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ABSTRACT 
 

 

 

 

KEYWORDS: Global Sensitivity Analysis; Polynomial Chaos Expansion; Sobol 

Indices; Morris Indices; Probabilities Density Functions. 

The content of this thesis is mainly concerned with the exploration of two different 

techniques of Global Sensitivity Analysis (GSA) group in a context of gas intrusion 

coming from a reservoir into an aquifer due to fracking operations. The process of 

intrusion has been described by two target quantities defined for the system under 

analysis. Two GSA techniques are represented by Sobol and Morris indices and 

indices principally state the level of influence of input parameters of the problem on 

the output target quantities. Sobol indices are easily computed through the use of a 

surrogate model of the full model built with the Polynomial Chaos Expansion (PCE) 

technique. The surrogate model also allows to achieve a Monte Carlo Analysis of 

global target quantities, defining their probability density functions and as a 

consequence giving some information about response surfaces. 

 

PAROLE CHIAVE: Analisi di Sensitività Globale; Espansione in Caos Polinomiale; 

Indici di Sobol; Indici di Morris; funzioni di distribuzione di probabilità. 

Il contenuto di questa tesi riguarda principalmente l’esplorazione e l’utilizzo di due 

differenti tecniche di Analisi di Sensitività Globale nel contesto di un’intrusione di un 

gas proveniente da un giacimento e entrante in un acquifero a cause di operazioni di 

fracking. Il processo di intrusione è stato descritto da due quantità di interesse definite 

per il sistema sotto analisi. Le due tecniche di sensitività sono rappresentate dagli 

indici di Sobol e Morris e gli indici determinano principalmente il livello di influenza 

dei parametri di ingresso del problema sulle quantità di interesse in uscita. Gli indici di 
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Sobol sono facilmente calcolati attraverso l’utilizzo di un modello surrogato del 

modello completo costruito con la espansione di tipo Polynomial Chaos Expansion. Il 

modello surrogato permette inoltre di ottenere un’analisi Monte Carlo delle quantità 

globali di interesse, definendo le loro funzioni di distribuzione di probabilità e di 

conseguenza fornendo informazioni riguardo alle superfici di risposta. 
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INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 

The study of the contamination of groundwater aquifers caused by the intrusion of 

substances coming from reservoirs is a big environmental issue: reserves of drinkable 

water are decreasing but at the same time the global need of potable water is 

increasing and so the preservation of aquifers is a fundamental goal for the entire 

mankind. 

From a general point of view this thesis aims to identify which are the critical 

parameters related to the intrusion of reservoir substances into aquifers and which is 

the grade of uncertainty of these processes. 

From a specific point of view, the study analyses a specific case: a gas reservoir with 

an aquifer above is modelled and it has been supposed for the sake of simplicity that 

reservoir contains only hydrogen. Aquifer and reservoir are separated by a cap rock 

and there is a fault which links the aquifer to the reservoir. 

In this work principal parameters affecting the response (which is expressed through 

global target quantities) have been identified through two different techniques of 

Global Sensitivity Analysis (GSA). GSA methods also provide the uncertainty 

associated to principal parameters for a certain response The investigation relies upon 

these techniques because it has been demonstrated the efficacy of methods based on 

variance analysis, which analyse the interaction between multiple parameters affected 

by uncertainty and also they analyse the propagation of this uncertainty on the 

considered process. 

Two GSA techniques are the calculation of Morris indices and the calculation of Sobol 

indices. Morris’s analysis gives back which parameters influence mostly the mean of 
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the response, while Sobol’s analysis provides which parameters mostly influence the 

variance of the response. 

For each of the two quantities of interest several Probability Density Functions (PDF) 

have been built (with the PCE method that will be explained afterwards) and matched 

one with the other in order to discover some correlations and obtain information about 

structures of responses and their interaction. This probabilistic approach defines levels 

of risk, predictions and evaluations about values of global quantities starting from a 

certain level of uncertainty of input parameters. 

A peculiarity to remark is that the calculation of Sobol indices has been done with the 

aid of PCE (Polynomial Chaos Expansion) decomposition, which calculates indices in 

an analytical way through the polynomial coefficients obtained previously from the 

decomposition which approximates the model. 

The utilization of the PCE has two advantages: (1) it provides a surrogate model, 

which is useful for other operations like Monte Carlo simulations and (2) it reduces of 

many orders the time needed for the calculation of the indices. 

Sparse grids collocation method has been chosen to build up the PCE surrogate model. 

If compared to traditional Monte Carlo methods this choice allows to reduce 

appreciably the computational cost associated to the construction of the surrogate 

model and as a consequence the computational cost of Sobol indices. The procedure 

for the Sobol indices calculation, the definition of the PCE surrogate model and Sparse 

grids collocation method have been executed by means of calculation codes already 

developed during past studies conducted by MOX of the Politecnico of Milan. 

In chapter 1 the general contest of this study is introduced by starting from a general 

view of the energetic panorama. Then a brief introduction to the new horizons of 

improvement regarding oil and gas world is presented and the focus is set on new 

zones of exploration, on new drilling techniques and on new techniques aimed to 

improve production. As last the goal of the thesis is presented and collocated in the 

global contest. 

In chapter 2 the methodologic approach is illustrated, in other words it is explained 

how to pursue the goal. So in this chapter firstly it is shown briefly what full model is 

(the configuration of the problem, which are input parameters and their domain, which 

are target quantities of interest) and how its numerical code works. Secondly it is 
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displayed the construction of the surrogate model. 

In chapter 3 theories of Sobol and Morris are introduced, which are essentially the 

contribute to the analysis of sensitivity. 

In chapter 4 results are presented. There is a part of results that is called “Preliminary 

Results”, which is a recap of all simulations that were useful to understand the right 

way to approach to the problem, although their results weren’t significant if taken by 

themselves. The second part of the chapter is dedicated to the final results which try to 

answer to the initial question: which are the most influent parameters that govern the 

intrusion of gas in the aquifer for our specific case? Although limited to a very specific 

case, these results could be used as a starting point for future analysis or for 

comparisons with other cases. 

Chapter 5 is for the conclusions, for some suggestions about new ANOVA (ANalysis 

Of VAriance) techniques that could be integrated with those present in this study and 

some considerations for future analysis. 
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1 GENERAL OVERVIEW 
 
 
 
 
 
 
 
 
 
 
 
 

Nowadays the global request of Oil and Gas is continuously increasing, in 2015 was 

around 562 million barrels for oil and about 3469 billion cubic meters for what 

concerns gas (OPEC Annual Report, 2016; Bp Review, 2016). 

The new economic powers of Asia like China, India, Indonesia and Brazil will play a 

fundamental role in this growth, but also other big countries like USA and Russia will 

probably increment their energy demand. 

Most of statistics state energy requirements will increase by 34% through the next 20 

years. This growth will be generated by an increment of the global population of about 

1.5 billion people. Oil and Gas will remain the energy keys, providing about 60% of 

the increase on energy and accounting for almost 80% of total energy supplies in 2035 

(especially demand for natural gas will grow strongly). Along with fossil fuels 

Renewables Energies will improve dramatically, thanks to better competitive costs and 

they are expected to act a fundamental role in the second part of the century (BP 

Energy Outlook, 2016).  
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Figure 1.1. World primary energy consumption in 2015. 

 

Figure 1.2. Actual cost of electric energy for different renewables sources. 

In the Oil & Gas world plenty of techniques have been developed during past years to 

supply this increasing demand. Surely refining techniques have been developed in 

order to increase the fraction of most valuable products coming from oil and in order 

to improve efficiency of processes and minimize production wastes.  
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But most of research and development has been applied on O&G exploration and 

O&G production sectors. Indeed, the new horizon of exploration is the off-shore 

exploration, where the extraction has been limited in the past years mostly because of 

higher costs and because of lack of suited technologies. To have an idea in 1970 450 

meters was the maximum deepness for exploration operations, nowadays (2014) the 

new limit for exploration is 3174 meters, made by ONGC company in the Indian sea. 

This impressive growth was promoted like just said by the increasing demand and at 

the same time by the fact that the accessible reserves on-shore were draining away. 

The other principal sector of research and development is oil production phase. Oil 

production techniques include a wide range of operations, from methods used to build 

wells extractions methods to the methods that boost extractions (tertiary production). 

In fact there is always a trading between costs and benefits for every choice. To have 

an example, a vertical well will be less costly (up to ten times) than a horizontal well, 

but a horizontal well will ensure (if done in a proper way) more production in its life 

(this can be easily explained by the fact that normally reservoir profiles follow a 

horizontal development which means they are 10-20-30 wider than high). Moreover, it 

has to be considered the number of wells, their disposition etc… 

 

Figure 1.3. General representation of a reservoir. 
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Figure 1.4. General representation of offshore and onshore developments. 

Another example about the choice of wells regards the internal structure of the wells: 

which type of well completion should be installed? More expensive solutions (like 

single intelligent completion, dual completion, single horizontal completion) permit a 

better control of the extraction and as consequence they permit to have an optimal 

production, in contrast to solutions like single completion which is less expensive but 

also less efficient and flexible.

 

Figure 1.5. Several types of well completions available nowadays. 
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If primary (well self-production) and secondary production methods (injection of 

water and gas to maintain high the reservoir pressure) are well established, tertiary 

methods are continuously updated and improved. Solvents, chemicals, high pressure 

and temperature vapour are injected by wells into the reservoir, in order to create new 

paths for the trapped oil and in order to increment permeabilities and so the rate of 

production. Advantages are very clear considering that reservoirs productions and life 

wells could increase up to 40 % and over! 

 

Figure 1.6. An example of tertiary recovery by means of CO2 injection. 

But all that glitters is not gold! These techniques are hardly manageable because it is 

evident that there is not the possibility to know exactly the underground conformation 

for kilometres and as a consequence the precise effects range of the injections cannot 

be predicted. In addiction these techniques have a giant power in terms of pressure and 

temperature and rate and so once they are injected in wells they are mostly 

unstoppable. As a result, many environmental problems can arise, like instability 

phenomena of the ground (like earthquakes) and contamination of groundwater 

aquifers (intrusion of various type of reservoir substances into the aquifer due to the 



General Overview 

19 
 
 

weakening of the substrate which divides the reservoir from the aquifer). 

 

Figure 1.7. Generic representation of possible aquifer contamination deriving from 
steam injection operations. 

