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Sommario

Il presente progetto di tesi si colloca nell’ambito di una più ampia campagna
sperimentale condotta dal Von Karman Institute for Fluid Dynamics (VKI) per
la valutazione delle performance aerodinamiche e termodinamiche di uno stadio di
turbina di alta pressione al fine di testare diverse geometrie dell’apice delle pale.

Gli obbiettivi specifici del lavoro svolto sono la caratterizzazione dell’inlet della
turbina in termini di grandezze turbolente, quali turbulence intensity, length scales
e spettri turbolenti, e lo sviluppo di uno studio statistico non parametrico per la va-
lutazione dell’incertezza delle grandezze misurate col fine di conferire ai parametri
turbolenti accurati intervalli di confidenza.

Lo stadio di alta pressione di una turbina rappresenta uno dei componenti più
onerosi di un moderno turbo-gas. La ricerca attuale è volta, infatti, allo sviluppo
di motori sempre più efficienti che permettano la riduzione di costi e di emissioni
di CO2. Per raggiungere questo obiettivo si mira all’ottenimento di temperature
di ingresso in turbina sempre più elevate e di riduzione di perdite aerodinamice,
soprattutto riguardanti il tip-leakage.

Per testare performance aerodinamiche e, soprattutto, per simulare lo scam-
bio termico nelle condizioni rappresentative di un turbo-gas, si ricorre spesso a
blow-down test rigs. La transient CT3 facility del VKI opera secondo il princi-
pio dell’isentropic light piston compression tube. Quando il flusso viene rilasciato
nella test section, esso si stabilizza per circa 0.15 secondi, nei quali il segnale viene
acquisito e post-processato.

Le misurazioni del campo di velocità sono state effettuate grazie a un hot-wire
anemometry in configurazione single-probe, ipotizzando che il flusso sia pretta-
mente monodimensionale all’ingresso dello stadio di turbina.

L’uso dell’hot-wire risulta essere più problematico nella CT3 rispetto a un test-
rig a ciclo chiuso, che garantisce un flusso con intervalli di stabilità di gran lunga
superiori. Inoltre, la temperatura totale del flusso è soggetta a grandi variazioni
durante le misurazioni. Per questo motivo la calibrazione dell’hot-wire deve essere
adeguata per permettere la riduzione dei dati in condizioni di flusso instabile e
fortemente non isotermo. La metodologia utilizzata è stata sviluppata presso il
VKI (Chukurel 2012) e consiste in un’analisi adimensionale del principio fisico che
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vi Sommario

guida il funzionamento dell’hot-wire, ovvero lo scambio termico.
L’hot-wire è operato secondo il principio di Constant Temperature, per cui la

temperatura del filo è mantenuta costante da un feedback amplifier ad alta risposta
in frequenza che reagisce a una variazione della potenza di raffreddamento del flusso
che circonda il filo caldo. Il bilancio energetico dello scambio termico in condizione
di temperatura costante è uguale a

E2
w

Rw

= πlwdwh
(
Tw − ηT0

)
(1)

dove Ew è il voltaggio ai capi del filo, per cui la potenza termica ceduta dal filo
al flusso è uguale alla potenza elettrica circolante nel filo. Di conseguenza, essendo
la temperatura del filo Tw e, quindi, la sua resistenza Rw costante, una variazione
di scambio termico tra fluido e filo è letta in output come una variazione di bridge
top voltage.

Lo scambio termico al sensore può essere trattato con un’analisi dimensionale
esprimendo il numero di Nusselt Nu come funzione delle fluttuazioni di voltaggio
e della temperatura totale del flusso.

Nu =
E2
b

Tw − ηT0

Rw

πκlw
(
Rt + Rl + Rw

)2 (2)

Le fluttuazioni in termini di voltaggio, e quindi in termini di Nusselt, sono poi
correlate a fluttuazioni di velocità, e quindi turbolenza, tramite un fitting polino-
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Figure 1: Curva di calibrazione dell’hot-wire
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miale al quarto ordine sul piano Nu-Re (figura 1). L’analisi dimensionale permette
di utilizzare un’unica curva di calibrazione per condizioni di flusso fortemente non
isoterme, al contrario della ormai nota King’s Law che è valida solo per flussi
isotermi. Inoltre, questa metodologia permette di evitare una calibrazione in-situ
e di operare su un jet freddo, purchè le condizioni di similitudine con quelle attese
in facility vengano rispettate.

Una volta effettuata la calibrazione, l’hot-wire è stato inserito all’interno della
facility a monte della NGV (Nozzle Guide Vane) come mostrato in figura 2. I test
effettuati all’inlet della turbina di alta pressione hanno evidenziato un andamento
lungo lo span della pala, per quanto riguarda turbulence intensity e integral length
scales, come in figura 3.

La turbulence intensity raggiunge il suo massimo in prossimità della parete
(intorno al 5÷10% e 90÷95% dello span) a causa della maggiore anisotropicità del
flusso e a causa dell’interazione tra flusso principale, strutture vorticose e strato
limite che si traduce in un elevato sforzo di taglio in quella zona. La length scale è
valutata a partire dallo spettro turbolento calcolato tramite Fast Fourier Transform
(FFT). Il massimo cade in un intorno della metà dell’altezza di pala (0.03 m) e
rappresenta la massima lunghezza caratteristica delle più grandi strutture vorticose
del flusso.

Per fornire un riferimento affidabile alla CFD (Computational Fluid Dynam-

Figure 2: Sensore hot-wire inserito all’ingresso dello stadio di turbina
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(a) (b)

Figure 3: Turbulence Intensity (a) e Integral length scale (b) lungo l’altezza di
pala

ics), i dati forniti devono, quindi, essere accompagnati da una buona analisi
dell’incertezza delle misure effetuate. Quando, però, si ha a che fare con grandezze
turbolente, si ricorre spesso ad assunzioni più o meno forti sulla loro distribuzione
statistica.

I parametri turbolenti sono, a tutti gli effetti, momenti statistici di ordine k ≥ 1,
per cui non si conosce a priori una distribuzione di probabilità. Comunemente, si
ipotizza che le statistiche turbolente seguino una funzione di probabilità Gaussiana
per cui il teorema del limite centrale è valido. Questa è una forte assunzione,
specialmente per campionamenti con un alto grado di correlazione e, spesso, porta
a sottostimare gli intervalli di confidenza.

Il presente lavoro di tesi, invece, propone l’uso di un metodo statistico, in-
trodotto in principio in campo econometrico (Efron 1979), noto come Bootstrap.
In questo caso è stata utilizzata la versione Moving Block Bootstrap (Künsch
1989), più adeguata al trattamento di campioni correlati tra loro. Questa versione
permette infatti di preservare l’autocorrelazione, informazione importante per le
grandezze turbolente.

Il metodo consiste in un ricampionamento casuale delle osservazioni acquisite
con l’hot-wire. Il set di dati originario viene ricomposto un determinato numero
di volte e la statistica di interesse è calcolata per ognuna delle serie ottenute.

Il metodo è basato sull’assunzione che se il campionamento rappresenta una
buona approssimazione della reale distribuzione della popolazione originaria, allora
la serie bootstrappata è una buona approssimazione della distribuzione dei campi-
onamenti. Più formalmente, se il numero di campionamenti N è sufficientemente
grande, al crescere del numero di serie ricostruite B, la stima della distribuzione
ottenuta dalla serie bootstrappata tende asintoticamente alla distribuzione dei cam-
pionamenti originali.

La figura 4 descrive il procedimento per la realizzazione delle serie bootstrappate.
La serie originaria è ricampionata in modo random, attraverso un metodo simile
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Figure 4: Procedura per la costruzione della serie bootstrappata

al Monte-Carlo, B volte. Per ogni serie ricostruita, la statistica di interesse θ
è calcolata e dai B valori di θ, la distribuzione può essere stimata costruendone
l’istogramma. Da esso la media e la deviazione standard possono essere calcolate.

Il MBB genera le B serie muovendo i campioni in blocchi di lunghezza b. I
blocchi devono essere lunghi a sufficienza da mantenere la correlazione dei campi-
onamenti intatta.

Una volta ottenuta la distribuzione bootstrappata, è possibile ricavare l’inferenza
statistica in due modi diversi:

1. Attraverso una tabella simile a quella della distribuzione di Student-t, per
cui per ogni serie si calcola un errore standard e si costruisce la distribuzione
dell’errore stesso. In questo modo è possibile costruire la funzione pivotale
da cui si ricavano gli intervalli di confidenza

2. Attraverso il metodo delle percentuali, per cui si prendono i valori limite
della distribuzione cumulativa delle statistiche bootstrappate. Questi valori
limiti rappresentano gli intervalli di confidenza

Il secondo metodo è più semplice e non ha bisogno di calcolare l’errore standard,
la cui formulazione analitica non è presente in letteratura per momenti statistici
di ordine elevato, come le length scales. Lo svantaggio del secondo metodo è che
dà una buona stima dell’errore solo se la distribuzione bootstrappata è simmetrica,
al contrario del primo metodo.
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Figure 5: Istogramma della Turbulence Intensity bootstrappata

Le grandezze calcolate durante il progetto di tesi hanno mostrato una tendenza
asintotica alla normalità al crescere di B, come rappresentato, a titolo di esempio,
nella distribuzione della turbulence intensity in figura 5. Data la simmetria riscon-
trata, risulta più immediato calcolare l’inferenza statistica con il secondo metodo
descritto (metodo delle percentuali) da cui è possibile ricavare gli intervalli di in-
certezza al 95% di livello di confidenza.

Nonostante sia preferibile una ulteriore verifica con un metodo non parametrico
più validato, come per esempio il metodo Monte-Carlo, il presente lavoro ha di-
mostrato che il bootstrap è un metodo efficace e potente per il calcolo dell’inferenza
statistica per grandezze turbolente quali integral length scale, micro length scale
e turbulence intensity. Queste sono a tutti gli effetti momenti statistici di ordine
superiore al primo, di cui non si conosce a priori una distribuzione di probabilità.
Essendo un metodo non parametrico, non è stata necessaria alcuna ipotesi sulla
stessa distribuzione, che viene ricostruita grazie alle proprietà asintotiche del Boot-
strap descritte in precedenza.
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Abstract

The present work aims to characterize the flow field at the inlet of a high pressure
(HP) turbine stage in terms of turbulence parameters such as turbulence intensity,
time and length scales and turbulent spectra. Furthermore, a non-parametric
statistical approach is proposed in order to confer all turbulent statistics with
error bars representing 95% confidence intervals.

In order to test aerodynamic and thermal performance in engine representative
conditions, the Von Karman Institute (VKI) CT3 blow-down test rig is used,
operating with the principle of isentropic light piston compression tube.

Hot-wire anemometry (HWA) technique is employed to acquire velocity signal
up to high frequency fluctuations representing the smallest scales of a turbulent
flow. However, due to the step-wise evolution of temperature and pressure in
blow-down facilities and due to the not feasibility of the flow to maintain a stable
condition for a large time period (the test time in CT3 wind tunnel is around 0.15
seconds), the use of HWA is not simple. A non dimensional calibration technique
(Cukurel 2012) allows to reduce HWA data also for strongly non-isothermal flows
with a single curve fit.

For measurements concerning turbulence, the parameters of interest are high
order statistical moments, for which no conventional methods are available in
order to quantify their uncertainty. The objective of this thesis is to present
a standard method for the estimation of uncertainties of turbulent statistics by
means of a re-sampling technique, the Moving Block Bootstrap (MBB). Thanks to
this non-parametric approach, based on a straightforward algorithm, it is possible
to perform statistical inference on high order moments without any assumption
on their distribution.

The blocks length is selected either by an automatic algorithm (Politis 2004) or
by a sensitivity analysis. The latter method resulted to perform better for highly
correlated structures and for flow presenting a high oscillating autocorrelation
function around zero.
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HP turbine; turbulence; hot-wire anemometry; uncertainty; turbulent statistics;
high order statistical moment; bootstrap; moving block bootstrap.



Contents

Acknowledgements iii

Sommario v

Abstract xiii

List of Figures xvii

List of Tables xix

List of Symbols xxi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 State of the Art for Turbulence Measurement . . . . . . . . 4
1.3.2 Uncertainty in Turbulence . . . . . . . . . . . . . . . . . . . 6

2 Hot-Wire Calibration 9
2.1 Physical Principle of Operation . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Constant Temperature Anemometry . . . . . . . . . . . . . 10
2.2 Mass Flux Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Calibration Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 The Dantec Anemometer Frame . . . . . . . . . . . . . . . 15
2.3.2 The Hot-Wire Probe . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Total Temperature and Total Pressure . . . . . . . . . . . . 17
2.3.4 The National Instrument Acquisition System . . . . . . . . 17

2.4 Calibration Methodology . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 The Effective Wire Temperature Tw . . . . . . . . . . . . . 22

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xv



xvi Table of contents

3 Measurement Campaign 29
3.1 The VKI Anular Cascade Facility CT3 . . . . . . . . . . . . . . . . 29
3.2 Plane 1 Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Results and Discussion 43
4.1 Statistical Description of Turbulence . . . . . . . . . . . . . . . . . 43
4.2 Inlet Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Time and Length Scales . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Uncertainty Analysis 57
5.1 Calibration Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Measurements Uncertainty . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 General Principle of Bootsrtapping . . . . . . . . . . . . . . 64
5.2.2 The Moving Block Bootstrap . . . . . . . . . . . . . . . . . 68
5.2.3 Bootstrapped Confidence Interval . . . . . . . . . . . . . . . 74
5.2.4 Uncertainty Results . . . . . . . . . . . . . . . . . . . . . . 75

6 Conclusions 79
6.1 Future Recommendation . . . . . . . . . . . . . . . . . . . . . . . . 80

A Appendix A 81
A.1 Thermocouple Uncertainty . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Validyne Pressure Transducer Uncertainty . . . . . . . . . . . . . . 82
A.3 Error Propagation Analysis for Hot-Wire Calibration . . . . . . . . 83

References 87



List of Figures

2.1 Constant Temperature Anemometry (CTA) . . . . . . . . . . . . . 11
2.2 CFD prediction for Reynolds and Mach number at stator inlet . . . 13
2.3 Range of T0 and Mach number for Reynolds similitude in hot-wire

calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Dantec CTA frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 The DAO111A hot-wire probe . . . . . . . . . . . . . . . . . . . . . 16
2.6 Validyne amplifier with differential pressure transducer (a) and Ther-

mocouple amplifier with K-type thermocouple (b) . . . . . . . . . . 17
2.7 16-bit National Instrument Acquisition System . . . . . . . . . . . . 18
2.8 Schematic of the Calibration Jet Facility . . . . . . . . . . . . . . . 19
2.9 DPI 610 pressure calibrator pump (a) and Thermibel oil bath (b) . 20
2.10 Validyne calibration curve for total pressure measure (a) and Ther-

mocouple calibration curve for total temperature measure (b) . . . 20
2.11 Raw calibration data cloud . . . . . . . . . . . . . . . . . . . . . . . 23
2.12 R-square evolution with guessed wire temperature . . . . . . . . . . 24
2.13 Collapsed data in a single curve . . . . . . . . . . . . . . . . . . . . 24
2.14 Probe location with respect to the nozzle . . . . . . . . . . . . . . . 25
2.15 Time resolved measurements at different probe position for M = 0.095 26
2.16 Power Spectral Density for different probe position and M = 0.095 . 27

3.1 Picture of the VKI’s CT3 facility . . . . . . . . . . . . . . . . . . . 31
3.2 Stator (a) and Rotor (b) of the VKI’s CT3 facility . . . . . . . . . . 31
3.3 General layout of the VKI’s CT3 facility . . . . . . . . . . . . . . . 32
3.4 Test Section of VKI’s CT3 facility with measurements location . . . 33
3.5 Evolution of T0,1, p0,1, ptube and rotational speed in a typical test

sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Plane 1 Set-Up and Instrumentation . . . . . . . . . . . . . . . . . 36
3.7 Total Pressure sequence and signal fraction used for the post pro-

cessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Hot-wire raw voltage signal during the blow down . . . . . . . . . . 38
3.9 Normalized total Temperature along the Span . . . . . . . . . . . . 39

xvii



xviii Table of contents

3.10 Total Temperature sequence during a test for different rakes . . . . 39
3.11 Comparison between two methodology of total Temperature com-

putation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.12 Velocity comparison between the one computed by the hot-wire and

the one computed by pneumatic rakes . . . . . . . . . . . . . . . . . 41

4.1 Typical turbulent spectra . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Mean Velocity distribution along the blade height . . . . . . . . . . 48
4.3 Turbulence Intensity distribution along the blade height . . . . . . . 49
4.4 Autocorrelation factor . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Power Spectral Density and the averaged energy at frequency tend-

ing to zero for integral time scale computation . . . . . . . . . . . . 53
4.6 Integral Length Scale distribution along the blade height . . . . . . 54
4.7 Micro Length Scale distribution along the blade height . . . . . . . 55

