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Abstract

Renewable energy has been increasingly integrated into power systems as a result of the

effort to reduce CO2 emissions and build a future power grid economically feasible

and environmentally sustainable. Particularly, according to the Blue Map scenario for

power supply, electricity generation from renewable energy provides a share of 22% of global

electricity generation in 2050, which grows almost threefold compared to the Baseline sce-

nario [1]. Along with this growing share of renewable technologies, greater interest has been

attracted to the use of Energy Storage Systems (ESSs) due to the variable nature of most renew-

able energy sources. ESSs can accommodate renewable generation in time-shifting its energy

to match demand and avoid power curtailment. They can also be used to mitigate transmis-

sion congestion and hedge forecast errors, etc. In this context, appropriate siting and sizing of

storage systems is of importance not only for power system operation but also for economic

consideration. The integration of wind energy into power systems creates challenges for system

planning concerning the variable and uncertain nature of wind. Deterministic approaches can

not explicitly capture this uncertainty source, hence can not provide the right decision. In this

work, the planning problem of ESSs under uncertainty is investigated.

Two approaches, namely combined Genetic Algorithm (GA) and cumulant-based proba-

bilistic approach and two-stage stochastic approach, for incorporating wind and load uncer-

tainty into ESS planning problems are proposed. In the first approach, optimal siting and sizing

of ESSs is carried out based on a 2-step algorithm: first, ESS locations and expected value of

ESS capacities are determined based on the combined GA and deterministic Optimal Power

Flow (OPF) model; then in the second step, probabilistic assessment is performed on the ob-

tained ESS locations and capacities. In the second approach, a two-stage stochastic OPF model

is formulated with the goal of minimizing ESS capital cost in the first stage and system opera-

tional cost in the second stage. A multi-period AC OPF model is adopted for both approaches.

The full AC OPF model can capture realistic physical power flows of the system better than

a DC OPF; it is also more accurate and reliable when issues such as congestion and voltage
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constraints are concerned. Also, the multi-period formulation can explicitly take into account

inter-temporal constraints relevant to the storage devices.

A methodology to identify candidate ESS locations is also proposed. The best candidate

locations for ESSs is determined based on the Lagrangian multipliers, a byproduct of the OPF.

A sensitivity analysis is performed, using this methodology, to assess the impacts of ESS loca-

tions on system operation parameters such as production cost, wind curtailment and marginal

prices. In this case, two applications of the ESSs are considered, including time-shifting wind

generation and mitigating transmission congestion.

A final procedure for optimal siting and sizing of ESSs under uncertainty is then proposed.

The first and necessary step in this procedure is preliminarily identifying candidate ESS loca-

tions. This helps reduce system size and make the planning problems tractable. Then, either the

combined GA and Probabilistic Optimal Power Flow (POPF) approach or two-stage stochas-

tic programming approach can be adopted for optimal planning of the ESSs considering wind

and load uncertainties. Applicability of this procedure is demonstrated with a case study and

a complete comparison on solutions of the combined GA and cumulant-based POPF approach

and the two-stage stochastic programming approach is provided.
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RES : Renewable Energy Sources

SMES : Superconducting Magnetic Energy Storage

SP : Stochastic Programming

TES : Thermal Energy Storage
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Notation

θti : Voltage angle of bus i in period t

θtk : Voltage angle of bus k in period t

ηchi : Charging efficiency of ESS at bus i

ηdi : Discharging efficiency of ESS at bus i

λpti : Lagrangian multiplier associated to the real power flow equation at bus i in period t

nb : Total number of system buses

ng : Total number of generating units

ns : Total number of ESSs

Bik : Imaginary part of the ikth element of the bus admittance matrix

Gik : Real part of the ikth element of the bus admittance matrix

B0
i : Initial energy level of the ESS at bus i

Bt
i : Energy level of ESS at bus i in hour t

Bmin
i : Lower limit of energy level of ESS at bus i

Bmax
i : Upper limit of energy level of ESS at bus i

Itij : Magnitude of the current flowing from bus i to bus j

Itji : Magnitude of the current flowing from bus j to bus i

Imaxij : Upper limit of current flow from bus i to bus j

Imaxji : Upper limit of current flow from bus j to bus i

PCt : Production cost at period t

P tchi : Real charging power of ESS at bus i in hour t

Pminchi
: Lower limit of charging power of ESS at bus i

Pmaxchi
: Upper limit of charging power of ESS at bus i

P tdi : Real discharging power of ESS at bus i in hour t

Pmindi
: Lower limit of discharging power of ESS at bus i

Pmaxdi
: Upper limit of discharging power of ESS at bus i

P tGi : Real generation power at bus i in period t

PminGi
: Lower limits of real generation power at bus i

PmaxGi
: Upper limits of real generation power at bus i

P tLi : Real power of load at bus i in period t

Qtchi : Reactive charging power of ESS at bus i in hour t
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Qminchi
: Lower limit of reactive charging power of ESS at bus i

Qmaxchi
: Lower limit of reactive charging power of ESS at bus i

Qtdi : Reactive discharging power of ESS at bus i in hour t

Qmindi
: Lower limit of reactive discharging power of ESS at bus i

Qmaxdi
: Lower limit of reactive discharging power of ESS at bus i

QtGi : Reactive generation power at bus i in period t

QminGi
: Lower limits of reactive generation power at bus i

QmaxGi
: Upper limits of reactive generation power at bus i

QtLi : Reactive power of load at bus i in period t

T : Optimization horizon

V t
i : Voltage magnitude of bus i in period t

V min
i : Lower limit of voltage magnitude at bus i

V max
i : Upper limit of voltage magnitude at bus i

V t
k : Voltage magnitude of bus k in period t

xv
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CHAPTER1
Introduction

1.1 Background and motivation

Over the past 40 years, along with the increase in the world’s population, electricity genera-

tion has been growing by more than 40%. This electricity generation will continue to grow and

is forecasted to grow by 70%, from 22126 TWh in 2011 to 37000 TWh in 2030 [2]. However,

traditional ways of electricity production using fossil fuels have posed threat to the environment

as well as human being health. Burning of these fossil fuels is considered to be the largest con-

tributing factor of greenhouse gas emissions into the atmosphere, which is considered one of

the causes of global warming. The impact of global warming on the environment is extensive

and affects many areas. Consequently, increasing worldwide efforts are prompted to reduce

emissions from fossil fuels. The deployment of Renewable Energy Sources (RES) has been one

of the solutions. It is important for renewable energy to not only keep up with the increasing

population growth, but also gradually replace fossil fuels if we are to meet future energy de-

mands. With renewable portfolio standards calling for more renewable generation and advances

in wind power systems, wind generation has become the fastest growing generation source in

the world. Specifically, this fast growing of wind generation is the result of a combination of

the following factors [3]:

• Strong political support for renewable energy for its environmental advantages as well

1
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Chapter 1. Introduction

as national energy security advantages. Government subsidies are also provided, which

typically compensate the initial costs, gives price support or a credit for wind power

generation.

• Ratepayers are willing to pay a premium for “green power” through green pricing pro-

grams to share the goals of facilitating renewable energy integration and reducing green

house gas emissions.

• Improved wind generation technology, including increasing power ratings, larger man-

ufacturing operations and improved performance capabilities of wind turbine systems.

Such improvement has led many utilities to view wind generation as a hedge against the

increasing volatility in natural gas prices.

• Governments at all levels are increasingly implementing Renewable Portfolio Standards

(RPS), which is a regulatory mandate to increase production of energy from renewable

sources such as wind, solar, biomass and other alternatives to fossil and nuclear electric

generation. In general, the RPS sets a target for the share of electricity to be supplied

from designated renewable energy resources by a certain year.

Wind generation does not function in a similar manner as conventional generation resources.

Wind exhibits both variability and uncertainty. Its power output can not be fully controlled, and

can not be reliably predicted. The uncertainty and variability of wind can pose challenges for

grid operators. This variability of wind generation impacts all time horizons of power system

operation, including short-term variability (order of seconds to hours) and long-term variabil-

ity (order of months to years). Short-term variability of wind is caused by occasional gusts and

stills of wind and the geographical spreading of wind power plants. The small and fast variations

(seconds to minutes) of aggregated wind power output (as a consequence of turbulence or tran-

sient events) are quite small and do not significantly impact power grids. Variations of longer

periods (hourly variations) are much more important for power systems, considering in relation

to load fluctuations. These variations in wind generation might require additional actions to

balance the system and higher system flexibility is necessary to accommodate the mismatch

between generation and load. Long-term variations of wind power, on the other hand, include

seasonal variations and the inter-annual variations, resulting from diurnal wind speed variations

and shifting weather patterns. These variations are not very important for daily operation of

the system and management of the grid, but they play an important role in long-term system

planning [4].

The impacts of wind variability and uncertainty on power systems depend basically on

wind penetration level, which is the ratio between installed wind capacity and peak load. In

most cases, at small penetration levels, typically less than 15% to 20%, the integration of wind

power is not a big issue assuming there is no grid capacity or stability constraints. At higher

penetration levels, i.e., more than 20%, wind needs to be curtailed during the low consumption

2
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1.1. Background and motivation

periods to ensure grid stability (frequency, voltage, reactive power) [3, 5] (See Figure 1.1 for a

summary on problems in renewable energy integration and possible solutions). ESSs are one

of the greatest potentials to solve such wind integration issues. ESSs can be added into power

systems to provide all or some portion of the additional regulation control and reserves. In

addition, due to its variable nature, wind can be negatively correlated with load and electricity

price. Wind might blow at periods of low load, low electricity price and fail to blow at periods

of high load, high price, which makes it difficult to exploit the full potential of wind resource.

In this case, ESSs can be employed to firm and shape a portion of wind power to accommodate

wind generation and improve overall system economics. For example, ESSs can be used to

store the strong wind at night when load is low and release it at peak load periods during the

day. Also, when wind power exceeds the minimum load at night and has to be curtailed to avoid

grid stability problem, ESSs can serve to charge this otherwise curtailed amount of wind power

and discharge it during the day to supply loads.

CO2 reduction Independence from fossil fuels

“More renewable energy, less 
fossil fuel”

On-Grid Area
Renewable generation

Off-Grid Area
EV powered by electricity from less or 
non-fossil energy sources.
Energy Storage Systems (ESSs)

Power fluctuation
Difficult to maintain power output

Undependability
Difficult to meet power demand

Energy Storage Systems (ESSs)
Stabilize wind and PV output in low, 
medium and high voltage grids

Energy Storage Systems (ESSs)
• Increase self consumption of dispersed PV

energy in household for low voltage grid release
• Time shifting of wind and PV energy in low and

medium voltage gridPartial load operation of 
thermal power generation 

(inefficient operation) Excessive renewable energy installation 
to secure enough generation capacity

Reinforce transmission facilities 
to cover wider area to utilize 
wind farms smoothing effects

Figure 1.1: Problems with renewable integration and possible solutions [6]

The integration of wind resource also introduces transmission congestion into power net-

works since the grid was not initially built for transmitting such high amount of energy. Con-

sequently, in order to accommodate increasing penetration levels of wind, a solution has to be

3
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Chapter 1. Introduction

found such that transmission congestion is mitigated while maintaining minimum impacts on

system reliability as well as system capital and operational costs, otherwise wind power has

to be curtailed. Grid expansion to avoid these congestions will take long time. Energy storage

devices, however, can be an option to solve this problem. They could be used to store the excess

wind power during congestions and dispatch it later, when the transmission capacity is available.

This would help reduce wind curtailment and also defer or avoid transmission upgrades.

In cases when wind generation is bid to electricity market based on forecast wind data,

storage devices can also be used to hedge forecast uncertainties and hence optimize wind gen-

eration revenues by shifting wind power from higher than forecast deliveries to avoid penalties

associated with lower than forecast deliveries [3].

A basic question arisen is who might be interested in the investment into ESSs. Seemingly,

it appears this is an investment to wind plant owners based on the benefits they receive from

this device. However, in reality, grid operators might have more incentive to install storage

devices due to the rules from some regulators. For instance, some regulators have the rule

that integration issues are the responsibility of grid operators, and that wind owners should

not be penalized for the lack of transmission capacity, which means that wind developers are

paid for wind generation no matter how wind power has to be curtailed, and that installing

energy storage for curtailment reduction are not necessary for them. In this case, grid operators

would have incentive to invest on storage devices to recover the energy for which they are

paying. Transmission and distribution utilities can also take advantage of some benefit streams

with energy storage such as load shifting for asset deferral or ancillary services, which would

help to offset the cost of the system while wind developers do not gain any benefit from such

application. For these reasons, investment in energy storage systems is more likely to make

sense to utilities than to wind owners. Perhaps, a multi-party agreement involving both utilities

and wind owners could be made early in the wind development process to bring benefits to both

sides [7].

In general, ESSs can be a possibility to solve wind integration issues by providing more

flexibility and balancing to wind generation, improving overall system economics and security.

They will play a key role in enabling a low-carbon electricity system with increasing penetration

of renewables. The history of stationary ESSs dates back to the 20th century, when power sta-

tions were often shut down overnight, with lead-acid accumulators supplying residual loads on

the direct current networks. Utility companies gradually recognized the importance of energy

storage devices in providing flexibility in power systems and the first central station for energy

storage, a Pumped Hydroelectric Storage (PHS), was put to use in 1929. The subsequent de-

velopment of electricity supply industry with their complementary and extensive transmission

and distribution networks, has essentially drawn interest in using this energy storage technol-

ogy until recent years. Up to 2005, more than 200 PHS systems were in use all over the world,

providing a total of more than 100 GW of generation capacity. However, pressures from dereg-
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ulation and environmental concerns have led to the decrease in major investment in PHS facil-

ities, and interest in the applications of other forms of ESSs is growing, due to some primary

drivers including changes in utility regulatory environment, an increasing reliance on electric-

ity in industry, commerce and the home, power quality/quality-of-supply issues, the growth of

renewable as a major new source of electricity supply, and environmental requirements. These

factors, combined with the rapidly accelerating rate of technological development in many of

the emerging ESSs, with unit cost reductions, now make their practical applications attractive

on future timescales of only a few years [8].

1.2 Research Objectives

As the use of ESSs for wind penetration increases, decision on their sizes and locations

becomes important for both security of operation and economy of the system. The goal is to

place a minimum capacity of ESSs at appropriate sites where their applications will be most

exploited. The addition of ESSs introduces time correlation characteristic into the planning

problem, which is a major difference between ESS planning and conventional system planning.

Moreover, the integration of wind generation resource into power systems creates challenges

for system planning, concerning the high uncertainty in wind power production. Deterministic

approaches can not explicitly capture the stochastic nature of wind and hence can not help

to make the right decision. Consequently, it is crucial to develop probabilistic techniques for

solving the uncertainty issue associated with wind generation. This research aims at answering

several questions related to the planning of ESSs in power systems with high wind penetration:

1. Given available data of wind power and load, how to decide optimal locations and size

for the ESSs to be installed?

2. What is the optimal operational schedule of the ESSs to support wind generation?

3. How to incorporate wind and load uncertainties into the planning of ESSs in its combined

operation with wind power?

1.3 Main Contributions

The main contributions of the thesis is summarized as follows:

1. A multi-period AC OPF formulation with ESSs is proposed, in which ESSs are employed

to time-shift wind generation. The full AC OPF formulation is used to better capture

realistic physical power flows of the system, opposite to most of the available models,

which are based on the linear DC model. It is much more accurate and reliable when

issues such as congestion and voltage constraints are concerned. This formulation is

implemented into multi-period model, which takes into account time inter-dependence,

i.e., the problem is solved simultaneously for all periods of the optimization horizon.
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In this way, the inter-temporal constraints relevant to storage devices can be suitably

included.

2. Two approaches, namely probabilistic and stochastic approach, to include wind and load

uncertainties in the planning of ESSs are studied. In the probabilistic approach, a GA-

based probabilistic OPF (POPF) model to optimally place and size ESSs in a transmis-

sion grid is proposed. For the POPF, a cumulant-based multi-period AC OPF with ESSs

is introduced. In the stochastic approach, a two-stage stochastic model is proposed to

determine the optimal capacity of ESSs in time-shifting wind generation considering the

stochastic behavior of wind and load.

1.4 Outline of the Thesis

The thesis is organized as follows:

Chapter 1: Introduction
This chapter contains the background and motivation of the thesis. It continues with

research objectives and main contributions of the thesis and ends up with the outline of

the thesis and list of publications.

Chapter 2: Energy Storage Systems: Applications and Technologies
This chapter provides an overview on possible applications of ESSs to support wind gen-

eration. It also provides a description of storage technologies applicable for different grid

connected wind power applications.

Chapter 3: Deterministic Multi-period AC Optimal Power Flow with Energy Storage
Systems
This chapter describes in detail the mathematical formulation of the multi-period AC

OPF model with ESS integration. A methodology to define candidate ESS locations is

also presented.

Chapter 4: Optimization under Uncertainty
This chapter presents theory and methodology of the approaches that will be adopted in

the planning problems with ESSs in the next chapter, including cumulant-based proba-

bilistic approach and the classical recourse-based stochastic programming approach.

Chapter 5: Energy Storage System Planning Considering Uncertainty
This chapter explicitly describes methodologies of two approaches for including uncer-

tainty into ESS planning problems, i.e., the combined GA and cumulant-based probabilis-

tic approach and the two-stage stochastic programming approach. All tests and results are

presented and discussed.
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Chapter 6: Conclusions and Recommendations
In this chapter, the conclusions of the thesis and recommendations for future work are

provided.

7
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CHAPTER2
Energy Storage Systems: Applications and

Technologies

2.1 Introduction

The challenges associated with meeting demand variations while providing reliable services

has historically motivated the use of energy storage devices while recent interest in energy

storage has been motivated by at least five factors: advances in storage technologies, increase

in fossil fuel prices, development of deregulated energy markets including markets for high-

value ancillary services, challenges to siting new transmission and distribution facilities, and

increasing penetration of variable renewable generation [9]. Much of the current attention for

ESSs is based on its potential applications with renewable energy sources, specifically wind

energy resource.

This chapter provides an overview on potential applications of storage devices to support

wind generation. The main ESS technologies currently available and under development are

also explicitly described. Technical and economic characteristics of each storage technology,

including power rating, typical discharge times, investment and operation costs, efficiency, re-

sponse time and life time are also presented.

9
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Chapter 2. Energy Storage Systems: Applications and Technologies

2.2 ESS applications

The role of ESSs is to provide flexibility to wind generation due to the variability and

uncertainty behavior of wind. Accordingly, wind energy becomes controllable and dispatchable

to meet system loads and meet energy bid in an electricity market. Also, it can be controlled

to efficiently utilize available transmission capacity. The roles of ESSs can be described by the

number of uses (cycles) and the duration of operation, as shown in Figure 2.1. For power quality

application, ESSs with high cycle stability and short duration of operation is required; for time

shifting application, on the contrary, longer storage duration and fewer cycles are necessary [6].

In this section, different ESS applications are described in details.

Figure 2.1: Different uses of ESSs depending on frequency and duration of use [6]

2.2.1 Time-shifting

Due to its variable and weather-dependent nature, wind energy might be high at periods

of low demand and low electricity price and it might be low when demand is high, which

might result in wind curtailment. In this case, ESSs can be employed to store the wind energy

generated during low demand periods and sale it later at a higher price during periods of high

demand. Since this operation of the ESSs effectively shift wind energy in time, this application

is called time-shifting (Fig. 2.2).

The benefit of using ESSs is expected to be higher with a larger gap between peak and off-

peak of demand. For this application, ESSs are required to have large energy capacity with a

long charging/discharging duration (from hours to days). In addition, their efficiency is another

important factor to consider when choosing ESSs for this application, since a significant amount

of power will be lost in an inefficient storage device [7, 10].

2.2.2 Forecast hedging

In an electricity market, where buyers and sellers have to enter into negotiated contracts

for power supply, the variability of wind becomes especially challenging. Since wind forecasts

10
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Load

Storage 
charged 
from wind

Storage charged 
from wind

Storage 
discharged 
to supply 
load

Storage 
discharged 
to supply 
load

Wind generation 
profile without 
storage

Wind generation 
profile with 
storage

Figure 2.2: ESS for time-shifting wind energy

can not precisely provide prediction on the amount of wind power output during the contracted

period, there might be a risk that the real wind generation will be higher or less than the bid

amount and a shortfall in wind generation will result in penalties for wind generators. Energy

storage devices can be used to store the wind energy in excess of bid amounts and supplement

wind generation less than bid amounts with stored energy on a real-time basis, which helps to

reduce the risk of paying penalties due to forecast errors. This application of the ESSs is called

forecast hedging.

A forecast hedging application requires an ESS with several hours of charging/discharging

duration, since the contracts typically last several hours. High round-trip efficiency is not as

critical as for time-shifting application but must be reasonably favorable for good economics

[7].

2.2.3 Transmission Curtailment Reduction

Wind resources are often located in far from population centers and installation of wind

farm sites might require an extension of transmission capacity to transfer wind power to supply

loads otherwise wind has to be curtailed when there is transmission congestion. To mitigate

constraints imposed by insufficient transmission capacity on the utilization of wind generation,

wind energy has to be stored during periods of insufficient transmission capacity and then re-

leased when capacity becomes available. An ESS located close to wind generators can capture

the excess wind energy at these periods to avoid wind curtailment and deliver it later when there

is sufficient capacity, which allows the sale of wind power that would otherwise be lost. Sim-

ilarly, an ESS located close to load centers (the other side of the congested transmission lines)

would be used to charge the wind energy when there is no congestion. This energy can be used

11
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Chapter 2. Energy Storage Systems: Applications and Technologies

later, when congestion occurs.

The curtailment reduction application requires an energy storage device of large energy

capacity, i.e., charging/discharging duration in the order of hours to days. Besides, since energy

stored during a curtailment period would be lost anyway, the round-trip efficiency of the storage

device in this application is not as critical as in other applications.

2.2.4 Fluctuation Suppression

The inherently variable nature of wind could cause fluctuations in frequency and voltage.

In this fluctuation suppression application, ESSs would be used to stabilize wind farm genera-

tion frequency by absorbing the excess energy during output spikes and releasing energy during

output drops. This application is typically at the wind farm in order to make wind power com-

pliant with stability criteria imposed by transmission operators. Hence, this is a special case

within the otherwise grid based applications of energy storage. Ramping capability of the ESSs

is relatively important for this application [7, 10].

2.2.5 Grid frequency support

This application provides short duration power necessary to maintain grid frequency within

a nominal range following a severe system disturbance caused by a significant imbalance be-

tween generation and load. In power systems with a high penetration of wind, a sudden reduc-

tion in wind can cause such a disturbance. While such disturbances are usually addressed by

conventional spinning reserve, these “clean” markets are subject to minimize the use of con-

ventional generation. As a result, storage devices can be a solution to support the grid until

alternative strategies can be implemented (e.g., dispatchable loads). The ESSs must detect the

disturbance and respond within 20 milliseconds by injecting real power for up to 30 minutes [7,

11].

2.2.6 Energy arbitrage

Another application of ESSs is energy arbitrage, in which the ESSs are capable of "buy

low sell high". Specifically, they can be used to purchase electricity at times when market

prices are low and sale the electricity back to wholesale market when the prices are higher (e.g.,

during peak load periods). The variability of renewable generation, especially wind generation,

increases wholesale market price volatility, i.e., prices get dropped when renewable energy is

generated at high levels, and get recovered when renewable generation decreases. This higher

volatility provides opportunity to enhance the value of energy storage devices [12]. In this

application, the ESSs are required to have a response time of minutes to hours and a discharge

duration of hours [9].

2.2.7 Combined applications

Energy storage is currently still a relatively expensive solution to wind integration related

issues. Ideally, an ESS should provide multiple applications, even applications not related to

12
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wind generation. For instance, an ESS used for time-shifting application might also be used for

frequency regulation when time-shifting is not necessary. It is important for a storage device in

this case that the applications are not conflicting with each other. In some cases, the technical

requirements for operation make it difficult for the ESS to be used simultaneously in two appli-

cations. Even when multiple applications are already incorporated into a storage device, trying

to achieve all benefits simultaneously is also difficult, and may not be economical. For exam-

ple, the use of an ESS for frequency regulation may make it unavailable for forecast hedging, as

the frequency regulation application may require the energy storage to operate at 50% state of

charge while forecast hedging requires it to be fully charged. Also, using a system for frequency

regulation may cause the battery to get aged prematurely and require early replacement [7].

2.3 ESS technologies

There are two aspects of electricity important for understanding technology and applications

of storage, i.e., power and energy. Energy can be thought of as a volume, which can be a

kilowatt-hour or a megawatt-hour, while power is known as a rate of flow, which is a kilowatt or

megawatt. Some applications such as time-shifting or forecast hedging require a large volume

of storage capacity while others such as grid frequency support require a large responsive power

capacity. It is, therefore, important to distinguish between storage technologies best suited for

power applications and those best suited for energy applications. Power applications require

high power output, usually for relatively short periods of time (a few seconds to a few minutes).

Storage used for power applications usually has capacity to store quite small amounts of energy

per kW of rated power output. Energy applications require relatively large amounts of energy,

often with discharge duration of hours to days. Storage devices used for energy applications

must have a much larger energy capacity than those used for power applications [13, 14].

Other factors that influence the choice of ESS technology for a particular application in-

cludes response time, discharge frequency, depth of discharge, efficiency, service life and sys-

tem costs.

This section provides a description of ESS configuration, ESS technical economic parame-

ters, along with performance characteristics of major energy storage technologies in support of

wind generation.

2.3.1 ESS configurations

In most applications, an ESS consists of a storage unit and a Power Conversion System

(PCS) which interfaces the storage unit to the grid or the load. The PCS is used to convert

from AC to DC current and vice versa for storage units, except mechanical ones. The PCS,

therefore, performs as a rectifier while the ESS is charged (AC to DC) and as an inverter when

it is discharged (DC to AC). The PCS also conditions the power during conversion to make sure

there is no damage to the storage device. This component of the ESS usually costs from 33%

to 50% of the storage system [8]. A conventional configuration of ESS is shown in Figure 2.3.
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In this configuration, the storage unit is interfaced to the grid through a PCS which operates in

both discharging and charging modes. For end-use application, the ESS can be connected to the

bus which feeds such load as a machine or industrial processing unit. In this case, the storage

unit is only activated when grid power is interrupted [15].