This work of thesis analyses this last aspect: by starting from a model of a gas 

reservoir yet developed the aim is to understand which are the most influent 

parameters which control the seal of the aquifer respect to the reservoir in order to 

prevent the poisoning of the aquifer but at the same time keeping the production rate 

highest as possible. There is also the need of quantifying the uncertainty that affects 

simulations in order to have an idea of the reliability of results. 
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1.1 PROCESS EQUATIONS 
 

For the phenomena under study there are four fundamental equations: 

1 The Darcy Law: 

A spatial domain is continuous if variables of state and parameters, which 

describe the material inside the domain, can be defined in every point of the 

domain. Considering a porous medium two components can be identified: the 

solid ground matrix and the fluid inside pores. The observation scale which 

distinguishes the matrix from pores is named microscopic scale. The computation 

of the problem at this scale is an impossible task, because the modelling geometry 

of pores and the computational cost would be too hard and too long. Because of 

this reason the process is studied under the continuous or macroscopic scale. The 

passage from the microscopic to the macroscopic scale happens by means of a 

process called volume averaging (Bear 2010). Without entering in details of the 

volume averaging the porous medium can be defined as the overlay of the solid 

matrix upon the continuous fluid. In this passage of scale representative 

coefficients of geometric pores like hydraulic permeabilities and porosities are 

created. 

In relation to the process of flux in a porous medium the starting point is the 

balance momentum equations for the fluid inside the micro-pores of the solid 

matrix written in the vector form: 

�

��
�� = −� • ��� + �� + ��                          (1.1.1) 

         (a)              (b)          (c)      (d) 

Where: 

ρ               [M/L3]               Fluid Density 

V              [L/T]                  Fluid Velocity 

σ               [M/LT]              Strains 

F               [ML/T]              Volume Forces 

And where terms of Equation (1.1.1) are defined for unit of volume 

(a) = momentum quantity rate of accumulation 
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(b) = advection momentum quantity rate of change  

(c) = strain-related momentum quantity rate of change 

(d) = volume forces-related momentum quantity variation 

 

Next step is the introduction of the following hypothesis: 

- The fluid is Newtonian. 

- Inertial forces are negligible if compared to viscous forces. 

- The dragging effect of momentum quantity into the fluid, resulting from the 

velocity gradient at the microscopic level, is forgettable respect to the dragging 

force developed at the interface between solid and fluid. 

- The fluid fully saturates pores. 

- The solid matrix is unmoveable. 

Finally, a simplified expression is obtained: 

� = �� = −
�

�
(�� − ����)                              (1.1.2) 

Where: 

q               [L/T]               mean flow rate specific to the volume or Darcy flux 

V              [L/T]                mean seepage velocity of the fluid 

Φ              [-]                    mean constant value of the porosity in the matrix 

k               [L2]                  hydraulic permeability tensor 

ρ               [M/L3]             fluid mean density 

p               [M/LT]            fluid mean pressure 

µ              [M/LT]             fluid mean viscosity 

g               [L/T2]              gravity acceleration vector 

The term −�� represents forces provoked by the pressure gradient, while ���� 

incases the gravity force. It is important to remember that k describes the attitude 

of the terrain to be passed through by a generic fluid. 
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2 The Constitutive Equation of the Fluid: 

In this study the Constitutive Equation is a critical point. In fact, it is fully 

empirical and its values are tabulated. So the following function has not an own 

identity: 

  � = �(�)                                             (1.1.3) 

3 The Continuity Equation: 

Without considering any term of mass source of fluid or solute the Continuity 

Equation is so written: 

�
��

��
+ �(��) = 0                                      (1.1.4) 

4 The Advettive-Diffusive-Dispersive Transport Equation 

The last fundamental equation is unveiled in the following way: 

 

�
����

��
− � ∙ ����� + ���

� ��

�
���� = 0        with � = (��,��� )        (1.1.5) 

Where: 

��
�            [

��

�
]                   molecular diffusion coefficient 

���          [
�� � �

�� � �� � ��
]         H2 mass concentration  

���          [
�� � �

����� �

]            H2 molar mass 

�             [
�� � �� � ��

����� �� � ��
]      fluid molar mass 

��              [
����� �

����� �� � ��
]      H2 molar concentration 

�� =
����

�
    

In this transport equation for solved solutes in a liquid phase two main processes 

are present: 

 Advettive transport of solutes conducted by the fluid according to Darcy 

Law. 
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 Diffusive transport generated by molecular diffusion inside the porous 

medium. 
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2 METHODOLOGICAL APPROACH 
 
 
 
 
 
 
 
 
 
 
 
 
In the following pages two target quantities which characterize the intrusion of the gas 

in the aquifer will be firstly presented and then submitted to the GSA (Global 

Sensitivity Analysis). The GSA has been executed by means of Sobol indices 

(obtained through the PCE tool) and by Morris indices (see chapter 3). In this chapter 

the problem is illustrated and its implementation by means of home-made numerical 

code is shown.
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2.1 PROBLEM SETTING 
 
The configuration of the problem is the following (see figure 2.2): 

- Geometry: the domain of interest is a vertical rectangular section of the 

reservoir (called also source aquifer) and above it there is the aquifer (named 

also target aquifer) separated by a cap rock but linked to the reservoir by a 

fault. Above the target aquifer there is the overburden formation. 

 

            Figure 2.1. Underground Basin Modelling. 

 

            Figure 2.2. Domain of the problem. 

- Boundary Conditions (B.C): At the top of the aquifer pressure is equal to 

atmospheric pressure and its variation with depth follow the classic hydrostatic 

distribution. There is no flow at boundaries except for the point of injection 

where during the injection time pressure is equal to the injection pressure 

����.The mass concentration is equal and constant to a certain value ��� 
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during the injection time. 

 

            Figure 2.3. Boundary conditions of the problem. 

- Initial Conditions (I.C): For these analysis it is necessary to solve flux and 

transport equations in couple and this fact implies the choice of initial 

conditions. For the flux a hydrostatic pressure distribution has been chosen and 

for the transport in all domain the solute concentration is fixed to the zero 

value. 

� = ���� + ���(� − �)   ���  ���
= 0                      (2.1.1) 

 

- Problem Type: The process is isotherm and for what concerns solute transport 

processes the molecular diffusion and advettive transport are considered! 
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2.1.1 IMPLEMENTATION WITHIN IN-HOUSE 
SIMULATOR 
 

The problem has been firstly implemented by means of a home-made numerical code 

implemented in DUMUX by a working team of Stuttgart University. 

This code permits to simulate flux and transport processes of solutes by considering 

fluid density variations due to effects related to solute concentration. 

On the occasion of this thesis the processes are fluxes in a saturated mediums and 

transport of dissolved solutes in isothermal conditions, without considering any types 

of reactions. As just mentioned, the densities variations are only associated to the 

solute concentration. 

The calculation domain is a bi-dimensional vertical section 2 meters long and 1 meters 

high. The computation grill is regular with quadrilateral elements: 128 elements along 

vertical direction and 256 elements along horizontal direction. The temporal step has 

been imposed to 60 seconds for all simulations. 
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2.2 TARGET QUANTITIES AND INPUT PARAMETERS 
 

In this study there was a wide range of possibilities regarding the choice of global 

target quantities and these quantities have the form of response surfaces. A response 

surface of a model refers to a plane of d dimensions (d is the number of considered 

factors) that represents the variation of a target response of the model (a state or output 

variable, or a performance metric) with respect to variations in one or more factors of 

interest. Factors are features of the model (in this study they are only the parameters of 

the model) which may vary on continuous domains that define the “factor space”. The 

criterion of decision about target quantities is the obtaining of global quantities that 

describe in an essential way when, how much and how the gas has penetrated in the 

target aquifer. For this reason, target quantities are: 

 ���,��� [��] that is the peak value of accumulated mass of gas in the target 

aquifer in all the duration of the simulation. It will be evident that accumulated 

mass grows gradually with time increasing until the end of injection time; then 

it gradually decreases. 

���
(�) = � ���

(�)���

 

��

     ���,��� = max ����
(�)�          (2.2.1) 

Where ���
(�) is the mass ���

(�) (specific to the volume and function of time 

t) integrated all over the spatial domain ��. 

 ���,��� [��] that is the value of accumulated mass of gas in the target aquifer 

at the end-time of the simulation. This value has been considered interesting 

for the purpose of the thesis because it reveals how fast the target aquifer 

disperses the solute in the surrounding environment. 

���,��� = ���
(����) 

 ���,��� [
��

��] that is the peak value of mass concentration of gas in a cubic 

meter throughout all the simulation. This mass measure has also the quality to 

be compatible to real measures sampled in situ because measures of mass are 

easier to sample and because environmental laws are also based on maximal 

concentration values defined for each substance and so if the peak of a certain 

substance is under its related threshold value, the situation is under control. 
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Nevertheless, this target quantity has been abandoned in this study due to a 

lack of precision and because the purpose of the thesis isn’t the reproduction of 

sampling methods. 

The second part of this paragraph is dedicated to the schedule of input parameters and 

the choice of its intervals; some parameters will be assumed as known and others will 

be considered uncertain and so they will have a specific range of uncertainty. The 

choice of uncertain parameters will vary according to the group of simulations 

considered. 

Remembering the Darcy Law (1.1.2), the Fluid Constitutive Equation (1.1.3), the 

Continuity Equation (1.1.4) and the Advettive-Diffusive Transport Equation (1.1.5) 

every global quantity ξ can be written as: 

ξ = F(����,����,����,���,������� ,����,����,��������� ,����,����,��,���� +

���,��,���,����,��,����,��,����,��,���,���,�. �. ,�. �)     (2.2.2). 

PINJ is the pressure at which vapour is injected in the reservoir in order to improve 

productivity, Z parameters are geometric parameters defining the geometry of the 

problem, Mfraction is the fraction of mass of H2, b parameters define width of fractures 

and faults, t parameters define the timing of problem, Φ parameters are porosities of 

the several formations of the space problem and k parameters are its correspondent 

permeabilities. Moreover, fluid properties of water and H2 (like densities and 

viscosities) are well known and uniform for all the duration of simulations and 

constant throughout the experiment. 

Follow a table describing these parameters (their names, symbols adopted and units of 

measurement): 

Table 2.1. Factors composing the model. 

