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A B ST R A C T

The techniques exploited in finding preliminary trajectories for interplanetary
space flights have been, during these last years, widely studied and improved. The
motivations of these developments are related to the necessity of studying those
complex phenomena occurring when more gravitational interactions are considered
together. One of them is represented by the so called ballistic capture, which can be
explained when at least two primaries considered. In this thesis, the robustness of
ballistic capture orbits is assessed. The primary system considered the Sun-Mars
one. In particular, a statistical approach is exploited to generate families of initial
conditions in order to reproduce the common uncertainties of position and velocities
related to deep space navigation. This leads to more or less substantial shifting with
respect to the nominal condition. As consequence there will be some non-acceptable
conditions for a ballistic capture. Therefore, results are presented in terms of robust
initial conditions and non-robust one, that is leading to crash over the surface of
Mars or escape from it Sphere of Influence.

S O M M A R I O

Le tecniche utilizzate nella ricerca di traiettorie preliminari per voli spaziali inter-
planetari sono state, nel corso di questi ultimi anni, ampiamente studiate e migliorate.
Le ragioni di tali miglioramenti sono legate soprattutto alla necessitàdi ptoer studiare
quei particolari fenomeni che si verificano quando più interazioni gravitazionali si
trovano in essere. Uno di questi è rappresetato dalla cosiddetta cattura balistica, che
trova spiegazione nella considerazione di almeno due primari. In questa tesi verrà
verificata la robustezza delle catture balistiche. Il sistema di primari considerato è
Sole-Marte. In particlare, verranno generate famiglie di condizioni iniziali con un
approccio statistico, così da riprodurre i comuni livelli di incertezza associati alla
navigazione spaziale. Questo comporta variazioni più o meno consistenti rispetto
alla condizione nominale e, di conseguenza, non tutte le condizioni ottenute saranno
accettabili al fine di effettuare una cattura balistica. Pertanto i risultati saranno
presentati in termini di condizioni iniziali robuste e non rouste, ovvero provocanti
uno schianto sulla superficie di Marte od una fuga dalla sua Sfera di Influenza.
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I N T R O D U C T I O N

The design of space missions is carried out, in general, through a series of iterations.
Starting, in fact, from simplified models of the considered dynamic system, the
process of defining the mission proceeds through different levels of analysis, each
one leading to a more and more detailed characterization of all tge systems involved.
During the ohase of trade-off, all the subsystems are relatd each other, therefore the
development of on of them affects the entire mission design.

Altough it does not represent any physical components of the system, the mission
analsis plays a role of utmost importance during the design phase, as different
trajectories and orbits correspond to different spin-off for the other subsystems. As a
consquence, a good level of precision in the characterization of the orbit, already in
the preliminary phase, positevly influences the design procedure. For this reason,
refined techniques are required, either deveipong the agorithms of computation,
or using more detailed and complex models. A typical example is represented
by interplanetary missions, where the trajectories are usually defined through the
patched conics approach: by exploiting this technique, the complete trajectory made
up by patching solutions of many two-body problem, each one considered when the
spacecraft enters the Sphere of Influence of the relative planet. The advantage of this
method is represented by the existence of an analytical solution of the problem but,
at the same time, it implies a discontinuous motion across those imaginay boundaries
produced by the Keplerian decomposition of the solar System. Together with this
limitation, in the last decades, the attention fo the space agencies has been more
and more oriented on searching those solutions where the consumption of mass of
propellant is as low as possible. These type of solutions allow, for instance, to embark
much propellant mass or, in general, to reduce the costs of the entire mission.

In this sense, the classic patched conics model is not really suitable in finding
those trajectories satisfying the new mission requirements, because of their dynamics,
too much simplified. Therefore, the necessity of studying different and more precise
models becomes a priority, giving the possibility of understanding those complex
phaeonoena not provided in the two-body simplification. The first steps towards
this direction were done in the early 90s by E. Belbruno, who, in collaboration with
J. MIller, found a new ype of trajectories studying a model where the interactions
between the gravitational attraction of the Earth, the Sun and the Moon were taken
in consideration Belbruno e Miller [3]. This results, which brought to definition of the
so called weak stability boundaries, inspired detailed studies on the laws governing
such motions. On of those, developed by W. Kon, M. LO, J. Marsden and S. Ross
explains those trajectories separating the model analyzed by Belbruno and miller
into two different restricted three body problems Koon et al. [11].

The restricted three-body probem represents in fact the model immediately suc-
cessive, in complexity, to the two-body problem. When two primaries are considered
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together, the interations of their gravitational fields and their efects on a third body,
whose mass is negligible with respect to the first two, can be investigated. This model,
which still represents an approximation of the dynamics occurring inside the Solar
System, has as drawback the absence of any analytical solution but, starting from
its equations of motion, some useful considertions can be still stated. An example
are the Hill’s regions, which define the limits in the motion of the third particle;
furthemore, the presence of five equilibrium points (called Lagrangian points) opens
new perspectives from the point of view of possible missions around them. It is
demonstrated that, nearby such points, connections between different regions of
motions are possible, if the energetic level is appropriate (Belbruno [1], Koon et al.
[10]).

Using the restricted three-body problem, a description of the weak stability bounda-
ries, with the related dynamics, can be performed. After its definition, the tchnique
illustrated by Beltruno et al. has been in fact often considered when ballistic capture
trajectory are searched. However the canonical circular restricted three-body problem
represents a model in thich the real dynamics of the planets is stil too much simpli-
fied. The elliptic problem is therefore to prefer, since it leads to much more accurate
results.

Its detailed description is reported in the first chapter, where the equations of
motion are obtained and discussed: the main differences etween this model and
the circular one are evident. The elliptic problem is, in fact, governed by a non-
autonomous system of equations, where the independent variable (the true anomaly
f ) appears explicitly inside the equations. A constant of motion still exists, like in
the circular problem, however the so-called Jacobi constant, in the elliptic one, cannot
be used to define the Hill’s region. In fact, when the elliptic problem is considered,
such regions of motion exhibit a pulsating behavior. Moreover they can be estimated
during the first instants of motion only, when some approximations are valid.

In the second chapter, the definitions of ballistic capture and escape, stable set and
weak stability boundary are recalled and extended to the elliptic problem: in this
case in fact, it is shown that for different initial values of the independent variable,
different stable conditions can be found. Furthemore, the presence of negative stable
sets is discussed making possible the definition of ballistic capture and and escape,
when backward integration is performed. Like already demonstrated Szebehely [15],
it will be showed how it is convenient to solve not directly the classic equations of
motions, but those in polar coordinates. Furthemore, also a regularization of the
system of equations appears necessary, in order to calculate quickly and with high
precision, those trajectories passing near the singuarities of the equations.

Once this model has been discussed, in the third chapter the robustness analysis
of the method is analyzed. After a brief discussion of the capture set, the statistical
procedure producing a family of perturbed initial conditions. Consequently, such
conditions are propagated and the behaviour of the resulting orbits in terms of
effective capture, crashes and escapes is treated. The dispersion map of the State
vector at fixed stages is also presented. Eventually, the last part of the chapter is
devoted to the conclusions and the future development and improvement to this
method will be discussed, such as the re-formulation of the problem by means
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of Differential algebra, which is treated in Wittig et al. [18] and Di Lizia, Armellin e
Lavagna [5].





1 E L L I P T I C R E ST R I C T E D
T H R E E - B O DY P R O B L E M

The elliptic restricted three-body problem stems from the circular formulation,
which is deeply analyzed in literature. In particular, in this thesis the most outstan-
ding reference is represented by Szebehely [15], according to whom:

”Two bodies revolve around their center of mass in circular orbits under the
influence of their mutual gravitational attraction and a third body (attracted by
the previous two but not influencing their motion) moves in the plane defined
by the two revolving bodies. The restricted problem of three bodies is to describe
the motion of this third body.”

Basing on this statement, the concept of restricted problem is clarified: the third body,
which is nothing but the spacecraft, does not alter the dynamics of the first two
ones, which are commonly labeled as primaries. This fact is fully justified in thinking
that the gravitational force exerted by the spacecraft on the primaries is extremely
small; as a consequence, its contribution to the dynamics of the overall system can be
neglected. The most significant modification to Szebehely’s model lies in considering
the primaries paths as elliptic. The immediate consequence of this assumption is
that their relative distance keeps no longer constant, but results in an oscillating, or
pulsating, behavior. Of course a much more complicated analytical formulation is
required, in particular the dependence on time needs a radical revision, but results
are much improved since they are closer to the actual situation of celestial mechanics.

1.1 equations of motion

As already mentioned, the main difference between the classic restricted problem
and the elliptic one consist in the presence of the orbit eccentricity when considering
the motion of the primaries. In order to better understand how the orbital non-
circularity enters the problem, the motion of the primaries needs to be investigated.
While for the classic problem the revolution is circular around the system center of
mass, in the case under analysis the motion around such point is elliptic and already
known through the equations of the two-body problem. In the Solar System, all
big planets revolve around the Sun and the associated mass ratio is such that this
approximation can always be considered valid.

5



6 elliptic restricted three-body problem

1.1.1 The Sidereal Reference Frame

In order to write the equations of motion it is necessary to specify a reference
frame. A first choice is to define a coordinate system fixed to the center of gravity of
the system made of the two primaries and preserving its orientation with respect to
a fixed reference. Such reference is labeled as sidereal and it represented in Figure 1.1.

X

Y

x

y

P1

P2

P3

α(t)

CM

Figura 1.1: Sidereal baricentric reference frame.

The angle α between the line joining the primaries and the X-axis results from the
summation of the true anomaly, which will be denoted with f (t) and the pericenter
anomaly of the second primary P2 with respect to the first one P1. Within the sidereal
reference frame, the spacecraft position (P3) is identified by the vector RRR =

[
X Y

]
,

while each primary is located at RRRi =
[
Xi Yi

]
. Accordingly, the distance between

the spacecraft and each primary is:

R2
i = (X− Xi)

2 + (Y−Yi)
2

Once defined this quantity, the equation of motion of the spacecraft under the
gravitational effect of P1 and P2 are:

d2X
dt2 = −m1G

X− X1

R3
1
−m2G

X− X2

R3
2

(1.1)

d2Y
dt2 = −m1G

Y−Y1

R3
1
−m2G

Y−Y2

R3
2

(1.2)

where G is the universal gravitational constant and m1 and m2 are, respectively, the
masses of the first and the second primary. In eqs. (1.1) and (1.2) the dependence on
time, which is the independent variable, appears through R1 and R2, which are time
dependent due to the fact that an elliptic problem is being analyzed. A relation can
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be pointed out between the true anomaly of the second primary and the time, that
is the Kepler equation for time. Recalling the relation existing between f (t) and the
eccentric anomaly E:

tan
(

f
2

)
=

√
1 + e
1− e

tan
(

E
2

)
(1.3)

where e is the eccentricity of the elliptic orbit of P2 around P1, the connection between
f and t results from:

√
G (m1 + m2)

a3 (t− t0) = E− e sin (E)− (E0 − e sin (E0)) (1.4)

where the numerator of the term under square root is the mass parameter for the
two-body problem and a is the semi-major axis of the considered elliptic orbit. By
inverting eq. (1.4), the eccentric anomaly can be retrieved. Using this result inside
equation 1.3 allows to compute the true anomaly. So the dependence on time of eqs.
1.1 and 1.2 has been explained.

1.1.2 The Synodic Reference Frame

From eqs. (1.1) and (1.2) it is evident that, within the sidereal reference frame,
the equations of motion can be immediately obtained directly from gravitational
contributions acting between the involved primaries. Despite this apparent simplicity,
it must be taken into account that the primaries are not still and the distance existing
between them does not keeps constant in time, thus increasing the difficulties in
understanding the interactions occurring either between them and the spacecraft
once the equations are solved. Due to these considerations, it should be used a
reference frame such that primaries are fixed in space.

The reference that is being discussed features the x-axis coincident with the line
joining the primaries and the y-axis directed perpendicularly in counterclockwise
direction. The center of the frame is, once again, the center of mass of the system.
Such system is called synodic and it is represented in Figure 1.2. Notice that the axes
belonging to the sidereal one have not been removed for sake of clarity and in order
to point out the difference between the two frames.

Practically speaking, a rotation is required to switch from a reference frame to
the other one. For example, to switch from synodic to sidereal the operation to be
performed is:

X

Y

 =

cos (α(t)) − sin (α(t))

sin (α(t)) cos (α(t))

x

y

 (1.5)
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X

Y

x

y

P1

P2

P3

α(t)

CM

Figura 1.2: Synodic baricentric reference frame.

Thanks to the choice of this new reference frame it results that the primaries will
always lie on the x-axis, which implies that yi = 0 always. Accordingly, it is possible
to define, as for the sidereal frame, the distance of the spacecraft from its attractors.
Since the position vector of P3 is rrr =

[
x y

]
, it follows that:

r2
i = (x− xi)

2 + y2

Nevertheless, their distance is still varying in time due to the fact that they move
along elliptic paths. Such varying distance can be retrieved from the two-body
problem, according to which:

r( f ) =
a
(
1− e2)

1 + e cos ( f )
(1.6)

where a and e are, respectively, the semi-major axis and the eccentricity of the orbit
of the second primary P2 around the first one P1 and e. The non-constant value of r
can be deduced immediately from its dependence on f which, in turn, is function of
time.