̴ PCS
Energy 
Storage 

Unit

Source/Load

3Ø AC

Figure 2.3: Energy storage unit connected directly to the grid [15]

2.3.2 Technical-economic characteristics of ESSs

2.3.2.1 Power and Energy Capacity

Power capacity is the rate of discharge of the storage devices. It is measured in kilowatt

(kW) or megawatt (MW). The power capacity of an ESS is actually its nameplate power rat-

ing under normal operating conditions. That power rating also represents the storage device

maximum power output under normal operating conditions. Some types of ESS can discharge

at a relatively higher rate (e.g., 1.5 to 2 times their nominal rating) for relatively short periods

of time (e.g., several minutes to as much as 30 minutes). This feature is often referred to as

the storage peak power rating or pulse power rating, which is usually several times the normal

power rating. This power rating is necessary for circumstances involving an urgent need for

relatively high power output within quite short durations. However, discharging at higher rate

will make storage efficiency gradually reduced (relative to efficiency during discharge at the

nominal discharge rate), and the storage device itself will get lost of life more easily (compared

to damage incurred at the normal discharge rate) [7, 8].

Another important characteristic of storage systems is discharge duration, expressed in units

of time, ranging from seconds to hours. Discharge duration is the amount of time that the

storage plant can discharge at its rated power without being recharged. This characteristic is also

represented by energy capacity of the ESSs, where energy capacity, measured in kilowatt-hours

(kWh) or megawatt-hours (MWh), is defined as the power capacity times discharge duration.

For example, an ESS with power capacity of 1 MW and energy capacity of 5 MWh is able to

deliver 1 MW in 5 hours when fully charged [13].

2.3.2.2 Power and Energy Density

Power density is the amount of power that can be delivered from an ESS with a given volume

or mass. Similarly, energy density is the amount of energy that can be stored in a storage device

that has a given volume or mass. These criteria are important in situations when space is limited

and/or when weight is important [8].
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2.3.2.3 Depth of Discharge, Frequency of Discharge, and Response Time

Depth of discharge is the percentage of power discharged relative to full capacity before the

storage is recharged. Some technologies are sensitive to depth of discharge. Deep discharge of

some electrochemical batteries reduces their life expectation and may cause physical damage to

the battery cells. Other technologies operate best under full or 100% depth of discharge.

Frequency of discharge is how often power will be discharged from a storage technology.

Some applications only require infrequent discharge (spinning reserve, for example) while oth-

ers are cycled continuously.

Response time is how quickly a storage technology can be brought online and start dis-

charging its energy. Most storage technologies have a response time of several seconds or less.

2.3.2.4 Ramp Rate

An important storage system characteristic for some applications is the ramp rate that is the

rate at which power output can change. Generally, storage ramp rates are rapid, i.e., output can

change quite rapidly). Storage devices with a slow response time tend also to have a slow ramp

rate.

2.3.2.5 Service Life

Life cycle is the approximate number of charge and discharge cycles that a particular energy

storage device can undergo before failure. For many energy storage devices, cycling introduces

structural, mechanical and thermal stresses which form the life-limiting factor for the device.

For some energy storage technologies such as electrochemical batteries, cycle life depends on

how deeply the battery is discharged from full charge. The deeper the average discharge, the

more the battery is exercised and the shorter the life [7].

2.3.2.6 Round-trip Efficiency

There are several ways to measure the efficiency of an energy storage device, but in the util-

ity industry the most commonly used is the AC round-trip efficiency. AC round-trip efficiency

is determined as the AC energy input to the AC energy output ratio. Self-discharge loss during

the storage operation is not included. For example, a 10 MW/50 MWh battery system may

require a 60 MWh energy input to fully charge the empty storage device. The system can then

be discharged to deliver 50 MWh. The efficiency of this system would be 50MWh/60 MWh or

83.3%.

Generally, ESSs can be divided into three groups based on the round-trip efficiency [8]:

• Very high efficiency: the ESSs have a very high efficiency, i.e., more than 90%. Some

examples of this group include Superconducting Magnetic Energy Storage (SMES), fly-

wheel, super-capacitor and Li-ion battery.
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• High efficiency: the ESSs have an efficiency of 60-90%. For example, Pumped Hydro

Storage, Compressed Air Energy Storage, batteries (except for Li-ion), flow batteries and

conventional capacitors.

• Low efficiency: the ESSs have an efficiency lower than 60%. Hydrogen, Metal-Air, solar

fuel, and Thermal Energy Storage belong to this group.

There may be a trade-off between capital cost and round-trip efficiency when choosing a

storage technology. For instance, a storage technology with a low capital cost but a low round-

trip efficiency may be competitive with a high cost, high round-trip efficiency technology.

The efficiency of ESSs is affected by a number of different factors. For most energy storage

technologies, energy is lost during the process of charging and discharging. Energy may also be

lost while the device is not in use, and these losses are called standby losses. Standby losses are

a measure of efficiency that compares how much of energy used to charge a storage device is

lost before discharging. Moreover, if the storage system does not operate at the same voltage as

the system, losses arise since a transformer must be used. ESSs that store only DC power must

include a charger and an inverter to convert AC power to DC power for storage, and then back

again for delivery; these power electronics also generate losses. Some technologies have other

intrinsic losses, such as the thermodynamic losses in batteries. Efficiency can also be affected

by ambient conditions such as temperature. Some technologies require ancillary devices, which

require power, to connect them to the grid. These “parasitic” loads reduce efficiency much like

standby losses [7, 13].

2.3.2.7 System Cost

The cost of an ESS follows two metrics, i.e., cost per unit power (e/kW) and cost per

unit energy (e/kWh). Cost per unit power is used in a manner similar to the way other capital

investment in the utility industry are usually described. It is defined as the cost per unit of rated

power, and can be used with equipment cost (cost of the installed device), installation cost,

or life cycle cost. Cost per unit energy, e/kWh, describes the cost per unit of energy storage

capacity.

To calculate the investment costs required to install a storage unit, it is important to con-

sider not only the storage device itself but also the PCS and the Balance of Plant (BoP). The

PCS consists of all equipment necessary to supply energy from the utility grid to the ESS and

to discharge stored energy to the grid. BoP consists of the costs for project engineering and

construction management, grid connection (including transformers), land, access, and services;

and any additional assets and services required (e.g., foundations, buildings, aspects of system

integration, etc.) [16]. System cost is the cost of an integrated energy storage system, including

the storage device, PCS and BoP [15]:

costtotal = costPCS + coststorage + costBoP [e] (2.1)
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2.3. ESS technologies

where, costPCS is the cost of the PCS, coststorage is the cost of the storage unit, and costBoP
is the cost of BoP.

For most systems, the cost of the PCS is proportional to the power rating R[kW] of the ESS:

costPCS = UnitCostPCSR (2.2)

where, UnitCostPCS [e/kW] is the cost per unit power of the PCS.

The cost of the storage unit is proportional to its energy rating B[kWh]:

coststorage = UnitCoststorageB (2.3)

where, UnitCoststorage [e/kW] is the cost per unit energy of the storage unit.

The balance-of-plant costs, CostBoP , are typically proportional to energy capacity, but in

some cases are fixed costs or proportional to power rating.

In Figure 2.4, capital costs per unit energy and per unit power of different ESS technologies

are provided.

Figure 2.4: ESS capital costs [17]

Details about capital costs of bulk ESS technologies are presented in Table A.1 in Appendix

A.

2.3.3 ESS Technologies

ESS technologies can be categorized according to two criteria, i.e., function and form.

In terms of function, they can be categorized into technologies used for power applications
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such as power quality and reliability, and energy applications such as time-shifting and fore-

cast hedging. Capacitor/supercapacitors, Superconducting Magnetic Energy Storage (SMES),

Flywheel Energy Storage (FES) and batteries are in the category of power applications whereas

Pumped Hydro Storage (PHS), Compressed Air Energy Storage (CAES), Thermal Energy Stor-

age (TES), large-scale batteries, flow batteries, fuel cells and solar fuel fall into the category of

energy applications. However, this simple classification does not reflect the wide range of tech-

nical parameters of storage devices. Since electrical energy can be stored in different forms

of energy such as mechanical, thermal, chemical, electromagnetic, and electrochemical, etc,

storage technologies can also be classified by the form of storage into mechanical, thermal,

chemical, electromagnetic, and electrochemical storage devices. The classification of energy

storage technologies according to the form of stored energy is presented in Fig. 2.5 [8, 10, 12].

Energy Storage Systems

Mechanical Thermal Chemical ElectrochemicalElectromagnetic

Hydrogen

Methane

Fuel Cell

Molten 
Salts

Chillers

Pumped 
Storage

Compressed 
Air

Flywheel

Capacitors

Superconducting 
Electromagnetics

Conventional 
Batteries

High 
Temperature 

Batteries

Flow 
Batteries

Figure 2.5: Classification of ESS Technologies

Below is a brief description of the energy storage technologies that are already commercially

used or have a great potential in utility applications, focusing specifically on applications with

wind generation.

2.3.3.1 Mechanical ESS

2.3.3.2 Pumped Hydro Storage

PHS is the largest and most mature energy storage technology available with more than 120

GW installed capacity, accounting for nearly 99% of the worldwide installed storage capacity

[8, 10].

A conventional PHS system (Fig. 2.6) consists of two large water reservoirs, electric ma-

chine (motor/generator) and reversible pump-turbine group or pump and turbine separated. Dur-

ing off-peak hours, water is pumped from the lower reservoir to store in the upper one, consid-

ered as a charging process. During discharging process at peak hours, or more in general, when
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needed, water from the upper reservoir is released and flows through hydro turbines which are

connected to generators to produce electrical energy.

Figure 2.6: Pumped Hydro Storage System [8]

PHS has several technical advantages over other storage technologies. It uses familiar tech-

nology and has simple principle of operation, which allowed the installation of large-scale PHS

facilities. Another advantage of PHS is the ability to size the facility independently for power

and energy. The power capacity of a pumped hydro facility depends on the size and number

of turbines generating power while energy capacity depends on the water volume and height of

the reservoirs. As a result, the energy capacity of a pumped hydro facility is independent of its

discharge rate.

PHS also has some disadvantages. It has a relatively low energy density, thus it is best

implemented at large scales. The cost of such projects can be enormous and impacts on the

environment can be significant. Besides, locations for such projects are limited by geographical

conditions. Therefore, the flexibility of its application is low.

PHS has large power and energy rating, long lifetime, high efficiency and very small dis-

charge losses. The main applications of PHS with wind integration include time-shifting, fre-

quency control and non-spinning reserve supply. Due to its slow response time, PHS is not

suitable for suppressing wind fluctuations.

2.3.3.3 Compressed Air Energy Storage

CAES is a technology known and used since the 20th century for many industrial applica-

tions. The first commercial CAES was a 290 MW unit built in Hundorf, Germany in 1978. The

second commercial CAES was a 110 MW unit built in McIntosh in Alabama, USA in 1991.
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The third one, the largest ever, is a 2700 MW plant that is planned for construction in Norton in

Ohio, USA [10, 16].

In a CAES system (Fig. 2.7), electrical energy is stored by compressing a large volume of

air and storing it in either an underground structure (salt cavern, abandon mines, rock structures)

or an above-ground system of vessels or pipes. Underground storage can be less expensive, but

it depends on the availability of geographical locations. The electrical energy is released by

feeding the stored compressed air into the inlet of a combustion turbine.

AIR

MOTOR COMPRESSOR

EXHAUST

WASTE HEAT

EXPANDER TURBINE GENERATOR

Fuel (natural gas)

SALT 
DOME

Figure 2.7: CAES System [18]

Similar to PHS, power and energy capacity of a CAES system are independent. Its input

power rating depends on the size of the compressor and output power rating depends on the

size of the turbine-generator. The energy capacity depends on the size and pressure rating of

the cavern or other air storage system. With such large scale, capital costs in $/kW and $/kWh

of this storage technology is usually cheaper than others (with the possible exception of PHS)

provided a suitable location is found. This makes CAES highly attractive for large wind power

applications.

With the high power and energy capacity, CAES system is another choice for energy appli-

cations with wind power generation, as similar to PHS system. However, this technology has

quite low efficiency and its installation is also limited by topographical conditions.

2.3.3.4 Flywheel Energy Storage (FES)

The first FES generation, which uses a large steel rotating body on mechanical bearings,

was available since 1970s. A FES is a mass rotating about an axis, which can store energy

mechanically in the form of kinetic energy. Typically, rotating masses rest on a very low friction

bearings (e.g., magnetic) in evacuated chambers designed to reduce friction as much as possible.
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These rotating masses are coupled with a motor-generator, set inside a housing at very low

pressure to reduce self-discharge losses [8, 10, 12, 16].

During charging process, inertial masses are accelerated to a very high speed which can

reach from 20,000 to over 50,000 rpm. The energy is stored in the flywheel by keeping the

rotating body at a constant speed. During the discharging process, the flywheel releases energy

and drives the machine as a generator.

The main advantages of FES are the excellent cycle stability, low maintenance cost, high

power density and high efficiency. FES are generally considered short discharge duration de-

vices with instantaneous response time, making it a choice for power quality applications such

as suppressing fast wind power fluctuation, providing ride-through of interruptions of several

seconds or bridging the shift between two sources. Since frequent cycling and continuous op-

eration wear down mechanical components, life expectancy of this storage device is a concern.

FES have an expected life cycle of 100,000 charge-discharge cycles, limited by mechanical

wear [10, 12].

2.3.3.5 Electromagnetic ESS

Electrical energy is really difficult to be stored in the form of electricity, hence most storage

technologies seek to store electrical energy by first converting it into other forms of energy.

However, there are two technologies storing electrical energy as electricity, i.e., capacitors and

superconducting electromagnets [12].

2.3.3.6 Capacitors and Super-Capacitors

The most direct and literal way of storing electrical energy is with a capacitor. In its simplest

form, a capacitor consists of two metal plates separated by a non-conducting material called a

dielectric. When one plate is charged with electricity from a direct-current source, the other

plate will induce in it charges of the opposite sign. Energy is stored in the electrical field

between the two plates. The main problem associated with conventional capacitors is the low

energy density. If a large capacity is required, the area of the dielectric must be very large and

the use of large capacitors is relatively uneconomical [12, 16].

Recent progress in electrochemical capacitors, also called double layer, super-capacitors or

ultra-capacitors, leads to capacitors with much higher energy density than conventional ones,

thus enabling much more compact designs. In super-capacitors, electrical energy is stored by

means of an electrolyte solution between two solid conductors rather than the solid dielectric

between electrodes as in conventional capacitors. The electrodes are often made from porous

carbon or another high surface area material. Since the surface area of activated carbons is very

high and since the distance between the plates is extremely small (less than 1 nm), very large

capacitances and stored energy are possible using super-capacitors. Some double layer capaci-

tors have a voltage rating at or above 600 V, which makes them suitable for power quality and

intermittent renewable fluctuation suppression applications. Their disadvantages include inter-
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dependence of the cells, sensitivity to cell voltage imbalances and maximum voltage thresholds,

and safety issues, including electrical, fire, chemical, and explosion hazards. Their main advan-

tages are long life cycle and short charge/discharge time [12, 16].

2.3.3.7 Superconducting Magnetic Energy Storage (SMES)

In SMES, electrical energy is stored in a magnetic field created by the flow of direct current

in a coil of cryogenically cooled, superconducting material. Once the superconducting coil is

charged, the current will not deteriorate and the magnetic energy can be stored indefinitely.

The stored energy is then released by discharging the coil. Cryogenic refrigeration is required

to keep the device cold enough to maintain superconducting properties. SMES units have fast

response time (under 100 ms), life expectancy independent of duty cycle, high efficiency (above

95%) and reliability, and “permanent” storage which allows the energy to be held indefinitely

with no standby losses due to heat dissipation, evaporation, etc. This makes SMES an excellent

choice for Uninterrupted Power Supplies (UPS) and power quality applications.

2.3.3.8 Electrochemical ESS (Batteries)

Electrochemical energy storage technologies, also called Battery Energy Storage (BES)

technology, store electricity in electrochemical form. This technology has a history even longer

than that of PHS technology. It is the oldest and widely used form of electrical energy storage,

which was first developed in the early nineteenth century and played an important role in early

investigations into electricity. BES can be divided into three main categories, i.e., conventional,

high temperature, and flow. BES technology has limited cycling times due mainly to electrode

fouling and electrolyte degradation. Major focus has been drawn into developing advanced

batteries using advances in materials and designs.

2.3.3.9 Conventional BES Technology

A conventional BES is made up of one or more electrochemical cells. Each cell consists

of an anode and a cathode, separated by an electrolyte (liquid, paste or solid). During charging

process, the battery is charged by an internal chemical reaction under a potential applied across

both electrodes while during discharging process, the reaction is reversible and let the battery

release the absorbed energy. The most commonly used BES for utility scale applications include

Lead-Acid (LA) battery, Nickel-Cadmium (NiCd) battery and Lithium-Ion (Li-ion) battery.

• Lead-Acid Batteries LA is the oldest and most technologically mature battery technology.

A lead-acid cell is composed of a lead negative electrode and a lead oxide positive elec-

trode in a common sulfuric acid electrolyte. This technology remains widely used in most

new applications due to its low cost and ready availability, despite of many disadvantages

such as low specific energy and power, short life cycle, high maintenance requirements

and environmental hazards associated with lead and sulfuric acid. However, with the

improvements in chemistry, mechanical and electrical design, and operational and man-
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ufacturing techniques, many of these disadvantages have been mitigated, and lead-acid

remains the most popular energy storage technology for large-scale applications [7, 12].

Lead-acid battery is generally best suited to power quality applications. For applications

with wind generation, it is mostly suitable for grid frequency support application. Lead-

acid batteries are categorized in several ways, i.e., method of electrolyte management

(flooded vs. valve-regulated), grid alloys (lead-antimony vs. lead-calcium), and appli-

cation (cranking vs. deep-cycle). The performance can vary greatly between different

types, hence it is important to choose the right type of LA batteries for a given appli-

cation. The round trip efficiency of this technology is between 75 and 85% and the life

time, depending on technology, is between 3-10 years [3, 7, 12].

• Nickel-Cadmium Batteries

Like LA batteries, NiCd battery is a relatively mature technology, and can easily be built

into relatively large systems. NiCd batteries has an operating principle similar to that of

LA batteries but their construction is slightly different from that of LA batteries, with

nickel oxyhydroxide and cadmium electrodes in a common potassium hydroxide elec-

trolyte. This technology has relatively low round trip efficiency, between 60 and 70%,

and cadmium is highly toxic. Nevertheless, it is more expensive than LA battery, it is still

an attractive technology since it is technologically mature and offer a longer life span than

LA battery of around 10-15 years. The most suitable application with wind generation of

this technology is also grid frequency support [3, 7, 12].

• Lithium-Ion Batteries

Lithium-Ion technology is extensively used in consumer electronics due to their high

energy density, low standby losses and tolerance to cycling. They are mostly employed

in electric vehicles market and are also being considered for utility applications. This

technology still faces significant cost barriers and some versions do not tolerate deep

cycling well. Nevertheless, it has demonstrated the ability to provide a very wide range

of grid benefits. It has a round trip efficiency of between 85 and 95% with a lifetime of

10 to 15 years. Since it is still a relatively young technology for grid applications, cost

estimates vary widely. In addition, the high capital cost limits the large-scale use of this

technology for wind power integration support [12].

2.3.3.10 High Temperature Battery Technology

High temperature batteries, or molten salt batteries, are similar to conventional ones, but are

based on electrochemical reactions which only occur at high temperatures. The most common

batteries of this technology are sodium sulfur (NaS) and sodium nickel chloride, among which

NaS is much more common [12].

Originally, NaS battery was developed for electric vehicle applications. Later, it was used

for the utility market by the Tokyo Electric Power Company (TEPCO) and NGK Insulators,
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Ltd., both based in Japan. By the late 1990s, NGK and TEPCO deployed a series of large-scale

demonstration systems, including two 6 MW, 48 MWh installations at TEPCO substations. In

2002, TEPCO and NGK announced full commercialization of their NaS battery line under the

trade name NaS, for power quality and load shifting applications. Also in 2002, the first NaS

battery was installed in the U.S. at an American Electric Power (AEP) laboratory at Gahanna,

Ohio. NaS batteries have also been tested for wind applications, including mitigating wind

power fluctuations and time-shifting wind power [7].

NaS battery is most suited for energy and/or power applications, including load leveling,

energy arbitrage, and renewables output smoothing, although their fast response time (1 ms)

and the ability to provide pulse power make them suitable for a very wide range of applications.

NaS battery is still in the early stages of commercialization, especially on the grid scale.

Its round trip efficiency is generally high (70 to 90%), although the parasitic energy required

to maintain the batteries in a molten state may reduce this somewhat. Energy outputs range

up to tens of MWh, with discharge capacities from 50 kW to 100 MW. The main barrier to its

deployment is the high cost and similar to many other battery technologies, is contains toxic

materials which lead to an ecological problem for disposal. There are also safety concerns due

to high operating temperatures and explosive nature of sodium when exposed to water [12].

2.3.3.11 Flow Battery Technology

Flow battery is electrochemical battery in which the active materials are contained in the

electrolyte rather than in the solid electrodes. These electrolytes are stored in external tanks

and pumped through reaction stacks which convert the chemical energy into electrical energy

during discharge cycles, and vice-versa during charge cycles [7].

The most important advantage of a flow battery is the independent sizing for energy and

power. Its energy rating depends on the volume of electrolyte while power rating depends on

the size of the reaction stacks. The nature of flow battery makes it particularly suitable to

large-scale systems. The electrolyte does not wear out, thus a relatively long service life is

expected. In addition, the flowing electrolyte simplifies thermal management as well as some

aspects of maintenance. However, flow battery is a complex system with pumps, plumbing, and

other ancillary components, which increases the cost of maintenance and leakage losses than

conventional ones. Flow battery is a relatively immature technology and has not yet been tested

widely [7, 12].

Flow battery is most suited for energy applications such as peaking and spinning reserve. Its

full power discharge ranges from four to ten hours. Life expectancy is 10 to 15 years, although

refurbishment can extend the lifetime to 20 years. Efficiency is in the range of 60 to 70% with

nearly instantaneous response times for the battery itself (0.35 ms). Although the pumps and

power electronics have a slower response time, the overall expected response time is several

milliseconds [12].
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There are two types of flow batteries: hybrid and redox. Hybrid flow batteries use electro-

active components deposited as a solid layer. The battery cell contains one battery electrode and

one fuel cell electrode, with the energy limited by the size of the battery electrode. Redox flow

batteries are a reversible fuel cell with the electro-active components dissolved in the electrolyte.

The energy is related to electrolyte volume and power is related to the electrode area in the cells.

Common redox flow battery chemistries are zinc bromine and vanadium [12].

Vanadium redox batteries have demonstrated their applications with PV and wind gener-

ation, load leveling, and power quality and reliability, including spinning reserve. To support

wind generation, they can be used for time shifting as well as forecast hedging applications.

Zinc bromide batteries are still in the early stages of development, but have the potential for low

cost and high energy density. However the zinc builds up unevenly on the electrodes and as a

result the battery must be fully discharged every 5 to 10 cycles. Bromine is extremely corrosive,

which is potentially a human and environmental hazard. Zinc bromine batteries are best suited

for applications requiring high energy density instead of high power density such as bulk energy

storage [12].

In Figure 2.8, system power ratings and discharge time of different ESS technologies are

provided. As shown in the figure, CAES and PHS have discharge time in tens of hours and

Figure 2.8: ESS ratings [19]

their corresponding power capacities reach as high as 1000 MW. On the contrary, various elec-

trochemical batteries and flywheels are positioned around lower power ratings and shorter dis-

charge times.

More information on advantages and disadvantages of different ESS technologies for wind

power integration can be found in Table A.2 in Appendix A.
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2.4 Summary

This chapter has presented possible applications of ESSs to support wind generation. ESSs

can be used for either time-shifting wind energy, hedging wind forecast errors, mitigating wind

curtailment due to limited transmission capacity, stabilizing output frequency of wind farms, or

maintaining grid frequency within a nominal range in case of imbalance between generation and

load. An ESS could be used for multiple applications but these applications should not conflict

with each other and bring higher benefits compared to the case with a single application.

Parameters characterizing an ESS such as power and energy capacity, round-trip efficiency,

power and energy density, depth of discharge, frequency of discharge, response time, ramp rate,

service life and system cost have also been described. A brief description of ESS technologies

for wind applications that are already commercially used or have a great potential in utility ap-

plications has also been provided. There are some technologies suitable for energy applications

such as PHS and CAES while others are more suited for power applications such as flywheels,

capacitors and batteries.
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CHAPTER3
Deterministic Multi-period Optimal Power Flow

with Energy Storage Systems

3.1 Introduction

The OPF problem was first formulated by Carpentier in 1962 and has become a predominant

method for security and economic analysis in support of power system operation and control.

An OPF problem finds the optimal solution to an objective function subject to the power flow

constraints and other operational constraints such as generator minimum and maximum output

constraints, transmission stability and voltage constraints, and limits on switching mechanical

equipment. There are a variety of OPF formulations with different constraints, different ob-

jective functions, and different solution methods. Formulations that use the exact AC power

flow equations are known as AC OPF. Simpler versions which assume all voltage magnitudes

are fixed and all voltage angles are close to zero are known as DC OPF. DC stands for direct

current, but it might cause confusion: DC OPF is a linearized form of a full AC OPF, not a

power flow solution for a direct current network. AC OPF problems refer to either a full AC

OPF which simultaneously optimizes real and reactive power or a decoupled AC OPF which

separately optimize real and reactive power and iterate between the two to reach an optimal

solution [20]. In this research work, only real power are optimized, voltage and reactive power

are assumed constant.
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Chapter 3. Deterministic Multi-period Optimal Power Flow with Energy Storage
Systems

DC OPF is a linear approximation of the OPF problem. In a DC OPF model, power losses

and reactive power are implicitly ignored, which results in the negligibility of transmission

losses. AC OPF model, on the other hand, is based on the natural power flow characteristics

of the network, in which transmission losses and reactive power are fully considered. Conse-

quently, the AC OPF model can capture realistic physical power flows of the system better than

the DC one. It is also much more accurate and reliable when issues such as congestion and

voltage constraints are concerned. In this work, an AC OPF model is used for operation and

planning study of storage devices.