Spatial Parameters 

Reservoir Permeability ����
 [��] 

Fault Permeability �� [��] 

Fracture Permeability ����
 [��] 

Target Permeability �� [��] 
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Overburden Permeability ��� [��] 

Cap Rock Permeability ��� [��] 

Reservoir Porosity ����
 [−] 

Fault Porosity �� [−] 

Fracture Porosity ����
 [−] 

Target Porosity �� [−] 

Overburden Porosity ��� [−] 

Cap Rock Porosity ��� [−] 

Operational and Geometric Parameters 

BOR Depth ���� [�] 

Reservoir Height ���� [�] 

Cap Rock Thickness ��� [�] 

Fracture Width ����
 [�] 

Fault Width �� [�] 

Injection Pressure ���� [���] 

Simulation Time ���� [�] 

Injection Time ���� [�] 

H2 Fraction Mass Injected �����������
 

�
����

�����
� 

Injection Length ���� [�] 

Target Thickness ������� [�] 

Fluid properties and others 

Water Viscosity ���� 
�

��

��
� 

Diffusion Coefficient ��
��,���

 
�
��

�
� 

Water Density ���� 
�

��

��
� 

Gravity Force � �
�

��
� 
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As said before, uncertain parameters will vary in the following simulations. The 

reason is that to execute a sensitivity analysis some input parameters must vary. So it 

isn’t only a matter of uncertainty but rather a need to explore how the response 

modifies if the set of uncertain parameters and their values change. So for each group 

of simulation, the set of uncertain parameters will be specified. It must be said that 

when a parameter is chosen as uncertain, its standard value given in the origin will be 

more or less in the centre of its variation range. The only exception of this concept is 

applied to the injection pressure because of its implications that will be explained in 

the next chapters. 
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2.3 MODEL REDUCTION TECHNIQUE BY 
GENERALIZED POLYNOMIAL CHAOS 
EXPANSION (g-PCE) 

 

The starting concept to understand why a surrogate model is necessary can be the 

observation that the execution of a single simulation of the full model requires a big 

computational cost or in other words it requires a lot of time, more than five minutes 

with a standard processor. This time could seem small, but it must be considered that 

thousands simulations are necessary to execute the GSA and hundreds of thousands 

simulations are needed to obtain PDFs.  

Firstly, we define a target quantity f(x), representing a given global quantity and this 

function depends on N independent random variables kept together in the x vector (x ≡ 

x1,…, xN); x vector contains uncertain parameters chosen for the simulation. Since no 

detailed information on geochemical compaction model parameters is typically 

available, each xn is described by a uniform distribution within the interval Ψn = [xn,min, 

xn,max]. Moreover, f(x) can be decomposed as 

�(�) = �� + ∑ ��
�
��� (��) + ∑ ��,�

�
�,��� ���,���+ ⋯ ��,�,… ,�(��,��,��)        (2.3.1) 

Where: 

�� = � �(�)��

�

(�)��;           ��(��) = � �(�)�� _�

� _�

(�)�� − ��      

��,����,��� = � �(�)�� _�,�

� _�,�

(�)�� − �� − ��(��) − ������            (2.3.2)    

Here Ψ = Ψ1 ×…× ΨN is the hypercube of the space of variability of x and pΨ(x) is the 

joint probability density of x over Ψ. It must be said that integration over Ψ_i is 

performed over the space of x excluding Ψi, where pΨ_i being the corresponding 

density function. Another interesting characteristic is that f0 is the mean of f(x). 
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Going back to the construction of the surrogate model the tool that was chosen to 

accomplish the task was the so called g-PCE (generalized Polynomial Chaos 

Expansion). First approaches to the PCE were tried back in the 30s by Wiener. Several 

different methods based on Wiener ‘s theory have been developed during past years 

but the fundamental concept of a g-PCE is unique: the spectral expansion of f(x) in 

terms of a set of orthonormal polynomials representing a basis of the probabilistic 

space Ψ within which an approximation of the model response surface is built. The 

choice of the specific family of polynomials is linked to the type of probability 

distribution of the uncertain model parameters. In this work each xn is assumed to be 

uniformly distributed and as a consequence the family of multivariate Legendre 

polynomials are chosen. Without entering in details of how building multidimensional 

Legendre polynomials starting from univariate Legendre polynomials it is written 

straightaway the expression of the g-PCE: 

�(�) =  �� + � � ��

�∈��

�

���

��(�) + � � ��

 

�∈��,�

�

�,���

��(�) + ⋯ ;        (2.3.3) 

With: 

��(�) = � ��,��
(��

�

���

);        �� =  � �(�)��(�)
 

�

�� (�)�� 

Here s = {s1, s2,…, sN} ∈ NN is a multi-index expressing the degree of each univariate 

Legendre polynomial, ��,��
(��), employed to construct the multivariate orthogonal 

Legendre polynomial ��(�).  �� is the associated polynomial coefficient and �� 

contains all indices such that only the ith component does not vanish, i.e., 

�� = {�� ≠ 0,�� = 0 ��� � ≠ �}. 

Some words must also be spent about the way the coefficients �� are computed 

because without some expedient an elevate number of high-dimensional integrals 

should be calculated. The applied method is the Sparse Grid polynomial 

approximation of f. The goal of this method is to reduce computational cost of the 

tensor grid interpolants while maintaining a high accuracy. This can be obtained by 

building the approximation as a particular linear combination of tensor grids, where 
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each one of these includes only a limited number of points. The expression of sparse 

grid approximation of f is written as 

���(�) = � ��

 

�∈�

���,�(�) 

where Λ ∈ NN is a set of multi-indices that selects the set of tensor grids that form the 

sparse grid, ��is the suitable computable coefficient and ���,�(�) is the interpolant 

tensor associated to the tensor grid  ℋ � =  ℋ �
�� × ℋ �

�� × … × ℋ �
��, constituted by N 

ℋ �
�� =  ���,�,��,�,… ,��,��

�⊂ ��, which are sets of interpolation points that provide a 

precise interpolation with respect to the uniform probability measure �� �
(��). 

The conversion from sparse grid to g-PCE expansion is established on the 

characteristic that a sparse grid is constituted by a linear combination of tensor grid 

interpolants and is grounded on two steps: (a) each tensor Lagrangian interpolant is 

reformulated in terms of Legendre polynomials and (b) the Legendre polynomials 

associated with different tensor grids are summed. In essence, without entering in 

details (for details refers to Barthelmann ‘s works), converting the sparse grid into a g-

PCE requires solving as many systems as the number of tensor grids in the sparse grid. 
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3 SENSITIVITY ANALYSIS 
 
 
 
 
 
 
 
 
 
The complexity of reservoir modelling is growing fast due to the new challenges the 

Oil & Gas world is facing. New fields are more expensive to be explored because of 

their remote locations. So there is a need to characterize reservoirs with few 

information and at the same time to compute models that represent as much as 

possible the real underground conformations, geometries and types of fluids. As a 

consequence, such models are more and more complex and computationally intensive. 

Sensitivity Analysis has become an undeniable instrument in the manipulation and 

analysis of such models; but as models become more complex, sensitivity analyses 

increment their computational cost. So it is evident the importance of developing 

strategies for SA that are both effective and efficient. 

SA is multitasking, in fact it can be oriented on several aspects (Razavi & Gupta 

2015): 

 Test the level of similarity between the functioning of the model and the 

underlying system. 

 Quantify the relative importance of each factor in relation to the model/system 

response. 

 Identify if there are some regions in the factor space where variations in the 

factor produces great variability in response. 

 Investigate on the eventual type and level of correlation between factors. 

 Find noninfluential factors in order to lift them from the model and so simplify 

the model itself.
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3.1 A REVIEW OF SENSITIVITY ANALYSIS 
METHODS 

 

A variety of approaches, theories and philosophies regarding sensitivity analysis are 

present in the literature, based on different philosophies and theories and sometimes 

the definition of sensitivity is not clear or at least unique. 
 
Essentially sensitivity analysis methods are classified into two categories (Razavi & 

Gupta 2015, Sudret,2008; Saltelli,2006): 
 

 LSA (Local Sensitivity Analysis): This analysis gives back the variation of the 

response around a prefixed value and respect to input parameters. 

In other words, the sensitivity of a model output function � (also called 

response �) to a factor �� is defined as the derivative 
��

���
 of the model response 

� in the direction of increasing values of parameter ��. So consider the 

function 

 

� = �(��,… ,�� )                                                     (3.1.1) 

Where ��,… ,��  are parameters of interest characterized by some distributions 

and intervals. The rate of change �� of response � with respect to factor ��  

(1 ≤ �≤ �) can be evaluated at a specific base point (��
∗,… ,��

∗) in the factor 

space as follows: 

 

�� = �
��

���
�

���
∗,… ,��

∗�

                                            (3.1.2) 

 

Under this definition �� characterizes the independent effect of parameter �� 

when all other parameters remain constant. 

The sensitivity of the model representing the interaction between two 

parameters �� and �� (with �≠ � and 1 ≤ �,�≤ �) on the model response is 

obtained by using a second-order partial derivative; at the same way third-

order partial derivative defines sensitivity due to three-factor ��,��,�� 

interactions (with �≠ �≠ � and 1 ≤ �,�,� ≤ �) and so on: 
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��� = �
���

�����
�

���
∗,… ,��

∗�

                                            (3.1.3) 

 

���� = �
���

�������
�

���
∗,… ,��

∗�

                                            (3.1.4) 

 

As said before this method provides results which are valid only in the close 

vicinity of the base point in the parameter space. 
 

 GSA (Global Sensitivity Analysis): The task of this analysis is to determine the 

entity and ways of how the response surface is influenced by single or multiple 

combinations of parameters, considering them individually or in their mutual 

relationships. 

The general procedure for a GSA method requires a certain number of points 

belonging to the response surface computed at different points of the domain of 

interest that are representative of the entire domain. 

In literature many different methods applied to the GSA are present but between these 

five can be pinpointed as the most important: 

 Factorial design methods: all the factor space is discretized into a certain 

number of levels (i.e. grid points) and the number of the levels for each factor 

will determine the quality of GSA. In fact, the model response is computed for 

each combination of factor levels and points obtained are used to estimate the 

“main effects” of each factor and also the “interaction effects” between various 

combination of factors. 

 
 

 Regression-based methods: The standardized regression coefficients (SRC) are 

based on a regression of the output on the input vector. The coefficients of 

linear and second-order interaction terms represent respectively the main and 

interaction effects. The input/output Pearson correlation coefficients measure 

the effect of each input variable by the correlation it has with the model output. 

These coefficients are useful to measure the effect of the input variables if the 
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model is linear, i.e. if the coefficient of determination �� of the regression is 

close to one. 

 Regional sensitivity analysis (RSA): First step is to partition the marginal 

distribution of samples obtained for each factor into two or more distributions 

based on empirically selected threshold values for model response. The idea 

behind is that if the factor does not have a considerable influence on model 

output throughout the factor space, the two distributions should not be 

statistically distinguishable. 

 Globally aggregated measures of local sensitivities: Such methods compute 

the local sensitivity coefficients for each factor at multiple points across the 

factor space and analyse the distributional properties of these values to assess 

the global sensitivities of model response to individual factors. The pioneer of 

this technique was Max Morris (1991) who proposed a way to aggregate local 

sensitivities measures in order to obtain a representation of global sensitivities. 

From his first approach many techniques have been developed upon it and in 

this work Campolongo ‘s improvement is adopted (Campolongo et al., 2007). 

 Variance-based methods: These methods aim at decomposing the variance of 

the output as a sum of contributions of each input variable, or combinations 

thereof. These methods are also called ANOVA techniques for ‘Analysis Of 

VAriance’. Sobol indices belong to this last group and their aim is to determine 

the sensitivity for non-linear models (Sobol 2001, Sobol 2005). Usually the 

calculation of these indices need the utilization of Monte Carlo techniques, 

which have a high computational cost. ANOVA techniques include another 

method whose name is FAST (Fourier Amplitude Sensitivity Test) (Saltelli 

1999). 