To overcome this issue and have fixed and constant distance, a further tran-
sformation involving complex numbers is required. The following quantities are
defined:

Z = zejα with
Z = X + jY
z = x + jy
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through which equations of motion become:

d2Z
d2t

= −G
m1

r3
1
(Z− Z1)− G

m2

r3
2
(Z− Z2) (1.7)

By analyzing separately the left and the right-hand terms some considerations can
be performed. By applying the definition of Z on the second order derivative, it can
be rewritten as:

d2Z
d2t

=
d2z
dt2 ejα + 2j

dz
dt

ejα + jz
d2 f
d2t

ejα − z
(

d f
dt

)2
ejα (1.8)

Due to the fact that a non-inertial reference frame is being treated, there are some
terms expressing the acceleration. They are, in order of appearance, the radial,
Coriolis’, tangential and centrifugal effects.

The second step consist in making the problem non-dimensional. Accordingly, the
non-dimensional complex coordinate ζ is obtained as:

ζ =
z
r

−→ z = rζ

The first and second order derivatives of z become:

dz
dt

= ζ
dr
dt

+ r
dζ

dt
d2z
dt2 = ζ

d2r
dt2 + 2

dr
dt

dζ

dt
+ r

d2ζ

dt2

In turn, the time derivatives of ζ can be rewritten in terms of true anomaly. Since
ζ = ζ ( f (t)) it follows that:

dζ

dt
=

dζ

d f
d f
dt

d2ζ

dt2 =
d2ζ

d f 2

(
d f
dt

)2
+

dζ

d f
d2ζ

dt2

Consequently the ultimate form of the first and second elements of the right-hand
term of equation 1.8 become:

d2z
dt2 = r

[
dζ

d f
d2 f
dt2 +

d2ζ

d f 2

(
d f
dt

)2
]
+ 2

dr
dt

dζ

d f
d f
dt

+ ζ
d2r
dt2 (1.9)

2j
dz
dt

= 2j

[
dr
dt

d f
dt

+ r
dζ

d f

(
d f
dt

)2
]

(1.10)
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Before merging the results, the gravitational contributions must be analyzed. By
exploiting the definition of Z and by taking the non-dimensional form, the right-hand
side of equation 1.7 becomes:

−G
m1

r3
1
(Z− Z1)− G

m2

r3
2
(Z− Z2) = −G

m1

r3
1
(z− z1) ejα − G

m2

r3
2
(z− z2) ejα

= −G
m1

r3
1r2 (ζ − ζ1) ejα − G

m2

r3
2r2 (ζ − ζ2) ejα(1.11)

Now it is possible to write the non-dimensional, complex-form equations of motion
putting together equations 1.8, 1.9, 1.10 and 1.11:

r
(

d f
dt

)2 [ d2ζ

d f 2 + 2j
dζ

d f

]
+ ζ

[
d2r
dt2 − r

(
d f
dt

)2
]
+

+

(
dζ

d f
+ jζ

)(
r

d2 f
dt2 + 2

dr
dt

d f
dt

)
= −G

m1

r2r3
1
(ζ − ζ1)− G

m2

r2r3
2
(ζ − ζ2) (1.12)

The next step consists in ”replacing” the dependence on time with the one on true
anomaly. To do so, from the definition of the angular momentum:

‖hhh‖2 =

(
r2 d f

dt

)2
(1.13)

by taking its time derivative and setting it to zero it is possible to get rid of the third
element of the left-hand term of equation 1.12. This assumption is justified due to
the fact that no perturbation has been considered, therefore both the direction and
the magnitude of the angular momentum vector keep constant.

2
(

r2 d f
dt

)(
2r

dr
dt

d f
dt

+ r
d2 f
dt2

)
= 0 (1.14)

The following step consist in write an alternate form of the second term of the left-
hand term of eq. (1.12). In fact, it represent the radial component of the acceleration
vector. So:

d2r
dt2 − r

(
d f
dt

)2
= −G

m1 + m2

r2

= − r2

a (1− e2)

(
d f
dt

)2
(1.15)
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Equation 1.12 becomes:

r
(

d f
dt

)2 [ d2ζ

d f 2 + 2j
dζ

d f

]
+ ζ

[
− r2

a (1− e2)

(
d f
dt

)2
]
= −G

m1

r2r3
1
(ζ − ζ1)−G

m2

r2r3
2
(ζ − ζ2)

(1.16)

The non-dimensional position of the primaries still remains to be defined in order
to have a precise expression for the distance of the spacecraft from them. As it is
possible to deduce from Figure 1.2, the primaries lies on the x-axis, therefore they
feature a null y value. By noting that the first primaries lies in the negative part of
the x-axis, then it is possible to write:

x1 = − p1

1 + e cos( f )

x2 =
p2

1 + e cos( f )

It must be noted that the same eccentricity value appears in the previous expressions.
The justification for this lies in the fact that it could be demonstrated that all the
orbits described by the primaries features the same value of e: the orbit of P1 around
P2, the one of P2 around P1 and, finally, those described by both the primaries about
the center of mass of the system.

The values of each the semilatus-rectum, that is p1 and p2, is related to the
eccentricity of the orbit of each primary around the center of mass of the system and
to the semi-major axis of such orbit. Through some consideration about gravitational
and centrifugal forces, as done by Szebehely [15], it is possible to reach the following
result:

p1

p2
=

a1

a2
=

m2

m1

then se semi-major axes of P1 orbit around the center of mass is a1 = aµ, while for
P2 the result is a2 = a (1− µ). By recalling the definition of the semilatus-rectum
p = a

(
1− e2), then the distances of the primaries from the center of mass become:

x1 = −
aµ
(
1− e2)

1 + e cos( f )

x2 =
a (1− µ)

(
1− e2)

1 + e cos( f )

Now it is possible to obtain the non-dimensional form of the primaries position. It is
sufficient to divide by the distance obtained in equation 1.6, thus resulting in:
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ξ1 =
x1

r( f )
= −µ (1.17)

ξ2 =
x2

r( f )
= 1− µ (1.18)

Once obtained these result, by going back to eq. (1.16) is is possible to obtain the
final form of the non-dimensional form of the equation of motion for the elliptic
restricted three-body problem. There is still one more time derivative. It can be

removed by dividing it by r
(

d f
dt

)2
. Doing so, the equation become:

d2ζ

d f 2 + 2j
dζ

d f
=

r
a (1− e2)

{
ζ −

a
(
1− e2)

r2

(
d f
dt

)−2
[
−G

m1

r2r3
1
(ζ − ζ1)− G

m2

r2r3
2
(ζ − ζ2)

]}

The term multiplying the square brackets in the right-hand term is equivalent to:

r2

GM

while the term outside the curly brackets can be rewritten in a form such that the
true anomaly appears:

1
1 + e cos( f )

By splitting into the two components, which will be called ξ and η, and by finally
expliciting the non-dimensional position of the primaries, the equations of motion
are obtained:

dξ2

d f 2 − 2
dη

d f
=

1
1 + e cos( f )

[
ξ − 1− µ

r3
1

(ξ − µ)− µ

r3
2
(ξ + µ− 1)

]
(1.19)

dη2

d f 2 + 2
dξ

d f
=

1
1 + e cos( f )

[
η − 1− µ

r3
1

η − µ

r3
2

η

]
(1.20)

with

r1 =

√
(ξ + µ)2 + η2 (1.21)

r2 =

√
(ξ + µ− 1)2 + η2 (1.22)

It is possible to rewrite the right-hand term of eqs. (1.19) and (1.20) in terms
of the spatial derivatives or, in case of the single equation with the imaginary unit
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reported, the gradient of the so-called force function ω, which results from the ratio
of the non-dimensional gravitational potential

Ω =
1
2

(
ξ2 + η2

)
+

1− µ

r1
+

µ

r2
+

1
2

µ (1− µ) (1.23)

and the denominator of eq (1.6), therefore:

ω =
Ω

1 + e cos( f )
(1.24)

According to this results, the new form of eqs. (1.19) and (1.20) become:

d2ζ

d f 2 + 2j
dζ

d f
= ∇ζω or

dξ2

d f 2 − 2
dη

d f
=

∂ω

∂ξ
dη2

d f 2 + 2
dξ

d f
=

∂ω

∂η

(1.25)

1.1.3 Polar Coordinates

As it can be observed from Figure 1.3 and Figure 1.4, a further representation of
the problem is possible. According to this approach, a reference system centered
in one of the primaries. Axes direction are selected such that the r-axis lies on the
line joining the considered primary and the spacecraft, while the θ-axis is chosen
perpendicular to r in the direction of increasing angle existing between the X-axis of
the synodic reference frame and the x-axis of the polar reference frame. Hereafter
both the P2- and P1-centered polar reference frames are presented.

To switch from the synodic reference frame to this new one, a translation of the
origin and a rotation are necessary. Concerning the P2-centered reference frame,
starting from the spacecraft position vector:

rrrsyn =

[
1− µ + r2 cos(θ2)

r2 sin(θ2)

]
(1.26)

by setting the origin in P2 it results

rrrsyn,P2c =

[
r2 cos(θ2)
r2 sin(θ2)

]

By eventually rotating about θ2 with the following rotation matrix:

RRRsyn,P2c→rθ,P2c =

[
cos(θ2) sin(θ2)
− sin(θ2) cos(θ2)

]
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the position of the spacecraft within the r-θ, P2-centered reference frame is obtained:

rrθ,P2c =

[
r2
0

]

According to this definition, the new representation of the equation of motion can be
obtained. Such topic is treated by Topputo e Belbruno [16]

r′′2 − r2θ′22 − 2r2θ′2 = (1− µ) cos(θ2)

(
1− 1

r3
1

)
+ r2

(
1− 1− µ

r3
1

)
− µ

r3
2

(1.27)

r2θ′′2 + 2r′θ′ − 2r′2 = (1− µ) sin(θ2)

(
1
r3

1
− 1

)
(1.28)

X

Y

x

y

P1

P2

r2

r1

P3

r

θ

µ

1− µ

θ2

θ1
α(t)

CM

Figura 1.3: Polar P2-centered reference frame

By applying an analogue reasoning it is possible to express the equations of
motion in the polar, P1-centered reference frame. The starting point is, once again,
the spacecraft position vector expressed in equation 1.26, this time expressed with
respect to θ1. Therefore:

rrrsyn,P1c =

[
r1 cos(θ1)− µ

r1 sin(θ1)

]

By eventually rotating about θ1 with the following rotation matrix:



1.1 equations of motion 15

RRRsyn,P1c→rθ,P1c =

[
cos(θ1) sin(θ1)
− sin(θ1) cos(θ1)

]
the position of the spacecraft within the r-θ, P1-centered reference frame is obtained:

rrθ,P2c =

[
r2
0

]

According to this definition, the new representation of the equation of motion can be
obtained. The following representation is treated, once again, by Topputo e Belbruno
[16]

r′′1 − r1θ′21 − 2r1θ′1 = µ cos(θ2)

(
1
r3

2
− 1

)
+ r1

(
1− 1− µ

r3
1

)
− 1− µ

r3
1

(1.29)

r1θ′1 + 2r′1θ′1 − 2r′1 = µ sin(θ2)

(
1− 1

r3
2

)
(1.30)

X

Y

x

y

P1

P2

r2

r1

P3

r

θ

µ

1− µ

θ2

θ1
α(t)

CM

Figura 1.4: Polar P1-centered reference frame

Handling the problem in polar coordinates allows to save time, since integration of
the equations of motions is much quicker with respect to polar coordinates. Moreover,
it is possible to retrieve directly the angle value (both θ1 and θ2). Of course there is
much more interest in θ2, due to the fact that interplanetary missions aim to reach
the secondary primary of the system.
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A more detailed analysis of the equations of motion in polar coordinates will be
presented in the next chapter.

1.2 the jacobi constant

Just like the circular problem, even the elliptic one features an integral of motion.
hereafter the retrieving procedure is illustrated. First of all, equations of motion
reported in eqs. (1.19) and (1.20) are now recalled, but they will be rewritten in a
more compact form for sake of simplicity. Accordingly, the derivative with respect
to the true anomaly will be denoted with an apex and the derivative of the force
function will be represented with a subscript. So:

ξ ′′ − 2η′ = ω/ξ (1.31)

η′′ + 2ξ ′ = ω/η (1.32)

For sake of completeness, the definition of the force function (and of the quantity
related to it) is reported as well:

ω =
Ω

1 + e cos( f )
=

1
1 + e cos( f )

[
1
2

(
ξ2 + η2

)
+

1− µ

r1
+

µ

r2
+

1
2

µ (1− µ)

]
(1.33)

where the distance of the spacecraft from the primaries, r1 and r2, have been defined
in equations 1.21 and 2.16 and are reported hereafter

r1 =

√
(ξ + µ)2 + η2 and r2 =

√
(ξ + µ− 1)2 + η2

The next step consist in multiplying eq. (1.31) by ξ ′ and eq. (1.32) by η′ and take the
summation, thus obtaining:

ξ ′ξ ′′ + η′η′′ = ξ ′ω/ξ + η′ω/η (1.34)

It can be immediately noted that the right-hand term of eq. (1.34) is nothing but the
derivative with respect to the true anomaly of the kinetic energy of the spacecraft.
Concerning the right-hand term, its meaning can be deduced by applying the
following reasoning. Knowing that the forcing function depends on ξ, η and f , by
taking its derivative with respect to the true anomaly it results:

dω

d f
= ω/ξ

dξ

d f
+ ω/η

dη

d f
+ ω/ f (1.35)
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The first and the second elements of the right-hand term of equation 1.35 are exactly
the starting point of this brief analysis, that is the right-hand term of eq. (1.34).
Therefore such terms can be re-expressed as the difference of the ordinary and partial
derivative of the forcing function with respect to the true anomaly. So far, eq. (1.34)
has evolved into:

1
2

d
d f

[
ξ ′2 + η′2

]
=

dω

d f
− ∂ω

∂ f
(1.36)

At this stage, it is useful to express the partial derivative of the forcing function as:

∂ω

∂ f
=

eΩ sin( f )

(1 + e cos( f ))2

The very last step consist in integrating eq. (1.36) and isolating the kinetic energy
integration constant. So:

1
2

[
ξ ′2 + η′2

]
+

C
2
= ω− e

∫ Ω sin( f )

(1 + e cos( f ))2 d f (1.37)

So, the expression of the Jacobi constant for the Elliptic Restricted Three-Body
Problem is:

C = 2ω−
(

ξ ′2 − η′2
)
− 2e

∫ Ω sin( f )

(1 + e cos( f ))2 d f (1.38)

1.3 lagrangian points

The concept of Lagrangian points is peculiar of the Three-Boby problem (both
the circular and the elliptic). Such points identity the position where the combined
gravitational pull of the primaries provides exactly the centripetal acceleration re-
quired to the spacecraft to orbit with them. In other words, a spacecraft located in a
Lagrangian point is still with respect to both the primaries.