This chapter presents a general review on the conventional deterministic AC OPF problem,

including its mathematical formulation and applications. The model of ESSs is then introduced

and included in the OPF problem, resulting in two OPF models, namely single-period and

multi-period OPF. Finally, a methodology to define candidate buses for ESS installation based

on Lagrangian multipliers, a byproduct of the OPF solution, is presented.

3.2 Deterministic AC Optimal Power Flow model

Generally, an OPF problem has the form [21]:

Min f(x, u)

s.t. g1(x, u) = 0 (3.1)

g2(x, u) ≤ 0

The objective function f(x, u) represents the optimization goal which might be minimization of

generation cost, minimization of active power losses, minimization of reactive power losses,

or maximization of social benefit, depending on specific applications; g1(x, u) and g2(x, u)

are system equality and inequality constraints, respectively; vector x includes state variables

such as bus voltage magnitude and angle, branch currents, generator reactive power output,

etc; vector u contains control variables such as real and reactive power generation, generator

voltage control settings, transformer tap settings, etc. Depending on the selection of f, g, and

h, the OPF problem may become a linear, mixed integer-linear, nonlinear (e.g., non-convex), or

mixed integer-nonlinear programming problem.

3.2.1 Objective function

In this work, the objective function minimizes the total cost of generation. Generation cost

of each generating unit is modeled as a quadratic function of its real output power, i.e., Ci(PGi).

The objective function of the OPF problem is, therefore:

Min

T∑
t=1

ng∑
i=1

(c2iP
t2

Gi + c1iP
t
Gi + c0i) = Min

T∑
t=1

(PCt) (3.2)

28



i
i

“Nhi_PhD_thesis_v3” — 2016/11/24 — 20:33 — page 29 — #46 i
i

i
i

i
i

3.2. Deterministic AC Optimal Power Flow model

where, T is the optimization horizon considered, ng is the total number of generating units; c0i ,

c1i , and c2i are cost coefficients describing the quadratic cost curve of generating unit at bus

i; P tGi is real generation power at bus i and time period t. The real generation power P tGi is a

control variable of the OPF problem.

3.2.2 Equality constraints

Equality constraints mainly involve active and reactive power balance equations at each

node i in each period t:

P ti = P tGi − P
t
Li = V t

i

nb∑
k=1

V t
k [Gik cos(θti − θtk) +Bik sin(θti − θtk)] +GiiV

2
i (3.3)

Qti = QtGi −Q
t
Li = V t

i

nb∑
k=1

V t
k [Gik sin(θti − θtk)−Bik cos(θti − θtk)]−BiiV 2

i (3.4)

where, nb is the total number of system buses; P tGi and QtGi are real and reactive generation

power at bus i in period t, respectively; P tLi and QtLi is real and reactive power of load at bus i

in period t; V t
i and V t

k are voltage magnitude of bus i and k in period t, respectively; θti and θtk
are voltage angle of bus i and k in period t, respectively; Gik and Bik are the real and imaginary

part of the ikth element of the bus admittance matrix.

3.2.3 Inequality constraints

Inequality constraints include minimum and maximum limits on control and state variables

such as real and reactive generation power, bus voltage and line current magnitudes, generator

ramp-up and ramp-down.

Real and reactive generation power at bus i in hour t are limited by (3.5) and (3.6):

PminGi ≤ P
t
Gi ≤ P

max
Gi (3.5)

QminGi ≤ Q
t
Gi ≤ Q

max
Gi (3.6)

where, PminGi
and PmaxGi

are lower and upper limits of real generation power at bus i; QminGi
and

QmaxGi
are lower and upper limit of reactive generation power at bus i.

Minimum and maximum limits on voltage magnitude of each bus i are represented by equa-

tion (3.7). These limits are often given by very strict standards since too high or too low voltages

could lead to power system instability.

V min
i ≤ V t

i ≤ V max
i (3.7)

where, V min
i and V max

i are lower and upper limits of voltage magnitude at bus i.

The currents flowing on each branch are limited by equations (3.8) and (3.9), which rep-

resent the thermal limits of transmission lines. To make the mathematics less complex (by
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Chapter 3. Deterministic Multi-period Optimal Power Flow with Energy Storage
Systems

avoiding the square root in the calculation of current magnitude), limits are enforced on the

square of current magnitude instead of the current magnitude only.

(Itij)
2 ≤ (Imaxij )2 (3.8)

(Itji)
2 ≤ (Imaxji )2 (3.9)

where, Itij and Itji are magnitude of the current flowing from bus i to bus j and from bus j to bus

i in period t respectively; Imaxij = Imaxji is the upper limit of current flow from bus i to bus j or

from bus j to bus i respectively.

Ramp-up and ramp-down limits on each generating unit are imposed by equations (3.10)

and (3.11):

P tGi − P
t−1
Gi
≤ RUi (3.10)

P t−1Gi
− P tGi ≤ RDi (3.11)

where, RUi and RDi are respectively ramp-up and ramp-down limits of generating unit at bus i.

This AC OPF formulation is a nonlinear programming (NLP) problem. The presence of

non-linearity and non-convexity in the objective function and constraints makes the OPF prob-

lem computationally challenging. However, the main advantage of NLP formulations for the

OPF problem is that they accurately capture system behavior.

3.3 Energy Storage System model

A storage device is characterized by its rated energy, rated charging/discharging power, and

efficiencies. In this model, the ESS is used to time-shift electric energy from wind generation.

The storage device is charged from wind energy in excess of load or transmission capacity and

then discharged when necessary. The storage charging and discharging capabilities are modeled

with two separate variables, i.e., charging power Pch and discharging power Pd, with corre-

sponding charging and discharging efficiencies, ηch and ηd. Operation of the ESS is modeled

using the energy balance equation (3.12).

Bt
i = Bt−1

i + (ηchiP
t
chi
− P tdi/ηdi)∆t (3.12)

where, Bt
i and Bt−1

i are energy level of ESS at bus i in period t and hour t-1, respectively; P tchi
and P tdi are real charging power and discharging power of ESS at bus i in period t, respectively;

ηchi and ηdi are respectively charging and discharging efficiency of ESS at bus i; ∆t is the time

interval between two consecutive periods.

After a cycle of time, the model assumes that the storage device must return to the initial

status for the next cycle. Consequently, the energy continuity constraint (3.13) is enforced to

make sure energy level of the ESS at the end of the simulation period is equal to its initial
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3.3. Energy Storage System model

energy.

Bt=T
i = B0

i (3.13)

where, T is the optimization period considered; B0
i is the initial energy level of the ESS at bus

i; Bt=T
i is the energy level of the ESS at the end of the simulation period.

Following are limits on ESS charging and discharging power, and ESS energy level:

Pminchi
≤ P tchi ≤ P

max
chi

(3.14)

where, Pminchi
and Pmaxchi

are lower and upper limits of charging power of ESS at bus i.

Pmindi
≤ P tdi ≤ P

max
di

(3.15)

where, Pmindi
and Pmaxdi

are lower and upper limits of discharging power of ESS at bus i.

Bmin
i ≤ Bt

i ≤ Bmax
i (3.16)

where, Bmin
i and Bmax

i are lower and upper limits of energy level of ESS at bus i.

Equations (3.14) and (3.15) show that the charging and discharging rates of the ESS are

limited to its rated charging/discharging power. Equation (3.16) indicates that energy level of

the ESS at each period is limited to its available energy capacity or to the space to store energy

in this device.

The ramp-up and ramp-down limits of charging and discharging power of the storage device

are enforced by constraints (3.17) and (3.18):

(P tdi − P
t−1
di

)− (P tchi − P
t−1
chi

) ≤ RUsi (3.17)

(P t−1di
− P tdi)− (P t−1chi

− P tchi) ≤ RDsi (3.18)

where, P t−1di
and P t−1chi

are discharging and charging power of the ESS at bus i in period t-1,

RUsi and RDsi are respectively ramp up and ramp down limits of ESS at bus i.

Here, the ESS is assumed to be interfaced with the grid using a power electronic converter.

Hence, in an AC network, it also absorbs or generates reactive power while charging and dis-

charging active power. This generation or absorption of reactive power from the ESS does not

affect its energy level. The generation or absorption of reactive power are limited by constraints

(3.19) and (3.20).

Qminchi
≤ Qtchi ≤ Q

max
chi

(3.19)

where,Qtchi is the reactive charging power of ESS at bus i in period t,Qminchi
andQmaxchi

are lower
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Chapter 3. Deterministic Multi-period Optimal Power Flow with Energy Storage
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and upper limits of reactive charging power of ESS at bus i.

Qmindi
≤ Qtdi ≤ Q

max
di

(3.20)

where, Qtdi is the reactive discharging power of ESS at bus i in period t, Qmindi
and Qmaxdi

are

lower and upper limits of reactive discharging power of ESS at bus i.

3.4 Multi-period Optimal Power Flow model with Energy Storage Sys-

tems

The traditional OPF problem without storage deals with static optimization, in which there

is no correlation across time and the optimal solution is independently solved at each period

considered (e.g., one hour). The addition of ESSs into an OPF model introduces time inter-

dependence, i.e., ESS can be decided to charge at periods of high wind or low electricity price

and discharge at periods of low wind or high electricity price. Besides, the amount of charg-

ing/discharging power of ESSs at the current period is partly dependent on its energy level at

the previous period. Thus, the optimization problem in each period become coupled, yielding

an optimization problem across time.

An OPF problem with ESS integration can be formulated into single-period and multi-

period models. In single-period model, the problem is formulated to run independently for

each period while in multi-period one, it is run once for the whole optimization period. The

link between period t and t+1 in single-period model is performed through the energy balance

equation (3.12) of the ESSs. The objective function for both models are presented in equations

(3.21) and (3.22).

• For single-period model: The objective function is to minimize the hourly generation cost

of all generating units:

Min

ng∑
i=1

(c0i + c1iP
t
Gi + c2iP

t2

Gi) = Min PCt (3.21)

• For multi-period model: The objective function is to minimize the total generation cost

of all generating units:

Min

T∑
t=1

[

ng∑
i=1

(c0i + c1iP
t
Gi + c2iP

t2

Gi)] = Min

T∑
t=1

PCt (3.22)

With the addition of ESSs, the objective functions (3.21) and (3.22) become:
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3.4. Multi-period Optimal Power Flow model with Energy Storage Systems

• For single-period model:

Min

ng∑
i=1

(c0i + c1iP
t
Gi + c2iP

t2

Gi) +

ns∑
j=1

(cdjP
t
dj
− cchjP

t
chj

) (3.23)

• For multi-period model:

Min
T∑
t=1

[

ng∑
i=1

(c0i + c1iP
t
Gi + c2iP

t2

Gi) +
ns∑
j=1

(cdjP
t
dj
− cchjP

t
chj

)] (3.24)

The complementary condition which requires that the ESS is not charged and discharged si-

multaneously is enforced based on the Locational Marginal Price (LMP) λp. For energy storage

capacity at bus i, if λpti is strictly positive then P tchi and P tdi are never simultaneously nonzero,

i.e. simultaneous charging and discharging will not occur. Negative LMPs are common in

power markets and may result from negative offer curves or binding line flow constraints. A

negative LMP implies that an ESS would be paid to charge and pay to discharge at the same

time. This can result in a simultaneous charging and discharging of the ESS [22]. Accordingly,

complementary constraints are managed by applying suitable fictitious charging and discharg-

ing costs (cch and cd) for the ESS. When charging, the ESS is treated as a normal load. There-

fore, the operational cost of charging is the LMP at the ESS bus, thus the charging cost cch is set

to zero. To prevent simultaneous charging and discharging, the operational cost of discharging

cd is set to a very small quantity, i.e., cd = 10−2.

The objective function in both models has to fulfill equality and inequality constraints in

each period. Equality constraints include active and reactive power balance equations (3.25),

the energy balance equations (3.12) and the energy continuity equations (3.13) of the ESS.

P ti =P tGi − P
t
Li + P tdi − P

t
chi

= V t
i

nb∑
k=1

V t
k [Gik cos(θti − θtk) +Bik sin(θti − θtk)] (3.25)

Qti =QtGi −Q
t
Li +Qtdi −Q

t
chi

= V t
i

nb∑
k=1

V t
k [Gik sin(θti − θtk)−Bik cos(θti − θtk)] (3.26)

Inequality constraints include network inequality constraints (3.5) - (3.11), and ESS in-

equality constraints (3.15) - (3.20).

The Lagrangian function at each period t of the OPF problem can be written as:

Lt =PCt +
nb∑
i=1

λpti{P ti −
nb∑
k=1

V t
i V

t
k [Gik cos(θti − θtk) +Bik sin(θti − θtk)]−GiiV 2

i }

+
nb∑
k=1

λqti{Qti −
nb∑
k=1

V t
i V

t
k [Gik sin(θti − θtk)−Bik cos(θti − θtk)] +GiiV

2
i }
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Chapter 3. Deterministic Multi-period Optimal Power Flow with Energy Storage
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+

ng∑
i=1

µpti,max(Pmaxi − P ti ) +

ng∑
i=1

µpti,min(P ti − Pmini ) +

ng∑
i=1

µqti,max(Qmaxi −Qti)

+

ng∑
i=1

µqti,min(Qti −Qmini ) +
nb∑
i=1

γti,max(V max
i − V t

i ) +
n∑
i=1

γti,min(V t
i − V min

i )

+
nbr∑
i=1

ζti,max((Imaxi )2 − (Iti )
2) +

nbr∑
i=1

ζti,min((Iti )
2 − (Imini )2) +

ns∑
i=1

ψpti,max(Pmaxdi
− P tdi)

+
ns∑
i=1

ψpti,min(P tdi − P
min
di

) +
ns∑
i=1

ψqti,max(Qmaxdi
−Qtdi) +

ns∑
i=1

ψqti,min(Qtdi −Q
min
di

)

+
ns∑
i=1

φpti,max(Pmaxchi
− P tchi) +

ns∑
i=1

φpti,min(P tchi − P
min
chi

) +
ns∑
i=1

φqti,max(Qmaxchi
−Qtchi)

+
ns∑
i=1

φqti,min(Qtchi −Q
min
chi

) (3.27)

where, nbr is the number of branches of the system; λpti, λq
t
i , µp

t
i,max, µpti,min, µqti,max,

µqti,min, γti,max, γti,min, ζti,max, ζti,min, ψpti,max, ψpti,min, ψqti,max, ψqti,min, φpti,max, φpti,min,

φqti,max, and φqti,min are Lagrangian multipliers.

At the optimal solution, the following Karush-Kuhn-Tucker (KKT) condition must be sat-

isfied [23]:

∂Lt

∂P ti
=
∂PCt

∂P ti
+λpti−µpti,max+µpti,min−ψpti,max+ψpti,min+φpti,max−φpti,min = 0 (3.28)

The LMP of real power at each node i in each period t, which is the marginal cost of serving

the next incremental demand at that bus, is defined as:

LMP ti = λpti = −∂PC
t

∂P ti
+µpti,max−µpti,min+ψpti,max−ψpti,min−φpti,max+φpti,min (3.29)

3.5 Methodology to define candidate ESS locations

In this section, the methodology to define the most suitable candidate locations for ESSs is

described. It is performed on a daily basis, employing the OPF model described in 3.4. The

best candidate locations of ESSs are then defined based on the Lagrangian multipliers.

The OPF problem is formulated as a sparse and complete model, hence, the Lagrangian

multiplier λpti associated to the real power flow equation at bus i in period t represents the

variation of the total production cost with respect to the variation of real injected power at the

same bus, i.e., it is the Locational Marginal Price (LMP) at bus i in period t:

λpti = LMP ti =− ∂PCt

∂P ti
(3.30)

34



i
i

“Nhi_PhD_thesis_v3” — 2016/11/24 — 20:33 — page 35 — #52 i
i

i
i

i
i

3.6. Summary

According to the formulation of the OPF model, λpti includes the effects of both real losses and

congestions.

From the information provided by the Lagrangian multiplier λpti above, best candidate buses

and worst candidate buses for installing ESSs are identified. Indeed, buses with the highest

Lagrangian multipliers are selected as the best candidate buses, where any variation of real

injected power has greater impact on the production cost than other buses. As a result, if the

ESSs are installed at the best candidate buses, their operation will have higher influence on the

production cost. In particular, the procedure is described as below:

• Firstly, a base case OPF (without ESS installed) is solved. In this way, the Lagrangian

multiplier λpti is determined for each bus i at each hour t. At this step, constraints on

ESSs, including equations (3.12) and (3.15)-(3.16) are removed from the OPF problem.

Next, the following parameter dfi is computed for each bus i:

dfi =

T∑
t=1

|λpti| (3.31)

This parameter allows to take into account the effect of the ESSs not only for a specific

period, but considering the whole time horizon. It is then sorted: the highest values

indicate the most suitable buses for the installation of ESSs. The lowest values, on the

other hand, indicate the less sensitive candidates.

• Secondly, based on the total number of ESSs available, they are connected to the system

at the best candidate buses and the OPF problem, with all constraints included, is solved.

3.6 Summary

This chapter presents OPF models with ESS integration. The models are formulated to

minimize system production cost. The ESSs are used to support wind generation by shifting

wind from periods of high wind or low electricity price to periods of low wind or high electricity

price. The addition of ESSs into OPF models has introduced time correlation behavior, which

results in an optimization problem coupled across time. Consequently, the OPF problems with

ESS can be formulated into single-period model which runs independently for each period or

multi-period model which runs once for the whole optimization period. Mathematically, multi-

period model is a more proper optimization approach to deal with such time-coupled device as

ESSs. A methodology to determine candidate buses for ESS installation is also presented. It is

based on the Lagrangian multipliers, a byproduct of the OPF model.
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CHAPTER4
Optimization under Uncertainty

4.1 Introduction

A large number of problems in power system planning require that decisions to be made in

the presence of uncertainties. Uncertainties, for example, governs equipment failures, electric-

ity demand, and renewable generation, etc. These uncertainty sources can be categorized into

two types. The first is configuration uncertainty which relates to transmission line, generator

or other equipment failures, in other words, contingencies. The second category is input uncer-

tainty which relates to the limited knowledge on future values of such parameters as electricity

demand or generation. Probability distributions and scenario techniques are the common repre-

sentations of uncertainty. The selection of uncertainty representation depends on the goal of the

analysis, the level of underlying uncertainty and knowledge of the underlying uncertainty [24,

25]. In this work, the second category of uncertainty source, i.e., uncertainty in load and wind

generation, will be examined. Considering uncertainties in power system planning is becoming

more critical as renewable energy technologies, especially wind energy, play an increasing role

in the portfolio mix of electricity generation. A key difficulty in optimization under uncertainty

is to deal with an uncertainty space, which is usually huge and might lead to very large and

computationally intractable optimization models. Consequently, proper techniques for model-

ing random variables have to be applied.
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4.2. Load and wind variability

Figure 4.1: Daily load profiles in 4 seasons

There has been a variety of approaches developed to cope with the complexity of opti-

mization problems under uncertainty [26–45]. This chapter discusses the approaches that will

be adopted in the planning problems with ESSs in the next chapter, including cumulant-based

probabilistic approach and the classical recourse-based stochastic programming approach. The-

ory and methodology of these approaches will be presented.

4.2 Load and wind variability

4.2.1 Load variability

In Figure 4.1, the daily load profiles in 4 seasons of a year is presented [46]. Basically, short-

term variations of load (order of seconds to hours) are generally small. In longer term (order of

days to years), changes in load tend to be more predictable. The load follows predictable daily,

weekly (weekdays and weekends), and seasonal patterns. For example, there is a clear diurnal

pattern of morning hour up variations, late afternoon variations, and evening down variations.

The seasonal change of daylight and changes in the residential use of electricity as the daylight

varies with the season can be observed in the load profiles in different seasons, which results in

seasonal variations of the load. The load in each time period can be modeled by superimposing

a random noise to the mean load, which has been the basic load modeling method in power

system analysis. For the whole period considered, the usual practice in modeling the variability

of load is to use a normal distribution.
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Chapter 4. Optimization under Uncertainty

Figure 4.2: Daily wind profiles in 4 seasons

4.2.2 Wind variability

In Figure 4.2, the daily wind profiles in 4 seasons of a year is presented [46]. The key

difference is that load variations are better understood than wind variations. As can be observed,

wind power output is completely different from hour to hour and from day to day, which may

vary between zero and the maximum value for any time period. Wind power might be very high

in a windy day while pretty low in a non-windy day. On other days, it might be high during

night and low during daylight or vice versa. There is no clear pattern of the daily, monthly,

weekly or seasonal wind power. With this high variability of wind power, information from the

daily mean value or a normal distribution is insufficient to represent its stochasticity.

4.3 Probability representation of uncertainty

Different probability distributions are used to describe different kinds of uncertainty. The

following is description of two Probability Density Functions (PDFs), i.e., normal and beta

distribution, to be used in this research in the following chapters.

4.3.1 Normal distribution

General formula for the PDF of normal distribution, also called Gaussian distribution, for a

random variable X̃ is [47]:

f(x) =
1

σ
√

2π
e

(x−µ)2

2σ2 (4.1)
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4.3. Probability representation of uncertainty

−∞ ≤ x ≤ ∞ (4.2)

σ > 0 (4.3)

where, µ is mean value of the random variable, which is also called the location parameter; σ is

standard deviation of the random variable, which is also called the scale parameter.

The shape of a normal PDF can be seen in Figure 4.3.

Figure 4.3: PDF of a normal distribution

4.3.2 Beta distribution

General formula for the PDF of beta distribution for a random variable X̃ is [47]:

f(x) =
(x− b)α−1(a− x)β−1

B(α, β)(a− b)α+β−1
(4.4)

b ≤ x ≤ a (4.5)

a > 0 (4.6)

b > 0 (4.7)

where, a and b are upper and lower bounds of the random variable; α and β are the shape

parameters; B(α, β) is beta function and:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(4.8)

Figure 4.4 is an example of beta PDF for four different values of the shape parameters α

and β.
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Figure 4.4: PDF of beta distribution

4.4 Cumulant-based probabilistic approach

4.4.1 Mathematical background

In this section, fundamental concepts in probability theory and statistics are presented.

4.4.1.1 Functions of random variables

A random variable X̃ is a function that assigns a value to each of an experiment outcomes.

There are two types of random variables, i.e., discrete and continuous. A continuous random

variable can take on any value in its sample space. On the contrary, a discrete variable is a

variable that can only take a countable number of distinct values.

Cumulative Distribution Function (CDF) F
X̃

(x) of a random variable X̃ is a function giving

the probability that X̃ is less than or equal to x, for every value x:

F
X̃

(x) = P{X̃ ≤ x} (4.9)

where P{·} denotes probability.

CDF of a continuous random variable can be defined in terms of its PDF f
X̃

(x):

F
X̃

(x) =

x∫
−∞

f
X̃

(x)dx (4.10)
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CDF of a discrete random variable can be formed as follows:

F
X̃

(x) =
∑
xi≤x

pi (4.11)

where pi is the probability corresponding to possible values xi of discrete random variable X̃ .

For a discrete random variable, Probability Mass Function (PMF) is used instead of PDF:

f
X̃

(x) =

{
P{X̃ = xi} if x = xi

0 if x 6= xi
(4.12)

Characteristic function ψ
X̃

(t) of a random variable X̃ is defined as follows [48]:

ψ
X̃

(t) = E(ejtX̃) =

+∞∫
−∞

ejtxdF
X̃

(x) (4.13)

where, j is the imaginary unit; t is a real variable; and E(·) is the mathematical expectation

operator.

4.4.1.2 Moments and cumulants

• Moments

For a continuous random variable X̃ , the rth (r ∈ {1, 2, 3, . . . }) order moment is [48]:

m
X̃r = E(X̃r) =

+∞∫
−∞

xrf
X̃

(x)dx (4.14)

The first order moment (r = 1) is called mean or expected value of X̃:

m
X̃

= m
X̃1 = E(X̃) =

+∞∫
−∞

xf
X̃

(x)dx (4.15)

A moment of a probability distribution of a random variable about its mean is called

central moment. The rth order central moment is as follows:

µ
X̃r = E[(X̃ −m

X̃
)r] =

+∞∫
−∞

(x−m
X̃

)rf
X̃

(x)dx (4.16)

The second central moment (r = 2) is called variance, denoted as σ2
X̃

, where σ
X̃

is the

standard deviation of X̃ .
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For a discrete random variable X̃ , the rth order moment is calculated:

m
X̃r = E(X̃r) =

ξ∑
i=1

pix
r
i (4.17)

where ξ is possible values and pi is the probability corresponding to value xi of X̃ .

Its mean is:

m
X̃

= m
X̃1 = E(X̃) =

ξ∑
i=1

pixi (4.18)

The rth order central moment is as follows:

µ
X̃r =

ξ∑
i=1

pi(xi −mX̃
)r (4.19)

• Cumulants

The cumulants of a probability distribution are a set of quantities that provide an alterna-

tive to the moments of the distribution [48].

Applying a logarithm operator to ψ
X̃

(t) in (4.13) and expanding by a McLaurin’s series,

the result is:

lnψ
X̃

(t) =
n∑
r=1

k
X̃r

r!
(jt)r + en (4.20)

where k
X̃r is defined as the rth (r ∈ {1, 2, 3, . . . }) order cumulant of X̃ , en is the error

of the expansion.

Cumulants can be obtained from moments and vice versa [49, 50]:
k
X̃1 = m

X̃1

k
X̃r+1 = m

X̃r+1 −
r∑
i=1

CirmX̃ikX̃r−i+1

(4.21)

and 
m
X̃1 = k

X̃1

m
X̃r+1 = k

X̃r+1 +
r∑
i=1

CirmX̃ikX̃r−i+1

(4.22)

where Cir are the binomial coefficients.

• Joint moments and joint cumulants

When random variables are dependent, their joint moments and joint cumulants, so joint

PDF and joint characteristic function, are needed to express their relationship. In prob-

ability theory and statistics, random variables are independent 1 if the realization of one
1Note that "independent" and "uncorrelated" are not the same. Two random variables X̃1 and X̃2 are uncorrelated
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variable does not affect the probability distributions of the others; otherwise, they are

dependent.