In more general terms we can imagine a model like � = �(�), where � =

{��,��,… ,�� } are input parameters (aleatory and independent variables), f is a 

deterministic function (e.g system of differential equations) and Y the result of 

the scalar model. Global Sensitivity Analysis doesn’t regard any distinction 

about parameter input values assumed but instead it provides an analysis of 

variance of the response Y, based on the whole variation range of the vector of 

parameters X. 
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Sobol indices are an effective instrument for GSA, in fact they decompose the 

variance of the response into the several contributes related to input parameters. The 

calculation of Sobol indices can be obtained by employing a Polynomial Chaos 

Expansion (PCE) (Sudret, 2008) of the system response, based upon input parameters. 

The utilization of a generalized PCE allows: 

 The creation of a surrogate model constructed following certain rules. The 

surrogate model allows to analyse scalar quantities related to the system under 

consideration, in function of a set of parameters defined with affordable 

computational costs.  

 Sobol indices can be obtained analytically by means of a suited manipulation 

of PCE coefficients and the advantage is that computation of Sobol indices is 

very time-short. 

The hardest part for what concerns computational costs regard the calculation of PCE 

coefficients, because they are obtained from a multi-dimensional integer (which is 

built from input parameters). For the evaluation of this integer it is necessary to pass 

through the complete numerical-mathematical model chosen in the relative ambit (in 

our case we have used a home-made model) for a well-defined number of times. The 

determination of PCE coefficients in this thesis ambit has been made by using the 

polynomial interpolation based upon sparse grids. In this way the computational cost 

has been reduced significantly respect to Monte Carlo standard method. 

Just below a brief introduction to mathematical theory regarding global analysis of 

variance is given. Related tools which are used are Sobol indices, polynomial chaos 

expansion and the calculation of coefficients by means of sparse grids. 

The methodology here introduced has been implemented into numerical code created 

at MOX centre, Politecnico di Milano. Thanks to this code sparse grids are worked 

out and by sparse grids the number of necessary points to obtain PCE coefficients is 

optimized. The code permits also to build the polynomial chaos expansion (PCE) and 

the requested Sobol indices.
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3.2 SOBOL INDICES 
 

Consider a mathematical model with d input parameters, contained in a vector x and a 

scalar output y: 

y  f x , x  Ψ d                                                 (3.2.1) 

where Ψ d is the parameter space Ψ d = x: 0  xi  1, i= 1,…, d If it is expressed by 

summations, The Sobol decomposition (2001) of �(�) results: 

�(��,… ,�� ) = �� + ∑ ��(��) + ∑ ���(��
�
�⩽ �⩽ �⩽ �

�
��� ,��) + ⋯ + ��,�,… ,� (��,… ,�� ) (3.2.2) 

where f0 is a constant and the integral of each summand ���,… ,��
(���,… ,��

) over any of its 

independent variables is zero, i.e.: 

 ∫ ���,… ,��
����

,… ,���
�•

�

�
����

= 0    ��� 1 ⩽ � ⩽ �                          (3.2.3) 

The classical properties of this decomposition are the following: 

i. The sum in Eq. (3.2.2) contains a number of summands equal to  

∑ ��
�
� =  2� − 1   �

���                                                  (3.2.4) 

ii. The constant f0 is the mean value of the function: 

     �� =  � �(�)��

 

� �

                                               (3.2.5)             

iii. Due to Eq. (3.2.3) the summands are orthogonal to each other in the following 

sense: 

� ���,… ,��
����

,… ,���
� ���,… ,��

����
,… ,���

��� = 0   
 

� �

(3.2.6) 

��� {��,… ,��}≠ {��,… ,��}   

With the above assumptions, the decomposition in Eq. (3.1.2) is unique whenever f(x) is 

integrable over Ψ d. In addition, the terms in the decomposition can be obtained 

analytically. So the univariate terms read: 
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  ��(��) =  ∫ �(�)��~ � − ��
 

� � � �                                                (3.2.7) 

In this last expression ∫ ��~ �
 

� � � �  means that integration is over all variables except xi. In 

the same way the bivariate terms can be written as 

   ���(��,��) =  ∫ �(�)��~ {��} − ��(��) − ��(��) − ��
 

� � � �                      (3.2.8) 

Also here ∫ ��~ {��}
 

� � � �  represents the integration over all parameters except �� and ��. As 

a result, any summand ���,… ,��
����

,… ,���
� can be written as the difference of a 

multidimensional integral and summands of lower order. 

Now it is assumed that input parameters are independent random variables uniformly 

distributed in the interval [0, 1]: 

� = {��,… ,�� }               ��~i=1,…,d.                                                 (3.2.9) 

Because of this the model response Y=f(X) is a random variable, whose total variance D 

has this form: 

� = ���[�(�)]= ∫ ��(�)�� (�)�� − ��
� 

� �                            (3.2.10) 

Where �� (�) is the probability distribution defined by the product of single variables 

independent probabilities x, this term disappears from the moment a uniform distribution 

is present. It is possible to divide the total variance like follows: 

� =  � ��

�

���

+ � ���

�

���� ���

+ ⋯ + ��,�,… ,�                               (3.2.11) 

where partial contributes are defined in the following expansion: 

���,… ,��
= � ���,… ,��

� ����
,… ,���

�����
,… ,����

                         (3.2.12) 

 ���ℎ 1 ≤ �� < ⋯ < �� ≤ �,� = 1,… ,�                                                   

Sobol indices are defined as 

���,… ,��
=

���,… ,��

�
 �� �� �ℎ� ���������� ���� 
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  ���,… ,��
=

1

�
 � ���,… ,��

�
 

� ��,… ,��

����
,… ,���

�����
,… ,����

                (3.2.13) 

According to (3.2.11) they respect the following rule: 

� ��

�

���

+ � ���

�

���� ���

+ ⋯ + ��,�,… ,� = 1                                   (3.2.14) 

Every index ���,… ,��
 is a sensitivity measure which describes the amount of the total 

variance due to the uncertainties in the set of input parameters {��,… ,��}. The first order 

�� is the representation of the contribute to the total variance of a single input parameter, 

without the interaction with other parameters. The total sensitivity indices ���
 identify the 

contribution to the total variance of a single input parameter considering also interactions 

with other input parameters. 

��
� =  � ���,��,… ,��

 

�

                       (3.2.15) 

A clear consequence is that: 

��
� = 1 − �~ �, 

where �~ � is the sum of all ���,… ,��
that do not include index i. 

Sobol indices are known to be good descriptors of the sensitivity of the model respect to 

its input parameters, because there is no linearity or monotony in the functional bond 

which links the response to parameters (Saltelli 2006). If no analytical expressions of the 

response are available, the full description of Sobol indices requires the evaluation of 2d 

Monte Carlo integrals. This operation isn’t usually affordable it is too expensive in a 

computational sense (Sudret, 2008). So the first way to solve the matter is computing only 

indices of first and second order and the second way is to derivate Sobol indices 

analytically from the g-PCE built for the model and this is the method applied for these 

studies. Recalling the discussion about the decomposition of the response (2.3.1) and the 

following g-PCE decomposition (2.3.3) makes possible deriving the equivalence between 

the Sobol indices and the coefficients �� of the gPCE representation of �(�), i.e. 
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���,… ,��
=

1

�
� ��

�

 

�∈���,… ,��

;  �� = �� ;   � = � ��
�

 

�∈� �

;                          (3.2.16) 

Eq. (3.2.16) can be made workable with some type of truncation, e.g. upon truncation of 

the summation to a set of polynomials with total degree w, i.e., ∑ �� ≤ � 
� . The precision 

of the resulting gPCE approximation increases with the regularity of �(�) and as w→∞. 

To recap, in Sobol works (Sobol,2001), it is shown that if the representation of a scalar 

response by means of PCE is known, it is possible to determine the complete list of Sobol 

indices without any relevant additive cost, because the calculation of indices requires only 

elementary operations of maths. So in the end representing the model response through a 

PCE expansion brings two advantages (Sudret,2008):  

 Sobol sensitivity indices are obtained in a simple manner because they derivate 

from the post-processing of PCE coefficients 

 It was shown that it gives a surrogate model, useful to reduce computational costs 

and to execute Monte Carlo simulations based on the response initially chosen. 
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3.3 MORRIS INDICES 
 

The other tool applied in the sensitivity analysis of this thesis is based on Morris 

theory. In 1991 Morris proposed a method which it proved to be well-suited for 

models with high computational costs and for cases with many uncertain input factors. 

The method is founded on computing for each input parameter a number of 

incremental ratios, called Elementary Effects (EE), from which basic statistical 

operations are executed in order to obtain sensitivity information. Although it was 

being proven that the EE method is a very good tool for sensitivity analysis of large 

models (it has an optimal balance between accuracy and efficiency), it is still not much 

used. In this work the Morris updated method implemented by F. Campolongo, J. 

Carboni and A. Saltelli is adopted. 

The original EE method (Morris, 1991) has the purpose to determine which input 

factors may be considered to have effects which are (a) negligible, (b) linear and 

additive, or (c) non-linear or involved in interactions with other factors. For every 

input parameter two sensitivity measures are calculated: μ, which embodies the overall 

influence of the parameter on the output, and σ, which gives back an estimation of the 

ensemble of the factor’s higher order effects (like non-linear and/or other factors 

linked effects). The experimental plan is built by individually randomised OAT 

experiments. OAT (Once Factor At Time) method computes a finite difference 

approximation of the local slope of the response surface around a base point in the 

factor space. This approach is computationally efficient (it requires only k+1 models 

run for a k-dimensional input parameter space) but it suffers by a lack of precision. In 

fact, because the size ∆x of the input parameter change in OAT is typically some 

fraction of (e.g., 1-10%) of the factor range, the method actually produces larger-scale 

trends (lower frequency variations) in the response surface. Moreover, OAT does not 

capture parameters interactions. But if OAT is used in the Morris contest, it becomes 

an optimal tool for sensitivity analysis.  

Each model input ��,�= 1,… ,� varies across z selected levels in the domain of input 

parameters. The space of experimentation Ω is thus a k-dimensional z-level grid. Like 

in Sobol analysis parameters have a uniform distribution in their uncertainty range and 
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more over their intervals are normalized to the [0,1] interval and later transformed 

from the unit hypercube to their actual distributions. It is the moment to define the 

Elementary Effect of the ith input parameter: 

��(� ) = �
�(��,… ,����,�� + ∆,��� �,… ,��) − �(� )

�
�                    (3.3.1) 

 ∆ is a value in �
�

(���)
,… ,1 −

�

���
�. An intelligent choice for z and ∆ is z even 

and ∆ equal to 
�

[�(���)]
. This choice gives a certain symmetric treatment of 

inputs, which is surely desirable (for details see Morris, 1991). 

 z is the arbitrary number determining ∆ and as just said it will be an even 

number. In these studies z = 4 and z = 8 will be chosen. 