5.1 Deviation of calibrated points from the fitting calibration curve . . 60
5.2 Hot-wire calibration curve with 95% confidence level . . . . . . . . 62
5.3 Histogram of velocity samples . . . . . . . . . . . . . . . . . . . . . 63
5.4 Skewness of velocity samples distribution along the span . . . . . . 63
5.5 Principle of Bootstrap re-sampling technique . . . . . . . . . . . . . 67
5.6 Mean and Standard Deviation of Turbulence Intensity depending

on the number of Bootstrap series . . . . . . . . . . . . . . . . . . . 68
5.7 Skewnees and Kurtosis of Turbulence Intensity depending on the

number of Bootstrap series . . . . . . . . . . . . . . . . . . . . . . . 69
5.8 Histogram of bootstrapped mean velocity . . . . . . . . . . . . . . . 70
5.9 Histogram of bootstrapped turbulence intensity . . . . . . . . . . . 70
5.10 Mean of Integral Length Scale sensitivity depending on the Boot-

strap blocks’ length relative to an original signal sampled at 1 Mhz
for the 0.1 seconds of test resulting in 100000 samples . . . . . . . . 72

5.11 Histogram of bootstrapped Integral Length Scale . . . . . . . . . . 73
5.12 Histogram of bootstrapped Micro Length Scale . . . . . . . . . . . . 73
5.13 Mean Velocity distribution along the blade height with its uncer-

tainty at 95% confidence level . . . . . . . . . . . . . . . . . . . . . 76
5.14 Turbulence Intensity distribution along the blade height with its

uncertainty at 95% confidence level . . . . . . . . . . . . . . . . . . 76
5.15 Integral Length Scale distribution along the blade height with its

uncertainty at 95% confidence level . . . . . . . . . . . . . . . . . . 77
5.16 Micro Length Scale distribution along the blade height with its un-

certainty at 95% confidence level . . . . . . . . . . . . . . . . . . . 77



List of Tables

2.1 Nominal inlet flow condition predicted with CFD for some charac-
teristic points of the Span . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Comparison between mean velocity measured by hot-wire at differ-
ent wire positions and by pneumatic quantities at the nozzle exit . . 26

3.1 Similarity test condition at midspan . . . . . . . . . . . . . . . . . . 33

5.1 Comparison between Student-t distribution and percentile Boot-
strap to compute confidence interval with 95% confidence level for
mean velocity, turbulence intensity, integral and micro length scale . 75

xix





List of Symbols

Acronyms
CFD Computational Fluid Dynamics

CTA Constant Temperature Anemometry
DNS Direct Numerical Simulation
FFT Fast Fourier Transformation
HW Hot-Wire
HWA Hot-Wire Anemometry
LDA Laser Doppler Anemometry
MBB Moving Block Bootstrap
NS Navier-Stokes
PDF Probability Density Function
PSD Power Spectral Density
PIV Particle Image Velocimetry
TI Turbulence Intensity
TKE Turbulent Kinetic Energy
VKI Von Karman Institute (for fluid dynamics)

Dimensionless numbers
Gr Grashof number

Kn Knudsen number
M Mach number
Nu Nusselt number
Pr Prandtl number
Re Reynolds number
St Strouhal number

xxi



xxii List of Symbols

Roman symbols
c Specific heat J/(kgK)

E Voltage V
E Spectral Energy (m/s)2/Hz
f Frequency Hz
L Integral length scale m
h Convective heat transfer coefficient W/(m2K)
p Pressure Pa
P Electrical Power W
Q Heat Power W
R Resistance Ω
R Gas constant J/(kgK)
t Time s
T Temperature K
T Integral time scale s
Tu Turbulence Intensity %
U axial-component of velocity m/s
U Uncertainty various
V Velocity m/s

Greek symbols
α Temperature coefficient of resistance -

γ Heat capacity ratio -
ε Rate of dissipation of TKE m2/s3

η Temperature recovery factor -
η Kolmogorov length scale m
λ Micro length scale m
µ Dynamic viscosity Pas
µ Statistic mean value various
ν Kinematic Viscosity m2/s
κ Thermal conductivity W/(mK)
ρ Density kg/m3

σ Standard deviation various
φ Flow angle ◦

τ Kolmogorov time scale s
τ Over-heat factor -

Sub- and Superscripts
ad adiabatic

eff effective
hw hot-wire measure
n normal direction
pneum pneumatic measure
ref reference
w wire
0 stagnation property
95 with 95% confidence level
′ fluctuating component







Chapter 1

Introduction

1.1 Motivation

Gas turbines provide propulsion to most of the modern aircraft and drive a large
share of world’s power unit. These are mainly fossil-fuel based and will keep
their central position for many years and decades in both aircraft powering and
global energy production. This and the actual needs for reducing carbon dioxide
emissions has led to endeavours by researchers all over the world to find new
technologies and methodology of designs to improve efficiency.

Blow-down test rigs are often used in order to test aerodynamic and, especially,
thermal performances of turbo-machinery under engine representative condition.
Current researchers’ efforts to improve efficiency are focused on new highly per-
forming designs of high pressure (HP) turbine stage, which is one of the most
critical component of the engine due to the highly hostile flow field.

Although efficiency increase may be achieved through a combination of meth-
ods, one of the most significant is to increase the turbine inlet temperature (TIT),
which may reach in modern turbines values higher than 1800 K and there is a
continuous push to increase it.

Furthermore, the flow field within high pressure (HP) turbine passages is quite
complex, involving strong secondary flows and transverse pressure gradients, which
are even more affected by necessary cooling systems. These events strongly alter
the aerodynamic efficiency. For instance, one of the most important aerodynamic
losses in HP turbines is due to the tip flow-leakage.

Therefore, for both energy production and aviation industries, gas turbine de-
signers have to face many aspects in the design process, in which the HP turbine
stage represents one of the most challenging components. Indeed, increasing effi-
ciency of the high pressure stage has a significant influence on the overall efficiency
of the engine.

1
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At the inlet of HP turbine stages, the flow is typically highly turbulent and
unsteady. It is, thus, difficult as well as essential to have a detailed knowledge of
the flow field. Concerning the heat transfer, wide varieties of factors are deemed
to contribute to the complexity of this phenomena inside a turbo-machine, e.g.
combustor exit hot streak, unsteadiness, rotational effects, and mainstream tur-
bulence.

In order to help the design process, aerodynamic and thermal investigations are
essential to obtain useful informations about the flow physics and to gain knowl-
edge about the complex relation and interaction between turbulent flow-field, heat
transfer and turbine efficiency. Nowadays, computational fluid dynamics (CFD)
has been widely used in order to provide a large number of data and flow charac-
teristic which would not be possible to obtain otherwise. Nevertheless, although
many primary designs can be achieved with a good level, many aspects concerning
turbulent flows inside a complex geometry and flow structure as the one through
a turbo-machine can not be solved even with the most powerful computers avail-
able. Indeed, when it is required to simulate a turbulent flow field, this is commonly
modelled based on Reynolds Averaged Navier Stokes equations (RANS). Although
these models may be advanced, they are still far from being completely reliable.
Only Direct Numerical Simulation (DNS) of Navier-Stokes (NS) equations gives
an accurate prediction of all quantities for the totality of turbulent flows, how-
ever high computational cost is required and only few calculators in the world can
afford it for complicated geometry and flow conditions. Furthermore, even DNS
models are very sensitive to boundary and initial conditions and must be validated
with experiments. Therefore, experimental investigations still remain a priority for
better understanding the flow physics.

The main and most known consequences of turbulence in turbo-machines are
related, among the others, to [1]:

• Boundary layer interaction along the blade, leading to a more energized flow
near walls and, hence, to a delay in detachment;

• Enhance in mass and heat transfer between the flow and a solid surface, due
to a higher mixing of the flow;

These aspects are of paramount importance for turbo-machine efficiency and, in
order to be accurately simulated, a thorough experimental investigation is required.
Hence, the main purpose of an experimental campaign is to validate CFD codes
used for design analysis or to improve brand new concept of design as well as to
provide accurate boundary conditions for simulating models.
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1.2 Objectives

This project is part of a broader research activity carried forward the Von Karman
Institute for Fluid Dynamics (VKI) and supported by SNECMA S.A., the final
goal of which is the experimental analysis of the aero-thermal performance of a
high-pressure turbine stage with particular interest in validating and verifying
different geometries of the blade tip. Indeed, one of the most important limiting
factor in high pressure turbine efficiency is the tip leakage flow. The spilling fluid
crossing the pressure side to the suction side causes aerodynamic losses due to the
lower effective flow which participates to the power extraction process. Moreover,
the flow leaving the upper part of the blade meets the main passage stream causing
higher mixing losses due to different momentum and orientation.

The results achieved in the experimental campaign have the twofold purpose
of providing accurate boundary conditions for CFD codes and useful references for
their validation as well as verifying the best geometry of the blade tip in order to
minimize aerodynamic losses and improving heat transfer performance.

The specific aim of the work is intended to gain a detailed characterization of
turbulence at the inlet of the turbine, which is located downstream of a piston
and a shutter valve as described in chapter 3. Particular attention is paid to
the evaluation of parameters such as turbulence intensity, length and time scales,
and turbulent spectra. These quantities are of paramount importance in CFD
simulations due to the high sensitivity of available models on boundary conditions.

High free upstream turbulence is an interesting condition when dealing with
high pressure turbine for both thermal and aerodynamic performances. Indeed,
tip leakage vortex diffuses very quickly under a high inlet turbulence intensity,
resulting in a very weak tip leakage vortex and less losses [2], while temperature
of the blades and of the casing wall reduces for high turbulence level due mainly
to the better distribution of temperature along the channel height [3].

In order to perform the measurements of upstream turbulence, hot wire probes
are used in parallel with pneumatic probes for comparison purpose. Given the high
flows temperature dependence on hot wires results, a novel calibration technique
was used, developed by Cukurel [4] and Acarer [5] at VKI.

An experimental investigation is complete and represents a valid reference to
CFD codes only if the data provided are accurate and accompanied by a detailed
confidence interval. This project has the ambition to fill the gap in accurate un-
certainty quantification for turbulent statistics in the turbo-machinery field. Since
classical statistic formulations are no more suitable for correlated observations, a
new statistical approach to hot-wire measurements in a turbo-machinery field is
provided.

The thesis is structured as follows: at first there is a description of the instru-
mentations and facility utilized, then the results are shown and finally the statistic
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approach to the measurement is described and the results are provided with an
accurate uncertainty analysis.

Chapter 2 gives a thorough description of the set-up used for the hot-wire’s
calibration and the methodology applied.

In chapter 3, the VKI high-pressure wind tunnel CT3, utilized for the mea-
surement, is described. Furthermore, the methodology applied for the data reduc-
tion is defined.

In Chapter 4 the results in terms of turbulence parameters are presented and
discussed.

Chapter 5 discusses the most critical part of the project: the uncertainty
quantification of both calibration results and measured quantities. Uncertainty in
the final results passes through a meticulous analysis of all possible errors con-
cerning instrumentations precision, quality of probes calibration, etc. Finally, the
turbulent statistics are conferred with adequate confidence level.

Conclusions are reported in Chapter 6 together with future recommendations.

1.3 Background

1.3.1 State of the Art for Turbulence Measurement

Over the last years, computational fluid dynamics (CFD) witnessed a great im-
provement in both computational cost and prediction methods for turbulence yield-
ing a need for development of measurement techniques, the results of which must
be as much accurate as possible.

Enhances in experiments are directed to provide complete description of phe-
nomena not entirely known, such as boundary layer, flow separation and vortex
interaction, as well as to equip CFD codes with reliable database for overall aero-
dynamic parameters and turbulent statistics [6].

In order to achieve these requirements, measurements methods must meet cer-
tain characteristics, these are

• High Frequency Response;

• High Spatial Resolution;

• Small or none interference with the flow (non-intrusive instrument).

Several instruments and techniques are available in order to measure fluctuating
velocities, which can be classified in different categories. For a full review of the
techniques refer to Meng et al [7]. Among the others, the most validated are:

• Optical techniques
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• Pressure based techniques

• Hot-wire anemometry

Optical Techniques

Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PVI) belong
to the first category. Both techniques need seeding particles which represent the
only disturbance in the flow. However, in case of excessive seeding or of not fine
enough particles, the turbulence may be suppressed and underestimated.

LDA utilises the Doppler shift in a laser beam to calculate velocity in a trans-
parent fluid, in which tracing particles or a fluid of contrast is added. The shifted
beams are crossed at their focal points; when the particles pass trough the fringes,
the laser light is reflected. The knowledge of the incident and reflected beam light
balance determines the fluctuating frequency.

The main advantage of LDA is that no calibration is needed and it is charac-
terized by a sufficiently high spatial and temporal resolution. On the other hand,
the use of LDA in hostile environment such as the one of turbo-machinery is not
always applicable due to the necessity of optical access. The signal is sensitive to
acoustic noise, mechanical vibration and varying temperature [8]. Furthermore,
since the LDA measures the velocity of the particle rather than the fluid velocity,
the accuracy is limited by the accuracy with which these particles follow the main
flow.

The PIV is a similar technique, making use of seeding particles to track the flow
velocity magnitude and direction by photographing the particles at specific time
intervals. A PIV device consists of a digital camera, a laser designed to illuminate
a specific area of the flow field and an external trigger.

The advantage of PIV is the multi-dimensional characterization of the flow,
which is fundamental in turbo-machinery application, in which the flow is strongly
unsteady and three-dimensional. Then again, the main drawback for turbo-machinery
purpose is the need for optical access, aside from the fact that very small particles
have to be used in order to track the flow with a high enough accuracy.

Pressure Based Techniques

Aerodynamic probes consist of a cylindrical body with one or several holes at the
probe tip, which are connected to pressure sensors, e.g. pressure transducer. The
signal is acquired by an acquisition system, then voltage and pressure are linked by
a dynamic calibration, allowing to compute the flow velocity and direction. Par-
ticular type of pressure probe is the Pitot tube which allows to measure velocities
by means of Bernoulli principle, measuring the static pressure – when the fluid
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enters the tube – and the total pressure – when the fluid comes to rest inside the
tube – as

V =

√
2
(
p0 − p

)
ρ

(1.1)

The main advantages are the low cost and the high durability. For these rea-
sons, it is still often used in turbo-machinery applications and wind tunnel indus-
tries. Drawbacks are the flow interference and the low frequency response, unless
specific design of the probes is provided. This limits the use of Pitot tube when
turbulence is the main subject of interest.

Hot-Wire Anemometry

High frequency response and high spatial resolution are typical advantages of hot-
wires, beside a low cost and an apparently straightforward working principle. On
the other hand, fragility and flow interference constitute the main disadvantages.

Improvement in turbo-machinery, that is higher efficiency and higher complex-
ity in blade design, is the result of a deep knowledge of the flow field, which
is highly three-dimensional and unsteady. Time-resolved measurements are there-
fore essential in order to fully understand the physical phenomena in the flow path.
Hot-wires are not only suitable for time-resolved measurements but represent the
flagship for turbulent flows experiments.

Indeed the hot-wire anemometry (HWA) is one of the most widespread tech-
niques in flow measurements, thanks to its high spatial resolution and frequency
response. HWA is the only instrument that delivers an analogue output as repre-
sentation of velocity up to high frequency fluctuations [9].

As stated by Bruun [10], typical advantages of hot-wires anemometry with
respect, for instance, to a Laser Doppler Anemometry (LDA) are the low cost,
the high frequency response up to 20-50 kHz, the wide velocity range (up to high
compressible flow), the high accuracy and resolution and the high signal-to-noise
ratio.

On the other hand, the use of hot-wire probes (HW) is limited to moderate
turbulence intensity flow due to the so called rectification error [10], for which the
wire is not sensitive to recirculation flows. Furthermore, in contrast with LDA or
Particle Image Velocimetry (PIV), the HW is an intrusive instrument, hence it
causes a disturbance in the flow.

1.3.2 Uncertainty in Turbulence

Measured data are fully meaningful only if accompanied by a complete uncertainty
analysis of measured quantities and the understanding of its impact in a CFD
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validation process.
There are two main approaches to quantify error sources: one is the ISO Guide

to the expression of Uncertainty in Measurement (GUM) and the second is the
ASME methodology. The first one divides error sources in two groups, Type A for
all kind of errors deriving from experimental observations and Type B for an esti-
mate of an input quantity that has not been obtained from repeated observations.
The ASME methodology provides a more straightforward partition of uncertainty
sources: random error sources classified by the standard deviation of observed re-
alizations and systematic error sources referring to those which provide bias from
the true value and does not affect the population distribution.

In experimental investigations there are two main error sources to take into
account, that is the uncertainty in instruments and measurement methods and,
more difficult to quantify, the uncertainty resulting from the data reduction of
statistical quantities of high order moments [6].

In an experimental campaign concerning turbulence, the parameters of engi-
neering interest are: turbulent intensity (Tu), turbulent kinetic energy (TKE), rate
of dissipation (ε), time and length scales of the energy containing eddies (T and
L) and smaller scales (τ and η), such the Kolmogorov one, related to sub-inertial
and dissipative-viscosity effects.