Being equilibrium points, then the spacecraft would experience null velocity and
acceleration. Therefore, by setting to zero the left-hand term of eqs. (1.31) and (1.32),
it result that their position is fully determined by:

∇ω = 0 (1.39)

Recalling the definition of the force function (which is expressed in eq. (1.33) and
noticing that the denominator 1 + e cos( f ) never gets negative due to the fact that
e ∈ [0, 1), the singularities of ω are exactly those of Ω.
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Eq. (1.39) provides the following results:

ξ − (1− µ) (ξ + µ)

r3
1

− µ (ξ − 1 + µ)

r3
2

= 0 (1.40)

η

[
1− 1− µ

r3
1
− µ

r3
2

]
= 0 (1.41)

where, once again, r1 and r2 are the distance of the spacecraft from the primaries and
have been defined in eqs. (1.21) and (2.16). Starting from this results it is possible to
note that two different kind of solutions are provided for η = 0 and for η 6= 0. The
former make eq. (1.41) vanish. Therefore only eq. (1.40) needs to be evaluated. In
this case three solutions are obtained. These points are called collinear due to the fact
that they lie on the ξ-axis, two nearby the secondary primary and one behind the
first one.

By labeling with li the distance of the i-th point from the closest primary, for
the three collinears it is possible to perform a variable transformation between this
distance and the location ξ of the same point in the synodic reference frame. Such
relations are reported hereafter.

l1 = (1− µ)− ξ (1.42)

l2 = ξ − (1− µ) (1.43)

l3 = − (ξ + µ) (1.44)

By inserting such expression into equation 1.40, three fifth-order polynomials are
obtained:

l5
1 − (3− µ)l4

1 + (3− 2µ)l3
1 − µl2

1 + 2l1 − µ = 0 (1.45)

l5
2 + (3− µ)l4

2 + (3− 2µ)l2s− µl2
2 − 2µl2 − µ = 0 (1.46)

l5
3 + (2 + µ)l4

3 + (1 + 2µ)l3
3 − (1− µ)

(
l2
3 − 2l3 − 1

)
= 0 (1.47)

According to Jorba e Masdemont [9], the system above is solved numerically by
imposing the following initial conditions:

l0
1 =

(µ

3

)1/3
l0
2 =

(µ

3

)1/3
l0
3 = 1− 7µ

12

The second solution of eqs. (1.40) and (1.41) is obtained when, as already said,
η 6= 0. The point located by this solutions are called triangular due to the fact that
their distance from the primaries is identical. Their coordinate are:
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ξ4,5 =
1
2
− µ (1.48)

η4,5 = ±
√

3
2

(1.49)

The Lagrangian points map for the Sun-Mars system is reported in Figure 1.5.
It must be noted that such map has been rescaled by a factor of 105 for sake of
compactness of the representation

-1 -0.5 0 0.5 1

ξ

-0.5

0

0.5

η

Figura 1.5: Re-scaled Lagrangian points map for the Sun-Mars system. The big circle represents
the Sun, while the small one is Mars. Lagrangian points are marked with the ×
symbol.

1.4 proximity dynamics: the levi-civita regulari-
zation

A significant difference between the motion of celestial bodies and that of spa-
cecrafts lies in the fact that close approach often occurs in the latter case, while in
the former one is a very rare event. The consequence of this fact can be understood
when the property of the gravitational force field is recalled, according to which
the force acting between particles approach infinity when the distance between the
bodies tends to zero. Therefore at collision (that is when r1 or r2 is zero) equations of
motion, both in cartesian and polar form, feature singularities. However actual orbits
never go through this points since, before this happens, their trajectory ends at the
point of impact over the primary surface. However, by considering both the attractors
and the spacecraft as point masses, collision can occur only at the singularity. From
the computational point of view, such condition is of utmost importance.

Both the forces acting on the third body and its velocity increase as it gets closer
to on of them. The stepsize of a numerical integration must be significantly reduced
in order to retrieve reliable results. As consequence, integration will proceed very
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slowly and, in the worst case, tolerance could not be respected, thus leading to the
breaking of the integration itself. Despite these issues, singularities can be eliminated
by proper re-definition of the maths related to the dynamics. Such modification of
the problem is called Levi-Civita regularization and, within this work, it is performed
only locally, that is nearby the primaries.

The regularization of the problem can be considered as a transformation of the
dependent variable (ξ, η) into the new set (u, v). The aim of this process is to erase
the singularities when r1 and r2 approach zero and, at the same time, provide a
finite value of the velocity at the singularities. Moreover, it is worth considering a
regularized dynamics in the region close to the primary, in fact computations are
much quicker and results are precise as well.

In order to obtain the regularized dynamics of the spacecraft, the starting point is
represented by the equations of motion written in the synodic reference frame (see
eqs. (1.31) and (1.32)) and all the quantities related to the problem, in particular the
force function (see eq. (1.33)) and the Jacobi constant (see eq. (1.38)). Following the
procedure presented by Szebehely [15], by exploiting the complex notation both for
the initial and final set of coordinate it results:

zzz = ξ + jη and www = u + jv (1.50)

According to this new notation the equations of motion in compact form become:

zzz′′ + 2jzzz = ∇zω (1.51)

The transformation which realizes the regularization is a generic function F(www)
relating the original and the regularized variables, so that

zzz = F(www)

Together with the coordinate transformation, also the independent variable in the
initial framework, that is the true anomaly f, is changed into the new independent
one in the new framework and it is labeled as τ. The relation between the old and
the new independent variable is a function g(www) such that:

d f
dτ

= g(www)

The next step is to identify the relation existing between the F and the g functions. It
is reported hereafter:

g(www) =

∣∣∣∣ F(www)

dwww

∣∣∣∣2 → d f
dτ

=

∣∣∣∣ F(www)

dwww

∣∣∣∣2 (1.52)
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Thanks to the previous relation, it is possible to write the derivative of zzz with respect
to f :

zzz′ =
dzzz
dwww

dwww
dτ

dτ

d f
=

F(www)

dwww
dwww
dτ

∣∣∣∣dwww
dτ

∣∣∣∣−2
=

dwww
dτ

(
dF
dwww

)−1

(1.53)

where the barred term refers to the complex conjugated quantity. Using the Cauchy-
Riemann relations the term on the right-hand side of eq.(1.51) can be related to the
gradient in the new regularized framework (as done by Szebehely [15]):

∇wω =

(
dF
dwww

)
∇zω (1.54)

By taking the derivative of eq. (1.53), the last missing term to insert into eq. (1.51)
is obtained, then they can be substituted in eq. (1.54); then isolating the second
derivative of www the following expression is obtained:

d2www
dτ2 + 2j

dwww
dτ

∣∣∣∣dF
www

∣∣∣∣2 =

∣∣∣∣ dF
dwww

∣∣∣∣2∇wV +

∣∣∣∣dwww
dτ

∣∣∣∣2 d2F
dwww2

(
dF
dwww

)−1

(1.55)

where the term V is given by:

V = ω− 1
2

C

This can be done because C is constant, so ∇V ≡ ∇ω. From the expression of the
Jacobi constant (see eq. 1.38), the velocity can be extracted and written as:

∣∣zzz′∣∣2 =

∣∣∣∣ dzzz
d f

∣∣∣∣2 =
(

x′2 + y′2
)
= 2 (V − I) (1.56)

where I correspond, for sake of simplicity, to

I = e
∫ Ω sin( f )

(1 + e cos( f ))2 d f (1.57)

By substituting the expression of zzz obtained in eq. (1.53) into eq. (1.56), an expression
for the norm of the velocity in the regularized equations is found:

∣∣∣∣dwww
dτ

∣∣∣∣ = 2
∣∣∣∣ dF
dwww

∣∣∣∣2 (V − I) (1.58)
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By substituting this last relation into eq. (1.55), the regularized equations of motion
(in complex notation)are obtained:

d2www
dτ2 + 2j

dwww
dτ

∣∣∣∣dF
www

∣∣∣∣2 = ∇w

(
V
∣∣∣∣ dF
dwww

∣∣∣∣2
)
− 2I

dF
dwww

d2F
dwww2 (1.59)

Once the equations for the regularized system are obtained, the transformation
F(www) remains to be defined. Since the regularization is performed locally, then two
different transformation will be considered, each one removing the singularity nearby
the i-th primary. Therefore

Nearby P1: F1(www) = www2 − µ →
{

ξ = u2 − v2 − µ

η = 2uv
(1.60)

Nearby P2: F2(www) = www2 + (1− µ) →
{

ξ = u2 − v2 + (1− µ)

η = 2uv
(1.61)

From these relations, the transformations from (ξ, η) to (u, v) are obtained:

Nearby P1:


u2 =

ξ + µ

2
±

√
(ξ + µ)2

4
+

η2

4
v =

η

2u

(1.62)

Nearby P2:


u2 =

ξ − 1 + µ

2
±

√
(ξ − 1 + µ)2

4
+

η2

4
v =

η

2u

(1.63)

In both cases, two solution for u and v are admitted. By naming

r1x = ξ + µ

r2x = ξ − 1 + µ

it can be noted that

r2
1 = r2

1x + η2

r2
2 = r2

2x + η2

In general the solution providing real values for u and v is preferred. Accordingly
the expression with the plus sign for u are chosen in eqs. (1.62) and (1.63) (usually it
is ri > rix). Therefore:
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Nearby P1:

u =

√
1
2
(r1 + r1x)

v =
η

2u

(1.64)

Nearby P2:

u =

√
1
2
(r2 + r2x)

v =
η

2u

(1.65)

According to this transformation, the distance from the primaries become:

Nearby P1:

{
r1 =

(
u2 + v2)

r2 =
√
(u2 + v2)− 2 (u2 − v2) + 1

(1.66)

Nearby P2:

{
r1 =

√
(u2 + v2) + 2 (u2 − v2) + 1

r2 =
(
u2 + v2) (1.67)

Referring again to eqs. (1.64) and (1.65), it can be noted that u and v have singularities
when y = 0 and, at the same time, rix < 0. In this case, in fact, |ri| = |rix| and u
results to be zero having as consequence an undefined value for v. This is equivalent
to have the third particle within the so called Levi-Civita circle with an angle exactly
equal to θi = π, hence this event occurs only if initial conditions are chosen with
ri < rLC and θi = π. Therefore, in order not to have this kind of problem, it is
sufficient to select a different initial condition.