 � = (��,��,… ,��) is any selected value in Ω in a way that the transformed 

point (� + ��∆) remains in the domain Ω for every index �= 1,… ,�. 

 ��is a vector of zeros except for a unit as its ith component. 

The finite distribution of Elementary Effects related to the ith factor comes from the 

random sampling of different X from Ω and its notation is ��, i.e. ��(� )~ ��.The 

number of components of each �� will be ����[� − ∆(� − 1)].  

The sensitivity measures μ and σ introduced before represent respectively the mean 

and the standard deviation of the distribution ��.  Originally Morris first approach to 

estimate these quantities was to sample r Elementary Effects from each �� by means of 

an efficient design that constructs r trajectories of (k+1) points in the input space, each 

supplying k Elementary Effects, one per input parameter. The total computational cost 

is thus �(� + 1) simulations. So more r is high and more the analysis will result 

precise. 

But this first method sometimes was prone to II Type errors, so it can fail in the 

identification of an influential parameter for the model. In other words, if the 

distribution �� contains both positive and negative elements, i.e. if the model is not 

monotonic, some effects may delete each other out and as a consequence there will be 

low μ values even for an important factor. The standard deviation σ helps to identify 

this type of error (if there are low μ values and high σ values probably I have a non-
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monotonic model with Elementary Effects of different sign). At the same time, it is 

remarkable the resilience against I Type errors.  

Morris method is established on the construction of r trajectories in the input space, 

normally they are between 10 and 50; trajectories are built by firstly generating a 

random starting point for every trajectory and secondly by moving one factor at time 

(OAT technique) in a random order. This design could bring to a non-optimal 

coverage of the input space, particularly for models with a large number of input 

factors. 

The idea of the improvement brought by F.Campolongo et al. is to choose the r 

trajectories in such a way as to maximise their dispersion in the input space. The first 

move is the generation of a high number of M Morris trajectories (�~ 500 ÷ 1000), 

the second move is the arbitrary decision about r value (�~ 5 ÷ 50), where r value is 

the number defining the r trajectories with the highest ‘spread’. The meaning of 

spread is in closed in the following definition of distance ��� between a couple of 

trajectories m and l: 

��� =  

⎩
⎪
⎨

⎪
⎧

� � � � ���
�(�) − ��

�(�)�
�

�

���

�� �

���

�� �

���

0        ��ℎ������    

        ��� � ≠ �                    (3.3.2) 

where k is the number of input factors and ��
�(�) represents the zth coordinate of the 

ith point of the mth Morris trajectory. In other simpler words ��� is the sum of the 

geometric distances between all the couples of points of the two fixed trajectories. 

So the best r trajectories are those that maximise the distance ��� among them. 

Another refinement which is present in this study is the introduction of the �∗ 

measure, which lifts problems with II type error by solving problems of the effects of 

opposite signs affecting non-monotonic models. �∗ is the estimate of the mean of the 

distribution of the absolute values of the Elementary Effects and its denotation is 

|��(� )|~ ��. The only drawback coming from the utilization of �∗ is the loss of 

information on the sign of the effect and this is the reason because estimates of μ will 

be presented coupled to �∗estimates (moreover there is no extra computational cost). 
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3.4 METHOD OF ANALYSIS 
 

In the following pages, by the utilization of simple examples, it will be demonstrated 

that two Morris and Sobol methods have to be used in couple to avoid any type of 

shortcomings. While Sobol ‘s method attempts to provide more general results by 

characterizing the nature of response sensitivity over the entire factor space, Morris ‘s 

method evaluates the local sensitivity coefficients (which are the elementary effects 

for each factor at multiple points across the factor space) and analyses the 

distributional properties of these values to assess the global sensitivities of the model 

response in relation to the individual factors. Both methods are necessary to have a 

clear idea of the surface response.  

1. First Example 

 

Figure 3.1. Response surfaces of the first example. 
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Figure 3.2. Derivative functions of the response surfaces of the first example. 

 

Figure 3.3. Probability density functions of the response values of the first 
example.  
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Table 3.1. Performance of conventional sensitivity measures, first example. 

function �(�) � ��
��

��
�� � ��

��

��
�

�

� � �
��

��
� 

��(�) 
��

12
 � �� 0 

��(�) 
��

192
 � �� �� 

��(�) 
��

12288
 � �� �� 

 

Figure (3.1) presents three functions that cover radically different output 

ranges. It can be seen how they have constant and identical values of the local 

sensitivities across the factor range (except at singular points where the 

derivatives change sign) and at the same time completely different response 

surface PDFs (see Fig. 3.2 and Fig. 3.3). This means that �� has the highest 

sensitivity of the response y respect to variations in factor x and it is confirmed 

by the fact that changes in x control a larger range of the output. 

In this example the measure of D(y) states ��(�) is respectively 16 and 1026 

times more sensitive to factor x than functions ��(�) and ��(�); however, 

measures � ��
��

��
�� and � ��

��

��
�

�

� state that all functions are sensitive at the 

same way, while measure � �
��

��
� does not recognize differences between ��(�) 

and ��(�). In the light of these considerations, in this example the results 

supplied by D(y) would be more consistent for a sensitivity analysis. 
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2. Second Example 

 

Figure 3.4. Response surfaces of the second example. 

 

Figure 3.5. Derivative functions of the response surfaces of the second 
example. 
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Figure 3.6. Probability density functions of the response values of the second 
example. 

Table 3.2. Performance of conventional sensitivity measures, second 
example. 

function �(�) � ��
��

��
�� � ��

��

��
�

�

� � �
��

��
� 

��(�) 0.11 1.11 1.64 1.64 

��(�) 0.11 3.01 11.80 11.80 

 

This example contains two functions having the same average absolute local 

sensitivity equal to 0 (figure 3.5). Although two very different response 

surfaces PDFs result, there is an identical variance of the response y for the 

two functions. This happens because the variance approach measures overall 

variability of the response but it is not sensitive to the structure of the surface-

i.e., how the values of the response surface are organized in the factor space. 

Consequently, variance-based methods are not able to take into account 

important structural information such as multimodality. In contrast Morris type 

methods indicate that ��(�) is significantly more sensitive to factor x than 

��(�) but there is a danger of exceeding ∆x values and as a consequence the 

surface response obtained would not be truthful. This complication has been 

called “scale issue”. 
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In conclusion the variance-based Sobol approach is based entirely on characterizing 

the global variance of model response, and its decomposition into components 

associated with individual contributing factors. As such, it is unable to distinguish 

between response surface structures that have identical global variance of model 

response but different distributions and spatial organizations (response surface 

structures) of the model response and its derivatives. The Morris approach and its 

extensions attempt to globally aggregate local sensitivity information (first-order 

partial derivatives) across the factor space. However, all implementations of this 

approach are prone to the scale issue, and the step size of the analysis could have a 

significant impact on the conclusions about underlying sensitivities. 

So the combined utilization of Sobol and Morris techniques permit to overcome 

shortcomings of both about surfaces responses representations. 
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4 RESULTS 
 
 
 
 
 
 
 
 
 
 
This chapter is many-sided and multifaceted. The starting point of this work was a 

blank page, in the sense there were no previous studies related to the case taken in 

consideration. Anyway the full model was already implemented and also the global 

quantities and parameters describing them were already suggested (global quantities of 

interest were in function of 27 parameters without considering grid and fracture 

network parameters). So the first approach was to identify most influent parameters 

for some global quantities. Initially the analysis was carried out only by means of 

Sobol indices. At a certain point it became clear that Sobol indices were producing the 

influence regarding only the variance of the mean of global quantities, while the 

influence of input parameters on the absolute value of the mean of global quantities 

was not taken into consideration. From then also Morris analysis was implemented in 

couple with Sobol analysis. 

So initial experiments are here reported as “Preliminary Results” because they are an 

optimal example to understand the right way to execute a sensitivity analysis without 

shortcomings and because they were propaedeutic for the final definitive case. 

Then there is a part called “Results of Sensitivity Analysis” which show final results 

regarding to initial questions that they were supposed to be answered. 

Finally, the last section is named “Probability Distributions of Target Variables” and it 

is concerned with the analyses of surface responses through PDFs tools. 
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4.1 PRELIMINARY RESULTS 
 

As first thing it is reported a table with all input parameters in standard configuration, 

i.e. fixed values of parameters when they are considered certain (see Table 2.1 for 

symbols meanings). 

Table 4.1. Tabulation of standard-configuration values of input parameters. 

Spatial Parameters 

����
 1 × 10��� [��] 

�� 1 × 10�� [��] 

����
 5 × 10�� [��] 

�� 1 × 10��� [��] 

��� 1 × 10��� [��] 

��� 1 × 10��� [��] 

����
 0.1 [−] 

�� 0.5 [−] 

����
 0.5 [−] 

�� 0.25 [−] 

��� 0.1 [−] 

��� 0.1 [−] 

Operational and Geometric Parameters 

���� 1000 [�] 

���� 60 [�] 

��� 25 [�] 

����
 0.005 [�] 

�� 0.01 [�] 

���� 500 [���] 

���� 792000 [�] 

���� 72000 [�] 
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�����������
 0.001 

�
����

�����
� 

���� 100 [�] 

������� 200 [�] 

Fluid properties and others 

���� 1 × 10�� 
�

��

��
� 

��
��,���

 1 × 10�� 
�
��

�
� 

���� 1000 
�

��

��
� 

� 9.81 �
�

��
� 

  

First Case: 

The first focus was on those input parameters that seemed more determinant for global 

quantities of interest. So four permeabilities and the injection pressure were chosen. 

The range of variation was chosen arbitrarily according to the standard range those 

parameters could assume in real cases. 

Table 4.2. First case choice of uncertain input factors and their range of 

variation. 

Input Parameter Lower Bound Upper Bound 

����
 1 × 10��� 1 × 10��� 

�� 1 × 10�� 1 × 10�� 

����
 1 × 10�� 1 × 10�� 

�� 1 × 10��� 1 × 10��� 

���� 600 800 

 

The standard values of all porosities were formerly set to 0.1 (case 1�). This was 

unrealistic especially for ����
 and ��, because they are typically higher than other 
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porosities. So the first thing done was to set to 0.5 ����
 and �� porosities (case 1�). 

Then full model was run in order to see if and how results about global quantities � 

were changing. For what concerns the choice of total degree w, the criterion was 

initially to adopt w=2 and w=3 degrees and if the respective results were not in 

agreement go for w=4 degree, otherwise stop to w=3. In fact, the full model 

simulations needed for the creation of the surrogate model of degree w=2 and w=3 is 

respectively 61 and 241, while for order w=4 is 781, a considerable number. 