The most common approach in dealing with turbulent flow is to assume a
Gaussian distribution for which the central limit theorem is valid and simple for-
mulations for higher order statistical moments can be applied.

In classical statistic, the central limit theorem, described by Moivre in 1733 but
erroneously ascribed to Gauss, attributes the normal distribution to uncorrelated,
random repetitions. The normal distribution function is

f(x) =
1√

2πσ
e
−(x−µ)2

2σ2 (1.2)

where µ and σ are respectively the mean and the variance of the variable x of
interest.

Turbulent flows are chaotic but a certain degree of correlation between struc-
tures in time and/or in space is present, proving the existence of a deterministic
nature of turbulence. This means that turbulent statistics should not be handled
as completely random data; hence, when dealing with turbulent flow phenomena,
in view of providing as reliable as possible data, different post-processing strategies
must be applied, which are not making use of classical statistics.

Nevertheless, there are few works in the field of uncertainty quantification of
turbulent statistics and most of them use the Gaussian distribution assumption
(see section 5.2).

One of the aims of this project is to give an accurate confidence level in tur-
bulent statistics (with particular attention for the turbulence intensity and length
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scales) of the measurements performed at the inlet of a blow-down, high-pressure
turbine facility operated at a low velocity level, in order to provide a useful refer-
ence for CFD codes and their validation.



Chapter 2

Hot-Wire Calibration

2.1 Physical Principle of Operation

The hot-wire consists of a thin heated cylinder (the typical sensor is 5 or 9 µm
in diameter) invested by a flow with which it exchanges heat by means of the
principle of forced convection. Thus, the heat transfer depends on both fluid and
flow properties, that is density ρ, viscosity µ, conductivity κ, specific heat cp, and,
velocity V, temperature of the flow T and of the wire Tw and pressure p [10].

The heat transfer in an electrically heated wire can be modeled in a simplified
way neglecting radiation as [11]:

d
(
cwTw

)
dt

= P−Q (2.1)

where, cw is the specific heat of the wire, P is the electrical power supplied by
the anemometer to the wire and Q is the heat transferred by convection to the
flow. The first term on the left-hand side of the equation represents the stored
heat in the wire by means of the wire thermal inertia.

By the definitions of convective heat transfer for a cylinder in cross-flow and
of electrical power, equation 2.1 can be rewritten as

d
(
cwTw

)
dt

=
E2
w

Rw

− πlwdwh
(
Tw − Tadw

)
(2.2)

with Rw being the resistance of the wire, Ew the voltage among the wire end-
ings, lw and dw are respectively the wire length and diameter, h is the convective
heat transfer coefficient, and Tadw the adiabatic film temperature, that is the ef-
fective flow temperature felt by the wire in the heat transfer process and is equal
to ηT0, where η is the recovery factor formulated by Dewey [12].

The recovery factor is a function of the Mach number and the Knudsen number,
which is defined as the ratio between the molecular mean free path length to a

9
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characteristic physical length scale. The latter is, in the hot-wire application, the
diameter of the wire itself.

Kn =
1.587× 10−8

ρdw
(2.3)

Due to the small dimension of the wire the Knudsen number would be close
to the continuum flow limit – around 0.01 – and its influence in the heat transfer
must be accounted in the recovery factor computation. The latter is accounted as

η = ηc + η∗
(
ηf − ηc

)
(2.4)

where η∗ is the normalized recovery temperature, ηf and ηc are respectively
the free molecular and the high Reynolds number continuum limit and their ex-
pressions are [12]

ηc = 1− 0.05
M3.5

1.175 +M3.5
(2.5a)

ηf = ηc + 0.2167
M2.8

0.8521 +M2.8
(2.5b)

η∗ =
Kn1.193

0.493 +M1.193
(2.5c)

2.1.1 Constant Temperature Anemometry

There are three ways to operate a hot-wire anemometry. The oldest one is a
Constant Current Anemometry (CCA) in which the current is kept constant and
a variation in the wire resistance (thus temperature) creates an unbalance in the
voltage across the bridge, which will be correlated to heat transfer fluctuations.
A second operation mode is the Constant Voltage Anemometry (CVA) but it is
still under development and the technique is not as mature as the CCA and the
Constant Temperature Anemometry (CTA).

The constant temperature operation is the best approach in order to annul the
thermal inertia term in equation 2.2. A circuit of the CTA mode is depicted in
figure 2.1. The wire is a leg of a Wheatstone bridge, where the resistance (hence
its temperature) is kept constant thanks to a fast response feedback amplifier,
which reacts to a variation of the cooling power of the flow (i.e. flow velocity).
As a consequence the current varies leading to an unbalance of the bridge top
voltage. The fluctuations in bridge top voltage are related then to the heat transfer
fluctuations.
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Figure 2.1: Constant Temperature Anemometry (CTA) [9]

The CTA is the most used approach for measurement of turbulent quantities,
given the high frequency response, which is upper bounded only by the feedback
amplifier itself. Indeed the equation 2.2 becomes,

E2
w

Rw

= πlwdwh
(
Tw − ηT0

)
(2.6)

in which, the thermal inertial term has been neglected.

2.2 Mass Flux Calibration

The heat transfer phenomena for heated wires in cross flow is ruled by different
parameters of the flow and by geometrical constriction. Transposing the latter
conclusion to HWA one can, therefore, link in a proportional way the wire voltage
Ew with flow density, velocity, flow angle, total temperature, beside wire geometry
and wire temperature, Ew = f

(
ρ,V,T0,Tw, φ, dw, lw

)
.

The most known equations is the King’s Law E2 = A+BVn, where A, B and
n are calibration constants, which depend on flow conditions, above all flow total
temperature. A calibration curve as the one proposed by King has a drawback of
being feasible only for a limited velocity range and for isothermal flow conditions.

In order to correlate the wire voltage only to the flow velocity, all the other
dependencies must be decoupled from the latter relation by means of a non-
dimensional calibration curve.

The calibration methodology used in the present project is the one proposed by
Cukurel [4]. In this paper the heat transfer and the mass flux are accounted with
a dimensionless approach, e.g. the Nusselt number (Nu) directs the heat transfer.
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Given a certain fluid, a known wire geometry, assuming a 0◦ flow angle with
respect to the wire (see section 2.3.2), neglecting the natural convection (viable
for Re > Gr0.3 [10]) and considering an incompressible flow, the heat transfer
relationship can be written as only a function of the Reynolds number, hence the
mass flux.

Nu = f
(
Re
)

(2.7)

Cukurel [4] and Acarer [5] give a deeper explanation of the methodology also
for a compressible case, in which the Mach number dependency on the Nusselt
number must be considered together with the Reynolds.

The nominal flow conditions predicted at the test rig inlet are illustrated in
table 2.1 for few characteristic blade heights. The evolution along the span of
Reynolds number and Mach number is also shown in figure 2.2. It is evident that
the Mach number is always abundantly lower than the compressibility limit of
0.3, thus the flow can be considered incompressible. Hence, the voltage fluctua-
tions output of the hot-wire is correlated only to velocity and total temperature
fluctuations, while density fluctuations can be considered negligible.

One methodology to decouple the two effects is to compute a sensitivity anal-
ysis. For a CTA, the King’s law can be written as [11],

E2

Rw

= lw

[
κ+
√

2πκcpρVdw

](
Tw − ηT0

)
(2.8)

If one assume that the change in κ, η and cp are negligible, the change in E, for
incompressible flow, will be a function of velocity and total temperature, hence,

e
′

E
= Su

v′

V
+ ST0

T0
′

T0

(2.9)

The sensitivity parameters can be obtained by varying one parameter while
holding the others constant. The drawbacks of this methodology are the high costly
and time-spending procedure and the necessity of at least two wires simultaneously.

Span [%] T01 [K] P01 [Pa] M [-] Rew [-]
100.00 300.0 97478 0.00 0.00
90.84 411.8 98009 0.089 11.57
50.00 440.8 98000 0.097 10.67
10.36 410.2 98006 0.099 12.89
0.00 300.0 97333 0.00 0.00

Table 2.1: Nominal inlet flow condition predicted with CFD for some characteristic
points of the Span
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Figure 2.2: CFD prediction for Reynolds and Mach number at stator inlet

Alternatively a direct and analytical method can be performed, but, since the
relation E = f

(
V,T0,Tw

)
is not physical, a multi-regression fitting is needed with

a high number of points in a closed loop facility. This makes the methodology
not applicable in the present project in which a single wire probe is used in a
blow-down wind tunnel.

However, in a CTA mode of operation if the wire temperature is kept at 1.5
times the flow total temperature, the temperature fluctuation effect can be ne-
glected, as stated by Acarer [5]. In the present study a value higher than 1.25 was
found to be a good enough temperature overheat ratio Tw/T0.

From a dimensional analysis the heat transfer can be expressed in terms of
Nusselt number and it depends, in the most general form for a cylinder shaped
wire, on flow parameters and geometry quantities, which may be written in a
dimensionless way as

Nu = f

(
Re, Pr,M,Gr, τ, φ,

lw
dw

)
(2.10)

where τ is the overheat factor defined as

τ =
Rw,hot − Rw,cold

Rw,cold

= α20∆T (2.11)

and ∆T is the difference between the wire Temperature Tw and 20◦C at which
the cold resistance of the wire is measured, thus known. α20 is the temperature
coefficient of resistance at 20◦C and depends on the wire material.

In a CTA mode of operation the overheat factor is maintained constant by
the feedback amplifier. Once again, for Re > Gr0.3 the buoyancy effect can be
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neglected. For a given probe and a known fluid, lw/dw and Pr are constant.
By the assumption of 1-D flow direction and probe aligned to the flow direction
also the flow angular dependence φ can be omitted (see section 2.3.2). Finally, for
incompressible flow, as the one expected at the facility inlet, compressibility effect,
thus the Mach number, can be neglected. Hence,

Nu = f
(
Re
)

(2.12)

With the dimensionless approach, the velocity sensitivity in an incompressible
flow is totally included in the Reynolds number computed on the wire diameter,
which definition is

Re =
ρVdw
µ

(2.13)

The use of non-dimensional parameters with widely accepted correlations al-
lows to perform a calibration without the need for a closed loop wind tunnel, which
changes each flow variable independently and requires a long time of operation.
Instead, a simple jet (see section 2.3) operated in similitude with the flow condi-
tion expected in wind tunnel is enough to determine the velocity sensitivity and
perform an accurate calibration even in a relatively short time.

Considering the expectation for Reynolds number and Mach number at the
stator inlet, predicted in a preliminary way by numerical computation and shown
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in figure 2.2, a similitude analysis – imposing an equal Reynolds number between
the stator inlet and the calibration jet – gives the conditions wanted in terms
of Mach number, hence total pressure for a known static pressure, at different
stagnation temperature arbitrarily chosen during the calibration. The hot-wire
calibration will be performed, then, with value of T0 and p0, hence Mach number,
chosen within the range of Reynolds number, as shown in figure 2.3.

2.3 Calibration Set-Up

2.3.1 The Dantec Anemometer Frame

In order to use a hot-wire in a constant temperature mode (CTA) a feedback loop
control is required. The Dantec Streamline 90N10 frame (figure 2.4), initialized
and operated by R©Dantec StreamWare software, serves this purpose. It includes
a controller circuit and 4 CTA modules, each of them has its own programmable
signal conditioner in order to perform the amplification and offsetting of the signal,
beside low-pass filtering up to 300 kHz.

Figure 2.4: Dantec CTA frame

As the name suggests, the CTA mode is based on the principle that the tem-
perature of the wire remains constant during the operation. However, the Dantec
StreamWare software allows to fix the overheat factor τ expressed by equation
2.11 and not the wire temperature, which is a function of τ and, thus, of the hot
resistance Rw,hot and also of the cold resistance Rw,cold measured by the Dantec
frame and which depends on the ambient temperature. In case in which a in-
situ calibration is not possible – circumstance under which this project falls – the
frame, thus the software, must be switched off and moved from the calibration lo-
cation to the wind tunnel in which the measurements are performed. This yields,
unless a fortunate coincidence in which ambient temperature does not change, to
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a different measured cold wire resistance and, consequentially, to a different wire
hot temperature during operation.

In order to overcome the above mentioned problem, the Dantec frame can be
tuned by referencing the wire resistance based on an initial and predefined value.
With this adjustment the wire resistance in operation mode is the same as the one
imposed during calibration.

2.3.2 The Hot-Wire Probe

The wire resistance can change also because of ageing effect, due to oxidation of
the wire material. In this case no adjustment is possible beside a new calibration.

Since the inlet total temperature is pretty high (≈ 440K) and given the limita-
tions of hot-wires with respect to the temperature of the flow, in order to increase
the sensitivity of hot-wire only to velocity, an effective way is to increase the wire
temperature as much as possible. Nevertheless, at temperature above 250÷300◦C,
standard hot-wire’s materials age very quickly.

Typical materials for hot-wires are tungsten, platinum, nickel and tehir alloys.
Although tungsten has the advantage to be more resistant, it ages more easily at
higher temperature than platinum, which has, on the other hand, the drawback of
being more fragile.

For these reasons a special material was chosen which resists to very high
temperature, this is an alloy of Nickel and Platinum, welded with high melting
point tin.

Figure 2.5: The DAO111A hot-wire probe

The probe, shown in figure 2.5 consists of two hot wires located at 37 mm of
distance from each other, in order to cover the whole span of the stator inlet – blade
height of 74.71 mm – with a relatively low number of tests, and of a thermocouple
used to measure reference total temperature between the wires.

The wire is of 9 µm in diameter and 1 mm in active length – out of a 2 mm total
length, considering also the copper ending used to prevent interference with the
prongs. Although usual wire diameters are 5 µm to enhance spatial resolution, a
9 µm diameter provides higher structural strength and higher resistance to ageing
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effect. The 1 mm length is in trade-off between a good spatial resolution and the
advantage given by an infinite length wire for which heat transfer by conduction to
the prongs is null and its heat loss rate depends only on the component of velocity
Vn = V cosφ normal to the wire. The optimum is at ratio 2lw/dw = 100 ÷ 250
[13]. Indeed the effective Velocity measured by the hot wire must include a flow
angle dependency

Veff = V
[

cos2 φ+ b2 sin2 φ
]1/2

(2.14)

where the coefficient b decreases as the ratio 2lw/dw increases. For the probe
used in this work, the ratio is around 225, for which the coefficient b can be
neglected with a minimum error [13].

2.3.3 Total Temperature and Total Pressure

In order to compute Nusselt number and Reynolds number, so that the relation
2.12 is fulfilled, total temperature T0 and total pressure p0 have to be measured
where the flow meets the wire.

The stagnation pressure is measured by means of a Validyne differential pres-
sure transducer – equipped with a 86 mbar square membrane – connected with a
Validyne amplifier, shown in figure 2.6a.

The total temperature is measured by a K-type thermocouple, as the one in
figure 2.6b.

(a) (b)

Figure 2.6: Validyne amplifier with differential pressure transducer (a) and Ther-
mocouple amplifier with K-type thermocouple (b)

2.3.4 The National Instrument Acquisition System

Hot-Wire, Thermocouple and Validyne voltages are acquired by a NI USB-6251
data acquisition board provided by National Instruments, shown in figure 2.7. It
consists of 16 input channels with a 16-bit accuracy and a sampling frequency up
to 1.25 MHz.
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Figure 2.7: 16-bit National Instrument Acquisition System

The hot-wire requires a high frequency sampling in order to capture all the
possible turbulent time scales. The frequency response of the wire is optimized by a
square-wave test. Although it is ideal to perform the square-wave test in the facility
where the test will take place, this was not possible, thus it was conducted in the
same jet facility at the highest velocity expected during measurement. Frequency
response resulted in the range between 17 and 20 kHz. After a spectral analysis
of the signal acquired in flow condition the cut-off frequency (taken to be the
one where only white noise is discernible) was found to be around 20÷30 kHz,
depending on probe position and flow condition. Following the Nyquist theorem –
for which in order to avoid aliasing of the signal a sampling frequency of at least
twice the highest useful frequency must be provided – the sampling frequency
during calibration was set at 65 kHz, acquiring the signals for 3 seconds, resulting
in 195000 samples.

2.4 Calibration Methodology

In order to correlate the Nusselt and the Reynolds numbers some parameter must
be measured and/or calculated.

A schematic of the calibration facility is shown in figure 2.8. Stagnation pres-
sure and temperature are measured before the contraction of the jet where the
flow can be considered stationary and by assumption of isentropic contraction,
both total temperature and total pressure can be considered constant and equal
to the one felt by the wire at the nozzle exit. Since the flow exits in atmospheric
condition, the static pressure is considered to be the atmospheric one.

A heater is located upstream the jet facility in order to vary air temperature
from the ambient one up to around 55 ◦C.
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Figure 2.8: Schematic of the Calibration Jet Facility

To completely define the Reynolds number computed on the wire diameter
(equation 2.13), velocity V, density ρ and dynamic viscosity µ must be known.
From gas dynamic theory the flow is completely defined in its mean quantities by
the knowledge of three independent variables, these are as already mentioned in
the present dissertation total temperature, total pressure and static pressure.