The next step is to obtain the expression for the regularized velocity. Recalling
the definition of zzz′ (which is reported in eq. 1.53) the transformation from (ξ ′, η′) to
(u′, v′) are obtained:

ξ ′ =
uu′ − vv′

2 (u2 + v2)
(1.68)

η′ =
uu′ + vv′

2 (u2 + v2)
(1.69)

by inverting these relations:

u′ = 2uξ ′ + 2vη′ (1.70)

v′ = 2uη′ − 2vξ ′ (1.71)

It must be noted that these last relations are the same for both regularizations around
P1 and P2 because zzz′ contains only dF/dwww = 2www, which is the same for both the cases.
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At this point, the equations of motion will be obtained for the regularized plane
both around P1 and P2. The starting point is the following system:

u′′ − 8v′
(

u2 + v2
)

=
∂

∂u

[
4Vi

(
u2 + v2

)]
− 8uI (1.72)

v′′ + 8u′
(

u2 + v2
)

=
∂

∂v

[
4Vi

(
u2 + v2

)]
− 8vI (1.73)

where the differences between the two cases are all contained in the term Vi = ω−C2.
According to the considered primary, a different expression appears. So nearby P1:

V1 =
1

1 + e cos( f )

{
1
2

[(
u2 + v2

)2
− 2µ

(
u2 − v2

)
+ µ2

]
+

1 + µ

r1
+

µ

r2
+

1
2

µ (1− µ)

}
− C

2
(1.74)

with r1 and r2 defined in eq. (1.66). On the other hand nearby P2:

V2 =
1

1 + e cos( f )

{
1
2

[(
u2 + v2

)2
− 2 (1− µ)

(
u2 − v2

)
+ (1− µ)2

]
+

1 + µ

r1
+

µ

r2
+

1
2

µ (1− µ)

}
− C

2
(1.75)

with r1 and r2 defined in eq. (1.67). It must be remarked that within eqs. (1.72) and
(1.73), the function Vi is multiplied by a term which comes from the derivative of the
transformation function Fi(www) with respect to the complex variable www

∣∣∣∣dFi(www)

dwww

∣∣∣∣ = |2www| = 4
(

u2 + v2
)

The product of this term with V1 and V2 deletes the terms 1/r1 and 1/r2, respectively,
which causes the singularities in the equations of motion. Calculating the derivatives
of these products with respect to the regularized variables (u, v), the last terms still
not known in eqs. (1.72) and (1.73) are obtained. First the regularization nearby P1:
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∂

∂u

[
4
(

u2 + v2
)

V1

]
=

1
1 + e cos( f )

{
12u

(
u2 + v2

)2
− 16µu3+

+4µ2u + 8u
µ

r2
+ 4µu (1− µ)

−8u
µ

r3
2

(
u2 + v2

) [(
u2 + v2

)
− 1
]}
− 4Cu (1.76)

∂

∂v

[
4
(

u2 + v2
)

V1

]
=

1
1 + e cos( f )

{
12v

(
u2 + v2

)2
− 16µv3+

+4µ2v + 8v
µ

r2
+ 4µv (1− µ)

−8v
µ

r3
2

(
u2 + v2

) [(
u2 + v2

)
− 1
]}
− 4Cv (1.77)

The same operations can be performed nearby P2, thus producing:

∂

∂u

[
4
(

u2 + v2
)

V2

]
=

1
1 + e cos( f )

{
12u

(
u2 + v2

)2
− 16 (1− µ) u3+

+4 (1− µ)2 u + 8u
1− µ

r1
+ 4µu (1− µ)

−8u
1− µ

r3
1

(
u2 + v2

) [(
u2 + v2

)
− 1
]}
− 4Cu (1.78)

∂

∂v

[
4
(

u2 + v2
)

V2

]
=

1
1 + e cos( f )

{
12v

(
u2 + v2

)2
− 16 (1− µ) v3+

+4 (1− µ)2 v + 8v
1− µ

r1
+ 4µv (1− µ)

−8v
1− µ

r3
1

(
u2 + v2

) [(
u2 + v2

)
− 1
]}
− 4Cv (1.79)

By inserting these expression into eqs. (1.72) and (1.73), the complete form of the
regularized equations of motion can be obtained. Eventually, the presence of the true
anomaly must be briefly discussed: in the regularized plane, f represent nothing but
the independent variable, then it is obtained by integrating also the relations between
it and τ. This expression can be written as follows:

d f
dτ

=

∣∣∣∣ F(www)

dwww

∣∣∣∣2 → f ′ = 4
(

u2 + v2
)

(1.80)

As in can be noted, this equation can be integrated together with the equations
written before, thus providing as initial conditions the true anomaly in which the
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third particle enters the Levi-Civita circle. Similarly, the integral I (defined in eq.
(1.57)) must be analyzed. By re-writing it in as function of τ, the following is obtained:

I = e
∫ Ω sin( f )

(1 + e cos( f ))2 4
(

u2 + v2
)

dτ (1.81)

By taking the derivative with respect to τ:

I′ =
dI
dτ

= e
Ω sin( f )

(1 + e cos( f ))2 4
(

u2 + v2
)

(1.82)

By integrating this expression step by step, the value of I to insert into the
regularized equations of motion is obtained. When entering the Levi-Civita circle,
the initial conditions for I′ cam be obtained by inverting the expression of the Jacobi
constant C

I = ω− 1
2

(
ξ ′2 + η′2

)
− C

2
(1.83)

where C is obtained from the same expression, evaluated at the initial instant f = f0
(or τ = τ0): in this case, in fact, the integral term is null by definition.
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In this chapter the technique used to search a class of special trajectory will be
introduced. During the last years one of the most studied methods applies the
definition of the so called weak stability boundaries (WSB) which, roughly speaking,
can be seen as the boundary of a region near the target planet where the capture of
the third particle occurs. Across the boundary of this regions the influence of the
bigger primary is relevant and for th reason the WSB are also considered as transition
regions. This technique developed at the end of the 80s by E. A. Belbruno and J. K.
Miller, was successfully applied in October 1991 to save the Japanese satellite Hiten;
which was able to reach the Moon. In the following sections a detailed definition of
the weak stability boundary will be given first, then, the problems involved in their
calculation will be faced.

2.1 ballistic capture

In order to have a complete understanding of the weak stability boundaries, it
is necessary to explain another fundamental concept strictly connected with them:
the definition of ballistic capture. Extending to a general case the description given in
[14], it is possible to say that ballistic capture by planet occurs when an object (for
example a satellite) enters, under natural dynamics, within the sphere of influence of
that planet and makes at least one complete revolution around it. The expression
under natural dynamics means that, in order to revolve around the planet, no further
energy must be provided to the object. If ballistic capture does not occur, the energy
difference that is necessary to obtain the capture, must be furnished with other means,
e.g. by maneuvering the satellite thus using propellant. Thanks to the ballistic capture,
the use of propellant is avoided and the saved mass can be used for other maneuvers
(if necessary) or assigned to other subsystems during the mission design. For this
reason, this kind of solutions can be called low-cost transfers. Usually they are also
named low-energy transfers because in general their energetic level is considerably
lower than the ne of the trajectories obtained with the typical patched conics approach.
The basic idea of WSB has been first illustrated by E. A. Belbruno K. Miller in two
important papers (Belbruno e Miller [3] and Miller e Belbruno [14]), then resumed by
Belbruno [1]; furthermore other detailed explications can be found in Belbruno, Gidea e
Topputo [2], Circi e Teofilatto [4] and García e Gómez [6]. Differently from the just cited
bibliography, in this thesis a definition of Weak stability boundaries is showed but,
publications, the Kepler energy of the third particle in a reference system referred to
the smaller primary must be coordinate system is represented in Figure 2.1, where
the couple (XI I , YI I) represents the sidereal axes centered in P2.

27



28 the weak stability boundary

X
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CM
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YI I

α(t)

Figura 2.1: Sidereal reference frame centered in P2.

The Kepler energy expression is the following:

H2 =
1
2

v2 − µ

r2
(2.1)

As it can be seen, the typical mass parameter of the two body problem, k, is substituted
by the (dimensionless) mass parameter µ, while the velocity v is referred to the inertial
reference system centered in P2. If the solution of the elliptic restricted three-body
problem is indicated using the flow of system φ( f ):

φ( f ) =
(
XI I , X′I I

)
It is possible to define ballistic capture in a formal way for the ERTBP, where the
independent variable is the true anomaly f (related to the time through the Kepler
equation, as explained in the previous chapter). In this case in fact from the energetic
point of view the following events can be identified

• Ballistic capture at P2: it occurs at anomaly f1 if H2(φ( f1)) ≤ 0

• Temporary ballistic capture at P2: if H2(φ( f )) ≤ 0 for f1 ≤ f ≤ f2 and H2(φ( f )) >
0 for f < f1 and for f > f2, with finite values of f1, f2 and f1 < f2

• Ballistic ejection (escape) from P2: it happens at f1 if, for f < f1, H2(φ( f1)) ≤ 0
and for f ≥ f1, H2(φ( f1)) > 0

Note that these definitions are formally the same as those given in literature (Belbruno
[1], Belbruno, Gidea e Topputo [2], Topputo e Belbruno [16]), with the only difference that
the time is substituted by the true anomaly; they can also be applied to the biggest
primary P1 if the energy relative to a reference system centered on it is considered. If



2.2 definition of weak stability boundary 29

the independent variable is decreasing, the definition of ballistic capture remains the
same, being it a punctual property of P3, while the definition of temporary ballistic
capture and ballistic ejection can be anyway stated, but applying small variations to
the previous definitions:

• Backward temporary ballistic capture at P2: if H2(φ( f )) ≤ 0 for f2 ≤ f ≤ f1
and H2(φ( f )) > 0 for f > f1 and for f < f2, with the finite values of f1, f2 and
f1 > f2;

• Backward ballistic ejection (escape) from P2: it happens at f1 if for f > f1,
H2(φ( f )) < 0 and for f ≤ f1, H2(φ( f )) ≥ 0.

To define the regions in which ballistic capture can occur, together with the .just
cited energetic aspects, also geometrical considerations concerning the trajectory of
P3 must be stated: in fact only after a definition of the geometrical requirements of
ballistic capture to occur, it will be possible to complete the definition of WSB, as
explained in the following section.

2.2 definition of weak stability boundary

If the ballistic capture at P2 has to be verified, the revolutions of the third particle
around the smaller primary have to be tracked; for this reasons only trajectories
with the following characteristics will be studied (Belbruno [1], Szebehely [15]) see also
Figure 2.2

x

y

P1

P2

l(θ2)

P3

θ2

v0

Figura 2.2: Initial velocity and related elliptic orbit around P2

1. The initial position of the third particle is on the radial Segment l(θ2) departing
from P2 and making an angle θ2 with the x-axis of the synodic dimensionless
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reference system. This starting point of the third particle is considered to be
the periapsis of an initial elliptic orbit with fixed eccentricity 0 ≤ e < 1 and
whose semi-major axis lies on the line l(θ2). Hence calling a the dimensionless
semi-major axis, the initial distance from P2 is given by r2 = a(1− e).

2. Being on the periapsis of an elliptic orbit, the initial velocity, whose magnitude
is obtained from the solution of the two body problem, will be normal to the
line l(θ2). Once the parameters e and θ2 are chosen, the initial velocity depends
only on the initial distance r2 and on the direction of the initial velocity, which
can be chosen to be prograde (counterclockwise) or retrograde (clockwise).
Thanks to this definition of the initial state of P3, the initial energy is always
H2(φ( f0)) < 0.

3. After evaluating the initial state, the equations of the ER3BP can be integrated
and, according to the definition of ballistic capture, the motion is said to be n-
stable if the third particle, without making any revolutions around P1, makes n
turns around P2, returning after each turn on a point belonging to the line l(θ2)
with negative Kepler energy H2; otherwise the motion is said to be n-unstable
(see Figure 2.3)

x

y

P1

P2

l(θ2)

P3

θ2

Figura 2.3: Possible trajectories given the initial velocity v0. The full thick
line represent an acceptable trajectory (note the decreasing of
H2 producing an altitude reduction), while the dashed thick line
depicts a non acceptable path due to the fact that a revolution
about P1 is performed.

The third point above does not state when a condition is considered unstable: this
can occur either if the third particle makes at least one revolution around the other
primary P1 (then a primary interchange escape occurs), or if the particle completes
the desired number of turns around P2, but it arrives on the line l(θ2) with a positive
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Kepler energy. Another possibility can happen: for some initial conditions in fact
the third particle does not perform any revolution neither around P1 nor around P2;
although these situations are not formally unstable, they cannot be considered stable
and for this reason they are classified as unstable conditions.

In the three points listed above the eccentricity e of the initial elliptic orbit of P3
around P2 is mentioned. It must be remarked that this value must not be confused
with the eccentricity of the orbit of the second primary around P1, for this reason
this last eccentricity, typical of the ER3BP, will be labeled ep from now on.

Using the definitions given above and fixing the initial values of r2 and θ2, it is
possible to check whether the corresponding initial state brings to ballistic capture or
not; then applying the same procedure to a set of different θ2 and r2 (but the same
eccentricity of the initial ellipse), the corresponding stable conditions can be found,
thus defining an entire n-stable set.

Usually only n-stable sets with n ≥ 1 have been considered in literature; thanks
to the definition given before of ballistic capture in the case of decreasing anomaly,
it is now possible to define also a negative stable sets, that is with n ≤ −1. The three
points listed before in fact do not involve the independent variable, extending their
validity also when backward integration of the equations of motion is performed.
This possibility, still never exploited when studying weak stability boundaries, will be
an important element in finding the desired trajectories, as illustrated in the following
chapters.

2.3 weak stability boundary as contour of a sta-
ble set

Once the stable sets are defined, it can happen that point close to P2 are stable, then
moving on the same line l(θ2), but for higher values of initial distance r2, some
unstable points are found and finally, for still higher value of r2 the relative initial
conditions return to be stable again. Thus, in general, a n-stable set is defined as the
union of open intervals containing the single subset of stable initial conditions.

Wn (θ2, e, f0) =
⋃
k≥1

(
r∗2k−1, r∗2k

)
(2.2)

Here the points of the type r∗, located at the the beginning and at the end of every
interval, represent the unstable point delimiting each stable subset. The just defined
set contains all the stable conditions along the line l(θ2) for a fixed value of θ2, e and
f0: being the ER3BP a non-autonomous problem, the equations of motion produce
different solutions if different intervals of independent variable f are considered,
hence the initial value of the true anomaly must be also specified. If the same sets are
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then obtained for each value of θ2, the complete set (for fixed e and f0) is given by:

Wn ( f0) =
⋃

θ2∈[0,2π)

Wn (θ2, e, f0) (2.3)

Finally if different setsWn (, e, f0) are computed, each one for a fixed value of
eccentricity e, the open stable set is obtained as follows:

Wn ( f0) =
⋃

e∈[0,1)

Wn (e, f0) (2.4)

It must be remarked that every set Wn (θ2, e, f0), Wn (e, f0) and Wn ( f0) is an open
set. After the formal definition of the stable sets, the Weak Stability Boundary can be
defined using the same procedure of [3, 22]:

The Weak Stability Boundary of order n, called ∂Wn ( f0), is the locus of points r∗(θ2, e)
along the radial segment l(θ2) in which there is a change of stability of the trajectory
of the third particle; then r∗(θ2, e) represents one of the generic extreme points of
each interval

(
r∗2k−1, r∗2k

)
, where every r2 ∈

(
r∗2k−1, r∗2k

)
gives a n-stable trajectories

and there exist r
′
2
(
r∗2k−1, r∗2k

)
arbitrarily close to r∗2k−1 or r∗2k which produce n-unstable

trajectories.

