operations, models for optical component
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Figure 7.2: Metro-core network topology

power data are required. In [53], pratical models are given and in Table

7.1 are showed the power consumption information for bidirectional optical

network facilities from a WDM network.

7.2.1 Results of offline procedure

In this section we show the offline operation with two set of data in order to

see the defferences during the network planning. We will analize three days

for each dataset, in particular 16-17-18 december 2013. The first dataset is

the real one, figure 7.3, i.e. the real values of internet traffic derived by the

bandwidth estimation in section 3.5. The second one is the predicted traffic

loads generated in chapter 4, figure 7.5.

The two flat lines are static power consumption, and the other two step

functions are dynamic power consumption curves. As we can see from the
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Table 7.1: Power consumption model

Component Power Consumption (WATT)

Transponder/muxponder, 2.5 G 25 W

Transponder/muxponder, 10 G 50 W

Transponder/muxponder, 40 G 100 W

OLA, short span 2 km 65 W

OLA, Medium span 40 km 65 W

OLA, Medium span 80 km 110 W

WDM terminal, 40 channels 230 W

WDM terminal, 80 channels 240 W

ROADM, 40channels, 100% 450 W

ROADM, 80 channels, 50% 550 W

ROADM, 80 channels, 100% 600 W

OXC, 40 channels f*85 W + a*50 W + 150 W

OXC, 80 channels

f*85W + a*50 W + 150 W

where f and a are the network side

and add/drop bidirectional fiber

ports respectively
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Figure 7.3: Power consumption results of 16/12/2013
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figures 7.3, there is no difference between the power consumption gener-

ated from the real data and from the predicted one. This means that the

prediction error does not affect the planning of the power consumed.

In figures 7.4, numbers of active wavelengths in different conditions are

presented. The difference between dynamic VWP and WP is considerable

respect to the static case.

These results allow us to understand how the planning of network re-

sources may be useful in terms of energy saving. In addition we can also get

the reconfiguration points where it is possible upload the resource allocation

rules.
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Figure 7.4: Wavelength assignement results of 16/12/2013
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Figure 7.5: Power consumption and wavelength provisioning results of 17-

18/12/2013
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Chapter 8

Conclusions

In this work we focused on developing intelligent algorithms capable of

predicting the traffic and be able to recognize typical patterns for each base

station. The idea is to implement these algorithms in an SDN controller,

giving the ability to the network to configure itself and to propose intelligent

solutions based on future traffic demands.

In Chapter 4 we saw how the autoregressive model for the prediction can

work even for processes that are not entirely stationary. The average error

among cells varies between 18 and 24%, and it could be a good result. It is

necessary to carefully choose the parameters of the model because of some

matrices that have to be inverted, must therefore comply with the criterion

of non singularity. Then, we explored an approach based on machine learn-

ing techniques, identifying four characteristics which determine the traffic

load and weighing them by four parameters respectively. Finally, through

an algorithm that iteratively generates the correct parameters, we obtained

the prediction hour by hour, obtaining a lower error than the first method

of 3-5%. As the last model we turned our attention to the neural networks.

They are complex methods based on neuronal connections that carry out
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learning operations of the process being studied. The latter method has

proved to be very competitive because during the training phase establishes

dynamic connections weights able to cover non-linear processes. Results led

to good performances during the planning of the power consumption in the

metro-core network. As we said at the end of Chapter 4, machine learning

makes scalable methods and are presented as a good starting point for fu-

ture developments. The search for patterns in Chapter 6, and clustering in

Chapter 5 is an example of how we might reformulate the prediction prob-

lem based on typical trend of the traffic loads in the network. In addition,

if the objective is the planning of resources, we can apply methods of classi-

fication rather than regression methods, making the prediction of a class of

values rather than the value itself. A future work could be to apply Hidden

Markov Models to the labeled dataset of the traffic loads, and discover the

probability distribution of the network states. These methods could model

the tidal effect of the traffic and bring us to a greater awareness of it.

In Chapter 5 we argued about if the clustering can define what are the

social function of the base stations. In particular, we applied two methods:

the first one is the Kmeans, one of the most famous and used in many

different circumstances. The second one is the Spectral Clustering, a simple

and powerful method that requires less assumptions about clusters. In

general, the clustering results were not very satisfactory in terms of the

social function definition. However, it was possible to see a connection

between the cluster and the type of the traffic patterns in the network. In

fact, we used the output of the clustering method as input for the algorithm

of the basic traffic flows extraction. This work is still at an initial stage and

that needs reliable database to define the tag of a base station. Being able to

understand the behavior of a particular station, it could be an information
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that can be used not only in the field of internet networks but also in urban

planning and security. If we extend the research also to voice traffic and

text messages we may find other information that with only traffic data can

not be found.

In Chapter 6 we exploited an interesting method used in pattern recog-

nition called Non Negative Matrix Factorization. It aims to decompose a

matrix into a product of two smaller ones. The result of this operation

defines the basis of the original matrix and then identify carriers who fre-

quently make up the rows of the original matrix. In our case, finding the

basis of the traffic matrix means identifying those that are the typical pat-

tern in the network. This method greatly depends on the input dataset, if

the size of the matrix is too large then approximation does not give a good

decomposition. We applied this method to our dataset getting interesting

results, getting 8 traffic flows including 3 most common and some not, but

very significant.

As last work we used a simulator that emulate the resource assignment

in the optical network. We have seen how the prediction error does not

mine the results of network planning. In this work it was possible to do

the simulation in offline mode. In the future, we can apply the prediction

hour by hour in the online mode and schedule resources in subsequent net-

work reconfiguration points, where the routing information and wavelength

assignment are downloaded into the nodes of the network.

We believe that the contributions given on this work can be used to im-

plement network analytics applications that use big data SDN programma-

bility to create an artificial brain able to learn and make decisions.
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Acronyms list

BS Base Station

CDR Call Detail Record

GSM Global System for Mobile Communications

UMTS Universal Mobile Telecommunications System

LTE Long Term Evolution

MCC Mobile Cloud Computing

MCN Mobile Carrier Network

IN Interface Node

AN Aggregation Node

RAN Radio Access Network

CN Core Node

SGW Service Gateway

DL DownLink

UL UpLink

MIX Milan Internet eXchange

WDM Wavelength Division Multiplexing

ILP Integer Linear Programming

RWA Routing Wavelength Assignment

MILP Mixed-Integer Linear Programming

VWP Virtual Wavelength Path
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WP Wavelength Path

SP Spectral Clustering

DUSAF Destinazione d’Uso dei Suoli Agricoli e forestali

QGIS Quantum GIS

DTW Dynamic Time Warping

AR Auto Regression

MA Moving Average

ARIMA Auto Regressive Integrated Moving Average

NN Neural Network

ANN Artificial Neural Network

CH Calinski Harabasz

DB Davies Bouldin

NNMF Non Negative Matrix Factorization
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