Table 4.3. Simulation results for case 1� and 1� and for total degree w=2. 

� = 2 
���,��� ���,��� 

1� 1� 1� 1� 

� 554 554 352 352 

√� 2.7 × 10� 2.7 × 10� 1.6 × 10� 1.6 × 10� 

� 7.5 × 10� 7.3 × 10� 2.5 × 10� 2.6 × 10� 

 

Table 4.4. Simulation results for case 1� and 1� and for total degree w=3. 

� = 3 
���,��� ���,��� 

1� 1� 1� 1� 

� 558 555 347 351 

√� 2.7 × 10� 2.8 × 10� 1.6 × 10� 1.6 × 10� 

� 7.3 × 10� 7.7 × 10� 2.6 × 10� 2.4 × 10� 
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Figure 4.1 First Case representation of full model responses for w =2 degree. 

All responses seem to assume the same trend, with accumulated mass growing until 

the end of injection time and then slowly decreasing. The values above are nearly the 

same, so for the sake of authenticity the next results will be only based on 1� subcase. 

Here below principal and total Sobol indices are reported. The analysis of both Sobol 

indices and absolute values of the variance is not a superfluous choice, because Sobol 

indices reveal the magnitude of contribute to the total variance but they don’t show its 

absolute value, which must also be kept in consideration. 

Table 4.5. Principal Sobol Indices of case 1� 

Principal 

Indices 

���,��� ���,��� 

� = 2 � = 3 � = 2 � = 3 

�����
 0.000 0.000 0.000 0.002 

�����
 0.000 0.000 0.000 0.001 

���
 0.002 0.003 0.003 0.004 

���
 0.939 0.937 0.927 0.927 

�����
 0.049 0.049 0.060 0.058 
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Table 4.6 Total Sobol Indices of case 1� 

Total 

Indices 

���,��� ���,��� 

� = 2 � = 3 � = 2 � = 3 

�����

�  0.000 0.000 0.000 0.000 

�����

�  0.000 0.000 0.000 0.002 

���

�  0.002 0.003 0.003 0.004 

���

�  0.949 0.948 0.937 0.937 

�����

�  0.059 0.059 0.070 0.068 

 

First results obtained state clearly that the most influent parameter for the two global 

quantities considered is the permeability of the target aquifer above the reservoir;  

���� seems to play some kind of role, but its value is nearly twenty times lower than  

�� value, so more cases will be implemented to have a better knowledge of its 

importance. Another evident observation is the similarity between Principal and Total 

indices that outlines the lack of interaction between different parameters. Furthermore, 

the almost equality between w =2 and w = 3 results are an index of high linearity of the 

surrogate model obtained through the g-PCE, because the nearly equality means that it 

is sufficient to stop to w=2 degree in order to obtain a surrogate model that 

approximates well the full model response. This consideration is supported directly by 

linear Sobol indices (here not reported) which are very similar to principal Sobol 

indices, indicating precisely the high linearity of the surrogate model and so of the 

response. 

Second Case: 

Next step was the investigation of some porosities, so five porosities and target 

permeability were implemented in this second case. For the moment ���� was not 

present in this simulation because from previous case its influence seemed secondary 

or near negligible and because every parameter increases significantly computational 

costs. 
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Table 4.7 Second case choice of uncertain input factors and their range of 

variation. 

Input Parameter Lower Bound Upper Bound 

����
 0.05 0.3 

�� 0.5 0.7 

����
 0.5 0.7 

�� 0.2 0.5 

��� 0.05 0.3 

�� 1 × 10��� 1 × 10��� 

 

Even if computational costs would have been increased, in order to increase the 

veracity level of these results it has been decided to extend the analysis to w = 4 

degree:  

 w = 2                 Number of full model runs = 85 

 w = 3                 Number of full model runs = 389 

 w = 4                 Number of full model runs = 1433 

Here follow results. 

Table 4.8. Second case simulation results for the peak of mass response. 

 ���,��� 

������ � = 2 � = 3 � = 4 

� 284 279 288 

√� 1.5 × 10� 1.5 × 10� 1.5 × 10� 

� 2.4 × 10� 2.4 × 10� 2.3 × 10� 
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Table 4.9. Second case simulation results for the mass at end response. 

 ���,��� 

������ � = 2 � = 3 � = 4 

� 162 177 146 

√� 8.7 × 10� 8.3 × 10� 9.5 × 10� 

� 7.6 × 10� 6.9 × 10� 9.1 × 10� 

 

 

Figure 4.2. Second case representation of full model responses for w =2 degree. 

Results are counter-intuitive. The change of the mean and of the variance of two 

global quantities is big: more or less new values of the mean are the half and new 

values of the variance are one third of the previous case. At the same time trends of 

global quantities are equal to the first case. Before starting to find an explanation it is 

wise to look at Sobol indices.  
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Table 4.10. Principal Sobol Indices of second case. 

Principal 

Indices 

���,��� ���,��� 

� = 2 � = 3 � = 4 � = 2 � = 3 � = 4 

�����
 0.039 0.034 0.048 0.061 0.079 0.037 

����
 0.003 0.003 0.004 0.005 0.006 0.002 

���
 0.010 0.011 0.012 0.005 0.007 0.002 

�����
 0.000 0.000 0.000 0.000 0.000 0.006 

���
 0.000 0.000 0.000 0.000 0.000 0.000 

���
 0.940 0.944 0.926 0.913 0.896 0.942 

 

Table 4.11. Total Sobol Indices of second case. 

Total 

indices 

���,��� ���,��� 

� = 2 � = 3 � = 4 � = 2 � = 3 � = 4 

�����

�  0.043 0.038 0.053 0.066 0.087 0.045 

����

�  0.004 0.003 0.005 0.005 0.007 0.004 

���

�  0.014 0.014 0.016 0.006 0.008 0.003 

�����
 0.000 0.000 0.000 0.000 0.002 0.008 

���

�  0.000 0.000 0.000 0.000 0.000 0.002 

���

�  0.948 0.952 0.935 0.929 0.906 0.949 

 

First observation is about the dominance of permeability �� over other parameters: 

with values of both principal and total indices �� remains the most influent factor for 

both global quantities taken on examination. Another parameter with notable values is 

the porosity of the reservoir matrix ����
. Considerations about responses linearity and 

low-interaction between parameters of first case are also valid in this case. From these 

results a fundamental statement comes as a consequence: Injection Pressure doesn’t 

affect too much the variance of the responses but instead it changes dramatically the 

absolute value of them. It is a natural consequence if one looks at standard and fixed 
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value ���� = 500 [���] that injection pressure assumes in this case. In fact, when ���� 

is an uncertain factor varying between 600 and 800 [bar] global responses exhibit high 

values, while when it is fixed to 500 [bar] like in this case they show low values. In 

order to have the final proof of this observation a third case is implemented. 
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Third Case: 

Parameters of third case are the same of those of second case except for injection 

pressure which is added to the analysis to verify the previous statements. What is 

expected is that with the addition of Injection pressure the mean of global quantities 

and their variance will increase and they will be around first case values. 

Table 4.12. Third case choice of uncertain input factors and their range of 

variation. 

Input Parameter Lower Bound Upper Bound 

����
 0.05 0.3 

�� 0.5 0.7 

����
 0.5 0.7 

�� 0.2 0.5 

��� 0.05 0.3 

�� 1 × 10��� 1 × 10��� 

���� 600 800 

 

Also here w = 4 degree has been implemented in order to maintain the best 

compromise with veracity level and computational costs (here below reported). 

 w = 2                 Number of full model runs = 113 

 w = 3                 Number of full model runs = 589 

 w = 4                 Number of full model runs = 2437 

And now results are presented.  
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Table 4.13. Third case simulation results for the peak of mass response. 

 ���,��� 

������ � = 2 � = 3 � = 4 

� 485 496 487 

√� 2.6 × 10� 2.6 × 10� 2.6 × 10� 

� 6.6 × 10� 6.8 × 10� 6.8 × 10� 

 

Table 4.14. Third case simulation results for the mass at end response. 

 ���,��� 

������ � = 2 � = 3 � = 4 

� 297 277 281 

√� 1.5 × 10� 1.4 × 10� 1.4 × 10� 

� 2.1 × 10� 2.1 × 10� 2.1 × 10� 

 

As it was predicted values of mean and variance returned similar to the first case and 

so the previous considerations are confirmed. Now look at Sobol indices. 

Table 4.15. Principal Sobol Indices of third case. 

Principal 

Indices 

���,��� ���,��� 

� = 2 � = 3 � = 4 � = 2 � = 3 � = 4 

�����
 0.014 0.014 0.015 0.028 0.027 0.028 

����
 0.003 0.000 0.002 0.002 0.012 0.009 

���
 0.010 0.008 0.009 0.003 0.011 0.002 

�����
 0.000 0.000 0.000 0.000 0.000 0.000 

���
 0.000 0.000 0.000 0.000 0.000 0.000 

���
 0.940 0.895 0.899 0.884 0.888 0.885 

�����
 0.055 0.062 0.060 0.070 0.046 0.059 
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Table 4.16. Total Sobol Indices of third case. 

Total 

indices 

���,��� ���,��� 

� = 2 � = 3 � = 4 � = 2 � = 3 � = 4 

�����

�  0.016 0.017 0.018 0.030 0.031 0.031 

����

�  0.002 0.001 0.001 0.002 0.012 0.010 

���

�  0.013 0.012 0.012 0.004 0.012 0.011 

�����
 0.000 0.000 0.000 0.000 0.004 0.002 

���

�  0.000 0.000 0.000 0.000 0.004 0.003 

���

�  0.919 0.914 0.918 0.898 0.898 0.897 

�����

�  0.066 0.076 0.072 0.081 0.054 0.056 

 

Permeability of the target aquifer remains the most dominant parameter. A first 

important remark regards ����
. In the third case, the addition of ���� to the list of 

uncertain parameters lowers Sobol indices values of the reservoir matrix. It is clear 

that all input factors should be taken as uncertain in order to have a truthful analysis of 

the influence of input parameters on the variance of global quantities. And it is also 

evident that Sobol analysis is not a good tool for identifying the most influent 

parameters for the mean of global quantities. Moreover, in addition to injection 

pressure, other mean-influent parameters could be present and in the contest of these 

studies the mean of global quantities is more important than their variance. So for 

these last reasons Morris analysis will be implemented. 

Before introducing the next section, a last question has to be solved: “Do surrogate 

models of these three cases approximate respective full models?”. To answer it is 

necessary to develop scatter plots of some (number is arbitrary) random points. The 

procedure is the following: random sets of parameters are chosen and they are run 

using both full model and its surrogate. Then the two responses resulting are plotted: 

black segment represents full model solutions and red points surrogate model 

solutions. More red points are near full model segments and more surrogate models 
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are good approximations. And since surrogate models of degree w = 2 suite well full 

models there is no need of executing scatter plots for higher degrees surrogate models, 

because they surely suite better full models. Here are scatter plots. 