N continuous random variables X̃i (i = 1, 2, ...,N ) are jointly continuous if there is a

function f
X̃1,X̃2, ...,X̃N

(x1, x2, ..., xN ), called the joint PDF, such that:

P{X̃1 ≤ t1, X̃2 ≤ t2, ..., X̃N ≤ tN} (4.23)

=

t1∫
−∞

t2∫
−∞

...

tN∫
−∞

f
X̃1,X̃2, ...,X̃N

(x1, x2, ..., xN ) dx1dx2...dxN

The joint PDF must satisfy:

• f
X̃1,X̃2, ...,X̃N

(x1, x2, ..., xN ) dx1dx2...dxN ≥ 0

•
+∞∫
−∞

+∞∫
−∞

...
+∞∫
−∞

f
X̃1,X̃2, ...,X̃N

(x1, x2, ..., xN ) dx1dx2...dxN = 1

For N discrete random variables, we define the joint PDF as follows

P{X̃1 = x1, X̃2 = x2, ..., X̃N = xN} = f
X̃1,X̃2, ...,X̃N

(x1, x2, ..., xN ) dx1dx2...dxN

(4.24)

Analogously, the above joint PDF must satisfy:

• f
X̃1,X̃2, ...,X̃N

(x1, x2, ..., xN ) dx1dx2...dxN ≥ 0

•
∑
x1

∑
x2

...
∑
xN

f
X̃1,X̃2, ...,X̃N

(x1, x2, ..., xN ) = 1

The joint characteristic function ψ
X̃1,X̃2, ...,X̃N

(t1, t2, ..., tN ) of N random variables X̃i

(i = 1, 2, ...,N ) is defined as follows [51]:

ψ
X̃1,X̃2, ...,X̃N

(t1, t2, ..., tN ) = E(ejt
T X̃)

=

N times︷ ︸︸ ︷
+∞∫
−∞

+∞∫
−∞

...

+∞∫
−∞

ejt
Tx f

X̃1,X̃2, ...,X̃N
(x1, x2, ..., xN ) dx1dx2...dxN

(4.25)

where, t = [t1, t2, ..., tN ]T and x = [x1, x2, ..., xN ]T .

when their covariance Cov(X̃1, X̃2) is zero: Cov(X̃1, X̃2) = E(X̃1X̃2) − E(X̃1)E(X̃2) = 0. If two random
variables are uncorrelated, there is no linear relationship between them. If two random variables are independent,
they are also uncorrelated; however, the converse is not always true since they can still be dependent. The key point
here is that correlation is only a measure of linear dependence. The only case in which lack of correlation implies
independence is when the joint distribution of two random variables is Gaussian.
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The rth order joint moment can be obtained as [51]:

m
X̃
r1
1 ,X̃

r2
2 , ...,X̃

rN
N

= E(X̃r1
1 X̃

r2
2 ...X̃

rN
N )

=

N times︷ ︸︸ ︷
+∞∫
−∞

+∞∫
−∞

...

+∞∫
−∞

xr11 x
r2
2 ...x

rN
N f

X̃1,X̃2, ...,X̃N
(x1, x2, ..., xN ) dx1dx2...dxN

(4.26)

where, r1 + r2 + · · ·+ rN = r.

Similarly as in (4.20), expanding lnψ
X̃1,X̃2, ...,X̃N

(t1, t2, ..., tN ) using McLaurin’s series

[51], the result is:

lnψ
X̃1,X̃2, ...,X̃N

(t1, t2, ..., tN ) =
∞∑

r1,r2, ...,rN=0

k
X̃
r1
1 ,X̃

r2
2 ,...,X̃

rN
N

(jt1)
r1

r1!

(jt2)
r2

r2!
· · · (jtN )rN

rN !

(4.27)

where k
X̃
r1
1 ,X̃

r2
2 ,...,X̃

rN
N

is the rth order joint cumulant of the N random variables.

Suppose that Z̃ is a random variable, linearly combined by N random variables X̃i (i = 1,

2, ...,N ):

Z̃ = a1X̃1 + a2X̃2 + · · ·+ aNX̃N (4.28)

If the N random variables X̃i are independent, the rth order cumulant of Z̃ is calculated as

follows [51]:

k
Z̃r

= ar1kX̃r
1

+ ar2kX̃r
2

+ · · ·+ arNkX̃r
N

(4.29)

In contrast, k
Z̃r

is calculated by using some formulas [51, 52] as in (4.30) where the first

three cumulants are given:

k
Z̃1 = E(

N∑
i=1

aiX̃i) =
N∑
i=1

aikX̃1
i

k
Z̃2 = E[(

N∑
i=1

aiX̃i)
2]− [E(

N∑
i=1

aiX̃i)]
2

=

N∑
i=1

a2i kX̃2
i

+ 2

N∑
i=1,i<j

aiajkX̃i,X̃j

k
Z̃3 = E[(

N∑
i=1

aiX̃i)
3]− 3E(

N∑
i=1

aiX̃i)E[(
N∑
i=1

aiX̃i)
2] + 2[E(

N∑
i=1

aiX̃i)]
3

=

N∑
i=1

a3i kX̃3
i

+ 3

N∑
i=1,i 6=j

a2i ajkX̃2
i ,X̃j

+ 6

N∑
i=1,i<j<l

aiajalkX̃i,X̃j ,X̃l···

(4.30)
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4.4.2 Constructing probability distributions for random variables

For cumulant-based approaches, series expansions (e.g., Gram-Charlier, Edgeworth, etc.)

are widely used to estimate distribution functions of desired random variables from their cumu-

lants or moments. These expansions give an approximation of a PDF and/or a CDF of a random

variable around the Gaussian distribution: they are expected to give a good approximation if the

considered distribution is nearly Gaussian. However, if non-Gaussian distributions (e.g., Beta,

Weibull, discrete distributions) are taken into account, such input distributions will make output

distributions far from Gaussian distribution, and hence the accuracy of these approximations

could be significantly affected.

In this research, a technique is developed to enhance cumulant-based probabilistic opti-

mization approach for taking into account different types of input probability distributions of

practical interest and building distributions of output random variables. It effectively combines

Von Mises method and Gram-Charlier expansion [53]. This makes the proposed approach more

interesting from the practical point of view.

Von Mises method [50, 54, 55] allows to define a discrete distribution characterized by ν

impulses using the first (2ν-1) moments m0, m1, ..., m2ν−2. The steps to obtain the discrete

distribution are presented in the following, while theoretical rationale for the following formulas

can be found in [54, 56]

Determinants D0, D1, ..., Dν−1 are first defined as follows:

D0 = |m0| (4.31)

D1 =

∣∣∣∣∣∣
m0 m1

m1 m2

∣∣∣∣∣∣ (4.32)

Dν−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mν−1

m1 m2 · · · mν

...
...

. . .
...

mν−1 mν · · · m2ν−2

∣∣∣∣∣∣∣∣∣∣∣∣
(4.33)

If D0 to Dν−1 are positive, there exists a distribution with not less than ν impulses.

Next, the vectorm is built:

m = − [mν ,mν+1, ...,m2ν−1]
T (4.34)

and (4.35) is solved to obtain c:

[Dν−1]c = m (4.35)

where [Dν−1] is the matrix corresponding to determinant Dν−1.
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c is substituted in (4.36), solved to obtain x:

xν + cν−1x
ν−1 + · · ·+ c1x+ c0 = 0 (4.36)

Solution x is used to solve (4.37) for probabilities pi (corresponding to xi) and, eventually,

PDF and CDF can be obtained.

1 1 · · · 1

x1 x2 · · · xν

x21 x22 · · · x2ν
...

...
. . .

...

xν−11 xν−12 · · · xν−1ν





p1

p2

p3
...

pν


=



m0

m1

m2

...

mν−1


(4.37)

The desired discrete distribution is characterized by ν impulses with abscissas xi and cor-

responding probabilities pi.

Based on Von Mises method, an approximated approach was developed to obtain prob-

ability distribution for an output random variable [54], in which the continuous and discrete

distributions of input random variables are treated separately.

Assume that an output random variable Z̃i is the sum of two components:

Z̃i = Z̃ic + Z̃id (4.38)

where, Z̃ic and Z̃id are continuous and discrete parts, respectively.

In cumulant-based approaches, each output random variable is represented by a linear com-

bination of input random variables. When applying cumulant-based approaches in power sys-

tem, discrete distributions are usually used to represent input random variables such as random

branch outages, unscheduled generating unit outages, etc., while continuous distributions are

used for describing input random variables like load. Continuous part Z̃ic and discrete part Z̃id
are formed by continuous and discrete distributions of input random variables, respectively.

The approximated approach was originally proposed and tested by the authors of [54], as-

suming that continuous part has Gaussian distribution. In this case, the PDF of Z̃i is:

f
Z̃i

(x) =

ν∑
i=1

pifZ̃ic
(x− xi) (4.39)

where ν, xi, and pi are the number of impulses considered, abscissas, and corresponding prob-
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abilities of Z̃id , and f
Z̃ic

(·) is the PDF of the normally distributed Z̃ic [50]:

f
Z̃ic

(x) =
1√

2πσ
Z̃ic

exp(−
(x−m

Z̃ic
)2

2σ2
Z̃ic

) (4.40)

where m
Z̃ic

and σ
Z̃ic

are the mean and standard deviation of Z̃ic , respectively.

The CDF of Z̃i is as follows:

F
Z̃i

(x) =

ν∑
i=1

piFZ̃ic
(
x− xi −mZ̃ic

σ
Z̃ic

) (4.41)

where F
Z̃ic

(·) is the CDF of Z̃ic :

F
Z̃ic

(x) =
1√
2π

x∫
−∞

exp(− t
2

2
)dt (4.42)

However, for a practical application in power systems, various non-Gaussian distributions

need to be taken into account [53]. In this section, continuous part, that may be a non-Gaussian

distribution, is first approximated by Gram-Charlier expansion [57], then PDF and CDF of

random variable Z̃i are obtained by combining the discrete and continuous contributions:

f
Z̃i

(x) =

ν∑
i=1

pi[φ(xNi) + φ(xNi)

∞∑
l=1

clHl(xNi)] (4.43)

F
Z̃i

(x) =

ν∑
i=1

pi[Φ(xNi) + φ(xNi)

∞∑
l=1

clHl−1(xNi)] (4.44)

where, ν is the number of impulses considered; xNi = (x − xi − mZ̃ic
)/σ

Z̃ic
; xi and pi are

abscissas and probabilities corresponding to ν impulses of Z̃id , respectively; m
Z̃ic

and σ
Z̃ic

are

the mean and standard deviation of Z̃ic ; cl is a coefficient that can be obtained from cumulants

of Z̃ic ; Hl(·) is the lth order of the so-called Hermite polynominal; formulas for calculation of

cl and Hl(·) can be found in [58]; φ(xNi) and Φ(xNi) are the PDF and CDF of standard normal

distribution:

φ(xNi) =
1√
2π
e

−x2
2 (4.45)

Φ(xNi) =

x
Ni∫

−∞

1√
2π
e

−t2
2 dt (4.46)

It is worth noticing that for the technique to construct probability distributions for random

variables presented in this section a suitable value of the order of cumulants to be adopted in
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the computations should be selected, as it determines the maximum number of impulses that

can be considered in the resulting discrete distributions. The accuracy can be increased by

using moments of higher order (higher number of impulses ν used); however, since increasing

the number of impulses makes the method more cumbersome, accuracy and computational

intensity should be balanced [55].

4.4.3 Application of cumulants to Probabilistic Optimal Power Flow

The general model for OPF is presented in detail in Section 3.2. The relationship between

vectors of output and input variables is generally formulated as follows:

z = h(x) (4.47)

where, x is the vector of input variables; z is the vector of output variables; h(·) is a multivariate

nonlinear function mapping between input and output.

Cumulant-based POPF relies on the behavior of random variables when they are combined

in a linearized fashion [59] around the solution of a deterministic OPF. In the following, the

formation of output random variables from a linear combination of input random variables and

the steps to calculate cumulants and form probability distributions of desired output random

variables are presented.

At first, a deterministic OPF is solved. At the optimum, KKT optimality conditions must be

fulfilled [59].

Incorporating variables into the first-order KKT conditions, then:

F (z,x) = 0 (4.48)

where, F (·) is set of nonlinear equations determining the first-order KKT conditions.

The relationship between z and x is formed by taking full derivative of (4.48):

HL∆z + ∆x = 0 (4.49)

where, ∆z and ∆x are changes of vectors of output and input variables, respectively; HL is the

Hessian matrix of the Lagrangian function with respect to z.

Equation (4.49) is arranged as:

∆z = −H−1L ∆x (4.50)

When the input variables of the OPF problem are uncertain, the problem is defined as a

POPF problem. Each element x` (` = 1, 2, ..., N ) of vector x in (4.47) is considered as the

realization of a random variable X̃`. From relationships in (4.50), each element z` of z is,
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therefore, the realization of corresponding random variable Z̃`. Consequently, we have the

relationship between output and input random variables as follows:
Z̃1

Z̃2

...

Z̃N

 = M


X̃1

X̃2

...

X̃N

 (4.51)

where, M = −H−1L .

M can be written in the following form

M =


a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...

aN,1 aN,2 · · · aN,N

 (4.52)

then each output random variable Z̃` is a linear combination of input random variables X̃1, X̃2,

..., X̃N as follows:
Z̃1 = a1,1X̃1 + a1,2X̃2 + · · ·+ a1,NX̃N

Z̃2 = a2,1X̃1 + a2,2X̃2 + · · ·+ a2,NX̃N

...

Z̃N = aN,1X̃1 + aN,2X̃2 + · · ·+ aN,NX̃N

(4.53)

When N input random variables X̃` are independent, (4.29) is used to calculate cumulants

of output random variables. The rth order cumulant of `th output random variable Z̃` is:

k
Z̃`
r = ar`,1kX̃r

1
+ ar`,2kX̃r

2
+ · · ·+ ar`,NkX̃r

N
(4.54)

On the contrary, (4.30) is used and k
Z̃`
r is obtained as follows:

k
Z̃`

1 = E(

N∑
i=1

a`,iX̃i) =

N∑
i=1

a`,ikX̃1
i

(4.55)

k
Z̃`

2 = E[(
N∑
i=1

a`,iX̃i)
2]− [E(

N∑
i=1

a`,iX̃i)]
2 (4.56)

=

N∑
i=1

a2`,ikX̃2
i

+ 2

N∑
i=1,i<j

a`,ia`,jkX̃i,X̃j (4.57)
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k
Z̃`

3 = E[(
N∑
i=1

a`,iX̃i)
3]− 3E(

N∑
i=1

a`,iX̃i)E[(
N∑
i=1

a`,iX̃i)
2] + 2[E(

N∑
i=1

a`,iX̃i)]
3 (4.58)

=
N∑
i=1

a3`,ikX̃3
i

+ 3
N∑

i=1,i 6=j
a2`,ia`,jkX̃2

i ,X̃j
+ 6

N∑
i=1,i<j<s

a`,ia`,ja`,lkX̃i,X̃j ,X̃s··· (4.59)

... (4.60)

(4.61)

Based on either (4.54) or (4.55), cumulants of output random variables can be calculated

from cumulants of input random variables. Probability distributions of output random variables

are then obtained by adopting the technique presented in Section 4.4.2.

When solving a cumulant-based POPF above, the operational limitations of random vari-

ables are not considered in their distributions. In fact, operational limitations must be enforced

during the optimization process [59]. For example, suppose a random variable Z̃i has lower

limit of 0.9 p.u. and upper limit of 1.1 p.u. (such as random variable of a nodal voltage) as

shown in Fig. 4.5. In this case, the PDF of Z̃i should be truncated on both sides at its lower

limit (0.9 p.u.) and upper limit (1.1 p.u.) since the distribution beyond the limits is not valid.

The resulting truncated PDF is normalized to have total probability equal to 1 [60]. Analo-

gously, if a random variable has only upper limit (e.g., random variable of a branch current), its

PDF should be truncated on the right side at the upper limit (see Fig. 4.6 for an upper limit of

0.52 p.u.). Techniques for truncation of a PDF can be found in [60].

Figure 4.5: Example of truncation on both sides of a PDF
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4.5. Recourse-based stochastic programming

Figure 4.6: Example of truncation on the right side of a PDF

4.5 Recourse-based stochastic programming

4.5.1 Introduction

Handling uncertainty in an optimization problem requires some knowledge about the uncer-

tainty. However, there is not always sufficient information about it; hence, many methods have

been developed to model the uncertainty. Major approaches recognized to deal with uncertainty

in optimization include fuzzy programming, stochastic programming, and robust optimization.

In fuzzy programming, if no historical data are available, it is difficult to represent uncertainty

with probabilistic distributions. Therefore, fuzzy numbers are adopted. In stochastic program-

ming, uncertain parameters are represented as random variables with an assumption that their

probability distributions can be known or estimated. This programming approach usually leads

to specific procedures that take into account the probabilistic aspects. Robust optimization,

which seeks to optimize system performance against the worst-case scenario, assumes uncertain

data belong to some uncertainty set. Basic versions of robust optimization assume constraint

violation cannot be allowed for any realization of the data in the uncertainty set [61, 62].

Stochastic Programming (SP) was first introduced by George Dantzig in the 1950s. Since

then, major progress has been made in developing algorithms or techniques for solving them.

As a result, SP has become an optimization approach for making decisions under uncertainty

in large-scale models. In probabilistic approaches such as cumulant or point estimate method,

a deterministic formulation is retained and uncertain system inputs (e.g., load and generation)

are represented by probability distributions. Moreover, its optimal solution, i.e., the values of

control variables, is not influenced by the randomness of uncertain system inputs, but only the

probability distributions of control variables are determined by them. On the contrary, stochastic

programming approaches not only treat uncertain system inputs as random distributions, but
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Chapter 4. Optimization under Uncertainty

also establishes stochastic formulation for the problem. That is, either the objective function

or constrains in the optimization model are described as probability equations or inequalities.

The randomness of uncertain system inputs directly influences the optimization result during

the solution of stochastic problems [63].

SP traces its root to [64], where recourse models were first introduced, and [65], where

probabilistic constraint models were introduced. Recourse models involve some decisions or

recourse actions taken after uncertainty is known. Uncertainty is usually described using prob-

ability distributions, densities or, more generally, probability measures. In recourse models,

there are a number of decisions made without full information on the uncertain parameters.

All these decisions are called first-stage decisions and the period when these decisions are

taken is called the first stage. After full information is received on the realization of the ran-

dom events, recourse actions or corrective actions are taken in later stages. In probabilistic

or chance-constraint model, some of the constraints or the objective are expressed in terms of

probabilistic statements about first-stage decisions. The idea is that infeasibilities in the second

stage are allowed at a certain penalty. In this model, the focus is on system reliability which is

expressed as a minimum requirement on the probability of satisfying constraints [66, 67].

A basic formulation of recourse model is the two-stage stochastic programming model. Un-

der the standard two-stage model, the set of decisions is divided into two groups. The first-stage

or here-and-now decision variables are those that have to be decided before the realization of

random variables and once the uncertain parameters are known, further actions can be made by

selecting, at a certain cost, the values of second-stage or wait-and-see variables. These second-

stage decisions can be considered as corrective measures or recourse against any infeasibility

arisen due to a particular realization of uncertain parameters. Due to uncertainty, the second-

stage cost is a random variable. The goal of a two-stage model is to identify a first-stage decision

that is well positioned against all possible observations of random parameters. An optimal so-

lution tends to have the property that the first-stage decision leaves the second-stage decision

in a way to exploit advantageous outcomes of random events without excessive vulnerability

to disadvantageous outcomes. The worst-case version of this model corresponds to adjustable

robust optimization model, in which the probability measure of random parameters belongs to

an uncertainty set.

The two-stage formulation can be extended to a multi-stage setting when a sequence of

decisions is made to react to outcomes that evolve over time. In other words, when the pattern

"decide-observe-decide..." is repeated several times, a multi-stage problem is formed. In multi-

stage formulation, uncertainty is modeled as a filtration process and under discrete distributions,

which reduces to a scenario tree of parameter realizations [67]. Recourse models have been

applied to linear, integer, and non-linear programming. In the planning problem in this research,

a two-stage non-linear stochastic programming is applied.
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4.5. Recourse-based stochastic programming

4.5.2 Two-stage non-linear stochastic programming

The idea is to take first-stage decisions that are in average optimal, with the possibility to

take some corrective decisions after uncertainty is revealed. This defines an objective function

and constraints associated to the first-stage variables, whereas for the second-stage variables,

another objective function and constraints, which depend on the realization of random parame-

ters, are considered. The two stages are then combined by adding the expectation of the second-

stage objective to the first-stage objective. The resulting program is called two-stage stochastic

(nonlinear) program with (additive) recourse. Generally, a two-stage stochastic programming

problem has the form [61, 68]:

min
x

z(x) = f(x) +Q(x)

s.t. g1(x) ≤ 0 (4.62)

g2(x) = 0

where, f(x) is the first-stage objective function; g1(x) and g2(x) are first-stage inequality and

equality constraints, respectively; Q(x) = E[Q(x,ξ)] and Q(x,ξ) is the optimal value of the

second-stage problem:

Q(x, ξ) = min
y

F (y, ξ)

s.t. G1(y, ξ) ≤ 0 (4.63)

G2(y, ξ) = 0

where, x is a vector of first-stage decision variables, y is a vector of second-stage decision

variables, ξ is a vector of realizations of random variable Ξ̃i, and the expectation operator E
at the first-stage problem (4.62) is taken with respect to probability distribution of the random

parameters ξ. The second-stage decision vector y is sometimes written y(ξ) or even y(ξ, x), to

stress that y differs according to the outcome of the random events and of the first-stage deci-

sions. Thus, the sequence of events and decisions in the two-stage problem can be summarized

as in (4.5.2). That is, the first-stage decisions x should be made before a realization of the

random parameter ξ is obtained and hence, should be independent of the random parameter,

while the second-stage decision variable y is made after observing the random parameter and

are functions of the random parameter [61, 68].

Decision x→ Observation ξ → Decision y(ξ)

This decision process can be better visualized by means of a graph called scenario tree (Figure

4.7). The root of this tree corresponds to the first-stage decision, which is usually planning

decision, made before any realization of the random parameters. The nodes connected to the

root are the second-stage nodes and represent the points where second-stage decisions, which
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are usually operational decisions, are made. Each realization ξi of the random variable Ξ̃i in the

second-stage, is associated with a node and each node is associated with a probability of occur-

rence. A branch emanating from a node represents a scenario, which is possible realizations of

the uncertain parameters from that node.

First stage

Second stage

Planning 
decision

Operational 
decision

ξNscen

ξ1

ξ2

ξ3

Figure 4.7: Two-stage scenario tree

4.5.3 Solution method

If Ξ̃i is a continuous random variable, Q(x) is differentiable even if Q(x, ξ) is not every-

where (but almost everywhere) differentiable with respect to x. However, if Ξ̃i is discrete,Q(x)

is no more everywhere differentiable. Since non-differentiable problems are difficult to manage,

especially for non-linear non-convex functions, a formulation that restores the differentiability

property is applied. Assume Ξ̃i is a discrete random variable with Nscen possible realizations

ξω, ω = 1, . . . ,Nscen. Let pω be the probability of each realization ω of the random variable Ξ̃i.

Practical methods for two-stage problems are usually based on the extensive form, also called

dual decomposition structure, of the stochastic program (4.62) - (4.63) [61]:

min
x

{z(x) = f(x) +

Nscen∑
ω=1

pωF (yω, ξω)}

s.t. g1(x) ≤ 0

g2(x) = 0 (4.64)

G1(yω, ξω) ≤ 0

G2(yω, ξω) = 0
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4.5. Recourse-based stochastic programming

This formulation is obtained by defining second-stage vectors, one for each realization of Ξ̃i

while maintaining only one variable for the first-stage. The resulting problem is then differen-

tiable, and has a formulation similar to classical mathematical programs.

The problem (4.64) already includes nonanticipativity constraints. Nonanticipativity con-

straints guarantee that the first-stage variables are identical across all scenarios and scenario-

related programs are linked only by these constraints. The formulation (4.65) is the reformu-

lation of problem (4.64), and it represents the requirement of nonanticipativity explicitly with

nonanticipativity constraints. In this case, the first-stage variable x is introduced for each sce-

nario and the last constraints represent nonanticipativity constraints.

min
x

{z(x) =

Nscen∑
ω=1

pω[f(xω) + F (yω, ξω)}

s.t. g1(xω) ≤ 0

g2(xω) = 0 (4.65)

G1(yω, ξω) ≤ 0

G2(yω, ξω) = 0

x1 = x2 = ... = xNscen

Different algorithms have been proposed for solving stochastic programs of various types. At

first, if Q(x) can be explicitly computed, an explicit mathematical program can be obtained.

The resulting program is a nonlinear program and traditional algorithms can be employed to

solve it. If dual block-angular structure is detected, then decomposition algorithms such as the

L-shaped method and regularized decomposition can be adopted. If any suitable transformation

can not be found and algorithms cannot be directly used, then a program approximation may

help [69].

4.5.4 Scenario generation and reduction

The two-stage stochastic problem (4.64) has to be solved based on a discrete distribution

with finite support of the random variable Ξ̃i, where each scenario or realization ξω appears with

probability pi > 0, i = 1,...Nscen, and
∑Nscen

i=1 pi = 1. Therefore, a necessary step in applying

stochastic programming approach is generating a set of scenarios that realistically represents

parameter uncertainties. Probability measure of random parameters can be empirically built

from historical data or can be generated by applying time series models when historical data

is not available. In this research, the probability measure of random parameters is assessed

using historical data. In this way, a more accurate estimation of uncertainty is obtained. Other

methods of estimating uncertainty sources based on assumptions or approximation will lead to

a less accurate estimation of uncertainty.

In order to make a more accurate approximation of the probability measure of random vari-

ables, a large number of scenarios is required, but solving the problem (4.64) in a reasonable
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computational time prefers a smaller number of scenarios. This results in the need to approxi-

mate the original scenario set into a smaller subset, which still preserves essential features of the

original one, by applying scenario reduction techniques. In this research, the scenario reduction

is performed by a clustering approach, named Principal Component Analysis (PCA)-guided

search for K-means clustering technique [70]. Clustering, also known as unsupervised classifi-

cation, is a method of creating groups of objects, or clusters, in such a way that all objects within

a single cluster are very similar while objects in different clusters are quite distinct. The aim

of data clustering is to discover the natural grouping(s) of a set of patterns, points, or objects.

One of the most popular, simple and efficient clustering algorithms is K-means. Although this

clustering algorithm was proposed long time ago and thousands of clustering algorithms have

been published since then, it is still widely used [71]. However, K-means clustering algorithm

might converge quickly to a local solution from an initial set of cluster centroids. Experimen-

tally, K-means algorithm can be easily trapped in a local minima near the initialization. This

is because the formulation of K-means is non-convex and there are exponentially many local

solutions in high dimensional data [70].