Thus, before the jet facility may be used, the Validyne pressure transducer and
the K-type thermocouple must be calibrated.

As far as the Validyne is concerned, its calibration is performed by a DPI 610
pressure calibrator pump of figure 2.9a. The differential pressure is varied starting
from the zero (ambient pressure) up to +60 mbar and down again till −30 mbar
in order to check that the pressure input does not affect the value of the internal
state of the membrane which should keep its elasticity, hence the calibration curve
should remain linear and not presenting an hysteresis shape. The calibration curve
is shown in figure 2.10a and an R-square with at least four significant figures equal
to 9 is accepted in order to reduce the uncertainty.

The K-type thermocouple is calibrated in the Thermibel heated oil bath of fig-
ure 2.9b located at the same position of a Thermibel digital reference thermometer
with high precision up to the third decimal digit. Temperature is set from 10◦C
up to 50◦C and an internal rotating magnet helps to level out the temperature
inside the oil bath. The magnet rotational speed can be adjusted during the op-
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(a) (b)

Figure 2.9: DPI 610 pressure calibrator pump (a) and Thermibel oil bath (b)

(a) (b)

Figure 2.10: Validyne calibration curve for total pressure measure (a) and Ther-
mocouple calibration curve for total temperature measure (b)

eration. Also in this case the calibration fitting curve is linear (figure 2.10b) and
an R-square with at least four significant figures equal to 9 is accepted for sake of
precision.

Static pressure in this condition is the ambient one which is measured by a
DPI unit that serves the whole Von Karman Institute.

From total and static pressure, the Mach number can be calculated by well
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known isentropic gas-dynamic relations

M =

{[(
p0

p

) γ−1
γ

− 1

]
2

γ − 1

}0.5

(2.15)

where γ = cp/cv is the heat capacity ratio for air and it is equal to 1.4.
Static temperature is evaluated with the assumption of isentropic process

T = T0

(
p

p0

) γ−1
γ

(2.16)

Density is computed with the equation of state for perfect gases.

ρ =
p

TR
(2.17)

with R the gas constant that, for air, is equal to 287.113 J/(kgK).
All quantities are known in order to compute the flow velocity by the definition

of Mach number and speed of sound for perfect gases.

V = M
√
γRT (2.18)

Finally the dynamic viscosity is calculated by the Sutherland law, based on
kinetic theory of ideal gases.

µ = µref

(
Tref + Ts

T0 + Ts

)(
T0

Tref

)3/2

(2.19)

where Tref and µref are the reference temperature and the reference viscosity
(e.g. µref = 1.716 × 10−5 for Tref = 273.15K). Ts is the Sutherland temperature
and it is equal to 110.4 K.

If the Reynolds number correlates the flow quantities and gives information
about velocity, the Nusselt is the dimensionless number used to describe the heat
transfer and it is accounted with its definition

Nu =
hdw
κ

(2.20)

and by the definition of the convective heat transfer coefficient h

Nu =
Qdw

κA
(
Tw − ηT0

) (2.21)

where A = πlwdw is the surface of the wire. The heat Q is equal, for CTA
mode, to the electric power provided to the wire E2

w/Rw. However the voltage
output is the said top bridge voltage. The relation between the total resistance
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and the wire one is the one typical of the Wheatstone bridge, of which the wire
forms a leg.

Ew

Rw

=
Eb

Rt + Rl + Rw

(2.22)

where Rt is the top bridge resistance and Rl is the lead resistance. Thus,
equation 2.21 becomes,

Nu =
E2
b

Tw − ηT0

Rw

πκlw
(
Rt + Rl + Rw

)2 (2.23)

The thermal conductivity can be expressed by the relation

κ = κref

(
T0

Tref

)0.7

(2.24)

where Tref and κref are again the reference temperature and reference thermal
conductivity (e.g. κref = 0.024 for Tref = 273.15K).

2.4.1 The Effective Wire Temperature Tw

What is still unknown and required in equation 2.23 in order to compute the
Nusselt number is the wire temperature reached once the overheat is imposed and
the wire is fed with current.

In [10] the wire temperature is computed analytically with the resistance-
temperature relation

Tw = Tref +
Rw,hot − Rw,cold

αRw,cold

= Tref +
τ

α
(2.25)

However, this conceals an assumption that the wire temperature is uniform
along its length. This is not true because of prongs conductivity and it depends
also on the wire diameter and length, thus it is not clear whether maximum or
an average of the wire temperature distribution is the best choice to describe the
phenomena. A solution is to define a temperature most representative of the heat
transfer itself which may be defined as effective wire temperature.

The methodology applied in references [4] and [14], makes use of the concept
for which the calibration relation 2.12 for low-speed flow (i.e. M < 0.2 [5]) is a
one-variable equation, thus the acquired data cloud must collapse in a single curve.

For this reason the wire temperature is left as an unknown and by an iterative
process the effective wire temperature Tw,eff is found as the one that maximize
the R-square value of the least squares 4th order polynomial fitting curve.
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2.5 Results

Calibration is performed at five different temperatures starting from the ambient
one to a maximum of 55 ◦C and at different Mach number, hence at different total
pressure, from a minimum of 0.045 to a maximum of 0.25. Higher Mach number
would introduce a compressibility effect for which density change would affect the
heat transfer and consequentially the voltage output as well as flow temperature
and velocity. In terms of dimensionless numbers, the Nusselt number would be
function not only of Reynolds but also of Mach number, Nu = f

(
Re,M

)
.

However, as previously showed in section 2.2, compressible flows are not of
interest for the turbine inlet measurements. As far as the lowest Mach numbers
are concerned, a low-speed calibration in a different facility should be performed,
since the accuracy for the jet facility of figure 2.8 rapidly decrease at M < 0.04.
Nonetheless, the range of Mach number expected in the measurement facility (fig-
ure 2.2) allows to skip the low-speed calibration, unless measurements at wall
proximity and at viscous sub-layer are required.

Figure 2.11 shows the calibrated points in terms of output voltage and flow
velocity, following the relation Eb = f

(
V,T0,Tw

)
. As flow temperature increases

the heat transfer decreases and so the voltage output is lower, given the same flow
velocity.

Figure 2.12 is the result of the iterative procedure described previously in
section 2.4.1 in order to find the wire effective temperature. The R-square value is
maximum at 572.18 K, slightly higher than the lower limit of 550 K which permits
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Figure 2.11: Raw calibration data cloud
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Figure 2.13: Collapsed data in a single curve

to neglect the temperature fluctuations dependency in the sensitivity analysis of
section 2.2.

Once the effective wire temperature is found the data are collapsed in the single
dimensionless curve of figure 2.13. The fitted curve is a 4th order polynomial, which
responds to the needing for linearisation of the calibrated data sets. Indeed, as
explained by Carbonaro [9], the non-linearity of hot-wire signal leads to errors in
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turbulent flows for mean velocity, fluctuations and averaged turbulent statistics.
In order to avoid these errors a linearisation is required. The possible methods are
a logarithmic fit or the said polynomial fit. Since E2 ∝ V0.5, hence V ∝ E4, then
at least a 4th order fit is needed. Moreover the calibration curve, fit by polynomial
regression, provides a better frequency response than the logarithmic linearizer [9].

2.6 Validation

In order to validate the calibration, time resolved measurements are carried out in
the same jet facility where the calibration was performed with different conditions
and wire positions. The sampling frequency is set at 65 kHz as the calibration one
for 5 seconds.

Four different locations of the wire – at x/d = 1, x/d = 2, x/d = 3, x/d = 4,
where d is the nozzle diameter of 12 mm – and three different flow conditions in
terms of Mach number – M = 0.095,M = 0.196,M = 0.264 – are taken into
account as shown in figure 2.14. Here the results for the lower Mach number
conditions are discussed, as it is the most significant flow condition in the present
work (figure 2.15).

It is plain how turbulence intensity (Tu), defined as the ratio between the root
mean square of the instantaneous velocity fluctuations and the mean velocity value,
increases with the distance x/d from the nozzle exit up to 6.25%.

In order to check the reliability of the hot-wire calibration a comparison be-
tween the mean velocity measured by the hot-wire Vhw and the one computed by
pneumatic quantities Vpneum was realized, exhibiting a good agreement, especially
for the data collected at the distance x/d = 1 as it is expected. Results are shown
in table 2.2.

The deviation from pneumatic probes’ results and hot-wire one at the x/d = 1

Figure 2.14: Probe location with respect to the nozzle
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Probe Location Vhw [m/s] Vpneum [m/s] err [%]
x/d = 1 33.77 33.28 1.48
x/d = 2 34.13 33.28 2.56
x/d = 3 34.35 33.28 3.23
x/d = 4 34.77 33.28 4.49

Table 2.2: Comparison between mean velocity measured by hot-wire at different
wire positions and by pneumatic quantities at the nozzle exit

distance may be due only to random sampling uncertainty. Indeed 1.48% is in the
range of uncertainty due to calibration as shown in Appendix A.

The more the wire is distant from the jet the higher is the error. This is due
to the fact that when the wire is located at a distance higher than one time the
nozzle diameter, given the limitation in the fixing system of the jet facility, it is
not possible to be certain to align the wire with the jet central core. Moreover,
the small nozzle diameter leads to a very thin core at x/d ≥ 1 and it may causes
uncertainty due to wire spatial resolution.

Nonetheless, an error in mean velocity of 5% was demonstrated to correspond
in a maximum error of less than 0.5% in turbulence intensity, for relatively low
speed flows.

Furthermore, by applying a fast Fourier transformation (FFT) of the time data
series in the frequency domain, the power spectral density can be analysed. In
order to avoid spectral leakage and to have higher spectral resolution an Hamming
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windowing is applied with the pwelch R©Matlab function.
As showed in figure 2.16 some features common in round jet flows may be

distinguished.
First of all, a broad frequency peak is evident at Strouhal number between

0.35 and 0.5 in accordance with experiments in the near-field region of a turbulent
axisymmetric jet at high Reynolds number [15], where the Strouhal number is
computed on the nozzle diameter as,

Std =
fd

Vnozzle
(2.26)

where f are the frequencies related to the broad frequency peaks. These peaks
are associated to the roll-up of the initial vorticity sheet into the toroidal vortex
rings, typical of the core region of a jet characterised by a rapid contraction. The
amplitude of the broad frequency peak increases with the distance till x/d = 4,
though it is expected to decrease as the distance exceeds x/d = 5 as observed in
the near-field of a round jet downstream an abrupt contraction nozzle [16].

At last, the cut-off frequency was found to be 30 kHz, justifying the choice
of 65 kHz for sampling frequency, higher than the Nyquist criterion in order to
avoid time aliasing. Further check was done at a sampling frequency of 150 kHz
confirming the goodness of the choice.





Chapter 3

Measurement Campaign

3.1 The VKI Anular Cascade Facility CT3

High pressure stage is the life-limiting component in modern gas turbines due to
the aggressive environment in which it operates. Thus research has focused on
this critical area in order to provide wind tunnels capable of simulating with high
accuracy a real operating engine.

Turbine test rigs can be classified based 1) on the geometry of the test section,
or 2) on the operation mode. For the first class the distinction is between

1. Linear Cascade Facilities, which advantages are simplicity and possibility of
fine optical access. They are often used to study unsteady flow phenomena
such as wakes and vortex shedding. Nevertheless it is not possible to provide
information about three dimensional paths.

2. Annular Cascade Facilities, which are more complex than the linear cascade
and optical access is more difficult to provide. On the other hand, three
dimensional phenomena can be simulated, together with real radial and an-
nular distribution of flow properties.

For the second class the difference is between

1. Closed Loop Facilities, which operate in a continuum mode. Thanks to a high
interval of time in which measures can be integrated, the measurements are
more accurate. As far as heat transfer measurements are concerned, closed
loop facilities are not functional. Indeed, after the facility runs for a while,
the system reaches the thermal equilibrium with the flow. Furthermore, this
kind of facilities requires high power consumption in order to be run for long
time.

29
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2. Transient Facilities, which operate for a limited interval of time. They allow
to study heat transfer to the wall. Indeed, the characteristic time of con-
duction is much higher compared to the operation time. By the conductive
heat transfer theory, this allows to model the heat transfer with a lumped
capacitance method for which the wall temperature is only dependent on
time and has a typical e-folding trend

Twall

(
t
)

= Tinf +
(
Tinitial − Tinf

)
e−t/τ (3.1)

where τ is the characteristic time depending on the ratio between conductive
heat transfer and the heat accumulated by the solid body. Another advantage
of transient facilities is the low power required during operation, thus low
cost. Although they are used mainly for heat transfer, transient facilities are
used intensively also for aerodynamic measurements.

Moreover, transient facilities are divided in three categories [17]

1. Blow-Down Tunnel as the one developed in 1984 at the Massachusetts Insti-
tute of Technology in which air is suddenly vented through the test section
from a pressurized and heated vessel.

2. Shock Tunnel as the one used in Calspan and developed in 1985 in which
air is compressed thanks to a shock wave travelling along a tube and then it
expands through a nozzle in which a normal shock allows to adapt the flow
at the desired guide vane inlet condition.

3. Isentropic Light Piston Compression Tube, as the one developed at Oxford
University in 1977, in which air is compressed with a quasi-isentropic process
by a moving piston and thereby heated following the isentropic relation

Tfinal = Tambient

(
pfinal
pinitial

) γ−1
γ

(3.2)

The hereby heated and compressed air is then released in the test section by
a fast operating valve.

The compressor tube annular cascade facility CT3 of the Von Karman Institute
for fluid dynamic (figure 3.1) belongs to the last category and it is the biggest
facility in the world of its kind, able to host turbines with tip radius up to 0.8
meters [18].

A schematic layout of the facility is given in figure 3.3 where the main elements
of the facility are discernible.
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Figure 3.1: Picture of the VKI’s CT3 facility

(a) (b)

Figure 3.2: Stator (a) and Rotor (b) of the VKI’s CT3 facility

The compression tube is connected with the VKI’s 300 bar air supply reser-
voir and it was designed in order to prevent total pressure fluctuation which occur-
rence is common in transient facilities and depends mainly on the ratio between
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Figure 3.3: General layout of the VKI’s CT3 facility

the volume of the tube and the volume upstream the working section nozzle throat.
The tube has a dimension of 1.6 meters of inner diameter and it is 8 meters long
with a surface roughness of around 6.2 microns for a total volume of circa 15 m3.
Alone it weigth 13000 kg and the maximum allowable pressure is 20 bar [17].

The piston is driven by the cold air coming from the external high pressure
air supply reservoir from one side and compresses and heats on the other side
the working flow. When the flow reaches the pressure desired the shutter valve,
triggered by a pressure transducer measuring the pressure inside the tube, suddenly
open, releasing the flow in the test section. This valve is vertically oriented and
consists in a 350 mm diameter disc of titanium. It has an opening velocity of 10
m/s [18] corresponding in an opening time of 40÷ 70 ms.

Afterwards the flow goes into the annular settling chamber of 500 mm and
900 mm of respectively inner and outer diameter, which acts as a damping factor
for the oscillation caused by the piston and the rapid opening of the shutter valve
and it stabilizes the flow before entering in the test section.

The test section hosts the nozzle vanes and the probe traversing system and
in this particular experimental campaign consists of a single high-pressure stage
containing three measurement planes as depicted in figure 3.4 – turbine inlet, NGV
outlet and turbine outlet, referred respectively with the subscripts 1, 2 and 3. The
stator shown in figure 3.2a is composed by 38 blades while the rotor of figure 3.2b
has 48 blades and it is run at a nominal rotating speed of 5900 RPM and it was
mounted in a rainbow configuration to study the flow leakage in 7 different tip
geometries.
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Figure 3.4: Test Section of VKI’s CT3 facility with measurements location

Last components of the wind tunnel are a sonic throat, with an adjustable
section which allows to freely select a desired mass flow rate, and a vacuum tank
where the flow is discharged at the end of every test.

The facility is designed to simulate the operating condition of modern aero-
engines as close as possible. In order to achieve this purpose a scaling approach is
used. Similarity is respected in viscous forces with the Reynolds number, thermal
properties by means of the Prandtl number, compressibility effect accounted by
the Mach number and temperature ratios Tflow/Twall/Tcoolant. In the present work
the flow parameters of similarity have been optimized and set as in table 3.1 for
the whole duration of the experimental campaign.

Indeed, the facility is designed in order to adjust independently the Reynolds

Similitude Parameter
Outlet Reynolds number computed on Rotor Chord 2.4× 105

Inlet Absolute Mach number 0.1
Outlet Relative Mach number 0.73
Temperature ratio

(
Twall/T0,1

)
0.68

Non Dimensional Rotational Speed
(
RPM/T0,1

)
281.3

Total to Static Pressure Ratio
(
p0,1/p3

)
2.2

Table 3.1: Similarity test condition at midspan
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number and the pressure ratio, beside the temperature ratio. The free control
parameters are [18]

• The inlet total pressure p0,1 by selecting a tube pressure at which the shutter
valve is triggered and knowing that the inlet stagnation pressure is around
10% lower than the one in the tube.