 

Figure 4.3. First case: scatter plot of “Peak of mass” response. 

 

Figure 4.4. First case: scatter plot of “Mass at end” response. 
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Figure 4.5. Second case: scatter plot of “Peak of mass” response. 

 

Figure 4.6. Second case: scatter plot of “Mass at end” response. 
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Figure 4.7. Third case: scatter plot of “Peak of mass” response. 

 

Figure 4.8. Third case: scatter plot of “Mass at end” response. 

Scatter plots indicate a good approximation made by surrogate models, enough to 

confirm the validity of Sobol analyses. Next section is dedicated to the implementation 

of final analyses. 
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4.2 RESULTS OF SENSITIVITY ANALYSIS 

 

In this will be structured as follows. Firstly, Morris analysis is applied to the problem, 

then two “final” cases are analysed through Sobol indices and results are matched with 

Morris results. As last PDFs of global responses are built. 

Morris Analysis: 

The theory, the implementation and the way of proceeding have been discussed in 

section 3.2 and the reader is sent here for relative information; here only the specific 

case and relative results are taken in examination. 

In the first attempt the choice of uncertain parameters was the widest: nearly all 

parameters were chosen. 

Table 4.17. First choice of parameters and bounds in Morris analysis. 

Input Parameter Lower Bound Upper Bound 

����
 0.05 0.3 

�� 0.5 0.7 

����
 0.5 0.7 

�� 0.2 0.5 

��� 0.05 0.3 

��� 0.05 0.3 

����
 1 × 10��� 1 × 10��� 

�� 1 × 10�� 1 × 10�� 

����
 1 × 10�� 1 × 10�� 

�� 1 × 10��� 1 × 10��� 

��� 1 × 10��� 1 × 10��� 

��� 1 × 10��� 1 × 10��� 

���� 900 1200 

���� 50 80 

��� 20 40 

����
 0.001 0.01 
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�� 0.005 0.01 

���� 600 800 

���� 780000 800000 

���� 70000 100000 

�����������
 0.0005 0.01 

���� 90 120 

������� 180 220 

 

Results coming from this choice were inconsistent and deceptive because they were 

affected by grid problems (if some geometric and temporal parameters become 

uncertain the grid becomes no more reliable). So instead of showing useless and 

untruthful results the smartest choice is illustrated. In order to derivate useful but at the 

same time consistent results, parameter choice will lie on permeabilities, porosities 

and injection pressure. 

Table 4.18. Definitive choice of parameters and bounds in Morris analysis. 

Input Parameter Lower Bound Upper Bound 

����
 0.05 0.3 

�� 0.5 0.7 

����
 0.5 0.7 

�� 0.2 0.5 

��� 0.05 0.3 

��� 0.05 0.3 

����
 1 × 10��� 1 × 10��� 

�� 1 × 10�� 1 × 10�� 

����
 1 × 10�� 1 × 10�� 

�� 1 × 10��� 1 × 10��� 

��� 1 × 10��� 1 × 10��� 

��� 1 × 10��� 1 × 10��� 

���� 600 800 
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Global quantities analysed are the same of those chosen for Sobol analyses (���,��� 

and ���,���). Other specifications are here below reported. 

Table 4.19. Morris analysis specifications. 

Number of factors � 13 

Discretization number � 4 

Generation number � 2000 

Number of trajectories � 20 

Full model runs �(� + 1) 280 

 

Also this choice comes from a trading between computational costs and precision is 

present: more r and N are high more the analysis will be accurate but at the same time 

computational costs will increase. About z the point is more controversial. z defines 

discretization pass ∆ because ∆=
�

[�(���)]
. So results are dependent from z choice. � =

4 assures a good discretization and next results will be based on but in order to see 

how much results change modifying z, a results comparison will be act between � = 4 

and � = 8 case. 

The first aspect under investigation is the monotony of the response function respect to 

the several uncertain input factors. So the mean and the absolute mean of finite 

distribution of elementary effects are plotted for each parameter. If two points of a 

certain factor coincide then the response function is monotonic respect to that factor. 
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Figure 4.9. Morris Analysis: mean and absolute mean of �� and �� for “Peak of 
mass”. 

 
Figure 4.10. Morris Analysis: mean and absolute mean of �� and �� for “Mass at 
end”. 

Plots state that with the exception of the porosity of the matrix reservoir and of the cap 

rock, global output functions of the global quantities considered are monotonic respect 

to uncertain parameters.  



Results of Sensitivity Analysis 

73 
 
 

About variances of finite distributions of elementary effects, a big variance of 

distribution �� will outline a notable interaction of the i parameter with other 

parameters and/or nonlinear order effects. Obviously higher means of finite 

distributions will generally have higher variances; the trend higher mean-higher 

variance is evident in the following plots. 

Figure 4.11. Morris Analysis: absolute mean and variance of �� and �� for “Peak of 
mass”. 
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Figure 4.12. Morris Analysis: absolute mean and variance of �� and �� for “Mass at 
end”. 
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As last most dominant parameters are shown in terms of absolute means of finite 

distributions of elementary effects. 

 
Figure 4.13. Morris Analysis: most dominant factors in terms of absolute mean for the 
“Peak of mass”. 

 
Figure 4.14. Morris Analysis: most dominant factors in terms of absolute mean for 
“Mass at end”.  
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Table 4.20. Morris Analysis: most dominant factors in terms of absolute mean. 

Peak of Accumulated Mass 
Accumulated Mass at the End of the 

Experiment 

1° �� 1 1° �� 1 

2° ���� 0.2171 2° ��� 0.5560 

3° ��� 0.2053 3° ���� 0.2247 

4° ����
 0.1142 4° ����

 0.1018 

5° �� 0.0763 5° ����
 0.0740 

6° ����
 0.0694 6° ��� 0.0364 

7° ��� 0.0355 7° �� 0.0333 

8° ��� 0.0275 8° �� 0.0157 

9° �� 0.0172 9° ��� 0.0105 

10° ����
 0.0038 10° ����

 0.0104 

11° ��� 0.0006 11° ��� 0.0010 

12° ����
 0.0003 12° ����

 0.0009 

13° �� 0.0002 13° �� 0.0003 

 

There is a semblance of agreement between Morris and previous Sobol analysis in the 

evaluation of �� as the most influent parameter affecting output responses. Moreover, 

��� (that was not taken in consideration in the previous cases) plays an important role 

as well as ����.But a clearer overview is achieved through the implementation of a 

Sobol analysis containing all and only thirteen input factors of Morris analysis. Before 

that it is necessary to verify how much results change if discretization number z is 

modified, for example it becomes z = 8.  
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Table 4.21. Morris Analysis: Comparison between different discretization choices 

(“Peak of mass” results). 

PEAK OF ACCUMULATED MASS 

� = � � = � 

1° �� 1 1° �� 1 

2° ���� 0.2171 2° ���� 0.2396 

3° ��� 0.2053 3° ��� 0.1699 

4° ����
 0.1142 4° �� 0.0832 

5° �� 0.0763 5° ����
 0.0820 

6° ����
 0.0694 6° ����

 0.0592 

7° ��� 0.0355 7° ��� 0.0406 

8° ��� 0.0275 8° ��� 0.0280 

9° �� 0.0172 9° �� 0.0149 

10° ����
 0.0038 10° ����

 0.0033 

11° ��� 0.0006 11° ��� 0.0006 

12° ����
 0.0003 12° �� 0.0004 

13° �� 0.0002 13° ����
 0.0002 

 

Table 4.22. Morris Analysis: Comparison between different discretization choices 

(“Mass at the end” results). 

ACCUMULATED MASS AT THE END OF THE EXPERIMENT 

� = � � = � 

1° �� 1 1° �� 1 

2° ��� 0.5560 2° ��� 0.5795 

3° ���� 0.2247 3° ���� 0.2666 

4° ����
 0.1018 4° ����

 0.0967 

5° ����
 0.0740 5° ����

 0.0725 
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6° ��� 0.0364 6° ��� 0.0520 

7° �� 0.0333 7° �� 0.0387 

8° �� 0.0157 8° �� 0.0140 

9° ��� 0.0105 9° ����
 0.0110 

10° ����
 0.0104 10° ��� 0.0078 

11° ��� 0.0010 11° ��� 0.0014 

12° ����
 0.0009 12° �� 0.0010 

13° �� 0.0003 13° ����
 0.0003 

 

From tables 4.21. and 4.22 is under eyes how values noticeably change if 

discretization number z change. There is not a right and a wrong discretization choice 

but it is preferable a domain with a finer discretization so results will be referred to z = 

4 choice. 

Final Sobol Case: 

The starting idea of the procedure applied to this work was to execute several analyses 

with a limited number (6 ÷ 7) of uncertain parameters (every parameter was taken as 

uncertain at least one time) in order to find those parameters which can be considered 

surely uninfluential for global quantities considered (parameters whose Sobol indices 

assumed 0 value) and at the same maintain acceptable computational costs. But it was 

discovered that for the sake of model reliability many parameters cannot be considered 

uncertain. So the smartest decision is to focus the study on certain categories of 

parameters (permeabilities, porosities and injection pressure) and execute a unique 

Sobol analysis although its relative high computational cost. The construction of the 

surrogate model required following computational costs: 

 w = 2                 Number of full model runs = 365 

 w = 3                 Number of full model runs = 3329 

 w = 4                 Number of full model runs = 23245 

Analyses of orders w = 2 and w = 3 were affordable, while that of order w = 4 was an 

impossible task for the computing power at disposal. But the Sparsity-of-effects 
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principle indicates that most systems or processes are usually sensitive to only a subset 

of factors and their low-order (e.g. second-order) interactions, and that high-order 

interactions are typically insignificant or negligible (Razavi & Gupta 2015). So if 

results obtained with w = 2 and w = 3 degrees are consistent ones with the others and 

if scatter plots don’t find any inconsistency, analysis with w = 4 is no more necessary. 

Final results are shown here below. 

Table 4.23. Final case simulation results for the peak of mass response. 

���,��� 

������ � = 2 � = 3 

� 644 639 

√� 3.5 × 10� 3.5 × 10� 

� 1.2 × 10� 1.2 × 10� 

 

Table 4.24. Final case simulation results for the mass at end response. 

���,��� 

������ � = 2 � = 3 

� 517 509 

√� 2.9 × 10� 2.9 × 10� 

� 8.6 × 10� 8.6 × 10� 

 

Table 4.25. Principal Sobol Indices of final case. 