PCA is one of the most popular data mining statistical approaches. It uses an orthogonal

transformation to convert a data set of possibly correlated variables into another set (with the

same size) of linearly uncorrelated variables called Principal Components (PCs). PCA applies

a mathematical technique called eigen analysis to solve for the eigenvalues and eigenvectors of

a square symmetric matrix such as covariance matrix or correlation matrix, calculated from the

data matrix. One of the attractive features of PCA is that it can approximate a large data set

by reducing its dimension [72]. Variance of each PC is equal to the eigenvalue associated with

that PC. The first PC, corresponding to the largest eigenvalue, is the most important component

that contains most of the variance in the data set, followed by the second PC, and so on; hence,

the first few PCs can account for most of the information in the data set and can be used as a

replacement of the original one.

In K-means algorithm, the partition is found such that the squared error between the empiri-

cal mean of a cluster and the points in the cluster is minimized [71]. Let X = {xi, i = 1, ..., n}
be the set of n d-dimensional points to be clustered into a set of K clusters C = {ck, k =

1, ...,K}, µk be the mean of cluster ck. The squared error between µk and the points in cluster

ck is defined as:

J(ck) =
∑
xi⊂ck

‖ xi − µk ‖2 (4.66)

K-means aims to minimize the sum of the squared error over all K clusters:

J(C) =

k∑
k=1

∑
xi⊂ck

‖ xi − µk ‖2 (4.67)

K-means algorithm starts with an initial partition with K clusters and assign patterns to clusters
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to reduce the squared error. The main steps of K-means algorithm is summarized in Algorithm

4.1 [71].

Algorithm 4.1 K-means clustering algorithm

1. Select an initial partition with K clusters.

2. Generate a new partition by assigning each pattern to its closest cluster center.

3. Compute new cluster centers.

4. Repeat steps 2 and 3 until cluster membership stabilizes.

In PCA-guided search for K-means clustering method, a search for initial set of cluster

centroids is performed in PCA subspace. This algorithm takes advantage of the fact that the

global solution to K-means clustering lies in the PCA subspace and K-means clustering is more

efficient in low-dimensional space; thus, it produces much better results. The number of clusters

is selected based on Silhouette criteria [73]. The Silhouette value is a measure of within-cluster

(WC) and between-cluster (BC) dissimilarity of cluster members, in which WC dissimilarity is

expected to be small while BC dissimilarity should be large. Given the initial cluster number is

K. For a data point xi, and its cluster membership ci = C(xi), let ai(K) be the average distance

between xi and all other members in the cluster ci (WC dissimilarity). Also, denoting loi the

index of the nearest cluster for xi, that is:

loi = argmin1≤k 6=ci≤K

nk∑
j=1

‖ xi − x(K)
j ‖22 (4.68)

where, nk is the number of data points belonging to cluster ci.

Let bi(K) be the average distance between xi and cluster members in the nearest cluster loi
(BC dissimilarity), the Silhouette value is defined as:

soi (K) =
bi(K)− ai(K)

max{ai(K), bi(K)}
(4.69)

The optimal number of clusters K̂ is then chosen such that So(K) =
∑n

i=1 s
o
i (K) is maxi-

mized. If So(K) is large, the average sample distance within the cluster is smaller than that to

the samples in neighboring cluster, so xi is well classified. If So(K) is small, the average sam-

ple distance within the cluster is larger than that to the samples in neighboring clusters, which

means xi is misclassified. The value of Silhouette measure has a range of [-1, 1]. Silhouette

values near +1 indicate that the sample is far from neighboring clusters. A value of 0 indicates

the sample is on or very close to the boundary between two neighboring clusters while nega-
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Figure 4.8: Silhouette values for optimal cluster number [74]

tive values indicate the sample might have been assigned to the wrong cluster. Fig. 4.8 is an

example of Silhouette values, which suggests 3 clusters as an optimal number of clusters.

The algorithm of PCA-guided search for K-means clustering approach can be summarized

as in Algorithm 4.2 [70]. After performing PCA-guided search for K-means clustering algo-

rithm on the data set, clusters of similar data samples are obtained. A representative scenario of

each cluster is then determined by averaging all the cluster members. Accordingly, the original

data set is reduced to a significantly smaller one.

Algorithm 4.2 PCA-guided search for K-means clustering

1. Initialization: Choose the number of clusters using Silhouette criteria.

2. Perform PCA analysis on the data set to create another set of the same size of lin-

early independent variables called Principle Components (PCs). The first few com-

ponents, which contain the highest amount of information (up to more than 90%) of

the original data, are selected. The original data set is thus reduced to another data

set with smaller dimensionality called PCA subspace.

3. Perform standard K-means clustering in the PCA subspace.

4. Use the cluster membership obtained in Step 3 to construct initial cluster centroids

in the full space. Perform standard K-means clustering in the full space.

4.6 Summary

This chapter provides theory on two different approaches for incorporating uncertainty in

an optimization problem, including cumulant-based probabilistic programming and two-stage
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stochastic programming. Generally, cumulant-based probabilistic approach relies on properties

of cumulants of random variables when they are combined in a linearized fashion. In cumulant-

based probabilistic optimal power flow, sources of uncertainty associated with the inputs are

represented by probability distributions, then their cumulants are computed. Using input-output

relationship, linearized around the solution of a deterministic optimal power flow, and based on

the properties of cumulant, cumulants of output random variables can be calculated from cu-

mulants of input random variables and distributions of output random variables are obtained by

an approximation technique. Particularly, this technique allows the probabilistic optimal power

flow model to take into account various types of probability distributions of inputs (including

Gaussian/non-Gaussian, discrete/continuous distributions) which represent different sources of

uncertainty in power systems.

In two-stage stochastic model, decisions are divided into two stages, i.e., the first-stage or

here-and-now decisions have to be taken without a complete knowledge of random parameters,

and the second-stage or wait-and-see decisions are taken after the uncertainty is revealed. These

second-stage decisions are known as corrective or recourse actions against any infeasibility

due to random variables. A scenario generation and reduction technique to create scenarios

of random parameters as input of the problem has been explicitly described. Accordingly,

probability measure of random parameters is assessed from historical data and then a clustering

technique, namely PCA-guided search for K-means clustering algorithm, is adopted to reduce

the original data set into a smaller one with representative scenarios.
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CHAPTER5
Energy Storage System Planning under

Uncertainty

5.1 Introduction

In this chapter, the planning problem of ESSs under the uncertainty of wind power and load

is investigated. Two approaches, based on techniques discussed in Chapter 4, are adopted, i.e.,

cumulant-based probabilistic and two-stage stochastic programming approach. Additionally, a

sensitivity analysis, based on an economic criterion, is performed to identify candidate buses

for ESS installation, thus reducing computational burden for ESS planning problems, especially

large-size ones, with both approaches.

In the cumulant-based probabilistic approach, optimal placement is carried out by GA,

based on the deterministic multi-period OPF model with ESS integration described in Chapter

3, using the expected value of random variables (load and wind generation). Cumulant-based

probabilistic OPF is then applied to take into account the uncertainty and provide decision mak-

ers with necessary information on ESS capacities and used eventually to make final decision.

This approach efficiently captures system uncertainties in the sizing of ESSs. Cumulant-based

probabilistic OPF approach is less computationally intensive process compared to two-stage

stochastic programming approach. Its accuracy depends on the quality of linearized relation-

ship between input and output variables.
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In the stochastic programming approach, a two-stage stochastic model is applied to deter-

mine ESS capacity taking into account the stochastic behavior of both wind power and load.

Input random variables are represented by sets of scenarios. This approach is more computa-

tionally expensive than the cumulant-based proababilistic approach. The computing time ex-

ponentially grows with increasing number of scenarios of input random variables. Therefore,

an important step of this approach is processing of input random variables, which can be dealt

with by adopting scenario generation and reduction techniques.

Sensitivity analysis on ESS location is performed based on the deterministic OPF model

with ESS integration in Section 3.4 and the economic criteria defined in Section 3.5. Candidate

locations of ESSs for time-shifting and congestion relieving applications are identified while

allowing an optimal operation for power systems regarding production cost, wind curtailment,

and congestion relief, etc. These candidate locations are not necessary for the algorithms. They

are necessary only to make both procedures tractable.

5.2 Outline of the chapter

The rest of the chapter is organized as follows:

The chapter starts with a literature review on ESS planning problems in Section 5.3. It

follows by a description of the combined GA and cumulant-based POPF approach for optimal

siting and sizing of ESSs in Section 5.4. Next, Section 5.5 describes the methodology of two-

stage stochastic programming approach for optimal sizing of ESSs. In Section 5.6, a final

procedure for ESS planning problems under uncertainty is introduced. In Section 5.7, all tests

and results are presented and discussed, including tests to compare single-period and multi-

period OPF models with ESSs, a sensitivity analysis to assess impacts of ESS locations on

system operation based on an economic criteria, tests on both approaches for incorporating

uncertainty in ESS planning problems, and tests for a comparison of both approaches. Section

5.8 summarizes the chapter.

5.3 Literature Review

In the recent years, there has been extensive study on the planning of ESSs in power systems

for different applications with wind generation. Many papers found in the literature develop de-

terministic models for the planning problem. For example, in papers [75–77], different sizing

methodologies, including power and energy sizing, for ESS have been presented. In [75], en-

ergy storage capacity is determined for dispatchability of wind farm to meet different confidence

levels. Another size estimating method for ESS is provided in [76] to firm wind power output

and allow for penetration into energy markets. Reference [77] introduces a methodology to

minimize the capacity of ESS in a distributed configuration of wind power sources. An ana-

lytical technique is proposed in [78] to size ESSs for power systems with wind farms based

on reliability cost and worth analysis. The authors in [79] present a methodology using dis-

crete Fourier transform to determine maximum energy storage requirement for a balancing area
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or interconnections. This requirement is just the physical limit which could be theoretically

accommodated by a power system. In [80], an OPF model is proposed to determine optimal

ESS capacity and location. ESS capacity is determined to accommodate all amounts of spilled

wind energy while its location ensures a minimized annual electricity cost. ARMA technique is

adopted to generate annual hourly wind speed and load profile. A heuristic method is presented

in [81] for sizing and placing energy storage in a transmission network. The authors couple

operational simulations with planning, and use information from operational simulations such

as flow patterns, congestion, and ramping restrictions for making planning decisions. In [82], a

three-stage planning procedure is used to identify optimal locations and size of distributed stor-

age units. In the first stage, optimal storage locations and parameters are determined for each

day of the year individually. In the second stage, optimal energy and power ratings are deter-

mined and in the third stage, optimal operation of the storage units is simulated to quantify the

benefits of mitigating congestion. An analytical approach and cost benefit analysis is provided

in [83] to size ESSs for wind power firming. The effectiveness of the approach is validated by

solving an ESS-sizing problem quantitatively. Paper [84] proposes a DC OPF framework for

storage portfolio optimization in transmission-constrained network. The model investigates two

problems, i.e., optimizing storage operation and location given a fixed technology portfolio and

optimizing the storage portfolio, including storage size, technology, and network allocation).

Uncertainties have also been incorporated in existing research on ESS planning. Some pa-

pers develop analytical methods for optimal sizing of ESSs [85, 86]. ESS capacity can be esti-

mated based on forecast errors, for reducing the uncertainty of short-term wind power forecasts

up to 48 h [85]. This approach provides knowledge on the unserved energy, which represents

the remaining forecast uncertainty. Thus, it permits the sizing of energy storage systems as a

function of the desired remaining forecast uncertainty, reducing simultaneously power and en-

ergy capacity. A dynamic sizing approach is proposed in [86], where ESS is used as a means

of risk hedging against penalties from the regulation market. Necessary storage capacity can be

assessed for each delivery period, based on the degree of risk that the power producer accepts to

be exposed to. This approach is shown to provide a significant reduction of the storage capacity

used, without affecting the profit significantly. Other papers [87–93] develop numerical simu-

lation techniques for optimal planning of ESSs. Paper [87] develops a model to size ESSs for

wind farm applications, with the goal to keep the differences between the combined wind/ESS

output and the predefined profile within a required limit. The model is formulated as a chance-

constrained programming model. Genetic Algorithm combined with Monte-Carlo are applied

to solve the problem. In [88], a probabilistic approach based on the probability distribution of

ESS power profile is proposed to determine power capacity of hybrid ESS. The ESS capacity

is specified to handle the wind power fluctuation with a magnitude less than a certain value

corresponding to a preset confidence level. In [89], a two point estimate approach is employed

for dealing with wind and load uncertainties in ESS optimal placement problem in a deregu-

lated power system. Energy storage serves as a variable load to store the wind excess energy
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during the off-peak hours when the wind power exceeds the load. It then serves as a variable

generator during the peak hours of the day to optimize wind revenues. A DC OPF model is

developed to incorporate ESS into the system. Wind and load are stochastically modeled us-

ing historical data and curve fitting technique. A two-stage stochastic optimization approach is

adopted in [90] to determine optimal capacity of ESS focusing on a 10 minute economic dis-

patch. Centroid linkage clustering technique is used to group similar scenarios into a reduced

number of clusters. Paper [91] proposes a methodology based on stochastic optimization for

storage sizing in isolated wind-diesel power systems. The problem is formulated as a two-stage

stochastic optimization problem, with the objective of minimizing the cost of supplied energy,

which results in a two-thirds reduction in ESS power rating and half the energy rating compared

to the deterministic case (using the expected values). Peng Xiong et al [92] propose an approach

for determining the optimal location and size of ESS in a power network with uncertain wind

generation. The uncertainty of wind power output is represented by a scenario tree model. The

model is formulated as a two-stage stochastic ESS planning model and Benders decomposition

algorithm is utilized to make the problem tractability. A robust optimization approach is em-

ployed in [93] to minimize the investment in storage units while guaranteeing a feasible system

operation, without load or renewable power curtailment, for all scenarios in the convex hull of

a discrete uncertainty set.

As a conclusion, most models for ESS planning developed in the literature use a DC OPF

or a relaxed formulation to incorporate ESS into power systems. Moreover, these models adopt

single-period optimization approach, in which the optimal solution is independently solved at

each period considered. However, with the incorporation of ESSs, single-period model does not

take into account inter-temporal constraints relevant to the storage units. The approaches for

placement of ESSs are demonstrated with small systems only. For larger systems, especially

real-size ones, computational burden is still an issue.

5.4 Combined GA and POPF approach

5.4.1 Wind and load input

Based on a scale-up version of 3-year measured hourly wind power (from January 1, 2009

to December 31, 2011) of real wind farms in Sicily, Italy, long-term probability distribution for

wind power is estimated using the methodology described in 4.4.2. Figure 5.1 shows long-term

probability distribution of wind power output, for example, at bus 12 and hour 16, in which the

discrete distribution is characterized by 20 impulses (corresponding to 20 clusters).

Total system load follows the typical daily load profiles of 4 seasons in [94]. Load uncer-

tainty is modeled by assigning it among load buses according to different distributions: loads at

buses 15, 38, 44, 50 and 56 are assumed to have Beta distributions with parameters computed

by using expected values and standard deviations (assumed to be equal to 10, 12, 9, 8 and 11%

of their expected values, respectively) [95]; loads at remaining buses are assumed normally dis-
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Figure 5.1: Probability distribution of wind at bus 12 and hour 16

tributed with standard deviations equal to 10% of the expected values. Expected values of wind

power and total load for all seasons are depicted in Fig. 5.2.

Figure 5.2: Expected value of wind and load for all seasons

5.4.2 Methodology

The optimal placement and sizing of ESSs is implemented based on a two-step algorithm:

in the first step, optimal location of the ESSs and the expected value of the optimal size are

determined by GA and the deterministic multi-period OPF described in Chapter 3. In this

phase, the goal is to minimize ESS investment cost and total expected generation cost while

maximizing the expected value of combined generation of wind and storage. In the second
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step, probabilistic assessment is carried out on the obtained ESS locations and capacities to be

used for final decision making.

In this planning problem, not only the total generation cost but also ESS investment cost is

minimized. ESS capital cost consists of energy-related cost and power-related cost, which is:

Cinv0 =
ns∑
j=1

(CBB
max
j + CRR

max
j ) (5.1)

where, ns is the total number of ESSs to be installed, Bmax
j [MWh] and Rmaxj [MW] are

respectively energy capacity and power capacity of the ESS at bus j; CB [e/MWh] and CR
[e/MW] are per-unit energy-related and power-related capital cost of the ESS.

With a life time of N years, the daily capital recovery factor is determined as in [96]:

Irec =
r(1 + r)N

(1 + r)N − 1

1

Nday
(5.2)

where, r is annual interest rate, and Nday is number of days in a year.

ESS total capital cost Cinv0 is converted into ESS daily capital cost CinvESS (Bmax
j , Rmaxj )

by multiplying the energy-related cost and power-related cost by the above daily capital recov-

ery factor:

CinvESS (Bmax
j , Rmaxj ) = IrecCinv0 (5.3)

The objective function (3.24) of the deterministic OPF in Section 3.4 now becomes:

Min {CinvESS +
T∑
t=1

[

ng∑
i=1

(c0i + c1iP
t
Gi + c2iP

t2

Gi) +
ns∑
j=1

(cdjP
t
dj
− cchjP

t
chj

)]} (5.4)

The optimization is carried out on a daily basis, thus T = 24 hours. The inequality constraints

on ESSs (3.14), (3.15), and (3.16) are also modified as follows:

Rminj ≤ P tdj ≤ R
max
j (5.5)

Rminj ≤ P tchj ≤ R
max
j (5.6)

Bmin
j ≤ Bt

j ≤ Bmax
j (5.7)

The maximum ESS capacity to be installed is limited by the following constraints, which

also represents limitation on the budget for ESS installation:

ns∑
j=1

Rmaxj ≤ Rtot (5.8)
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ns∑
j=1

Bmax
j ≤ Btot (5.9)

where, Rtot and Btot are respectively maximum allowable power and energy capacity of the

ESSs to be installed.

The overall methodology is summarized in the flowchart in Fig. 5.3. Firstly, optimal

Start

Input wind and load data

Generate initial population, including number and 

location of ESSs

Calculate cumulants of inputs

Run deterministic multi-period AC OPF

Calculate cumulants of outputs

Evaluate fitness of the current solution

Apply selection, crossover, mutation and repair 

mechanism to generate new offsprings

Terminating 

criteria?

Build probability distributions of outputs
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Step 1

Step 2

Figure 5.3: Flowchart of the methodology

locations and expected value of ESS capacities are determined based on the combined GA-

deterministic OPF model (Step 1 in the flowchart). The location and number of ESSs to be

installed are decided by GA while the capacities are determined by the OPF. GA is an attrac-

tive and powerful alternative to other optimization methods in many power system problems

because of its robustness and efficiency [97–100]. It is appropriate to solve optimal placement

problems since traditional derivative-based optimization approaches may handle with difficulty

the non-convexity, non-linearity and discontinuity of the problem [101]. GA operates based on
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the mechanism of natural selection and genetics. It starts with a population of randomly gen-

erated candidates. Each candidate is called a chromosome and is made by a binary bit string

structure that codes, in this approach, the candidate buses for ESSs. Each chromosome has its

corresponding fitness which indicates its suitability as an optimal solution. The GA iteratively

produces a new population from the old population by means of GA operators. When this cycle

of genetic recombination process is iterated for many generations, the overall fitness of the pop-

ulation generally improves [102]. In this step, optimal placement of ESSs is determined by GA

aimed at maximizing the combined generation of wind and the usage of ESSs. Accordingly, the

fitness function of the GA is as follows:

Fitness =−

T∑
t=1

[
nb∑
i=1

P tLi − (
nw∑
j=1

P tGj +
ns∑
k=1

P tdk)]

T∑
t=1

nw∑
j=1

P tWj

(5.10)

where, P tLi is real power of load at bus i in period t, P tGj is wind generation at bus j in period

t, P tdk is discharging power of the ESS at bus k in period t, P tWj
is the available wind power at

bus j in period t, nb is the number of system buses, ns is the number of ESSs to be installed, nw

is the number of wind farms.

In this fitness function, the portion of power to supply load from wind and ESSs is deter-

mined relative to the available wind generation. Thus, higher value of the fitness function means

higher amount of power from wind and ESSs is used to supply load and less amount of wind

to be curtailed. With this fitness function, ESSs placed at the locations determined by GA can

provide more effective operation by charging ESSs with more available wind generation and

then discharging to supply load.

In order to find optimal locations of the ESSs, initially, the first population is randomly

generated from the solution space to place the ESSs. The multi-period OPF is run with this

placement of the ESSs to minimize the objective function (5.4) and its output is a time profile

of the optimal operation of ESSs. GA, using results from the OPF, evaluates the fitness (5.10)

of each individual in the population. The fitness of individuals is linearly ranked and stochastic

universal sampling method [103] is applied to select individuals for breeding. Single point

crossover method is applied on the selected individuals to produce new offspring which are

then mutated to introduce new genes to the existing solutions in order to avoid local minima.

Infeasible offspring possibly resulting from crossover and mutation operators are replaced by

randomly feasible generated chromosomes which ensures the maximum number of ESSs to

install is not violated. Finally, new offspring are evaluated and reintroduced into the current

population to give new population. This routine is repeated until the GA convergence is reached.

The best chromosome provides the optimal locations of ESSs, and the optimal solution from

the OPF gives the optimal power capacity Rmax and energy capacity Bmax of the ESSs along

with their corresponding optimal operational profiles. This means at the output of Step 1 in
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the flowchart, optimal ESS locations, expected value of ESS power and energy capacity, and

optimal operational profiles, corresponding to the expected wind and load input, are obtained.

Next, the probabilistic part of the POPF is performed to assess the risk of not being able to

store the available energy during operation of the ESSs due to wind and load random behavior

(corresponding to Step 2 in the flowchart). In order to obtain probability distributions of out-

put variables of the POPF (including ESS capacities), technique described in Section 4.4.2 is

applied: first, cumulants of distributions of input variables (wind and load) are classified into

two categories, i.e., discrete and continuous, then cumulants of each category of output random

variables at each hour are separately calculated through input-output linearized relationship (ob-

tained in Step 1). Using the technique presented in Section 4.4.2, probability distributions of

ESS capacities are built at hours reaching the expected value capacities and the highest wind

and load variability. Based on information from these probability distributions, decision makers

will finally choose the size of ESSs to be installed.

5.4.3 Example

Consider a simple 3-bus system (Figure 5.4), which has 2 generators (a wind farm at bus 1

and a conventional generator at bus 2) and 2 loads at buses 2 and 3.

1 2

3

W

PL2

PL3

PG1

G PG2
, QG2

, QL2

, QG1

, QL3

Figure 5.4: 3-bus system

The deterministic OPF model for this system can be described as:

Objective function:

Min {CinvESS +
T∑
t=1

[
2∑
i=1

(c0 + c1P
t
Gi + c2P

t2

Gi) +
ns∑
j=1

(cdjP
t
dj
− cchjP

t
chj

)]} (5.11)

where, P tGi is real power generation at bus i in period t, which includes real power generation

P tG1
of the wind farm at bus 1 and P tG2

of the conventional generator at bus 2; ns is the number
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of ESSs to be installed.

Power balance equations for the 3 buses:

P t1 =P tG1
+ P td1 − P

t
ch1 = V t

1

3∑
k=1

V t
k [G1k cos(θt1 − θtk) +B1k sin(θt1 − θtk)] (5.12)

Qt1 =QtG1
+Qtd1 −Q

t
ch1 = V t

1

nb∑
k=1

V t
k [G1k sin(θt1 − θtk)−B1k cos(θt1 − θtk)] (5.13)

P t2 =P tG2
− P tL2

+ P td2 − P
t
ch2 = V t

2

3∑
k=1

V t
k [G2k cos(θt2 − θtk) +B2k sin(θt2 − θtk)] (5.14)

Qt2 =QtG2
−QtL2

+Qtd2 −Q
t
ch2 = V t

2

nb∑
k=1

V t
k [G2k sin(θt2 − θtk)−B2k cos(θt2 − θtk)] (5.15)

P t3 =− P tL3
+ P td3 − P

t
ch3 = V t

3

3∑
k=1

V t
k [G3k cos(θt3 − θtk) +B3k sin(θt3 − θtk)] (5.16)

Qt3 =−QtL3
+Qtd3 −Q

t
ch3 = V t

3

nb∑
k=1

V t
k [G3k sin(θt1 − θtk)−B3k cos(θt3 − θtk)] (5.17)

Network inequality constraints include:

PminG1
≤ P tG1

≤ PmaxG1
(5.18)

QminG1
≤ QtG1

≤ QmaxG1
(5.19)

PminG2
≤ P tG2

≤ PmaxG2
(5.20)

QminG2
≤ QtG2

≤ QmaxG2
(5.21)

V min
1 ≤ V t

1 ≤ V max
1 (5.22)

V min
2 ≤ V t

2 ≤ V max
2 (5.23)

V min
3 ≤ V t

3 ≤ V max
3 (5.24)

(It12)
2 ≤ (Imax12 )2 (5.25)

(It13)
2 ≤ (Imax13 )2 (5.26)

(It23)
2 ≤ (Imax23 )2 (5.27)

(It21)
2 ≤ (Imax21 )2 (5.28)

(It31)
2 ≤ (Imax31 )2 (5.29)

(It32)
2 ≤ (Imax32 )2 (5.30)
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P tG1
− P t−1G1

≤ RU1 (5.31)

P t−1G1
− P tG1

≤ RD1 (5.32)

P tG2
− P t−1G2

≤ RU2 (5.33)

P t−1G2
− P tG2

≤ RD2 (5.34)

Constraints for ESSs include equations (5.35) - (5.45).

Bt
i = Bt−1

i + (ηchiP
t
chi
− P tdi/ηdi)∆t (5.35)

Bt=T
i = B0

i (5.36)

Pminchi
≤ P tchi ≤ P

max
chi

(5.37)

Pmindi
≤ P tdi ≤ P

max
di

(5.38)

Bmin
i ≤ Bt

i ≤ Bmax
i (5.39)

(P tdi − P
t−1
di

)− (P tchi − P
t−1
chi

) ≤ RUsi (5.40)

(P t−1di
− P tdi)− (P t−1chi

− P tchi) ≤ RDsi (5.41)

Qminchi
≤ Qtchi ≤ Q

max
chi

(5.42)

Qmindi
≤ Qtdi ≤ Q

max
di

(5.43)

ns∑
j=1

Rmaxj ≤ Rtot (5.44)

ns∑
j=1

Bmax
j ≤ Btot (5.45)

ESS location is determined by running combined GA and the above described deterministic

OPF (Step 1 in the flowchart). The fitness function is calculated by equation (5.10). This fitness

function calculates the amount of power supplying load from wind and ESSs relative to the

available wind power. Hence, the higher the fitness function, the higher amount of power from

wind to supply load, and the less wind to be curtailed.