Thus the definition of WSB can be formally expressed as:

∂Wn ( f0) = {r∗ (θ2, e) |θ2 ∈ [0, 2π] , e ∈ [0, 1]} (2.5)

Now it is clear why the generic ∂Wn ( f0) is considered the boundary of the relative n-
stable setWn ( f0). As can be noticed, both ∂Wn ( f0) andWn ( f0) can be represented
in a three dimensional space, where each point corresponds to a precise value for the
elements (e, θ2, r2).

2.4 some considerations about the computation
of stable sets

In the previous section, n-stable sets and weak stability boundaries have been
defined. According to such definitions in can be understood that, if the WSB are
desired, the most problematic passage in the whole procedure is not the calculation
of the WSB itself, but the calculation of the stable set. Once the eccentricity e has
been fixed and the initial angle θ2 has been chosen, every single point r2 lying on the
line l(θ2) gives the initial conditions (r2, v), where the initial velocity is normal to the
line l(θ2), as explained in the previous section; remembering also that H2 = −µ/2a,
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its modulus can be evaluated starting from the expression of the Kepler energy given
in eq. (2.1), so that:

v =

√
µ

1 + e
r2

(2.6)

Remarking that the pair (r2, v) is relative to the sidereal reference frame centered in
P2, the initial conditions must be transformed in the synodic baricentric reference
frame, in coherence with equations of motions reported in the previous chapter. By
looking at Figure 2.2, the position in the synodic coordinates can be immediately
obtained remembering that P2 is located at 1− µ. Then, for the spacecraft it follows
that:

ξ = 1− µ + r2 cos(θ2) (2.7)

η = r2 sin(θ) (2.8)

The velocity must be transformed too. In this case its modulus is given by eq.
(2.6),however to obtain the components within the synodic reference frame, the terms
due to the angular velocity of this last reference system must be subtracted 1, so that:

ξ ′ = −v sin(θ2) + r2 sin(θ2) (2.9)

η′ = v cos(θ2)− r2 cos(θ2) (2.10)

Having the initial conditions, the equations of the elliptic problem, recalled from the
first chapter can be solved:

ξ ′′ − 2η′ = ω/ξ

η′′ + 2ξ ′ = ω/η

with:

ω =
Ω

1 + e cos( f )
=

1
1 + e cos( f )

[
1
2

(
ξ2 + η2

)
+

1− µ

r1
+

µ

r2
+

1
2

µ (1− µ)

]
and:

r1 =

√
(ξ + µ)2 + η2

r2 =

√
(ξ + µ− 1)2 + η2

1 This angular velocity is formally α′, but being α = f + ω̄ as defined in the first chapter, it results that
α′ = 1.
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When trying to solve this system, some practical problems appear: first of all, it
becomes necessary to set a limit value of the independent variable for the integration,
hence a true anomaly limit, flim. Doing so, the integration of the equations of motion
must continue until flim is reached. The choice of the limit value is of utmost
importance: it must be high enough (or small enough for backward integration) to
allow the assessment of every initial conditions, without breaking the integration
before a possible ballistic capture would occur. The drawback of this approach
of this approach is that while a higher value for the anomaly limit is necessary
for the motivation just explained, choosing it quite high implies at the same time
the integration the equations of motion for long anomaly intervals, thus needing
an excessive computational time 2. Hence the true anomaly limit should be a
compromise between these two contrasting aspects. A possible solutions could be
the evaluation of the angle θ2 for every integration step. Doing so the integrations
could be interrupted when the desired revolutions around P2 occur; the problem is
that, unfortunately, using the common integrators built-in in Matlab, the necessary
calculations of the involved angle cannot be performed during every integration
step3 and the development of an integrator ad hoc for the elliptic problem is not the
intent of this thesis. For this reason the solution to this problem can be obtained
only if the angle θ2 is given directly by the integrator; hence, following what done in
“Computation of weak stability boundaries: Sun–Jupiter system”, it has been chosen
to solve the equations of motion directly in polar coordinates. Another problem
existing either in polar and cartesian coordinates is represented by the singularities of
the equations of motion. As already mentioned in the previous chapter, the equations
of motion become undefinied if r1 = 0 or r2 = 0. In this thesis, in order to solve
this problem, a local regularitazion is performed when the spacecraft flies nearby a
primary. The regularization method is applied to the synodic cartesian reference
frame, where the problem of the limit value on the true anomaly is still present, but
in this case it involves a small subset of initial conditions, as will be explained in the
following sections, after a description of the equations in polar coordinates.

2.5 equations of motion in polar coordinates

For the motivations discussed before, it has been chosen to solve the equations of
motion in polar coordinates: doing so the angle θ2 is directly computed, thus giving
the possibility to verify through this angle if the desired turns of the spacecraft about
P2 are completed. Before applying the transformation of coordinates it is useful to
recall the equations of motion in compact form:

ξ ′′ − 2η′ = ω/ξ (2.11)

η′′ + 2ξ ′ = ω/η (2.12)

2 Normally some hundreds of thousands of initial conditions must be checked
3 To obtain the angle θ2 from the pair (x, y), the trigonometric inverse functions must be used and they are,

as well known, non-continuous functions.
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or in vector notation:

ξξξ ′′ + 2ωωω× ξξξ ′ =∇∇∇ω (2.13)

where the second element of the left-hand side represents the Coriolis accelerations.
The quantity ω (not to be confused with the force function) is in fact the non-
dimesional angular velocity of the baricentric synodic reference frame defined by
the two primaries. In other words: ωωω = α′( f )k̂kk. As mentioned in the previous
section, the equations in circular coordinates centered in P2 are desired. In this last
reference frame, the pair of dependent variables is given hy (r2, θ2). To perform the
transformation, two different methods are available: the first exploits the relation
existing between the old variables (ξ, η) and the new ones (r2, θ2), thus giving:

ξ = 1− µ + r2 cos(θ2) (2.14)

η = r2 sin(θ2) (2.15)

If these expressions and their derivatives with respect to the true anomaly are
substituted in the equations of motion, two equations are obtained, both containing
the terms r′′2 and θ′′2 ; then a combination of them must be found in order to have two
independent equations, on for r′′2 and another for θ′′2 .

The other way to obtain the transformed equations uses first a change of the origin
of the synodic reference frame, which is moved from the pericenter to P2; then a
rotation about the k̂-axis is applied (this axis in the polar reference frame remains
parallel to the original one). The rotation is governed by the following relations:

r̂rr2 = cos(θ2)îii + sin(θ2)ĵjj (2.16)

θ̂θθ2 = − sin(θ2)îii + cos(θ2)ĵjj (2.17)

here the couple (îii, ĵjj) represents the unit vectors of the synodic reference frame. By
deriving these last equations with respect to the true anomaly, the velocity and the
acceleration of the new unit vectors can be obtained:

r̂′2 = θ′2θ̂θθ2 (2.18)

θ̂θθ
′
2 = −θ′2r̂rr′2 (2.19)

and

r̂rr′′2 = −θ′22 r̂rr′2 + θ′′2 θ̂θθ2 (2.20)

θ̂θθ
′′
2 = −θ′′2 r̂rr2 − r̂rr′22 θ̂θθ2 (2.21)
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while the force function ω in polar coordinates centered in P2, becomes:

ω =
1

1 + e cos( f )

[
1
2

(
r2

2 + 2(1− µ)r2 cos(θ2) + (1− µ)2
)
+

1− µ

r1
+

µ

r2
+

1
2

µ(1− µ)

]
(2.22)

with

r1 =
√

r2
2 + 2r2 cos(θ2) + 1

The position of the third particle can be written in vector form as follows:

ξξξ = r2r̂rr2 + (1− µ)îii

recalling also eqs. (2.16) - (2.21) it is possible to obtain ξξξ ′ and ξξξ ′′. By inserting all
the computed quantities into eqs.(2.11) and (2.12), the polar form of the equation of
motion with reference system centered in P2 is obtained.

r′′2 − r2θ′22 − 2r2θ′2 = (1− µ) cos(θ2)

(
1− 1

r3
1

)
+ r2

(
1− 1− µ

r3
1

)
− µ

r3
2

(2.23)

r2θ′′2 + 2r′θ′ − 2r′2 = (1− µ) sin(θ2)

(
1
r3

1
− 1

)
(2.24)

By solving these equation, the angle θ2 is obtained. Using such information, the
integration can be interrupted at a generic anomaly f ∗ if:

|θ2( f ∗)− θ2( f0)| = 2π

This means in fact that, at the current anomaly f ∗ ≤ flim (or f ∗ ≥ flim for negative
stable sets) a complete revolution around P2 has been accomplished. In this way,
the integration of the equations until flim is avoided 4 and only the condition on
the Kepler energy H2( f ∗) mus be still verified. Recalling that the absolute angular
velocity with respect to the sidereal reference frame is given by the summation θ′2 + α′

(with α′ = 1), the square velocity can be written in polar coordinate as:

v( f ∗)2 = r′2( f ∗)2 + r2( f ∗)2
[
θ′2( f ∗)2 + 1

]2

then the Kepler energy can be evaluated using eq. (2.1). By using this approach,
a stable condition is immediately detected and the successive initial conditions

4 Except when f ∗ = flim, however if this case occurs, flim has been probably chosen too small (or too high,
if negative stable sets are considered).
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can be analyzed. If simultaneously this procedure is applied to identify also the
revolutions of the third particle around P1, the primary interchange escapes can be
found. Therefore, if the same approach is used, this kind f events can be detected
without carrying on the integration of the equations until flim is reached. In this way
it is avoided also the possibility that the spacecraft escapes from P2, makes a complete
revolution around P1, then comes back to P2 and makes a revolution around this
primary with a negative value of H2. For the definition of ballistic capture, the initial
conditions producing this sort of trajectories are considered unstable, but if only the
revolutions around P− 2 are checked, the computational algorithm would consider
them as stable. For this reason, the necessity of having also a continuous function
θ1( f ) is now clear. The solution adopted to obtain this angle is the same used for
θ2( f ); then also the equations in polar coordinates centered at P1 are necessary

2.5.1 Equations of motion in polar coordinates centered in P1

The same procedure used for P2 can be applied to fine the polar equations of
motion centered in P1. This new reference system can be seen in Figure 1.4. In this
case the relations between the old unit vectors and the new ones are:

r̂rr1 = cos(θ1)îii + sin(θ1)ĵjj (2.25)

θ̂θθ1 = − sin(θ1)îii + cos(θ1)ĵjj (2.26)

then, similarly to what done before, the derivatives with respect to the true anomaly
are computed:

r̂′1 = θ′1θ̂θθ1 (2.27)

θ̂θθ
′
2 = −θ′1r̂rr′1 (2.28)

and

r̂rr′′1 = −θ′21 r̂rr′1 + θ′′1 θ̂θθ1 (2.29)

θ̂θθ
′′
1 = −θ′′1 r̂rr1 − r̂rr′21 θ̂θθ1 (2.30)

The relation between the position in the synodic reference frame and in the polar one
is the following:

ξξξ = r1r̂rr1 − µîii −→
{

ξ = r1 cos(θ1)− µ

η = r1 sin(θ1)
(2.31)
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Using these last equations, the force function ω in polar coordinate centered in P1
assumes the form:

ω =
1

1 + e cos( f )

[
1
2

(
r2

1 − 2µr1 cos(θ1) + µ2
)
+

1− µ

r1
+

µ

r2
+

1
2

µ(1− µ)

]
(2.32)

The definition of the gradient in polar coordinates can be obtained from the one given
for P2, just changing (r2, θ2) with (r1, θ1). The derivatives of the vector expression on
the left-hand side of eq. (2.31) can be derived with respect to the true anomaly and
substituted in the equations of motion for the synodic reference frame (see eqs. (2.11)
and (2.12)) written in vector form. Therefore the polar equations of motion centered
in P1 are obtained:

r′′1 − r1θ′21 − 2r1θ′1 = µ cos(θ2)

(
1
r3

2
− 1

)
+ r1

(
1− 1− µ

r3
1

)
− 1− µ

r3
1

(2.33)

r1θ′1 + 2r′1θ′1 − 2r′1 = µ sin(θ2)

(
1− 1

r3
2

)
(2.34)

with

r2 =
√

r2
1 − 2r1 cos(θ1) + 1

If these equations are integrated together with the system formed by eqs. (2.23)
and (2.24) it is possible to detect not only when ballistic capture occurs, but also, by
analyzing the angle θ1, when a primary interchange escape (PIE) happens:

∣∣θ2( f̃ )− θ1( f0)
∣∣ = 2π

When this last relation is verified, being in fact f̃ ≤ f0 (or f̃ ≥ f0 when n-stable sets
with n ≤ 1 are studied), it is normally possible to break the integration process before
flim is reached: by definition, if a PIE occurs, a ballistic capture can no longer occur.