• The inlet total temperature T0,1 according to equation 3.2 by properly choos-
ing the pinitial, hence the pressure ratio.

• The opening of the sonic throat area which imposes the mass flux.

By adjusting p0,1, T0,1 and the sonic throat area a wide range of Reynolds
number and Mach number can be applied.

Thus, prior to the test, the desired conditions are achieved by creating the
quasi -vacuum condition in the vacuum tank (14 ÷ 30 mbar of absolute pressure)
in accordance with the pre-stabilised inlet total pressure. This process requires up
to 45 minutes. Afterword, the rotor is spun up thanks to an high pressure turbine
directly attached to the same shaft of the main rotor. Once 95% of the nominal
speed is reached, the high pressure air is released at around 270 bar in the tube
activating the piston. When the pressure inside the tube is the one desired the
shutter valve is triggered and the working flow is discharged in the test section.
The test lasts up to 0.4 seconds. At first total temperature and total pressure raise
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to the nominal value in 0.1 seconds circa. However, before the flow is completely
stable, some fluctuations are present due to the mass of the piston. The actual time
interval in which the measures are time-averaged is of the order of 0.15 seconds.
A typical blow down sequence is depicted in figure 3.5. The end of the test is
determined by perturbation travelling towards the test section. This is a sign of
when the pressure in the vacuum tank increases above a certain critical point.

3.2 Plane 1 Set-Up

Turbomachinery flows are unsteady and three-dimensional by nature and a variety
of measurement techniques must be used in order to catch all thermodynamic and
aerodynamic features. For this purpose high frequency response and high spatial
resolution are of paramount importance. At the turbine outlet at least a frequency
response capable to acquire the blade passing frequency (around 4800 kHz) and
its first 5 harmonics is needed [19]. As far as the inlet is concerned, the object
is to characterize the flow in terms of big and small length scale of turbulence in
order to have as more accurate as possible simulations of the flow. Small turbulent
scales, as the Kolmogorov one, are in the range of 104 Hz. Hot-wire technique is
the only instrument that delivers an analogue output as representation of velocity
up to such high frequency fluctuations.

It is evident, though, as hot-wire requires measures of total temperature and
pressure in order to transform the voltage signal in useful information of velocity.
High precision in these measures, especially in temperature, is required to have
reliable value of mean velocity, while velocity fluctuations are only marginally
influenced by an error in temperature estimation.

The plane 1 is situated at 0.5 times the stator blade chord upstream of the
nozzle guide vane leading edge (figure 3.4). A schematic of the plane 1 set-up
is shown in figure 3.6b. In order to gauge the total pressure a Kiel probe is
used consisting of four heads to cover the whole span (figure 3.6c top), while
total temperature is measured by means of probes consisting of four bare K-type
thermocouple rakes (figure 3.6c center). Additionally a probe composed by a
Kiel head and a bare K-type thermocouple, quantifying total pressure and total
temperature at the midspan, is used as reference value for repeatability check
(figure 3.6c bottom). Finally static pressure is measured at the hub end-wall and
tip end-wall by means of static pressure taps inserts.

Figure 3.6a shows the hot-wire probes, described in section 2.3.2, inserted in
plane 1.

The hot-wire signal is acquired at a sampling frequency of 120 kHz in order to
catch all possible flow features and to avoid time aliasing according to the Nyquist
criterion. However, some initial tests were performed at a sampling frequency of
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(a) Hot wire Probe inserted in plane 1

(b) Plane 1 slots

(c) total pressure rakes (top), thermo-
couple rakes (center), reference probe
for T0 and p0 (bottom)

Figure 3.6: Plane 1 Set-Up and Instrumentation

1 MHz. Furthermore, the signal is off-setted and amplified by the Dantec system
as mentioned in section 2.3.1.

3.3 Post Processing

The signals are acquired by different acquisition systems, each with its own offset
and delay. Once all data have been shifted together and coupled with their own
calibration fitting, except for the hot wire signal which will be treated in a first
moment with its raw voltage signal, the data post processing involves three starting
essential steps

1. Detect the time interval in which the flow is stabilized. The letter has been
found to be no longer than 0.2 seconds. However some transient fluctuations
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are still present after the shutter valve is triggered and the effective stabilised
time interval is around 0.1÷ 0.15 seconds.

2. Fit the total temperature, total pressure and static pressure depending on the
hot-wire location along the span. Indeed, although total pressure presents
a quasi-flat shape along the blade height, total temperature is affected by
stratification. Moreover, the hot-wire results in terms of mean velocity are
highly dependent on the exact value of flow total temperature, whilst not
accurate total and static pressure value, hence Mach number value, does not
implicate a considerable error in terms of Reynolds number.

3. Low-pass filter the signals monitoring the cut-off frequency. This is done
in order to avoid noise influence in the final results in terms of velocity
fluctuation.

Looking at the total pressure trend in figure 3.7 it is easy to recognize the
four different time intervals described previously in section 3.1. The shutter valve
takes 0.1 seconds to open and discharge the flow in the test rig. The following
0.1 seconds are characterized by some fluctuations in the tube pressure due to the
mass of the piston and, finally, the flow is stable and the signals are processed.
The last part of the signal is affected by the increasing pressure in the vacuum
tank.

Once the stable window is pinpointed the hot-wire raw voltage is cut and
processed. As shown in figure 3.8 the hot-wire signal has its starting point at

Figure 3.7: Total Pressure sequence and signal fraction used for the post processing
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Figure 3.8: Hot-wire raw voltage signal during the blow down

negative top bridge voltage (equals to the effective voltage times the gain and
minus the offset) due to the very low density in the test section, which in turn
is a consequence of the vacuum condition, and presents a little overshoot after
the shutter valve opens due to the fast pressure wave. The signal, then, shows a
big undershoot mainly caused by the rapidly increase in flow temperature which
reaches value of the order of the wire temperature, drastically reducing the heat
transfer.

As already mentioned, the measurement of the hot-wire relies on an accurate
knowledge of the total and static pressure and, over all, of the total temperature.
Thus, the Mach number must be computed by means of the measures of total pres-
sure performed with the Kiel probes and of static pressure thanks to the pressure
tap insert at hub and tip. Whereas the total pressure has a flat trend along the
span and the static pressure is almost constant between tip and hub, for which a
linear interpolation is accurate enough to predict their value at the hot-wire posi-
tion, the total temperature may vary up to 40 K from the mid position to the wall
proximity. Moreover, while an error in Mach does not imply a significant error
in the velocity computed by the hot wire, a small error in temperature leads to
strong deviation in velocity.

Indeed, it was demonstrated in a study of two-Dimensional Hot-Wire Anemom-
etry in High Speed Flow [5] that an error of Mach number of 1% is translated in
an error of Reynolds not higher than 0.1%. On the other hand, a perturbation
analysis performed in the present work revealed how an error of 1% on the value
of stagnation temperature leads to an error up to 10% in terms of mean velocity.
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Moreover, the same error of total temperature entails a deviation of turbulence
intensity up to 1%. Thus, it is clear how a good estimation of total temperature
is extremely important to hot-wire results.

Temperature is acquired in different position along the span and the annulus as

Figure 3.9: Normalized total Temperature along the Span

Figure 3.10: Total Temperature sequence during a test for different rakes high-
lighting the signal fraction used for the post processing
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shown in figure 3.6b, and results indicate a trend of total temperature as in figure
3.9 where temperature taken at different positions is normalised with respect of a
reference temperature acquired at the midspan for different tests showing a good
repeatability.

Two methodologies were proposed in order to predict the total temperature at
the location of interest. The first one considers a shape preserving interpolation
fitting from the measures of the rakes (figure 3.10) for the single test. The sec-
ond consists in using the whole tests’ history results together with the reference
temperature at the midspan from the curve of the repeatability chart obtained
in figure 3.9. The results are reported in figure 3.11 showing a good agreement,
except for the wall proximity in which the interpolation method does not take into
account the wall temperature in the fitting process, therefore the second method
is preferred since no hypothesis on the wall heat transfer is needed. The scatter
between the two is considered in the uncertainty analysis.

Moreover, it is plain from figure 3.10 how temperature could not reach a perfect
stability in the processed time window. In this case the dimensionless calibration
curve shows its power, by annulling temperature dependency in velocity compu-
tation.

Finally the hot-wire raw voltage is converted in Nusselt number by the equa-
tion 2.23. From the calibration curve the Reynolds is determined and finally the
instantaneous velocity is calculated from the Reynolds number definition.

A further check is done by comparing the results in terms of velocity com-

Figure 3.11: Comparison between two methodology of total Temperature compu-
tation
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Figure 3.12: Velocity comparison between the one computed by the hot-wire and
the one computed by pneumatic rakes

puted with the hot wire methodology and the one computed with the pneumatic
quantities at lower frequency as shown in figure 3.12 with a good agreement.





Chapter 4

Results and Discussion

4.1 Statistical Description of Turbulence

There is a large body of literature dealing with the topic of turbulence with al-
most the same amount of theories and formulations. Among the others, the most
detailed books are the one of Pope [20] and Biswas [1].

The most accepted and validated theory is the characteristic feature for which
turbulent flows exhibit a large range of length or time scales. However it is common
practice for analysis purpose to distinguish between few scales. These are the
integral scales, the inertial sub-range scales and the dissipative or Kolmogorov
scales.

The integral scales are those corresponding to the energy containing eddies and
form the large scales of turbulent flows.

Biswas [1] roughly defines the integral length scale as the distance over which
the velocity fluctuations at one point are correlated with those at another point.

The smallest turbulent scales are described by, and named after the Russian
mathematician and physicist Andrey Kolmogorov. With his first similarity hy-
pothesis he stated that the geometry and the anisotropy of a flow-field could
influence only the large scales, while the smallest scales are only influenced by
local quantities such kinematic viscosity ν and energy dissipation rate ε. Thus
these small eddies, having a smaller time scales, will rapidly settle into a quasi-
equilibrium state and can be computed as

η =

(
ν3

ε

)1/4

(4.1a)

τ =

(
ν

ε

)1/2

(4.1b)
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where η and τ are respectively the Kolmogorov length and time scales. By
dividing for the flow length and time scale, after few passages it is possible to
state that

η

L
= Re

−3/4
L (4.2a)

τ

T
= Re

−1/2
L (4.2b)

Hence, at sufficiently high Reynolds number there is enough separation between
large and small scales and it exists a range of high wave numbers (or frequency)
in which the turbulence is in a state of statistical equilibrium [1]. If this is the
case the flow is considered fully turbulent, else, if the separation between the two
scales is not well demarcated, that is if the Reynolds number is not big enough,
highly correlated structures take place in the flow.

Kolmogorov’s second similarity hypothesis proposes the existence of an inter-
mediate scale at a wave number higher than the one of the large scales but lower
than the one of the small scales which can be well defined only at very high
Reynolds number. In this inertial range the statistics of turbulence are in equilib-
rium between their production and their dissipation term, and they depend only on
the dissipation rate ε. This hypothesis yields to an expression for the sub-inertial
energy spectrum [20]

E
(
κ
)

= αε2/3κ−5/3 (4.3)

where α is a non-dimensional universal constant and κ the wavelength. Thus,
by looking at the turbulent energy spectra, several slopes may be identified. A
typical spectra is shown in figure 4.1.

Turbulent flows are by nature chaotic. This precludes the possibility of having
two equal velocity components in different flows at the same time and location.
Therefore, in order to compare or quantify turbulent flows it is necessary to adopt
a statistical approach.

Any deterministic model used to describe turbulence is based on statistical
data, hence a study in turbulent flows is complete and satisfying only when sta-
tistical measurements are also carried out.

General statistical description of turbulent flows involves correlation functions,
probability density functions and spectra. These three functions fully describe the
nature of turbulence and high order statistical moments such as length and time
scales, turbulent kinetic energy and its dissipation rate, turbulence intensity etc.

The first or zero order statistical moment is the average or mean and it is the
simplest quantity that may be computed from a signal. Ideally, when we deal
with turbulent flows, the statistical moments should be determined by ensemble
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Figure 4.1: Typical turbulent spectra in which the slopes for the scales in the
inertial sub-range and in the dissipative range may be distinguished [1]

average of a number of populations of different observations, however in experi-
mental situations this is not always possible and an average on a finite number
of samples over a finite time period is instead performed, attempting to represent
the ensemble average [21]. Thus the mean is accounted as

U = lim
t→∞

1

t

∫ t

0

U
(
t
)
dt (4.4)

where U is the axial-component of velocity V. Since a one dimensional hot wire
is used, from now on the velocity is always accounted as its axial-component U.

The root mean square (RMS) value of the velocity signal is roughly an average
of the fluctuating components of the velocity signal and it is defined as

u′ = lim
t→∞

[
1

t

∫ t

0

(
U
(
t
)
− U

)2
dt

]1/2
(4.5)

As already mentioned, turbulence is chaotic but not completely random. A
certain degree of correlation arises from a turbulent flow process. As far as a one
dimensional flow is concerned, a simple measure of the dependence of the velocity
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signal amplitude at one time on the amplitude of the other signals at different
times is given by the autocorrelation function

Ru

(
τ
)

=
U
(
t
)
U
(
t+ τ

)
U
(
t
)2 (4.6)

Similarly, the autocorrelation function can be also written in terms of spatial
correlation. Thus the dependence of a signal amplitude in a certain location on
the other signal amplitudes in other locations is given by

Ru

(
χ
)

=
U
(
x
)
U
(
x+ χ

)
U
(
x
)2 (4.7)

The properties of autocorrelation, as previously discussed, yield to the com-
putation of the turbulent scales. For instance, the energy containing eddies are
described by the integral length scale which can be computed as

L =

∫ ∞
0

Ru

(
x
)
dx (4.8)

or in terms of time scales

T =

∫ ∞
0

Ru

(
t
)
dt (4.9)

The degree of correlation will decrease with increasing distance, up to a distance
where the autocorrelation goes to a zero value. This distance is of the order of the
integral length scale.

The same information may be obtained by a Fourier transformation of a sig-
nal from the time domain into the frequency domain. Thus the energy contained
in each eddy is described as a function of frequency or of wave length. The en-
ergy spectrum E

(
f
)

is the fraction of the turbulent kinetic energy present in the
frequency interval

[
f, f + df

]
[1].

Finally, one of the most important functions is the Probability Density Function
(PDF) from which several information can be extracted. The PDF quantifies the
probability that a certain signal U

(
t
)

will have a value between the levels U and

U± du. This probability can be written as

Prob
[
U− du ≤ U ≤ U + du

]
=

∫ U+du

U−du
fu
(
U
)
du (4.10)

where fu is the probability density function describing the shape of the velocity
population in a diagram where the abscissa is the velocity amplitude and the
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ordinate is the percentage with which the single velocity observation is detected
in a time period. This diagram is known as histogram.

It is known how a completely random signal will exhibit a Gaussian or normal
distribution with a zero mean and the function is defined by equation 1.2 here
reported once again.

f(x) =
1√

2πσ
e
−(x−µ)2

2σ2 (4.11)

Similarly, turbulent flows in steady state with equilibrium between production
and dissipation would present a Gaussian distribution with a mean value of velocity
and a standard deviation (second order statistical moment) representing the RMS
of the fluctuations of equation 4.5. Hence a deviation from normal probability
density function may be thought as a deviation from the equilibrium itself [1].
This deviation is accounted by the third order statistical moment factor, usually
called skewness and the fourth order statistical moment factor, also called kurtosis.

Skewness = lim
t→∞

1

t

∫
t

0

(
U
(
t
)
− U

)3
u′

3 dt (4.12a)

Kurtosis = lim
t→∞

1

t

∫
t

0

(
U
(
t
)
− U

)4
u′

4 dt (4.12b)

The skewness indicates an asymmetry of the PDF from a Gaussian and it is
zero for normal distribution, while the kurtosis is a measure of the flatness of the
PDF and it is equal to three for a normal distribution. Skewness provides us
with useful information, e.g. a positive one may indicate a deviation from the
equilibrium between production and dissipation of turbulent energy [1] or, in the
near-wall region, can imply enhanced sweep events where flow separation may
occur [22], or else, high skewness may stand for high correlated structures in the
flow.

4.2 Inlet Characterisation

The inlet of the turbine test rig aims to represent the flow condition of an aircraft
engine at the exit of the combustion chamber, in all the flight situations. Typi-
cally at this state the flow is conducted in the turbine by s-shaped ducts and its
conditions are quasi or fully turbulent.

The hot-wire technique is employed to measure instantaneous velocity, from
which a Reynolds decomposition in mean and fluctuating components may be
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Figure 4.2: Mean Velocity distribution along the blade height

accomplished. Thanks to the high instrument’s frequency response the turbulent
spectra is computed up to the highest frequency fluctuations allowing to determine
the smallest turbulent time and length scales.