The output of this step will be the optimal location (among the 3 buses) of the ESSs to

be installed, ESS power and energy capacities Rmax and Bmax, and the operational profile

corresponding to the average wind and load.

In the next step (Step 2 in the flowchart), probabilistic assessment is performed on the

obtained ESS capacities, which provides the probability distributions of ESS capacities (and

also probability distributions of any other variables).
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5.5 Two-stage stochastic programming approach

5.5.1 Methodology

5.5.1.1 Stochastic input

In this research, a scenario, which consists of 24-hour data, is used to represent uncertain-

ties in wind power and load; however, any other significant time interval could also be used.

Processing of the input wind and load data is summarized as follows:

(i) Scenario generation
Wind power and load scenarios are generated from historical data. Historical 5-minute

wind power and load data are collected in 7 years, from 2007 to 2013 [46]. These wind

and load data are averaged to create hourly data and then scaled down to a suitable level

for the test systems. For the tests in sections 5.7.5.1 and 5.7.5.2, the same wind and load

data are used but scaled down to a different level suitable with the test system. See Figure

5.5 as an example of wind and load data input for the IEEE 39-bus test system in Section

5.7.5.1.

(a) Wind data (b) Load data

Figure 5.5: Input data for IEEE 39-bus system

(ii) Scenario reduction
A high number of scenarios can lead to intractability of the problem while a low number

can originate a poor representation of the data. Therefore, a necessary step in preparing

uncertain input for the stochastic model is to determine a number of representative sce-

narios which can closely approximate the original data set. The input data set described

above is reduced to a tractable one using the clustering technique explained in Section

4.5.4. In particular, first, PCA analysis is performed on the above set of wind and load

data to create another set of the same size of linearly independent variables called Princi-

pal Components (PCs). The first few components, which contain the highest amount of
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information (up to more than 90%) of the original data, are selected. The original data

set is thus reduced to another data set with smaller dimensionality called PCA subspace.

The selected PCs of the above wind and load data are shown in Figure 5.6. Next, the

number of clusters of each data set is selected based on Silhouette criteria as described

in Section 4.5.4. K-means clustering is then performed in the PCA subspace with the se-

lected number of clusters to obtain initial cluster centroids. Afterwards, the clustering is

performed in the full space using the above initial cluster centroids and the original data

sets are grouped into a number of distinct clusters. Finally, the representative scenario of

each cluster is determined by averaging the members of the cluster and the probability

of its occurrence is also calculated. The final wind scenarios and load scenarios of the

above wind and load data are shown in Fig. 5.7, which consist of 6 scenarios of wind and

5 scenarios of load (as suggested by the Silhouette values).

(a) Wind PCs (b) Load PCs

Figure 5.6: PCs of the input data

These wind and load scenarios are used to create sets of wind-load scenario input for

the problem. Each set of scenario consists of one scenario of wind and another scenario

of load. These sets of scenarios are created by listing all possible combinations of wind

scenarios and load scenarios. The probability of any combined wind-load scenarios is

obtained by convolving the two probabilities of wind and load scenarios. For example,

from the above wind and load data (Figure 5.5), 6 scenarios of wind and 5 scenarios

of load are obtained, and each of which is associated with a probability of occurrence.

Then, each scenario of wind is combined with 5 scenarios of load and a set of 30 wind-

load scenarios is obtained as input for the test systems. The probability of each wind-load

scenario in this set is determined by convolving probabilities of the corresponding wind

and load scenarios.
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(a) Wind scenarios (b) Load scenarios

Figure 5.7: Wind and load scenarios for the IEEE 39-bus system

5.5.1.2 Mathematical formulation

The two-stage stochastic model has the goal of minimizing ESS installation cost in the

first-stage and total expected generation cost in the second-stage. Thus, it is formulated as:

min
Bmaxi ,Rmaxi

{CinvESS (Bmax
i , Rmaxi ) +Q(x)}

s.t.
ns∑
i=1

Bmax
i ≤ Btot (5.46)

ns∑
i=1

Rmaxi ≤ Rtot

Bmax
i ≥ 0, Rmaxi ≥ 0

where, Bmax
i and Rmaxi are respectively energy and power capacity of ESS installed at bus i;

CinvESS is ESS investment cost as calculated in Section 5.4.2; Btot and Rtot are respectively

the maximum allowable energy and power capacity of ESSs to be installed, which represents

the available budget for ESS installation; Q(x) = E[Q(x, ξ)] and Q(x,ξ) is the optimal value of

the second-stage problem:

Q(x, ξ) = min
T∑
t=1

(PCt) (5.47)

where, PCt is the production cost at each period t; T is the optimization period considered. The

optimization is performed on a daily basis, thus T = 24 hours.

This objective function is subjected to the equality constraints 3.25 and inequality con-

straints (3.5) - (3.11) and (3.15) - (3.20).

Random variable Ξ̃i of the problem, i.e., wind power and load, are represented by sets of
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scenarios. Each scenario represents 24-hour realization of the uncertain parameter and has a

probability of occurrence associated with it. This also means in each period (hour), the random

variables have a finite number of realizations, for example, ξi,ω, ω = 1,...,Nscen with respective

probabilities pi,ω. This can be illustrated by Fig. 5.8, in which each branch connected to the root

represents each scenario of 24-hour realization of the random parameters in the second stage.

Second stage

Operational decision

First stage

Planning 
decision

t1 t2 t3 t4 t24

ω = 1

ω = 2

ω = 3

ω = 4

ω = Nscen

Figure 5.8: Two-stage scenario tree with 24-hour realizations of random parameters

With this discrete distribution of random variables, the two-stage problem is reformulated,

according to 4.64, as follows:

The objective function is:

min
Bmaxi ,Rmaxi ,P tGj,ω

,P tdi,ω
,P tchi,ω

{CinvESS (Bmax
i , Rmaxi )

+

Nscen∑
ω=1

pω

T∑
t=1

[

ng∑
j=1

(c0j + c1jP
t
Gj,ω + c2jP

t2

Gj,ω) (5.48)

+

ns∑
i=1

(cdiP
t
di,ω
− cchiP

t
chi,ω

)]}

In this equation, Bmax
i and Rmaxi , which are respectively energy rating and power rating of

the ESSs at bus i, are control variables of the first-stage problem. P tGj,ω , P tchi,ω and P tdi,ω are

variables of the second-stage problem. They are respectively real generation power of gener-

ating unit at bus i in hour t and scenario ω, including power from both conventional and wind

generators, and charging and discharging power of ESS at bus i in hour t and scenario ω. In this

case, the problem is solved with a total of [(ns x 2) + (T x ng x Nscen) + (T x ns x Nscen x 2)]

of control variables.

The equality constraints (3.25) and inequality constraints (3.5) - (3.11), and (3.15) - (3.20)
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have to be fulfilled for each realization of the random parameters. Specifically:

Power balance equations: Include equations for real and reactive power at each node i in

each time period t for each scenario ω:

P tGi,ω − P
t
Li,ω + P tdi,ω − P

t
chi,ω

=

nb∑
k=1

V t
i,ωV

t
k,ω[Gik cos(θti,ω − θtk,ω) +Bik sin(θti,ω − θtk,ω)]

(5.49)

QtGi,ω −Q
t
Li,ω +Qtdi,ω −Q

t
chi,ω

=
nb∑
k=1

V t
i,ωV

t
k,ω[Gik sin(θti,ω − θtk,ω)−Bik cos(θti,ω − θtk,ω)]

(5.50)

where, P tLi,ω and QtLi,ω denote real and reactive power of load at bus i in hour t and scenario

ω. QtGi,ω defines reactive power of generating unit at bus i in hour t and scenario ω. QtLi,ω is

reactive power of load at bus i in hour t and scenario ω. Qtchi,ω and Qtdi,ω are reactive charging

and discharging power of ESS at bus i in hour t and scenario ω. V t
i,ω and V t

k,ω are voltage

magnitudes of buses i and k in hour t and scenario ω. θti,ω and θtk,ω are voltage angles of buses i

and k in hour t and scenario ω.

Upper and lower limits for voltage magnitudes:

V min
i ≤ V t

i,ω ≤ V max
i (5.51)

Bounds on real and reactive generation power:

PminGi ≤ P
t
Gi,ω ≤ P

max
Gi (5.52)

QminGi ≤ Q
t
Gi,ω ≤ Q

max
Gi (5.53)

Branch current limits:

(Itij,ω)2 ≤ (Imaxij )2 (5.54)

(Itji,ω)2 ≤ (Imaxji )2 (5.55)

where, Itij,ω and Itji,ω are magnitudes of the current flowing from bus i to bus j and from bus j

to bus i in hour t and scenario ω, respectively.

ESS budget constraints:

ns∑
i=1

Bmax
i ≤ Btot (5.56)

ns∑
i=1

Rmaxi ≤ Rtot (5.57)
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ESS energy balance equations:

Bt
i,ω = Bt−1

i,ω + (ηchiP
t
chi,ω

+ P tdi,ω/ηdi)∆t (5.58)

where, Bt
i,ω and Bt−1

i,ω are energy levels of ESS at bus i in hour t and t-1 in scenario ω.

ESS energy continuity:

Bt=24
i,ω = B0i,ω (5.59)

where, B0i,ω and Bt=24
i,ω are respectively energy level at the beginning and at the end of the day

of the ESS at bus i in scenario ω.

ESS charging/discharging power bounds:

Rmini ≤ P tdi,ω ≤ R
max
i (5.60)

Rmini ≤ P tchi,ω ≤ R
max
i (5.61)

Qminsi ≤ Qtdi,ω ≤ Q
max
si (5.62)

Qminsi ≤ Qtchi,ω ≤ Q
max
si (5.63)

ESS energy limits:

Bmin
i ≤ Bt

i,ω ≤ Bmax
i (5.64)

where, Bt
i,ω is energy level of ESS at bus i in hour t and scenario ω.

5.5.2 Example

Take the 3-bus system in Figure 5.4 as an example and assume 30 wind-load scenarios (ω =

30) are obtained from historical wind and load input data by applying the technique described

in 5.5.1.1. Assume 1 ESS, with capacity to be determined, is installed at the wind bus (bus 1).

The two-stage stochastic model for this system can be formulated as:

The objective function is minimizing ESS installation cost and the total expected generation

cost:

min {CinvESS (Bmax, Rmax) +
30∑
ω=1

pω

T∑
t=1

[
2∑
j=1

(c0j + c1jP
t
Gj,ω + c2jP

t2

Gj,ω) (5.65)

+ (cdP
t
dω − cchP

t
chω)]}

Assume the optimization is carried out on a daily basis, thus T = 24 hours. Control variables

of the problems includes: Bmax, Rmax, P tG1,ω
, P tG2,ω

, P tdω , P tchω ; with ω = 1,2,...,30 and t =

1,2,...,24.

Network equality and inequality constraints in each period t and each scenario ω include:
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Power balance equations for the 3 buses:

P tG1,ω
+ P tdω − P

t
chω =

3∑
k=1

V t
1,ωV

t
k,ω[G1k cos(θt1,ω − θtk,ω) +B1k sin(θt1,ω − θtk,ω)] (5.66)

QtG1,ω
+Qtdω −Q

t
chω =

3∑
k=1

V t
1,ωV

t
k,ω[G1k sin(θt1,ω − θtk,ω)−B1k cos(θt1,ω − θtk,ω)] (5.67)

P tG2,ω
− P tL2,ω

=

3∑
k=1

V t
2,ωV

t
k,ω[G2k cos(θt2,ω − θt2,ω) +B2k sin(θt2,ω − θtk,ω)] (5.68)

QtG2,ω
−QtL2,ω

=
3∑

k=1

V t
2,ωV

t
k,ω[G2k sin(θt2,ω − θtk,ω)−B2k cos(θt2,ω − θtk,ω)] (5.69)

−P tL3,ω
=

3∑
k=1

V t
3,ωV

t
k,ω[G3k cos(θt3,ω − θt3,ω) +B3k sin(θt3,ω − θtk,ω)] (5.70)

−QtL3,ω
=

3∑
k=1

V t
3,ωV

t
k,ω[G3k sin(θt3,ω − θtk,ω)−B3k cos(θt3,ω − θtk,ω)] (5.71)

Network inequality constraints:

V min
1 ≤ V t

1,ω ≤ V max
1 (5.72)

V min
2 ≤ V t

2,ω ≤ V max
2 (5.73)

V min
3 ≤ V t

3,ω ≤ V max
3 (5.74)

PminG1
≤ P tG1,ω

≤ PmaxG1
(5.75)

QminG1
≤ QtG1,ω

≤ QmaxG1
(5.76)

PminG2
≤ P tG2,ω

≤ PmaxG2
(5.77)

QminG2
≤ QtG2,ω

≤ QmaxG2
(5.78)

(It12,ω)2 ≤ (Imax12 )2 (5.79)

(It21,ω)2 ≤ (Imax21 )2 (5.80)

(It13,ω)2 ≤ (Imax13 )2 (5.81)

(It31,ω)2 ≤ (Imax31 )2 (5.82)

(It23,ω)2 ≤ (Imax23 )2 (5.83)

(It32,ω)2 ≤ (Imax32 )2 (5.84)

Constraints on the ESS include:

Bmax ≤ Btot (5.85)

Rmax ≤ Rtot (5.86)

Bt
ω = Bt−1

ω + (ηchP
t
chω + P tdω/ηd)∆t (5.87)
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Bt=24
ω = B0ω (5.88)

Rmin ≤ P tdω ≤ R
max (5.89)

Rmin ≤ P tchω ≤ R
max (5.90)

Qmins ≤ Qtdω ≤ Q
max
s (5.91)

Qmins ≤ Qtchω ≤ Q
max
s (5.92)

Bmin ≤ Bt
ω ≤ Bmax (5.93)

Solution of this problem will provide optimal power and energy capacity for the ESS to be

installed.

5.6 Final Procedure

The procedure for ESS planning proposed by this research is summarized in the flowchart

in Figure 5.9. For large systems, especially real-size ones, computational burden of a planning

Wind and 
load input

Run base case multi-period OPF

Calculate λpi
t and dfi

Preliminarily select candidate buses

Combined GA and 
POPF approach 

Two-stage stochastic 
approach

Bi
max, Ri

maxESS locations and 
probability distributions 
of ESS power and energy

Figure 5.9: Procedure of ESS planning
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problem is still an issue. Therefore, for the best planning of ESSs, it is necessary to preliminarily

identify the most suitable area or the best candidate locations for installing these devices. This

is carried out, in this research, by first running the base case multi-period OPF described in

Section 3.2. The Lagrangian multiplier λpti at each bus i in each period t is determined as a

byproduct of the OPF. Then, the parameter dfi =
∑T

t=1λp
t
i is calculated. Based on the values

of dfi, the best candidate buses for ESS installation is preliminarily selected as described in

Section 3.5. Next, to take into account wind and load uncertainties in ESS planning, one of

the two approaches, i.e., either combined GA and POPF approach (Section 5.4) or two-stage

stochastic programming approach (Section 5.5), can be applied. At the output of the combined

GA and POPF approach, ESS locations and probability distributions of ESS power and energy

capacity are provided while in two-stage stochastic programming approach, ESS power and

energy capacity are determined.

5.7 Tests and Results

5.7.1 Test systems

In this section, different IEEE test systems used in the tests, including IEEE 14-bus system,

39-bus system, 57-bus system, and 118-bus system, will be described. For each system, the

peak load and capacity of wind plants can be different in different tests carried out and will be

specified in the following subsections case by case.

5.7.1.1 IEEE 14-bus system

The modified IEEE 14-bus system is shown in Fig. 5.10). In this system, load is supplied

from both conventional and wind generation. There are 4 conventional generators at buses 1, 3,

6, and 8 with a total capacity of 732.4 MW. A wind plant is assumed to be at bus 2.

5.7.1.2 IEEE 39-bus system

In Fig. 5.11, the modified IEEE 39-bus system is shown. System load with peak value of

2007 MW is supplied from both conventional and wind generation. The system has 9 conven-

tional generators with a total capacity of 2200 MW. There are 2 wind farms connected to buses

32 and 35.

5.7.1.3 IEEE 57-bus system

The modified IEEE 57-bus system is shown in Fig. 5.12). In this system, load is supplied

from both conventional generators and wind. There are 6 conventional generators (at buses 1,

2, 3, 6, 8, and 9) with total capacity of 1565 MW. Wind farms are present in a windy area

surrounding bus 12.

5.7.1.4 Modified IEEE 118-bus system

The modified IEEE 118-bus system can be found at [104]. For the test in Section 5.7.5.2,

the system has 51 conventional generators of 6600 MW in total, system load with peak value
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G

G

G

W

W WIND PLANT

Figure 5.10: IEEE 14-bus system [104]

of 5038 MW is supplied from both conventional and wind generators. There are 3 large wind

farms connected to buses 6, 62 and 112. Two ESSs, with capacity to be determined, are assumed

to be installed at buses 6 and 62 (wind buses) to time-shift the wind energy.

For the test in Section 5.7.3.2, the system has 52 conventional generating units with a total

capacity of 2500 MW, 2 large wind farms connected to buses 8 and 10 with a total installed

capacity of 700 MW. Load with peak value of 2189 MW is supplied from both conventional

and wind generators. Generation from the wind farms is likely to cause congestion on the way

from wind to loads, which might result in wind curtailment.

5.7.2 Single-period vs. Multi-period model

In this section, the mathematical model described in Section 3.4 is tested on modified IEEE

14-bus system (described in 5.7.1.1) and modified IEEE 57-bus system (described in 5.7.1.3).

The systems are modified in order to simulate a very high penetration of wind power. Wind data

is taken from a 24-hour wind power profile of a wind farm in Sicily, Italy. Load is reproduced

based on the load curve in [105].

5.7.2.1 IEEE 14-bus system

In this test, to study the combined operation of ESS and wind generation with each model,

the wind plant at bus 2 is assumed to have an installed capacity of 400 MW and an ESS is added

at bus 2 to time-shift the wind energy. Load with peak value of 438.7 MW is supplied from both

conventional and wind generation. Parameters for the ESS system can be found in Table 5.1.

Initial energy of the ESS is set to 0 MWh (parameterB0 in Table 5.1). The optimization problem
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Figure 5.11: IEEE 39-bus system [104]

Table 5.1: Parameters of the ESS

Pmaxch Pmaxd B0 Bmax ηch ηd
[MW] [MW] [MWh] [MWh]
100 100 0 200 0.85 0.85

is run for a period of 24 hours, thus T = 24 hours. Operation of the ESS for both models are

represented in figures 5.13 and 5.14.

As shown in the simulation results, the ESS is charged when wind power exceeds the load

and then it is discharged when wind is insufficient to supply the load. At periods when there

is extra wind power, after the storage has been charged up to its limits, either power or energy

limit, the extra wind is necessarily curtailed. This situation can clearly be seen at hours 9, 10,
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Figure 5.12: IEEE 57-bus system [104]

21 and 22 in Fig. 5.13 and hours 10, 21 and 22 in Fig. 5.14, in which the amounts of curtailed

wind power are exactly the difference between forecasted wind power and used wind power.

These amounts are 42.42 MW, 93.65 MW, 84.58 MW and 25.22 MW at hours 9, 10, 21 and 22

respectively in Fig. 5.13, and 44.41 MW, 103.99 MW and 32.29 MW at hours 10, 21 and 22

respectively in Fig. 5.14.

Daily operational schedules of the ESS for both models are presented in Table 5.2. Pch and

Pd are ESS charging and discharging power respectively, B is ESS energy level. In this table,

Pch is presented by a positive value while Pd has a negative value (the same sign convention

has been used in figures 5.13 and 5.14).

From this table, it can be noted that the operational schedule for ESS at hours 1 to 11 and

hours 20 to 24 in both models are basically similar, i.e. which periods the ESS should be charged

and which ones it should be discharged. The only difference is in the amount of power/energy

82



i
i

“Nhi_PhD_thesis_v3” — 2016/11/24 — 20:33 — page 83 — #100 i
i

i
i

i
i

5.7. Tests and Results

Figure 5.13: ESS operation in single-period model

Figure 5.14: ESS operation in multi-period model

that ESS is decided to get charged or discharged. In the remaining hours, the differences are

more clearly presented, in which ESS in single-period model is almost completely discharged

in only hour 12 while in multi-period model, it is gradually discharged in hours 14, 16, 17

and 19, when wind reaches lowest values. This is because ESS in the multi-period model at

all time tries to balance its charging/discharging power and energy for not only the current

period but also look-ahead periods while ESS in the single-period model only cares about its

charging/discharging at the current period.

Total amount of curtailed wind power is 259.40 MW in single-period model and 188.45
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Table 5.2: ESS operational schedule in single-period and multi-period models

t Pch/Pd B
[h] [MW] [MWh]
1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00
5 0.00 0.00
6 0.00 0.00
7 0.00 0.00
8 14.17 12.04
9 46.73 51.76
10 50.76 94.91
11 3.35 97.75
12 -82.91 0.21
13 -0.18 0.00
14 0.00 0.00
15 0.00 0.00
16 0.00 0.00
17 0.00 0.00
18 0.00 0.00
19 0.00 0.00
20 22.31 18.97
21 57.06 67.47
22 31.02 93.83
23 -39.45 47.42
24 -21.88 0.00

t Pch/Pd B
[h] [MW] [MWh]
1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00
5 0.00 0.00
6 0.00 0.00
7 0.00 0.00
8 18.35 15.60
9 89.93 92.04
10 100 177.04
11 7.37 183.31
12 0.00 183.31
13 0.00 183.31
14 -55.87 117.58
15 0.00 117.58
16 -39.08 71.06
17 -30.90 35.25
18 0.00 35.25
19 -29.96 0.00
20 21.48 18.26
21 37.66 50.26
22 23.96 70.63
23 -39.46 24.20
24 -20.57 0.00

MW in multi-period model, which means multi-period model, with a 27% savings of wind

power, can more efficiently use the variable wind power over the single-period one.

From the economic point of view, there is a small difference in the two models as noticed

in the values of production cost (pc) (Table 5.3). The objective function consists of costs for

Table 5.3: Production cost of both models for 14-bus system

OPF model pc [$] ∆ [%]
Single-period 479595.01

1.3
Multi-period 473427.04

generating real power by both generating units and energy storages whereas production cost is

the cost for generating real power by only the generating units (not including generating cost by

the storages). The multi-period model results in roughly 1.3% lower in production cost than the

single-period model. This indicates multi-period model could provide economically optimal

solution compared to single-period model regarding the production cost and total amount of
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wind to be curtailed.

5.7.2.2 IEEE 57-bus system

In this section, to better understand the differences and similarities of both models, tests on

modified IEEE 57-bus system (described in 5.7.1.3) are performed. In this system, load has a

peak value of 1271.20 MW. Total installed capacity of wind farms is assumed to be 1000 MW.

An ESS is also installed at bus 12. Parameters for this ESS can be found in Table 5.4. Initial

energy B0 of the ESS is set to 200 MWh.

Table 5.4: Parameters of the ESS

Pmaxch Pmaxd B0 Bmax ηch ηd
[MW] [MW] [MWh] [MWh]
200 200 200 400 0.85 0.85

Simulation results are represented in figures 5.15 and 5.16. Detailed operational schedule

for the ESS in each model can be seen in Table 5.5.

Figure 5.15: ESS operation in single-period model

As can be noticed from Fig. 5.15, 5.16 and Table 5.5, in this case study, multi-period model

yields more remarkably different operational schedule from single-period model. For example,

in single-period model (Fig. 5.15), the ESS immediately discharges all of its available energy

(B0) during low wind periods (hours 1, 2 and 3). ESS in multi-period model, on the contrary,

only discharges with very small amounts at the first hours and waits until hour 6 and 7 to get

discharged with higher amounts. When wind power is gradually increased (hours 8, 9 and

10), ESS in multi-period model is charged up to its limit whereas in single-period model it is
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Figure 5.16: ESS operation in multi-period model

charged much less. In the next periods (hours 11 to 14), wind power starts to decrease and ESS

in single-period model is discharged right at hour 12. ESS in multi-period model is discharged

at hour 14 when wind reaches an extremely low value.

Values of production cost (pc) for this case study are shown in Table 5.6. From this table,

multi-period model achieves approximately 1.75% production cost savings over single-period

model.

Total amount of curtailed wind power is approximately 435.97 MW for multi-period model

and 798.85 MW for single-period model. Again, in multi-period model, wind curtailment is

minimized with a 45% savings of wind power over single-period model.

Furthermore, with the effective exploitation of ESS in multi-period model, dispatching pro-

files of conventional generating units in multi-period models (Fig. 5.14 and 5.16) are consider-

ably flatter than those in single-period models (Fig. 5.13 and 5.15), which presumably results

in better efficiencies (not accounted for here) and emission reduction.

To have an insight into the operation of ESS in both models, we further examine hourly

LMP variations of the 57-bus system above. Fig. 5.17 shows hourly LMPs of all buses before

adding ESS. Fig. 5.18 is the plot of hourly LMPs in multi-period model (with ESS installed)

and Fig. 5.19 shows hourly LMP variations in single-period model (with ESS installed).