The integration of both system of equations causes a longer integration time but it
features the advantage that in this way a value of flim high enough can be set: for the
most part of the initial conditions, either a ballistic capture or a PIE will usually occur.
Using this approach, the computation time is extremely lower than that necessary if
the equations of motion in cartesian coordinates would be integrated until flim is
reached: the most part of the stable conditions are in fact already found during the
first instants of integration [22].
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2.5.2 Initial conditions in polar coordinates

While the polar equations of motion have been written both centered in P1 and P2,
the relative initial conditions have still to be found. In the synodic reference frame,
IC are given by eqs. (2.7) and (2.8), here after recalled:

{
ξ = 1− µ + r2 cos(θ2)

η = r2 sin(θ2)

{
ξ ′ = −v sin(θ2) + r2 sin(θ2)

η′ = v cos(θ2)− r2 cos(θ2)

where the velocity v is obtained from (2.6):

v =

√
µ

1 + e
r2

Recalling what said in section 2.2, for a fixed initial vale of true anomaly f0, the
initial conditions are completely given once the angle θ2, the distance from the secon-
dary primary r2 and the eccentricity of the initial elliptic orbit e have been chosen.
Therefore, the value of r2( f0) and of θ2( f0) are obtained through the definition of
stable set. The same definition states also that, being the starting position of the
spacecraft at the pericenter of the initial elliptic orbit, the initial velocity is normal to
the semi-major axis of the ellipse (see Figure 2.2), then the velocity along the direction
r̂rr2, which in the initial instant is coincident with the periapsis of the ellipse, is zero,
consequently r′2( f0) is null as well. Therefore it can be calculated by simply dividing
v by r2 and, recalling that v is referred to the sidereal reference frame centered in P2,
the angular velocity due to the rotation of the synodic reference frame, α′ = 1, must
be subtracted. Doing so, the initial conditions for the polar system centered in P2 are
all explicated. They are reported hereafter for a clear understanding:

{
r2( f0) = ri

θ2( f0) = θj


r′2( f0) = 0

θ′2( f0) =

√
µ

1 + ek

r3
i
− 1

(2.35)

Once the initial conditions for the system centered in P2 are evaluated, it is possible
to calculate the corresponding initial conditions for the polar system centered on the
other primary. In order to understand the equations that are going to be reported,
Figure 2.4 might be helpful.

Thanks to geometrical considerations it is possible to write the following general
relations between the two different systems of polar coordinates:

r1 =
√

r2
2 + 2r2 cos(θ2) + 1

θ1 = tan−1
(

r2 sin(θ2)

r2 cos(θ2) + 1

)
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Figura 2.4: Summary of the two kind of polar reference frame analyzed so
far, the former centered in P1, the latter in P2

In the same way, for the velocity the following expressions are obtained:

r′1 = r′2 cos(θ2 − θ1)− r2θ′2 sin(θ2 − θ1)

θ′1 =
r2θ′2
r1

cos(θ2 − θ1) +
r′2
r1

θ′2 sin(θ2 − θ1)

Recalling thatn eq. (2.35), which is valid only when f = f0, the initial conditions for
the polar reference system centered in P1 become:

r1( f0) =
√

r2
i + 2ri cos(θj) + 1 (2.36)

θ1( f0) = tan−1

(
ri sin(θj)

ri cos(θj) + 1

)
(2.37)

and

r′1( f0) = riθ
′
2( f0) sin(θj − θ1) (2.38)

θ′1( f0) =
riθ
′
2( f0)

r1( f0)
cos(θj − θ1( f0)) (2.39)
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In this section, the equations for the problem in polar coordinates have been illustrated
together with the corresponding initial conditions. As mentioned before, there is
the possibility that a regularization is necessary. The detailed treatment of the, as
already said, local regularization according to Levi-Civita approach is reported in
The previous chapter in section 2.2.

2.6 computation of weak stability boundaries

The equations involved in calculations of stable sets and weak stability boundaries
have been all written In order to give a clear vision of all the equations used with the
corresponding reference systems, they are all summarized hereafter, starting from
those written in polar coordinates centered in P2:

r′′2 − r2θ′22 − 2r2θ′2 = (1− µ) cos(θ2)

(
1− 1

r3
1

)
+ r2

(
1− 1− µ

r3
1

)
− µ

r3
2

r2θ′′2 + 2r′θ′ − 2r′2 = (1− µ) sin(θ2)

(
1
r3

1
− 1

)

with

r1 =
√

r2
2 + 2r2 cos(θ2) + 1

and initial conditions given by:

{
r2( f0) = ri

θ2( f0) = θj


r′2( f0) = 0

θ′2( f0) =

√
µ

1 + ek

r3
i
− 1

At th same time the equations in polar coordinates centered in P1 are solved:

r′′1 − r1θ′21 − 2r1θ′1 = µ cos(θ2)

(
1
r3

2
− 1

)
+ r1

(
1− 1− µ

r3
1

)
− 1− µ

r3
1

r1θ′1 + 2r′1θ′1 − 2r′1 = µ sin(θ2)

(
1− 1

r3
2

)

with

r2 =
√

r2
1 − 2r1 cos(θ1) + 1
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and initial conditions corresponding to those of the polar system centered at P2,
properly transformed in this new reference systems


r1( f0) =

√
r2

i + 2ri cos(θj) + 1

θ1( f0) = tan−1

(
ri sin(θj)

ri cos(θj) + 1

) r′1( f0) = riθ
′
2( f0) sin(θj − θ1)

θ′1( f0) =
riθ
′
2( f0)

r1( f0)
cos(θj − θ1( f0))

The equations just written are integrated simultaneously until either the spacecraft
completes a revolution around P1 or P2 or when the limit true anomaly flim is
reached. Furthermore, these equations are no longer considered when the third
particle flies near one of the primary, since in this case the equations of the regularized
systems are exploited. There is one more topic to be investigated: the boundary
which separates the regularized from the non-regularized regions. Such boundary is
identified by the so called Levi-Civita circle. When the spacecraft is traveling inside
this region, that is when ri ≤ rLC,i, the regularized equations of motion must be taken
into account.

It must be said that, during the integration of the regularized system, the occur-
rence of a PIE or a ballistic capture cannot be instantaneously verified. The equations
in the u, v-plane are in fact derived from the synodic, cartesian reference system
(ξ, η), so, in obtaining a continuous function for θ1( f ) and θ2( f ), they features the
same problem discussed in section 2.4. For this reason, the above mentioned events
can be detected only when the spacecraft leaves the Levi-Civita circles, that is when
ri > rLC,i, and the regularized variables are converted into the polar ones 5, where
the presence of such events can be verified. Another consequence is that, if the
spacecraft remains always inside the Levi-Civita circle, the regularized equations
must be integrated until flim is reached. This is a drawback, however for small
value of the mass parameter µ, it happensa only when the initial conditions with
the smallest values of ri are considered. Moreover, the integration of the regularized
equations of motion, despite the large f span, proceeds faster than the equations in
polar coordinates, as verified during the calculations of stable sets. This happens also
because the presence of trigonometric functions inside the polar equations makes the
integration a little bit slower (Topputo e Belbruno [16]).

5 There is an intermediate step within this transformation, that is the conversion to the cartesian coordinates.



3 M A N I P U L AT I O N O F B A L L I ST I C
C A P T U R E : T H E R O B U ST N E S S
A N A LYS I S

In this chapter the concept of capture set is recalled. After the illustration of
the properties related to orbits with prescribed behavior, which must accomplish a
precise number of passages around the secondary primary, the procedure applied
to assess the robustness of the method is presented. This aspect of the problem is
of utmost importance. In fact, if a ballistic capture orbit results to be invariant with
respect to a perturbation of the initial conditions, it becomes a very good candidate
for an interplanetary mission designed with this purpose. As already said, the
perturbation of the initial conditions, which will be performed with a statistical
approach, is the tool to assess the adequateness of an orbit and, by extension, of the
entire set. This aspect must be considered in addiction to the strict dependence of this
kind of orbits on the eccentricity and the initial true anomaly. It will be shown that
these actors strongly influence the size and the shape of the sets and, furthermore,
the behavior of orbits propagated from the perturbed initial conditions.

3.1 the capture sets

As one can easily sense, a capture orbit consists in a curve reaching the selected
primary from the deep space and performing a certain number of revolutions about
it. This happens only by means of purely gravitational interactions between the
spacecraft and the primaries. The number of passages is strictly related to the mission
purpose. Therefore a space probe designed for planetary observation requires several
of them.

However, it is necessary to define the capture set from a mathematical point of
view. To achieve this task, some concepts still need to be introduced. In the previous
chapter the stable and unstable sets have been treated and, for sake of clarity, the
key topics will be briefly recalled. A set is said to be stable if a certain number of
orbits are performed about the considered primary and the Keplerian energy H2
undergoes a reduction for two consecutive passage across the line l(θ2), while it is
considered unstable if an orbit about the first primary is performed and the energy
keeps on increasing (see Figure 2.3). Starting from certain initial conditions, a capture
set results from the intersection of a backward unstable set and a forward stable one.
By labeling the unstable set as X (e, f0) it results:

Cn
−1(e, f0) = X−1(e, f0) ∩Wn(e, f0) (3.1)

The initial conditions in Cn
−1(e, f0) generate orbits that, in order:

43
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1. Escape the target when integrated backward, or equivalently approach the
target in forward integration coming from the deep space;

2. Perform n revolutions about the target primary without escaping or impacting
it.

This is desirable in preliminary mission analysis, as orbits with this behavior may be
good candidates to design a ballistic capture upon arrival. It must be noted that the
definition of capture set reported in eq. (3.1) exhibits a dependence on the osculating
orbit eccentricity and initial true anomaly of the primaries system. In fact these actors
play a role of utmost importance. In particular:

• Depending on the osculating orbit eccentricity, the capture sets computed in the
elliptic model are generally larger than those computed in the circular model.
Moreover, the occurrence of capture orbits in the total set of initial condition
strongly increase for increasing e. Unfortunately, the great drawback caused
by considering a non-circular model lies in the fact that the time span within
which the revolutions are completed is much shorter with respect to the circular
model.

• On the other hand, the role played by the true anomaly consists in an increasing
size of the capture set as the value of f0 gets bigger for prograde orbits. The
results that will be presented will confirm such statements.

3.2 problem development

The selected primaries for the robustness analysis of ballistic capture orbits are the
Sun and Mars. According to this choice, the mass parameter µ and the eccentricity
of the orbits of such primaries are immediately defined. However, for sake of
completeness, an overview of the characteristic parameters of the possible primaries
which can be selected to perform an analogous analysis are reported in Table 1.

In order to perform the robustness analysis, a proper capture set must be used. By
applying the entire procedure illustrated in the previous chapter, the Weak Stability
Boundaries have been obtained. By backward integration, it has been analyzed which
initial conditions produce an escape trajectory, that is which initial conditions belongs
to the unstable setW−1(e, f0). Accordingly, the capture sets have been defined. As
said before, the Weak Stability Boundary is strictly dependent on the eccentricity of
the osculating orbit and on the initial true anomaly, that is the relative position of
the two primaries. The combinations used in this work are reported in Table 2. Note
that f0 is expressed as multiple of π. The choice for this range of e and f0 lies in
the fact that a high-valued eccentricity orbit is much more prone to be selected as
an interplanetary transfer orbit. In fact, the higher e is, the more the capture path
become similar to a hyperbola, which is the well known orbit typology experienced
by a spacecraft as it cross the target planet sphere of influence. On the other hand,
the limitation of the analysis to the first quadrant is enough to point out the most
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Tabella 1: Physical parameters of Solar System planets. Mars and its characteristic quantities
are highlighted in gray.

Planet
Radius Gravitational parameter

Eccentricity Mass Parameter
[km] [km3/s2]

Mercury 2439.7 2.203 · 104
0.2056 1.660 · 10−7

Venus 6051.8 3.249 · 105
0.0068 2.448 · 10−6

Earth 6371 3.986 · 105
0.0167 3.003 · 10−6

Mars 3389.5 4.283 · 104
0.0934 3.2274 · 10−7

Jupiter 69911 1.267 · 108
0.0484 9.537 · 10−4

Saturn 58232 3.794 · 107
0.0542 2.857 · 10−4

Uranus 25362 5.795 · 106
0.0472 4.366 · 10−5

Neptune 24622 6.837 · 106
0.0086 5.151 · 10−5

outstanding features of the capture orbits and to prove their feasibility by perturbing
the initial conditions.

Tabella 2: Combination of eccentricity and initial true anomaly used to compute the capture
sets

Set index Eccentricity e Initial true anomaly f0

f000pi_e90 0.90 0

f000pi_e99 0.99 0

f025pi_e90 0.90 0.25π

f025pi_e99 0.99 0.25π

f050pi_e90 0.90 0.50π

f050pi_e99 0.99 0.50π

Required number of passages around Mars: 6

The procedure adopted to compute the set with parameters in Table 2 is hereafter
reported:

1. The one time stable setW1(e, f0) is computed;

2. Starting from the results obtained for theW1(e, f0), the forward propagation is
performed. Only six time stable setsW6

1 (e, f0) are retrieved.