A complete traversing has been performed in order to have information along
the channel height of 74.71 mm. It was not possible to characterize the inner
part of the boundary layer because of the probe design, which did not allow to
take measurements at span lower than 3% and higher than 97% from the hub,
nevertheless boundary layer characterisation is beyond the scope of this study.

At all the measurement locations a very good agreement in mean velocity
computed with the hot-wire and the one derived from the pneumatic rakes was
obtained and the results are shown in figure 4.2.

It must be reminded that every point in the figure represents a distinct test
which may differ from the others because of variation in ambient conditions, in flow
stability after the shutter valve opens or in spurious disturbance of the flow. At
the time when this thesis was written only few tests for each point along the span
were performed, thus, in order to have a good estimation of the mean velocity
and other statistics trend, more tests have been planned allowing to check the
repeatability of the results.

Nevertheless, some information may be obtained. It is plain that the mean
velocity is higher at position closer to the hub than to the tip according to radial
equilibrium theory. Indeed, static pressure is quite higher at the upper part of the
channel rather than the one measured with the hub inserts.

Furthermore, decreasing values of mean velocity are detected at span location
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lower than 5% and higher than 90% where the flow may be affected by boundary
layer viscous stresses giving the impression of a thinner boundary layer at the hub
compared to the tip.

From Reynolds decomposition of the instantaneous velocity the fluctuating
components of velocity and, therefore, all the turbulent statistics may be com-
puted.

u′ = U
(
t
)
− U (4.13)

The turbulence intensity, also often referred as turbulence level, is a measure
of the level of unsteadiness in the flow in a precise period of time. It is defined
by the ratio between the root mean square of the velocity fluctuations computed
with equation 4.5 and a reference mean velocity.

Tu
[
%
]

=
u′

U
× 100 (4.14)

Its value is of paramount importance for aerodynamic and thermal performance
of an aircraft engine. A high turbulence level reduces the risk of flow detachment,
energizing the boundary layer. This is an advantage mainly for compressors where
an adverse pressure gradient is present. Furthermore, during an investigation of
tip clearance flows in an axial turbine, Xiao et al [2] predicted weaker tip leakage
and less losses for high upstream turbulence level.

The most significant issue in high pressure turbines is the very high temper-
ature at which the flow operates. As far as thermal performance is concerned, a

Figure 4.3: Turbulence Intensity distribution along the blade height
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high turbulence intensity causes a more uniform distribution of temperature along
the channel and increases the flow convective heat transfer coefficient h. In a
computational study on the turbulence intensity influence on the heat transfer of
a high pressure turbine stage, Wang et al [3] predicted a beneficial temperature
reduction of the blades and casing wall, due mainly to the better distribution of
temperature along the channel height, in flows with a turbulence intensity of 20%
compared with a 5% turbulence level flow.

Indeed the most critical part to cool down inside a turbo-machinery is the
tip of the blade and the tip end wall of the casing due to the higher difficulty
in reaching them with cooling systems. Furthermore, the tip is also affected by
higher temperature flows with respect to the hub according to radial equilibrium
theory. Hence, a higher turbulence intensity has found to be beneficial to both
aerodynamic and thermal performance.

In the turbulence intensity definition it is possible to use two values for reference
velocity at the denominator of equation 4.14. The first is a reference value taken as
the free stream velocity in the midspan, while the second choice is to use the local
value of mean velocity. In the present work, due to the relatively high variation of
mean velocity along the span and the non perfect repeatability caused by the low
number of tests up to the time when this thesis was written, the local mean velocity
is used as reference value. Figure 4.3 depicts the turbulence intensity at the inlet
of the VKI’s CT3 facility. The turbine stage is characterised by a turbulence level
between 5% and 10% at a span from around 20% to 80% of the blade height, while
it is up to 20% near the walls. The highest values are registered at the tip.

4.3 Time and Length Scales

As previously stated, turbulent flows are characterised by vortices of different size.
The largest eddies are influenced by the geometry and the boundary conditions
and they are responsible for the energy transport and mixing. On the contrary, the
smallest scales are only influenced by local properties, such as the viscosity and the
rate at which the turbulent kinetic energy (TKE) is transported and dissipated in
internal energy. Thus they present a universal behaviour whether the mean flow
boundary conditions may be.

The production of the large eddies is ascribed to large strain rate, that is high
velocity gradient in one direction. At the inlet of the turbine, secondary flows
are still not developed and the most important strain is in the direction of the
blade height. Hence, a one-dimensional study as the one proposed could be a good
approximation. The largest strain rate expected in this turbine section results
from the two end wall boundary layer interaction with the mainstream flow.

The integral length or time scales represent the distance or the time at which
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two velocity fluctuations are no more correlated and they can be computed by
means of the autocorrelation factors as previously stated from the equations 4.8
and 4.9. Since the signals are reported in time it is more appropriate to discuss in
terms of time scale. The conversion between the two is done thanks to the Taylor
frozen hypothesis for which the length scale is proportional to the time scale by
only means of a convective mean velocity.

L = TU (4.15)

Obviously, in an experimental measure, the integration is only possible in a
finite interval of time and all statistical quantities are computed with a numerical
integration over the number of samples forming the signal. In the present work the
integration is computed in the time interval when the signal is stable during the
blow down as shown in figure 3.7. For instance, given N the number of samples,
the mean velocity is accounted as

U =
1

N

N∑
i=1

Ui (4.16)

The determination of the integral scales from the equation 4.9 is not straight-
forward. The form of the autocorrelation function is such that it rapidly decreases
to zero, after which it may become negative and proceeds to oscillate about zero.

Figure 4.4: Autocorrelation factor (blu), Gaussian fit of Ru

(
t
)

(red dashed line)
and first zero crossing (green dashed line)
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In the present work the autocorrelation of velocity fluctuations, at the turbine
inlet and at the limited time interval in which it is integrated, was found to be as
the one of figure 4.4 in which wide oscillations are present about zero.

There are different methodologies used to compute time scales from the au-
tocorrelation function, all of them widely utilized. The most common involve a
numerical integration of the equation 4.9. However, if Ru

(
t
)

presents a negative
undershoot, the integration yields to numerical cancellation and to an erroneous
estimation of time scale. In this case it is possible to integrate a Gaussian fit of
the autocorrelation function or to integrate the autocorrelation function only up
to the time when it reaches the zero or, alternatively, when it reaches the mini-
mum value of the first negative undershoot. One more method is to integrate the
autocorrelation function up to the time when Ru

(
t
)

reaches the value e−1.

However, it is known, and it was demonstrated in an experimental study with
PIV [23], that integral time scale computed from the autocorrelation function is
only accurate when the integration is performed over a large enough time step.
If the time domain is composed by a limited number of samples the integral may
lead to an erroneous estimation of time scales.

Furthermore, in his study, O’Neill [23] states that wide oscillations can be
described as spurious if a small number of data points are used and they may
derive from numerical errors in the autocorrelation computation. The error, in
this case, exceeds the quantity being estimated. From figure 4.4, therefore, the
time scale computed from the longitudinal autocorrelation has to be considered
unreliable, and a different methodology must be adopted.

An example of different approach is the wavelets-based dominant scales method-
ology. It emerged in the recent years as an alternative to classical longitudinal
autocorrelation function in order to detect integral length scales. It was success-
fully employed for unsteady and periodic flows at the rotor exit of a low pressure
turbine rig by Lewalle et al [24].

Another validated solution is to adopt a Fourier transformation and compute
the integral time scale from the Power Spectral Density function (PSD) as proposed
by Roach [25] and experimentally applied by El-Gabry [26].

The latter methodology will be employed in the present work, although it makes
use of a strong assumption of isotropic and homogeneous turbulence.

The integral time scale is a measure of the largest and most energetic eddies in
a turbulent flow. Hence, it is computed as a function of the spectral energy at zero
frequency where the maximum amount of energy is expected in a truly isotropic
turbulent flow.

T =

[
E(f)

4u′
2

]
f→0

(4.17)
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Figure 4.5: Power Spectral Density and the averaged energy at frequency tending
to zero for integral time scale computation

The integral length scale L is then computed with the Taylor frozen hypothesis
(equation 4.15).

In order to compute the energy at the zero frequency E(f)f→0, the power
spectral density is averaged up to the frequency where an asymptotic trend is
detected. As it is shown in figure 4.5 the spectrum is averaged up to a frequency
of 250 Hz.

The amplitude of the spectral energy, and the time scale deriving from it,
was computed with the Fast Fourier Transform (FFT) by means of the soft-
ware R©Matlab. Furthermore, an Hamming windowing is implemented with the
R©Matlab function pwelch, in order to have higher spectral resolution and to avoid
spectral leakage. Given the length of the signal of 12000 samples, a number of 6000
windows with a 50% overlap is applied. This gives the best compromise between
spectral resolution and clearness of the spectra.

The spectra is depicted up to 30 kHz corresponding to the cut-off frequency
after which only white noise was registered. The power spectral density (PSD)
shows the typical trend of a developed (or quasi-developed) turbulent flows in
which all the typical slopes can be disclosed. After the frequency ascribed to the
integral time scales, there is the f−1 slope of the exponential turbulent decay,
where the energy content starts decreasing. Next, a full f−5/3 slope is appreciable,
consisting of the scales of the sub-inertial range, responsible for the turbulent
kinetic energy transport in the so called energy cascade at approximately 1 to 5
kHz. Finally the f−7 slope is present around 6 to 15 kHz related to the dissipative
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Figure 4.6: Integral Length Scale distribution along the blade height

scale.

A spike at around 4720 Hz can be clearly identified at almost every test. Al-
though the signal is referred to the inlet condition, this spike is attributed to the
reflected pressure waves generated by the blade rotation of the rotor. Indeed the
rotational speed of the turbine rotor is around 5900 RPM at the time the measure
is acquired for a number of rotor blade equal to 48 corresponding exactly at a
blade passing frequency of 4720 Hz.

The integral length scale is a measure of the largest eddies and it depends
on flow boundary conditions and geometry, thus it is expected, in a quasi axial
symmetric geometry, that the maximum value of integral length scale is of the
order of half the inlet section height, which is around 74 mm. In figure 4.6 is
reported the integral length scale computed with equation 4.17 for a full traverse
and the results meet the expectations.

It is worth reminding that each point is related to a different test, thus a perfect
repeatability is only achievable with a much larger number of tests, however it is
possible to observe a defined distribution along the span. The maximum is around
40% of the span. High value of integral length scale are associated to low turbulence
intensity and high energy containing flow structures, while lower value of integral
length scale are ascribed to higher flow strain interaction, where the fluctuations
and the anisotropy is maximum, and thus they represent the region where the
turbulence production and dissipation is maximal.

As far as the micro length scales are concerned, Roach [25] defines them as
a measure of the average dimension of the eddies which are mainly responsible
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Figure 4.7: Micro Length Scale distribution along the blade height

for the dissipation of turbulent energy. Therefore, by looking at the spectra of
figure 4.5, it is possible to expect their energy content to be at a frequency in the
range of 3÷ 5 kHz, where the f−7 decay starts. With the assumption of isotropic
and homogeneous turbulence it is possible to compute the micro scales λ with the
formula,

1

λ2
=

2π2

U
2
u′

2

∫ ∞
0

f 2E
(
f
)
df (4.18)

where the integral is computed by means of a numerical integration, using the
trapezoid rule with the R©Matlab function trapz.

In high Reynolds number flow these micro scales will be, then, larger than the
Kolmogorov one, which are the smallest scales in the flow ascribed to the highest
frequency in the spectra, and which may be computed with the equation 4.2a.
The results in terms of micro scales are shown in figure 4.7. Also in this case the
maximum is detected around the 40% of the span where the largest flow structures
are present. The values of the micro length scales measured fall in the range of
frequency expected, computed as

fλ =
U

2πλ
(4.19)





Chapter 5

Uncertainty Analysis

The process of measurement involves disparate sources of error. When dealing
with hot-wire and any other intrusive instrument, the first element to take into
account is the change in the flow field generated by the flow-probe interference.
Beside this aspect, which is difficult to quantify, the other sources of error are the
following:

• The probe is characterised by a finite length of the order of 1 mm. Hence,
the results are not referred to a single point but they are averaged over a
finite volume. The smallest length scales in turbulent flows can reach value
lower than 0.1 mm. When this is the case the error in turbulence intensity
and length scales can be of the order of 10% [25]. This error is accounted as
spatial resolution.

• As seen in section 4.3, the micro length scales are evaluated from the power
spectrum by an average over a broad frequency bend, while it is the highest
frequency end of the spectrum which characterises the major contribution
in the dissipation time scales. This gives an error in the micro scales if the
integral of equation 4.18 is not computed over a sufficiently large frequency
band.

• Common flows are characterised by a variety of frequency components. On
the contrary, the probes have an upper limit beyond which it does not recog-
nize the signals and a lower limit below which measurement is not performed.
As stated by Biswas [1] a probe with cut-off frequency f2 and lowest frequency
limit f1 must measure for a duration at least 5/f1 seconds so that at least 5
cycles of the lowest harmonic is included in the averaging process. Further,
the sampling rate must be at least 2f2 according to the Nyquist criterion.

• Other sources of error are the finite precision of the calibrated curve, the
round-off errors during computer-based data reduction or during the reading
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of data points from visual instrumentations. Moreover, errors may come
from spurious events such as instruments vibrations, change in materials
conditions or electronic interference, which cause a deviation of the actual
value of the signal, beside human errors, which can always occur.

It is important to distinguish between error and uncertainty. The first one
defines the difference between the measured value and the true value and remains
unknown, while the uncertainty refers to an estimate of the error by introducing
a confidence interval in which it is expected to find the true value with a certain
percentage of confidence level and it is the only quantifiable parameter.

Two widely accepted standard methodology are available to deal with uncer-
tainty quantification, these are the ISO Guide to the expression of Uncertainty in
Measurement (GUM) and the ASME methodology. The difference between the
two procedures is the grouping of uncertainty sources. In this study the ASME
method is considered advantageous in traceability of uncertainty terms, which are
divided in two well defined groups,

1. Systematic errors, which are always present and remain the same during
the experiments. These may be tolerances specified by manufacturers or
calibration uncertainty of the instrument used in a measurement. Systematic
errors represent the bias of the true value with respect to the measured one.

2. Random errors, which cause a scatter in the measurements’ results affecting
the data in a completely random way. These errors are accounted by a
standard deviation from the mean value by knowing the probability density
distribution of the measured population.

Systematic errors will be identified with the letter b while random errors with
the letter s. If more than one component of e.g. systematic uncertainty sources are
present, say N contributions, these are combined by mean of a root mean square

value as b =
(∑N

i=1 b
2
i

)1/2
.

If the collected data fit a Gaussian distribution, the three-sigma rule is appli-
cable. Thus, approximately 68.27% of the values lie within a standard deviation σ
of the mean µ, 95.45% of the values fall within two times the standard deviation,
and roughly 99.72% of the values are comprised within 3σ.

The sample standard deviation, referred as random uncertainty s is computed
as

s =

√∑N
i=1

(
Xi −X

)2
N − 1

(5.1)

where N is the number of samples of a single measurement.
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The total uncertainty, identified with the letter U , will be then U =
(
b2+s2

)1/2
.

It is common practice to express the uncertainty by its expanded value at 95%
confidence interval for which the uncertainty is multiplied by a factor ±t95. If the
number of samples is large enough and the combined degrees of freedom given by
the Welch-Satterthwaite equation are higher than 30 [27], the t95 factor is equal
to 2.

Finally, if the quantity of interest is not directly measured but it is derived
from other quantities, say C = f

(
c1, c2

)
the expansion technique is used for which

the final uncertainty is given by propagation of the other measured uncertainty by
means of a Taylor series expansion with a first order truncation, hence

UC =

√√√√(δC
δc1

Uc1

)2

+

(
δC

δc2
Uc2

)2

(5.2)

If the two variables being measured are dependent one an other, a cross corre-
lation term should be added in the equation.

5.1 Calibration Uncertainty

As described in chapter 2, the hot-wire probe is calibrated in a cold jet in com-
bination with a K-type thermocouple and a Validyne pressure transducer, which
uncertainty is respectively UT0 = 0.157 K and Up0 = 6.78 Pa computed with the
methodology described in Appendix A. These uncertainties are used as systematic
error sources in the quantification of the hot-wire calibration uncertainty.

During calibration, only the mean value of velocity are taken into account in
the construction of the calibration curve. Thus, in order to avoid that physical
velocity fluctuations are considered in the mean velocity uncertainty, the standard
deviation of the hot-wire voltage signal acquired at zero-flow E0 is considered as
uncertainty in the mean voltage signal also when velocity fluctuations are present.
E0 was found to be 0.1 V, with the assumption that it remains constants when the
flow crosses the wire. With this presumption the dynamic calibration will present
similarity with classical static calibration for which normal distribution of samples
is ensured.

The calibration uncertainty for the hot-wire is accounted as deviation from
the actual Reynolds number computed on the wire diameter. The systematic
error sources will be accounted as the calibration uncertainty of total pressure and
total temperature, while the random uncertainty is accounted as static standard
deviation of hot-wire voltage signal and quality of the data fit.