From figures 5.16 and 5.17, there is an interesting observation that operation of ESS in

multi-period model completely follows the hourly LMP variations. In other words, multi-period

model takes a picture of hourly LMP variations of the system. Then, to optimize the combined

operation of the generating units and ESS, it tries to have the ESS charged at periods of low

LMPs and discharged at periods of high LMPs. Accordingly, the ESS can help improve the
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Table 5.5: ESS operational schedule in single-period and multi-period models

t Pch/Pd B
[h] [MW] [MWh]
1 -77.92 108.33
2 -44.29 56.23
3 -47.79 0.00
4 0.00 0.00
5 0.00 0.00
6 0.00 0.00
7 0.00 0.00
8 36.89 31.36
9 110.75 125.50
10 108.79 217.97
11 7.63 224.46
12 -190.79 0.00
13 0.00 0.00
14 0.00 0.00
15 0.00 0.00
16 0.00 0.00
17 0.00 0.00
18 0.00 0.00
19 0.00 0.00
20 59.26 50.37
21 126.06 157.52
22 71.67 218.44
23 -117.67 80.01
24 141.17 200.00

t Pch/Pd B
[h] [MW] [MWh]
1 -7.18 191.55
2 0.00 191.55
3 -6.13 184.33
4 0.00 184.33
5 0.00 184.33
6 -35.30 142.80
7 -113.87 8.84
8 45.60 47.60
9 200.00 217.60
10 200.00 387.60
11 14.59 400.00
12 0.00 400.00
13 0.00 400.00
14 -141.65 233.36
15 59.21 283.68
16 -99.07 167.13
17 -80.08 72.92
18 0.00 72.92
19 -61.98 0.00
20 78.36 66.60
21 200.00 236.60
22 152.07 365.86
23 -93.32 256.08
24 -47.67 200.00

Table 5.6: Production cost in both models

OPF model pc [$] ∆ [%]
Single-period 878070.82

1.75
Multi-period 862944.14

hourly LMPs by raising low prices and decreasing high prices as can be seen in Fig. 5.18.

Take hour 7 for example, ESS in multi-period model is discharged with highest amount

at this hour (Fig. 5.16) even wind at previous hours are also very low because the model can

see that the price at this hour gets highest value compared to prices at previous hours (Fig.

5.17). Contrarily, since single-period model does not have the ability to foresee hourly LMP

variations of the system, it has the ESS discharged as soon as wind power is low (hour 1, 2 and

3). The hourly LMPs in single-period model can possibly be affected at periods when the ESS

is charged or discharged and remain the same at other periods (see Fig. 5.19).

From the above analysis, it can be concluded that in single-period model, ESS is only oper-
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Figure 5.17: Hourly LMPs of the system without ESS

ated based on variations of wind power while in multi-period model, it is operated based on both

wind and LMP variations. Also, since ESS is a time inter-dependent device, i.e., its operation

at a period depends on that in the previous period, multi-period model is a more mathematically

correct approach for studying this problem.

5.7.3 Sensitivity analysis on ESS location

In this section, tests are carried out with the methodology to define candidate ESS locations

described in Section 3.5. In particular, first, the base case multi-period OPF (without ESSs

installed) is run, which provides values of the Lagrangian multiplier λpti. Next, the parameter

dfi is computed and sorted. Buses with the highest values are selected as the best candidate

buses for ESS installation while buses with the lowest values are the worst candidate buses.

Then, tests are performed by installing different numbers of ESSs among the best and the worst

candidate buses to assess impacts of ESS location on system operational parameters including

production cost, amount of wind to be curtailed and marginal prices.

• Production cost: Cost for generating real power by the generating units only (not includ-

ing generating cost by the storages).

• Amount of wind curtailment: Wind is curtailed once there is surplus wind but the ESSs

have already reached their capacity limits, either power or energy limit. This curtailment

of wind can be viewed as an undesirable loss of such a “cost-free” and clean energy.

• Marginal prices or LMP: LMP is an important price indicator of unit MWh injection at

each node and congestion in the transmission network [106]. It consists of marginal unit

cost, congestion cost, and cost due to losses. Reference [22] demonstrates that LMPs

play a significant role in driving storage operation at low levels of ESS integration.
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Figure 5.18: Hourly LMPs of the system with ESS in multi-period model

Figure 5.19: Hourly LMPs of the system with ESS in single-period model

In this test, wind data are taken from real wind records measured at wind farms in Sicily,

Italy. Load data are also relevant to the typical load of a winter day in Italy. Both wind and

load data are suitably scaled down to fit the case studies. Tests are carried out on IEEE 14-bus

system without any congestion and on IEEE 118-bus systems with congestion.

5.7.3.1 IEEE 14-bus system

In this section, tests are performed on modified IEEE 14-bus system (described in Section

5.7.1.1). The wind plant at bus 2 has an installed capacity of 250 MW. ESSs are added to support

wind generation due to its intermittent behavior, and hence help to reduce wind curtailment and

improve the overall economics.
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Parameters for the ESSs, small and big ones, are provided in tables 5.7 and 5.8. The big

ESS in Table 5.8 are equivalent to two ESSs in Table 5.7 connected to the same bus.

Table 5.7: Parameters for small ESS

Pmax
ch [MW] Pmax

d [MW] Bmax [MWh] ηch ηd

30 30 120 0.90 0.90

Table 5.8: Parameters for big ESS

Pmax
ch [MW] Pmax

d [MW] Bmax [MWh] ηch ηd

60 60 240 0.90 0.90

In this system, loads with peak value of 732 MW are supplied from both conventional and

wind generation. When wind is sufficient, it will be the priority source to supply loads and if

there is still surplus wind power, ESSs will be charged. When wind power is not sufficient,

ESSs will be discharged to supply loads while respecting all technical constraints. If both wind

and ESS stored energy are not enough for the loads, conventional generators will be dispatched

consequently.

After running the base case OPF model (without ESSs installed), the Lagrangian multipliers

of real power at each bus in each hour are determined. The parameter dfi is then calculated for

each bus i, including wind bus and load buses (Table 5.9).

Table 5.9: Values of the parameter dfi at each bus

Best candidate dfi Worst candidate dfi

bus no. [$/MWh] bus no. [$/MWh]

14 1739.16 11 1615.55

10 1662.22 4 1610.09

9 1657.42 12 1605.50

13 1633.53 5 1569.58

7 1622.41 2 1485.79

From this table, the first 5 buses (14, 10, 9, 13 and 7) with highest values of Lagrange

multipliers are selected as the best candidate buses to install the ESSs.

Next, different cases where different numbers of ESS are placed in the system are consid-

ered to assess the quality of the sensitivities computed. The tests are categorized as in Table

5.10. Parameters of the big ESS in cases 7 and 8 are provided in Table 5.8.

The optimization problem is run for a period of 24 hours. Operation of the ESS for Case 2,

with 1 ESS connected to bus 14 (the best candidate bus), are represented in Fig. 5.20. As shown
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Table 5.10: Tests for modified IEEE 14-bus system

Case 0 No ESS connected to the network
Case 1 1 ESS connected to bus 2 (the worst candidate bus)
Case 2 1 ESS connected to bus 14 (the best candidate bus)
Case 3 2 ESSs, 1 at bus 2, the other at bus 14
Case 4 2 ESSs connected to buses 9 and 14 (best candidate buses)
Case 5 3 ESSs, 1 at bus 2, the others at buses 9 and 14
Case 6 3 ESSs connected to buses 9, 10 and 14 (best candidate buses)
Case 7 1 large ESS connected to bus 2
Case 8 1 large ESS connected to bus 14

in the figure, the ESS is charged when wind power exceeds the load and then it is discharged

when wind power is insufficient to supply the load. At periods when wind is much higher than

the load, after the storage has been charged up to its limits, either power or energy limit, the

extra wind is necessarily curtailed.

Figure 5.20: Operational schedule of the ESS in Case 2

To understand the operation of the ESSs in each case, the resulting production costs, amounts

of curtailed wind power, and LMPs of the above mentioned cases will be compared.

(i) Production costs
Generation costs of all 8 cases are shown in Fig. 5.21. It can be clearly seen from this fig-

ure that the case without ESSs yields highest generation cost over the other cases. Cases

with only 1 ESS connected to the network result in a noticeable reduction of generation

cost and this reduction is higher in the case when the ESS is connected to the best can-
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didate bus (Case 1 achieves about 1.9% cost savings while Case 2 obtains approximately

2.19% cost savings compared to Case 0). In cases 3 and 4, with 2 ESSs, and cases 5-6,

with 3 ESSs connected to the system, the production cost is further reduced. In general,

the selection of the best candidate buses improves system operation, although the effect

due to the total ESS capacity looks more significant in this case. Quality of sensitivities

computed can be evaluated by comparing cases 1-2 and 7-8: the comparison shows that

the candidate buses for ESS installation are actually correctly identified. Also, from the

above analysis, it can be observed that higher capacity of ESS added to the network can

significantly improve the overall economics of the system.

Figure 5.21: Production costs of all cases

(ii) Curtailed wind energy
As can be seen from Fig. 5.20, wind is possibly curtailed from hours 1 to 5, in which

wind is higher than load. Amounts of wind curtailment in all 8 cases are shown in Fig.

5.22. Amounts of curtailed wind energy in all 8 cases vary similarly as the generation

costs. It is worth noticing that Case 2 uses more wind power than Case 1 even the ESS

in Case 2 is located far from the wind bus. The same occurs when comparing cases 7

and 8. Hence, it is important to observe that the computed sensitivities take correctly into

account also wind curtailment.

(iii) Locational Marginal Prices
The addition of ESSs at different locations results in changes in LMPs at all buses. The

hourly LMP variation of all 14 buses in Case 0 are presented in Fig. 5.23. During peak

load periods, LMPs also reach peak values while during off-peak hours their values be-

come much lower. This is understandable, since at peak load hours, cheap wind power
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Figure 5.22: Amount of curtailed wind of all cases

is not sufficient to supply the load and more expensive conventional generators are dis-

patched instead, which causes an increase in LMPs.

Fig. 5.24 shows LMPs of Case 1, in which a BES is connected to bus 2 (the worst

candidate bus). In this case, peak prices are noticeably reduced for the higher peak (hours

18 to 20), from peak value of about 140 $/MWh to around 115 $/MWh. The lower peak

(during hours 10 to 12) is also slightly reduced (from peak value of about 105 $/MWh to

100 $/MWh). This indicates that the addition of the BES can provide additional cheap

power to loads during peak periods. The reduction in LMP values in this case will affect

the cost of supplying load at each bus.

In Case 2 (Fig. 5.25), both peaks are further reduced. The second peak (hours 18 to 20)

is considerably reduced and becomes almost equal to the first peak (hours 10 to 12), i.e.,

about 90 $/MWh. This indicates the addition of BESs at a bus in the best candidate buses

has more significant influence on marginal prices than the addition of BESs at a bus in

the worst candidate buses, which means the computation of sensitivities is correct. For

the remaining cases, similar conclusions can be drawn.

5.7.3.2 IEEE 118-bus system

To further investigate the sensitivity of ESS location and size in congestion relief applica-

tion in a large network, tests are also carried out on modified IEEE 118-bus system (described in

Section 5.7.1.4). In this case, ESSs are installed to charge this otherwise curtailed wind amount

for later releasing and allow an efficient utilization of transmission lines. A congestion is ob-

served during peak periods on lines 8-5 and 8-30, from wind farms to loads. Parameters for the

ESSs are the same as those in the IEEE 14-bus system, i.e., shown in tables 5.7 and 5.8.

In this test, the calculated parameter dfi, the best candidate and worst candidate buses for
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Figure 5.23: Hourly LMP variation in Case 0

Figure 5.24: Hourly LMP variation in Case 1

installing ESSs are selected as shown in Table 5.11.

From this table, the best candidate buses include buses 5, 3, 7, 2, 11, 117, 13, 14, 109 and

16 while the worst candidate buses include buses 37, 114, 115, 23, 38, 17, 30, 8, 9 and 10. It

is worth noticing that wind buses (8 and 10) are not in the best candidate set: this is however

not odd, as the optimization is carried out from a system point of view. The tests carried out are

described in Table 5.12.

Now, a plot is provided (Fig. 5.26) showing the operation of the ESS connected to bus 5 (the
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Figure 5.25: Hourly LMP variation in Case 2

Table 5.11: The selected best and worst candidate buses

Best candidate dfi Worst candidate dfi

bus no. [$/MWh] bus no. [$/MWh]

5 658.28 37 581.38

3 654.75 114 581.21

7 650.06 115 581.18

2 649.77 23 576.83

11 648.80 38 575.17

117 647.73 17 574.39

13 637.95 30 552.03

14 631.46 8 491.40

109 624.09 9 486.10

16 623.80 10 480.64

best candidate bus) to exclusively examine how it shifts wind to avoid transmission constraint.

From this figure, the ESS is charged during off-peak periods (hours 1 to 5 and hours 14 to

16), which are also periods without transmission congestion, and then discharged during peak

periods (hours 10 to 12 and hours 17 to 20) when congestion occurs. Clearly, the ESS has

thoroughly shifted wind power from wind side to load side to supply loads when wind power

can not be transferred from wind farms to loads due to limited transmission capacity.

Also, Fig. 5.27 shows a plot of power flows on line 8-5, connecting wind farms and loads.
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Table 5.12: Tests for IEEE 118-bus system

Case 0 No ESS connected to the network
Case 1 1 ESS connected to bus 8 (one of the worst candidate buses)
Case 2 1 ESS connected to bus 5 (best candidate bus)
Case 3 2 ESSs, 1 at bus 8 and the other at bus 5
Case 4 2 ESSs connected to buses 5 and 117 (best candidate buses)
Case 5 3 ESSs, 1 at bus 8, the others at buses 5 and 117
Case 6 3 ESSs, 2 at buses 8 and 10, the other at bus 5
Case 7 3 ESSs connected to buses 2, 5 and 117
Case 8 1 large ESS system connected to bus 8
Case 9 1 large ESS system connected to bus 5

Figure 5.26: Operation of the ESS in Case 2

The dotted line with crosses in the plot corresponds to the unconstrained case without ESS:

the power flow limit (the dotted red line with filled circle) is not enforced by the optimization

procedure and this would cause the real-time curtailment of excess wind power. This figure

clearly illustrates the alternative path that the ESS provides for wind power to alleviate the

congestion, i.e., the full blue line with circles. In this way, power flow on line 8-5 during low

load hours (hours 1 to 5 and 14 to 16) are increased but still lower than the flow limit. Such flow

increase is due to the wind power flow used to charge the ESS at load bus. This stored energy

is released to supply loads during peak periods, when congestion occurs. Consequently, wind

power can still be supplied to loads while ensuring the flow limit.

The resulting production costs, amounts of curtailed wind power, and LMPs of the above

mentioned cases are also compared.
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Figure 5.27: Power flow on line 8-5 in Case 2

(i) Production costs
In Fig. 5.28, a plot of production costs of the system in all cases is provided. Case 0

yields the highest cost compared to the others. From cases 1 to 5, the cost is gradually

reduced. This demonstrates that higher numbers of ESS installed return more economical

operation of the system. The effectiveness of a good selection of candidate buses by the

sensitivity computation is clear by looking at cases 1 and 2: Case 2 results in higher saving

as compared to Case 1. Similarly, cases 4 and 7 where there are more ESSs installed at the

best candidate buses also result in lower production costs compared to Case 3, and cases 5

and 6, respectively. Cost savings in Case 8 is lower than that in Case 3 and Case 9. From

this analysis, it can be deduced that in such a congested system, storage devices placed at

the best candidate buses can provide far more economical operation than those placed at

the worst candidate buses. Thus, it is important to figure out the best candidate locations

for the planning of storage devices. Moreover, in this case, a large ESS connected to a bus

in the best candidate buses can operate as efficiently as several ESSs distributed among

the best candidate buses.

(ii) Curtailed wind energy
Amounts of curtailed wind energy in all cases are represented in Fig. 5.29. Considering

Case 1 and Case 2, for instance, the conclusion is that the difference in total cost (Fig.

5.28) is not due to wind curtailment, like for the 14-bus test system above, but due to con-

gestions: the optimal placing of ESS allows, in this case, to best relieve the congestions

due to wind power. In this case, the amount of wind energy to be curtailed is not affected

by centralized or decentralized placement of the storage devices.

(iii) Locational Marginal Prices
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Figure 5.28: Production costs of cases 0 to 9

Figure 5.29: Amounts of curtailed wind of cases 0 to 9

Hourly LMP variation of all buses for each case is also shown to discuss the impacts of

ESS location and size on LMPs. Hourly LMP variation of Case 0 is shown in Fig. 5.30.

In this figure, curves with the highest peaks belong to load buses on the receiving side of

congested lines and curves with the lowest prices belong to wind buses. During off-peak

periods, LMPs are about the same for all buses since there is no congestion.

Hourly LMP variation in Case 1, when there is 1 ESS connected to bus 8 (one of the worst

candidate buses), is basically the same as in Case 0. In Case 2, with 1 ESS added at bus 5

(the best candidate bus), the higher peak prices during the first peak hours are noticeably

98



i
i

“Nhi_PhD_thesis_v3” — 2016/11/24 — 20:33 — page 99 — #116 i
i

i
i

i
i

5.7. Tests and Results

Figure 5.30: Hourly LMP variation of Case 0

lowered and those during the second peak hours are also considerably lowered at some

periods (hours 17 and 20) as shown in Fig. 5.31. Peak prices are not reduced at hours 18

Figure 5.31: Hourly LMP variation of Case 2

and 19 of the second peak period because the limited capacity of the ESS is not enough

to supply the high load during these hours. For these peak prices to get reduced, higher

capacity of the ESS is required. In this case, to avoid transmission congestion, the ESS is

charged by wind power during low load periods, when there are no congestions, and then
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discharged to supply the cheap energy to loads during congestion hours, hence it can help

to reduce the marginal cost during peak hours of these load buses. This operation of the

ESS has effectively supported wind generation and efficiently makes use of the available

transmission capacity.

In Case 4 (2 ESSs connected to the best candidate buses), LMP values of the higher peak

curves are further reduced during the first peak periods and during hours 17 and 20 of the

second peak (Fig. 5.32).

Figure 5.32: Hourly LMP variation of Case 4

In this test, sets of the best and the worst candidate buses for installing ESSs have been

identified based on an economic criteria, i.e., the Lagrangian multipliers. Operation of ESSs is

assessed in two different applications, i.e., time-shifting wind to meet demand and mitigating

transmission congestion to avoid wind curtailment and allow an efficient utilization of transmis-

sion capacity. Installation of ESSs at the best candidate buses, in both applications, is shown to

provide much better operation than at the worst candidate ones.

5.7.4 Tests on the combined GA and POPF approach

Test on this approach is carried out on modified IEEE 57-bus system as described in 5.7.1.3.

In this system, total load has a peak of 1620 MW. A wind farm of 450 MW installed capacity is

connected to bus 12 and other smaller wind farms are connected to busses close to bus 12 for a

total wind capacity of 750 MW, accounting for 46.3% of wind power penetration. ESSs are to

be placed to time-shift wind energy from off-peak load periods (low electricity price) to peak

periods (high electricity price) to add economic value to wind energy and avoid wind generation

curtailment. Capacities of these ESSs are to be defined by the solution of the OPF. Accordingly,
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total generation cost of the system is minimized while wind generation is maximized. The ESSs

are assumed of Compressed Air Energy Storage (CAES) technology. These CAES systems have

equal charging and discharging efficiency, equal to η. Parameters of the CAES are shown in

Table 5.16 [15]. Without loss of generality, the ESSs is assumed to start with an initial energy

level of 0 MWh.

Table 5.13: Parameters of the CAES

CB ($/kWh) CR ($/kW) N (years) η r (%)
5 700 30 0.85 10

In this test, the combined GA-Probabilistic OPF (POPF) model (presented in Section 5.4)

is applied to optimally place and size ESSs in power systems while minimizing ESS investment

cost and the total generation cost. Wind and load input data are as described in 5.4.1.

The approach is first carried out with the whole-year data of wind and load. Results of the

combined GA and deterministic OPF in this case are summarized in Table 5.14.

Table 5.14: Simulation results for whole-year

Optimal location Bmax Rmax

(Bus number) (MWh) (MW)
12 495.2 95.6
29 172.2 31.0

Next, in order to capture seasonal variations of wind and load, the optimization is carried

out separately on different seasons. This is done just for sensitivity purpose only, optimal lo-

cations and capacities of ESSs are still determined based on the whole-year data above. The

corresponding simulation results are shown in Table 5.15, in which optimal locations of ESSs

along with their optimal power and energy capacities in each season are presented.

Table 5.15: Simulation results for all seasons

Season Optimal location Bmax Rmax

(Bus number) (MWh) (MW)

Spring
12 483.1 105.4
29 155.9 32.5

Summer
12 296.4 67.9
38 49.5 12.0

Autumn
12 468.9 98.2
29 157.2 31.1

Winter
12 758.2 144.2
29 211.9 39.1
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As can be seen from Table 5.14 that there are 2 ESSs chosen to install, a bigger one at

wind bus (bus 12) and a smaller one at load bus (bus 29). Similar results can be observed in

Table 5.15. Basically, the location in Table 5.14 is the optimal one for three seasons out of four,

taken separately, with one ESS in the windy area and the other in the load center, to support

wind generation. In particular, the model would install the biggest ESS at bus 12 (windy area)

in all seasons and a smallest ESS at bus 38 (load bus) in summer and at bus 29 (load bus) in

the remaining seasons. Both buses 38 and 29 are load centers. The difference in ESS optimal

location between summer and the other seasons may result from the relatively high difference in

load and wind profiles in summer compared to the other seasons as seen in Fig. 5.2. Power and

energy capacities of both ESSs reach highest values in winter when wind power during off-peak

periods is the highest. Contrarily, in summer, wind power at off-peak periods is notably lower

compared to other seasons and the ESSs are charged and discharged with lower values of power

and energy.

As an example, in Fig. 5.33, the expected value of operational schedule for wind and ESS

at bus 12 in the spring period (corresponding to the Spring row of Table 5.15) is shown. The

storage is effectively used to time-shift wind energy by charging wind power at low load periods

(hour 1 to 7) and then releasing it during the first peak periods of hour 9 to 12 and the second

peak periods of hour 20 to 22. In this case, there is no wind curtailment and wind power output

is fully dispatched. As such, the conventional generation is remarkably reduced during these

hours. This operation of the ESS closely follows hourly LMP variations of the system as shown

in Fig. 5.34. Clearly, the storage is charged during low price periods and then discharged during

high price periods. Note also that during high price periods, the storage is decided to discharge

more at hours with higher price and vice versa. For example, during the first peak period, the

storage is discharged more at hour 10 when the price is higher than at hour 12 when the price

gets lower. Similarly, during the second peak period, it is more discharged at hour 21 than at

hour 20 when the price is lower.

Since input variables (i.e., wind and load) of the above-mentioned OPF problem are actu-

ally stochastic, power and energy capacities of the ESS (i.e., output of the combined GA-OPF

problem) can be considered as expected value of the corresponding random variables. In order

to carry out Step 2 of the procedure described in Section 5.4.2, the probabilistic assessment is

performed on ESS capacities shown in Table 5.14 at the corresponding buses.

Figure 5.35, analogously as in Fig. 5.33, depicts expected values of hourly power and

energy of the ESS at bus 12 in Table 5.14. According to this figure, the ESS reaches its power

capacity (Rmax) at hours 4 and 5, and reaches its energy capacity (Bmax) at hour 7, after 6

consecutive charging periods. Since wind and load variation is highest at hour 4, we choose to

perform probabilistic assessment for ESS power capacity based on its operation at hour 4.

In Fig. 5.36, results of the POPF are shown: CDF of ESS power capacity. In this case,

installation of the capacity according to Table 5.14 would be not enough in some operating
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Figure 5.33: Operation of wind and ESS at bus 12 in spring

Figure 5.34: Hourly LMPs at bus 12

conditions. If the decision maker decided to install ESS for a capacity of 143 MW, almost the

whole range of the probability distribution would be covered. If a lower value of capacity is

decided, it will lead to a risk of not having enough power capacity for handling uncertainty in

the system. For example, using 122, 116, 104 and 102 MW will cover 99, 95, 85 and 75% of

the whole range of the probability distribution, respectively. This means that if 5% of risk is

accepted, for instance, power capacity of the ESS is approximately 18.9% reduced. Similarly,

with 15% and 25% of risk allowed, power capacity of the ESS is roughly 27.3% and 28.7%

reduced, respectively.
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Figure 5.35: Power and energy of ESS at bus 12

Figure 5.36: CDF of power capacity of ESS at bus 12, hour 4

From the probabilistic assessment of power from hour 1 to hour 7, we obtain probabilistic

energy sizing of the ESS, based on the relationship between its power and energy in equation

(3.12). In other words, ESS energy level at hour 7 is the cumulative sum of charging power

along with its efficiency from hour 1 to hour 7. In Fig. 5.37, energy capacity of the ESS is

probabilistically assessed. As can be noticed from this figure, the use of 708, 627, 592 and

572 MWh will cover 99, 95, 85 and 75% of the whole range of the probability distribution,

respectively. This also means that a 5%, 15%, and 25% of risk accepted will result in a reduction

of 20.4%, 24.9%, and 27.4% of the energy capacity, respectively. In this case, if the decision

maker needs to cover 85% of wind and load variations, for instance, power and energy capacity
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Figure 5.37: CDF of energy capacity of ESS at bus 12, hour 4

of the ESS at bus 12 has to be 104 MW and 592 MWh, respectively.

The results show that to completely cover the whole range of uncertainties, ESS power and

energy capacities are necessarily much higher than the expected value capacities. However, if a

certain level of risk is acceptable, both power and energy capacities will become considerably

smaller and the model allows this risk estimate.

5.7.5 Tests on two-stage stochastic approach

5.7.5.1 IEEE 39-bus system

In this section, test on the two-stage stochastic approach (Section 5.5) is performed with

modified IEEE 39-bus system (described in 5.7.1.2) to determine optimal capacities of ESSs in

its combined operation with wind generation while taking into account the stochastic behavior

of wind and load. In order to test the model with different wind penetration levels, which is

defined as the ratio between wind farm installed capacity and the peak load, the total installed

capacity of both wind farms are assumed 400 MW, 600 MW, and 800 MW, accounting for

20%, 30%, and 40% of wind penetration, respectively. Three different ESS technologies are

considered, i.e., Battery Energy Storage (BES), Compressed Air Energy Storage (CAES) and

Pumped Hydro Storage (PHS). Parameters of these storage technologies are shown in Table

5.16 [15, 107, 108], assuming ηch = ηd = η for each technology.

Wind and load scenarios are generated using the technique described in Section 5.5.1.1.

For this test, there are 6 scenarios of wind and 5 scenarios of load as shown in Figure 5.7.

Each scenario of wind is then combined with each scenario of load, which results in a set of 30

wind-load scenarios as the input of the model, each is associated with a probability.