3. To assess the ballistic capture it is necessary that backward propagation of
motion produces an escape orbit. Accordingly, the acceptable initial conditions
inside the Weak Stability Boundary reduce in number. By integrating and
retrieving the one time unstable set it is possible to eventually construct the
capture sets C6

−1(e, f0).
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Having the purpose to exploit the ballistic capture for a future interplanetary mission,
the robustness analysis must be performed sufficiently far from Mars. Therefore, the
backward integration represents the starting point for the application of a perturba-
tion on the state vector. It has been chosen to propagate the initial conditions inside
the Weak Stability Boundary up to the Sphere of influence of Mars. The reason for
this is that such distance, within an unperturbed space environment, represent a good
compromise between accuracy of the results with respect to their initial formulation
and sufficiently high distance such that no OCM 1 are necessary. In fact it has been
noted that, by integrating forward the initial conditions at the Sphere of Influence,
results are shifted by about 10−7 % − 10−8 %2 with respect to the forward inte-
gration of the initial conditions belonging to the Weak Stability Boundary. Despite
this discrepancy, the behavior of the orbits propagated from the IC at the Sphere of
Influence is the same as the nominal ones. Moreover, neither crashes over the surface
of Mars, neither ballistic escape have been found at this stage.

As mentioned before, the dimension of the capture sets are much bigger for high
values of eccentricity of the osculating orbit and initial true anomaly. In order to make
this aspect more evident and clearer, the number of initial conditions producing a
ballistic capture as function of e and f0 have been reported in the histogram in Figure
3.1. It is evident that the thickest condition is found for e = 0.99 and f0 = 0.5π.
However, the greatest drawback is represented, as it will be shown later, by the
increased instability in the behavior of the orbits. As a confirmation of this fact, the
capture sets obtained through the procedure illustrated above is reported in Figure
3.2.

Figura 3.1: Summary plot of the number of initial conditions according to the value of
eccentricity and initial true anomaly.

1 Orbital Correction Maneuvers.
2 Such percentage are just apparently low. In fact the gap between the nominal and the perturbed conditions

spans from O(100)m to O(103)m



3.2 problem development 47

-1 -0.5 0 0.5 1

ξ − 1 + µ ×10−3

-1

-0.5

0

0.5

1

η

×10−3 397 IC

Capture IC

Mars

Mars SOI

(a) C6
−1(0.90, 0)

-1 -0.5 0 0.5 1

ξ − 1 + µ ×10−3

-1

-0.5

0

0.5

1

η

×10−3 558 IC

Capture IC

Mars

Mars SOI

(b) C6
−1(0.99, 0)

-1 -0.5 0 0.5 1

ξ − 1 + µ ×10−3

-1

-0.5

0

0.5

1

η

×10−3 477 IC

Capture IC

Mars

Mars SOI

(c) C6
−1(0.90, 0.25π)

-1 -0.5 0 0.5 1

ξ − 1 + µ ×10−3

-1

-0.5

0

0.5

1

η

×10−3 597 IC

Capture IC

Mars

Mars SOI

(d) C6
−1(0.99, 0.25π)

-1 -0.5 0 0.5 1

ξ − 1 + µ ×10−3

-1

-0.5

0

0.5

1

η

×10−3 470 IC

Capture IC

Mars

Mars SOI

(e) C6
−1(0.90, 0.5π)

-1 -0.5 0 0.5 1

ξ − 1 + µ ×10−3

-1

-0.5

0

0.5

1

η

×10−3 727 IC

Capture IC

Mars

Mars SOI

(f) C6
−1(0.99, 0.5π)

Figura 3.2: Representation of the capture sets capture sets computed by exploiting the para-
meters reported in Tab. 1. As it can be easily noted, the size of the set strongly
increase for increasing eccentricity of the osculating orbit and true anomaly. Note
that the dimensions of Mars are not the real one. It has been deliberately not
properly scaled in order to keep it visible
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Orbits resulting from the up-to-the-SOI-propagated initial conditions are essentially of
two kind.

• Regular ballistic capture orbits, featuring a quite regular behavior for the conside-
red time/true anomaly span. There are no sudden change in directions due to
gravitational interaction and the curve preserves a quite smooth and regular
profile. By looking at the nominal configuration, it can be noted that, for the low
value of the eccentricity of the osculating orbit, that is e = 0.90, the variation of
initial true anomaly does not produce a significant effect over the orbital path.
On the other hand, osculating orbits featuring a high eccentricity, e = 0.99, are
characterized by a less regular trend and, in general, they much bigger than
those shown before. Also in this case, different values of true anomaly do not
alter significantly the curve shape. It will be shown that this kind of orbits are
very robust with respect to the perturbation of the initial conditions. Some
examples are represented in Figure 3.2 (covering the current and the next page).
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Figura 3.2: Examples of regular ballistic capture orbits retrieved from the initial conditions
for each computed capture set. For each one, the starting and the end point of the
integration, the highest and the lowest altitude locations have been highlighted.

• Acrobatic ballistic capture orbits, following a definitely non-regular path about
the primary. Differently from the regular ballistic capture orbits, both the
augmentation of the osculating orbit eccentricity and the variation of the initial
true anomaly lead to very significant change in the orbital path shape. In
particular, sudden change in directions and loop in the shape of the curve are
very frequent. Moreover, these kind of orbits are much less stable with respect
to a perturbation of the initial state vector, thus producing several crashes and
ballistic ejections. As for the regular orbit, an exemplification is represented in
Figure 3.2.
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Figura 3.2: Examples of acrobatic ballistic capture orbits retrieved from the initial conditions
for each computed capture set. For each one, the starting and the end point of the
integration, the highest and the lowest altitude locations have been highlighted.

As final remark it must be pointed out that these last results have been represented
within a sidereal, that is inertial, reference frame centered in Mars. The reason for this
lies in the fact that this representation allows a much clearer view of the orbit and its
behavior as the independent variable f increase during the integration procedure.
Moreover, the target primary is located at the origin of the axes, thus leading to an
easier interpretation of the results since the primary is not moving and the spacecraft
does not follow it. For sake of clarity, computations have not been achieved in this
coordinate systems, but polar coordinates have been exploited (see Chapter 2 for a
detailed treatment.)
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3.3 perturbation of the initial state and analy-
sis of the results

So far, the basis of the robustness analysis with all the related considerations
has been presented. The core of the problem is being treated in this section. As
mentioned before, this part of the work aims to analyze the effect that a perturbation
of the initial conditions produces over the ballistic capture orbits. To achieve the
perturbed state vector, a statistical approach has been adopted. The requirement of
the perturbations, and consequently the principal aspect of the robustness analysis,
is that a non-deterministic variation must be considered. As it will be shown later,
the results of this step consist in the generation of a population of initial conditions
featuring a certain mean value and a fixed variance.

Before presenting the procedure adopted to obtain such populations, a brief survey
about the dispersion of a set of data values will be hereafter recalled. Considering
a large number of independent measurements, their distribution tends towards the
so called normal distribution or Gaussian distribution. The governing equation of this
particular distribution is the Gaussian function

f (x, µ, σ) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
(3.2)

where x is the independent variable, µ is the mean value of the distribution and σ
is the variance of such distribution. Among the advantages lying in the usage of
normal distributed data is that there is no need to compute the median and the mode,
since they are equal to the mean. As an example, a purely qualitative representation
of a Gaussian curve is reported in Figure 3.3. As it can be noted, different values of
variance have been considered. As σ decreases, the curve progressively shrinks and
consequently the probability to find a member of the data set in correspondence of
the mean value increases.

Since the samples of the data set are totally random quantity, then it is necessary to
have an estimation of the number of samples effectively contained inside a selected
interval inside the Gaussian curve. This can be overcome by introducing the concept
of confidence interval. The procedure to compute such parameter is reported hereafter.

1. Compute the mean value and the variance, respectively:

µ =

N
∑
1

x

N
(3.3)

σ =

√
∑N

1 (x− µ)2

N
(3.4)

2. The confidence level (CL) must be chosen. Typical values of confidence level
are reported in Table 3
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Figura 3.3: Gaussian curve of four kind of data set. The standard deviation variation is
reported in the legend. For all the populations, the mean value is µ = 2.

Tabella 3: #σ of the mean for a normal distribution. The shaded row indicates the confidence
level used in this work.

#σ#σ#σ Confidence Interval

1σ 84.13%

1.5σ 93.32%

2σ 97.73%

2.5σ 99.38%

3σ 99.87%

3.5σ 99.98%

> 4σ 100%

3. The margin of error (MoE) can be computed. Such parameter can be obtained
from the knowledge of the size of the data set, the standard deviation and the
selected confidence level:

MoE = CL
σ√
N

(3.5)

4. The confidence interval results from the summation/subtraction from the mean
value the computed margin of error, therefore:

CI = µ±MoE (3.6)

As mentioned before, the confidence level used in this work is 3σ of the mean.

After this brief theoretical review, the procedure adopted in this work can be
analyzed. A spacecraft traveling through deep space features a certain state vector
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which is affected of a certain degree of uncertainty because of it is composed of
measured quantities. Such measurements are related to position and velocity, but
typically only a fraction of total set of position and velocity components are actually
retrieved. Moreover, they are corrupted by random and systematic errors. The device
used for the position and velocity determination consist in on-board cameras or in
telecommunication links between the spacecraft and Earth. Therefore the state vector
is determined through optical and radio-metric measurements.

Typical examples of measurement techniques consist in (for a detailed analysis
see Turyšev [17], the url is reported in the footnote3):

• Range and Doppler Tracking;

• Angular Tracking

• Interferometry;

For most interplanetary missions, the spacecraft position uncertainties is much
smaller in the radial direction rather than in any angular one. Radial components
of position and velocity are directly measured by range and Doppler observations.
In absence of other data, angular components are much more difficult to determine.
In fact they require either changes in geometry between the observer and and
the spacecraft or additional simultaneous observer, neither of which is simple to
accomplish. The immediate consequence for this is that angular errors are up
to 103 times greater than radial errors even under the most favorable conditions,
mostly when depending on range and Doppler measurements. Assuming this kind
of measurements, the uncertainties for the state vector exploited in this work are
reported in Table 4.

Tabella 4: Uncertainties for the state vector (Source: Jet Propulsion Laboratory)

Uncertainty type Position Velocity

Radial 2 m 0.1 mm/s

Angular 3 km 0.1 m/s

The link point between measurements and statistic approach is represented by the
generation of a population of initial conditions which are dispersed according to the
selected values of uncertainties with an accuracy of 3σ of the mean as mentioned
before.

Since the uncertainties are known, the procedure adopted to generate the data
set follows an inverse approach: the population is generated with a mean value
correspondent to the nominal initial condition and a variance obtained from the
uncertainties reported in 4 and the selected confidence interval. For the sake of
coherence, even tough the initial conditions are written in polar coordinate in order
to match with the uncertainty values, results will be plotted in cartesian coordinates.

3 http://lnfm1.sai.msu.ru/~turyshev/lectures/lecture_9.0-Deep-Space-Navigation

http://lnfm1.sai.msu.ru/~turyshev/lectures/lecture_9.0-Deep-Space-Navigation
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In particular, as mentioned before, the sidereal reference frame is selected to illustrate
the outcome of the analysis.

By labeling the uncertainties respectively as Pr for the radial one and Pα for the
angular one, the variance in the correspondent direction is found:

σr =

(
Pr

3

)2
σα =

(
Pα

3

)2
(3.7)

The variance value are reported in the following table:

Tabella 5: Results of eq. (3.7)

σrσrσr σασασα

4.45 · 10−7
1

An example of produced dataset is reported in Figure 3.4
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Figura 3.4: Dispersion map of the perturbed initial conditions. The reported initial conditions
are retrieved from the capture set featuring f0 = 0 and e = 0.90. As already
mentioned, such data set is represented in the sidereal P2-centered reference frame.
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As it can be clearly seen, such ellipses features a minor axis much smaller than the
major one. The reason must be searched in the fact that the radial uncertainties
is much smaller than the angular one. Concerning these ellipse, there are some
remarkable features to point out:

• The largest and the smallest eigenvalue of the variance matrix providing the
direction of maximum and minimum variation. In the case presented in Figure
3.4:

Tabella 6: Maximum and minimum eigenvalues.

λmaxλmaxλmax λminλminλmin
Position 0.63877 4.08206 · 10−7

Velocity 1.11487 · 10−9 1.02775 · 10−14

• The orientation of the ellipse governed by the angle δ resulting from:

δ = tan−1
(

vvv1(X)

vvv1(Y)

)
(3.8)

where vvv1 is the eigenvector of the variance matrix that corresponds to the
largest eigenvalue. Again, concerning the situation just presented the values of
δ is:

Tabella 7: Uncertainties for the state vector (Source: Jet Propulsion Laboratory)

Position Velocity

δδδ 187.60o 187.66o

These values are justified by looking at the direction of the maximum eigenvec-
tor reported in the zoom of Figure 3.4
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Figura 3.4: Particular of the confidence ellipses in order to point out the direction of the
maximum eigenvector to justify the values of δ.

As a family of initial conditions has been generated, it follows that a family of
orbits is then produced. The most outstanding effect of the perturbation of the
initial conditions is an alteration of the orbital path with respect to the nominal
configuration. Three main effect have been found:

• The perturbed initial condition, when propagated forward, still results in a balli-
stic capture orbit, even if shifted with respect to te nominal one. The magnitude
of the shifting strictly depends on the initial conditions.

• The perturbed trajectory leads the spacecraft to crash over the surface of Mars.
Therefore the current initial condition cannot be a candidate for a ballistic
capture and, consequently, is discarded. It has been noted that, as an average,
crashes occur between the third and the fourth passage.