In order to evaluate the quality of the data fit given by a calibration curve
as the one of the hot-wire of figure 2.13, the standard error estimate is used as
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Figure 5.1: Deviation of calibrated points from the fitting calibration curve

indicated in reference [27] and defined as

SEERe =

√∑Ncal
i=1

(
Rei −Refit,i

)2
Ncal −K

(5.3)

where Rei indicates the ith measured point while Refit,i stands for the ith value
calculated from the data fit and the difference is graphically shown in figure 5.1.
Ncal represents the number of calibrated points measured and K is the number of
coefficients used in the data fit (for the hot-wire calibration K = 5 since a 4th order
polynomial fit is used). The denominator in the equation 5.3, Ncal−K, represents
the degrees of freedom of the random uncertainty source of the measured quantity
M [27]. Finally, the random uncertainty derived from the not perfect quality of
the fitting curve is given by

sRe =
SEERe√
Ncal

(5.4)

Furthermore, the computation of the Nusselt number depends on the hot-
wire voltage signal, the total temperature, the flow conductivity and the recovery
factor as expressed in equation 2.23. The Reynolds number, on the other hand,
depends on the flow viscosity, density and mean velocity as expressed in equation
2.13. Thus, a propagation analysis of all error sources in the computation of these
dimensionless numbers must be applied. Hence,



Uncertainty Analysis 61

UNu =

√√√√(δNu
δEb

UE0

)2

+

(
δNu

δT0

UT0

)2

+

(
δNu

δη
Uη

)2

+

(
δNu

δκ
Uκ

)2

(5.5)

URe,meas =

√√√√(δRe
δρ

Uρ

)2

+

(
δRe

δµ
Uµ

)2

+

(
δRe

δV
UV

)2

(5.6)

The uncertainty for the flow properties appearing in equations 5.5 and 5.6 are
computed by the propagation analysis formulated in appendix A.

Furthermore, the uncertainty of the calibration curve comes from error prop-
agation of the Nusselt uncertainty on the fitting 4th order polynomial curve, that
is

URe,fit =
δRe

δNu
UNu (5.7)

The final calibration uncertainty in terms of Reynolds number is computed as
the root mean square of the three component of uncertainty in Reynolds number
given by the equations 5.4, 5.6 and 5.7. Given the high number of samples and
much more than 30 degrees of freedom, the 95% extension of uncertainty for the
hot-wire calibration is given by

URe =
√
U2
Re,fit + U2

Re,meas + s2
Re

(5.8a)

URe,95 = 2URe (5.8b)

It is important to point out that the uncertainty in the measured wire resistance
and temperature of the wire were not included in the computation of the Nusselt
number uncertainty, in a first moment. The dependency on the wire resistance
was neglected since an error of even 10% in the measured resistance resulted in no
change in the final calibration curve. As far as the wire temperature is concerned,
its uncertainty is evaluated by a perturbation analysis. For this analysis, every
measured quantity is perturbed up to its 95% uncertainty value and the iterative
process described in section 2.4.1 is repeated. A new calibration curve is found and
the URe,95 is calculated as described above for the highest and lowest Tw. Finally,
the result in terms of calibration curve uncertainty with 95% confidence level is
shown in figure 5.2.

The most significant source of error was found to be the error propagation from
the other measured quantities of equation 5.6. This error can only be reduced by
increasing accuracy in the instrumentations utilized.

The quality of the fitting computed with equation 5.4 can be reduced if a larger
number of calibrated points is exploited.
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Figure 5.2: Hot-wire calibration curve with 95% confidence level

5.2 Measurements Uncertainty

The same distinction between systematic and random error sources is maintained
for the uncertainty quantification of the measurements performed in the VKI’s
CT3 facility.

Systematic errors for hot-wire results are those which remain in all measure-
ments. These are uncertainty in measured total temperature, total pressure and
static pressure and the uncertainty value obtained for the calibration.

From a perturbation analysis it was found that total pressure and static pres-
sure uncertainties are negligible compared to the uncertainty in total temperature.
The latter is considered to be the result of the scatter between the two method-
ologies applied in the total temperature computation described in section 3.3. It
is of the order of 2 K in the whole span except for the wall proximity where it may
be up to 6 K.

As far as the random uncertainty term is concerned, it is imperative to un-
derstand that in dynamic, unsteady and turbulent conditions it is impossible to
ensure a Gaussian distribution of the velocity samples. The result in terms of
velocity computed with hot-wire is shown, for one test, in the histogram of figure
5.3. It is evident the deviation from the normal distribution with a high positive
skewness.

In general positive skewness provides us with a useful information, indicating
a deviation from the equilibrium between production and dissipation of turbulent
energy [1]. Drozdz [22] showed that a positive skewness in the near-wall region can
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Figure 5.3: Histogram of velocity samples

Figure 5.4: Skewness of velocity samples distribution along the span

indicate enhanced sweep event where flow separation may occur or may reflect the
presence of high shear stresses imposed on a background of lower turbulence level.
Dell’Era et al [27] ascribed high skewness in an axial compressor inlet to zones
where higher pressure vortex structures are present. Furthermore, high skewness
may stand for high correlated structures; indeed higher skewness is found in region
where higher integral length scale is computed, as it is shown in figure 5.4.
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As far as a skewed probability density function may give information about the
physic of the flow, it can not be used to compute the random source of uncertainty.
In literature, many attempts have been made to give a reference for unsteady mea-
surements uncertainty. Dell’Era [27] makes use of a transformation of the signal
by sorting it in ascending order, computing the median and calculate the inverse
of a cumulative distribution function with mean equal to the median itself and
standard deviation estimated with the assumption of Gaussian distribution. On
the other hand Derksen [28] suggests to not assuming a Gaussian distribution but
to over-impose a distribution to the turbulent statistic by means of the maximum
statistical entropy approach. Lenschow [21] computes the higher order statistical
moments by assuming that the autocorrelation function can be represented with
an exponential distribution and then an analytical expression is provided.

The methods proposed by the above mentioned scholars have in common the
use of a parametric approach to the problem; hence, a hypothesis on the distri-
bution of the parameters is developed. In this project a non-parametric approach
is proposed, thus the turbulent statistics are computed with their uncertainty
without any hypothesis on the probability density function. The methodology is
a re-sampling technique developed by Efron [29] in an econometric field, called
Bootstrap. An enhanced version of it, the Moving Block Bootstrap proposed by
Künsch [30], is used in order to ensure that correlation between samples remains
untouched.

5.2.1 General Principle of Bootsrtapping

Statistic should answer to three questions when dealing with measurements: How
to collect data? How to analyse these data? How accurate are these data?

The Bootstrap re-sampling technique attempts to answer the latter question
computing the statistical inference. In other words it is a way to measure accuracy
– in terms of variance, error prediction, confidence intervals – of samples estimates
by means of a computer-based algorithm [31].

The main idea is that inference about a population of sample data may be
modelled by performing inference on a re-sampled group of these data in a ran-
dom fashion. It is formally used when the distribution of a statistic of interest is
unknown, or when the sample size is not sufficient to compute direct statistical
inference [31].

On the contrary, parametric theories for statistical inference require assump-
tions on the distribution function. Once the PDF is assumed or known, it is
possible to compute from a sample data set x a sample mean, say X, as prediction
of the true value µ and a standard error σ. For instance, for normally distributed
N samples, it is possible to define the standardized z-score pivotal quantity as
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z =
x− µ
σ

(5.9)

z will have mean equal to 0 and variance equal to 1. Moreover, the central
limit theorem states that, for normal distributed samples, the sample mean is also
normally distributed with standard deviation σ/

√
N and the z-score of the mean

will be

z =
X − µ
σ/
√
N

(5.10)

Again the distribution of the z-score of the mean will have the same distribution
with mean equal to 0 and variance equal to 1.

It is, then, possible to evaluate statistical inference by the classical percentile
method, for which approximately 95% of the time the true value will fall within 2
standard deviations.

µ95 ≈ X ± 2σ√
N

(5.11)

It is evident that to evaluate confidence intervals for the mean value the second
order moment must be known. In the turbulence community, when probability
density function is not known, a usual way to deal with inference problem is
to assume that the statistic of interest follows a normal distribution. Further
estimation must be performed on the standard error of the parameter. In literature,
few analytical formulations are available for the standard error estimation of higher
than first order statistical moments such as variance, Reynolds stresses, third and
fourth order moments [32], however their validity is ensured only for uncorrelated
samples. Indeed, if samples are correlated the resulting confidence intervals would
be narrower than they actually are [33].

Due to the necessity of high sampling frequency of the hot-wire signal, the
measured velocity samples are highly correlated, thus classic statistical procedures
are no more applicable.

One solution to this problem is to use a number of uncorrelated samples Neff

from the original data set of N samples. From these samples classical formultaions
of normal distributed mean and variance can be exploited. In order to evaluate the
value for Neff from a recorded observation, an estimation of the integral time scale
is required [10]. However, as stated in section 4.3, it is possible to compute time
scale with different definitions and, as demonstrated by Theunissen [34], depending
on the definition utilized, the value of Neff , the value of the statistic of interest
and its standard error estimate can be much different and thus highly unreliable.
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Moreover, no equations are available for standard errors of more complicated
parameters such as length and time scales, dissipation of TKE and micro scales
[33].

On the other hand, the non–parametric Bootstrap overcomes these problems
thanks to the following presumption: if the sample is a good approximation of
the population, the Bootstrap re-sampling method provides a good approximation
of the sampling distribution [31]. This theoretical justification lies on two levels of
asymptotic:

1. As the original sample size N approaches the population size, the empirical
distribution function (EDF) approaches the true distribution (PDF) [31]. In-
deed, as a sample increases in size, it contains more and more information
about the population.

2. If the original sample size N is large enough, as the number of re-samples
increases to infinity, the bootstrapped estimate of the sampling distribution
approaches the sampling distribution of the original statistic [31].

The procedure to extract mean and error estimate is described by the following
steps [29] and depicted in figure 5.5,

1. Construct a sample probability distribution f̂ by placing a mass 1/N at each
point x1, x2,...,xN of the time series x. This is the non-parametric maximum
likelihood estimate of the population distribution and thus, each sample has
the same probability to be drawn.

2. From the empirical distribution found, draw a random sample of size N with
a random replacement. In other words, create a new data series with the
same observations randomly extracted from the original data series. This
will be a Bootstrap sample series x∗.

3. Calculate the statistic of interest θ from the bootstrapped sample series yield-
ing to θ∗.

4. Repeat step 2 and 3 B times, where B is a large number which must be
defined later on.

5. Approximate the sampling distribution of the statistic θ by the Bootstrap
distribution of θ∗ induced by the random mechanism.

6. Compute the mean and the standard deviation of the statistic θ∗ from the
Bootstrap distribution.
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Figure 5.5: Principle of Bootstrap re-sampling technique

In other words, the construction of Bootstrap samples is performed with a
Monte Carlo style procedure. Repeated realizations of x∗ are generated by taking
randomly samples of size N from f̂.

The Bootstrap data set will thus consist of members of the original data set,
some appearing zero times, some once, some twice or more times.

The histogram of the corresponding statistic θ∗1, θ
∗
2,...,θ

∗
B taken from each Boot-

strap series is taken as an approximation to the actual distribution [29].
Finally, the Bootstrap estimate of the standard error would be the standard

deviation of the Bootstrap replications of the statistic θ, hence

σ∗θ =

[∑B
i=1

(
θ∗i − θ∗

)2
B − 1

]1/2
(5.12)

where θ∗ is the mean of the bootstrapped realizations of θ

θ∗ =

∑B
i=1 θ

∗
i

B
(5.13)

Although bootstrapping is asymptotically consistent, the procedure described
conceals an important assumption of sample independence. Indeed, re-sampling
destroys any correlation between observations. This is a big limitation when deal-
ing with turbulent statistics such as length scales which are strictly dependent on
the correlation factor. For this reason an enhanced version of the Bootstrap must
be used as described in the following section.
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5.2.2 The Moving Block Bootstrap

As previously mentioned the Moving Block Bootstrap (MBB), ascribed to Künsch
[30], ensures that correlation remains untouched. It consist in replacing the sam-
ples in block of length b instead of taking one sample per time randomly.

The data is split into N − b + 1 overlapping blocks and N/b blocks will be
randomly drawn with replacement and aligned in order to construct a Bootstrap
sample series of roughly the same size of the original data set.

This procedure is again repeated B times to get B Bootstrap series. From
each of them the statistic of interest is computed and the probability distribution
estimated.

However, two questions arise from what discussed up to now: how large should
be the number of Bootstrap replications B in order to approximate the sample
distribution well? And, how long should be the blocks in order to leave correlation
intact?

As far as the number of replications B is concerned, Efron [31] stated that
depending on the statistic of interest the value may vary. In particular, very
seldom are more than B = 200 replications needed for estimating an error variance,
while a much higher value (around 1000) are required for estimating a Bootstrap
confidence interval.

In the present study, a sensitivity analysis is used in order to compute the
number of B Bootstrap replications depending on the statistic of interest, on the

Figure 5.6: Mean and Standard Deviation of Turbulence Intensity depending on
the number of Bootstrap series
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Figure 5.7: Skewnees and Kurtosis of Turbulence Intensity depending on the num-
ber of Bootstrap series

basic idea that Bootstrap replications asymptotically tend to a defined distribution
whether the parameter one wants to estimate.

As a title of example, figures 5.6 and 5.7 show the dependency of the boot-
strapped mean, standard deviation, skewness and kurtosis of the turbulence in-
tensity on the number of replications B.

Results, especially the one for skewness and kurtosis, show the tendency to nor-
mality as the number of Bootstrap replications B exceeds 4000 for the turbulence
intensity measured in the CT3 facility, while a number of 10000 B replications is
required for length and time scales error estimation and confidence interval.

The histograms of the mean velocity and of the turbulence intensity resulting
from bootstrapping the hot-wire velocity signal is shown in figure 5.8 and 5.9. It
is evident that the empirical bootstrapped distribution can be easily compared
to a Gaussian probability density function. Indeed skewness and kurtosis of the
bootstrapped mean are roughly equal to zero and three respectively.

To answer the second question, concerning the number of samples b that each
block should have to ensure intact correlation in the signal, Politis et al [35] pro-
posed an automatic procedure for block length selection based on a first estimation
of the autocorrelation function, and the time or length scale from the original sig-
nal, which is aimed at minimizing the mean square error of the standard error
estimate.

The procedure is synthesized hereafter by the following steps [35]:
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Figure 5.8: Histogram of bootstrapped mean velocity

Figure 5.9: Histogram of bootstrapped turbulence intensity

1. Calculation of the unbiased autocorrelation function with equation 4.6.

2. Finding the smallest lag m for which the Kth consecutive value of the auto-

correlation factor satisfies Rx

(
m + k

)
≤ c
(

logN
N

)1/2
with k = 0, 1, ..., K and

K = max
(

5,
(

logN
)1/2)

. c is a constant and it is generally equal to 2. It
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basically consists in identifying the time lag after which the autocorrelation
can be considered negligible.

3. The optimum block length b will be computed as

b = N1/3

(
2G2

D

)1/3

(5.14)

where the terms composing the equation are

D =
4g2
(
0
)

3
(5.15a)

g
(
0
)

=
2m∑

k=−2m

λ
(
k/2m

)
×R

(
k∆t

)
(5.15b)

G =
2m∑

k=−2m

λ
(
k/2m

)
× |k| ×R

(
k∆t

)
(5.15c)

In these equations the term λ is computed as

λ
(
k/2m

)
=


1, if 0 ≤ |

(
k/2m

)
| ≤ 0.5

2
(
1− |k/2m|

)
, if 0.5 < |

(
k/2m

)
| ≤ 1

0, otherwise

(5.16)

Once the optimum block length is computed, it is possible to construct the
Bootstrap repetitions as described previously and from each of them compute the
statistic of interest and its bootstrapped mean, standard deviation and confidence
interval.

Garcia et al [33] validated the Moving Block Bootstrap with automatic block
length selection by means of analytical formulation (when existing) and experi-
mental results with acoustic Doppler velocimeter, with good agreement. However
the automatic block length selection was validated in a fully developed and sta-
tionary turbulent flow for an extended period of time by means of a closed loop
facility.

As already discussed in section 4.3, due to the limited time in which the mea-
sures are taken, the autocorrelation function presents wide oscillation around zero.
O’Neill [23] stated that wide oscillations in autocorrelation function can be de-
scribed as spurious if a small number of data points are used and they may derive
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Figure 5.10: Mean of Integral Length Scale sensitivity depending on the Bootstrap
blocks’ length relative to an original signal sampled at 1 Mhz for the 0.1 seconds
of test resulting in 100000 samples

from numerical errors in the autocorrelation computation. Indeed, he demon-
strated that integral time scale computed from the autocorrelation function is
only accurate when the integration is performed over a large enough time step. If
the time domain is composed by a limited number of samples the integral may lead
to an erroneous estimation of time scales. On the other hand high oscillation may
indicate large correlated structures and again, if the time in which the autocorre-
lation is computed is not large enough it may lead to an underestimation of the
block length. Therefore, as asserted by Theunissen [34], when the autocorrelation
function is affected by strong oscillations, it is preferred to use a conservative block
length selection.