The test is performed first with BES system, and then repeated for the remaining ESS tech-
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Table 5.16: Parameters of three ESS technologies

CB (e/kWh) CR (e/kW) N (years) η r (%)
BES 330 400 10 0.85 5CAES 5 700 30 0.79
PHS 14 1000 30 0.87

nologies considered, i.e., CAES and PHS. It turns out that due to the high investment cost of

BES, the model does not select this technology for any wind penetration levels. In other words,

installing BES in this case does not yield any benefit for the system since its capital cost over-

weigh the profit from the combined operation of wind and BES. The model, instead, chooses to

install CAES and PHS systems. Optimal capacities of the CAES and PHS are shown in Table

5.17. ESS of both technologies is installed at wind penetration level 30% and 40%. At 20%

wind penetration level, which is 400 MW total wind installed capacity, since the amount of

excess wind power to be time-shifted is also not enough to cover the investment cost of both

CAES and PHS, the model does not install the storage device. At higher wind penetration levels

(30% and 40%), the model decides to install either CAES or PHS systems and capacity of the

storage device is gradually increased with the penetration of wind. Capacities of CAES system

is larger than those of PHS; in particular this capacity difference is higher at higher wind pen-

etration levels. As noted from Table 5.16, even though PHS technology has higher efficiency

than CAES, its higher daily capital cost still results in smaller capacities of the storage device.

Table 5.17: Optimal capacities of ESS in IEEE 39-bus system

Wind 20% 30% 40%
PHS CAES PHS CAES PHS CAES

Bmax(MWh) 0.0 0.0 74.4 83.1 109.3 162.8
Rmax(MW) 0.0 0.0 12.2 15.0 18.3 29.5

Test is also performed for the case when there is no ESS installed to compare the yearly

operational cost of the system in both cases, with and without the storage device (Table 5.18).

Table 5.18: Operational cost of 39-bus system with and without ESS [Me/year]

Wind 30% 40%
No ESS 463.55 445.88
CAES 457.75 437.72
PHS 458.02 439.10

As can be seen from this table, the total yearly cost of the system is considerably lower

when there is ESS installed. Moreover, the case of PHS results in a slightly higher yearly cost

compared to that of CAES. The cost difference between three cases is higher at higher wind

penetration levels, when higher ESS capacities are installed. That is, the CAES gains a cost

reduction of 1.25% at 30% wind penetration and 1.83% at 40% wind penetration while the PHS
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5.7. Tests and Results

yields 1.18% cost reduction at 30% wind penetration and 1.52% at 40% wind penetration, with

respect to the operational cost in the case without ESSs.

Daily operation of the CAES in all scenarios at 30% wind penetration level, for example,

can be seen in Figure 5.38. Basically, in many scenarios (corresponding to load scenarios with

higher peaks in Figure 5.7b), the CAES is charged at off-peak periods (hours 1 to 5 and hours

13 to 16) and then discharged at peak periods (hours 7 to 12 and hours 18 to 20). In other

scenarios (corresponding to load scenarios with lower peaks in Figure 5.7b), it is charged at

off-peak periods (hour 1 up to 7) and gradually discharged at high load periods (hours 9 to 11,

12 to 16, and 17 to 21). In other words, the storage has been fully employed to time-shift wind

energy for matching the demand in all scenarios of wind and load.

Figure 5.38: Energy level of the CAES in daily operation

5.7.5.2 IEEE 118-bus system

To further examine the performance of the model, tests on modified IEEE 118-bus system

(described in Section 5.7.1.4) are also carried out. The 3 wind farms connected to buses 6, 62

and 112 are assumed to have a total installed capacity of 1000 MW, 1500 MW, and 2000 MW,

accounting for 20%, 30%, and 40% of wind penetration respectively. Wind data are assumed to

be the same for the 3 wind farms.

Wind and load scenarios are also generated as in Section 5.5.1.1. In this case, there are

also 6 scenarios of wind and 5 scenarios of load obtained. A set of 30 wind-load scenarios as

input for the model is created by combining each wind scenario with each load scenario; each

wind-load scenario has a probability of occurrence.
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In this test, the model is also run with the set of 30 wind-load scenarios for each of the

above three ESS technologies at wind penetration levels of 20%, 30%, and 40%. The model

again does not choose to install BES due to its high daily investment cost but it installs CAES

at both buses, i.e., buses 6 and 62, for all wind penetration levels, from 20% to 40%. For PHS

technology, the model only install 1 ESS at bus 62 at 30% and 40% of wind penetration levels.

Optimal capacities of the CAES and PHS systems can be seen in Table 5.19 and 5.20.

Table 5.19: Optimal capacities of CAES at buses 6 and 62 in 118-bus system

Wind 20% 30% 40%
Bus 6 62 6 62 6 62

Bmax(MWh) 0.0 15.5 82.2 154 225.4 295.4
Rmax(MW) 0.0 3.3 14.9 27.8 31.7 39.0

Table 5.20: Optimal capacities of PHS at buses 6 and 62 in 118-bus system

Wind 20% 30% 40%
Bus 6 62 6 62 6 62

Bmax(MWh) 0.0 0.0 0.0 43.6 0.0 217.6
Rmax(MW) 0.0 0.0 0.0 8.4 0.0 35.7

At 20% wind penetration, only 1 CAES with quite small capacity is installed at bus 62.

From 30%, 2 CAES are installed, a smaller one at bus 6 and a larger one at bus 62. Since

installed capacities of wind farms are the same at both buses, higher load at bus 62 can possibly

result in higher capacity of the CAES at this bus. There is only 1 ESS of PHS technology

installed at bus 62, with smaller capacities than those of CAES. Similar to simulation results

in the 39-bus system above, when wind penetration level is increased, the model also installs

higher capacities of the storage devices for both buses. This indicates that a higher penetration

of wind results in more surplus wind power, making it more beneficial to deploy a larger storage

device.

Yearly operational cost of the system is also provided in Table 5.21. The CAES gains a

cost reduction of 0.07% at 20% wind penetration, 1.34% at 30% wind penetration and 1.62% at

40% wind penetration while the PHS yields 0.09% cost reduction at 30% wind penetration and

1.22% at 40% wind penetration, with respect to the operational cost in the case without ESSs

installation.

Table 5.21: Operational cost of 118-bus system with and without ESS [Me/year]

Wind 20% 30% 40%
No ESS 995.24 955.43 920.89
CAES 994.54 942.63 905.97
PHS 995.24 954.57 909.66

The tests are implemented in GAMS on a PC with Intel Core i7 - 3.4 GHz CPU and 8.0 GB

108



i
i

“Nhi_PhD_thesis_v3” — 2016/11/24 — 20:33 — page 109 — #126 i
i

i
i

i
i
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of memory, using IPOPT solver with an optimality gap of 0.5%. The direct method, which is the

deterministic equivalence of stochastic programming model, is adopted to solve the problem.

Computation time for the 39-bus system, which has a total of 137522 variables, 123150 equality

constraints and 36720 inequality constraints, is 19 minutes. The 118-bus system, consisting of

516244 variables, 437820 equality constraints and 139680 inequality constraints, requires 28

minutes. Tests are also performed on a reduced model by removing the constraints on branch

current limit, i.e. constraints (5.54) - (5.55), for branches with current flow less than 70% of the

branch limit. The size of the model is thus reduced considerably and the computation time is

also significantly less than that of the full model. In particular, computation time of the 39-bus

system is reduced from 19 minutes to only 2 minutes and for the 118-bus system, it is reduced

from 28 minutes to 6 minutes.

5.7.6 Comparison of both approaches

In this part, tests on both approaches, combined GA and cumulant-based POPF and two-

stage stochastic programming approach, are carried out with modified IEEE 14-bus system (in

Section 5.7.1.1), and comparison is made for solutions of both approaches. Wind data at the

only wind farm present are taken from 3-year historical data as those described in Section 5.4.1

and scaled up to an installed capacity of 350 MW (see Fig. 5.39), accounting for 47.8% of wind

penetration, while 3-year load data, for the sake of simplicity, are assumed to have a normal

distribution with a standard deviation of 10% (see Fig. 5.40). 3-year wind and load data are

clustered and representative scenarios of wind and load are obtained as described in Section

5.5.1.1. The resulting clusters and representative scenarios of wind and load data as input of the

two-stage stochastic model are shown in figures 5.41 and 5.42.

Figure 5.39: Wind power data
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Figure 5.40: Load data

Figure 5.41: Wind clusters with representative scenarios

Tests are performed following the final procedure presented in Section 5.6. Specifically,

a base case deterministic multi-period OPF is run first and the parameter dfi is determined.

The best candidate buses for ESS installation are then identified based on values of dfi, which

include buses 14, 10, 9, 13 and 7. These candidate buses are used as the search space for GA,

instead of all 14 buses, in the combined GA and cumulant-based probabilistic approach. In the

two-stage stochastic approach, 5 ESSs are allowed to be installed at these 5 candidate locations.
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Figure 5.42: Load clusters with representative scenarios

From computation point of view, computing time in the combined GA and cumulant-based

approach lies mainly in the GA part, which depends on the search space for optimal location.

Thus, larger systems will result in higher computing time. In this case, preliminary identifica-

tion of candidate ESS locations can help to significantly reduce the search space for GA and

subsequently reduce computing time. Computing time in the two-stage stochastic approach also

depends on the size of the system. The determination of candidate buses for ESS installation

helps to identify locations for installing ESSs before determining their capacities. This also

means the size of the system is reduced if locations of the ESSs have to be decided along with

their capacities, since otherwise the ESSs could be installed in all buses.

Solutions obtained in both approaches are shown in tables 5.22 and 5.23, which are very

different. This is not completely surprising, as the methodologies and the objective functions

are actually different. The first difference is the number of ESSs selected. The combined GA

and cumulant-based probabilistic approach decides to install only 1 ESS at the best candidate

bus, i.e., bus 14 while in the two-stage stochastic approach, 2 ESSs out of 5 are used: a bigger

one at bus 14 and a smaller one at bus 10 (optimal values of capacities of 3 ESSs installed at the

remaining candidate buses are all zeros). The second difference is in the optimal capacities of

the ESSs. Capacity of the ESS, installed at bus 14, in the first approach, is much smaller than

ESS capacity at bus 14 in the second one. This difference is understandable since at this point,

solution of the combined GA and cummulant-based approach is based on GA combined with a

deterministic OPF, using expected wind and load data. In solution of the two-stage stochastic

approach, on the contrary, wind and load uncertainties are already taken into account, i.e., using

wind and load scenarios. This demonstrates that capacities of the ESSs, in case uncertainty is

not included, are noticeably smaller than those in case uncertainty is taken into account, i.e.,
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12.8 MW and 38.2 MWh (in Table 5.22) compared to a total of 55.4 MW and 249.6 MWh (in

Table 5.23).

Table 5.22: Locations and expected value of ESS capacities in GA + cumulant-based
approach

Bus Bmax[MWh] Rmax[MW ]

14 38.2 12.8

Table 5.23: ESS capacities in two-stage stochastic approach

Bus Bmax[MWh] Rmax[MW ]

14 198.6 43.4
10 51.0 12.0
9 0.0 0.0
13 0.0 0.0
7 0.0 0.0

Now, the probabilistic part of the combined GA and cumulant-based probabilistic approach

is carried out. CDFs of ESS capacities are shown in figures 5.43 and 5.44.

Figure 5.43: CDF of ESS power capacity

As noticed from these figures, with the expected value of ESS power capacity (in Table

5.22), only approximately 70% of wind and load uncertainties is covered and with the expected

value of ESS energy capacity, only about 60% of the uncertainty is covered. In order to cover

100%, 99%, 95%, 85% and 75% of the uncertainty, power capacity of the ESS should be

respectively 86.8 MW, 58 MW, 54.9 MW, 30 MW and 27.7 MW. Similarly, to cover 100%,

99%, 95%, 85% and 75% of the uncertainty, energy capacity of the ESS has to be 195.5 MWh,

175.2 MWh, 106.9 MWh, 99.3 MWh and 91.7 MWh, respectively. This approach results in

a higher power capacity and smaller energy capacity of the ESS compared to total capacities

optimal for the two-stage stochastic programming approach. For example, in this approach,
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Figure 5.44: CDF of ESS energy capacity

capacities of the ESS in case 100% of uncertainty is covered are 86.8 MW and 195.5 MWh

while in the other approach, total capacities of the ESSs are 55.4 MW and 249.6 MWh.

To examine operational costs of the system in both configurations, further simulation is

performed by installing the ESS capacities and locations obtained above and running the OPF

model with all 3-year wind and load data. The resulting operational costs and curtailed wind

energy of 3-year operation and fixed costs of each case are shown in Table 5.24. As observed

Table 5.24: Costs and amounts of curtailed wind energy in 3 year operation of the system with
the obtained capacities and locations of the ESSs

Approach Bus Bmax Rmax Operational cost Fixed cost Curtailed wind
[MWh] [MW] [Me] [Me] [MWh]

Two-stage 14 198.6 43.4
639 10.07 2.71e+4

stochastic 10 51.0 12.0

14
38.2 12.8

642 1.71 6.29e+4
Combined expected value

GA
14

99.3 30.0
641 4.31 4.83e+4

and cover 85%
cumulant

14
106.9 54.9

640 5.51 4.50e+4
based cover 95%
POPF

14
195.5 86.8

639 9.56 2.88e+4
cover 100%

from this table, basically, the two-stage stochastic approach yields the same operational cost

(the first row in the table) as the combined GA and cumulant-based POPF approach with 100%

of uncertainty covering (the last row in the table). The amount of wind energy to be curtailed in

the first approach is slightly lower than that in the second one, i.e., 2.71e+4 MWh compared to

2.88e+4 MWh whereas the fixed cost is a little bit higher, i.e., 10.07 Me compared to 9.56 Me.

Accordingly, if decision makers prefer a solution with a lower amount of wind curtailment, the
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two-stage stochastic approach can be an option. On the contrary, if a solution with lower capital

cost is preferred, the combined GA and cumulant-based POPF approach can be adopted. More-

over, if decision makers want to further reduce the capital cost with some acceptable amount

of wind curtailment, they can choose different levels of uncertainty covering in the solution of

the combined GA and cumulant-based POPF approach. In general, the two-stage stochastic ap-

proach provides only one optimal solution while the combined GA and cumulant-based POPF

approach provides a more flexible one, which allows decision makers to choose according to

their desire.

Computing time for both approaches are shown in Fig. 5.45. In this figure, computing time

in case there are candidate buses identified (Case 1) is shown along with the time when there is

no candidate bus (Case 2), i.e., the search space of GA in the combined GA and POPF approach

includes all 14 buses and in the two-stage stochastic approach, ESSs are installed at all buses.

Obviously, with candidate buses preliminarily determined, computing time for both approaches

are considerably reduced. In this case, time for the combined GA and POPF approach is lightly

smaller than that of the two-stage stochastic approach.

Figure 5.45: Computing time for both approaches

In Fig. 5.46, computing time of the two-stage stochastic programming approach with differ-

ent numbers of scenarios of input random parameters are shown. Clearly, the higher the number

of scenarios, the longer it takes to run the model. The time is not linearly increased with the

number of scenarios but it is exponentially increased. Thus, scenario reduction is necessary to

make this approach tractable.

114



i
i

“Nhi_PhD_thesis_v3” — 2016/11/24 — 20:33 — page 115 — #132 i
i

i
i

i
i

5.8. Summary

Figure 5.46: Computing time of two-stage stochastic approach with different numbers of input
scenarios

5.8 Summary

This chapter presents methodologies and tests on the planning problems with ESSs. Two

main approaches, i.e., combined GA and cumulant-based probabilistic approach and two-stage

stochastic programming approach, are presented and discussed. In the cumulant-based proba-

bilistic approach, the optimal capacities corresponding to average wind and load, and CDF of

ESS power and energy content in each hour are obtained, which provides useful information

for the operation of the ESSs. From this information, capacities of the ESSs can be determined

by decision makers depending on the willingness to cover a certain level of uncertainty. This

sizing approach can explicitly address system uncertainty while allowing a reasonable compu-

tation time. The stochastic approach, on the other hand, directly provides ESS capacities in the

first stage (or planning stage) while considering all possible realizations of random parameters

in the second stage (or operational stage). However, this approach is relatively computationally

expensive and requires an efficient scenario reduction technique.

With the goal of reducing computational burden for ESS siting problems, the problem of

selecting the best location for ESS installation is faced in Section 5.7.3. The sensitivities neces-

sary to identify the buses, in case of installation of ESSs, allows the maximum benefit for power

systems from several points of view: the minimum overall cost, the minimum curtailment of

wind power (that could also lead to minimum CO2 emissions), the maximum mitigation of

congestions, and the maximum benefit, in terms of energy process.

The final procedure for ESS planning under uncertainties has also been summarized. An
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initial and necessary step is to preliminarily select candidate locations for ESS installation. This

helps significantly reduce computing time in both developed approaches for ESS planning.

An extensive comparison is made between both approaches. Generally, the two-stage

stochastic approach yields one optimal solution while the other approach results in a range

of solutions for decision makers to choose. In solution of the two-stage stochastic approach,

the fixed cost is higher while the amount of wind curtailment is slightly lower as compared to

that in the solution of the combined GA and cumulant-based POPF approach with 100% of

uncertainty covering.
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CHAPTER6
Conclusions and Future Work

6.1 Conclusions

In this thesis, the planning problems with ESSs to face uncertainties are investigated. A

multi-period deterministic AC OPF model is formulated to incorporate ESSs and wind gen-

eration. The ESSs are employed for time-shifting wind generation, thus increases the value

of wind energy and reduces wind curtailment. This multi-period formulation allows to take

into account inter-temporal constraints of the ESSs. In addition, the AC OPF formulation can

capture realistic physical power flows of the system better than the DC one. It is also much

more accurate and reliable when issues such as congestion and voltage constraints are con-

cerned. Two approaches are proposed for optimal planning of ESSs considering wind and load

uncertainties, i.e., combined GA and cumulant-based POPF approach and two-stage stochastic

programming approach. A methodology to define candidate buses for ESS installation is also

proposed. A sensitivity analysis is then carried out to assess the impacts of ESS locations on

system operation.

The AC OPF problem with ESSs and wind integration is formulated into single-period

model and operation of the ESSs in both models, single-period and multi-period, are compared.

Theoretically, multi-period model is a more suitable approach to deal with storage devices.

From the tests carried out, multi-period model is shown to provide more economically optimal
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solution over single-period one in terms of production cost and amount of wind curtailment.

Moreover, in single-period model, ESSs are only operated based on variations of wind power

while in multi-period model, it is operated based on both wind and LMP variations. Therefore,

the multi-period formulation is applied for planning problems with ESSs in this research.

In order to incorporate wind and load uncertainties into the planning of ESSs, an approach

which combines GA and cumulant-based POPF is first proposed. In this approach, optimal

placement and sizing of ESSs is implemented in two steps: in the first step, optimal ESS loca-

tion and the expected value of ESS capacities are determined by GA and deterministic multi-

period AC OPF with the goal of minimizing ESS investment cost and total expected generation

cost while maximizing the generation of wind and storage; in the second step, probabilistic as-

sessment is carried out on the obtained ESS locations and capacities. Probability distributions

of ESS power and energy capacities are obtained, which can be used by decision makers to

finally choose the size of ESSs to be installed. This approach, specifically the cumulant-based

POPF approach, represents uncertain system inputs with probability distributions, but it retains

the deterministic formulation of the OPF. Thus, the expected value of control variables is not

influenced by the randomness of uncertain system inputs, but only the probability distributions

of control variables are determined by them. Test results show that system uncertainty can be

effectively captured in this approach with a reasonable computing time.

Another approach, namely two-stage stochastic programming, is developed for optimal siz-

ing of ESSs. Wind and load scenarios as input of the problem are clustered and reduced into

smaller sets of wind and load scenarios by adopting PCA-guided search for K-means clustering

technique. This approach not only treats system inputs as random variables but also establishes

stochastic formulation for the problem. Therefore, the uncertainty of random parameter inputs

directly influences the optimization result. Test results show that this approach can explicitly

incorporate wind and load uncertainties in the optimal sizing of ESSs.

A methodology to define the best candidate buses for ESS installation is also proposed

in this research. The identification of candidate buses is performed based on the Lagrangian

multiplier, which represents the variation of total production cost with respect to the variation

of real injected power at a bus. A sensitivity analysis is performed, using this methodology, to

assess the impacts of ESS locations on system operation. Two different applications of the ESSs

are investigated, i.e., time-shifting wind generation to meet demand and mitigating transmission

congestion to avoid wind curtailment and allow an efficient utilization of transmission capacity.

Results show that installing ESSs at the best candidate buses allows the maximum benefit for

power systems from several points of view: the minimum overall cost, the minimum curtailment

of wind power (that could also lead to minimum CO2 emissions), the maximum mitigation of

congestions, and the maximum benefit, in terms of energy process.

Finally, a procedure for optimal siting and sizing of ESSs under uncertainty is proposed.

First, to reduce computation burden for the planning problem, it is necessary to preliminarily
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identify candidate locations for the ESSs. Next, to take into account wind and load uncertainties

in ESS planning, either the combined GA and POPF approach or two-stage stochastic program-

ming approach, can be applied. At the output of the combined GA and POPF approach, ESS

locations and probability distributions of ESS power and energy capacity are provided. Output

of the two-stage stochastic programming approach provides an optimal ESS power and energy

capacity.

Tests are performed on IEEE 14-bus system following the proposed final procedure: they

show that the identification of candidate buses significantly reduce computing time for the siting

of ESSs in both approach, i.e., the combined GA and cumulant-based POPF and the two-stage

stochastic approach. In the first approach, it helps to reduce the search space for GA while in the

second approach, it helps to identify locations for the ESSs before determining their capacities.

Results are encouraging for both approaches and their comparison is presented and discussed

in the thesis.

6.2 Future Work

A number of interesting and promising research topics arising from this work is as follows:

• Incorporating uncertainty into the siting step of the combined GA and cumulant-
based POPF approach
At this point, the siting of ESS in this approach is determined by GA based on a deter-

ministic OPF. The POPF is performed afterwards for the sizing only. Thus, to explicitly

address uncertainty in the planning of ESSs, it is necessary to consider uncertainty in the

siting step as well.

• Applying robust optimization approach for the planning of ESSs
Information on stochastic input data is not always available. It is, therefore, difficult to

model uncertainty by employing PDFs. In this case, robust optimization, which becomes

attractive to many researchers in recent years, can be a promising optimization technique

to deal with uncertainty.

• Dealing with different applications of ESSs
For wind generation applications, ESSs are not only employed to time-shift wind energy,

but also used for a variety of other applications such as forecast hedging, frequency sup-

port, energy arbitrage, etc. This work can be extended to investigate on these applications

of ESSs with wind generation.

• Including technology selection into the planning problem
There are many different ESS technologies that can be employed for applications with

wind. It is necessary to choose the right technology of ESSs before determining their

locations and sizes. This can be an extension of the work in this thesis.
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• Applying the proposed approaches for large systems
The main challenge for planning problems with large systems lies in the tractability and

computing time. This work can also be applied for optimal planning of ESSs in large sys-

tems. Such a large-scale problem should involve efficient techniques to reduce problem

size, thus make it tractable.

• Investigating on ESS operation
The focus of this thesis is on the planning of ESSs, which is carried out based on their

optimal operation. Therefore, a direct extension of this work is incorporating uncertainty

into the operation of ESSs.
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APPENDIXA
ESS Cost and Technology Description

Table A.1: Characteristics of bulk energy storage technologies used in cost analysis [15, 107,
108]

Technology Power Energy Efficiency Replacement Replacement Fixed O&M
Subsystem Storage (AC to DC) Cost Frequency ($/kW-year)

Cost Subsystem ($/kWh) (year)
($/kW) Cost

($/kWh)
Lead-acid
Batteries 400 330 0.85 150 6 15

(Flooded Cell)
Lead-acid
Batteries 400 330 0.85 200 5 5
(VRLA)
Ni/Cd 600 125 0.65 600 10 5

Regenesys 100 275 0.65 150 10 15
High Temp 250 150 0.7 230 10 20

Na/S
Compressed
Air Energy 700 5 0.79 0 None 2.5

Storage
(CAES)

Pumped Hydro 1000 14 0.87 0 None 2.5
Pumped Hydro 1000 14 0.87 0 None 2.5
Variable Speed

121



i
i

“Nhi_PhD_thesis_v3” — 2016/11/24 — 20:33 — page 122 — #139 i
i

i
i

i
i

Appendix A. ESS Cost and Technology Description

Table A.2: Energy storage technologies suitable for wind power integration [7]

Technology Advantages Disadvantages Manufacturers
Vented Lead-Acid Mature and well-known Short cycle life Enersys

Batteries Low initial cost Relatively intolerant GNB (Exide)
(Default) Long calendar life of temperature extremes

Valve-Regulated Low maintenance Intolerant of C&D Technologies
Lead-Acid Low initial cost temperature extremes Hawker Energy

Short cycle and (Enersys)
calendar life

Vented Mature and well-known Low cell voltage Saft
Nickel-Cadmium Long life Float effect makes

Relatively intolerant capacity testing difficult
to temperature extremes

Vanadium Relatively high efficiency Not yet proven for cycle VRB Power Systems
Redox (VRB) Power and energy life or maintenance costs

rating are independent High initial cost (at present)
Compressed Air Mature technology Requires suitable site geology Alstom
Energy Storage High efficiency May have ramp rate limit Dresser-Rand

(CAES) Long life Large scale requires Suizer
Low cost for large scale large capital investment

and collaborations
Pumped Hydro Mature technology Requires suitable site geology Gugler GmbH

High efficiency Difficult environmental issues Suizer
Long life Large scale requires North American Hydro

Low cost for large scale large capital investment Water Alchemy
Power and energy independent and collaborations Harris

Sodium sulfur High energy density Relatively new and untested NGK Insulator
batteries (NAS) High efficiency High initial cost (at present)

Long cycle and
calendar life

Zinc-bromine High energy density Relatively unknown ZBB Energy
batteries Flat voltage profile and untested

Many require occasional
stripping cycles

High initial cost (at present)
Superconducting High power density Very high initial American

Magnetic High cycle life cost (at present) Superconductor
Energy Storage Low energy density

(SMES)
Ultracapacitors High power density High initial cost (at present) Maxwell

High cycle life Low energy density NESS Capacitor
ESMA

Flywheels High power density Relatively high Active Power
High cycle life initial cost per kWh Beacon

Low energy density Piller
Regenerative Hydrogen production Short life (at present)

Poor storage density
Poor efficiency
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