Principal 

Indices 

���,��� ���,��� 

� = 2 � = 3 � = 2 � = 3 

�����
 0.000 0.000 0.000 0.000 

�����
 0.003 0.008 0.004 0.001 

���
 0.000 0.000 0.000 0.001 

���
 0.914 0.896 0.777 0.789 
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����
 0.000 0.002 0.000 0.003 

����
 0.014 0.022 0.123 0.103 

�����
 0.002 0.000 0.002 0.006 

����
 0.001 0.004 0.002 0.000 

���
 0.003 0.004 0.000 0.000 

�����
 0.000 0.000 0.000 0.000 

���
 0.000 0.000 0.000 0.000 

����
 0.001 0.000 0.000 0.000 

�����
 0.043 0.044 0.041 0.035 

 

Table 4.26. Total Sobol Indices of final case. 

Total 

Indices 

���,��� ���,��� 

� = 2 � = 3 � = 2 � = 3 

�����

�  0.000 0.000 0.000 0.000 

�����

�  0.003 0.008 0.005 0.002 

���

�  0.000 0.000 0.000 0.001 

���

�  0.933 0.915 0.827 0.848 

����

�  0.000 0.002 0.000 0.003 

����

�  0.021 0.029 0.164 0.151 

�����

�  0.003 0.001 0.002 0.007 

����

�  0.001 0.005 0.002 0.000 

���

�  0.003 0.005 0.000 0.000 

�����
 0.000 0.000 0.000 0.000 

���

�  0.000 0.000 0.000 0.000 

����

�  0.001 0.001 0.000 0.000 

�����

�  0.054 0.053 0.052 0.048 

 



Results of Sensitivity Analysis 

81 
 
 

From tables above a new important parameter comes to the light: the overburden 

permeability controls the variance of mass global quantities and its influence on 

accumulated mass at the final time is the highest with the exception of the target 

permeability. So between these 13 parameters 3 seem to be relevant in the ambit of 

this work: Target permeability, Overburden permeability and Injection pressure. Other 

possible considerations about linearity and parameters interactions are the same of 

those dealt with other three cases. Before going into further discussion there is the 

duty to check scatter plots of this new case, because the increment of parameters could 

deteriorate the quality of the surrogate model. Scatter plots illustrated here below 

confirm the good quality of surrogate models. 

 

Figure 4.15. Final case: scatter plot of “Peak of mass” response. 
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Figure 4.16. Final case: scatter plot of “Mass at end” response. 

Results Comparison and Discussion: 

It has been already discussed about different objects of the Morris and Sobol analyses 

(one is concerned with local sensitivities and the other has a more global view) but 

they both try to answer to the question: which parameters control the intrusion of the 

mass from the gas reservoir into the target aquifer? Both Sobol final case and Morris 

analyses agree in the identification of three parameters as the most influent for global 

quantities considered: Target permeability, Overburden permeability, and Injection 

pressure.  

From the table below it is evident how the importance of the overburden permeability 

is higher for the global quantity “Mass at the end” respect to the “Peak of Mass”. This 

can be explained by the fact that once the injection is interrupted, the dispersion of the 

gas from the target aquifer to the surrounding environment is strictly related to the 

permeability of the environment; while during injection the rate of accumulation into 

the aquifer is less influenced by the surrounding formations.
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Table 4.27. Comparison between Total Sobol indices and Morris results. 

 Peak of mass Mass at the end 

 Morris � = 2 � = 3 Morris � = 2 � = 3 

�� 1 0.9331 0.9146 1 0.8267 0.8475 

��� 0.1699 0.0212 0.0295 0.5795 0.1639 0.1514 

���� 0.2396 0.0542 0.0531 0.2666 0.0517 0.0478 

 

Another remark is how the importance of overburden permeability varies by changing 

target quantity of interest: Mass at End global quantity is more influenced by ��� than 

Peak of Mass global quantity. A possible explanation can be that the gas dispersion 

from the target aquifer is mainly controlled by the permeability formations 

surrounding it and the quantity of gas present in the target aquifer at the end of the 

experiment depends strongly from how fast the gas disperses from it.
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4.3 PROBABILITY DISTRIBUTIONS OF TARGET 
VARIABLES 

 

The aim of this section is to enrich the analysis about two global quantities considered 

by showing different PDFs associated to different cases and w degrees. The 

Probability Distribution Function is a remarkable tool that describes surface responses 

or in other words the distribution in the output space of all simulations belonging to a 

defined case. Moreover, it permits to match visually the responses obtained by 

different surrogate models having different g-PCE degrees or/and different sets of 

uncertain parameters. In the contest of this analysis the addition of a case having as 

uncertain parameters only the 3 most influent parameters of the “Final Sobol case” 

will enrich the discussion. So before unclosing PDFs plots the new case called “3 

Parameters case” will be briefly introduced. 

3 Parameters case: 

This case contains only the three most significant parameters of the “Final Sobol case” 

which are target permeability, overburden permeability and injection pressure. There 

is no sense in computing Sobol analysis for this case because a more complete analysis 

has been executed in the “Final Sobol case”. So only results regarding means and 

variances of global target quantities are reported. 

Table 4.28. 3 Parameters case simulation results for the peak of mass response. 

���,��� 

������ � = 2 � = 3 � = 4 

� 577 577 576 

√� 3 × 10� 3 × 10� 3 × 10� 

� 9.3 × 10� 9.2 × 10� 9.3 × 10� 
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Table 4.29. 3 Parameters case simulation results for the mass at end response. 

���,��� 

������ � = 2 � = 3 � = 4 

� 483 483 483 

√� 2,7 × 10� 2,7 × 10� 2,7 × 10� 

� 7.4 × 10� 7.5 × 10� 7.5 × 10� 

 

Here computational costs are reduced thanks to the small amount of uncertain 

parameters:  

 w = 2                 Number of full model runs = 25 

 w = 3                 Number of full model runs = 69 

 w = 4                 Number of full model runs = 165 

Looking at the mean and variation values of target quantities it is evident a reduction 

respect to the previous “Final Sobol case”. Before entering in further discussions 

scatter plots are made (and as shown here below expected they give good responses) 

and PDFs are presented. 

 
Figure 4.17. 3 Parameter case: scatter plot of “Peak of mass” response.
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Figure 4.18. 3 Parameter case: scatter plot of “Mass at the end” response. 

PDFs construction: 

The construction of PDFs for global quantities analysis relies on g-PCE mainly for 

computational reason. If the surrogate model obtained through the g-PCE suites 

optimally the full model, it is possible to build PDF by running hundreds of thousands 

of times the surrogate model with very small computational costs if compared to 

execution of the same PDFs by the full model. Scatter Plots are used to understand the 

quality of the surrogate model. More simulations are performed and more PDFs will 

be accurate; obviously computational cost related to a PDF construction grows 

proportionally to the number of simulations. In this study 100.000 simulations for each 

case were identified as the best compromise between PDF’s accuracy and 

computational cost. 

PDFs comparison: 

Now PDFs of peak of accumulated mass and accumulated mass at the end of 

experiment are presented. Each PDFs is composed by 100000 random simulations 

generated by surrogate models obtained by means of g-PCE. Dashed lines represent 

the Final Sobol case and continuous lines 3 Parameters case. Moreover, different 

colours (red, green and blue) stand for different PCE degree (� = 2,� = 3,� = 4). 
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Figure 4.19. PDFs of Peak of mass global quantity. 

Looking at Final Sobol case lines, the reader can see how they remain lower than 3 

Parameters case until the peak density but after it they decrease slower and so this 

behaviour determines a slightly higher variance for the Final Sobol case and at the 

same time a lower peak density. Another consideration is about the precision level of 

PCE degrees: There is much similarity between output functions obtained with � = 2 

and � = 3 (and � = 4) degrees in the ambit of the same case. 

 
Figure 4.20. PDFs of Mass at the end global quantity. 

About accumulated “Mass at the end” of the experiment, density peaks are obviously 

placed at lower mass values but they have higher number than “Peak of mass” density 

peaks. 
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Unlike the other global quantity PDFs of Final Sobol case are more similar to PDFs of 

3 Parameters case and unlike the previous group of PDFs, lines of the same case don’t 

agree perfectly, especially in the 3 Parameters case. 

Both global quantities have high variances: they can assume a wide range of values, 

from nearly 0 to over 1000. This indicates that even if the process is controlled by a 

few parameters and even if their values are well known, it remains difficult to predict 

how much mass will enter in the aquifer. 
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5 CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
 
The purpose of the thesis is the analysis of the gas intrusion from a reservoir into an 

aquifer, in particular the analysis is concerned about rules of some key parameters in 

flux and transport processes. Analysis is carried on by means of global sensitivity 

analysis (GSA), which is based on the determination of Sobol indices (for their 

calculation a Polynomial Chaos Expansion has been used), and by Morris analysis. 

The study of the problem has been executed through global quantities which 

characterize the gas intrusion, because the characterization of solutes in every point of 

the domain was an impossible task. 

Processes taken in consideration are flux processes and transport processes. 

Global quantities considered are the peak of accumulated mass inside the aquifer 

throughout the time experiment and the accumulated mass inside the aquifer at the 

final moment of the experiment. 

The development of the GSA analysis starts with the identification of those parameters 

which govern phenomena under study and the task is achieved by several attempts and 

by using both Sobol and Morris indices. In order to compute Sobol indices PCE is 

built by means of sparse grids, a method that allows to reduce the number full model 

simulations performed by a numerical model in comparison to the standard Monte 

Carlo standard method. 

Sobol indices are a good way to describe the variance of global quantities, while 

Morris indices are excellent indicators of the mean of global quantities. 

Results are reported in the fourth chapter. From the combination of Sobol and Morris 

analyses is clear how the dominant parameters in the process of aquifer contamination 
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are the target aquifer, the injection pressure and the overburden permeability. About 

the peak of accumulated mass target permeability is the most influent and other two 

factors have more or less the same importance, while for what concerns the 

accumulated mass at the final time of the experiment overburden permeability is more 

dominant than the injection pressure but less than target permeability. 

Then 100’000 simulations of PCE model are performed for each case considered in 

order to build PDFs of responses. The analysis of responses surfaces gives back many 

considerations. 

Between these two most important are: The peak of mass the surrogate model of 

degree equal to 2 is already a good approximation of the full model and the other is 

that especially for accumulated mass at the end “3 Parameters case” is very similar to 

“Final Sobol case” which has 13 uncertain parameters. 

For future developments and studies 2 principal suggestions are presented. 

First suggestion is the adoption of a unique sensitivity tool for the sensitivity analysis 

which can cover several aspects of the response surfaces. Razavi and Gupta have 

proposed a method called VARS (Variogram Analysis of Response Surface). VARS 

approach obtains robust results describing locally and globally response surfaces and it 

is not influenced by noise/roughness in the underlying response surface. 

Second suggestion is to implement a dimensional analysis. This could allow a 

generalization of the problem and a collapse of many response curves into a few 

dimensionless curves. Moreover, the dimensional analysis could characterize the 

problem with some dimensionless groups which could simplify analyses. 

Anyway future possibilities are infinite but at the same time this study could always be 

a good starting point or a good comparison. 
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