For the purpose of this thesis the block length was selected after a sensitivity
analysis. It must be reminded that the optimum block length depends on the
number of samples composing the original signal in the interval considered, hence
it depends on the sampling frequency. In figure 5.10 the block length is selected for
an original signal sampled at the frequency of 1 MHz resulting in 100000 samples
for the 0.1 seconds of test. The number of samples b composing each block is
selected as the lower number of samples, above which the length scales, calculated
as described in section 4.3, does not change. This indicates a full convergence
of the power spectra. For the case proposed in figure the number of elements
per block was found to be slightly higher than 10000. For the case in which the
sampling frequency was 120 kHz – hence the number of samples resulted to be
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Figure 5.11: Histogram of bootstrapped Integral Length Scale

Figure 5.12: Histogram of bootstrapped Micro Length Scale

12000 for the 0.1 seconds of the test – the optimum block length was found to be
slightly higher than 1200 confirming the ratio b/N ≈ 1/10.

The histogram resulting from the bootstrapped integral length scale and micro
length scales are shown in figures 5.11 and 5.12.

Again the empirical density function can be fitted with a Gaussian probability
density function with good agreement.
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5.2.3 Bootstrapped Confidence Interval

An interval estimate is often more useful than just a point estimate. When taken
together, the point and the interval estimate give a full information of what is
the best guess for the property θ. Given a mean estimate θ and a standard error
estimate σ the expression of confidence interval is given as

θ ± t× σ (5.17)

where t is a proportional constant and it depends on the confidence level with
which this information is given. The confidence level is given in terms of per-
centage, e.g. for a Student-t distribution the confidence interval is given with a
confidence level of 95% for t = 2 if the number of samples is large enough.

Formally when N grows large enough the distribution of θ becomes more and
more normal with mean θ and variance σ2. The normal distribution is often written
as Nθ

(
θ, σ2

)
or by pivotal quantity

z =
θ − θ
σ
≈ Nz

(
0, 1
)

(5.18)

This is valid for a number of sample N → ∞. When a finite number of
samples is present then z is substituted with t, standing for the pivotal quantity of
a Student-t approximation. The 100αth percentile point of a Student-t distribution
is then known, e.g. for α = 0.025, then t = −2 and symmetrically for α = 0.975,
then t = +2. Tables are available for all values of α. Therefore, the information
of the estimate of θ is given in a full satisfying way as

θ ± |tα| × σ (5.19)

with 100
(
1− 2α

)
% confidence level.

When using the Bootstrap technique, we get an approximation of the empirical
density function. For this PDF the confidence intervals can be computed in two
most common ways as described by Efron [29].

1. The first method is similar to a Student-t approximation. Indeed it is avail-
able a table for the pivotal quantity of the so called Bootstrap-t distribution.
The pivotal quantity for the bootstrapped statistic is represented by the
Bootstrap approximation of the Student-t distribution. For more details see
Efron (p.160) [29]. Although it is valid also for not symmetrical distribution,
difficulties arise for more complicated statistics for which a simple formula
for the standard error does not exist.

2. The second method is based on the construction of the bootstrapped his-
togram for each statistic and compute the confidence interval from it. This
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• V [m/s] Tu [%] L [mm] λ [mm]
Student-t dist. [43.4 ÷ 46.3] [12.3 ÷ 15.3] [10.7 ÷ 24.6] [2.3 ÷ 3.1]

Boot. Percentile [43.4 ÷ 46.2] [12.4 ÷ 15.3] [10.9 ÷ 24.3] [2.3 ÷ 3.1]

Table 5.1: Comparison between Student-t distribution and percentile Bootstrap
to compute confidence interval with 95% confidence level for mean velocity, tur-
bulence intensity, integral and micro length scale

method, called percentile Bootstrap, is more straightforward than the first
one and it consists in creating the cumulative distribution function Ĝ for the
bootstrapped statistic θ∗. The 1− 2α percentile interval is simply defined as
the α and 1− α percentile of Ĝ. Although simple, the main disadvantage of
this method is that it performs well only for symmetrical Bootstrap empirical
density function for which a Gaussian fit is applicable, hence the percentile
Bootstrap confidence interval of the Bootstrap distribution is roughly equal
to the one derived from its Gaussian fit.

In the present work all the bootstrapped statistic of interest show an asymptotic
tendency to normality, and the confidence interval can be computed with the
second methodology, as long as the length of the Bootstrap series B is higher than
a certain value, that is B ≥ 200 for the mean confidence interval, B ≥ 4000 for
the turbulence intensity and B ≥ 10000 for the length and time scales.

A comparison between the percentile Bootstrap method and the Student-t
distribution for computing the confidence interval with 95% confidence level is
given in table 5.1 for one test, as an example, with good agreement.

5.2.4 Uncertainty Results

The results for the measurements taken at the inlet of the CT3 VKI’s high pressure
turbine stage are then expressed with their uncertainty at 95% confidence level in
terms of mean velocity V, turbulence intensity Tu, integral length scale L and
micro length scale λ as shown in figures 5.13, 5.14, 5.15 and 5.16.

The total uncertainty is computed as the root mean square of the random
uncertainty derived from the Bootstrap technique and the systematic uncertainty
which is affected especially by the error in the total temperature.

It is possible to notice a higher uncertainty in mean velocity and turbulence
intensity close to the wall, due to the highest uncertainty of total temperature
in that region, and where the highest unsteadiness in the flow is present, that is
where shear stresses are more important and integral length scales are smaller.

While systematic uncertainty has a relatively high weight in mean velocity and
in turbulence intensity, integral and micro length scales uncertainties are more
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affected by random error sources. The high value of uncertainty in the integral
length scale may depend on the short time interval in which the measures are
acquired.

Figure 5.13: Mean Velocity distribution along the blade height with its uncertainty
at 95% confidence level

Figure 5.14: Turbulence Intensity distribution along the blade height with its
uncertainty at 95% confidence level
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Figure 5.15: Integral Length Scale distribution along the blade height with its
uncertainty at 95% confidence level

Figure 5.16: Micro Length Scale distribution along the blade height with its un-
certainty at 95% confidence level





Chapter 6

Conclusions

Hot-wire anemometry operated in constant temperature mode was employed for
measurements in the VKI’s CT3 blow-down compression tube facility in order to
characterize the flow-field at the inlet of a high pressure turbine stage in terms of
turbulence intensity, integral length scales and micro length scales.

A dimensionless approach to the calibration was used in order to decouple
the temperature dependency on hot-wire raw voltage results from the mass flux
dependency. This allowed to reduce measurements data from a unique calibration
curve also for strongly not-isothermal flows as the one encountered in the CT3
facility.

The work done aimed to give accurate turbulence results in order to provide
CFD with reliable boundary conditions for validation and help in the design process
of highly performing blade tip geometry. In experimental investigations, where
the true measured value is never a priori known, accuracy is only achievable when
results are associated with error estimations.

The uncertainty was computed by means of the ASME approach, which divides
the error sources in systematic and random. The systematic error sources do not
affect the distribution of a given population, while the random error sources is
accounted by the standard deviation of the statistic probability density function.

However, quantification of the random uncertainty for turbulence measures is
not straightforward, since it is not possible to know probability distribution for
statistical moments of order higher than the first. For this reason, it is common
practice to deal with it by means of a parametric approach. Therefore, any tur-
bulent statistics may be accounted with the assumption that the said statistic
population follows a Gaussian distribution, or, alternatively, the probability den-
sity function can be assumed to be the one that maximizes the statistical entropy.

Instead, in the present work a non-parametric approach was used by means of
the Bootstrap re-sampling technique.

The main strength of the Bootstrap method is that it is asymptotically con-

79
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sistent, that is, when the number of Bootstrap repetition is big enough, the boot-
strapped statistic’s distribution approximates the measured statistic’s distribution
without needing to know it in advance. Thus, it is possible to compute statistical
inference without any assumption on the probability density function.

In correlated samples, the Moving Block Bootstrap (MBB) performs as well as
the standard Bootstrap, but, in addition, it prevents to destroy the autocorrelation.

The bootstrapping procedure has shown a tendency to normality for a number
of Bootstrap repetitions B ≥ 200 for the mean, B ≥ 4000 for the turbulence
intensity and B ≥ 10000 for the length and time scales confidence intervals.

The block length was selected either by an automatic algorithm or by a sensitiv-
ity analysis. For highly correlated structures, or for flows with strongly oscillating
autocorrelation function, the sensitivity analysis assured more reliability since the
automatic algorithm is based on a previous estimation of time scale from the au-
tocorrelation function itself. A good value for b was found to be slightly higher
than 1/10 times the original sample size N .

Thanks to the resulting symmetry of the bootstrapped PDF, the inference is
given by the percentile Bootstrap method, for which a 95% confidence level is
taken from the cumulative distribution function Ĝ of the bootstrapped statistic of
interest and the 1− 2α percentile interval is simply defined by the

[
αB
]
th

and the[(
1−α

)
B
]
th

sample of Ĝ. This was found to agree with the uncertainty computed
from the classic Student-t distribution methodology.

Finally, results in terms of mean velocity, turbulence intensity, integral length
scale and micro length scale are conferred and displayed along all the blade height
with the respective uncertainty with 95% confidence level.

6.1 Future Recommendation

The Bootstrap technique applied in the present work has demonstrated to be
efficient with a good degree of repeatability. Nevertheless, validation of the method
has to be provided with other more validated non-parametric techniques such as
a classic Monte Carlo simulation in which all parameters involved in the data
reduction are fed in the Monte Carlo computer-based algorithm.



Appendix A

Uncertainty of Calibration
Instruments

A.1 Thermocouple Uncertainty

Uncertainty is evaluated as the root mean square of systematic and random error
sources. The K-type thermocouple is calibrated with a Thermibel oil bath and a
Thermibel high precision digital thermometer as a reference.

The manufacturer indicates an uncertainty in the reference thermometer of
b1 = 0.02 K full scale, while the resolution of the instrument is up to the third
decimal digit.

Resolution errors, which derive from the round-off of the fourth decimal digit,
is computed with a uniform distribution with infinite degree of freedom. Thus it
is b2 = 0.001/

√
3 = 0.00058 K.

Systematic uncertainty is

bT0 =
√
b21 + b22 ≈ 0.02K (A.1)

Random uncertainty is evaluated as the standard deviation of the samples in
terms of the thermocouple voltage acquired at a sampling frequency of 10 kHz for
3 seconds. Given the high number of samples a Gaussian distribution is ensured
with degrees of freedom much higher than 30, hence

sE =

√∑N
i=1

(
Ei − E

)2
N − 1

(A.2)

The calibration curve obtained is a linear fitting of the calibrated points in a
Voltage-Temperature graph of figure 2.10b with angular coefficient m and intercept
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q. Temperature random uncertainty is then computed by propagation as s1 =
sEδT0/δE = sEm.

To evaluate the quality of the fitting curve the standard estimate of error is
used as

SEET0 =

√∑Ncal
i=1

(
T0, i− T0,fit,i

)2
N −K

(A.3a)

s2 =
SEET0√
Ncal

(A.3b)

where K is the number of coefficient of the calibration curve, hence K = 2, and
Ncal is the number of calibrated points composing the fitting curve.

The total random error source is

sT0 =
√
s21 + s22 ≈ 0.156K (A.4)

Total uncertainty for the thermocouple and its expansion value at 95% confi-
dence level are then

UT0 =
√
s2T0 + bT0

2 ≈ 0.157K (A.5a)

UT0,95 = 2UT0 ≈ 0.314K (A.5b)

A.2 Validyne Pressure Transducer Uncertainty

The same procedure is used to evaluate the uncertainty of the Validyne pressure
transducer, which is calibrated with a DPI pressure pump with a manufacturer
indication of uncertainty equal to 0.025% of Full Scale, which is 7000 Pa. Resolu-
tion of the digital pump is 0.001 Pa and it is treated with an uniform distribution
and infinite degrees of freedom.

The systematic uncertainty is equal to bp0 ≈ 1.75 Pa.
The calibration curve is again a linear fitting of the calibrated points in the

Voltage-Pressure graph of figure 2.10a.
By applying the same procedure used for the thermocouple for the standard

estimate of error SEEp0 and the same sampling frequency of 10 kHz for 3 seconds
the final random uncertainty will be equal to sp0 ≈ 6.55 Pa.

The total uncertainty is then Up0 ≈ 6.78 Pa and the 95% confidence level
extension is again computed as

Up0,95 = 2×
√
s2p0 + b2p0 ≈ 13.56Pa (A.6)



Uncertainty of Calibration Instruments 83

A.3 Error Propagation Analysis for Hot-Wire Cal-

ibration

In equations 5.5 and 5.6 the uncertainty for the Nusselt number and the Reynolds
number is computed by propagation of other measured quantities’ uncertainty.
Here all the formulations are provided.

The partial derivative terms of equation 5.5 are

δNu

δEb

=
2EbRw(

Rl + Rt + Rw

)2
κlwπ

(
Tw − ηT0

) (A.7a)

δNu

δT0

=
E2
bRwη(

Rl + Rt + Rw

)2
κlwπ

(
Tw − ηT0

)2 (A.7b)

δNu

δη
=

E2
bRwT0(

Rl + Rt + Rw

)2
κlwπ

(
Tw − ηT0

)2 (A.7c)

δNu

δκ
= − E2

bRw(
Rl + Rt + Rw

)2
κ2lwπ

(
Tw − ηT0

) (A.7d)

While the partial derivative terms of equation 5.6 are

δRe

δρ
=

Vdw
µ

(A.8a)

δRe

δµ
= −Vdwρ

µ2
(A.8b)

δRe

δV
=
dwρ

µ
(A.8c)

Uncertainty for flow properties is given by propagation of error starting from
the three measured quantities: total temperature, total pressure and static pres-
sure. Static pressure is the ambient one during calibration and its uncertainty is
neglected.

In order to compute the Reynolds number uncertainty, it is required uncertainty
in viscosity, density and velocity. The viscosity is a function of the total pressure,
hence its uncertainty will be

δmu

δT0

=
3µref

(
Ts + Tref

)
2Tref

(
T0 + Ts

) ( T0

Tref

)1/2

−
µref

(
Ts + Tref

)(
T0 + Ts

)2 (
T0

Tref

)3/2

(A.9a)

Uµ =
δmu

δT0

UT0 (A.9b)
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As far as the density is concerned, the only variable which participates at the
propagation is the static temperature.

δρ

δT
= − p

RT2 (A.10a)

Uρ =
δρ

δT
UT (A.10b)

Static temperature is computed from the Mach number and the total temper-
ature,

δT

δT0

=
1

γ−1
2
M2 + 1

(A.11a)

δT

δM
= −

2MT0
γ−1
2(

γ−1
2
M2 + 1

)2 (A.11b)

UT =

√√√√( δT

δT0

UT0

)2

+

(
δT

δM
UM

)2

(A.11c)

Moreover, the uncertainty in the computed velocity is function of error propa-
gation from Mach number and static temperature

δV

δM
=
(
γRT

)1/2
(A.12a)

δV

δT
=

γRM

2
(
γRT

)1/2 (A.12b)

UV =

√√√√( δV

δM
UM

)2

+

(
δV

δT
UT

)2

(A.12c)

The Mach number is computed as function of total pressure, hence

δM

δp0

=

(
p0
p

) γ−1
γ
−1

γp

[(
2

(
p0
p

) γ−1
γ

− 2

)
1

γ−1

]1/2 (A.13a)

UM =
δM

δp0

Up0 (A.13b)
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As far as the Nusselt number uncertainty is concerned, the flow conductivity
and the recovery factor uncertainty must still be calculated. The flow conductivity
is function of the total temperature and its uncertainty is

δκ

δT0

=
7κref

10Tref

(
T0

Tref

)−3/10
(A.14a)

Uκ =
δκ

δT0

UT0 (A.14b)

Finally, uncertainty in the recovery factor η is found to be on the order of 10−7,
hence negligible.

As explained in section 5.1 the final Reynolds number uncertainty has three
contributions, one deriving from error propagation of the fitted curve with respect
to the Nusselt number uncertainty, one derived from the quality of the fitting by
means of the standard estimate of error and one derived form error propagation
of the other measured quantities from which the Reynolds number is calculated.
The latter gives the highest uncertainty.

In particular, for the first hot-wire HWA1 it is URe,fit ≈ 0.120, sRe ≈ 0.003 and
URe,meas ≈ 0.229. The total uncertainty is URe ≈ 0.231. For the second hot-wire
HWA2 it is URe,fit ≈ 0.124, sRe ≈ 0.012, URe,meas ≈ 0.157, URe ≈ 0.161. Thus the
extended uncertainty with 95% confidence level is

UHWA1
Re,95 ≈ 0.461 (A.15a)

UHWA2
Re,95 ≈ 0.322 (A.15b)
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