• A ballistic ejection orbit is produced from the altered initial conditions. In
this case it is necessary to distinguish between orbits which escape once the
prescribed passage about Mars have been accomplished and orbits ejecting the
spacecraft from the Mars Sphere of Influence before the required number of
rounds have been performed. Orbits belonging to the first category have been
included within the candidate group of suitable orbits.

Hereafter some of the retrieved results will be presented and analyzed. First, the
definition of robustness is provided. A perturbed initial condition and, by extension, a
ballistic capture orbit is robust with respect to the considered perturbation if neither crashes
or escape occur for the entire true anomaly span considered.

In order to analyze the behavior of the perturbed orbits, once again statistics has
been exploited. In particular, it has been chosen to analyze the dispersion map of the
state vector at a fixed station along the orbital path. Such station corresponds to the
couple (r, θ2) associated to the first closest passage over the surface of Mars. In other
words, as the spacecraft approaches the first relative minimum along the orbit, the
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associated state vector is retrieved and converted in polar coordinates. Consequently,
the angle θ2( f̄ ) (see Figure 2.2 for the details) is used as a reference for the successive
passage along this radial line.

Nevertheless, due to numerical errors, the successive passages are not exactly
located on such radial line. Therefore it is preferable to consider another dispersion
map, that is the one located along the radial line at θ2 fixed. Since the results are
obtained in the sidereal reference frame, it is more appropriate to express the variance
matrix in the polar P2-centered coordinate system. Doing so, the variance along the
radial and transverse direction provide much more useful information, that is the
error with respect to the nominal conditions in terms of distance from the surface of
Mars and error with respect to the backward or the forward shifting of the position
and velocity. Hereafter some exemplification of the analysis performed on all the
capture set. For each situation, the overall scenario of the perturbed capture set
is presented, then the dispersion map at the reference station and the associated
statistical parameters are reported and, eventually, a histogram depicting the outcome
of the perturbation in terms of successful perturbed captures, crashes and escapes is
shown. This procedure will be repeated for some particular case and, after all, the
global results will be analyzed and conclusion will be discussed.

3.3.1 Results for a robust capture set

In Figure 3.5 it is represented a robust ballistic capture orbit. From the propagation
of the perturbed initial conditions, a quite regular profile is obtained. This is clearly
visible from the left part of Figure 3.5. On the right part of the same figure, the
corridor created by the superposition of the entire set of orbits is reported. For this
particular case, such corridor is 13 km wide. Figures from 3.6a to 3.6f represent all
the passages at the selected stations. For each one, an error ellipse has been traced
and the variance in the local reference frame (described by the blue and the green
arrow, which are nothing but eigenvectors of the covariance matrix associated to

Figura 3.5: Perturbed set of initial conditions from the capure set C6
−1(0, 0.90) (on the left)

and particular of the sixth passage about Mars (on the right). The red square (�)
represent the set of initial conditions for this particular perturbed set. The magenta
circles (◦). Eventually the cyan squares (�) indicate the selected instant in which
the spacecraft cross the radial line whose θ2 corresponds to the first close passage.
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Figura 3.6: Dispersion maps of the perturbed capture sets at the reference station
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Figura 3.7: Count of orbit typology.

Figura 3.8: Summary plot of the principal evidence for a particular set of perturbed initial
conditions inside the set C6

−1(0, 0.90).

the maximum and the minimum eigenvalue) points out the count of initial conditions
which produce a successful ballistic capture, a crash of an escape. According to
this situation, nothing but regular behavior occurs. For sake of completeness, the
diagonal variance matrices of the error ellipse represented in Figures 3.6a to 3.6f
are hereafter reported. They have been obtained by simply rotating by the angle
δ (defined in eq. 3.8) the non-diagonal variance matrix obtained from the data set
[X, Y] at the various close passages. Therefore, by labeling RRR the rotation matrix:

RRR =

[
cos(δ) sin(δ)
− sin(δ) cos(δ)

]
(3.9)

The diagonal variance matrix σ̂σσ stems from:

σ̂σσ = RRRσσσRRRT (3.10)

The diagonal matrices for the case under analysis are:

• First passage:

σσσ1 =

[
8293.8 0
0.0000 308.8

]
• Second passage:

σσσ2 =

[
18176 0
0.0000 132

]
• Third passage:

σσσ2 =

[
1740.5 0
0.0000 38.8

]
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• Fourth passage:

σσσ2 =

[
136.32 0
0.0000 1.67

]
• Fifth passage:

σσσ2 =

[
1171.7 0
0.0000 243.7

]
• Sixth passage:

σσσ2 =

[
9415.6 0
0.0000 818.4

]

The same procedure can be applied to an acrobatic set in order to show its robustness.
Hereafter it is reported, as further example, the results obtained from the perturbation
of an initial condition contained in the set C6

−1(0.50π, 0.99).

Figura 3.9: Perturbed set of initial conditions from the capure set C6
−1(0.50π, 0.99) (on the left)

and particular of the sixth passage about Mars (on the right). The red square (�)
represent the set of initial conditions for this particular perturbed set. The magenta
circles (◦). Eventually the cyan squares (�) indicate the selected instant in which
the spacecraft cross the radial line whose θ2 corresponds to the first close passage.
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(g) Count of orbit typology.

Hereafter the variance matrices are reported:

• First passage:

σσσ1 =

[
29.3875 0

0 16.3784

]
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• Second passage:

σσσ2 =

[
3055.7 0

0 576.8

]
• Third passage:

σσσ2 =

[
77.6478 0

0 30.7722

]
• Fourth passage:

σσσ2 =

[
1853400

200

]
• Fifth passage:

σσσ2 =

[
1202500 0

0 400

]
• Sixth passage:

σσσ2 =

[
46200000 0

0 4400

]

It is possible to note that the shifting with respect to the nominal condition stron-
gly increases as the integration goes forward. This allows to think that a further
propagation of motion beyond the six-time-stable limit could produce an escape or
a destructive event over the surface of Mars. However, for the true anomaly span
considered, even acrobatics orbits can be robust. As done before, the dispersion
maps at the passages at the reference stations have been represented and the variance
matrices describing the magnitude of the shifting with respect to the nominal condi-
tions have been reported. Being the dispersion maps much wider with respect to the
previous case, the values of the variance strongly increase. It must be noted that it
has made a comparison between two capture set belonging to the two end sets and
all the phenomena associated to the increase in the true anomaly and the eccentricity
of the osculating orbits have produced.

3.3.2 Results for a non-robust capture set

The analysis performed in the previous section has been applied also to non-robust
ballistic capture orbits, that is orbits whose perturbed initial conditions produce an
escape path or a crash over the surface of Mars. Of course a non-robust orbit cannot
be considered a good candidate for a ballistic capture, at least not in the framework
of an unperturbed dynamics (both in the sense of environmental perturbation and on
board propulsion4) where the motion occurs just for purely gravitational interaction
between the spacecraft and the primaries. Therefore in this section, some example of
initial conditions which cannot be used are presented.

Among the non-suitable initial conditions it is possible to distinguish three main
groups:

4 Which corresponds to the possibility to perform OCM.
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• Initial condition producing almost the same amount of capture, crashes and
escapes;

(a) Overview
ce1cm

(b) Particular

Figura 3.9: Set of initial condition taken from C6
−1(0, 0.90) producing 22 captures, 16 crashes

and 13 escapes.

Figura 3.10: Count of orbit typology.
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• Initial conditions more prone to produce crashes;

(a) Overview (b) Particular

Figura 3.11: Set of initial condition taken from C6
−1 (0.50π,0.90) producing 22 captures, 29

crashes and no escapes. It must be noted that the dispersion map in (3.11b) very
little populated. This is due to the fact that orbits leading to crashes have been
directly discarded and, consequently, not plotted.

Figura 3.12: Count of orbit typology.
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• Initial conditions leading most to an escape.

(a) Overview (b) Particular

Figura 3.13: Set of initial condition taken from C6
−1 (0,0.99) producing 14 captures, 3 crashes

and 34 escapes. It can be noted from (3.13b) that this particular set is an acrobatic
one and definitely it is not robust with respect to perturbations of the initial state.

Figura 3.14: Count of orbit typology.
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3.4 overall results and conclusion

So far, some examples from specific situations have been presented in order to
provide a quite detailed overview about the outcomes of the calculation procedure
and of the hypotheses that were made. The behavior of the perturbed capture
sets, in relation to the current value of initial true anomaly and eccentricity of the
osculating orbits, have been analyzed in terms of size and shape of the capture set
and of stability5 of the orbital paths. The statistics used to describe the trend of the
perturbed state vector at reference stations has been analyzed as well.

The overall quantitative and qualitative results must be still presented. In this
work, 148104 perturbed initial conditions have been generated and each one has been
propagated forward and, for each resulting orbit, the robustness have been studied.
Table 8 contains the quantitative summa of the whole analysis. Numbers presented
give an idea about the most robust conditions and to which set they belong.

Tabella 8: Quantitative result of the robustness analys of ballisti capture orbits for the Sun-
Earth system in the elliptic restricted three-body problem.

Set ID Captures Crashes Escapes Total for category

f000pi_e90 19003 586 658 20247

f000pi_e99 25877 716 1865 28458

f025pi_e90 17642 278 287 18207

f025pi_e99 27763 614 2070 30447

f050pi_e90 12793 561 314 13668

f050pi_e99 35492 327 1258 13668

TOTAL 138570 3094 6452 148104

Figure 3.15 and Figure 3.16 provide a graphical representation of the information
contained in Table 8.It can be noted immediately that, for each set of perturbed initial
conditions, the number of effective ballistic capture is tremendously higher than
crashes and escapes. Moreover it can be noted also that a high value of eccentricity
not only produces a denser capture set, but makes such set very robust against
perturbations.

It must be noted also that the set f025pi_e90, despite it is the penultimate in
terms of number of initial conditions, it is characterized by the highest percentage of
effective captures and the lowest one of escapes. However, in first approximation,
the most critical situation is represented by a crash. According to Figure 3.16, the set
f025pi_e90 exhibits the lowest amount of crashes, being also the set with the biggest
set of initial conditions. This is a further confirmation of what stated before for the
benefits deriving from high value of f and e.

5 Note that stability in this particular case is meant as the shifting with respect to the nominal conditions.
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Figura 3.15: Representation of the number of capture/crashes/escapes for each set of
perturbed initial conditions.

Figura 3.16: Representation of the percentage of capture/crashes/escapes for each set of
perturbed initial conditions. The bar coloration criterion is the same as Figure
3.15

As final consideration it can be concluded that the concept of ballistic capture
orbits is a very powerful tool for space exploration. With this work it was meant
to corroborate the feasibility of a space flight featuring this kind of approach of the
target primary. The robustness analysis applied to initial conditions located very far
from Mars has shown that, provided that the robust initial condition is matched at
the Sphere of Influence, the capture occurs with no need of further corrections in the
orbital trajectory.
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3.5 future development

This robustness analysis is just a tiny fraction of the huge amount of work that can
be developed in the future. The true intention was to set the basis for a methodology
to assess the behavior of an enormous collections of initial conditions and to obtain
some preliminary results in order to verify the fulfillment of the hypotheses.

The first improvement to this method is the consideration of a perturbed envi-
ronment, both in the deep space phase and nearby the primary. As immediate
consequence, a certain amount of OCM might be necessary. However, such maneu-
vers should be performed before meeting the initial conditions at the SOI of Mars, so
that no propulsion is necessary during the ballistic capture phase.

The second and most important improvement consist in the exploitation of diffe-
rential algebra to propagate large set of initial conditions, instead of integrating each
single state vector. DA is a very powerful tool against the numerous non-linearities
which are present in this work. Non linear propagation of uncertainties plays a
key role in astrodynamics. Orbit determination is affected by measurement errors;
consequently, the knowledge of the state of any spacecraft or celestial body is cha-
racterized by an estimable level of uncertainty. Typically these uncertainties need to
be propagated forward in time, for example for spacecraft navigation or to estimate
the collision risk between artificial satellites or the threat from near Earthobjects. As
orbital dynamics is highly nonlinear the size of the uncertainty set tends to quickly
increase along the trajectory. Nonl-inearities are not confined to object dynamics:
even simple con- versions between different coordinate systems (e.g. the conversion
from polar to Cartesian coordinates that forms the foundation for the observation
models of many sensors) introduce significant non-linearities and, thus, affect the
accuracy of classical uncertainty propagation techniques. An alternative way to map
the statistics is based on the approximation of the flow of the dynamics in Taylor
series and the use of the resulting polynomials as dynamical substitutes. By using a
tool which is based on the Taylor polynomials expansion, two great advantage follows:
no integration is necessary when the state vector at a certain station is required:
the only thing to do is to expand the Taylor series expansion up to the required
order at the required location. The higher is the order of the expansion, the more
non-linearities are counteracted. Moreover, a lot of computation time is required
since, for a purely Matlab environment, a mere integration of the equations of motion
is performed. Furthermore, by using this approach, it is no longer necessary to
integrate forward the single initial conditions, but it is sufficient to consider an initial
box of initial conditions. By considering the Taylor expansion at the required station,
it will be produced another box representing the state vector but with a different
box shape with respect to the initial configuration due to the fact that a polynomial
expansion has been used. This can provide an immediate profile of an outcome
which, in Matlab, is obtained only by expensive and time consuming integration.
Detailed treatment of this topics which would represent an inestimable improvement
to this method are reported in Wittig et al. [18] and Di Lizia, Armellin e Lavagna [5].
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